
MIT Open Access Articles

HeGA: Heterogeneous Graph Aggregation Network
for Trajectory Prediction in High-Density Traffic

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Liu, Shuncheng, Chen, Xu, Wu, Ziniu, Deng, Liwei, Su, Han et al. 2022. "HeGA:
Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic."

As Published: https://doi.org/10.1145/3511808.3557345

Publisher: ACM|Proceedings of the 31st ACM International Conference on Information and
Knowledge Management CD-ROM

Persistent URL: https://hdl.handle.net/1721.1/146500

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146500

HeGA: Heterogeneous Graph Aggregation Network for Trajectory
Prediction in High-Density Traffic

Shuncheng Liu∗
University of Electronic Science and

Technology of China
Chengdu, China

liushuncheng@std.uestc.edu.cn

Xu Chen∗
University of Electronic Science and

Technology of China
Chengdu, China

xuchen@std.uestc.edu.cn

Ziniu Wu
Massachusetts Institute of Technology

Cambridge, MA, USA
ziniuw@mit.edu

Liwei Deng
University of Electronic Science and

Technology of China
Chengdu, China

deng_liwei@std.uestc.edu.cn

Han Su†
University of Electronic Science and

Technology of China
Chengdu, China

hansu@uestc.edu.cn

Kai Zheng†
University of Electronic Science and

Technology of China
Chengdu, China

zhengkai@uestc.edu.cn

ABSTRACT
Trajectory prediction enables the fast and accurate response of
autonomous driving navigation in complex and dense traffics. In
this paper, we present a novel trajectory prediction network called
Heterogeneous Graph Aggregation (HeGA) for high-density het-
erogeneous traffic, where the traffic agents of various categories
interact densely with each other. To predict the trajectory of a tar-
get agent, HeGA first automatically selects neighbors that interact
with it by our proposed adaptive neighbor selector, and then ag-
gregates their interactions based on a novel two-phase aggregation
transformer block. At last, the historical residual connection LSTM
enhances the historical information awareness and decodes the
spatial coordinates as the prediction results. Extensive experiments
on real data demonstrate that the proposed network significantly
outperforms the existing state-of-the-art competitors by over 27%
on average displacement error (ADE) and over 31% on final dis-
placement error (FDE). We also deploy HeGA in a state-of-the-art
framework for autonomous driving, demonstrating its superior
applicability based on three simulated environments with different
densities and complexities.

CCS CONCEPTS
• Computer systems organization→ Neural networks; • In-
formation systems → Spatial-temporal systems; Traffic analysis.

KEYWORDS
Heterogeneous Traffic; Trajectory Prediction; Autonomous Driving

∗Both authors contribute equally to this paper.
†Corresponding authors: Kai Zheng and Han Su.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557345

ACM Reference Format:
Shuncheng Liu, Xu Chen, Ziniu Wu, Liwei Deng, Han Su, and Kai Zheng.
2022. HeGA: Heterogeneous Graph Aggregation Network for Trajectory
Prediction in High-Density Traffic. In Proceedings of the 31st ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’22),
October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3511808.3557345

1 INTRODUCTION
Autonomous driving is one of the most active fields of research
in artificial intelligence. The autonomous vehicle needs to explore
the movement patterns of the surrounding agents and predict their
future trajectories, in order to help make responsible navigation
decisions. With the rapid growth of urbanisation, traffic nowadays
exhibits two significant characteristics: high density and hetero-
geneity, which makes the trajectory prediction very difficult under
such complex systems with various agents.

Existing methods [1, 7, 10, 25, 34] select the surrounding agents
based on a fixed region (e.g., rectangular or elliptical region) or
distance-based clustering (e.g., 𝑘-nearest neighbors). Then they use
an encoder-decoder LSTM framework to predict the future trajec-
tory of the target agent based on the historical movements of both
the target agent and its surrounding agents. However, these meth-
ods show unsatisfactory in heterogeneous high-density traffics.

In high-density traffic systems, selecting the surrounding neigh-
borhood via a fixed-size region or distance-based clustering often
leads to either insufficient or redundant agents. In fact, the neigh-
borhood region may depend on various traffic environments, and
thus should be selected more adaptively. For instance, on the free-
way, due to the high speed, the target vehicle needs to consider
a much larger region than that on a local street. If the algorithm
selects a small-sized region or small 𝑘 parameter fitting a local
street environment, it will not consider enough neighboring agents
in a high-way environment, leading to an inaccurate prediction.
Alternatively, if the algorithm selects a large-sized region or large 𝑘
parameter fitting a high-way environment, the algorithm will con-
sider excessive neighboring agents in dense local traffic. In this case,
the redundant neighbors are falsely considered as useful input fea-
tures, leading to an overfitting model that is not robust. Moreover,
some latent features, such as velocity and direction, are completely

1319

https://doi.org/10.1145/3511808.3557345
https://doi.org/10.1145/3511808.3557345

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

ignored by these heuristic-based methods. These methods will be
less socially aware of the abrupt interference.

The heterogeneous traffic systems involve various forms of in-
teractions between different categories of traffic agents such as
vehicles, pedestrians, and bicycles. Existing works use a single
LSTM or CNN to extract the features of different categories of sur-
rounding agents and model their interactions with the target agent.
Such methods do not distinguish the features of different categories
of agents, and over-simplify their interactions with the target agent,
by forcing them to share parameters. However, different types of
neighboring agents affect the target agent in different ways. For
instance, a pedestrian is more cautious of a surrounding vehicle
than a nearby bicycle. Therefore, ignoring the variability of the
heterogeneous agents and over-simplifying their interactions (𝑎.𝑘.𝑎
‘wrong’ parameter sharing) will hinder the target agent’s ability to
understand the complex traffics properly.

We summarize the existing challenges for trajectory prediction
in high-density and heterogeneous traffics as the following two
questions: (Q1) how to adaptively select neighboring agents in vari-
ous traffic environments; (Q2) how to effectively extract features for
different categories of agents and model their interactions with the tar-
get agent. To tackle these challenges, we propose a Heterogeneous
Graph Aggregation network (HeGA). HeGA leverages the novel
adaptive neighbor selector (ANS) to automatically choose neighbors
around the target agent. The ANS learns sparse weights of inter-
actions, corresponding to the importance of different neighbors.
Based on the selected neighbors, the ANS generates a weighted
heterogeneous graph, which not only represents agent features and
interaction between agents but also filters redundant neighbors.
This pruning on the heterogeneous graph enables model interpreta-
tion. For example, we observe that agents with different categories,
distances, and speeds exhibit different interaction importance w.r.t.
the target agent. This observation further justifies the necessity of
Q2. We treat the trajectory prediction as a sequence prediction task
and then feed the heterogeneous graph to classical encoder-decoder
architecture. We design the encoder to separately learn the features
from different categories of agents and propose a novel two-phase
aggregation transformer block to adaptively aggregate the features
from them. Furthermore, the LSTM decoder with historical residual
connection exploits and reinforces more history information from
the encoder.

