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ABSTRACT
In this work, we leverage neural mechanisms of visual attention
to improve the accuracy of a commercial eye tracker through the
analysis of electroencephalography (EEG) waves. Gaze targets were
rendered in a computer screen with imperceptible flickering stim-
uli (≥ 40Hz) that elicited attention-modulated steady-state visual
evoked potentials (SSVEPs). Our hybrid system combines EEG and
eye-tracking modalities to overcome accuracy limitations of the
gaze-tracker alone. We integrate EEG and gaze data to efficiently
exploit their complementary strengths driving a Bayesian proba-
bilistic decoder that estimates the target gazed by the user. Our
system’s performance was analyzed across the screen with varying
target sizes, spacings and dataset epoch lengths, using data from
10 subjects. Overall, our hybrid approach improves the classifica-
tion accuracy of the eye tracker alone for all target parameters and
dataset epoch lengths in 11 units on average. The system shows
a larger impact at peripheral screen regions where performance
enhancement is maximal, reaching improvements of over 45 units.
The findings of this work demonstrate that the intrinsic accuracy
limitations of camera-based eye-trackers can be corrected with the
integration of EEG data, and opens opportunities for gaze tracking
applications with higher target granularity.
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• Human-centered computing → User studies; Graphical
user interfaces; HCI theory, concepts and models.
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1 INTRODUCTION
Camera-based eye tracking is a technique that consists of moni-
toring a person’s eye movements in order to estimate where the
individual is looking at any given time. Due to its easily deployable
nature and relatively cheap cost, eye tracking has become a popular
method to enhance interaction with a computer. Gaze monitor-
ing enables myriad applications that range from direct gaze input
[34, 44, 80] to cognition and perception studies [13, 78], market
research [75] and even healthcare [7].

The performance of gaze-enabled computer interfaces as well as
the validity of research outcomes based on eye-tracking analysis
are strictly dependent on the quality of gaze data. Hence, it is of
vital importance to account for the limitations of the eye-tracking
system when designing an application or a research experiment
[23, 30]. The quality of gaze data obtained by an eye-tracker is given
in terms of accuracy and precision in visual angle units, and they are
usually provided by the eye-tracker manufacturers. Accuracy refers
to the absolute difference between the true and the estimated gaze
direction. Precision is computed as the standard deviation of the
measured gaze points during a fixation. Past studies have shown
that tracking quality values reported by manufacturers usually
differ from the numbers obtained by researchers [29, 63, 64] and
that these quality measures vary greatly across different tracking
conditions and users.

Factors that affect the quality of the measured gaze data are
very broad, and they include, among others, head movements, bad
calibrations, astigmatism and camera resolution [6, 32], as well as
inherent factors such as natural eye jitters during fixations [36].
Moreover, accuracy and precision are not constant across the visual
field, but depend strongly on the visual angle between the fixation
point and the camera [23]. Therefore, in the context of eye-tracking
in a computer display, gaze data quality will depend on the region
in the screen the user is gazing at; peripheral areas will show lower
accuracy and precision than central regions.

Accuracy and precision of an eye-tracking system will establish
the limitations of an application or a research experiment with re-
spect to the sizes and spacings between targets or regions of interest
(ROIs). Ideally, targets and ROIs should be large and far enough
apart so as to not be affected by the accuracy limitations of the eye
tracker and the intrinsic jitter of eye movements. This, however,
heavily restricts the amount of targets available and impairs the
granularity of the system. In studies where the stimuli are closely
spaced, lack of accuracy can be critical in the proper analysis of
gaze data.

There has been countless efforts in the field to improve gaze data
quality of a given system [6, 32] or to mitigate such limitations with
creative strategies, such as using fish-eye lens to magnify the region
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the user is looking at [4], correcting inaccuracies with manual
mouse adjustments or voice commands [53, 76], using gaze gestures
[19] or exploiting Fitts’s Law to predict eye movements [22, 80].
These approaches, however, generally undermine the workflow of
the interface, making it unnatural and less intuitive, or affect the
original appearance of the displayed elements. Also, many of these
solutions suffer from the so called "Midas Touch" problem, which
is an effect that originates from the fact that humans use vision to
alternate between scanning the environment and gazing at features
that deserve attention [36, 37]. This can cause interactive elements
to unintentionally activate as the eye is simply traversing the scene,
which can be annoying and less seamless for the user. Ultimately,
even in applications that simply consist of recording gaze data with
no interactions, the core problem is still that eye-trackers suffer
from a systematic error even right after rigorous calibration [32, 56].
And according to [49], even if an eye-tracker was perfectly accurate,
the practical accuracy of the system would be restricted to about
0.5-1 degrees due to the size of the fovea, the area of high visual
acuity.

Therefore, it is reasonable to think that the performance of eye-
tracking systems would benefit from joining efforts with other
modalities that are less sensitive to the many factors that affect
gaze data quality or the workflow of the interaction. In this work,
we leverage neural mechanisms of selective visual attention to
boost the accuracy of gaze data through the analysis of evoked
brainwaves in response to embedded visual stimuli.

Selective visual attention is the tendency of visual processing
to optimally allocate neurocognitive resources to stimuli that are
relevant for our behavioral goals [15, 54]. Visual attention increases
neural responses to stimuli, which can be exploited to determine
which region in the visual field is receiving a person’s focus. One of
the most thoroughly demonstrated processes of this phenomenon
is the enhancement of Steady-State Visually Evoked Potentials
(SSVEPs) when a person attends a flickering stimuli [43, 55]. SSVEP
are oscillatory waves generated at the visual cortex that occur in
response to visual stimulation at specific frequencies [26, 28]. When
a person shifts the attention to a particular flickering stimuli, the
amplitudes of the evoked SSVEPs increase with respect to when
the stimuli is ignored [55, 57]. Interestingly, SSVEPs are evoked
even if the flickers are too fast for the user to consciously perceive
them, which usually happens for frequencies larger than 40Hz, the
so called critical flicker frequency (or critical fusion rate) [68]. Since
SSVEPs can be generated at up to ∼90Hz [26], there is a frequency
band in which SSVEPs will occur and flicker will be invisible to
humans. This invisible flickering frequency band is the one we are
interested in for the purposes of this work.

In this paper, we propose the concept of embedding invisible
visual flicker in the computer display to exploit visual attention
neural processes and combine it with gaze data using a probabilis-
tic Bayesian approach. The fact that such neural mechanisms are
not sensitive to the factors that limit data quality of traditional
gaze-trackers makes this approach a potential solution to improve
the accuracy of camera-based eye-tracking systems. Moreover, the
original appearance of the displayed scene is minimally altered
because of the invisibly flickering visual stimuli. To the best of our
knowledge, this is the first time that accuracy of an eye-tracker
system is enhanced using electroencephalography (EEG) analysis.

2 RELATEDWORK
The symbiotic combination of eye tracking and EEG modalities has
been largely explored for a wide range of different applications. For
instance, it has been proposed as a solution for target selection in
the Human-Computer Interface (HCI) context [65, 66, 77, 79, 81],
where gaze data provides spatial information of user’s attention
and the EEG channel acts as the event or object selection trigger.

