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ABSTRACT
There has been a flurry of recent literature studying streaming

algorithms for which the input stream is chosen adaptively by a

black-box adversary who observes the output of the streaming

algorithm at each time step. However, these algorithms fail when

the adversary has access to the internal state of the algorithm, rather

than just the output of the algorithm.

We study streaming algorithms in the white-box adversarial

model, where the stream is chosen adaptively by an adversary who

observes the entire internal state of the algorithm at each time step.

We show that nontrivial algorithms are still possible. We first give

a randomized algorithm for the 𝐿1-heavy hitters problem that out-

performs the optimal deterministic Misra-Gries algorithm on long

streams. If the white-box adversary is computationally bounded,

we use cryptographic techniques to reduce the memory of our 𝐿1-

heavy hitters algorithm even further and to design a number of

additional algorithms for graph, string, and linear algebra problems.

The existence of such algorithms is surprising, as the streaming

algorithm does not even have a secret key in this model, i.e., its state

is entirely known to the adversary. One algorithm we design is for

estimating the number of distinct elements in a stream with inser-

tions and deletions achieving a multiplicative approximation and

sublinear space; such an algorithm is impossible for deterministic

algorithms.

We also give a general technique that translates any two-player

deterministic communication lower bound to a lower bound for ran-

domized algorithms robust to a white-box adversary. In particular,

our results show that for all 𝑝 ≥ 0, there exists a constant 𝐶𝑝 > 1

such that any 𝐶𝑝 -approximation algorithm for 𝐹𝑝 moment estima-

tion in insertion-only streams with a white-box adversary requires
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Ω(𝑛) space for a universe of size 𝑛. Similarly, there is a constant

𝐶 > 1 such that any 𝐶-approximation algorithm in an insertion-

only stream for matrix rank requires Ω(𝑛) space with a white-box

adversary. These results do not contradict our upper bounds since

they assume the adversary has unbounded computational power. Our

algorithmic results based on cryptography thus show a separation

between computationally bounded and unbounded adversaries.

Finally, we prove a lower bound of Ω(log𝑛) bits for the funda-
mental problem of deterministic approximate counting in a stream

of 0s and 1s, which holds even if we know how many total stream

updates we have seen so far at each point in the stream. Such a

lower bound for approximate counting with additional information

was previously unknown, and in our context, it shows a separation

between multiplayer deterministic maximum communication and

the white-box space complexity of a streaming algorithm.

CCS CONCEPTS
• Theory of computation→ Streaming models; Streaming,
sublinear and near linear time algorithms; Lower bounds
and information complexity.
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1 INTRODUCTION
In the streaming model of computation, one wants to compute or

approximate a predetermined function on a dataset. The dataset is

implicitly defined through a sequence of updates, and the goal is

to use total space that is sublinear in the size of the dataset. The

streaming model captures key resource requirements of algorithms

for many database and network tasks where the size of the data
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is significantly larger than the available storage, such as logs for

network traffic, IoT sensors, financial markets, commercial transac-

tions, and scientific data, e.g., astronomy or bioinformatics.

In the classical oblivious streaming model, there exists a stream

𝑆 of updates 𝑢1, . . . , 𝑢𝑚 that defines an underlying dataset, such as

a frequency vector, a graph, or a set of points in Euclidean space.

The sequence of updates may be worst-case, but the dataset is fixed

in advance and is oblivious to any algorithmic design choices. Al-

though there are examples of fundamental streaming algorithms

that are deterministic, many streaming algorithms crucially utilize

randomness to achieve meaningful guarantees in sublinear space.

For example, the famous AMS sketch [5] for 𝐹2 estimation initial-

izes a random sign vector 𝑍 , maintains ⟨𝑍, 𝑓 ⟩ in the stream, and

outputs ⟨𝑍, 𝑓 ⟩2 which is an unbiased estimator to ∥ 𝑓 ∥2, where 𝑓 is

the underlying frequency vector defined by the stream. However,

the analysis demands that the randomness used to generate the

sign vector 𝑍 is independent of the frequency vector 𝑓 and in gen-

eral, the analysis of many randomized algorithms assumes that the

randomness of the algorithm is independent of the input. However,

such an assumption may not be reasonable [8, 16, 24, 32, 54, 57];

even if the stream is not adversarially generated, a user may need

to repeatedly query and update a database based on the responses

to previous queries. For example in typical optimization procedures

such as stochastic gradient descent, each time step can update

the eventual output by an amount based on a previous query. In

recommendation systems, a user may choose to remove some sug-

gestions based on personal preference and then query for a new

list of recommendations.

(Black-box) adversarial streaming model. Recently, a large body

of research has been devoted to studying the (black-box) adver-

sarial streaming model as a means of modeling adversarial data

streams. In the (black-box) adversarial streaming model [4, 7, 11–

13, 17, 21, 37, 43, 51, 69], the sequence of updates 𝑢1, . . . , 𝑢𝑚 is

chosen adaptively rather than being fixed. In particular, the input

is chosen by an adversary who repeatedly queries the streaming

algorithm for a fixed property of the underlying dataset at each

time 𝑡 ∈ [𝑚] and determines the update 𝑢𝑡+1 only after seeing the

output of the algorithm after time 𝑡 . The streaming algorithm must

still be correct at all times. In the black-box adversarial streaming

model, [4, 13] show that Bernoulli sampling and reservoir sampling

can approximately preserve statistics such as densities of certain

subsets of the universe and [17] shows that importance sampling

can use independent public randomness to approximately solve

problems such as 𝑘-means centering, linear regression, and graph

sparsification.

However, for other important problems such as 𝐹𝑝 moment esti-

mation, matrix rank, or estimating the number of distinct elements

in the stream, [7, 11, 12, 21, 37, 69] crucially use the fact that the

adversary who chooses the input can only see the output of the

algorithm. These algorithms essentially work by arguing that it is

possible to have the output of the algorithm change only a small

number of times, and so only a small amount of internal random-

ness is revealed, which allows such algorithms to still be correct.

However, these algorithms completely fail if the internal state of

the algorithm at each point in time is also revealed to an adversary.

White-box adversarial streaming model. In this paper, we intro-

duce the white-box adversarial streaming model, where the se-

quence of updates 𝑢1, . . . , 𝑢𝑚 is chosen adaptively by an adversary

who sees the full internal state of the algorithm at all times, includ-

ing the parameters and the previous randomness used by the algo-

rithm. More formally, we define the white-box adversarial model as

a two-player game between StreamAlg, the streaming algorithm,

and Adversary. Prior to the beginning of the game, a query Q is

fixed, which asks for a fixed function of some underlying dataset

implicitly defined by the stream. The game then proceeds across𝑚

rounds, where in the 𝑡-th round:

(1) Adversary computes an update 𝑢𝑡 ∈ [𝑛] for the stream,

which depends on all previous stream updates, all previous

internal states of StreamAlg, and all previous randomness

used by StreamAlg (and thus also, all previous outputs of

StreamAlg).
(2) StreamAlg uses 𝑢𝑡 to update its data structures 𝐷𝑡 , acquires

a fresh batch 𝑅𝑡 of random bits, and outputs a response 𝐴𝑡

to the query Q.
(3) Adversary observes the response 𝐴𝑡 , the internal state 𝐷𝑡 of

StreamAlg, and the random bits 𝑅𝑡 .

The goal of Adversary is to make StreamAlg output an incorrect

response 𝐴𝑡 to the query Q at some time 𝑡 ∈ [𝑚] throughout the
stream. By nature of the game, only a single pass over the stream

is permitted.

Applications of white-box adversaries. The white-box adversar-

ial model captures the ability of an adversary to adapt to internal

processes of an algorithm which the black-box adversarial model

is incapable of capturing. This property allows us to model richer

adversarial scenarios. For example in the area of dynamic algo-

rithms, the goal is to maintain a data structure that always outputs

a correct answer at all times 𝑡 ∈ [𝑚] across updates 𝑢1, . . . , 𝑢𝑚 that

arrive sequentially, while minimizing either the overall running

time or the worst-case update time. In some settings, the dynamic

model also places a premium on space so that algorithms must use

space sublinear in the size of the input, but generally this may not

be required. The dynamic model often considers an adaptive ad-

versary [22, 23, 60, 68] that generates the updates 𝑢1, . . . , 𝑢𝑚 upon

seeing the entire data structure maintained by the algorithm after

the previous update, i.e., a white-box adversary.

The algorithm’s internal state can be used as part of a procedure

that will ultimately generate future inputs. For example, consider

a distributed streaming setting where a centralized server wants

to collect statistics on a database generated by a number of remote

users. The centralized server wants to minimize its space usage

and therefore does not want to store each update by the remote

users. Moreover, the server may want to limit communication over

the network and thus it sends components of its internal state 𝑆

(such as initialized random variables) to the remote users in order

to optimize the information sent from the remote users back to the

centralized server. The remote users may use 𝑆 in some process

that ultimately affects how the data downstream is generated. Thus

in this case, the future input data depends on (components) of the

internal state 𝑆 of the streaming algorithm of the central coordina-

tor; this scenario is captured by the white-box adversarial model.

Furthermore, one of the remote users could be malicious and would
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like to use the state 𝑆 to cause the central coordinator to fail. In

this case, the data is not only dependent on 𝑆 but also adversarially

generated; this scenario is also captured by the white-box adversar-

ial model. Finally, in the case that there is no central coordinator,

the entire internal state may be stored on a cloud, which would be

visible to all users.

The pan-private streaming model [30] lets the internal state of

the algorithm be partially or completely revealed. This model is

often motivated by distributed users such as hospitals, government

agencies, or search engine providers. [30] notes that any data cura-

tor “can be pressured to permit data to be used for purposes other

than that for which they are collected”, including uses that may

ultimately affect the distribution of future input data to the curator.

In fact, [53] in PODS 2011 specifically considers the problem of

counting distinct elements and detecting heavy-hitters on a data

stream when the internal state of the algorithm is revealed, giv-

ing the motivating example of an insider manipulating traffic flow

while trying to find flaws in a systems administration database that

tracks user visit statistics. It could be argued that although the goal

of [53] is just to preserve the privacy of the users, they should also

consider the white-box adversarial model where the future inputs

depend on previous information rather than their assumption that

the input is independent of the internal information.