To the best of our knowledge, we are the first to propose an adap-
tive neighbor selector to learn the relative importance of neighbor
interactions, and an aggregation transformer mechanism to handle
heterogeneous interactions separately and adaptively. In summary,
this work makes the following contributions:
•We propose an adaptive neighbor selector to automatically choose
neighbors in diverse traffic environments and generate an inter-
pretable heterogeneous graph.
•We propose a two-phase aggregation transformer block, targeting
the heterogeneous graph structure, to adaptively combine informa-
tion from different categories of agents.
•We conduct extensive experiments on two real-world datasets and
observe that HeGA achieves state-of-the-art accuracy, an improve-
ment over that of previous works by 27% on average displacement
error (ADE) and 31% on final displacement error (FDE).

•We deploy different trajectory prediction networks (HeGA and
baselines) in a prediction-and-search framework for autonomous
driving, and investigate their applicability based on three simulated
environments with increasing densities and complexities. Results
show that HeGA achieves the fewest collisions and the shortest
average driving time in all simulated environments, proving its
superior applicability for autonomous driving.

2 PROBLEM DEFINITION ANDWORKFLOW
In this section, we formally define the trajectory prediction prob-
lem under a heterogeneous traffic environment. We also present
the high-level architecture of our proposed heterogeneous graph
aggregation network and the workflow of trajectory prediction.

We assume that we can capture a set of heterogeneous traf-
fic agents denoted as A = {𝑎𝑖 }𝑖=1,2,...,𝑛 within the capture range
of cameras, radars and other sensors. For any time 𝑡 in a scene,
the feature vector of the 𝑖-th agent 𝑎𝑖 is represented as 𝑓 𝑡

𝑖
:=

[𝑥𝑡
𝑖

𝑦𝑡
𝑖

𝑠𝑖 𝑐𝑖]⊤, where (𝑥𝑡𝑖 , 𝑦
𝑡
𝑖
) is a spatial location in 2D coor-

dinates; 𝑠𝑖 refers to the size of the agent; 𝑐𝑖 denotes the category
of the agent. For simplicity, we consider three categories of het-
erogeneous traffic-agents throughout the paper, i.e., 𝑐𝑖 ∈ {1, 2, 3},
where 1, 2, 3 denotes vehicle, pedestrian and bicycle, respectively.
Our approach can be naturally extended to traffic systems with
more agent categories.

The problem can be defined as following: at time 𝑡 , from the
observed features of all captured agents A in the time interval
[𝑡 − 𝑟 + 1, 𝑡], we predict the spatial coordinates of the target agent
𝑎𝜏 (𝑎𝜏 ∈ A) in the time interval [𝑡 + 1, 𝑡 +𝑧]. 𝑟 and 𝑧 are the history
and future window size respectively.

Figure 1 shows the architecture of our proposed heterogeneous
graph aggregation network. The inputs of this end-to-end network
are observed features of all agents A in historical time interval
[𝑡 − 𝑟 + 1, 𝑡], i.e., a 𝑟 -length sequence of 𝑓 for each agent. The
outputs are a sequence of predicted spatial coordinates (𝑥𝜏 , 𝑦𝜏)
in the future time interval [𝑡 + 1, 𝑡 + 𝑧] for the target agent. The
heterogeneous graph aggregation network mainly consists of three
components: (1) the novel adaptive neighbor selector (ANS) with
global attention mechanism; (2) the encoder layer with a novel
two-phase aggregation transformer block; (3) the decoder layer
with historical residual connection LSTM.

As shown in Figure 1, to predict the trajectory of a bicycle agent
𝑎𝜏 , the input features of A are first fed into the ANS. The ANS
selects the neighbor agents N𝜏 (N𝜏 ⊂ A) and forms a graph. The
target and selected neighbor agents are the nodes. The weighted
edges from each neighbor to 𝑎𝜏 indicate interaction where the
learned weight corresponds to interaction importance. Then the
heterogeneous graphs at all historical time steps are passed through
the encoder layer. Specifically, the features of neighbor agents at
each time step are encoded by the grouped structure of size em-
bedding, space embedding, and time encoding. The aggregation
transformer can aggregate all different groups of features into a
high-dimensional feature vector via two-phase aggregation, i.e.,
agent and category aggregations. Using the encoded vector and his-
torical information from the encoder, the decoder layer parses out
the sequence of 𝑎𝜏 ’s spatial coordinates (𝑥𝜏 , 𝑦𝜏) in the next 𝑧 time
steps using an LSTM model with historical residual connections.