EEG and gaze hybrid approaches have also been pursued to
enhance cursor control. In [33], the precision of a continuous cursor
control is improved using EEG information compared to pure gaze-
control, and in [17] the combination of EEG and gaze data led to an
increased completion accuracy and reduced task completion time
without explicit gaze behavior required by the user.

Combining eye-tracking with SSVEP has also been explored. In
[10], the authors combine gaze data with low-frequency SSVEPs
for an interface with more accurate communication and control.
They developed a 4-target menu navigation system for users with
and without brain injury. In [20], they merged eye-tracking and
SSVEP inputs to enhance the classification accuracy of a target
selection interface. They demonstrated speed up in operation and
performance over existing gaze hybrid BCI systems. The authors
in [70] proved that by combining SSVEP with gaze data they could
achieve improved user control with respect to pure eye-tracking or
pure SSVEP interfaces.

Merging EEG and eye-trackingmodalities has also been exploited
beyond the field of HCIs. For example, eye fixation-related poten-
tials (EFRP) are key to study certain cognitive processes during
free natural exploration of visual stimuli. EFRPs allow synchroniz-
ing the recording of neurocognitive processes that occur during
visual exploration by correlating perceptual events with a sequence
of eye movements and/or fixations [35, 39]. Similar approaches
combining these two data modalities have been followed to inves-
tigate physiological decision processes during marketing studies
[41], for emotion recognition [82], for the identification of children
with autism spectrum disorder [40] or even for quadcopter or limb
control [42, 52].

The utilization of high-frequency SSVEPs has also been recently
used in the field of Brain-Computer Interfaces (BCIs). In order to
make these interfaces more user-friendly and deployable, mini-
mizing eye fatigue and user discomfort created by the flickering
stimuli is essential. Therefore, SSVEP-based BCIs with frequencies
above the critical fusion rate are increasingly being adopted by
researchers [3, 25, 38, 67].

3 CONCEPT
The concept we propose consists of leveraging the neural mech-
anisms of visual attention to improve the accuracy of a commer-
cial eye-tracker alone. To do so, we need to create invisible visual
flicker on the screen that will evoke the corresponding SSVEPs
when the user attends a particular element. These flickers are gen-
erated by modulating the luminance at high frequencies so they
are not consciously perceived by the user. This can be implemented
by partitioning the screen into equally sized fragments or tiles,
whose luminance is individually modulated. The size and spacing
between fragments will delimit the accuracy bounds of the system.
See Figure 1a for a schematic representation of the concept.
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(a) The screen is partitioned into equally
sized hexagonal fragments.

(b) Visualization of a proposed implementation of our concept, where theflick-
ering mask is only applied at the approximate region where the user is gazing.
The fast sampling rate of the eye trackers is exploited. Then, leveraging the
EEG system, a more precise point of regard can be determined.

Figure 1: Schematic representation of the concept we propose. The screen is segmented into different equally sized tile-like
fragments. Each region luminance is invisibly modulated to encode information which can be decoded through the EEG.

The encoding element to discriminate between targets or screen
fragments can be either frequency or phase, since it is well known
that elicited SSVEPs synchronize in both frequency and phase to the
visual stimuli the user is attending [27, 45, 51, 72, 74]. For simplicity,
in this work we adopted the frequency encoding approach.

Modulating the luminance of the whole screen simultaneously
is an inefficient strategy, both computationally and in terms of mis-
using the limited amount of available frequencies for stimulation.
Hence, for a real world application, we propose to leverage the fast
sampling rate of eye trackers (usually above 60Hz) to determine
the approximate region in the screen the user is gazing at, and then
apply the flickering mask only in that region to pinpoint the exact
spot of attention (see Figure 1b). However, in this paper, we did not
implement this adaptive solution since we were more interested
in studying the accuracy improvements of our system once the
subject is already focusing on a specific screen region.

4 METHODS
4.1 Participants
10 healthy BCI naive subjects, age 25-36 (mean=28.4, SD=3.0) with
normal or corrected-to-normal vision participated in this study.
Subjects were seated in front of a monitor and placed their heads
on a chin rest so that the distance and visual angles to the stimuli

were kept constant. This also guaranteed that subjects’ head was
always inside the virtual head box required by the eye-tracker
manufacturer for a proper gaze monitoring. The chin rest was
located 50 cm away from the monitor, as seen in Figure 2a. The
study was approved by the institution’s committee on the use of
humans as experimental subjects.

4.2 Equipment
4.2.1 Eye Tracker. Eye gaze was monitored using a Tobii Pro Nano
[58] with 60Hz sampling rate, which was attached at the center
of the lower part of the monitor frame. Tobii reports an accuracy
of 0.3° and a precision of 0.1° RMS at optimal conditions [1]. Tobii
specifies that the optimal screen size should be of up to 24”. Since
we used a larger monitor, we restricted the active area to match the
size of a 24” display.

4.2.2 EEG equipment. EEG data was acquired using an Enobio
system from Neuroelectrics [60] with 8 wet electrodes located in
the parietal and occipital regions using the 10-20 distribution (PO3,
PO4, PO7, PO8, Pz, O1, Oz, O2) at a sampling rate of 500Hz (see
Figure 2b). Both the reference and ground electrodes were placed
at the left mastoid. Conductive gel was used to improve the quality
of the brainwaves recording.
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(a) Subjects placed the head on a chin rest situated 50cm from the
screen. The eye tracker was attached to the lower part of the dis-
play.

(b) EEG electrodes placement according to
the international 10-20 system.

Figure 2: Experimental setup.

4.2.3 Computer display. We used a 27” LCD monitor with 240Hz
of refresh rate. The active area to render stimuli was reduced to
a 24” display to match Tobii recommendations of optimal display
size. Hence, we defined an active rectangle that corresponded to a
24” monitor with aspect ratio 16:9 with dimensions 530 x 300 mm.

4.3 Data Acquisition
A software application was developed in Matlab to generate the
visual stimuli and collect the gaze data. We utilized the Tobii SDK
[73] to record the gaze data and the Neuroelectrics Instrument
Controller (NIC2) [59] to record the EEG data. Gaze and EEG datas-
treams were synchronized using Lab Streaming Layer (LSL) [48]
markers sent to NIC2 through Matlab.

Every subject was calibrated using Tobii’s calibration routine
available in the SDK. For best results, we utilized 9 calibration points
spanning across the active tracking area, which is the maximum
number of calibration dots recommended by Tobii. More than 9
calibration points doesn’t help improve the results, according to
the manufacturer. After calibration, a calibration validation was
performed to estimate the performance of the eye tracker. For the

validation, a new set of stimuli points was presented to the partici-
pant, and we computed values for accuracy and precision based on
the position of the gaze data in relation to the stimuli points. We
repeated the full calibration procedure if accuracy and precision
RMS of either right or left eye were above 1.5° and 0.5° respectively.

