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ABSTRACT
As one of the most fundamental problems in machine learning,
statistics and differential privacy, Differentially Private Stochastic
Convex Optimization (DP-SCO) has been extensively studied in
recent years. However, most of the previous work can only han-
dle either regular data distributions or irregular data in the low
dimensional space case. To better understand the challenges arising
from irregular data distributions, in this paper we provide the first
study on the problem of DP-SCO with heavy-tailed data in the
high dimensional space. In the first part we focus on the problem
over some polytope constraint (such as the ℓ1-norm ball). We show
that if the loss function is smooth and its gradient has bounded
second order moment, it is possible to get a (high probability) er-
ror bound (excess population risk) of �̃� ( log𝑑

(𝑛𝜖)
1
3
) in the 𝜖-DP model,

where 𝑛 is the sample size and 𝑑 is the dimension of the underlying
space. Next, for LASSO, if the data distribution has bounded fourth-
order moments, we improve the bound to �̃� ( log𝑑

(𝑛𝜖)
2
5
) in the (𝜖, 𝛿)-DP

model. In the second part of the paper, we study sparse learning
with heavy-tailed data. We first revisit the sparse linear model and
propose a truncated DP-IHT method whose output could achieve
an error of �̃� ( 𝑠

∗2 log2 𝑑
𝑛𝜖 ), where 𝑠∗ is the sparsity of the underlying

parameter. Then we study a more general problem over the sparsity
(i.e., ℓ0-norm) constraint, and show that it is possible to achieve an

error of �̃� ( 𝑠
∗ 32 log𝑑
𝑛𝜖 ), which is also near optimal up to a factor of

�̃� (
√
𝑠∗), if the loss function is smooth and strongly convex.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; • Computing methodologies→Machine learning algo-
rithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9260-0/22/06. . . $15.00
https://doi.org/10.1145/3517804.3524144

KEYWORDS
differential privacy; stochastic convex optimization; high dimen-
sional statistics; robust statistics

ACM Reference Format:
Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. 2022. High Dimensional
Differentially Private Stochastic Optimization with Heavy-tailed Data. In
Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3517804.3524144

1 INTRODUCTION
Privacy-preservation has become an important consideration and
now is a challenging task for machine learning algorithms with
sensitive data. To address the privacy issue, Differential Privacy
(DP) has received a great deal of attentions and now has established
itself as a de facto notation of privacy for data analysis. Methods
to guarantee differential privacy have been widely studied, and
recently adopted in industry [19, 46].

Stochastic Convex Optimization (SCO) [48] and its empirical
form, Empirical Risk Minimization (ERM), are the most fundamen-
tal problems in machine learning and statistics, which include sev-
eral basic models, such as linear regression and logistic regression.
They find numerous applications in many areas such as medicine,
finance, genomics and social science. Due to their importance, the
problem of designing DP algorithms for SCO or ERM (i.e., DP-SCO
and DP-ERM) have been extensively studied for nearly a decade
starting from [17, 18]. Later on, a long list of works have attacked
the problems from different perspectives: [5–7, 26, 31, 44, 58] stud-
ied the problems in the low dimensional case and the central model,
[14, 34, 35, 45, 55] considered the problems in the high dimensional
sparse case and the central model, [20, 21, 43, 50] focused on the
problems in the local model.

However, most of those previous work can only handle regular
data, i.e., they need to assume either the underlying data distribution
is bounded or sub-Gaussian, or the loss function is 𝑂 (1)-Lipschitz
for all the data. This is particularly true for those output perturba-
tion based [18] and objective or gradient perturbation based [7] DP
methods. However, such assumptions may not always hold when
dealing with real-world datasets, especially those from biomedicine
and finance, which are often heavy-tailed [8, 30, 56], implying
that existing algorithms may fail to guarantee the DP property.
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Compared with bounded data, heavy-tailed data could lead to un-
bounded gradient and thus violate the Lipschitz condition. For
example, consider the linear squared loss ℓ (𝑤, (𝑥,𝑦)) = (𝑤𝑇 𝑥 −𝑦)2.
When 𝑥 is heavy-tailed, the gradient of ℓ (𝑤, (𝑥,𝑦)) becomes un-
bounded. To address the issue, one potential approach is to truncat-
ing or trimming the gradient, such as in [1]. However, there is no
existing convergence result based on their algorithm. Thus, new
private and robust estimation methods for heavy-tailed data are
needed.

Recently, there are several work studied private mean estimation
or DP-SCO with heavy-tailed data [4, 33, 37, 51] (see Section 2
for details). However, the estimation errors of these results all are
dependent on polynomial in the dimension of the underlying space,
which impedes them to be implemented to the high dimensional
setting, where the dimension is far greater than the sample size.
In contrast, as we mentioned earlier, high dimensional DP-SCO
with regular data has been studied quite well. Thus, our question
is, what are the theoretical behaviors of DP-SCO with heavy-tailed
data in the high dimensional space? In this paper, we provide a
comprehensive and the first study on the problem under different
settings by providing several new methods. Our contributions can
be summarized as the following,

(1) We first study DP-SCO over some polytope constraint, which
has been studied in [2, 45] for regular data.We first show that
if the loss function is smooth and its gradient has bounded
second order moment, it is possible to get an excess popu-
lation risk (error bound) of �̃� ( log𝑑

(𝑛𝜖)
1
3
) with high probability

in the 𝜖-DP model, where 𝑛 is the sample size and 𝑑 is the
dimensionality of the underlying space. Next, for LASSO, if
the data distribution has bounded fourth-order moments, we
improve the bound to �̃� ( log𝑑

(𝑛𝜖)
2
5
) in the (𝜖, 𝛿)-DP model.

(2) We then study DP-SCO for sparse learning with heavy-
tailed data in the (𝜖, 𝛿)-DP model, which has been studied
in [13, 52, 54] in the regular data case. We first revisit the
sparse linear regression problem and propose a new method
whose output could achieve an error bound of �̃� ( 𝑠

∗2 log2 𝑑
𝑛𝜖 ),

where 𝑠∗ is the sparsity of the underlying parameter. Then
we study a general DP-SCO problem under the sparsity con-
straint, and show that it is possible to achieve an error of

�̃� ( 𝑠
∗ 32 log𝑑
𝑛𝜖 ), if the loss function is smooth and strongly con-

vex. We also show this bound is near optimal up to a factor of
𝑂 (

√
𝑠∗ log2 𝑛). To get these results, we provide several new

methods and hard instances which may be used to in other
machine learning problems.

Due to space limit, all the proofs and lemmas, and experiments on
synthetic and real-world data are included in the full version of the
paper [29].

2 RELATEDWORK
As mentioned earlier, there is a long list of results on DP-SCO
and DP-ERM. However, most of them consider the case where
the underlying data distribution is sub-Gaussian and cannot be
extended to heavy-tailed case. On the other side, in the non-private
case, recently a number of works have studied the SCO and ERM

problems with heavy-tailed data, such as [9, 27, 28, 36, 39, 40, 42].
It is not clear whether they can be adapted to private versions and
in the high dimensional setting.

For DP-SCO or private estimation for heavy-tailed distribution,
[4] provides the first study on private mean estimation for distri-
butions with bounded moment and proposes the minimax private
rates. Their methods are based on truncating the data to make each
data record has a bounded ℓ2-norm. However, as [33] mentioned,
they need a stronger assumption on the bounded moment, e.g., for
the mean estimation problem they need to assume E[∥𝑥 ∥22] ≤ 1 while
we only assume E[𝑥2

𝑗
] ≤ 1 for each coordinate 𝑗 ∈ [𝑑]. Moreover,

their method cannot be extended to the high dimensional sparse
setting directly, and their error bound is in the expectation form,
while in the robust statistics it is preferable to get high probabil-
ity results (see Definition 3 for details). Later, [33] also studies the
heavy-tailed mean estimation, which is also studied by [37] recently.
However, their results for general 𝑑 dimensional space are still not
the high probability form (they can only show their results hold
with probability at least 0.7). Thus, their methods cannot be used to
DP-SCO directly. Moreover, it is unknown whether their methods
could be extended to the high dimensional or the sparse setting.
[10] recently also studies the same problem and proposes a method
based on the PTR mechanism [22]. However, their method can
be only used in the 1-dimensional space and and needs stronger
assumptions.