In machine learning, robust algorithms and adversarial attacks

have captured the attention of recent research. In 2017, Google Brain

organized a competition at NeurIPS 2017 for producing effective

adversarial attacks, in which many of the most successful attacks

used knowledge of the internal algorithmic parameters and training

weights to minimize some loss function in a small neighborhood

around the original input [15, 34, 65]. More recently, white-box

attacks have generated adversarial inputs by modifying existing

data in such a minor way that is almost imperceptible to the human

eye, either in images [38, 65] or in the physical world [6, 46, 63].

However, the modified data results in an incorrect classification by

a machine learning algorithm. As a result, a large body of recent

literature has focused on adversarial robustness of machine learning

models against white-box attacks, e.g., [26, 39, 47, 49, 50, 61, 66].

In persistent data structures, the goal is to provide version control

to an evolving data structure while minimizing either the space

or time to view each version, e.g., [29, 31, 42]. For example, the

ability to quickly access previous versions of information stored

in an online repository shared across multiple collaborators is an

invaluable tool that many services already provide. Moreover, the

internal persistent data structures used to provide version control

may be accessible and thus visible to all users of the repository.

These users may then update the persistent data structure in a

manner that is not independent of the previous states.

1.1 Our Contributions
In this paper, we study the abilities and limitations of streaming

algorithms robust to white-box adversaries, which are significantly

more powerful than black-box adversaries. An insightful example

of this is the work [36] which develops a sophisticated attack for

a black-box adversary to iteratively learn the matrix used for a

linear sketch in the black-box adversarial model. On the other hand,

the white-box adversary immediately sees the sketching matrix

when the algorithm is initiated. More generally, techniques such

as differential privacy, which are widely employed in black-box

adversarial settings to hide internal information, will not work

against white-box adversaries.

The main contributions of this paper can be summarized as

introducing general tools to design algorithms robust to white-box

adversaries as well as presenting a framework for proving strong

lower bounds in the white-box adversarial model. In more detail,

our contributions are the following:

• White-box adversarial streaming model: We introduce and

formalize the white-box adversarial model for data streams as a

means of modeling richer adversarial settings found in a wide

variety of application areas which are not captured by the black-

box adversarial model.

• Robust algorithms and diverse applications: We provide

streaming algorithms robust against white-box adversaries for

problems across many different domains, e.g., statistical problems

such as heavy-hitters, graph algorithms, applications in numer-

ical linear algebra, and string algorithms, with wide-ranging

applications. For example, estimating 𝐹𝑝 moments has applica-

tions in databases, computer networks, data mining, and other

contexts such as in determining data skewness, which is impor-

tant in parallel database applications [28] or determining the

output of self-joins in databases [33]. 𝐿0 estimation is used by

query optimizers to find the number of unique values of some

attribute without having to perform an expensive sort. This statis-

tic is further useful for selecting a minimum-cost query plan [62],

database design [48], OLAP [59, 64], data integration [18, 27],

data warehousing [1], and packet tracing and database auditing

[25]. For more details, see Section 1.1.1.

• Use of cryptography in robust algorithms: A key toolkit

we widely employ to design our robust algorithms comes from

cryptography. Leveraging computational assumptions commonly

used for the design of cryptographic protocols allows us to use

powerful algorithmic tools such as collision resistant hash func-

tions and sketching matrices for which it is computationally hard

to find a “short” vector in their kernel. We believe our work opens

up the possibility of using cryptography much more broadly for

streaming algorithms, beyond the white-box adversarial setting.

• A general lower bound framework: We give a general reduc-

tion from two-player communication problems to space lower

bounds in the white-box adversarial model. Corollaries of our

reduction include lower bounds for 𝐹𝑝 moment estimation in

data streams. For more details, see Section 3.1.

• Lower bounds for deterministic counting: Lastly, we provide
a space lower bound for deterministic algorithms which count

the number of ones in a binary stream in the oblivious model,

even if the algorithm has access to a timer that reports how many

total stream updates it has seen so far. This lower bound serves

two purposes. First, it shows that our general lower bound frame-

work of Section 3.1 does not extend to multiparty (greater than

two) communication protocols. Second, it provides strong lower

bounds for the fundamental problem of approximately counting

in a stream, which has wide applications (see Section 3.2).
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1.1.1 Robust Algorithms. Any deterministic algorithm is naturally

robust in the white-box adversarial streaming model, but determin-

istic algorithms are often inefficient in a stream. We first show that

the 𝜀-𝐿1-heavy hitters problem can be solved using space strictly

less than that of any deterministic algorithm in the white-box ad-

versarial streaming model. In this problem, the goal is to output all

indices 𝑖 such that 𝑓𝑖 > 𝜀 𝐿1, where 𝐿1 = ∥ 𝑓 ∥1 is the ℓ1 norm of the

underlying freqeuncy vector defined by the stream.

Theorem 1.1. There exists a white-box adversarially robust algo-

rithm that reports all 𝜀-𝐿1-heavy hitters with probability at least 3/4
and uses space O

(
1

𝜀

(
log𝑛 + log 1

𝜀

)
+ log log𝑚

)
.

By comparison, the well-known Misra-Gries data structure [55]

is a deterministic algorithm and thus robust against white-box

adversaries, but uses O
(
1

𝜀 (log𝑚 + log𝑛)
)
bits of space. Our algo-

rithm offers similar guarantees to Misra-Gries in the sense that it

returns a list of O
(
1

𝜀

)
items that contains all 𝜀-𝐿1-heavy hitters

as well as an approximate frequency for each item in the list with

additive error 𝜀 𝐿1. Note that in the 𝜀-𝐿1-heavy hitters problem, the

gap between the frequencies of items that appear in the list can be

as large as Ω(𝜀) · 𝐿1. On the other hand, the (𝜑, 𝜀)-𝐿1-heavy hitter

problem demands that we find all 𝜑-𝐿1-heavy hitters, but report no

items whose frequency is below (𝜑 − 𝜀) 𝐿1, thereby parametrizing

the threshold of the “false positives” that are reported in the list.

We give an algorithm with the following guarantees for the (𝜑, 𝜀)-
𝐿1-heavy hitter problem against white-box adversaries with total

runtime 𝑇 , i.e., 𝑇 -time bounded adversaries:

Theorem 1.2. There exists an algorithm robust against white-box

𝑇 -time bounded adversaries that solves the (𝜑, 𝜀)-𝐿1-heavy hitter

problem with probability at least 3/4 and uses total space
O

(
1

𝜀

(
log log𝑛 + log 1

𝜀

)
+ 1

𝜑 log𝑛 + log log𝑚
)
for𝑇 < poly

(
log𝑛, 1𝜀

)
and total spaceO

(
1

𝜀 min(log𝑛, log𝑇 ) + 1

𝜑 log𝑛 + log log𝑚
)
for𝑇 ≥

poly

(
log𝑛, 1𝜀

)
.

We remark that the proof of Theorem 1.2 uses collision-resistant

hash functions and hence only guarantees robustness against white-

box adversaries with polynomially bounded computation time. The-

orem 1.2 is not information-theoretically secure against white-box

adversaries with unbounded computation time.

We obtain qualitatively similar results to that of Theorem 1.1 for

theHierarchical Heavy Hitters problem, which generalizes 𝐿1-heavy-

hitters; see the full version of the paper for more details. We also

obtain similar results for the vertex neighborhood identification

problem, where the task is for an algorithm to identify all vertices of

a graph with identical neighborhoods, in the vertex arrival model,

where each update of the stream is a vertex of the graph along with

a list of all of its neighbors.

Theorem 1.3. There exists an algorithm robust against white-box

polynomial-time adversaries that reports all vertices with identical

neighborhoods with probability at least 3/4, using space O (𝑛 log𝑛).

We also prove a lower bound for deterministic algorithms for

the vertex neighborhood identification problem, even on oblivious

data streams:

Theorem 1.4. Any deterministic algorithm that reports all vertices

with identical neighborhoods uses space Ω
(

𝑛2

log𝑛

)
.

Together, Theorem 1.3 and Theorem 1.4 show a strong separa-

tion between deterministic algorithms and randomized algorithms

robust against white-box adversaries with polynomial runtime. We

further utilize cryptographic tools to obtain robust algorithms for

other fundamental streaming problems. In particular, assuming the

hardness of the ‘Short Integer Solution’ (SIS) problem of lattice

cryptography (see Definition 2.7 and Theorem 2.8), we can obtain

a sublinear space algorithm for the 𝐿0 estimation problem:

Theorem 1.5. Let 𝑐 ∈ (0, 1/2) and assume the adversary cannot

solve the SIS problem of Definition 2.7 with parameter 𝛽∞ = poly(𝑛)
in Theorem 2.8 for sufficiently large 𝑛. Then Algorithm 3 returns a

𝑛𝜀 multiplicative approximation to the 𝐿0 estimation problem. Fur-

thermore, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 + 𝑛 (1+𝑐)𝜀 . In the random

oracle model, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 .

Note that the above result also guarantees robustness against

a computationally bounded adversary, formalized in Assumption

2.9. With no such assumptions, we can provably show that approx-

imating general 𝐹𝑝 moments up to constant factors in data streams

is impossible in sublinear space (see Theorem 1.9 below). Using

the same cryptographic assumption, we also obtain streaming al-

gorithms for the rank-decision problem in linear algebra.

Theorem 1.6. Suppose 𝐴 is a 𝑛 ×𝑛 matrix. There exists a constant

0 < 𝑐 < 1 such that the rank decision problem for 𝐴 can be solved in

˜O
(
𝑛𝑘2

)
bits of space for any 𝑘 ≤ 𝑛𝑐 under the random oracle model

assuming a computationally bounded adversary.

Corollaries of this result include streaming algorithms for other

linear algebra based applications such as computing a linearly inde-

pendent basis. Lastly, we also obtain white-box robust algorithms

for string pattern matching applications.

Theorem 1.7. For an input string 𝑃 with given period 𝑝 , followed

by a string𝑈 , there exists a streaming algorithm that, with probability

at least 1 − 1

poly(𝑛) , finds all instances of 𝑃 within𝑈 . This streaming

algorithm is robust against 𝑇 -time white-box adversaries and uses

O (log𝑇 ) bits of space.