4.4 Stimuli Design
We chose to use a grid of hexagon-shaped stimuli as an exemplifi-
cation of what could be a real use case of the screen partitioning ap-
proach (see Section 3). The reasoning behind this is that a hexagon
grid, as opposed to other shapes such as squares, can maintain a
constant distance between the centers of all adjacent hexagons. This
allows for a consistent inter-stimulus distance across all stimuli. A
similar approach was taken in [61], where the effects of competing
stimuli on the evoked SSVEP were studied using a grid of hexagons.

The stimuli consists of a grid of 7 hexagons, one in the center
and the rest circling around, aligned with the 6 sides of the central
one (see Figure 3). We studied grids of different sizes and distances
between hexagons. Hexagon diameters (d in Figure 3) were [1°, 2°,
3°, 4°] visual angles and the offsets between hexagons (s in Figure 3)
were [0°, 0.5°, 1°, 2°]. We generated stimuli using all combinations
of sizes and offsets, resulting in a total of 16 different grids.

Hexagons were colored white and each one flashed at a different
frequency, ranging from 40Hz to 46Hz in steps of 1Hz. To generate
the different frequencies, we modulated the luminance using the
sampled sinusoidal method [50], which allows to create stimuli
signals at any frequency up to half the refresh rate of the computer
monitor. The expression that represents the modulated luminance
is the following:

L(fst ,k) = 0.5sin(2π fst (k/RR)) + 0.5 (1)
where fst is the frequency of the visual stimulus, k is an integer

corresponding to the frame index and RR is the refresh rate of
the display. Hence, L(fst ,k) represents the luminance value of a
sampled sine of frequency fst with a sampling rate of RRHz. The
dynamic range of the wave is from 0 to 1, where 0 represents dark
and 1 maximum luminance.

To study the effect of gaze location on the eye-tracking data
quality, we rendered the stimuli in different positions across the
screen. Figure 4 shows a schematic of the coordinates where the
central hexagon of the grid was placed. The stimulation software
was written in Matlab using the Psychophysics Toolbox [9], which
interfaced directly with Tobii SDK and LSL.

4.5 Experimental Procedure
The experiment was divided in 4 main blocks: calibration, gaze
model training, EEG model training and main experiment.

4.5.1 Calibration. The session started with the calibration of the
eye-tracker as explained in Section 4.3. Then, in order to keep a
record of the quality of the EEG recording, baseline alpha brain-
waves were monitored during 10 seconds while the subject closed
their eyes.

4.5.2 Gaze model training. The goal of this block was to gain a
prior knowledge about the behavior of the eye-tracker across the
screen. This prior would later be used in the Bayesian inference
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(a) General representation of stimuli, defined by two pa-
rameters. Each hexagon was assigned an index as shown.
H1 was the target gazed by the user during the whole ex-
periment.

(b) Two examples of stimuli used in the experiments (not in scale)

Figure 3: Grid of hexagons used for visual stimuli. In 3a we show the two parameters that completely define a stimulus. d is
the length of the hexagons diagonal. s is the spacing or offset between hexagons in the grid. Both dimensions are in visual
angles. d ranged from 1 to 4 in steps of 1 visual angles. s took the values 0, 0.5, 1 and 2 visual angles.

Figure 4: Coordinates where the stimuli (hexagon grids)
were rendered during themain experiment. The eye-tracker
was placed below the screen.

model to estimate the hexagon targeted by the subject together with
the EEG data. Hence, this block consisted of sequentially displaying
a total of 32 dots that covered the whole screen (see Figure 7).
The subject received the instruction to gaze at each point during 5
seconds while gaze data was being recorded. Subjects were asked
to not blink nor move during the 5 seconds. There was a rest period
of 3 seconds between trials where subjects could blink. The total
time required to complete this block was 5 minutes.

4.5.3 EEG model training. This session consisted on obtaining a
prior knowledge about the targeted hexagon classification accuracy
performed by the EEG system. EEG data was recorded while sub-
jects gazed at the central hexagon of the grid. We chose the target
to be the central hexagon since this would represent the worse-case
scenario in terms of accuracy and it mimics a real use case where

all hexagons would be surrounded by other targets. Each one of the
16 possible grid configurations (4 hexagon diameters and 4 spac-
ings) was shown in seven 5-second trials. The flashing frequency
of the central hexagon was different every trial, so it flashed at
the 7 different frequencies (40-46Hz) throughout the 7 trials. The
frequencies of the surrounding hexagons were chosen randomly
every trial from the 6 remaining ones. We repeated this for all 16
grid configurations. The location of the grid in the screen was ran-
domly chosen every trial. This way, we could obtain an average
performance of the EEG system for each configuration. Subjects
were asked to avoid blinking during the 5 seconds of stimulation.
There was a rest time of 3 seconds between trials and an unlimited
rest time every 16 trials. The time required to complete this block
was around 15 minutes.

4.5.4 Main experiment. The main experiment consisted of record-
ing simultaneously EEG and gaze data while subjects gazed at
the central hexagon of the grid. All 16 grid configurations were
sequentially shown during 5 seconds at every predefined screen
location once (see Section 4.4 and Figure 4). Flashing frequencies of
the 7 hexagons were randomly assigned every trial as well as grid
parameters and locations. Subjects were asked to avoid blinking
during the 5 second-trials, but they could rest and blink during the
inter-trial 3 seconds. Subjects never received any type of real-time
feedback during the experiment. There was an unlimited rest time
every 16 trials. The total time required to complete this block was
around 50 minutes.

4.6 Target estimation from eye-tracker
Epochs of different lengths were extracted using a moving window
with steps of 200ms from the 5-second trials, starting 400ms after
target onset to account for the time it took to the user to move the
point of regard to the target. Epoch lengths were 0.5 to 5 seconds
in steps of 0.5 seconds.
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Tobii delivers binocular data. Hence, to obtain the estimated gaze
point, we computed the midpoint between the left and right eye
gaze points, since the calibration of the Tobii Pro Nano is binocular,
and it’s a common procedure among the eye-tracking research
community [14, 31].

From each epoch of gaze data, we extracted the point of fixation
by averaging all datapoints. Given a point of fixation, we determined
that the targeted hexagon by the user was the one whose center
was closest to the point of regard. Hence, using the eye-tracking
system we can estimate the targeted hexagon for each data epoch.
See Figure 5 for a graphical example of this process.

4.7 Target estimation from EEG
Epochs with the same start and end time as in the gaze data were
obtained for the EEG data. Each epoch was filtered with a 4-order
Butterworth band-pass filtered between 5 and 100Hz and a 60Hz
notch filter.

Since the 7 hexagons flash at different frequencies, components
at each frequency will be present on the elicited SSVEPs. There-
fore, we need to extract the most dominant evoked response to
determine which hexagon the subject is attending. To do so, we
used canonical correlation analysis (CCA), which is a multivariate
statistical method widely used in the detection of SSVEPs [5, 46].
From each epoch we estimated the hexagon attended by the user
by selecting the frequency with highest correlation with the EEG
channels.