1320

HeGA: Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

LSTM LSTM LSTM LSTM

Decoder LayerEncoder Layer

Size Embedding Space Embeding

Historical Residual Connection LSTM

ReLU ReLU

ReLU ReLU

ReLU

ReLU

ReLU

ReLU

Historical States

Residual Connection

Output FC Linear

Category

Aggregation

Agent

Aggregation

Aggregation

Transformer

Adaptive Neighbor Selector

Target

Pedestrian

Bicycle

Vehicle

Graph

Global Attention

S
co

re
s

S
co

re
s

S
co

re
s A
ss

ig
n

A
ss

ig
n

A
ss

ig
n

Figure 1: HeGA network overview

3 HETEROGENEOUS GRAPH AGGREGATION
3.1 Adaptive Neighbor Selector
Eliminating the redundant neighbors helps the network focus on
the effective interactions only, thus simultaneously increasing the
model accuracy and reducing the complexity. Neighbor selection
(NS) is a non-trivial problem, especially in the case of high-density
heterogeneous traffic. Various neighbor interactions exist within
such a complex system whereas simple heuristic-based NS (e.g.,
elliptical, rectangular, and 𝑘-NN) can hardly model them. To au-
tomatically select valuable neighbors around the target agent, we
design an adaptive neighbor selector (ANS), whose workflow is
shown on the left side of Figure 1. Taking the features of all agents
as inputs, ANS uses a global attention layer to evaluate the interac-
tion importance scores 𝑆 of all non-target agents (i.e., A − {𝑎𝜏 }).
Specifically, we group the non-target agents based on categories,
and calculate the interaction importance scores of agents in differ-
ent groups separately. For each agents 𝑎𝑖 in a category (𝑖 ∈[1,𝑛𝑐],
𝑐 ∈ {1, 2, 3}), its interaction importance score 𝑆𝑖 is calculated as
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛((𝒇𝜏 ,𝒇 𝑖);𝑊𝑔𝑎), where 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is the global attention
function with Softmax activation [24],𝑊𝑔𝑎 is the learnable atten-
tion parameter, and 𝒇 𝑖 is the features of an agent in time inter-
val [𝑡 − 𝑟 + 1, 𝑡]. The global attention not only pays attention to
the distance between agents, but also pays attention to the speed
information due to the features of multiple time steps. To select
neighbors by 𝑆𝑖 , we add the 𝐿1 penalty to our final loss function to
make the interaction importance scores 𝑆 sparse and thus eliminate
the redundant neighbors. Such constraints, controlled by a tunable
parameter 𝜆, can reduce the number of effective features and obtain
sparsity. Naturally, we can remove the agents with zero interaction
importance scores. We call the remaining agents as 𝑎𝜏 ’s neighbors
(denoted by N𝜏). Unlike previous NS methods that only distance
information is considered, our ANS includes features extraction
over multiple time steps and avoids parameter sharing for different
categories. Although the workload in ANS has increased, the time
efficiency of subsequent modules is improved since fewer neighbors

are considered. The penalty parameter 𝜆 controls the number of
neighbors, which further influences the trade-off between accuracy
and efficiency (detailed in Section 4.3).
3D Graph Formation. To address the limitation of the grid net-
work, we view this task as graph-based supervised learning. Con-
sidering traffic agents as nodes and relationships as edges, we can
construct a 3D graph, where each node has various feature vectors
𝑓 𝑡
𝑖
. The 3D graph consists of the 2D plane graph propagating along

the time dimension. To illustrate, ① adding all heterogeneous traffic
agents including 𝑎𝜏 and N𝜏 to the vertex set. So there are 1 + |N𝜏 |
vertices in the beginning. ② Adding undirected edges with inter-
action importance scores from target agent 𝑎𝜏 to each neighbor
in N𝜏 . Now a 2D star-like plane graph is completed. ③ Repeating
steps ①-② for 𝑟 − 1 times. At last, we get a 3D graph, where each
neighbor agent as node connects only with the target agent and the
weight on each edge corresponds to each neighbor’s interaction
importance score. This heterogeneous 3D graph will be input to
the encoder layer.

3.2 Encoder Layer
In heterogeneous traffic, different categories of agents have different
forms of interactions. Representing these interactions with a single
network as in previous works would result in ‘wrong’ parameter
sharing and thus inaccurate prediction. Thereby, modeling them
separately and adaptively is crucial in high-density heterogeneous
traffic.

Taking the weighted heterogeneous 3D graph as input, HeGA
treats the weight on each edge as the weighted importance for each
corresponding neighbor node and multiplies each node’s features
with its weight, before feeding to the encoder. The encoder of HeGA
consists of two feature embedding stages. At the first stage, the
encoder embeds the size and space features at each time step 𝑡
for each node. Then, the time-sequence of the embedded features
will be fed into LSTMs to learn temporal information of spatial
features, such as velocity and acceleration, for each agent. At the

1321

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

Feed Forward

Add + Layer Norm

Add + Layer Norm

Category

Aggregation

Multi-Head

Feed Forward

Add + Layer Norm

Average Add + Layer Norm

Multi-Head

Agent

Aggregation

(a) Agent Aggregation (Vehicle Example) (b) Category Aggregation

Target Neighbor Agents Target

Figure 2: Aggregation transformer architecture

second stage, the encoder uses a novel two-phase aggregation trans-
former to aggregate neighbor interactions for the target agent. The
aggregated vector will be the final output of the encoder.
Stage 1: Feature Embedding for Each Agent Node. In heteroge-
neous trajectory prediction, different categories of agents should
be encoded separately to avoid sharing weights. Specifically, we
leverage different embedding matrices to embed the size and spatial
features for each category of heterogeneous agents, separately.

All neighboring nodes N𝜏 will be first grouped into N1
𝜏 , N2

𝜏

and N3
𝜏 based on their categories. For space embedding at each

time step 𝑡 , the three groups N1,2,3
𝜏 and the target agent node 𝑎𝜏

are embedded as 𝑒𝑡𝑠𝑝,𝑐 and 𝑒𝑡𝑠𝑝,𝜏 separately, which are defined as
follows:

𝑒𝑡𝑠𝑝,𝑐 = 𝜙 (𝑠𝑡𝑖 ;𝑊 𝑐
𝑠𝑝), 𝑒𝑡𝑠𝑝,𝜏 = 𝜙 (𝑠𝑡𝜏 ;𝑊 𝜏

𝑠𝑝), (1)

where 𝑐 ∈ {1, 2, 3} refers to three categories; 𝜙 is a fully connected
neural network with ReLU activation and parameters𝑊 ; 𝑠𝑖 and 𝑠𝜏
are the 2D space feature (𝑥𝑖 , 𝑦𝑖) of neighbor agent and target agent
node at time 𝑡 , respectively. For size embedding, four units are used
to activate three groups of neighbors N1,2,3

𝜏 and target agent 𝑎𝜏 to
vectors 𝑒𝑠𝑧 respectively. The size embedding for each agent keeps
fixed for all time steps, which is denoted as 𝑒𝑠𝑧,𝑐 or 𝑒𝑠𝑧,𝜏 .

Next, we define four individual temporal LSTMs for each agent
categories to learn temporal information of spatial features, such
as velocity and acceleration, as follows:

ℎ𝑡𝑡𝑒,𝑐 = 𝐿𝑆𝑇𝑀 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒𝑠𝑧,𝑐 , 𝑒𝑡𝑠𝑝,𝑐), ℎ𝑡−1𝑡𝑒,𝑐 ;𝑊
𝑐
𝑡𝑒),

ℎ𝑡𝑡𝑒,𝜏 = 𝐿𝑆𝑇𝑀 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒𝑠𝑧,𝜏 , 𝑒𝑡𝑠𝑝,𝜏), ℎ𝑡−1𝑡𝑒,𝜏 ;𝑊
𝜏
𝑡𝑒),

(2)

where ℎ𝑡𝑡𝑒,𝑐 and ℎ
𝑡
𝑡𝑒,𝜏 are the hidden states of N𝑐

𝜏 and 𝑎𝜏 respec-
tively ,𝑊 𝑐

𝑡𝑒 and𝑊
𝜏
𝑡𝑒 denote the corresponding LSTM parameters.