1.1.2 A General Reduction for Lower Bounds. A natural question is

whether there exist robust streaming algorithms against white-box

adversaries for more complex problems, such as 𝐹𝑝 estimation or

matrix rank. To that end, we give a general technique to prove lower

bounds for randomized algorithms robust to white-box algorithms

through two-player deterministic communication problems.

Theorem 1.8. (Informal) Suppose there exists a white-box adver-

sarially robust streaming algorithm using 𝑆 (𝑛, 𝜀) space that can be

used to solve a one-way two-player communication game with 𝑆 (𝑛, 𝜀)
bits of communication with probability 𝑝 ∈ (1/2, 1]. Then there ex-

ists a deterministic protocol for the two-player communication game

using 𝑆 (𝑛, 𝜀) bits of communication.

We remark that Theorem 1.8 is especially powerful because it can

be used to prove lower bounds for randomized algorithms robust

against white-box adversaries using reductions from deterministic
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communication problems, which can often have much higher com-

munication complexity than their randomized counterparts. For

example, the deterministic complexity of the Equality problem, in

which Alice must send Bob a message to determine whether their

strings 𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑛 are equal, is Θ(𝑛). However, the
randomized complexity of the Equality problem is Θ(log𝑛) for a
constant probability of success. Thus Theorem 1.8 can show signif-

icantly stronger lower bounds for randomized algorithms robust

against white-box adversaries over the standard streaming model.

In particular, we first obtain the following hardness of approxima-

tion for 𝐹𝑝 moment estimation from Theorem 1.8:

Theorem 1.9. For each 𝑝 ≥ 0 and 𝑝 ≠ 1, there exists a constant

𝐶𝑝 > 1 such that any white-box adversarially robust algorithm

that reports a 𝐶𝑝 -approximation to the frequency moment 𝐹𝑝 of an

underlying frequency vector with probability at least 2/3 must use

space Ω(𝑛).

We also obtain the following hardness of approximation for

matrix rank estimation from Theorem 1.8:

Theorem 1.10. There exists a constant𝐶 > 1 such that any white-

box adversarially robust algorithm that reports a 𝐶-approximation to

the rank of an underlying matrix with probability at least 2/3 must

use space Ω(𝑛).

1.1.3 Lower Bound for Deterministic Counting. The “basic” prob-
lem of counting the number of ones in a binary stream, or equiv-

alently the number of stream updates, is arguably the most fun-

damental streaming problem with both practical and theoretical

applications. While there exists a straightforward O (log𝑛) space
algorithm that explicitly maintains the actual count over the stream,

there exist randomized algorithms, notably the Morris counters,

which achieve O (log log𝑛) bits. This savings is particularly mean-

ingful when considering applications such as counting the number

of visits to a popular website such as Wikipedia. In these applica-

tions, it is common to maintain many counters rather than one,

and thus optimizing the space usage per counter has a measurable

overall impact.

The basic counting problem is a key subroutine in many stream-

ing problems in the oblivious model, such as 𝐹𝑝 estimation in an

insertion-only stream [41], approximate reservoir sampling [35],

approximating the number of inversions in a permutation [3], and

𝐿1-heavy hitters in insertion streams [14].

We show that any deterministic problem in the oblivious model

for counting must asymptotically use the same amount of space as

the trivial algorithm, even when the algorithm knows the identity

of the current position in the stream. That is, even if the streaming

algorithm is augmented with a “timer” which tells it at any time

how many stream updates it has seen, the algorithm still cannot

approximate the number of 1s in a binary stream up to a constant

factor unless it uses Ω(log𝑛) bits of memory. Note that having a

timer is what makes our lower bound nontrivial: without a timer,

with 𝑜 (log𝑛) bits of memory there are fewer than say, 𝑛/10 states
of the algorithm, so after seeing 𝑛/10 1’s, the algorithm necessarily

revisits a state it has seen before. Since the algorithm is deter-

ministic, it gets stuck in a cycle and thus can produce at best a

10-approximation. A timer will also be useful for our application,

described momentarily.

Theorem 1.11. Given a constant 𝜀 > 0, any deterministic algo-

rithm that outputs a (1 + 𝜀)-approximation to the number of ones in

a length-𝑛 stream of bits must use Ω(log𝑛) bits of space, even if the

algorithm has a timer which tells it how many stream updates it has

seen so far.

Surprisingly, Theorem 1.11 shows that our technique translating

two-player deterministic communication lower bounds to white-

box adversary lower bounds in Theorem 1.8 cannot extend to an

arbitrary number 𝑛 of players. Recall that Theorem 1.8 implies

the white-box space complexity is at least the two-player one-way

deterministic communication of the underlying communication

problem, which is just the maximum communication of any player

(since only one player speaks). A natural question is whether the

white-box space complexity is at least the maximum communica-

tion of the underlying 𝑛-player deterministic communication game.

This is false, since in the white-box adversarial model we can count

using Morris counters with O (log log𝑛) bits. However, given Theo-
rem 1.11, the maximum communication of the underlying 𝑛-player

deterministic communication game is Ω(log𝑛) bits. Note that in
a communication game, each player knows its identity and can

behave differently than other players, and thus the assumption that

the algorithm has a timer in Theorem 1.11 is needed.

1.2 Overview of our Techniques
𝐿1-heavy hitters. To find all 𝜀-𝐿1-heavy hitters, we first recall

that the well-known Misra-Gries algorithm is deterministic and

maintains approximate frequencies to each of the possible heavy

hitters using space O
(
1

𝜀 (log𝑚 + log𝑛)
)
, which is expensive for

𝑚 ≫ 2
𝑛
. Thus if we can reduce the stream length from𝑚 to some

𝑚′ = poly

(
1

𝜀 , 𝑛

)
, then we can run Misra-Gries on the smaller

stream. If the stream length𝑚 were known, we can use Bernoulli

sampling on each update in the stream with probability roughly

log𝑛

𝜀2𝑚
to preserve the 𝜀-𝐿1-heavy hitters; this sampling probability

was shown to be secure against a white-box adversary in [13]. Thus

it remains to resolve the issue of not knowing the stream length𝑚

in advance.

A natural approach is to make a number of exponentially in-

creasing guesses for the length of the stream𝑚. However, not only

does this approach induce a multiplicative overhead of O (log𝑛) in
the number of simultaneous instances, corresponding to each guess

for the length, but also even tracking the length𝑚 of the stream

exactly requires O (log𝑚) bits, which we would like to avoid. We

instead observe that Morris counters are white-box adversarially

robust and use them to estimate the length of the stream at all times

within a constant factor with space O (log log𝑚). Moreover, we

simultaneously only maintain two guesses for the length of the

stream, corresponding to increasing powers of

(
16

𝜀

)
, since when

an instance of the algorithm is initiated with a guess for𝑚, at most

𝜀
16
𝑚 updates have been missed by the algorithm, so any items 𝑖

that are 𝜀-𝐿1-heavy hitters of the stream will still be O (𝜀)-𝐿1-heavy
hitters of the stream seen by the algorithm. Similar techniques also

work for the Hierarchical Heavy Hitters problem.

Computationally-bounded white-box adversaries. We can further

improve our guarantees if the white-box adversary has bounded
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computational time through the use of collision-resistant hash func-

tions. Namely, we can solve the (𝜑, 𝜀)-𝐿1-heavy hitters problem by

using a collision-resistant hash function to hash the sampled items

into a universe of size poly

(
log𝑛, 1𝜀 ,𝑇

)
for white-box adversaries

with computation time at most𝑇 . Similarly, we can achieve a stream-

ing algorithm for the vertex neighborhood identification problem

that is robust against polynomial-time white-box adversaries by

hashing a Boolean vector representing the neighborhood of each

vector into a universe of size poly(𝑛,𝑇 ). Thus it suffices to main-

tain 𝑛 hashes corresponding to the 𝑛 neighborhoods, using total

space O (𝑛 log𝑛𝑇 ). By comparison, we can use the OR Equality

problem to show any deterministic algorithm that solves the vertex

neighborhood identification problem requires Ω
(

𝑛2

log𝑛

)
space. We

similarly use collision-resistant hash functions to obtain robust

algorithms for problems in linear algebra and strings.

Two-player communication lower bounds. To acquire a tool for

proving lower bounds for white-box adversarially robust algo-

rithms, we first note that a standard technique for proving lower

bounds in the oblivious streaming model is to consider the ran-

domized communication complexity of certain problems, such as

Equality. However, the deterministic communication complexity

of many of these problems can be a lot higher. Surprisingly, we

show that randomized algorithms that are robust against white-box

adversaries can be used for deterministic protocols, thereby proving

significantly stronger lower bounds for white-box adversarially ro-

bust algorithms than their counterparts in the oblivious streaming

model. In particular, if there exists a randomized algorithm that

is robust against white-box adversaries, then it can be used in a

two-player communication game as follows. The first player reads

their input and creates the stream as usual. Rather than generating

internal randomness for the algorithm, the first player notes that

there exists a choice of the internal randomness such that for any

possible input to the second player, the algorithm succeeds on 9/10
of the possible strings used for randomness by the second player.

The first player can then enumerate over all possible inputs and all

possible strings used for the randomness to the second player and

choose the first internal randomness for the first player such that

the guarantee holds. The first player can then run the algorithm

on the created stream with this deterministic choice of randomness

and pass the state to the second player, who can now run their

input over all choices of randomness for the second part of the

stream, and take a majority vote. This results in a deterministic

protocol and thus must respect any deterministic lower bound for

a communication problem. In particular, we can choose the com-

munication problem to be Gap Equality (which is just the Equality

problem with the promise that when the two input strings are not

equal, they differ in a constant fraction of positions) problem to

show both Theorem 1.9 and Theorem 1.10. Unfortunately, we prove

that this technique cannot be generalized to show lower bounds

for white-box adversarially robust algorithms through multiplayer

communication.

Lower Bounds for Deterministic Counting with a Timer. A stream-

ing algorithm is just a read-once branching program. Theorem 1.11

is proven by bounding the number of counts that a single state of

the branching program can correctly represent, which translates to

an upper bound on the length of an interval on a worst-case stream

that each state can correctly represent. We then show that there

exists some 𝑡0 such that after 𝑡0 updates in the stream, all read-once

branching programs require at least poly(𝑛) states to approximate

the number of ones in a length 𝑛 stream to within a constant factor.