4.8 Bayesian Integration of EEG and Gaze data
In order to efficiently combine the complementary strengths of
the two sources of information, we chose to follow a probabilistic
Bayesian approach. Hence, we want to estimate the posterior proba-
bility of the user gazing at the hexagonHi given all the information
available. According to Bayes’ rule:

P(Hi | Ek ,Tj ,p, s,d, fi )=
P(E | Hi ,Tj ,p, s,d, fi )P(Hi | Tj ,p, s,d, fi )

P(Ek | Tj ,p, s,d, fi )
(2)

where:
Hi = hexagon gazed at by user; i = 1, 2, ..., 7
Ek = gazed hexagon estimated by EEG; k = 1, 2, ..., 7
Tj = gazed hexagon estimated by eye-tracker; j = 1, 2, ..., 7
p = position of hexagon grid in the screen
s = spacing between hexagons in the grid
d = diameter of hexagons
fi = flashing frequency of hexagon Hi

Applying Bayes’ rule again on P(Hi | Tj ,p, s,d, fi ) we find:

P(Hi | Ek ,Tj ,p, s,d, fi )

=
P(Ek | Hi ,Tj ,p, s,d, fi )P(Tj | Hi ,p, s,d, fi )P(Hi | p, s,d, fi )

P(Ek | Tj ,p, s,d, fi )P(Tj | p, s,d, fi )

(3)

Given this expression, we can realize some simplifications. Firstly,
since the 7 possible frequencies of the system are close enough, we

(a) Gaze points from a 3-second epoch.

(b) Fixation point computed from the aver-
age of the gaze points in 5a. Distances from
the fixation point to hexagon centers are
shown.

(c) Estimated targeted hexagon by user
highlighted in yellow.

Figure 5: Visualization of the process of estimating the
hexagon that the user is gazing at from the gaze points in
an epoch.
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assume for simplicity that the power of the elicited SSVEPs is not de-
pendent on the stimulating frequency, i.e. P(Ek | Hi ,Tj ,p, s,d, fi ) ≈
P(Ek | Hi ,Tj ,p, s,d). Moreover, the eye-tracking system is indepen-
dent from the flashing frequencies as well, i.e. P(Tj | Hi ,p, s,d, fi ) =
P(Tj | Hi ,p, s,d). Hence, we can remove the dependency on fre-
quency for the whole Bayesian system.

Secondly, regardless of the screen location of the stimuli, the tar-
geted hexagon will always fall in the center of the users’ fovea.
Therefore, even though stimuli at the screen corners will be
marginally further away to the subject’s eyes than stimuli at the
screen center, the effect on the evoked SSVEP will be minimal. Con-
sequently, the dependency of the EEG model on the stimuli location
can be also removed, i.e. P(Ek | Hi ,Tj ,p, s,d) ≈ P(Ek | Hi ,Tj , s,d).

Thirdly, to mimic a real world application, we assume that all 7
targets are equally likely for the user to gaze, i.e. P(Hi | p, s,d) =
P(Hi ) = 1/7 for all i .

Fourthly, since the workload that we could ask from subjects
was limited, there was not enough data gathered during the train-
ing blocks to obtain the joint conditional probabilities P(Ek |

Hi ,Tj ,p, s,d, fi ). Hence, we did the approximation of assuming
Ek and Tj are independent, so P(Ek | Hi ,Tj , s,d) ≈ P(Ek | Hi , s,d).

Finally, the denominator can be seen as a normalization term,
which can be omitted if the objective is to simply compare the
posterior probabilities.

Given these considerations, the expression for the posterior prob-
ability of the Bayesian system results as follows:

P(Hi | Ek ,Tj ,p, s,d) ∝ P(Ek | Hi , s,d) P(Tj | Hi ,p, s,d)

f or i, j,k = 1, 2, ..., 7 (4)

where P(Hi | Ek ,Tj ,p, s,d) is the posterior probability of the
user gazing at hexagon Hi given the information from the EEG
and eye-tracking systems as well as the properties of the hexagon
grid. The 1/7 corresponding to P(Hi ) has been omitted due to the
proportional relationship. The 7 hexagons of the grid were indexed
as shown in in Figure 3a.

4.8.1 Computing likelihoods of eye-tracking system. In order to
compute the posterior likelihood of the Bayesian system, we need
to calculate P(Tj | Hi ,p, s,d), which is the probability that the
eye-tracking system outputs Tj as the targeted hexagon given the
hexagon grid properties and that the gazed hexagon by user is Hi .

For this, we will take advantage of the data obtained during the
gaze model training of the experimental procedure (see Section
4.5.2). This allowed us to obtain a prior knowledge of the eye-
tracker behavior at several locations across the screen. Assuming
that the captured gaze points are normally distributed, we can fit
a two-dimensional Gaussian to the data points at each location.
Each Gaussian presents a mean (µx , µy ) with offsets Ox ,Oy with
respect to the target and a covariance Σ. See Figure 6 for a graphical
example.

Since we had only previously collected training gaze data at lim-
ited screen locations, there was the need to estimate the behavior
of the eye-tracker (mean offsets Oy and Ox and covariance Σ) at
arbitrary screen coordinates. Hence, we interpolated the properties
of the Gaussian distributions doing a weighted-averaging of the
K-nearest-neighbor Gaussians. This approach guarantees that the

Figure 6: A 2D Gaussian can be fitted to the gaze points de-
livered by the eye-tracker. The Gaussian presents an offset
Ox ,Oy with respect to the target. An iso-contour of the fitted
Gaussian distribution is represented here with a 95% error
ellipse.

estimated covariance matrix remains positive definite, since the
sum of positive definite matrices is also positive definite. Therefore,
given an arbitrary screen location gazed by the user, we can esti-
mate the offsets Oy and Ox and the covariance matrix Σ that will
fully define the predicted Gaussian distribution of the gaze points
delivered by the tracker (see Equations 5, 6, 7 and Figure 7).

Σ̂ =

K∑
n=1

Σn/dn

K∑
n=1

1/dn
(5)

Ôx =

K∑
n=1

Ox n/dn

K∑
n=1

1/dn
(6)

Ôy =

K∑
n=1

Oyn/dn

K∑
n=1

1/dn
(7)

where:
Σ̂, Ôx , Ôy = estimated covariance matrix and offsets of the

Gaussian distribution of gaze points at an
arbitrary screen location

Σn ,Ox n ,Oyn = covariance matrix and offsets of the fitted
Gaussian to collected gaze points at neighbor
location n

dn = distance between the queried arbitrary screen
location and the neighbor target of the fitted
Gaussian n
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Figure 7: Gaze targets (dots) and Gaussians (95% error ellipses) associated to each target. Black points represent the targets
shown to subjects during gaze model training. Black ellipses represent fitted Gaussians to the collected gaze points during
training. Pink points and ellipses represent arbitrary examples of queried targets and estimated Gaussians using weighted
KNN. Data for this plot corresponds to subject 5.

Finally, to compute P(Tj | Hi ,p, s,d)wefirst apply themethod de-
scribed above to estimate a Gaussian using the center of the hexagon
Hi as the targeted point in the screen. Then, using Monte Carlo
sampling we obtain an approximate probability of the hexagon
outputted by the eye-tracking system beingTj , given the estimated
Gaussian distribution of gaze points and the known hexagon grid
dimensions.