Corresponding temporal LSTM is executed for each agent node to
obtain the final hidden state as the final feature for this node.
Stage 2: Aggregating Neighbor Interactions for Target Agent
Node. To capture the different interactions of different neighbor
agents, we use a novel two-phase aggregation transformer to fuse
different neighbors i.e., agent and category aggregation. Unlike
the simple self-attention-based aggregators in HAN [39], our im-
proved transformer block aggregates feature hierarchically, from
both agent-level and category-level.

The agent aggregation is designed for aggregating the inter-
actions between the target agent node and all neighbors from a

specific category. We use a vehicle example in Figure 2(a) to illus-
trate the agent aggregating.

First, the outputs of LSTMs (ℎ𝑡𝑡𝑒,𝜏 and ℎ
𝑡
𝑡𝑒,1) will be the inputs to

‘multi-head attention1’ and embedded to three vectors: query 𝑄𝜏 ,
key 𝐾 , and value 𝑉 , as follows:

𝑄𝜏 = 𝜙 (ℎ𝑡𝑡𝑒,𝜏 ;𝑊𝑄), 𝐾 = 𝜙 (ℎ𝑡𝑡𝑒,1;𝑊 𝐾),𝑉 = 𝜙 (ℎ𝑡𝑡𝑒,1;𝑊𝑉) . (3)

Then we calculate an attention vector 𝑠𝑐𝑜𝑟𝑒 for vehicle neighbor
agents, following the standard procedure [37]. This procedure will
be repeated𝐻 times and the final attention score 𝑆 ′ can be calculated
by concatenating 𝐻 scores. The benefit of multi-head attention is
that every separated attention will extract a feature from a different
perspective. The final attention score 𝑆 ′ is defined as:

𝑆′ = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑠𝑐𝑜𝑟𝑒1, . . . , 𝑠𝑐𝑜𝑟𝑒𝐻) ·𝑊 𝑠 (4)

where𝑊 𝑠 are the parameters of a linear transformation.
Second, we find it beneficial to process the output 𝑆 ′ with resid-

ual, layer normalization [5] and feed forward [37]. To increase the
global awareness of all neighbors vehicles, we add the average value
of all processed node features to the first residual connection, i.e.,
‘average add+layer norm’ in Figure 2(a). We compute this residual
connection as follows:

𝑆′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (ℎ𝑡
𝑡𝑒,1 + 𝑆

′) (5)

where ℎ𝑡
𝑡𝑒,1 denotes the average of the processed feature (output

from LSTM in Stage 1) for all vehicles.
Third, we can derive the final agent aggregation result 𝑆1𝑎𝑔 by

feeding 𝑆 ′ into the second residual connection (‘feed forward’ and
‘add+layer norm’ in the Figure 2(a)), which are calculated as follows:

𝑆𝑓 𝑒𝑒𝑑 =𝑊 𝑓 1 · max(0,𝑊 𝑓 2 · 𝑆𝑟𝑒𝑠 + 𝑏1) + 𝑏2,
𝑆1𝑎𝑔 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑆𝑟𝑒𝑠 + 𝑆𝑓 𝑒𝑒𝑑),

(6)

where 𝑆𝑓 𝑒𝑒𝑑 denotes the feed forward result, both𝑊 𝑓 1 and𝑊 𝑓 2

are the parameters of linear transformations biased by 𝑏1 and 𝑏2
respectively with a ReLU activation in between. Finally, we arrive
at the output of this agent aggregation, which can be denoted as
𝑆1𝑎𝑔 ∈ R1×𝑑𝑚 . Similarly, for each category of neighbors, we can
obtain corresponding aggregation results, i.e., 𝑆1𝑎𝑔 for vehicles, 𝑆2𝑎𝑔
for pedestrians and 𝑆3𝑎𝑔 for bicycles.

The category aggregation combines the information from all
categories of neighbors (𝑆1𝑎𝑔 ,𝑆2𝑎𝑔 ,𝑆3𝑎𝑔) and target agent (ℎ𝑡𝑡𝑒,𝜏 from
Stage 1) itself, into one vector 𝑆𝑎𝑙𝑙𝑎𝑔 , as in Figure 2(b). Since the target
agent needs to consider the importance of itself, the multi-head
attention and residual connection are different from that in the
agent aggregation.Specifically, the outputs of temporal LSTM and
agent aggregation will first be embedded as follows:

𝑄𝜏𝑐𝑎 = 𝜙 (ℎ𝑡𝑡𝑒,𝜏 ;𝑊
𝑄
𝑐𝑎),

𝐾𝑐𝑎 = 𝜙 (𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑡𝑡𝑒,𝜏 , 𝑆1𝑎𝑔, 𝑆2𝑎𝑔, 𝑆3𝑎𝑔) ;𝑊 𝐾
𝑐𝑎),

𝑉𝑐𝑎 = 𝜙 (𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑡𝑡𝑒,𝜏 , 𝑆1𝑎𝑔, 𝑆2𝑎𝑔, 𝑆3𝑎𝑔) ;𝑊𝑉
𝑐𝑎) .

(7)

We calculate the attention value 𝑆 ′′ as the output of ‘multi-head
attention2’, following the standard procedure [37]. Category aggre-
gation not only aims to trade off the attention between neighbors
but also focuses on the information of the target agent. Therefore,
we add residual connections of target agent features, i.e.𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚
(ℎ𝑡𝑡𝑒,𝜏 + 𝑆 ′′). Thereafter, the rest calculation of category aggrega-
tion is the same as agent aggregation, and the category aggregation
outputs the encoder layer result 𝑆𝑎𝑙𝑙𝑎𝑔 .

1322

HeGA: Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

3.3 Decoder Layer
Inspired by the recent advance in language [6] and vision [15]
models, we propose a historical residual connection LSTM as the
decoder layer to take advantage of more useful history information
and leverage the residual connection. This decoder has two tech-
nological advantages over the traditional vanilla LSTM, used by
existing works [7, 10, 30]. First, for each decoding time step, instead
of using the output from the previous one-time step, we combine
outputs of the previous two-time steps as the input. Second, for
each decoding time step, instead of using the hidden state from the
previous time step, we take the final hidden state in encoder LSTM
as the state input.