See Section 3.2 for a more detailed description.

1.3 Notation
For an integer 𝑛 > 0, [𝑛] denotes the set of integers {1, . . . , 𝑛}. We

use poly(𝑛) to denote a fixed constant degree polynomial in 𝑛 and

1

poly(𝑛) to denote an arbitrary degree polynomial in𝑛 that can be de-

termined from setting constants appropriately. For a vector 𝑣 ∈ R𝑛 ,
we use 𝑣𝑘 with 𝑘 ∈ [𝑛] to denote its 𝑘-th coordinate. Given vectors

𝑢, 𝑣 ∈ R𝑛 , we write their inner product as ⟨𝑢, 𝑣⟩ = ∑𝑛
𝑘=1

𝑢𝑘𝑣𝑘 . For

a string 𝑆 , we use 𝑆 [𝑖 : 𝑗] to denote the substring formed from the

𝑖-th character of 𝑆 to the 𝑗-th character of 𝑆 , inclusive.

2 UPPER BOUNDS
In this section, we present streaming algorithms relevant to statis-

tics that are robust to white-box adversaries. All missing proofs in

this paper can be found in Section A.

We first describe a crucial data structure for our algorithms: the

Morris counter [56]. This is a data structure for the approximate

counting problem, where a nonnegative integer 𝑍 =
∑𝑚
𝑡=1 𝑢𝑡 is

defined through updates 𝑢1, . . . , 𝑢𝑚 such that 𝑢𝑡 ∈ {0, 1} for each
𝑡 ∈ [𝑚]. Given an accuracy parameter 𝜀 > 0, the goal of the

approximate counting problem is to estimate 𝑍 to within a (1 + 𝜀)-
approximation. Our first result is that Morris counters are robust

in the white-box adversarial model.

Lemma 2.1. Morris counters output a (1 + 𝜀)-approximation to the

frequency of an item 𝑖 in the white-box adversarial streaming model

with probability at least 1 − 𝛿 , using total space

O
(
log log𝑛 + log 1

𝜀
+ log log𝑚 + log 1

𝛿

)
.

2.1 Heavy-Hitters
In this section, we present randomized algorithms for 𝜀-𝐿1-heavy

hitters that provide better guarantees than the well-known deter-

ministic Misra-Gries data structure. In the 𝐹𝑝 moment estimation

and 𝐿𝑝 norm estimation problems, an underlying frequency vector

𝑓 ∈ R𝑛 is defined through updates 𝑢1, . . . , 𝑢𝑚 such that 𝑢𝑡 ∈ [𝑛]
for each 𝑡 ∈ [𝑚]. The resulting frequency vector 𝑓 is then defined

so that 𝑓𝑘 = |{𝑡 |𝑢𝑡 = 𝑘}| for each 𝑘 ∈ [𝑛]. For 𝑝 > 0, the 𝐹𝑝 mo-

ment of 𝑓 is defined to be 𝐹𝑝 (𝑓 ) =
∑𝑛
𝑖=1 (𝑓𝑘 )𝑝 . The 𝐿𝑝 norm of 𝑓 is

∥ 𝑓 ∥𝑝 = (𝐹𝑝 (𝑓 ))1/𝑝 . We use both 𝐹0 and 𝐿0 to denote the number of

nonzero coordinates of 𝑓 , i.e., 𝐹0 (𝑓 ) = ∥ 𝑓 ∥0 = |{𝑘 | 𝑓𝑘 ≠ 0}|. Given
a threshold parameter 𝜀 > 0, the goal of the 𝐹𝑝 moment estimation

problem is to provide a (1+𝜀)-approximation to 𝐹𝑝 (𝑓 ) and the goal
of the 𝜀-𝐿𝑝 -heavy hitters problem is to find all coordinates 𝑘 such

that 𝑓𝑘 ≥ 𝜀 𝐿𝑝 (𝑓 ). In the (𝜑, 𝜀)-𝐿𝑝 -heavy hitter problem, the goal

is to report all coordinates 𝑘 such that 𝑓𝑘 ≥ 𝜑 𝐿𝑝 (𝑓 ) but also no

coordinate 𝑗 such that 𝑓𝑗 ≤ (𝜑 − 𝜀) 𝐿𝑝 (𝑓 ).

Theorem 2.2. [55] Given a threshold parameter 𝜀 > 0, there

exists a deterministic one-pass streaming algorithm MisraGries that
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uses O
(
1

𝜀 (log𝑚 + log𝑛)
)
bits of space on a stream of length𝑚 and

outputs a list 𝐿 of size
1

𝜀 that includes all items 𝑖 such that 𝑓𝑖 > 𝜀𝑚.

Moreover, the algorithm returns an estimate 𝑓̂𝑖 for each 𝑖 ∈ 𝐿 such

that 𝑓𝑖 − 𝜀𝑚 ≤ 𝑓̂𝑖 ≤ 𝑓𝑖 .

To output the identities of
1

𝜀 heavy-hitters, Ω
(
1

𝜀 log𝑛

)
space

is clearly necessary. On the other hand, it is not clear that the

dependence on log𝑚 for Misra-Gries in Theorem 2.2 is needed. It

is known that we can essentially preserve the 𝜀-𝐿1-heavy hitters

by sampling a small number of updates in a stream.

Theorem 2.3. [13] There exists a constant𝐶 > 0 such that for any

𝜀, 𝛿 ∈ (0, 1/2), universe size 𝑛, and stream length𝑚, Bernoulli sam-

pling each item of the stream with probability 𝑝 ≥ 𝐶 log(𝑛/𝛿)
𝜀2𝑚

solves

the heavy hitters problem with error 𝜀 in the white-box adversarial

model.

We remark that Theorem 2.3 was proven in [13] against black-

box adversaries, but their proof extends naturally to white-box

adversaries because there is no additional private randomness main-

tained by the algorithm. On the other hand, Theorem 2.3 requires

that the length of the stream is known a priori, which is an assump-

tion that we would like to remove by running multiple instances of

the algorithm in parallel, with exponentially increasing guesses for

the length of the stream. However, even to track the length of the

stream requires O (log𝑚) bits of space. Instead, only an approxima-

tion to the length of the stream is required and thus we use Morris

counters to remove the dependence on log𝑚. Finally, we observe

that it suffices to maintain only two active guesses for the length of

the stream at any point in time because even if we start a guess “late”

in the stream, we will have only missed a poly(𝜀)-prefix length of

the stream, so any 𝜀-𝐿1-heavy hitters will still be O (𝜀)-heavy with

respect to the substream.

A useful subroutine we will need appears in Algorithm 1, and

our full algorithm appears in Algorithm 2. Algorithm 2 gives the full

guarantees of Theorem 1.1. We can also generalize this approach to

hierarchical heavy hitters; we give more details in the full version

of the paper.

Algorithm 1 BernMG(𝑛,𝑚, 𝜀, 𝛿)
Input: Universe size 𝑛, upper bound𝑚 on the stream length, accu-

racy 𝜀, failure probability 𝛿 , and a stream of updates 𝑢1, 𝑢2, . . .,

where each 𝑢𝑖 ∈ [𝑛] represents a single update to a coordinate

of the underlying vector 𝑓

Output: 𝜀-𝐿1-heavy hitters of the stream

1: Initialize an instance A of Misra-Gries with threshold
𝜀
2
.

2: for each update 𝑢𝑡 with 𝑡 ∈ [𝑚] do
3: With probability O

(
log(𝑛/𝛿)
𝜀2𝑚

)
, update A with 𝑢𝑡

4: return the output of A

Algorithm 2 also solves the (𝜑, 𝜀)-𝐿1-heavy hitter problem in

which all items 𝑖 such that 𝑓𝑖 ≥ 𝜑 ∥ 𝑓 ∥1 are outputted and no items

𝑗 such that 𝑓𝑗 < (𝜑 − 𝜀)∥ 𝑓 ∥1 are outputted, using a total space of
O

(
1

𝜀

(
log𝑛 + log 1

𝜀

)
+ log log𝑚

)
bits. [14] showed that for oblivi-

ous streams, the O
(
1

𝜀 log𝑛

)
dependence is not necessary. Similarly,

Algorithm 2 Adversarially robust algorithm for 𝜀-𝐿1-heavy hitters

Input: Universe size 𝑛, accuracy 𝜀, and a stream of updates

𝑢1, 𝑢2, . . ., where each 𝑢𝑖 ∈ [𝑛] represents a single update to a

coordinate of the underlying vector 𝑓

Output: 𝜀-𝐿1-heavy hitters of the stream

1: Run a Morris counter that outputs a (1 + O (𝜀))-approximation

𝑡̂ to the number of stream updates 𝑡 ∈ [𝑚].
2: 𝑐 ← 0, 𝑟 ← 2, 𝛿 ← O

(
𝜀

log𝑚

)
3: for 𝑖 ∈ [𝑟 ] do
4: Initialize an instance A𝑖 of BernMG(𝑛, (16/𝜀)𝑖 , 𝜀/2, 𝛿)
5: for each update 𝑢𝑡 with 𝑡 ∈ [𝑚] do
6: Update all instances of A𝑖

7: if 𝑡̂ ≥ (16/𝜀)𝑐 then
8: Delete A𝑐

9: 𝑐 ← 𝑐 + 1
10: Initialize an instance A𝑐 of

11: BernMG(𝑛, (16/𝜀)𝑐+1, 𝜀/2, 𝛿)
12: return the output of A𝑐

we can further improve our bounds against white-box adversaries

that use𝑇 = poly(𝜅) time through the following notion of collision-

resistant hash functions:

Definition 2.4 (Family of Collision-Resistant Hash Functions). A

set of functions 𝐻 = {ℎ𝑖 : {0, 1}𝑛𝑖 → {0, 1}𝑚𝑖 }𝑖∈𝐼 is a family of

collision-resistant hash functions (CRHF) if

• (Efficient generation) There exists a probabilistic polynomial-time

algorithm Gen such that Gen(1𝜅 ) ∈ 𝐼 for all 𝜅 ∈ Z+.
• (Compression)𝑚𝑖 < 𝑛𝑖 for all 𝑖 ∈ 𝐼 .
• (Efficient evaluation) There exists a probabilistic polynomial-time

algorithm Eval such that for all 𝑖 ∈ 𝐼 and 𝑥 ∈ {0, 1}𝑛
𝑖
, we have

Eval(𝑥, 𝑖) = ℎ𝑖 (𝑥).
• (Collision-resistant) For any non-uniform probabilistic polynomial-

time algorithm A, there exists a negligible function negl such that

for all security parameters 𝜅 ∈ N,
Pr

(𝑥0,𝑥1)←A(1𝜅 ,ℎ)
[𝑥0 ≠ 𝑥1 ∧ ℎ(𝑥0) = ℎ(𝑥1)] ≤ negl(𝜅).