4.8.2 Computing likelihoods of EEG system. In this section, we
explain the computation of P(Ek | Hi , s,d) , which is the prob-
ability that the EEG system outputs Ek as the targeted hexagon
given the hexagon grid properties and that the gazed hexagon by
user is Hi . During the EEG training block experiment (Section
4.5.3), the user was asked to gaze at the central hexagon (H1) for all
the different hexagon grid configurations. Hence, we can compute
P(Ek | H1, s,d) for all k . We found out that P(Ek | H1, s,d) for
k , 1 are very similar for all k , 1 (equally likely). Hence, we will
assume P(Ek | H1, s,d) =

1−P (E1 |H1,s,d )
6 for k , 1. Similarly, we

will assume P(Ek | Hi , s,d) = P(E1 | H1, s,d) for k = i , since we did
not collect data to compute P(Ek | Hi , s,d) for i , 1 (user always
targeted H1).

4.8.3 Inference of the targeted hexagon. To estimate the hexagon
gazed at by the user, we need to compute the posterior likelihood
for all 7 hexagons Hi and choose the target that shows highest
probability.

Hence, for a given epoch of EEG and gaze data, we obtain the
estimates from both systems individually, Ek and Tj , and then we
compute the posterior probabilities assuming the user is gazing
each hexagon Hi , i = 1, 2, ..., 7. Finally, the estimated target by the
Bayesian system is as follows:

Ĥ = argmax
Hi

P(Hi | Ek ,Tj ,p, s,d) (8)

5 RESULTS
5.1 Likelihoods of EEG prior model
We applied the EEG target estimation on the training data obtained
during the EEG model training session (see Section 4.5.3). This
allowed us to obtain the likelihoods of correctly or wrongly classi-
fying the gazed target for each hexagon grid configuration and for
different epoch lengths. The probabilities for all target parameters
(diameters and spacings) and for 3-second epochs, averaged across
all subjects are shown in Figure 8. Same process was followed to
obtain probabilities for different epoch lengths.

As seen, the probabilities of correctly classifying the target in-
crease with target size d and spacing s . The reasoning for the first
one is that the more region of the visual field is stimulated by the
attended stimuli, the stronger is the corresponding evoked cortical
response and the easier it is to discriminate it from the other non-
attended stimuli responses [62, 72]. The reasoning for the latter
is that there is a limited amount of neural resources to process
visual stimuli, as has been shown by previous studies [11]. Hence,
multiple stimuli in the visual field will compete for neural repre-
sentation, which may suppress the dominant frequency response
and hinder the detection of the attended stimulus depending on
the inter-stimuli distance [24, 61].

Since the EEG system can perform differently on each subject
(see standard error in Figure 8), we used each subject’s individual
probabilities to compute the posterior probabilities of the Bayesian
system. The higher the performance of the EEG system is for a
specific subject, the more the Bayesian system will rely on it to
estimate the gazed target, and vice versa.

5.2 Performance of the Hybrid Bayesian
System

In this section, we report the performance of the hybrid system
for different target parameters, screen positions and epoch lengths,
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Figure 8: Probabilities that the EEG system outputs a target gazed by the user (blue) and a target not gazed by the user (orange),
as a function of target diameter d and target spacing s. These values were obtained using 3-second epochs. Solid lines represent
the probabilities averaged across all subjects. Colored shadows indicate standard error.

while comparing it to the accuracy of each system alone. Accu-
racy values are obtained by computing the ratio of correctly over
wrongly classified targets across all epochs. Accuracy of the eye-
tracking system alone is computed by selecting the target closest to
the averaged gaze point obtained from each epoch, as explained in
Section 4.6. Accuracy of the EEG system alone is computed by se-
lecting the target whose frequency presents the highest correlation
to the EEG channels using CCA method, as explained in Section
4.7.

5.2.1 Varying hexagon grid parameters. Here we examine the sys-
tems’ performance for different target diameters and spacings. In
order to simplify the analysis, we chose a constant epoch length
of 3 seconds for the plots. We consider this length can show rep-
resentative results for the different approaches. A report of the
performance as a function of epoch lengths is done in Section 5.2.3.

In Figure 9 we show the accuracies for all 3 systems as a function
of targets diameter and spacing. Values are obtained by comput-
ing the accuracies across all screen positions. We can see how the
hybrid Bayesian system outperforms the independent EEG and eye-
tracker systems for all target parameters. A statistical analysis was
conducted to determine whether the accuracy differences between
the hybrid and eye-tracking-only systems are significant. We used
the one-sample t-test for µ, the difference of the means of two pop-
ulations µ1 − µ2, with null hypothesis that the data comes from a
normal distribution with zero mean and unknown variance. The µ1
data corresponds to a vector containing the accuracy values of all
subjects for a particular hexagon grid parameter using the hybrid

approach, and µ2 to the accuracies from only the eye-tracker system.
Hence, rejecting the null hypothesis means that the performance
accuracies between systems (hybrid and eye-tracker-only) are dif-
ferent because µ is not equal to zero. The test was repeated for all
hexagon grid parameters (diameters and spacings) and all showed
statistical significance (p < 0.05). These results suggest that there
are statistically significant differences between both approaches.

5.2.2 Performance across screen positions. We analyzed the system
performance as a function of the screen regions. In order to visualize
what locations our hybrid system had a greater impact on, we
computed the accuracy difference between hybrid and eye-tracking
systems across all target parameters at each screen coordinate and
for each subject. In Figure 10 we show a 2D heat map with the
percentage increase of accuracy across the screen. We can see that
the largest performance enhancement takes place at the peripheral
screen regions. This was expected since the systematic error in
eye-tracking systems becomes more pronounced for larger angles
between the fixation point and the camera [29]. Some screen corners
show accuracy increments of over 1000% since the eye-tracking
system performed poorly and the percentage increase boosts. The
most central regions show null or slightly negative improvement.

5.2.3 Varying epoch length. Speed is an important element to take
into account in gaze monitoring systems and computer interfaces.
Hence, we studied the effect of the epoch length on the systems’
performance. Shorter epoch lengths implies that a system can re-
spond faster to a change of condition, in this case, to a change of
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(a) Accuracies as a function of target diameter.

(b) Accuracies as a function of target spacings.

Figure 9: Performance of the three systems as a function of
hexagon grid parameters. Valueswere computed through all
screen positions, using epochs of 3 seconds. Solid lines rep-
resent accuracies averaged across all subjects, shadows rep-
resent standard errors.

region or element attended. Figure 11 reports the performance of
all three systems as a function of epoch lengths for all the target
parameters, averaged across all subjects. On the one hand, we can
see that the performance of the eye-tracker is independent from
the epoch length, since its accuracy is constant in all plots. This
was expected since the sampling rate of the eye-tracker is 60Hz,
which is too fast for the considered epoch lengths to have an effect
on the tracker performance. On the other hand, the EEG system is
indeed dependent on epoch length, since longer EEG data enhances
the SNR of the SSVEPs. As a result, our hybrid system shows an
increasing accuracy with epoch length as well. Interestingly, the
performance of the hybrid system is equal or better than any of

the two individual systems for all epoch lengths and target pa-
rameters, confirming the successful Bayesian integration of the
two data modalities. Even in the shortest epoch lengths, where the
performance of the EEG system is very poor in comparison to the
eye-tracker, the Bayesian system is robust enough to at least match
or even outperform the eye-tracker, which is the result of exploiting
the likelihoods of the prior models obtained during the training
session.