Meanwhile, instead of themean estimation, [51] provides the first
study on DP-SCO with heavy-tailed data and proposes three meth-
ods based on different assumptions. Their first method is based on
the Sample-and-Aggregate framework [41]. However, this method
needs enormous assumptions and its error bound is quite large.
Their second method is still based on the smooth sensitivity [12].
However, [51] needs to assume the distribution is sub-exponential.
It also provides a new private estimator motivated by the previ-
ous work in robust statistics. While some our estimators are quite
similar as theirs, they are quite a lot differences (see Remark 1 for
details). Based on the mean estimator in [33], [32] recently stud-
ies DP-SCO and improves the (expected) excess population risk
to �̃� (( 𝑑𝜖𝑛 )

1
2 ) and �̃� ( 𝑑𝜖𝑛 ) for convex and strongly convex loss func-

tions respectively under the assumption that the gradient of the
loss has bounded second order moment. These results match the
best known result of the heavy-tailed mean estimation problem.
However, all of these results are in the expectation form instead
of the high probability form. Moreover, their method cannot be
extended to the linear model, where the bounded second order
moment of loss assumption is quite strong (see Assumption 3 for
details). We note that all these methods cannot be directly extended
to the high dimensional case or the sparse learning problem. 1

3 PRELIMINARIES
Notations: For vectors 𝑣, 𝑣𝑖 ∈ R𝑑 , we denote 𝑣 𝑗 and 𝑣𝑖, 𝑗 as their

corresponding the 𝑗-th coordinate. Given a set of indices 𝑆 ⊆ [𝑑],
we denote the vector 𝑣𝑆 ∈ R𝑑 as the projection of 𝑣 onto 𝑆 , i.e.,
𝑣𝑆,𝑗 = 𝑣 𝑗 if 𝑗 ∈ 𝑆 , and 𝑣𝑆,𝑗 = 0 otherwise. We also denote |𝑆 | as the
number of elements in 𝑆 and supp(𝑤) = { 𝑗 ∈ [𝑑] : 𝑤 𝑗 ≠ 0} ⊆ [𝑑]
1We refer readers the reference [33, 51] to see more related work on DP methods for
unbounded sensitivity.
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for 𝑤 . For a constraint set W, we denote ∥W∥1 as it is ℓ1-norm
diameter, i.e., ∥W∥1 = max𝑢,𝑣∈W ∥𝑢 − 𝑣 ∥1.
Definition 1 (Differential Privacy [23]). Given a data universe X,
we say that two datasets 𝐷,𝐷 ′ ⊆ X are neighbors if they differ by
only one data sample, which is denoted as 𝐷 ∼ 𝐷 ′. A randomized
algorithm A is (𝜖, 𝛿)-differentially private (DP) if for all neighbor-
ing datasets 𝐷, 𝐷 ′ and for all events 𝑆 in the output space of A, we
have

Pr(A(𝐷) ∈ 𝑆) ≤ 𝑒𝜖Pr(A(𝐷 ′) ∈ 𝑆) + 𝛿.
In this paper, we will mainly use the Laplacian and the Expo-

nential mechanism, and the Advanced Composition Theorem to
guarantee DP property.
Definition 2 (Laplacian Mechanism). Given a function 𝑞 : X𝑛 →
R𝑑 , the Laplacian Mechanism is defined as:M𝐿 (𝐷,𝑞, 𝜖) = 𝑞(𝐷) +
(𝑌1, 𝑌2, · · · , 𝑌𝑑 ), where 𝑌𝑖 is i.i.d. drawn from a Laplacian Distribu-
tion Lap( Δ1 (𝑞)

𝜖 ), where Δ1 (𝑞) is the ℓ1-sensitivity of the function 𝑞,
i.e.,Δ1 (𝑞) = sup𝐷∼𝐷′ | |𝑞(𝐷)−𝑞(𝐷 ′) | |1 . For a parameter 𝜆, the Lapla-
cian distribution has the density function Lap(𝜆) (𝑥) = 1

2𝜆 exp(−
𝑥
𝜆
).

Laplacian Mechanism preserves 𝜖-DP.
Definition 3 (Exponential Mechanism). The Exponential Mecha-
nism allows differentially private computation over arbitrary do-
mains and range R, parametrized by a score function 𝑢 (𝐷, 𝑟 ) which
maps a pair of input data set 𝐷 and candidate result 𝑟 ∈ R to
a real valued score. With the score function 𝑢 and privacy bud-
get 𝜖 , the mechanism yields an output with exponential bias in
favor of high scoring outputs. Let M(𝐷,𝑢,R) denote the exponen-
tial mechanism, and Δ be the sensitivity of 𝑢 in the range R, i.e.,
Δ = max𝑟 ∈R max𝐷∼𝐷′ |𝑢 (𝐷, 𝑟 ) − 𝑢 (𝐷 ′, 𝑟 ) |. Then if M(𝐷,𝑢, 𝑅) se-
lects and outputs an element 𝑟 ∈ R with probability proportional
to exp( 𝜖𝑢 (𝐷,𝑟 )2Δ𝑢 ), it preserves 𝜖-DP.

The output of exponential mechanism has the following utility.
Lemma 1 ([24]). For the exponential mechanism M(𝐷,𝑢,R), we
have

Pr{𝑢 (M(𝐷,𝑢,R)) ≤ OPT𝑢 (𝑥) −
2Δ𝑢
𝜖

(ln |R | + 𝑡)} ≤ 𝑒−𝑡 .

whereOPT𝑢 (𝑥) is the highest score in the rangeR, i.e.max𝑟 ∈R 𝑢 (𝐷, 𝑟 ).
Lemma 2 (Advanced Composition Theorem). Given target privacy
parameters 0 < 𝜖 < 1 and 0 < 𝛿 < 1, to ensure (𝜖,𝑇𝛿 ′ + 𝛿)-DP
over 𝑇 mechanisms, it suffices that each mechanism is (𝜖 ′, 𝛿 ′)-DP,
where 𝜖 ′ = 𝜖

2
√
2𝑇 ln(2/𝛿)

and 𝛿 ′ = 𝛿
𝑇
.

Definition 4 (DP-SCO [7]). Given a dataset 𝐷 = {𝑧1, · · · , 𝑧𝑛} from
a data universeZ where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) with a feature vector 𝑥𝑖 and a
label/response𝑦𝑖 are i.i.d. samples from some unknown distribution
D, a convex constraint set W ⊆ R𝑑 , and a convex loss function ℓ :
W×Z ↦→ R. Differentially Private Stochastic Convex Optimization
(DP-SCO) is to find𝑤priv so as to minimize the population risk, i.e.,
𝐿D (𝑤) = E𝑧∼D [ℓ (𝑤, 𝑧)] with the guarantee of being differentially
private.2 The utility of the algorithm is measured by the excess
population risk, that is

𝐿D (𝑤priv) − min
𝑤∈W

𝐿D (𝑤) .

2Note that in this paper we consider the improper learning case, that is 𝑤priv may not
in W.

Besides the population risk, we can also measure the empirical risk
of dataset 𝐷 : �̂�(𝑤,𝐷) = 1

𝑛

∑𝑛
𝑖=1 ℓ (𝑤, 𝑧𝑖 ). It is notable that in the

high probability setting, we need to get a high probability excess
population risk. That is given a failure probability 0 < 𝜁 < 1, we
want get a (polynomial) function 𝑓 (𝑑, log 1

𝛿
, log 1

𝜁
, 1𝑛 ,

1
𝜖 ) such that

with probability at least 1−𝜁 (over the randomness of the algorithm
and the data distribution),

𝐿D (𝑤priv) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂 (𝑓 (𝑑, log 1
𝛿
, log 1

𝜁
,
1
𝑛
,
1
𝜖
)) .

Compared with the high probability setting, there is another setting
namely the expectation setting where our goal is to get a (polyno-
mial) function 𝑓 (𝑑, log 1

𝛿
, 1𝑛 ,

1
𝜖 ) such that

E𝐿D (𝑤priv) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂 (𝑓 (𝑑, log 1
𝛿
,
1
𝑛
,
1
𝜖
)),

where the expectation takes over the randomness of the data records
and the algorithm.

It is notable that, in the regular data case where the data distri-
bution D or the gradient of the loss is bounded or sub-Gaussian,
it is easy to transform an expected excess population risk to an
excess population risk with high probability. However, this is not
true for the heavy-tailed case. 3 Thus, all of the recent studies on
robust statistics such as [9, 27, 28, 36, 39, 40, 42] focused on the
high probability setting. In the paper, we will study the problem in
the high probability setting. Moreover, throughout the paper we
focus on the high dimensional case where 𝑑 could be far greater
than 𝑛. Thus we wish the error bounds (excess population risk) be
logarithmic of 𝑑 .

The following two definitions on loss functions are commonly
used in machine learning, optimization and statistics.

Definition 5. A function 𝑓 is 𝐿-Lipschitz w.r.t the norm ∥ · ∥ if for
all𝑤,𝑤 ′ ∈ W, |𝑓 (𝑤) − 𝑓 (𝑤 ′) | ≤ 𝐿∥𝑤 −𝑤 ′∥.