Here we use negligible function to mean a function negl such
that negl(𝑥) = 𝑜 (1/𝑥𝑐 ) for any constant 𝑐 > 0. There are folklore

constructions of collision-resistant hash functions based on the

hardness of finding the discrete logarithm of a given composite

number, e.g., Theorem 7.73 in [44]:

Theorem 2.5. Under the discrete log assumption, there exists a

family of collision-resistant hash functions with𝑚𝑖 = O (log𝜅) for
𝑖 = Gen(1𝜅 ) and uses O (log𝜅) bits of storage.

Theorem 1.2 then follows from applying Theorem 2.5 to the

sampled items. We also remark that Algorithm 2 can be used to

estimate the inner product of two vectors 𝑓 and 𝑔 that are implicitly

defined through two streams:

Corollary 2.6. There exists a white-box adversarially robust algo-

rithm that uses space O
(
1

𝜀

(
log𝑛 + log 1

𝜀

)
+ log log𝑚

)
and outputs

vectors 𝑓 ′, 𝑔′ ∈ R𝑛 such that with probability at least 3/4,
|⟨𝑓 ′, 𝑔′⟩ − ⟨𝑓 , 𝑔⟩| ≤ 𝜀∥ 𝑓 ∥1∥𝑔∥1 .
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2.2 𝐿0 Estimation
We now provide a streaming algorithm for the 𝐿0 estimation prob-

lem, where the goal is to estimate the number of nonzero coor-

dinates at the end of the stream. From the lower bound of Theo-

rem 1.9, we cannot hope to estimate the 𝐿0 norm of 𝑓 arbitrarily

well. Surprisingly, we can attain a a multiplicative approximation of

𝑛𝜀 for arbitrarily small 𝜀 even in the turnstile setting if we assume

a computationally bounded adversary, similar to assumptions made

in cryptography. Our model of a computationally bounded adver-

sary will deal with the following SIS problem from lattice based

cryptography.

Definition 2.7 (Short Integer Solution (SIS) Problem). Let 𝑛,𝑚,𝑞 be

integers and let 𝛽 > 0. Given a uniformly random matrix 𝐴 ∈ Z𝑛×𝑚𝑞 ,

the SIS problem is to find a nonzero integer vector 𝑧 ∈ Z𝑚 such that

𝐴𝑧 = 0 mod 𝑞 and ∥𝑧∥2 ≤ 𝛽 .

Starting from Ajtai’s work [2], it is known that the SIS prob-

lem enjoys an average-case to worst-case hardness. That is, for

some appropriate parameter settings, solving the SIS problem is at

least as hard as approximating several fundamental lattice based

cryptography problems in the worst case.

Theorem 2.8. [52] Let 𝑛 and 𝑚 = poly(𝑛) be integers, let 𝛽 ≥
𝛽∞ ≥ 1 be reals, let 𝑍 = {𝑧 ∈ Z𝑚 : ∥𝑧∥2 ≤ 𝛽 and ∥𝑧∥∞ ≤ 𝛽∞},
and let 𝑞 ≥ 𝛽 · 𝑛𝛿 for some constant 𝛿 > 0. Then solving SIS on

average with non-negligible probability, and with parameters 𝑛,𝑚,𝑞

and solution set 𝑍 \ {0}, is at least as hard as approximating lattice

problems in the worst case on 𝑛-dimensional lattices to within a factor

of 𝛾 = max{1, 𝛽 · 𝛽∞/𝑞} · ˜O
(
𝛽
√
𝑛
)
.

In the cryptography literature, lattice-based cryptography schemes

are designed for any 𝛾 smaller than 2
𝑜 (𝑛 log log𝑛/log𝑛)

and the best

approximation currently known is for 𝛾 = 2
O(𝑛 log log𝑛/log𝑛)

via

the LLL algorithm [67]. Improving the approximation factor to any

asymptotically smaller𝛾 would be a major breakthrough in cryptog-

raphy. Therefore, our computational assumption is the following,

which implies breaking any of our algorithmswould require a major

cryptographic breakthrough:

Assumption 2.9. No adversary can approximate worst-case 𝑛-

dimensional lattice problems within a 𝛾 = 2
𝑜 (𝑛 (log log𝑛)/log𝑛)

factor.

In the 𝐿0 streaming algorithm, we will only rely on hardness

for much smaller values of 𝛾 . Our algorithm for the 𝐿0 estimation

problem in data streams is the following. It first considers a partition

of [𝑛] into 𝑛1−𝜀 consecutive chunks each of 𝑛𝜀 coordinates. It then

keeps track of 𝑛1−𝜀 vectors, one for each chunk, by multiplying the

corresponding update with a sketching matrix derived from the

SIS problem. Our final estimate is the number of our 𝑛1−𝜀 sketches
which are nonzero when the stream ends. Note that we use the

same sketching matrix 𝐴 on each chunk, as described below.

We now claim that if the final frequency vector 𝑓 satisfies ∥ 𝑓 ∥∞ ≤
poly(𝑛), then we can achieve an𝑛𝜀 multiplicative approximation for

the 𝐿0 estimation problem. Furthermore, we can achieve improved

sublinear space if we are working in the random oracle model of

cryptography, which was introduced in the pioneering work of

Bellare and Rogaway [9]. In the random oracle model, we assume a

publicly accessible random function which can be accessed to us

Algorithm 3 Estimate-L0(𝑛,𝑚, 𝜀)
Input: Universe size 𝑛, accuracy 𝜀, and a stream of updates

𝑢1, 𝑢2, . . ., where each 𝑢𝑖 ∈ [𝑛] represents a single update to a

coordinate of the underlying vector 𝑓 , and each 𝑢𝑖 is an integer

Output: 𝑛𝜀 -multiplicative estimation of 𝐿0 of 𝑓

1: Consider 𝐴 ∈ Z𝑛𝑐𝜀×𝑛𝜀𝑞 is a uniformly random matrix for 𝑞 =

poly(𝑛) and any 1/2 > 𝑐 > 0

2: Keep track of 𝑛1−𝜀 vectors of length 𝑛𝑐𝜀 , initially all 0 and each

associated with a specific consecutive chunk of 𝑛𝜀 coordinates

of [𝑛]
3: for each update 𝑢𝑡 with 𝑡 ∈ [𝑚] do
4: Update the sketch vector associated with the 𝑖-th chunk

by adding 𝑢𝑡 · 𝐴𝑘 to it, where 𝐴𝑘 is the 𝑘-th column of 𝐴, and

where the stream update changes the 𝑘-th coordinate of the

𝑖-th chunk by an additive amount 𝑢𝑡 ∈ Z
5: return the number of vectors that are nonzero

and the adversary. Each query gives a uniform random value from

some output domain and repeated queries give consistent answers.

The random oracle model is a well-studied model and has been

used to design numerous cryptosystems [9, 10, 20, 45]. In practice,

one can use SHA256 as the random oracle.

Theorem 1.5. Let 𝑐 ∈ (0, 1/2) and assume the adversary cannot

solve the SIS problem of Definition 2.7 with parameter 𝛽∞ = poly(𝑛)
in Theorem 2.8 for sufficiently large 𝑛. Then Algorithm 3 returns a

𝑛𝜀 multiplicative approximation to the 𝐿0 estimation problem. Fur-

thermore, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 + 𝑛 (1+𝑐)𝜀 . In the random

oracle model, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 .

We remark that we only require 𝛾 = poly(𝑛) for the application
of Theorem 2.8 to Theorem 1.5. Furthermore, the algorithm also

works for turnstile streams where the stream updates are allowed

to be positive and negative. This is because we only require the

final frequency vector 𝑓 to satisfy ∥ 𝑓 ∥∞ ≤ poly(𝑛) in Theorem 2.8;

the signs of the entries in 𝑓 do not matter.

2.3 Graphs and Linear Algebra Applications
We also consider graph and linear algebra applications in the white-

box adversarial streaming model. We show that the neighborhood

identification problem, in which the goal is to identify vertices

whose neighborhoods are identical, can be solved in O (𝑛 log(𝑛𝑇 ))
space in the vertex arrival model via a randomized algorithm (The-

orem 1.3). We show that the space bound is tight and furthermore

that any deterministic algorithm must use space Ω(𝑛2/log𝑛) (The-
orem 1.4). See the full version of the paper for more details.

We also consider the rank decision problem in linear algebra:

given a stream of rows of a 𝑛×𝑛 matrix and a parameter 𝑘 , the goal

is to determine if the matrix has rank smaller than 𝑘 or at least 𝑘 .

Assuming the hardness of the SIS problem (Theorem 2.8), we give

a white-box adversarially robust algorithm using
˜O
(
𝑛𝑘2

)
bits of

space for the rank estimation problem (Theorem 1.6). Corollaries

of Theorem 1.6 include recovering a linearly independent basis in

a stream. See the full version of the paper for more details.
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3 LOWER BOUND TECHNIQUES
In this section, we present techniques to showing lower bounds

in the white-box adversarial streaming model. Surprisingly, our

reductions can utilize deterministic communication complexity

protocols, even to show lower bounds for randomized algorithms.

We apply our techniques to show lower bounds for 𝐹𝑝 estimation

for all 𝑝 ≥ 0, including estimating the number of distinct elements

for 𝑝 = 0, as well as matrix rank estimation.