The right side in Figure 1 shows the workflow of HeGA’s decoder.
The hidden states ℎ𝑡𝑡𝑒,𝜏 , ℎ

𝑡−1
𝑡𝑒,𝜏 from encoder and the encoder result

𝑆𝑎𝑙𝑙𝑎𝑔 are fed into the decoder. The historical residual connection
LSTM can be defined as follows for different time steps 𝑙 :

ℎ𝑡+𝑙
𝑑𝑒

=

𝐿𝑆𝑇𝑀 (𝛼 (ℎ𝑡−1𝑡𝑒,𝜏) + 𝑆𝑎𝑙𝑙𝑎𝑔 , ℎ𝑡𝑡𝑒,𝜏), 𝑙 = 1,

𝐿𝑆𝑇𝑀 (𝛼 (𝑆𝑎𝑙𝑙𝑎𝑔) + ℎ𝑡+𝑙−1𝑑𝑒
, ℎ𝑡𝑡𝑒,𝜏), 𝑙 = 2,

𝐿𝑆𝑇𝑀 (𝛼 (ℎ𝑡+𝑙−2
𝑑𝑒

) + ℎ𝑡+𝑙−1
𝑑𝑒

, ℎ𝑡𝑡𝑒,𝜏), 𝑙 ∈ [3, 𝑧],

(8)

where 𝛼 is a learnable factor of residual connection [40] which
can determine the importance of historical information, and the
𝐿𝑆𝑇𝑀 (𝑖𝑛𝑝𝑢𝑡, 𝑠𝑡𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡) function processes two types of inputs
using the standard procedure [17]. In each decoding step, we fix
the passed hidden state input as ℎ𝑡𝑡𝑒,𝜏 , which can reinforce history
information from the encoder.

Thereafter, at each decoding time step 𝑙 , the output hidden state
ℎ𝑡+𝑙
𝑑𝑒

will be linearly transformed into a 2 dimensional vector, i.e.,
predicted spatial location (𝑥𝑡+𝑙𝜏 , 𝑦𝑡+𝑙𝜏). The coordinates in all future
time interval [𝑡 + 1, 𝑡 + 𝑧] jointly form the target agent trajectory
prediction results.
Loss Function.We combine the 𝐿2 distance and and 𝐿1 penalty as
the loss function, which can be defined as follows:

𝐿𝑜𝑠𝑠 =
1
𝑧

𝑧∑︁
𝑙=1

[(𝑥𝑡+𝑙𝜏 − 𝑥𝑡+𝑙𝜏)2 + (𝑦𝑡+𝑙𝜏 − �̂�𝑡+𝑙𝜏)2] + 𝜆
𝑛−1∑︁
𝑖=1

|𝑆𝑖 | (9)

where 𝑥𝑡+𝑙𝜏 and 𝑦𝑡+𝑙𝜏 are the true values of the spatial coordinates at
𝑡+𝑙 , 𝜆 is a tuneable parameter for 𝐿1 penalty and 𝑆𝑖 is the interaction
importance score of agent 𝑎𝑖 . We have tried both to sample from
bivariate Gaussian distribution and to use 𝐿2 distance. We find
using 𝐿2 distance is much beneficial to gradient descent since it
boosts the velocity of gradient descent and achieves better results.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We evaluate the proposed framework on two publicly
available datasets: BaiduApollo [25] and NGSIM (US highway 101)
[35]. The BaiduApollo dataset is collected in urban areas with high-
density traffics, which contains real-world trajectories of heteroge-
neous traffic agents, including vehicles, bicycles, and pedestrians.
The raw NGSIM dataset only contains vehicles on the highway,
which is captured in 10𝐻𝑧 (10 frames per second) over a period of
45 minutes. We preprocess the NGSIM dataset with two steps, ①

removing the frames with less than 10 vehicles, ② down-sampling

Table 1: Hyperparameters setting of HeGA

Hyperparameters Values
Penalty Parameter 𝜆 in ANS 0.01

Embedding Size of 𝑥𝑖 , 𝑦𝑖 and 𝑠𝑖 32
Dimension of LSTM Hidden State 128
Dimension of Feed-Forward Layer

in Agent Aggregation 128
Dimension of Feed-Forward Layer

in Category Aggregation 64
Number of Heads 𝐻 8

the data to a rate of 2𝐻𝑧 (setting the time step to 0.5s). Unless oth-
erwise stated, all experiments are conducted on the BaiduApollo
dataset.
Evaluation Metrics. Two evaluation metrics are used to measure
the prediction error (a lower metric stands for a better model per-
formance):
• Average Displacement Error (ADE): The Euclidean distance be-
tween the ground truth trajectories and the predicted trajectories
averaged overall predicted time steps [31].
• Final Displacement Error (FDE): The Euclidean distance between
the ground truth destination and the predicted destination at the
last predicted time step [1].
Evaluation Baselines.We compare our network with four state-
of-the-art models:
• LSTM Encoder-Decoder (LSTM-ED): A traditional architecture
widely used in trajectory prediction [30].
• Social LSTM (S-LSTM): An LSTM-based model equipped with
grid-based social pooling layers that is used to predict pedestrian
trajectories in crowds [1].
• TrafficPredict: An LSTM-based architecture based on a 4D graph
to learn interactions between different agents [25].
• TraPHic: An LSTM-based network using horizon state-space con-
volution and neighbor state-space convolution to learn interactions
between agents in different ranges[7].

We also perform the ablation study with the following variants
of our approach:
• HeGA-NoANS: Our proposed network without the adaptive neigh-
bor selector. We use all non-target agents (A − {𝑎𝜏 }) as neighbors.
• HeGA-NoAF : Our proposed network without the aggregation
transformermodule.We substitute the two-phase aggregation trans-
former with the one-phase multi-head attention.
•HeGA-NoHRC: Our proposed network without the historical resid-
ual connections in the decoder layer. We use a vanilla LSTM as the
decoder layer.
•HeGA-NoAF&HRC: Our proposed networkwithout both the aggre-
gation transformer module and the historical residual connections.
We substitute them with the same settings above.
• HeGA-PS: Our proposed network with parameter sharing for
different categories of agents. We set all the category features as 1,
thus canceling the separate calculation in the network.
Detailed Settings of HeGA and Baselines. Following the com-
monly used evaluation methodology in [25], we set the length of
the input historical trajectories to 4 frames (𝑟=4), and the trajectory
length to predict to 6 frames (𝑧=6), which correspond to 2 and 3
seconds respectively. The hyperparameters setting of our network
is listed in Table 1. For both the BaiduApollo and NGSIM datasets,
we divide them into three parts (60%, 20%, 20%) for training, vali-
dation, and testing respectively. We add paddings into inputs to

1323

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

Table 2: ADE and FDE of baselines and ours (HeGA & variants) for heterogeneous trajectory prediction