Definition 6. A function 𝑓 is 𝛼-smooth onW if for all𝑤,𝑤 ′ ∈ W,
𝑓 (𝑤 ′) ≤ 𝑓 (𝑤) + ⟨∇𝑓 (𝑤),𝑤 ′ −𝑤⟩ + 𝛼

2 ∥𝑤
′ −𝑤 ∥22 .

4 HIGH DIMENSIONAL DP-SCO OVER
POLYTOPE DOMAIN

In this section we will study DP-SCO over polytope domain, i.e., the
underlying constraint setW is some polytope and thus could be
written as the convex hull of a finite set𝑉 . This contains numerous
of learning models that address high dimensional data, such as
LASSO and minimization over probability simplex.

[45] first studied the problem of DP-ERM over polytope domain
in the regular data setting (i.e., the gradient of loss function has
bounded norm). Specifically, they showed that when the loss func-
tion is Lipschitz w.r.t ℓ1-norm, there is an (𝜖, 𝛿)-DP algorithm (DP
Frank-Wolfe) whose output could achieve an error of 𝑂 ( log( |𝑉 |𝑛)

(𝑛𝜖)
2
3

).

However, to generalize to the heavy-tailed data setting, the main
difficulty is that the assumption of ℓ1-norm Lipschitz does not hold
anymore. To address the problem, one possible approach may be
truncating the gradient to make it has bounded ℓ∞-norm (since
ℓ1-norm Lipschitz is equivalent to its gradient has bounded ℓ∞-
norm). However, as mentioned in [51], it could introduce enormous
3See [15] for the necessity to consider the high probability setting.
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amount of error and it is difficult to select the best threshold param-
eter. In the following we will propose a new method to overcome
this challenge. We will focus on the case where the gradient of the
loss is heavy-tailed. Specifically, following from the previous work
on robust statistics such as [27, 42], here we propose the following
assumption on the gradient of the loss function.

Assumption 1. We assume 𝐿𝐷 (·) is 𝛼-smooth, and there exists a
𝜏 > 0 such that for any 𝑤 ∈ W and each coordinate 𝑗 ∈ [𝑑], we
have E[(∇𝑗 ℓ (𝑤, 𝑥))2] ≤ 𝜏 .

First, it is notable that the smoothness condition in Assumption
1 is necessary for the high dimensional setting. As shown by [2],
when the loss function is non-smooth and ℓ1-norm Lipschitz, even in
the regular data setting the excess population risk is lower bounded

by Ω(
√︃

log𝑑
𝑛 +

√
𝑑
𝑛𝜖 ), which depends on Ω(

√
𝑑). Secondly, in some

other work on studying private estimation for distributions with
bounded second-order moment (such as [33]), they assume that
for each unit vector 𝑢 ∈ R𝑑 , E[⟨𝑢,∇ℓ (𝑤, 𝑥)⟩2] ≤ 𝜏 = 𝑂 (1). Thus,
our assumption on the moment is reasonable. Thirdly, we note that
𝜏 may be not a constant, it could depend on the structure of the
loss function, data distribution and the underlying structure of W
[49]. Throughout the whole paper we assume 𝜏 is known, which is
commonly used in other related work in robust statistics such as
[11, 33].

Our approach, namely Heavy-tailed DP-FW, could be seen as a
generalization of the DP Frank-Wolfe method in [45]. The approach
is motivated by a robust mean estimator for heavy-tailed distribu-
tion given by [16] which was extended by [27]. For simplicity, we
first consider a 1-dimensional random variable 𝑥 and assume that
𝑥1, 𝑥2, · · · , 𝑥𝑛 are i.i.d. sampled from 𝑥 . The robust mean estimator
consists of three steps:
Scaling and Truncation For each sample 𝑥𝑖 , we first re-scale it by
dividing 𝑠 (which will be specified later). Then, the re-scaled one
was passed through a soft truncation function 𝜙 . Finally, we put
the truncated mean back to the original scale. That is,

𝑠

𝑛

𝑛∑︁
𝑖=1

𝜙 ( 𝑥𝑖
𝑠
) ≈ E𝑥 . (1)

Here, we use the function given in [16],

𝜙 (𝑥) =


𝑥 − 𝑥3

6 , −
√
2 ≤ 𝑥 ≤

√
2

2
√
2

3 , 𝑥 >
√
2

− 2
√
2

3 , 𝑥 < −
√
2.

(2)

A key property for 𝜙 is that 𝜙 is bounded, that is, |𝜙 (𝑥) | ≤ 2
√
2

3 .
Noise Multiplication Let 𝜂1, 𝜂2, · · · , 𝜂𝑛 be random noise gener-
ated from a common distribution 𝜂 ∼ 𝜒 with E𝜂 = 0. We multiply
each data 𝑥𝑖 by a factor of 1 + 𝜂𝑖 , and then perform the scaling and
truncation step on the term 𝑥𝑖 (1 + 𝜂𝑖 ). That is,

𝑥 (𝜂) = 𝑠

𝑛

𝑛∑︁
𝑖=1

𝜙 ( 𝑥𝑖 + 𝜂𝑖𝑥𝑖
𝑠

) . (3)

Noise Smoothing In this final step, we smooth the multiplicative
noise by taking the expectation w.r.t. the distributions. In total the

robust mean estimator 𝑥 (𝑠, 𝛽) could be written as,

𝑥 (𝑠, 𝛽) = E𝑥 (𝜂, 𝑠, 𝛽) = 𝑠

𝑛

𝑛∑︁
𝑖=1

∫
𝜙 ( 𝑥𝑖 + 𝜂𝑖𝑥𝑖

𝑠
)𝑑𝜒 (𝜂𝑖 ). (4)

Computing the explicit form of each integral in (4) depends on the
function 𝜙 (·) and the distribution 𝜒 . Fortunately, [16] showed that
when 𝜙 is in (2) and 𝜒 ∼ N(0, 1

𝛽
) (where 𝛽 will be specified later),

we have for any 𝑎 and 𝑏 > 0

E𝜂𝜙 (𝑎 + 𝑏
√︁
𝛽𝜂) = 𝑎(1 − 𝑏2

2 ) − 𝑎3

6 +𝐶 (𝑎, 𝑏), (5)

where 𝐶 (𝑎, 𝑏) is a correction form which is easy to implement and
its explicit form will be given in Appendix.

The key idea of our method is that, by the definition of 𝑥 (𝑠, 𝛽)
in (4) and the function 𝜙 is in (2), we can see that the value of
𝑥 (𝑠, 𝛽) will be changed at most 4

√
2𝑠

3𝑛 if we change one sample in
the data, i.e., the sensitivity of 𝑥 (𝑠, 𝛽) is bounded by 4

√
2𝑠

3𝑛 . That
is, given a fixed vector 𝑤 and 𝑛 gradients {∇ℓ (𝑤, 𝑧𝑖 )}𝑛𝑖=1, we can
use the above estimator to the entrywise of these gradients to get
an estimator (we denote it as 𝑔(𝑤,𝐷)) of E[ℓ (𝑤, 𝑧)]. Moreover, we
can see the ℓ∞-norm sensitivity of 𝑔(𝑤,𝐷) is bounded 4

√
2𝑠

3𝑛 , i.e.,
∥𝑔(𝑤,𝐷) − 𝑔(𝑤,𝐷 ′)∥∞ ≤ 4

√
2𝑠

3𝑛 , where 𝐷 and 𝐷 ′ are neighboring
datasets. Combing this result with DP Frank Wolfe method, we
propose our algorithm. See Algorithm 1 for details.

Algorithm 1 Heavy-tailed DP-FW
1: Input: 𝑛-size dataset 𝐷 , loss function ℓ (·, ·), initial parameter
𝑤0, parameters 𝑠,𝑇 , 𝛽, {𝜂𝑡 }𝑡 (will be specified later), privacy
parameter 𝜖 , failure probability 𝜁 . W is the convex hull of a
finite set 𝑉 .

2: Split the data 𝐷 into 𝑇 parts {𝐷𝑡 }𝑇𝑡=1 with |𝐷𝑡 | =𝑚 = 𝑛
𝑇
.