3.1 Lower Bounds for 𝐹𝑝 Estimation
We prove a general reduction from two-player communication prob-

lems, i.e., Theorem 1.8, in Appendix A.2. We illustrate Theorem 1.8

with a lower bound for 𝐹𝑝 moment estimation through a reduction

from the following formulation of the Gap Equality problem:

Definition 3.1 (Gap Equality). In the deterministic Gap Equality

problem DetGapEQ𝑛 , Alice receives a string 𝑥 ∈ {0, 1}𝑛 with |𝑥 | = 𝑛
2

and Bob receives a string 𝑦 ∈ {0, 1}𝑛 with |𝑦 | = 𝑛
2
. Their goal is

to use a deterministic protocol to determine whether 𝑥 = 𝑦, given

the promise that either 𝑥 = 𝑦 or the Hamming distance HAM(𝑥,𝑦)
satisfies HAM(𝑥,𝑦) ≥ 𝑛

10
.

Theorem 3.2. ([19]) The deterministic communication complexity

of DetGapEQ𝑛 is Ω(𝑛).

We use the Gap Equality problem to show lower bounds for 𝐹𝑝
moment estimation in the white-box adversarial streaming model;

Theorem 1.10 follows from a similar reduction. We remark that a

stronger version can be proved, in which the streaming algorithm

can hide bits from the adversary.

Theorem 3.3. For any 𝑝 ≥ 0 with 𝑝 ≠ 1, there exists a constant

𝐶𝑝 > 1 such that any white-box adversarially robust algorithm that

outputs an 𝐶𝑝 -approximation to 𝐹𝑝 with probability at least 9/10
requires Ω(𝑛) space.

3.2 Lower Bound for Deterministic
Approximate Counting

A natural question is whether the techniques of Theorem 1.8 ex-

tend to multiplayer communication games. Unfortunately, The-

orem 1.11 shows that the technique provably cannot generalize.

Theorem 1.11 is proven by showing that all read-once branching

programs require at least poly(𝑛) states to approximately count the

number of ones in a length 𝑛 stream. Hence in a communication

protocol across 𝑛 players where each player is given a single bit

and the goal is to approximately count the number of ones held

across all players, the maximum communication by a single player

must be at least Ω(log𝑛) bits. This implies that our techniques

which reduce hardness for white-box adversarially robust algo-

rithms to two-player deterministic communication lower bounds

cannot be generalized to multiplayer deterministic communication

lower bounds, since such a generalization would imply a space

lower bound of Ω(log𝑛) for approximate counting, whereas Morris

counters use O
(
log log𝑛 + log 1

𝜀 + log
1

𝛿

)
bits of space.

3.3 A Communication Complexity Model for
White-Box Adversaries

We formulate Theorem 1.8 in terms of a communication matrix that

differs from existing two-player communication games because the

protocol may not necessarily succeed against all possible inputs to

the players; there can be specific inputs to the protocol that cause

failure, provided that these inputs cannot be found by a 𝑇 -time

randomized algorithm. The communication model is particularly

interesting due to the equality problem and its previously discussed

complexity in this model, which depends on the runtime 𝑇 . How-

ever, problems like set disjointness and index do not seem to exhibit

such a dependence. Thus this communication complexity model

may be of independent interest.

Assume that there exists a streaming algorithmA robust against

𝑇 -time white-box adversaries that can be used to compute a func-

tion 𝑓 (𝑥,𝑦) using 𝑠 bits of communication with probability 𝑝 . In

the communication protocol, Alice creates a stream 𝑆𝑥 that induces

the input 𝑥 . Alice runs A on 𝑆𝑥 and communicates the 𝑠-bit state

of A to Bob. Bob then continues running A on a stream 𝑆𝑦 that

induces the input 𝑦, starting from the 𝑠-bit state that Bob receives

from Alice. The output 𝑓 (𝑥,𝑦) is the output of A when run on the

stream 𝑆𝑥 ◦ 𝑆𝑦 , where ◦ denotes concatenation.
We now define a communication matrix for the randomized one-

way communication protocol induced by A. Consider a matrix𝑀

whose rows are indexed by tuples (𝑥, 𝑟𝑥 ), where 𝑥 is Alice’s input

and 𝑟𝑥 is Alice’s randomness, and whose columns are indexed by tu-

ples (𝑦, 𝑟𝑦), where 𝑦 is Bob’s input and 𝑟𝑦 is Bob’s randomness. The

entry𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) of𝑀 denotes the output of the two-player com-

munication game when Alice holds (𝑥, 𝑟𝑥 ) and Bob holds (𝑦, 𝑟𝑦).
Since A uses 𝑠 space, there exists a partition of the rows of 𝑀

into 2
𝑠
parts such that if (𝑥, 𝑟𝑥 ) and (𝑥 ′, 𝑟𝑥 ′) are in the same part,

then 𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) = 𝑀(𝑥 ′,𝑟𝑥′ ),(𝑦,𝑟𝑦 ) . This corresponds to the fact

that Alice sends Bob the same 𝑠-bit state state(𝑥, 𝑟𝑥 ) whether Al-
ice held (𝑥, 𝑟𝑥 ) or (𝑥 ′, 𝑟𝑥 ′). For each (𝑥, 𝑟𝑥 ), define 𝑝

state(𝑥,𝑟𝑥 ) =

min𝑦 Pr𝑟𝑦 [𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) = 𝑓 (𝑥,𝑦)], which is the minimum prob-

ability that A outputs 𝑓 (𝑥,𝑦) over all possible inputs 𝑦 chosen

by a white-box adversary. Note that 𝑝
state(𝑥,𝑟𝑥 ) is well-defined

because 𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) = 𝑀(𝑥 ′,𝑟𝑥′ ),(𝑦,𝑟𝑦 ) whenever state(𝑥, 𝑟𝑥 ) =
state(𝑥 ′, 𝑟𝑥 ′). By the robustness ofA against a white-box adversary,

we have the guarantee that for all inputs 𝑥 , E𝑟𝑥 [𝑝state(𝑥,𝑟𝑥 ) ] ≥ 𝑝 .

We now consider the situation in which the white-box adver-

sary 𝐴 is computationally bounded. In this setting, the adversary

may not be able to enumerate over all inputs 𝑦 and output the 𝑦

that minimizes Pr𝑟𝑦 [𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) = 𝑓 (𝑥,𝑦)]. Hence a communi-

cation protocol A robust against computationally bounded white-

box adversaries 𝐴 satisfies E𝑦=𝐴(state(𝑥,𝑟𝑥 )) Pr𝑟𝑦 [𝑀(𝑥,𝑟𝑥 ),(𝑦,𝑟𝑦 ) =
𝑓 (𝑥,𝑦)] ≥ 𝑝 for all computationally bounded adversaries 𝐴 and

inputs 𝑥 , which is a weaker guarantee.
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A MISSING PROOFS
A.1 Missing Proofs from Section 2.2

Theorem 1.5. Let 𝑐 ∈ (0, 1/2) and assume the adversary cannot

solve the SIS problem of Definition 2.7 with parameter 𝛽∞ = poly(𝑛)
in Theorem 2.8 for sufficiently large 𝑛. Then Algorithm 3 returns a

𝑛𝜀 multiplicative approximation to the 𝐿0 estimation problem. Fur-

thermore, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 + 𝑛 (1+𝑐)𝜀 . In the random

oracle model, the algorithm uses space 𝑛1−𝜀+𝑐𝜀 .

Proof. By Theorem 2.8, we know that the adversary cannot find

any 𝑥 such that 𝐴𝑥 = 0 and ∥𝑥 ∥∞ ≤ poly(𝑛). Thus if the vectors

we track using 𝐴 equal 0, we know that none of the coordinates

in that chunk have a positive 𝑓𝑖 value at the end. Similarly if the

vector is nonzero, we know that there is at least one (and at most 𝑛𝜀 )

coordinates associatedwith that chunk that have nonzero frequency

value at the end. Thus on each chunk of coordinates, we make

multiplicative error at most 𝑛𝜀 and the theorem follows.

For the space bound, note that we can generate the appropriate

column of 𝐴 on the fly via access to the random oracle (or we can

store 𝐴 explicitly if we do not use the random oracle model). Thus

the only space used is to keep track of the 𝑛1−𝜀 vectors of size 𝑛𝑐𝜀 ,
each associated with an 𝑛𝜀 chunk of coordinates of [𝑛]. □

We also remark that Algorithm 2 can be used to estimate the

inner product of two vectors 𝑓 and 𝑔 that are implicitly defined

through two streams by using the following observations:

Lemma A.1. [40] Let 𝑓 ′, 𝑔′ ∈ R𝑛 be unscaled uniform samples of

𝑓 and 𝑔, sampled with probability 𝑝 𝑓 ≥ 𝑠
𝑚𝑓

and 𝑝𝑔 ≥ 𝑠
𝑚𝑔

, where

𝑠 = 1

𝜀2
. Then with probability at least 0.99, we have

⟨𝑝−1
𝑓
𝑓 ′, 𝑝−1𝑔 , 𝑔′⟩ = ⟨𝑓 , 𝑔⟩ ± 𝜀∥ 𝑓 ∥1∥𝑔∥1 .

Lemma A.2. [58] Given 𝑓 , 𝑔 ∈ R𝑛 , suppose 𝑓 ′ and 𝑔′ are vectors
that satisfy

∥ 𝑓 ′ − 𝑓 ∥∞ ≤ 𝜀∥ 𝑓 ∥1, ∥𝑔′ − 𝑔∥∞ ≤ 𝜀∥𝑔∥1 .

Then ⟨𝑓 ′, 𝑔′⟩ − ⟨𝑓 , 𝑔⟩| ≤ 12𝜀∥ 𝑓 ∥1∥𝑔∥1.

Combining Lemma A.1 and Lemma A.2, we have the following:

Corollary 2.6. There exists a white-box adversarially robust algo-

rithm that uses space O
(
1

𝜀

(
log𝑛 + log 1

𝜀

)
+ log log𝑚

)
and outputs

vectors 𝑓 ′, 𝑔′ ∈ R𝑛 such that with probability at least 3/4,

|⟨𝑓 ′, 𝑔′⟩ − ⟨𝑓 , 𝑔⟩| ≤ 𝜀∥ 𝑓 ∥1∥𝑔∥1 .