ADE/FDE Baselines Ours
Target

Categories LSTM-ED S-LSTM TrafficPredict TraPHic HeGA
HeGA
-NoANS

HeGA
-NoAF

HeGA
-NoHRC

HeGA
-NoAF&HRC

HeGA
-PS

Vehicle 8.49/14.65 8.37/13.75 7.94/10.58 6.85/10.71 2.57/4.85 2.89/5.04 2.86/5.07 3.31/5.33 4.49/7.98 5.22/8.37
Pedestrian 5.44/7.65 5.02/6.23 5.33/7.42 3.17/5.43 2.29/3.56 2.41/3.68 2.58/3.96 2.45/3.61 2.43/3.30 2.64/3.85
Bicycle 8.21/12.96 7.68/11.42 7.26/12.86 5.22/7.12 2.73/4.88 5.44/8.06 5.51/8.74 4.98/7.76 5.87/9.26 6.43/10.16
Average 7.52/12.22 7.23/11.04 7.08/10.07 5.42/8.42 2.51/4.46 3.26/5.22 3.29/5.45 3.37/5.28 4.14/6.82 4.68/7.36

Table 3: ADE and FDE of baselines and HeGA for homoge-
neous trajectory prediction

Methods LSTM-ED S-LSTM TrafficPredict TraPHic HeGA
ADE 0.49 0.36 0.33 0.26 0.18
FDE 0.84 0.66 0.49 0.45 0.38

ensure every training sample has the same dimension for efficient
batch training. The maximum padding number is chosen according
to the training dataset. We train the network using the Adam opti-
mizer [18] for 200 epochs with a scheduled learning rate of 0.001
and a batch size of 64. The hyperparameters are tuned by the grid
search method on the validation part, and we set the best one as
the default value. Finally, we test our network on the testing part as
the final result. For a fair comparison, we add the size embedding
as an extra input to improve the baseline models and try our best
to grid search on the validation set for the best hyperparameters.
For all the compared models, we report the improved results.
Implementations. All models and algorithms are implemented in
Python on Linux, and we conduct the experiments on a machine
with an Intel(R) CPU i7-4770@3.4GHz with 32G RAM and NVIDIA
TITAN Xp with 12GB GPU memory.

4.2 End-to-End Evaluation of HeGA
HeGA VS Baselines. To give a thorough comparison on heteroge-
neous trajectory prediction, we first test HeGA and baselines on
the BaiduApollo dataset in which there are three types of traffic
agents (see Table 2). As expected, LSTM-ED performs the worst
in all methods since it can only encode very limited features. It
performs especially worse on predicting long trajectories, such as
the trajectories of vehicles. S-LSTM and TrafficPredict have similar
performances because they both try to jointly predict all agents at
the same time. Since they do not have target agents and can not
focus on every interaction, the predictions tend to have a larger de-
viation. In addition, the heterogeneous influence can not be learned
completely in these two models. TraPHic outperforms previous
methods due to its ability to learn interactions in different ranges.
However, it still can not distinguish interactions with different
agents. Our framework is noticeably better than other methods
since we take every traffic agents under consideration and allocate
them with adaptive weights to learn heterogeneous influence. Our
framework reduces at least 27% ADE and 31% FDE compared to all
previous models.

Furthermore, to show the homogeneous trajectory prediction
performance, we test HeGA and baselines on the NGSIM dataset
in which there are only vehicle traffic agents. As shown in Table 3,
LSTM-ED has decent performance since there are much fewer

LS
TM
-E
D

S
-L
S
TM

Tr
af
fic
P
re
di
ct

Tr
aP
H
ic

H
eG
A

30

33

36

39

42

45

(S
)

!"#$%&"'$()"*'*'+$(*,&$-&)$.-/01

LS
TM
-E
D

S
-L
S
TM

Tr
af
fic
P
re
di
ct

Tr
aP
H
ic

H
eG
A

5

10

15

20

25

30

(M
s
)

!"#$%&'($)(*&+&(,&$-./&

Figure 3: Efficiency of baselines and HeGA

interactions on the highway and the density of traffic agents is
much lower. In the homogeneous trajectory prediction situation,
our two-phase aggregation transformer module degenerates to the
one-phase agent aggregation module, but we still find that HeGA
performs better than baselines.
Ablation Study of HeGA.As shown in Table 2, we also conduct an
ablation study to demonstrate the effectiveness of the novel modules
in HeGA. HeGA-NoANS performs worse than HeGA in all three
categories, which proves that not all non-target agents are useful
for prediction in high-density traffic situation. Excess information
brings varying degrees of damage to different categories.

HeGA-NoAF performs uniformly worse than HeGA on all types
of target agents. Interestingly, the performance degradation is es-
pecially significant for bicycles. The reason is that compared to the
other two types of agents, bicycles have stronger interactions with
both vehicles and pedestrians. Therefore, the experiment demon-
strates that the AF module can better extract features for different
agent categories, and model their interactions more precisely.

HeGA-NoHRC has decent prediction results for short trajecto-
ries from pedestrians and bicycles. However, it performs noticeably
worse than networks with HRC, including HeGA and HeGA-NoAF.
This clearly shows that HRC is helpful for long-range features mem-
orization by linking every current frame to the past two frames
directly. Accordingly, it is expected that HeGA-NoAF&HRC per-
forms worse than HeGA-NoAF and HeGA-NoHRC in most cases.

At last, HeGA-PS performs worst among all experiments, which
proves the adverse impact of parameter sharing. In HeGA-PS, the
problem is regarded as a homogeneous trajectory prediction sit-
uation where the embedding and encoding layers are all in one
category. Experiments show that wrong parameter sharing brings
even more than 40% performance degradation.
Efficiency of HeGA. To evaluate the computation efficiency of
HeGA, we measure the mean training time per epoch and mean
inference time of HeGA and baselines detailed in Figure 3. For
mean training time per epoch (see Figure 3(a)), all results are in the
same order of magnitude (36 ∼ 45 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). LSTM-ED takes the