3: for 𝑡 = 1, · · · ,𝑇 do
4: For each 𝑗 ∈ [𝑑], calculate the robust gradient by (2)-(5),

that is
𝑔𝑡−1𝑗 (𝑤𝑡−1, 𝐷𝑡 )

=
1
𝑚

∑︁
𝑥 ∈𝐷𝑡

(
∇𝑗 ℓ (𝑤𝑡−1, 𝑥)

(
1 −

∇2
𝑗
ℓ (𝑤𝑡−1, 𝑥)
2𝑠2𝛽

)
−

∇3
𝑗
ℓ (𝑤𝑡−1, 𝑥)
6𝑠2

)
+ 𝑠

𝑚

∑︁
𝑥 ∈𝐷𝑡

𝐶

(
∇𝑗 ℓ (𝑤𝑡−1, 𝑥)

𝑠
,
|∇𝑗 ℓ (𝑤𝑡−1, 𝑥) |

𝑠
√︁
𝛽

)
.

5: Let vector 𝑔(𝑤𝑡−1, 𝐷𝑡 ) ∈ R𝑑 as 𝑔(𝑤𝑡−1, 𝐷𝑡 ) =

(𝑔𝑡−11 (𝑤𝑡−1, 𝐷𝑡 ), 𝑔𝑡−12 (𝑤𝑡−1, 𝐷𝑡 ), · · · , 𝑔𝑡−1𝑑
(𝑤𝑡−1, 𝐷𝑡 )).

6: Denote the score function 𝑢 (𝐷𝑡 , ·) : 𝑉 ↦→ R such that
for each 𝑣 ∈ 𝑉 let 𝑢 (𝐷𝑡 , 𝑣) = −⟨𝑣, 𝑔(𝑤𝑡−1, 𝐷𝑡 )⟩. Run the
exponential mechanism with the range 𝑅 = 𝑉 , sensitivity
Δ =

4∥W∥1
√
2𝑠

3𝑚 and the privacy budget 𝜖 . Denote the output as
�̃�𝑡−1 ∈ W.

7: Let𝑤𝑡 = (1 − 𝜂𝑡−1)𝑤𝑡−1 + 𝜂𝑡−1�̃�𝑡−1 .
8: end for
9: return𝑤𝑇 .

Theorem 1. For any 𝜖 > 0, Algorithm 1 is 𝜖-DP.
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Theorem 2. Under Assumption 1 and if W is a convex hull of a
finite compact set 𝑉 . Then for any given probability of failure 0 <

𝜁 < 1, if we set𝑇 = �̃�
(
( 𝑛𝜖𝛼2

𝜏 log |𝑉 |𝑑
𝜁

)
1
3
)
, 𝛽 = 𝑂 (1), 𝑠 = 𝑂 (

√︂
𝑛𝜖𝜏

𝑇 log |𝑉 |𝑑𝑇
𝜁

)

and 𝜂𝑡−1 = 2
𝑡+2 in Algorithm 1, with probability at least 1 − 𝜁 ,

𝐿D (𝑤𝑇 ) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂
( ∥W∥1 (𝛼𝜏 log 𝑛 |𝑉 |𝑑

𝜁
)
1
3

(𝑛𝜖)
1
3

)
. (6)

Remark 1. From Theorem 2 we can see that when |𝑉 | = poly(𝑑)
and 𝜏 = 𝑂 (1), the excess population risk will be upper bounded by
�̃� ( 1

(𝑛𝜖)
1
3
). Compared with the previous results in private heavy-

tailed estimation [10, 33, 51], we improve the error bound from
𝑂 (𝑑) to 𝑂 (log𝑑). It is also notable that [51] also used a similar
robust estimator as ours. However, there are several differences:
First, [51] first performs the robust estimator to each coordinate
of the gradients and then add Gaussian noise to the whole vector
to ensure DP. Thus, all the errors in [51] depend on poly(𝑑) and
their method cannot be extended to high dimensional space directly.
Secondly, [51] sets 𝑠 = 𝑂 (

√
𝑛) while our 𝑠 depends on both 𝑛, 𝜖 and

𝑇 . We provide a finer analysis on the trade-off between the bias and
variance of the robust estimator, and the noise we added in each
iteration (see the proof of Theorem 2 for details). Thus, our error is
much lower than theirs and our method could be used in [51] and
improve their bounds.

Corollary 1. Consider the LASSO problemwhere𝐿𝐷 (𝑤) = E(⟨𝑥,𝑤⟩−
𝑦)2 and W = {𝑤 ∈ R𝑑 : ∥𝑤 ∥1 ≤ 1}. We know that the popula-
tion risk function is 𝜆max (E(𝑥𝑥𝑇 ))-smooth, where 𝜆max (𝑀) is the
maximal eigenvalue of the matrix 𝑀 . If we further assume each
coordinate of the gradient has bound second moment i.e., for each
𝑤 ∈ W and 𝑗 ∈ [𝑑], E[(𝑥 𝑗 (⟨𝑥,𝑤⟩ − 𝑦))2] ≤ 𝑂 (1) (for example
𝑥 𝑗 and 𝑦 are 𝑂 (1)-sub-Gaussian). Then the output of Algorithm 1
satisfies the following with probability at least 1 − 𝜁 :

𝐿D (𝑤𝑇 ) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂
( (𝜆max (E(𝑥𝑥𝑇 ) log 𝑑𝜁 log𝑛)

1
3

(𝑛𝜖)
1
3

)
. (7)

In the previous theorem, we need to assume the loss function
is convex. However, we can also show that Algorithm 1 could
be used to some specific non-convex loss functions. Below we
will study the Robust Regression and provide an upper bound of
�̃� ( 1

(𝑛𝜖)
1
4
). For W = {𝑤 ∈ R𝑑 |∥𝑤 ∥1 ≤ 1}, and a non-convex

positive loss function 𝜓 , the loss of robust regression is defined
as ℓ (𝑤, (𝑥,𝑦)) = 𝜓 (⟨𝑥,𝑤⟩ −𝑦). We make the following assumptions
on𝜓 , which includes the biweight loss function 4 [38].

Assumption 2. We assume that
(1) There is a constant 𝐶𝜓 ≥ 1, s.t. max{𝜓 ′(𝑠),𝜓 ′′(𝑠)} ≤ 𝐶𝜓 =

𝑂 (1), for for all 𝑠 .
(2) 𝜓 ′(·) is oddwith𝜓 ′(𝑠) > 0, for ∀𝑠 > 0; andℎ(𝑠) := E𝜉 [𝜓 ′(𝑠+

𝜉)] satisfies ℎ′(0) > 𝑐𝜓 , where 𝑐𝜓 = 𝑂 (1) > 0.

4For a fixed parameter 𝑐 > 0, the biweight loss is defined as 𝜓 (𝑠) = 𝑐2
6 ·{

1 − (1 − ( 𝑠
𝑐
)2)3, |𝑡 | ≤ 𝑐

1, |𝑡 | ≥ 𝑐.

(3) There is 𝑤∗ ∈ W such that 𝑦 = ⟨𝑤∗, 𝑥⟩ + 𝜉 , where 𝜉 is
symmetric noise with a zero-mean given 𝑥 . Also we assume
that for each coordinate 𝑗 ∈ [𝑑], 𝑥 𝑗 has bounded second
order moment, that is E𝑥2

𝑗
≤ 𝑂 (1).

Theorem 3. Under Assumption 2, for any given probability of
failure 0 < 𝜁 < 1, if we set 𝛽 = 𝑂 (1), 𝑠 = 𝑂 (

√
𝑛𝜖√︃

𝑇 log 𝑑𝑇
𝜁

), 𝜂 = 1√
𝑇
,

and 𝑇 = �̃� (
√︂

𝑛𝜖

log 𝑑
𝜁

) in Algorithm 1. Then with probability at least

1 − 𝜁 (we omit the 𝐶𝜓 and 𝑐𝜓 term),

𝐿D (𝑤𝑇 ) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂
(𝜆max (E(𝑥𝑥𝑇 )) log

1
4 𝑑𝑛
𝜁

(𝑛𝜖)
1
4

.
)
. (8)

For LASSO, there are enormous differences between our results
and the results in [45]. First, [45] needs to assume that each |𝑥𝑖 𝑗 | ≤
𝑂 (1) and |𝑦𝑖 | ≤ 𝑂 (1) to guarantee the loss function be ℓ1-norm
Lipschitz, while here we just need a bounded second order moment
condition. Secondly, [45] only considers the empirical risk function
while here we consider the population risk. It is notable that their
method cannot be extended to population risk directly based on
their theoretical analysis. Thus, our result of �̃� ( 1

(𝑛𝜖)
1
3
) cannot be

compared with theirs directly. Recently [2] considers DP-SCO with
ℓ1-norm Lipschitz loss functions and it provides an upper bound of
�̃� ( 1√

𝜖𝑛
) and �̃� (

√︃
1
𝑛 +

1
(𝑛𝜖)

2
3
) for 𝜖 and (𝜖, 𝛿)-DP model respectively.