5.2.4 Contribution of each individual system. In this section, we
explore the contribution of each system to the output of the hybrid
approach for different conditions. We want to analyze whether the
accuracy enhancement of the hybrid system is due to the prior
model from a single system alone, or whether it is the result of a
symbiotic association of both models. To do so, we modified the
probability terms of the EEG and eye-tracking systems to include a
new parameter αE and αT . These parameters regulate the extent to
which EEG or eye-tracking data is weighted in the hybrid Bayesian
system:

Pmod (Ek | Hi , s,d) =
αE
7 + (1 − αE )P(Ek | Hi , s,d) (9)

Pmod (Tj | Hi ,p, s,d) =
αT
7 + (1 − αT )P(Tj | Hi ,p, s,d) (10)

When αE is 1, the likelihood given by the EEG system is always
1/7, so it becomes a random classifier and the Bayesian system
relies exclusively on eye-tracking data. As αE decreases, the hybrid
system increasingly gives weight to EEG data. The reasoning is
parallel for αT and the eye-tracking system. Hence, the posterior
probability of the Bayesian system with the modified prior terms is
as follows:

Pmod (Hi | Ek ,Tj ,p, s,d) ∝ Pmod (Ek | Hi , s,d) Pmod (Tj | Hi ,p, s,d)
(11)

To quantify how much each system’s prior contributes to the
hybrid output, we vary the parameter αi associated to that system
from 0 to 1, while maintaining the other system fully engaged
(αk = 0). If the hybrid accuracy doesn’t change with αi , it implies
that the Bayesian system is not relying on that system’s data to
compute the estimated gazed target, hence it is dispensable.

First, we study the contribution of each system’s priors for
medium length epochs (3 seconds). A relevant initial analysis is to
compute the overall hybrid system accuracy, aggregating all target
parameters and screen positions accuracies. The result is shown in
Figure 12. We can see that both systems contribute similarly to the
overall accuracy, since the variation from αi = 0 to αi = 1 results
on comparable accuracy change.

More interesting findings can be observed by doing similar analy-
sis for specific target parameters, screen positions or epoch lengths.
In Figure 13, we show the same study done for different target
diameters and spacings. We can see that the accuracy improvement
when each system is incorporated in the Bayesian model is different
depending on the system, the target diameter or spacing. For exam-
ple, when targets are very small (d = 1 and d = 2), the performance
enhancement when the EEG system chimes in (dark green) is larger
than when the eye-tracking system does. This may be related to
the fact that the Gaussians used to compute the probabilities of
the eye-tracking system are not as informative for smaller targets
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Figure 10: Accuracy percentage increase of hybrid Bayesian system with respect to the eye-tracker as a function of screen
position. Accuracy values were computed across all target parameters using 3-second epochs. Cross markers indicate the
locations where stimuli was shown and where accuracy values were computed. The coloring for the rest of the screen were
obtained by interpolating the values at the markers. Scale is logarithmic. Plots show the averaged values across all subjects.

due to the precision and systematic errors. For larger targets, the
accuracy improvement is comparable for both systems. We can
view this effect more clearly if we plot the accuracy change (from
αi = 1 to αi = 0) for each system and target parameters. This is
shown in Figure 14.

We can also do the same analysis for different screen locations.
Figure 15 shows the results for four different representative loca-
tions, two central and two peripheral. We can clearly see that the
behavior is opposite for peripheral and central screen positions.
In the former (two plots on the left), the effect of transforming
the eye-tracking system from a random classifier (αT = 1) to an
intelligent one that exploits the prior probabilities (αT = 0) has
no effect on the accuracy of the hybrid system, since it is constant
for all αT (light green). On the contrary, the contribution of the
EEG prior likelihoods has a large impact on the Bayesian system
performance for these screen regions, since accuracy improves as
αE decreases (dark green). The behavior is the opposite for central
screen regions (two plots on the right). In Figure 16 we plot the
difference of hybrid system accuracy between αi = 0 and αi = 1
as a function of screen position to see what regions each system
has a larger effect when they engage in the gazed target inference.
We can see that the observed for two pair of points, generalizes to
the whole screen. This implies that for peripheral screen regions,
on average, the hybrid system can perform similarly exploiting the
EEG data alone, and for central regions the EEG data is less crucial.

Finally, we performed the same analysis as a function of epoch
length. In Figure 17 we show the results for 4 different epoch lengths
(0.5, 2, 3.5 and 5 seconds). We can see that for the shortest epoch
length, the hybrid system resorts more to the eye-tracking data,

since the accuracy increment when αT goes from 1 to 0 is much
larger than when αE does. This makes sense since the performance
of the EEG system for short epoch lengths is low. As the epoch
length increases, the system progressively weights in the EEG data.
For longer epoch lengths, the behavior is reversed, and the EEG sys-
tem contributes more than the eye-tracker to the overall accuracy.
This can be better visualized by plotting the accuracy increment
when each individual system chimes in as a function of the epoch
length, as shown in Figure 18.

6 DISCUSSION
In this section we summarize the findings of this work, explain
the reasoning behind the results and present the limitations with
proposed solutions.

6.1 Findings
6.1.1 Accuracy limitations of the eye-tracker. The eye-tracker man-
ufacturer reports an accuracy of 0.3° of visual angle (at optimal
conditions). The smallest distance between the center of the target
hexagon and a non-target hexagon throughout all the experiments
was ∼0.4◦ (for d = 1◦ and s = 0◦). Hence, theoretically, and accord-
ing to the manufacturer, even for the hexagon grid with smallest
targets and spacings, the eye-tracker should be able to detect the
target gazed by the user without error (at optimal conditions). How-
ever, we can see that this is definitely not the case, since the average
accuracywhen detecting the gazed target using only the eye-tracker
for d = 1◦ is below 30%. Note that this value is obtained averaging
the accuracies of all four spacings s , so for the specific case ofd = 1◦
and s = 0◦ this accuracy would be even lower. Even for the largest
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(a) System accuracies as a function of epoch length for different target diameters. Values for each target diameter were computed across all
target spacings and screen positions.

(b) System accuracies as a function of epoch length for different target spacing. Values for each target spacing were computed across all target
diameters and screen positions.

Figure 11: System accuracies as a function of epoch length for different target parameters. Values computed for all screen
positions and averaged across all subjects. Solid lines represent averaged values, shadows indicate standard errors.

targets and spacings, the accuracy of the eye-tracker alone does not
exceed 70%. Therefore, we can conclude on the one hand that the
data quality values reported by manufacturers can differ consider-
ably from the realistic results, and on the other hand that there is
room for improvement exploiting data from other modalities such
as the EEG.