1324

HeGA: Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

1 2 3 4 5 6

0

5

10

15

Prediction Frame

V
e
h

ic
le

 A
D

E

TrafficPredict

TraPHic

HeGA

!"#$%&'()*&$+,-

1 2 3 4 5 6

0

5

10

15

Prediction Frame

P
e
d

e
s
tr

ia
n

 A
D

E

TrafficPredict

TraPHic

HeGA

!"#$%&'&()*+,-$./0

1 2 3 4 5 6

0

5

10

15

Prediction Frame

B
ic

y
c
le

 A
D

E

TrafficPredict

TraPHic

HeGA

!"#$%&"'"()$*+,

1 2 3 4 5 6

0

5

10

15

Prediction Frame

A
v
e
ra

g
e
 A

D
E

TrafficPredict

TraPHic

HeGA

!"#$%&'()*'$%+,

Figure 4: Variations of ADE of each frame

0.4 0.3 0.2 0.1 0.01 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1

Target: Vehicle Target: Pedestrian Target: Bicycle

Figure 5: Visualization of interaction importance scores

least amount of time to train an epoch while Social LSTM takes
the longest time. Since our novel ANS module eliminates many
redundant agents, the time consumption of our network is close
to that of LSTM-ED. On the contrary, the time consumption of
social LSTM is almost twice as much as that of HeGA because
it involves grid search. It proves that our network achieves solid
results without sacrificing much time. For mean inference time (see
Figure 3(b)), all results are also in the same order of magnitude
(9 ∼ 26𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠). The tendency of the two graphs is consistent.
It takes about 11𝑚𝑠 for our network to inference 6 frames, proving
that HeGA is applicable for real-time application.
Variations of ADE of Each Frame. Figure 4 show the variations
of ADE along the timeline. Generally, our network has the lowest
ADE of all frames compared to other models. All chart shows an
increasing tendency of ADE along the timeline. It is worth noting
that in Figure 4(d), the average accuracy of our network degrades
slower than other models when predicting farther into the future.
Figure 4(a) indicates that vehicle trajectories are the most difficult
to predict among the three, as they tend to be longer and the speed
variation of vehicles is larger than pedestrians and bicycles. Our
network shows a noticeable improvement in trajectory prediction
for vehicles, due to the combination of the HRC module and the AF
module. We follow the convention of using short observations to
predict long future trajectories in previous works. Note that the first
two prediction frames are the most important. The 75𝑡ℎ percentile
error of our network in the first two frames is less than 1m (see
Figure 4), which is relatively precise.

Table 4: Average ADE of neighbor selection methods

Methods Full Elliptical Rectangle 𝑘-NN ANS
Average ADE 3.26 3.97 4.05 3.13 2.51

Fu
ll

E
lli
pt
ic
al

R
ec
ta
ng
le

k-
N
N

A
N
S

30

33

36

39

42

45

(S
)

!"#$%&"'$()"*'*'+$(*,&$-&)$.-/01

Fu
ll

E
lli
pt
ic
al

R
ec
ta
ng
le

k-
N
N

A
N
S

3

6

9

12

15

18

(M
s
)

!"#$%&'($)(*&+&(,&$-./&

Figure 6: Efficiency of neighbor selection methods

4.3 Effect of Adaptive Neighbor Selector
Interpretability Analysis. To analyze the generated graph in
HeGA, we visualize the interaction importance scores of neighbor
agents outputted by ANS with respect to the category, distance,
and speed using heat maps in Figure 5 where the 𝑥 axes denote the
distances between the target agent and neighbor agents, and the
𝑦 axes denote the speeds of neighbor agents. For the vehicles, the
ANS learns to focus on a short distance (10 meters) and a middle
distance (31 meters), because drivers in vehicles are likely to see
farther to make timely reactions. In contrast, for the pedestrians
and bicycles, the ANS focuses on a short distance (10 meters). For
all three categories, ANS pays attention to neighbor agents with
higher speed, which is consistent with reality. Three heat maps
prove that our ANS can extract useful latent features and select
reasonable regions.
Effectiveness of Neighbor Selection Methods. To study the
effectiveness of NS methods, including heuristic-based methods
(i.e., full-coverage, elliptical [7], rectangle [10], 𝑘-NN [34]) and our
ANS method, we compare the average ADE of HeGA under these
NS methods. The results are shown in Table 4. We can see that ANS
is more accurate than other methods. The full-coverage method
is not as good as our ANS method because it contains redundant
and misleading neighbors that bring extra loss to outputs. The
elliptical and rectangle methods perform worse than the former
one because the range and shape of the region depend on traffic and
road conditions. The 𝑘-NN methods perform worse than our ANS
because it ignore some latent features, e.g., velocity and direction.
Efficiency of Neighbor Selection Methods. We also record the
mean training time per epoch and mean inference time of HeGA
under different NS methods. As shown in Figure 6, ANS is more
efficient than other methods. The full-coverage method takes the
longest time since it uses all non-target agents (A − {𝑎𝜏 }) as neigh-
bors. The 𝑘-NN method is better than the full-coverage method
because it removes some distant agents. The elliptical and rec-
tangle methods perform better than the 𝑘-NN method since they
have no sorting calculation. Compared with heuristic-based NS
methods, our ANS method eliminates many redundant agents, the
time-efficiency of subsequent modules (i.e., encoder and decoder)
is improved since fewer neighbors are considered.

1325

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

Table 5: Effect of penalty parameter 𝜆

𝜆 10−5 10−4 10−3 10−2 10−1 1
Average ADE 3.23 3.02 2.74 2.51 2.97 3.15
MTTE(S) 42.15 40.35 38.62 37.43 35.82 34.57
MIT(Ms) 15.09 14.26 12.75 11.23 10.48 8.86

Effect of Penalty Parameter 𝜆. 𝜆 is a penalty parameter in ANS,
it controls the sparsity of the interaction importance scores 𝑆 , and
further influences the number of neighbors. The more the number
of neighbors, the lower the efficiency of the network. Conversely,
the fewer the number of neighbors, the higher the efficiency of the
network. However, too many or too few neighbors will affect the
accuracy. To balance the accuracy and efficiency of HeGA, we tune
𝜆 from 10−5 to 1, and record the average ADE, mean training time
per epoch (MTTE) and mean inference time (MIT) of HeGA under
different 𝜆. As shown in Table 5, when 𝜆=10−2, the average ADE is
the lowest. The mean training time per epoch and mean inference
time are decent when 𝜆=10−2. Due to the above observation, we
choose 𝜆=10−2 to balance accuracy and efficiency.