Comparedwith this, we can see, due to the heavy-tailed distribution,
the upper bound now decreases to �̃� ( 1

(𝑛𝜖)
1
3
) for 𝜖-DP. Thirdly, the

DP Frank Wolfe algorithm given by [45] could guarantee both 𝜖
and (𝜖, 𝛿)-DP with error upper bounds of �̃� ( 1√

𝑛𝜖
) and �̃� ( 1

(𝑛𝜖)
2
3
)

respectively.5 However, our method can only guarantee 𝜖-DP and
cannot get improved bounds in the (𝜖, 𝛿)-DP model. The mainly
reason is that, [45] performs the exponential mechanism on the
whole data to achieve 𝑂 ( 𝜖√︃

𝑇 log 1
𝛿

)-DP in each iteration, then the

whole algorithm will be (𝜖, 𝛿)-DP due to the advanced composition
theorem. However here we cannot adopt this technique directly.
The major difficulty is that if we use whole dataset in each iteration
then𝑤𝑡−1 will depend on the whole dataset. And this cause us in the
proof to analyze an upper bound of sup𝑣∈𝑉 sup𝑤∈W ⟨𝑣, 𝑔(𝑤,𝐷) −
E[∇ℓ (𝑤 ; 𝑧)]⟩, which is difficult to analyze due to the complex form
of our estimator 𝑔(𝑤,𝐷) in step 5. Thus, we need to get avoid of the
dependency. Our strategy is splitting the whole dataset into several
parts and in each iteration we use the exponential mechanism on
one subset. That is why here we only consider the 𝜖-DP model. It
is an open problem that whether we can get an improved (𝜖, 𝛿)-
DP method in general. Below we will show that for LASSO it is
possible to improve the upper bound from �̃� ( 1

(𝑛𝜖)
1
3
) in Corollary 1

to �̃� ( 1
(𝑛𝜖)

2
5
) in (𝜖, 𝛿)-DP model if the data distribution has bounded

fourth-order moments.
The algorithm consists of two parts. In the first part, motivated by

[25], we shrunk each entry of each sample by a threshold 𝐾 , which
will be determined later. That is, for each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑], we
5We can adopt the idea in [45] and get the result for 𝜖-DP
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let 𝑥𝑖, 𝑗 = sign(𝑥𝑖, 𝑗 )min{|𝑥𝑖, 𝑗 |, 𝐾} and 𝑦𝑖 = sign(𝑦𝑖 )min{|𝑦𝑖 |, 𝐾}.
Note that since now each entry is bounded, the loss function will
be ℓ1-norm Lipschitz with 𝑂 (𝐾2). Thus, in the second part, we
perform the DP-FW in [45] on the shrunken data. See Algorithm 2
for details.

Algorithm 2 Heavy-tailed Private LASSO
1: Input: 𝑛-size dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, loss function
ℓ (𝑤, (𝑥,𝑦)) = (⟨𝑤, 𝑥⟩ − 𝑦)2, initial parameter 𝑤0, parameters
𝐾,𝑇 , {𝜂𝑡 } (will be specified later), privacy parameter 𝜖, 𝛿 , fail-
ure probability 𝜁 . W is the ℓ1-norm ball with set of vertices 𝑉 .

2: For each 𝑖 ∈ [𝑛], we denote a truncated sample 𝑥𝑖 ∈ R𝑑
where for 𝑗 ∈ [𝑑] 𝑥𝑖, 𝑗 = sign(𝑥𝑖, 𝑗 )min{|𝑥𝑖, 𝑗 |, 𝐾}, and 𝑦𝑖 =

sign(𝑦𝑖 )min{|𝑦𝑖 |, 𝐾}. Denote the truncated dataset as �̃� =

{(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1.
3: for 𝑡 = 1, · · · ,𝑇 do.
4: Denote the score function 𝑢 (�̃�, ·) : 𝑉 ↦→ R such that for

each 𝑣 ∈ 𝑉 let 𝑢 (�̃�, 𝑣) = −⟨𝑣, 𝑔(𝑤𝑡−1, �̃�)⟩, where 𝑔(𝑤𝑡−1, �̃�) =
2
𝑛

∑𝑛
𝑖=1 𝑥𝑖 (⟨𝑥𝑖 ,𝑤𝑡−1⟩ − 𝑦𝑖 ) . Run the exponential mechanism

with the range 𝑅 = 𝑉 , sensitivity Δ =
8∥W∥1𝐾2

𝑛 and the privacy
budget 𝜖

2
√︃
2𝑇 log 1

𝛿

. Denote the output as �̃�𝑡−1 ∈ 𝑉 .

5: Let𝑤𝑡 = (1 − 𝜂𝑡−1)𝑤𝑡−1 + 𝜂𝑡−1�̃�𝑡−1 .
6: end for
7: return𝑤𝑇 .

Theorem 4. For any 0 < 𝜖, 𝛿 < 1, Algorithm 1 is (𝜖, 𝛿)-DP.

Assumption 3. We assume that 𝑥 and 𝑦 have bounded forth order
moment, i.e., for each 𝑗1, 𝑗2 ∈ [𝑑], E(𝑥 𝑗1𝑥 𝑗2 )2 ≤ 𝑀 , and E[𝑦4] ≤ 𝑀 ,
where𝑀 = 𝑂 (1) is a constant.

Remark 2. We note that Assumption 1 implies E(𝑥 𝑗𝑥𝑘 )2 ≤ 𝑂 (𝜏)
for any 𝑗, 𝑘 ∈ [𝑑]. Since in Assumption 1 we can get E[(𝑥 𝑗𝑦)2] ≤ 𝜏
if we take𝑤 = 0. And we have E[(𝑥 𝑗 (𝑥𝑘 −𝑦))2] ≤ 𝜏 when we take
𝑤 = 𝑒𝑘 (the 𝑘-th basis vector), thus E[(𝑥 𝑗𝑥𝑘 )2] ≤ 𝑂 (𝜏). From this
view, Assumption 3 is weaker than Assumption 1. Moreover, in
Assumption 1 we need to assume that the term E[𝑥2

𝑖
(⟨𝑤, 𝑥⟩ − 𝑦)2]

is bounded for each ∥𝑤 ∥1 ≤ 1, which is hard to be verified and is
unnatural for the linear model compared with the previous work
on linear regression with heavy-tailed data [28, 57].

Theorem 5. Under Assumption 3, for any given probability of

failure 0 < 𝜁 < 1, if we set 𝐾 =
(𝑛𝜖)

1
4

𝑇
1
8

,𝑇 = �̃� ((
√
𝑛𝜖𝜆max (E(𝑥𝑥𝑇 ))√︃

log 1
𝛿
log 𝑑𝑇

𝜁

)
4
5 )

and 𝜂𝑡−1 = 2
𝑡+2 in Algorithm 2, then with probability at least 1 − 𝜁 ,

𝐿D (𝑤𝑇 ) − min
𝑤∈W

𝐿D (𝑤) ≤ 𝑂 (
𝜆

1
5
max (E(𝑥𝑥𝑇 )) (

√︃
log 1

𝛿
log 𝑑𝑛

𝜁
)
4
5

(𝑛𝜖)
2
5

) .

(9)

Truncating or shrunking the data to let them has bounded norm
(or bounded sensitivity) is a commonly used technique in previous
study on DP machine learning such as [4, 13, 14]. However, all of
these methods need to assume the data distribution is sub-Gaussian
so that truncation may not lose too much information about the

original record. Here we generalized to a heavy-tailed case, which
may could be used to other problems. Moreover, the thresholds in
the truncation step for sub-Gaussian and heavy-tailed cases are
also quite different. In the sub-Gaussian case, the threshold always
depends on the sub-Gaussian parameter and log𝑛, log𝑑 , while in
Algorithm 2 we set the threshold as a function of 𝑛, 𝜖 and 𝑇 .

5 HEAVY-TAILED DP-SCO FOR SPARSE
LEARNING

5.1 Private Heavy-tailed Sparse Linear
Regression

In the previous section, we studied DP-SCO over polytope con-
straint. However, in the high dimensional statistics we always as-
sume the underlying parameter has additional structure of sparsity.
Directly solving DP-SCO over ℓ1-norm ball constraint may not pro-
vide efficient estimation to the sparse parameters. In this section, we
will focus on sparse learning with heavy-tailed data. Specifically,
we will consider two canonical models, one is the sparse linear
model, the other one is the DP-SCO over sparsity constraint, which
includes sparse regularized logistic regression and spase mean esti-
mation. First we consider the sparse linear regression, where for
each pair (𝑥,𝑦) we have a linear model,

𝑦 = ⟨𝑤∗, 𝑥⟩ + 𝜄,
here 𝜄 is some randomized noise and ∥𝑤∗∥2 ≤ 𝐶 (for simplicity we
assume 𝐶 = 1) and𝑤∗ is 𝑠∗-sparse.