6.1.2 Performance of the Bayesian hybrid system. Our Bayesian
integration of the two datamodalities resulted in an improvement of
accuracy for all target sizes, spacings and epoch lengths. Averaging
across all target parameters, screen locations and epoch lengths,
the hybrid system showed an an accuracy increase of around 11
units with respect to the eye-tracker alone. In terms of percentage
improvement, this corresponds to about 23%.

The system shows a large performance variation across the
screen that we will address below, reaching an accuracy improve-
ment of over 45 units at certain screen coordinates (or over 1000%
in percentage increase). Overall, based on the numbers and graphs
shown throughout this paper and supported by the results of the
statistical analyses conducted, we can conclude that our approach
outperforms the accuracy of the eye-tracker.

Due to the limited amount of training time, the probabilistic
approach we followed is a simplified version of what could have
been done if all the required data was available. Given the amount
of data gathered, it was not possible to compute the conditional
probabilities P(Ek | Hi ,Tj ,p, s,d, fi ), which could have improved
the performance of the Bayesian system since the output of the
eye-tracking system can provide information to alter the output
probability of the EEG system. Instead, in this workwe assumed that
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Figure 12: Accuracy of the hybrid system as a function of αi ,
where i = E,T . When αi = 0, the corresponding system is
fully engaged in the Bayesian computation. For αi = 1, the
system is random and does not have an effect on the gazed
target inference. Dark green plot corresponds to varying the
weight of the EEG prior, whilemaintaining the eye-tracking
system fully engaged (αT = 0). Light green plot corresponds
to varying the weight of the eye-tracking prior, while main-
taining the EEG system fully engaged (αE = 0). Plots ob-
tained using 3-second epochs data. Solid lines represent the
average across all subjects, shadows indicate standard error.

the outputs of the EEG and eye-tracking systems are independent. In
futurework, we aim to explore the performance of the system taking
into account such conditional probabilities and the dependency of
both variables.

6.1.3 Contribution of the prior models. Gaze data obtained during
the training session allowed us to develop an eye-tracker model
that gave us a prior knowledge about the tracker behavior across
the screen. The Gaussians obtained at each screen location reflect
the accuracy limitations of the tracker (offset between target point
and Gaussian mean) as well as its precision (see Figure 7). Both
metrics get worse with higher visual angles between the target and
the eye-tracker. Similarly, an EEG prior model was developed from
the EEG data acquired during the training session of each subject.
This allowed us to obtain probabilities of correctly or wrongly clas-
sifying the gazed target for all target parameters. The likelihoods
of correctly classifying the gazed target increase with the target
diameter d and spacing s .

The extent to which each prior model contributes to performance
of the hybrid system was quantified by transforming it to a ran-
dom classifier (αi = 1) and increasingly weighting it in the hybrid
system until it is fully engaged (αi = 0). The difference between
the accuracies in the two extremes gave us a way to quantify the
contribution of such system to the whole model.

6.1.4 Large variation across the screen. An important outcome of
this work is the huge dependency of the different systems’ per-
formance on the screen region. Already from the prior model of
the eye-tracking system one could anticipate that the behavior
would vary largely with screen coordinates. We can see this from
two perspectives. On the one hand, the accuracy improvement of
the hybrid system with respect to the naive eye-tracker system is
much more pronounced in the peripheral screen regions than in
the central ones (see Figure 10). Improvements ranging from 100%
to 1000% were achieved at the external areas, whereas a zero or
slightly negative improvements occurred at the central regions. On
the other hand, the contribution of the eye-tracking prior model
to the hybrid system accuracy was negligible or negative at the
peripheral regions and very significant at the central regions –up
to 80% of accuracy increase with respect to when only the EEG
prior model is active (see Figure 16). The behavior of the EEG prior
model was opposite. These results convey that if the application
seeks to minimize accuracy errors, on average, the EEG modality
will be essential in the peripheral regions, but it will be less decisive
in the central regions.

6.1.5 Effect of the epoch length. An expected finding was the non-
dependency of the eye-tracker performance on the epoch length.
The fast sampling rate of the gaze tracker makes this system very
robust to the epoch length variation. A change of the eye-tracker
performance with epoch length would imply that the system suffers
from an accuracy drift with time, a common problem of eye-trackers
due to environment vibrations. Conversely, the EEG system was
indeed dependent on epoch length, since longer EEG data enhances
the SNR of the SSVEPs. We can see progressive accuracy increase
with epoch length, showing an asymptotic behavior at the longest
lengths. As a consequence, the hybrid system shows an increasing
accuracy with epoch length as well, and with equal or better perfor-
mance than any of the two systems alone for all epoch lengths and
target parameters. This result demonstrates the successful applica-
tion of the probabilistic approach. For the shortest epoch lengths,
where the EEG cannot add much value, the hybrid system opts for
resorting to the eye-tracker data. As epoch length increases, the
likelihoods of correctly classifying the target with the EEG system
also escalate, and therefore the hybrid system starts weighting in
the EEG data. Overall, we can see similar trends of the hybrid sys-
tem accuracy as a function of epoch length for all target parameters.
Hence, we can conclude that our Bayesian system is robust to short
epoch lengths compared to other EEG-based interfaces, where the
system performance is hindered if the system speed is too large.

6.2 Limitations
In this section, we describe several limitations of our research,
specially focusing on the barriers that separate the current work
from an optimal implementation of the concept we propose in
Section 3.

6.2.1 Appearance. In order for our concept to be seamlessly imple-
mented and incorporated into any virtual scene for eye-tracking
purposes, the visual flicker must be invisible. For this reason, we
used high-frequency flashing (> 40Hz). However, the critical fusion
frequency (i.e. the frequency above which a flicker is perceived as
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(a) Accuracy of the hybrid system as a function of αi , for different target diameters. For visualization purposes, y-axis scale is not the same
across the plots.

(b) Accuracy of the hybrid system as a function of αi , for different target spacings. For visualization purposes, y-axis scale is not the same
across the plots.

Figure 13: Accuracy of the hybrid system as a function of αi , for different target diameters and spacings. The accuracy im-
provement when each system is incorporated the Bayesian model is different depending on the target diameter or spacing.
Plots computed using 3-second epochs data. Solid lines represent the average across all subjects, shadows indicate standard
error.

steady by the naked human eye) can vary, depending on several
factors related to the stimuli itself (including size, luminance and
location in the visual field) and the user (including age and stimuli
habituation -exposure time) [2, 12, 18, 68]. Therefore, it is neces-
sary to previously scrutinize all these variables to determine what
frequencies are more suitable to use in each case, as discussed in
the Future Work section.