A.2 Missing Proofs from Section 3.1
Theorem 1.8. (Informal) Suppose there exists a white-box adver-

sarially robust streaming algorithm using 𝑆 (𝑛, 𝜀) space that can be

used to solve a one-way two-player communication game with 𝑆 (𝑛, 𝜀)
bits of communication with probability 𝑝 ∈ (1/2, 1]. Then there ex-

ists a deterministic protocol for the two-player communication game

using 𝑆 (𝑛, 𝜀) bits of communication.

Proof. Over all choices of randomness, at least 𝑝 fraction of the

possible random strings chosen by the first player is correct over

all possible inputs to the second player and at least 𝑝 fraction of

the possible random strings chosen by the second player for each

input. The first player can enumerate over all possible inputs to

the second player as well as all possible random strings to select a

state that uses 𝑆 (𝑛, 𝜀) space to represent and always succeeds. The

first player can then send the state of the algorithm to the second

player, who will then update the algorithm with their input and

a fixed string, thereby resulting in a deterministic protocol that

solves the one-way two-player communication game with 𝑆 (𝑛, 𝜀)
bits of communication. □

We use the Gap Equality problem to show lower bounds for 𝐹𝑝
moment estimation in the white-box adversarial streaming model:
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Theorem 3.3. For any 𝑝 ≥ 0 with 𝑝 ≠ 1, there exists a constant

𝐶𝑝 > 1 such that any white-box adversarially robust algorithm that

outputs an 𝐶𝑝 -approximation to 𝐹𝑝 with probability at least 9/10
requires Ω(𝑛) space.

Proof. First note that given vectors 𝑢, 𝑣 ∈ {0, 1}𝑛 with |𝑢 | =
|𝑣 | = 𝑛

2
and HAM(𝑢, 𝑣) ≥ 𝑛

10
, there exists a constant 𝐶𝑝 such that

𝐶𝑝 ∥2𝑢∥𝑝 ≤ ∥𝑢 + 𝑣 ∥𝑝 for 𝑝 ∈ [0, 1) and 𝐶𝑝 ∥𝑢 + 𝑣 ∥𝑝 ≤ ∥2𝑢∥𝑝 for

𝑝 > 1. Assume for the sake of contradiction that there exists an

algorithm A that uses 𝑜

(
𝑛
2
𝑘

)
space and 𝑘 hidden private bits and

outputs a 𝐶𝑝 -approximation to 𝐹𝑝 with probability at least 9/10 in
the white-box adversarial model. Given an instance of DetGapEQ𝑛 ,

Alice receives a string 𝑥 ∈ {0, 1}𝑛 with |𝑥 | = 𝑛
2
and Bob receives

a string 𝑦 ∈ {0, 1}𝑛 with |𝑦 | = 𝑛
2
. Alice creates a stream 𝑆 that

induces the frequency vector 𝑥 .

Because Alice and Bob must solve DetGapEQ𝑛 deterministically,

𝑘 random bits cannot be selected. Instead, Alice runs a separate

instance of A on 𝑆 for each of the 2
𝑘
possible realizations of the 𝑘

random bits. For the 𝑖-th realization of the sequence of the hidden

random bits under some fixed ordering, Alice deterministically

chooses a sequence 𝑅𝑖 of public random bits such that A is correct

for at least 9/10 fraction of the possible values of 𝑦. Otherwise, if

such a sequence does not exist, Alice sets the sequence 𝑅𝑖 to be the

all zeros sequence. For each 𝑖 ∈ [2𝑘 ], Alice then runs the algorithm

A on the 𝑖-th realization of the sequence of the hidden random bits

under some fixed ordering, the deterministic fixing of the sequence

𝑅𝑖 to use as A’s public “random bits”, and the input 𝑥 to create a

state 𝜎𝑖 (𝑥). Alice then sends the set of states 𝜎1 (𝑥), . . . , 𝜎2𝑘 (𝑥) to
Bob.

Bob creates a stream that induces the frequency vector 𝑦. For

each 𝑖 ∈ [2𝑘 ], Bob takes 𝜎𝑖 (𝑥), continues runningA on the created

stream, so that the underlying frequency vector is 𝑥 +𝑦, and queries
the algorithm. Since a𝐶𝑝 -approximation to the norm of 𝑥 +𝑦 distin-

guishes whether 𝑥 = 𝑦 or HAM(𝑥,𝑦) ≥ 𝑛
10

by the above argument,

then for each 𝑖 ∈ [2𝑘 ], Bob can determine whether the 𝑖-th instance

of A outputs whether 𝑥 = 𝑦 or HAM(𝑥,𝑦) ≥ 𝑛
10

by enumerating

over all possible “random” strings and taking the majority output

by the algorithm. By the correctness of A in the white-box adver-

sarial model, for at least 9/10 of the possible realizations of the

sequence of the hidden random bits under some fixed ordering will

also be correct for all possible values of 𝑦, across at least 9/10 of the
possible public random bits used by the algorithm. Thus at least

9/10 fraction of the states 𝜎𝑖 (𝑥) sent by Alice, where 𝑖 ∈ [2𝑘 ], will
succeed for all possible values of 𝑦. Hence, at least 9/10 fraction of

the 2
𝑘
outputs by Bob will be correct, allowing Bob to distinguish

whether 𝑥 = 𝑦 or HAM(𝑥,𝑦) ≥ 𝑛
10
.

From our assumption, each instance of A uses 𝑜

(
𝑛
2
𝑘

)
space.

Thus the states 𝜎𝑖 (𝑥) sent by Alice, where 𝑖 ∈ [2𝑘 ], use at most

𝑜 (𝑛) communication, which contradicts Theorem 3.2. It follows

that A uses Ω
(
𝑛
2
𝑘

)
space. □

A.3 Missing Proofs from Section 3.2
We now prove Theorem 1.11. Assume that there is an algorithm

which, using 𝑠 bits of memory, counts the number of 1’s in a stream,

consisting of 0’s and 1’s, approximately. A key result of this section

is that to count up to 𝑛 1’s up to a factor of 1 + 𝜀, where 𝜀 > 0 is

constant, we must have 𝑠 = Ω(log𝑛); this asymptotically matches

the bound required to count it exactly. Moreover the bound that

holds even if the streaming algorithm has access to a clock that

keeps track of the index of the input being read (the algorithm

is not charged for the memory required to store the index). Such

an algorithm can be modeled as an oblivious leveled read-once

branching program (also known as Ordered Binary Decision Dia-

gram, abbreviated as OBDD) of width 2
𝑠
over the input alphabet

{0, 1}. (Without loss of generality, we let the stream be infinite and

therefore the length of the OBDD is also infinite.)

More generally, we show that the lower bound applies to a larger

class of counting functions called monotonic counters.

Definition A.3 (Monotonic Counters). Let Σ be the input alphabet.

A monotonic counter is a function 𝜒 : Σ∗ → N\{0} satisfying 𝜒 (𝜖) =
1 for the empty string

1
and {𝜒 (𝜎𝑎) − 𝜒 (𝜎) : 𝑎 ∈ Σ} = {0, 1}, for

every 𝜎 ∈ Σ∗.

In words, the counter is initialized to 1 at time 1. The counter

can increase by at most 1 in each time step, and stays the same for

at least one input symbol and strictly increases by 1 for at least

one input symbol, thereby ensuring that the counter can assume

all possible values in {1, 2, . . . , 𝑡} at time 𝑡 .

Fix a monotonic counter 𝜒 over an input alphabet Σ. Let 𝑃 be

an OBDD also over Σ and let 𝑃 (𝜎) denote the node reached in 𝑃

on input 𝜎 ∈ Σ∗. Fix any node 𝑢 in 𝑃 and let 𝐶𝑢 = {𝜒 (𝜎) : 𝑃 (𝜎) =
𝑢 for some 𝜎} be the nonempty set of values of the monotonic

counter for input sequences that reach node 𝑢.

To characterize the error in 𝑃 ’s computation, we abstractly let 𝜀 :

N→ R≥0 be a function that represents the error in approximation.

For example:

(1) 𝜀 (𝑘) = 𝛿𝑘 where 𝛿 > 0 is a fixed constant =⇒ (1 + 𝛿)-
multiplicative approximation.

(2) 𝜀 (𝑘) = (𝑛𝛿 − 1)𝑘 where 0 < 𝛿 < 1 is a fixed constant

=⇒ 𝑛𝛿 -multiplicative approximation.

(3) 𝜀 (𝑘) = 𝑛𝛿 where 0 ≤ 𝛿 < 1 is a fixed constant =⇒ 𝑛𝛿 -

additive approximation.

We say that a set 𝐶 of values is 𝜀-bound if the deviation of its

maximum value from 𝑘 is at most 𝜀 (𝑘) for every 𝑘 ∈ 𝐶 . We say that

𝑃 has error 𝜀 at time 𝑡 if 𝐶𝑢 is 𝜀-bound for every node 𝑢 at time 𝑡 .

For a node 𝑢, let 𝐽𝑢 = [min(𝐶𝑢 ),max(𝐶𝑢 )] be the interval that
minimally covers𝐶𝑢 , and let 𝐼0 (𝑡) be the set of intervals 𝐽𝑢 over all

nodes 𝑢 at level 𝑡 . Define 𝐼 (𝑡) to be the set of all maximal intervals

(under set inclusion) in 𝐼0 (𝑡). Note that |𝐼 (𝑡) | is a lower bound on

the number of nodes in 𝑃 at time 𝑡 . For this section, it suffices to

consider the error in approximation induced by the intervals in 𝐼 (𝑡).
Namely, if 𝑃 has error 𝜀 at time 𝑡 , then it implies every interval of

𝐼 (𝑡) is 𝜀-bound.

Lemma A.4. 𝐼 (1) = {[1, 1]}.

Proof. This holds because the initial value of the monotonic

counter is 1. □

Lemma A.5. Let 𝑡 ′ ≥ 𝑡 ≥ 1. For every interval [𝑘, ℓ] ∈ 𝐼 (𝑡), there
exists an interval in 𝐼 (𝑡 ′) containing [𝑘, ℓ].
1
This does not entail a loss of generality for monotonic counters that can also output

0; such exceptional sequences can be handled separately.
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Proof. The statement is trivially true for 𝑡 ′ = 𝑡 and we show

that it holds for 𝑡 ′ = 𝑡 + 1; it follows by induction that also holds

for all 𝑡 ′ ≥ 𝑡 . Let 𝑢 be the node in level 𝑡 such that 𝐽 = 𝐽𝑢 = [𝑘, ℓ]
is the interval associated with node 𝑢. Let 𝜎 be an input sequence

such that 𝑃 (𝜎) = 𝑢 and 𝜒 (𝜎) = 𝑘 . Similarly, let 𝜌 be another input

sequence such that 𝑃 (𝜌) = 𝑢 and 𝜒 (𝜌) = ℓ .