Similar to the previous section, here we assume Assumption 3
holds. Instead of using DP variants of the Frank-Wolfe method, here
we will adopt a private variant of the iterative hard thresholding
(IHT) method. Specifically, first we will shrunk the original heavy-
tailed data, which is similar to Algorithm 2. After that we will
perform the DP-IHT procedure. That is, in each iteration, we fist
calculate the gradient on the shrunken data, and update our vector
via the gradient descent. Next, we perform a DP-thresholding step,
provided by [13] (Algorithm 4). That is, we will privately select the
indices with largest 𝑠 magnitude of the vector, keep the entries of
vectors among these indices and let the remain entries be 0. See
Algorithm 3 and 4 for details.

Theorem 6. For any 0 < 𝜖, 𝛿 < 1, Algorithm 3 is (𝜖, 𝛿)-DP.

Theorem 7. Under Assumption 3, if ∥𝑤∗∥2 ≤ 1
2 , the initial vector

𝑤1 satisfies ∥𝑤1 −𝑤∗∥ ≤ 𝑂 ( 𝛾𝜇 ) and 𝑛 is sufficiently large such that

𝑛 ≥ �̃� (
𝑠2𝑀 log2 𝑑

𝜁
log 1

𝛿

𝛾𝜇4𝜖
). Then if we set 𝑇 = �̃� ( 𝛾𝜇 log𝑛), 𝐾 =

(𝑛𝜖)
1
4

(𝑠𝑇 )
1
4
,

𝑠 ≥ 72( 𝛾𝜇 )
2𝑠∗ and 𝜂 = 2

3𝛾 in Algorithm 3, then with probability at
least 1 − 𝜁

𝐿D (𝑤𝑇+1) − 𝐿D (𝑤∗) ≤ 𝑂 (
𝑀𝛾4𝑠∗2 log𝑛 log2 𝑑

𝜁
log 1

𝛿

𝜇7𝑛𝜖
),

where 𝛾 = 𝜆max (E(𝑥𝑥𝑇 )) and 𝜇 = 𝜆min (E(𝑥𝑥𝑇 )) and the Big-𝑂
notation omits other log terms.

Remark 3. In Theorem 7, we need to assume that ∥𝑤∗∥2 ≤ 1
2 and

the initial vector be close to 𝑤∗. These two conditions guarantee
∥𝑤𝑡+0.75∥2 ≤ 1 in each iteration, which simplify our theoretical
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Algorithm 3 Heavy-tailed Private Sparse Linear Regression
1: Input: 𝑛-size dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, loss function
ℓ (𝑤, (𝑥,𝑦)) = (⟨𝑤, 𝑥⟩−𝑦)2, initial vector𝑤1 satisfies ∥𝑤1∥2 ≤ 1
and is 𝑠-sparse, parameters 𝐾,𝑇 , 𝜂0, 𝑠 (will be specified later),
privacy parameter 𝜖, 𝛿 , failure probability 𝜁 .W is the unit ℓ2-
norm ball.

2: For each 𝑖 ∈ [𝑛], we denote a truncated sample 𝑥𝑖 ∈ R𝑑
where for 𝑗 ∈ [𝑑] 𝑥𝑖, 𝑗 = sign(𝑥𝑖, 𝑗 )min{|𝑥𝑖, 𝑗 |, 𝐾}, and 𝑦𝑖 =

sign(𝑦𝑖 )min{|𝑦𝑖 |, 𝐾}. Denote the truncated dataset as �̃� =

{(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1.
3: Split the data �̃� into𝑇 parts {�̃�𝑡 }𝑇𝑡=1, each with𝑚 = 𝑛

𝑇
samples.

4: for 𝑡 = 1, · · · ,𝑇 do.
5: Denote𝑤𝑡+0.5 = 𝑤𝑡 − 𝜂0

𝑚

∑
𝑥 ∈�̃�𝑡

𝑥 (⟨𝑥,𝑤𝑡 ⟩ − 𝑦)

6: Let𝑤𝑡+0.75 = Peeling(𝑤𝑡+0.5, 𝐷𝑡 , 𝑠, 𝜖, 𝛿, 2𝐾
2𝜂0 (

√
𝑠+1)

𝑚 ) .
7: Let𝑤𝑡+1 = ΠW (𝑤𝑡+0.75)
8: end for
9: return𝑤𝑇+1.

Algorithm 4 Peeling [13]

1: Input: Vector 𝑣 = 𝑣 (𝐷) ∈ R𝑑 which depends on the data 𝐷 ,
sparsity 𝑠 , privacy parameter 𝜖, 𝛿 , and noise scale 𝜆.

2: Initialize 𝑆 = ∅.
3: for 𝑖 = 1 · · · 𝑠 do

4: Generate𝑤𝑖 ∈ R𝑑 with𝑤𝑖,1, · · · ,𝑤𝑖,𝑑 ∼ Lap(
2𝜆

√︃
3𝑠 log 1

𝛿

𝜖 ) .
5: Append 𝑗∗ = argmax𝑗 ∈[𝑑 ]\𝑆 |𝑣 𝑗 | +𝑤𝑖, 𝑗 to 𝑆 .
6: end for

7: Generate �̃� ∈ R𝑑 with �̃�1, · · · , �̃�𝑑 ∼ Lap(
2𝜆

√︃
3𝑠 log 1

𝛿

𝜖 ) .
8: return 𝑣𝑆 + �̃�𝑆 .

analysis. For sub-Gaussian data, with some other additional as-
sumptions, [13, 54] showed that the optimal rate is �̃� ( 𝑠

∗ log𝑑
𝑛 +

(𝑠∗ log𝑑)2
(𝑛𝜖)2 ). Thus, due to the data irregularity, the error now in-

creases to �̃� ( 𝑠
2 log2 𝑑
𝑛𝜖 ). Moreover, we can see although both Algo-

rithm 3 and 2 shrunk the data in the first step, the threshold value

𝐾 are quite different, where 𝐾 =
(𝑛𝜖)

1
4

𝑇
1
8

in LASSO and 𝐾 =
(𝑛𝜖)

1
4

(𝑠𝑇 )
1
4
in

the sparse linear model. This is due to different trade-offs between
the bias, variance in the estimation error and the noises we added.

5.2 Extending to Sparse Learning
In this section, we extend our previous ideas and methods to the
problem of DP-SCO over sparsity constraints. That is,W is defined
as W = {𝑤 : ∥𝑤 ∥0 ≤ 𝑠∗}. We note that such a formulation en-
capsulates several important problems such as the ℓ0-constrained
linear/logistic regression [3]. DP-SCO over sparsity constraints has
been studied previously [52–55]. However, all of the previous meth-
ods need either the loss function is Lipschitz, or the data follows
some sub-Gaussian distribution [13, 14]. In the following we extend
to the heavy-tailed case. We first introduce some assumptions to
the loss functions, which are commonly used in previous research
on sparse learning.

Definition 7 (Restricted Strong Convexity, RSC). A differentiable
function 𝑓 (𝑥) is restricted 𝜌𝑟 -strongly convex with parameter 𝑟
if there exists a constant 𝜇𝑟 > 0 such that for any 𝑥, 𝑥 ′ with ∥𝑥 −
𝑥 ′∥0 ≤ 𝑟 , we have 𝑓 (𝑥) − 𝑓 (𝑥 ′) − ⟨∇𝑓 (𝑥 ′), 𝑥 − 𝑥 ′⟩ ≥ 𝜇𝑟

2 ∥𝑥 − 𝑥 ′∥22 .

Definition 8 (Restricted Strong Smoothness, RSS). A differentiable
function 𝑓 (𝑥) is restricted 𝜇𝑠 -strong smooth with parameter 𝑟 if
there exists a constant𝛾𝑟 > 0 such that for any𝑥, 𝑥 ′with ∥𝑥−𝑥 ′∥0 ≤
𝑟 , we have 𝑓 (𝑥) − 𝑓 (𝑥 ′) − ⟨∇𝑓 (𝑥 ′), 𝑥 − 𝑥 ′⟩ ≤ 𝛾𝑟

2 ∥𝑥 − 𝑥 ′∥22 .

Assumption 4. We assume that the objective function 𝐿D (·) is
𝜇𝑟 -RSC and ℓ (𝑤, 𝑧) is 𝛾𝑟 -RSS with parameter 𝑟 = 2𝑠 + 𝑠∗, where 𝑠 =
𝑂 (( 𝛾𝑟𝜇𝑟 )

2𝑠∗). We also assume for any𝑤 ∈ W ′ and each coordinate
𝑗 ∈ [𝑑], we have E[(∇𝑗 ℓ (𝑤, 𝑥))2] ≤ 𝜏 = 𝑂 (1), where 𝜏 is some
known constant and W ′ = {𝑤 |∥𝑤 ∥0 ≤ 𝑠}.