Another critical factor is the dependency on the display refresh
rate for the stimuli generation, and the subsequent emergence of
visible "beatings" when rendering frequencies that are not a sub-
multiple of the refresh rate. These appear when using the sampled
sinusoidal technique to generate arbitrary frequencies being con-
strained by the refresh rate, as opposed to using an analog device
such as an LED. This effect translates into an undesired perception
of slowly oscillating luminance because the beatings frequency is
much below the critical fusion rate. We can think of several solu-
tions for this limitation. First, utilizing phase encoding of targets
instead of frequency encoding would lead to reducing drastically

the number of frequencies to use. This would permit to employ
only frequencies that are sub-multiple of the refresh rate which
do not lead to the beating effect. Second, reducing the dynamic
range of the luminance also reduces the power of the beatings
which make them harder to perceive, as reported in [3]. However,
decreased signal power comes with the caveat of reduced SSVEP am-
plitudes, which may lead to lower SNR, lower accuracy or requiring
longer detection times. Finally, displays with variable refresh rate
are increasingly receiving more attention specially in the gaming
industry, since they solve the screen stuttering and tearing problem
by an adaptable synchronization of the display refresh rate with
the GPU’s render rate [69]. We think that a smart implementation
of such technology may potentially allow to avoid the undesired
beating effect.

6.2.2 Speed. A fundamental aspect of eye-tracking systems is the
speed at which eyemovements can bemonitored. The sampling rate
of camera-based eye-trackers is usually high (≥ 60), which allows
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(a) Accuracy improvements as a function of target diameter. (b) Accuracy improvements as a function of target spacing.

Figure 14: Accuracy improvement (difference) when each individual system shifts from a random classifier (αi = 1) to an
intelligent one that exploits the prior probabilities (αi = 0), while the other system is fully engaged (αk = 0).

Figure 15: Accuracy of the hybrid system as a function of αi , for different screen positions. The accuracy improvement when
each system is incorporated in the Bayesianmodel is different depending on the screen region. Plots computed using 3-second
epochs data. For visualization purposes, y-axis scale is not the same across the plots. The screen coordinates each plot corre-
sponds to are shown with a red cross in the bottom left region of each graph. Solid lines represent the average across all
subjects, shadows indicate standard error.

for a fast gaze monitoring. Many research studies take advantage
of this to analyze the fast eye saccades for cognitive [47], medical
[71] or reading studies [8], among others. Such type of applications
would not benefit from our system due to the speed limitations of
the EEG system, which originate from two different sources. Firstly,
there is an inherent speed limit associated to the time required

for the visual pathway to process the stimuli and elicit the SSVEP
response, which ranges from 80 to 160 ms [16, 21]. And secondly, a
latency is introduced due to the time it takes for the SSVEP SNR to be
high enough to discriminate the targeted frequency. That is why the
accuracy of the EEG system increases with epoch length. Therefore,
our hybrid system would be most beneficial in applications where
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(a) Percentage difference of hybrid system accuracy between αE = 0
and αE = 1, while αT = 0.

(b) Percentage difference of hybrid system accuracy between αT = 0
and αT = 1, while αE = 0.

Figure 16: Accuracy improvement (percentage) when each individual system shifts from a random classifier (αi = 1) to an
intelligent one that exploits the prior probabilities (αi = 0), while the other system is fully engaged (αk = 0), as a function of
screen position.

Figure 17: Accuracy of the hybrid system as a function of αi , for different epoch lengths, averaged across all target parameters
and screen positions. Solid lines represent the average across all subjects, shadows indicate standard error.

accuracy prevails over speed, such as direct gaze input interfaces,
fixation-based attention monitoring or analysis of region of interest
(ROI).

7 CONCLUSION AND FUTUREWORK
7.1 Conclusion
In this work, we presented a new concept to improve the accuracy
of camera-based eye trackers by embedding invisibly flickering
stimuli into the virtual scene. This way, we were able to exploit
neural mechanisms of visual attention that are more robust to
the several factors that affect eye-tracking data quality. Visual at-
tention to a specific flickering target amplifies the corresponding
elicited response at the visual cortex, which we took advantage
of to gain more information about which was the targeted region.

This concept was proved by designing a 7-target figure of 7 coupled
hexagons with varying sizes and spacings. We integrated the EEG
and eye-tracking data using a probabilistic Bayesian model that
leveraged the likelihoods of each individual data source to output
the correct target. The hybrid system was evaluated at different
screen locations, target parameters and epoch lengths. Our sys-
tem improved the performance of both the eye-tracking and EEG
systems alone for all target diameters and spacings, reaching incre-
ments of over 40% for some target parameters and epoch lengths.
On average, the largest improvement of the Bayesian system took
place at the peripheral screen regions due to the gaze data quality
decay. In terms of system speed, the performance of our system
is equal or better than any of the two individual systems for all
epoch lengths and target parameters, confirming the fruitful inte-
gration of the two data modalities and the proper exploitation of
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Figure 18: Accuracy improvement (difference) when each in-
dividual system shifts from a random classifier (αi = 1) to an
intelligent one that exploits the prior probabilities (αi = 0),
while the other system is fully engaged (αk = 0), as a func-
tion of epoch length.

the prior model likelihoods. For high speeds (short epoch lengths),
our Bayesian system is robust enough to match or even outperform
the eye-tracker, without being hindered by the lower performance
of the EEG system. The contribution of the prior likelihoods of each
individual system to the hybrid system accuracy was analyzed .
This proved that our hybrid system relayed on both data source
modalities rather than just exploiting one of them. The findings
of this work demonstrate that the intrinsic accuracy limitations of
camera-based eye-trackers can be corrected with the integration of
EEG data.

7.2 Future Work
Our future plans for this work span different directions. Firstly,
we would like to gather the required training data to compute
the conditional probabilities for the complete Bayesian model, as
explained above. We intend to compare the performance of the
Bayesian system taking into account such conditional probabilities
with respect to the current results.

Secondly, we would like to address the appearance limitations
described above by implementing phase encoding of targets, as well
as introducing frequencies at a higher band of the SSVEP spectrum
so the critical fusion rate is well surpassed regardless of the stimuli
characteristics. As mentioned in the Limitations section, the critical
fusion rate can vary depending on the size of the stimuli, color,
subject’s age, etc. For that reason we propose that future real-world
applications of this work further explore what stimulus frequency
range should be used given the characteristics (i.e. size, colors)
of the possible regions of interest of that particular application.
Moreover, post-experiment questionnaires should be carried out
to assess the subjects’ perception of the flickering stimuli and the
optimal frequencies for the particular application’s tasks and users.

(a) Approach implemented in this
work, with equally sized screen par-
titions.

(b) Approach proposed for future
work, where the screen is parti-
tioned into segments defined by the
objects or ROIs appearing in the
screen at each frame.

Figure 19: Current and proposed future implementations of
our concept.
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Third, we aim to carry out an implementation of this concept on
a real virtual scene or application, and test its performance beyond
the predefined and uninformative hexagons presented in this study.
In use cases where there are clearly delimited objects or ROIs for
the user to select or gaze at, we propose to embed the visual flickers
in each of these elements (see Figure 19b). In the current work we
focused only on the equally-sized screen partition approach since
it is more generalizable and allowed for a well-framed study of
our hybrid system’s accuracy improvements. Once confirmed the
effectiveness of our system, other application-specific approaches
such as the one shown in Figure 19b can be considered for future
work.

And finally, we would like to explore the utilization of feature-
based attention (FBA), which is the ability to commit selective
attention to non-spatial features, like colors, motions or orientations.
We believe FBA could be effective in discriminating semi-occluded,
superimposed or motion objects in the virtual scene, and it can be
an interesting modality to integrate with our current system.
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