Let 𝑎 ∈ Σ be such that 𝜒 (𝜎𝑎) = 𝜒 (𝜎) = 𝑘 . Let 𝑣 = 𝑃 (𝜎𝑎)
be the node reached in level 𝑡 + 1. Then 𝑣 = 𝑃 (𝜌𝑎) as well and
𝜒 (𝜌𝑎) ≥ 𝜒 (𝜌) = ℓ . Thus 𝐽𝑣 ⊇ [𝑘, ℓ] implying that there is an

interval in 𝐼 (𝑡 + 1) that contains [𝑘, ℓ]. □

Lemma A.6. Let 𝑡 ≥ 1. For every interval [𝑘, ℓ] ∈ 𝐼 (𝑡), there exists
an interval in 𝐼 (𝑡 + 1) containing [𝑘 + 1, ℓ + 1].

Proof. Let 𝑢, 𝜎 and 𝜌 be as in the proof of Lemma A.5. Let

𝑎 ∈ Σ be such that 𝜒 (𝜌𝑎) = 𝜒 (𝜌) + 1 = ℓ + 1. Let 𝑣 = 𝑃 (𝜌𝑎)
be the node reached in level 𝑡 + 1. Then 𝑣 = 𝑃 (𝜎𝑎) as well and
𝜒 (𝜎𝑎) ≤ 𝜒 (𝜎) + 1 = 𝑘 + 1. Thus 𝐽𝑣 ⊇ [𝑘 + 1, ℓ + 1] implying that

there is an interval in 𝐼 (𝑡 + 1) that contains [𝑘 + 1, ℓ + 1]. □

Now fix any family {𝐼 (𝑡)}𝑡 ≥1, where 𝐼 (𝑡) for each “time” 𝑡 is a set

of maximal intervals. The proof below depends only on the assump-

tion the family satisfies Lemma A.4, Lemma A.5, and Lemma A.6

above. Our goal is to give a lower bound on |𝐼 (𝑡) | for some appro-

priate time 𝑡 . We say that 𝑘 is present at time 𝑡 if there exists an

interval in 𝐼 (𝑡) whose left endpoint is 𝑘 .

Lemma A.7. 1 is present at all times.

Proof. By Lemma A.4, [1, 1] ∈ 𝐼 (1), and by Lemma A.5, 𝐼 (𝑡)
contains an interval [𝑘, ℓ] ⊇ [1, 1] for each 𝑡 ≥ 1. Because 𝑘 ≥ 1

we have 𝑘 = 1. □

We say that 𝑘 is exceptional at time 𝑡 if 𝑘 is present at time 𝑡 but

𝑘 + 1 is absent at time 𝑡 + 1. We show first that if exceptional counts

occur very few times then we get a lower bound |𝐼 (𝑡) | for some time

𝑡 . Fix a time horizon 𝑛 and the corresponding subfamily {𝐼 (𝑡)}𝑛+1
𝑡=1

.

For each ℎ ≥ 1, let 𝜙ℎ be the number of times 𝑡 ∈ {1, 2, . . . , 𝑛} that
some count 1 ≤ 𝑘 ≤ ℎ is exceptional at time 𝑡 .

Lemma A.8. If (𝜙ℎ + 1)ℎ ≤ 𝑛, then there exists 𝑡0 ∈ {1, 2, . . . , 𝑛 + 1}
such that |𝐼 (𝑡0) | ≥ ℎ + 1.

Proof. In the interval [1, 𝑛], mark the times 𝑡 when some count

1 ≤ 𝑘 ≤ ℎ is exceptional at time 𝑡 . The unmarked times can be

represented as a disjoint union of𝜙ℎ+1 intervals. By the pigeonhole
principle, there exists one interval with size at least ℎ. Let {𝑡, 𝑡 +
1, . . . , 𝑡 + ℎ − 1} be such that no count 1 ≤ 𝑘 ≤ ℎ is exceptional in

that interval. We show by induction that every count in {1, 2, . . . , 𝑘}
is present at time 𝑡 + 𝑘 − 1 for 1 ≤ 𝑘 ≤ ℎ + 1. That would imply

for 𝑘 = ℎ + 1 that |𝐼 (𝑡 + ℎ) | ≥ ℎ + 1. Since 𝑡 + ℎ − 1 ≤ 𝑛, the lemma

holds with 𝑡0 = 𝑡 + ℎ.
The base case𝑘 = 1 follows by LemmaA.7. Assume the statement

holds for some 1 ≤ 𝑘 ≤ ℎ. Then, since each count in {1, 2, . . . , 𝑘}
is non-exceptional at time 𝑡 + 𝑘 − 1, it follows by definition that

each count in {2, . . . , 𝑘 + 1} is present at time 𝑡 + 𝑘 . Together with
Lemma A.7, it follows that each count in {1, 2, . . . , 𝑘 + 1} is present
at time 𝑡 + 𝑘 as well. □

Wewill now bound𝜙ℎ so that the above lemma can be applied for

ℎ as large as possible. The idea below is to show that if a single count

is exceptional too many times, then it belongs to some interval of

large length, violating the approximability guarantee.

Lemma A.9. Suppose 𝑘 is exceptional at each time 𝑡 ∈ 𝐸 for some

nonempty set 𝐸. Then for all 𝑡 > max(𝐸), there exists an interval in

𝐼 (𝑡) containing 𝑘 whose right endpoint is at least 𝑘 + |𝐸 |.

Proof. For every 𝑠 ∈ 𝐸, since 𝑘 is exceptional at time 𝑠 , it is also

present at time 𝑠 by definition. Let 𝑡0 be the minimum value in 𝐸

and let [𝑘, ℓ0] ∈ 𝐼 (𝑡0) for some ℓ0 certify 𝑘’s presence at time 𝑡0. We

show the following statement, denoted 𝑃 (𝐸, 𝑡0, ℓ0), by induction on

|𝐸 |: for each 𝑡 > max(𝐸) there exists an interval in 𝐼 (𝑡) containing
𝑘 such that its right endpoint is at least ℓ0 + |𝐸 |. Since ℓ0 ≥ 𝑘 , this

proves the lemma.

For |𝐸 | = 1, because [𝑘, ℓ0] ∈ 𝐼 (𝑡0), by Lemma A.6, there exists

an interval [𝑘 ′, ℓ ′] ⊇ [𝑘 + 1, ℓ0 + 1] in 𝐼 (𝑡0 + 1). Because 𝑘 + 1 is

absent at time 𝑡0 + 1, we have 𝑘 ′ ≤ 𝑘 . By Lemma A.5, there exists

𝐽 ∈ 𝐼 (𝑡) with 𝐽 ⊇ [𝑘 ′, ℓ ′] ⊇ [𝑘, ℓ0 + 1]. Thus, 𝑘 ∈ 𝐽 and the right

endpoint of 𝐽 is at least ℓ0 + 1 = ℓ0 + |𝐸 |.
For |𝐸 | > 1, let 𝑡1 ≠ 𝑡0 denotemax(𝐸). Let [𝑘, ℓ1] ∈ 𝐼 (𝑡1) for some

ℓ1 certify 𝑘’s presence at time 𝑡1. Let 𝐹 = 𝐸\{𝑡1} and observe that

𝑡0 = min(𝐹 ) as well. Apply the induction hypothesis 𝑃 (𝐹, 𝑡0, ℓ0):
since 𝑡1 > max(𝐹 ), there exists an interval in 𝐼 (𝑡1) containing 𝑘

such that its right endpoint is at least ℓ0 + |𝐹 |. On the other hand,

[𝑘, ℓ1] is maximal in 𝐼 (𝑡), therefore ℓ1 ≥ ℓ0 + |𝐹 |.
Apply the induction hypothesis 𝑃 ({𝑡1}, 𝑡1, ℓ1): for every 𝑡 > 𝑡1 =

max(𝐸), there exists an interval in 𝐼 (𝑡) containing 𝑘 such that its

right endpoint is at least ℓ1 + 1 ≥ ℓ0 + |𝐹 | + 1 = ℓ0 + |𝐸 |. □

Finally, we consider the situation where every element of 𝐼 (𝑛+1)
is 𝜀-bound. By Lemma A.9, each 𝑘 can be exceptional at most 𝜀 (𝑘)
times in {1, 2, . . . , 𝑛}. This gives an immediate bound on 𝜙ℎ namely

𝜙ℎ ≤
∑ℎ
𝑘=1

𝜀 (𝑘). To apply Lemma A.8, we find the largest ℎ such

that

(
1 +∑ℎ

𝑘=1
𝜀 (𝑘)

)
ℎ ≤ 𝑛.

For example, when 𝜀 (𝑘) = 𝛿𝑘 , where 𝛿 > 0 is constant, we have∑ℎ
𝑘=1

𝜀 (𝑘) ≤ 𝛿ℎ(ℎ + 1)/2. Therefore there exists a good choice of

ℎ with ℎ = Θ(𝑛1/3) that yields a polynomial bound for |𝐼 (𝑡0) |. For
a multiplicative approximation 𝑛1−𝛿 , where 𝛿 > 0 is constant, we

can choose ℎ = Θ(𝑛𝛿′/3) for some 0 < 𝛿 ′ < 𝛿 and still obtain a

polynomial bound for |𝐼 (𝑡0) |. Finally, for an additive approximation

𝑛1−𝛿 , we can choose ℎ = Θ(𝑛𝛿′/2) for some 0 < 𝛿 ′ < 𝛿 .

The proof of Theorem 1.11 follows by noting that since |𝐼 (𝑡0) | =
Ω(poly(𝑛)), the number of states in any deterministic approximate

counting algorithm must also be Ω(poly(𝑛)). Therefore, the algo-
rithm requires at least Ω(log𝑛) bits of space.
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