Many problems satisfy Assumption 4, e.g., mean estimation
and ℓ2-norm regularized generalized linear loss where 𝐿D (𝑤) =
E[ℓ (𝑦⟨𝑤, 𝑥⟩)] + 𝜆

2 ∥𝑤 ∥22. If |ℓ
′(·) | ≤ 𝑂 (1), |ℓ ′′(·) | ≤ 𝑂 (1) (such as

the logistic loss) and 𝑥 𝑗 has bounded second-order moment, then
we can see it satisfies Assumption 4.

Since now the loss function becomes non-linear, the approach of
shrunking the data in Algorithm 3 may introduce tremendous error.
However, since in Assumption 4 we have stronger assumptions on
the loss function, we may use the private estimator in Algorithm 1.
Thus, our idea is that, we first perform the robust one-dimensional
mean estimator in (2)-(5) to each coordinate of the gradient, then
we use the private selection algorithm to select top 𝑠 indices, which
is the same as in Algorithm 3. Note that [51] also provides a similar
method in the low dimensional space. However, the main difference
is that here we do not add noise directly to the vector 𝑔(𝑤𝑡−1, 𝐷𝑡 ).
Instead, we first privately select the top 𝑠 indices and then add
noises to the corresponding sub-vector. See Algorithm 5 for details.

Algorithm 5 Heavy-tailed Private Sparse Optimization

1: Input: 𝑛-size dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, initial parameter𝑤1 is
𝑠-sparse, parameters 𝑠, 𝛽, 𝑘,𝑇 , 𝜂 (will be specified later), privacy
parameter 𝜖, 𝛿 , failure probability 𝜁 .

2: Split the data𝐷 into𝑇 parts {𝐷𝑡 }𝑇𝑡=1, each with𝑚 = 𝑛
𝑇
samples.

3: for 𝑡 = 1, · · · ,𝑇 do.
4: For each 𝑗 ∈ [𝑑], calculate the robust gradient by (2)-(5),

that is
𝑔𝑡−1𝑗 (𝑤𝑡−1, 𝐷𝑡 )

=
1
𝑚

∑︁
𝑥 ∈𝐷𝑡

(
∇𝑗 ℓ (𝑤𝑡−1, 𝑥)

(
1 −

∇2
𝑗
ℓ (𝑤𝑡−1, 𝑥)
2𝑘2𝛽

)
−

∇3
𝑗
ℓ (𝑤𝑡−1, 𝑥)
6𝑘2

)
+ 𝑘

𝑚

∑︁
𝑥 ∈𝐷𝑡

𝐶

(
∇𝑗 ℓ (𝑤𝑡−1, 𝑥)

𝑘
,
|∇𝑗 ℓ (𝑤𝑡−1, 𝑥) |

𝑘
√︁
𝛽

)
.

5: Let vector 𝑔(𝑤𝑡−1, 𝐷𝑡 ) ∈ R𝑑 as 𝑔(𝑤𝑡−1, 𝐷𝑡 ) =

(𝑔𝑡−11 (𝑤𝑡−1, 𝐷𝑡 ), 𝑔𝑡−12 (𝑤𝑡−1, 𝐷𝑡 ), · · · , 𝑔𝑡−1𝑑
(𝑤𝑡−1, 𝐷𝑡 )).

6: Denote𝑤𝑡+0.5 = 𝑤𝑡 − 𝜂𝑔(𝑤𝑡−1, 𝐷𝑡 )
7: Let𝑤𝑡+1 = Peeling(𝑤𝑡+0.5, 𝐷𝑡 , 𝑠, 𝜖, 𝛿, 4𝑘

√
2𝜂

𝑚 ).
8: end for
9: return𝑤𝑇+1.
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Theorem 8. For any 0 < 𝜖, 𝛿 < 1, Algorithm 5 is (𝜖, 𝛿)-DP.
Moreover, under Assumption 4, if we set 𝑇 = �̃� ( 𝛾𝑟𝜇𝑟 log𝑛), 𝑠 =

𝑂 (( 𝛾𝑟𝜇𝑟 )
2𝑠∗), 𝛽 = 𝑂 (1), 𝜂 = 2

3𝛾𝑟 and 𝑘 = �̃� (
√
𝑛𝜖𝜏), then with proba-

bility at least 1 − 𝜁 ,

𝐿D (𝑤𝑇+1) − 𝐿D (𝑤∗) ≤ 𝑂 (
𝜏𝛾4𝑟 𝑠

∗ 3
2 log𝑛 log 𝑑

𝜁

√︃
log 1

𝛿

𝜇5𝑟𝑛𝜖
),

where the Big-𝑂 notation omits other log terms.

Remark 4. Compared with Theorem 7, we can see here we do
not need the assumptions on ∥𝑤∗∥2 and the initial vector. This
is due to that we have stronger assumptions on the loss function.
Compared with the bound �̃� ( 𝑠∗2𝑛𝜖 ) in Theorem 7, it seems like here
our bound is lower. However, we note that they are incomparable
due to different assumptions. For example, there is a 𝜏 in the bound
of Theorem 8, which could also depend on the sparsity 𝑠∗ [49]. [52]
also studies DP-SCO over sparsity constraint, it provides an upper
bound of �̃� ( 𝑠∗

𝑛2𝜖2
) under the assumption that the loss function is

Lipschitz. Moreover, for high dimensional sparse mean estimation
and Generalized Linear Model (GLM) with the Lipschitz loss and
sub-Gaussian data, [13, 14] provided optimal rates of �̃� ( 𝑠

∗ log𝑑
𝑛 +

(𝑠∗ log𝑑)2
(𝑛𝜖)2 ). We can see that compared with these results, the error

bound now becomes to �̃� ( 𝜏𝑠
∗ 32
𝑛𝜖 ) due to data irregularity. Moreover,

we can see that in the regular data case, the optimal rates of linear
regression and GLM are the same, while in the heavy-tailed data
case, there is a gap of �̃� (

√
𝑠∗) in the upper bounds. We conjecture

this gap is necessary and will leave it as future research.

In the following we will focus on the lower bound of the loss
functions in Theorem 8. Since our lower bound will be in the form
of private minimax risk, we first introduce the classical statisti-
cal minimax risk before discussing its (𝜖, 𝛿)-private version. More
details can be found in [4].

Let P be a class of distributions over a data universe X. For
each distribution 𝑝 ∈ P, there is a deterministic function 𝜃 (𝑝) ∈
Θ, where Θ is the parameter space. Let 𝜌 : Θ × Θ : ↦→ R+ be a
semi-metric function on the space Θ and Φ : R+ ↦→ R+ be a non-
decreasing function with Φ(0) = 0 (in this paper, we assume that
𝜌 (𝑥,𝑦) = |𝑥 − 𝑦 | and Φ(𝑥) = 𝑥2 unless specified otherwise). We
further assume that 𝐷 = {𝑋𝑖 }𝑛𝑖=1 are 𝑛 i.i.d observations drawn
according to some distribution 𝑝 ∈ P, and 𝜃 : X𝑛 ↦→ Θ be some
estimator. Then the minimax risk in metric Φ ◦ 𝜌 is defined by the
following saddle point problem:

M𝑛 (𝜃 (P),Φ ◦ 𝜌) := inf
𝜃

sup
𝑝∈P
E𝑝 [Φ(𝜌 (𝜃 (𝐷), 𝜃 (𝑝))],

where the supremum is taken over distributions 𝑝 ∈ P and the
infimum over all estimators 𝜃 .

In the (𝜖, 𝛿)-DP model, the estimator 𝜃 is obtained via some
(𝜖, 𝛿)-DP mechanism 𝑄 . Thus, we can also define the (𝜖, 𝛿)-private
minimax risk:

M𝑛 (𝜃 (P), 𝑄,Φ ◦ 𝜌) := inf
𝑄 ∈Q

inf
𝜃

sup
𝑝∈P
E𝑝,𝑄 [Φ(𝜌 (𝜃 (𝐷), 𝜃 (𝑝))],

where Q is the set of all the (𝜖, 𝛿)-DP mechanisms.

To proof the lower bound, we consider the sparse mean estima-
tion problem, i.e., 𝐿D (𝑤) = E𝑥∼D [∥𝑥 −𝑤 ∥22], where the mean of
𝑥 , 𝜇 (D), is 𝑠∗-sparse. Thus, we can see that the population risk
function satisfies Assumption 4 if we assume E𝑥2

𝑗
≤ 𝜏 for each

𝑗 ∈ [𝑑]. Moreover, we have min𝑤∈W 𝐿D (𝑤) = 0 which indicates
that the excess population risk of 𝑤 is equal to E∥𝑤 − 𝜇 (D)∥22.
That is, the lower bound of Theorem 8 reduced to the sparse mean
estimation problem. Therefore, it is sufficient for us to consider the
(𝜖, 𝛿)-private minimax rate for the sparse mean estimation problem
with E𝑥2

𝑗
≤ 𝜏 for each 𝑗 ∈ [𝑑].

In the non-private case, a standard approach to prove the lower
bound of the minimax risk is reducing the original problem to a
testing problem. Specifically, our goal is to identify a parameter 𝜃 ∈
Θ from a finite collection of well-separated points. Given an index
set V with finite cardinality, the indexed family of distributions
{𝑃𝑣, 𝑣 ∈ V} ⊂ P is said to be a 2𝛾-packing if 𝜌 (𝜃 (𝑃𝑣), 𝜃 (𝑃𝑣′)) ≥ 2𝛾
for all 𝑣 ≠ 𝑣 ′ ∈ V . In the standard hypothesis testing problem,
nature chooses 𝑉 ∈ V uniformly at random, then draws samples
𝑋1, · · ·𝑋𝑛 i.i.d. from the distribution 𝑃𝑉 . The problem is to identify
the index 𝑉 . It has been shown that given a 2𝛾-packing {𝑃𝑣, 𝑣 ∈
V} ⊂ P,

M𝑛 (𝜃 (P),Φ ◦ 𝜌) ≥ Φ(𝛾) inf
𝜓
P(𝜓 (𝐷) ≠ 𝑉 ),

where P denotes the probability under the joint distribution of both
𝑉 and the samples 𝐷 .

Similar to the non-private case, for the private minimax risk we
have

M𝑛 (𝜃 (P), 𝑄,Φ ◦ 𝜌) ≥ inf
𝑄 ∈Q

Φ(𝛾) inf
𝜓
P𝑄 (𝜓 (𝜃 (𝐷)) ≠ 𝑉 ),

where 𝜃 (𝐷) is the private estimator via some (𝜖, 𝛿)-DP algorithm
𝑄 , where P𝑄 denotes the probability under the joint distribution of
both 𝑉 , the samples 𝐷 and 𝜃 (𝐷).

In the following we will consider a special indexed family of
distributions {𝑃𝑣}𝑣∈V ⊂ P, which will be used in our main proof.
We assume there exists a distribution 𝑃0 such that for some fixed
𝑝 ∈ [0, 1] we have (1−𝑝)𝑃0 +𝑝𝑃𝑣 ∈ P for all 𝑣 ∈ V . For simplicity
for each 𝑣 ∈ V we define the following parameter

𝜃𝑣 := 𝜃 ((1 − 𝑝)𝑃0 + 𝑝𝑃𝑣) .
We then define the separation of the set {𝜃 }𝑣 by

𝜌∗ (V) := min{𝜌 (𝜃𝑣, 𝜃𝑣′) |𝑣, 𝑣 ′ ∈ V, 𝑣 ≠ 𝑣 ′}.
We have the following lower bound of (𝜖, 𝛿)-private minimax risk
based on the the family of distributions {(1 − 𝑝)𝑃0 + 𝑝𝑃𝑣}𝑣∈V .

Lemma 3 (Theorem 3 in [4]). Fix 𝑝 ∈ [0, 1] and define 𝑃𝜃𝑣 =

(1 − 𝑝)𝑃0 + 𝑝𝑃𝑣 ∈ P. Let 𝜃 be an (𝜖, 𝛿)-DP estimator. Then
M𝑛 (𝜃 (P), 𝑄,Φ ◦ 𝜌)

≥ Φ(𝜌∗ (V)) 1
|V|

∑︁
𝑣∈V

𝑃𝜃𝑣 (𝜌 (𝜃, 𝜃𝑣) ≥ 𝜌∗ (V))

≥ Φ(𝜌∗ (V))
(|V| − 1) ( 12𝑒

−𝜖 ⌈𝑛𝑝 ⌉ − 𝛿 1−𝑒−𝜖 ⌈𝑛𝑝⌉1−𝑒−𝜖 )
1 + (|V| − 1)𝑒−𝜖 ⌈𝑛𝑝 ⌉

. (10)

By Lemma 3 and a set of hard distributions, we have the following
result.
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Theorem 9. Consider the class of distributions P𝑠∗
𝑑
(𝜏) as distribu-

tions 𝑃 in the 𝑑 dimensional space satisfying that E𝑋∼𝑃𝑋 2
𝑗
≤ 𝜏 for

all 𝑥 𝑗 ∈ [𝑑] and the mean of 𝑃 , 𝜇 (𝑃) is 𝑠∗-sparse. Then the (𝜖, 𝛿)-
private minimax risk with Φ(𝑥) = 𝑥2 and 𝜌 (𝑥1, 𝑥2) = ∥𝑥1 − 𝑥2∥2
satisfies that

M𝑛 (𝜃 (P𝑠
∗

𝑑
(𝜏)), 𝑄,Φ ◦ 𝜌) ≥ Ω(

𝜏 min{𝑠∗ log𝑑, log 1
𝛿
}

𝑛𝜖
) . (11)

Thus, for DP-SCO problem under Assumption 4. The information-
theoretical lower bound of the expected population risk in the
(𝜖, 𝛿)-DP model is Ω( 𝜏 min{𝑠 log𝑑,log 1

𝛿
}

𝑛𝜖 ).

Compared with the upper bound in Theorem 8 and the lower
bound in Theorem 9, we can see there is still a gap of �̃� (

√
𝑠∗).

It is an open problem that whether we can further improve the
upper bound. For the low dimensional case, [4, 32] showed that
the optimal rate of the mean estimation is 𝑂 ( 𝜏𝑑𝑛𝜖 ) in both 𝜖 and
(𝜖, 𝛿)-DP models under the assumption that the gradient of loss
has bounded second order moment. Compared with this here we
extend to the high dimensional sparse case.

6 CONCLUSION
In this paper, we studied the problem of Differentially Private Sto-
chastic Convex Optimization (DP-SCO) in the high dimensional
(sparse) setting, where the sample size 𝑛 is far less than the dimen-
sion of the space 𝑑 and the underlying data distribution may be
heavy-tailed. We first considered the problem of DP-SCO where
the constraint set is some polytope. We showed that if the gradient
of loss function has bounded second order moment, then it is pos-
sible to achieve an excess population risk of �̃� ( log𝑑

(𝑛𝜖)
1
3
) (with high

probability) in the 𝜖-DP model, if we omit other terms. Moreover,
for the LASSO problem, we showed that it is possible to achieve an
error of �̃� ( log𝑑

(𝑛𝜖)
2
5
) in the (𝜖, 𝛿)-DP model. Next we studied DP-SCO

for sparse learning with heavy-tailed data. We first investigated the
sparse linear model and proposed a method whose output could
achieve an estimation error of �̃� ( 𝑠

∗2 log2 𝑑
𝑛𝜖 ), where 𝑠∗ is the spar-

sity of the underlying parameter. Then we studied a more general
problem over the sparsity (i.e., ℓ0-norm) constraint, and show that

it is possible to achieve an error of �̃� ( 𝑠
∗ 32 log𝑑
𝑛𝜖 ) if the loss function

is smooth and strongly convex. Finally, we showed a lower bound
of �̃� ( 𝑠

∗ log𝑑
𝑛𝜖 ) for the high dimensional heavy-tailed sparse mean

estimation in the (𝜖, 𝛿)-DP model.
Besides the open problems we mentioned in the previous sec-

tions, there are still many other future work. First, in this paper,
we studied the problem under various settings and assumptions
and provided some bounds of the excess population risk. While
we showed a lower bound for the high dimensional heavy-tailed
sparse mean problem, we still do not know the lower bounds of
other problems. Previous results on the lower bounds need to as-
sume the data is regular, thus we need new techniques or hard
instances to get those lower bounds in the heavy-tailed setting. Sec-
ondly, in the heavy-tailed and low dimensional case, we know that
the bounds of excess population risk may be different in the high
probability form and expectation form [32, 51]. Thus, our question

is, in the high dimensional case, if we relax to the expectation form,
can we further improve these upper bounds? Thirdly, we need to
assume the gradient of the loss has bounded second order moment
throughout the paper. However, sometimes this will not be held
and the data may only has the 1+𝑣-th moment with some 𝑣 ∈ (0, 1)
[47]. Due to this weaker assumption, all the previous methods are
failed. Thus, how to extend to this case in both low dimensional
and high dimensional cases?
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