4.4 Applicability of HeGA
We further deploy different trajectory prediction networks (HeGA
and baselines) in a framework for autonomous driving, and inves-
tigate their applicability based on three simulated environments.
In the following, we introduce the deployment and simulated envi-
ronments, and finally present the applicability analysis.
Deployment. In order to make trajectory prediction practical for
autonomous driving, we deploy HeGA and baselines (LSTM-ED, S-
LSTM, TrafficPredict, TraPHic) in Cheetah framework [22], respec-
tively. Cheetah is a prediction-and-search framework that enables
autonomous vehicle to perform lane change and/or speed change
safely and efficiently. In particular, Cheetah first predicts the near
future trajectories for surrounding agents, then searches for the op-
timal maneuver with the maximum speed and minimum impact on
surrounding agents, and finally performs the optimal maneuver. In
order for the framework to function properly, HeGA and baselines
follow the trajectory prediction settings used in Cheetah.
Simulated Environments. As it requires interaction between an
autonomous vehicle and other traffic agents, we utilize Cheetah
with different trajectory prediction networks to control the au-
tonomous vehicle, and use the microscopic traffic simulator [19,
22, 32, 41] to simulates the behaviors of other traffic agents. In this
work, we focus on the complex and dense traffics, so we predefine
three simulated environments with increasing traffic densities and
complexities as follows:
• Highway: An autonomous vehicle and 600 conventional vehicles
(with human drivers) traveling on a straight three-lane road of
length 3km with periodic boundary conditions [32]. Figure 7(a)
presents a screenshot of the Highway simulated environment.
• Urban Road: Based on the Highway simulated environment, we
add 300 pedestrians and 300 bicycles on the road. The 300 pedes-
trians and 300 bicycles are required to move in the rightmost lane
of the road, which is common in urban traffic system. Figure 7(b)
presents a screenshot of the Urban Road simulated environment.
• Downtown Street: Based on the Urban Road simulated environ-
ment, we further add 300 pedestrians and 300 bicycles on the road

40m

9
m

(a) Highway

40m

9
m

40m

9
m

(b) Urban Road

(c) Downtown Street

Conventional Vehicle Autonomous Vehicle
Pedestrian

Bicycle

Figure 7: Screenshots of simulated environments

and relax restrictions for all pedestrians and bicycles. The 600 pedes-
trians and 600 bicycles can move in all lanes of the road, which is
common in downtown traffic system. Figure 7(c) presents a screen-
shot of the Downtown Street simulated environment.

Overall, the densities and complexities of all simulated environ-
ments can be ranked as: Highway>Urban Road>Downtown Street,
and thus we can study the applicability of different trajectory predic-
tion networks comprehensively. The detailed settings of simulated
environments are listed in Table 7, following the settings used in
previous works [19, 22, 32, 41].
Applicability Analysis. To investigate the applicability of HeGA
and baselines based on three simulated environments, we conducted
100 tests on each simulated environment wherein each test the
autonomous vehicle is initialized at a random position and drives
through 3km, and measure the applicability from both safety and
efficiency aspects:
• Safety: We record the number of collisions caused by the au-
tonomous vehicle in each test. This metric directly reflects the
safety of the autonomous vehicle.
• Efficiency: We further record the driving time of the autonomous
vehicle in each test. It should be noted that we add extra 5 min-
utes as a penalty time when the autonomous vehicle collides with
any traffic agent. This metric directly reflects the efficiency of the
autonomous vehicle.

Accordingly, if the autonomous vehicle is safer (i.e., fewer col-
lisions) and more efficient (i.e., shorter driving time), the corre-
sponding trajectory prediction network has better applicability. We
report the average number of collisions and average driving time
of the autonomous vehicle controlled by Cheetah with HeGA and
baselines in Table 6. We can see that Cheetah with HeGA causes
the fewest collisions in all simulated environments, demonstrat-
ing the safety of our network for autonomous driving. Moreover,
Cheetah with HeGA achieves the shortest average driving time
in all simulated environments, which demonstrates the efficiency
of HeGA for autonomous driving. The main reasons are two-fold.
Firstly, HeGA can adaptively choose neighbors in diverse traffic

1326

HeGA: Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 6: Applicability (safety and efficiency) of baselines and HeGA for autonomous driving

Metrics Average Number of Collisions Average Driving Time(Min)
Simulated

Environments LSTM-ED S-LSTM TrafficPredict TraPHic HeGA LSTM-ED S-LSTM TrafficPredict TraPHic HeGA

Highway 0.85 0.79 0.72 0.67 0.43 8.14 7.45 6.87 6.49 5.38
Urban Road 1.14 0.97 0.86 0.92 0.77 9.63 8.85 7.95 8.03 6.54

Downtown Street 1.59 1.35 1.12 1.08 0.84 12.37 11.85 10.53 10.24 8.62

Table 7: Detailed settings of Simulated Environments

Description Settings

Basics

Size of Vehicle 4𝑚 × 2𝑚
Size of Pedestrian 1𝑚 × 1𝑚
Size of Bicycle 2𝑚 × 1𝑚
Road Shape Straight
Road Length 3𝑘𝑚

Road Boundary Periodic
Number of Lane 3

Number of Autonomous Vehicle 1
Number of Conventional Vehicle 600

Traffic Flow Unidirectional

Highway

Number of Conventional Vehicle 600
Speed Limit for Vehicle 0 ∼ 115 𝑘𝑚/ℎ

Traffic Density 200 𝑎𝑔𝑒𝑛𝑡𝑠/𝑘𝑚
Traffic Complexity Low

Urban
Road

Number of Pedestrian 300
Number of Bicycle 300

Speed Limit for Vehicle 0 ∼ 50 𝑘𝑚/ℎ
Speed Limit for Pedestrian 0 ∼ 10 𝑘𝑚/ℎ
Speed Limit for Bicycle 0 ∼ 25 𝑘𝑚/ℎ

Traffic Density 400 𝑎𝑔𝑒𝑛𝑡𝑠/𝑘𝑚
Traffic Complexity Medium

Downtown
Street

Number of Pedestrian 600
Number of Bicycle 600

Speed Limit for Vehicle 0 ∼ 40 𝑘𝑚/ℎ
Speed Limit for Pedestrian 0 ∼ 8 𝑘𝑚/ℎ
Speed Limit for Bicycle 0 ∼ 20 𝑘𝑚/ℎ

Traffic Density 600 𝑎𝑔𝑒𝑛𝑡𝑠/𝑘𝑚
Traffic Complexity High

environments. Secondly, HeGA can effectively combine informa-
tion from different categories of traffic agents. Therefore, HeGA
provides more accurate trajectory prediction results for Cheetah,
thus making the autonomous vehicle safer and more efficient.

5 RELATEDWORK
Traffic trajectory prediction tasks can be classified into homoge-
neous and heterogeneous problems.
Homogeneous Trajectory Prediction. Homogeneous trajectory
prediction methods are designed for scenarios with a single cate-
gory of traffic agents, which corresponds to vehicles on highways or
pedestrians in crowd space. Traditionally, homogeneous trajectory
prediction is solved by statistical learningmethod, includingHidden
Markov Models (HMMs) [12, 36], Bayesian Network [20, 33], Sup-
port Vector Machines [4], etc. These methods only consider single
trajectory pattern recognition thus ignore the social interactions,
which have an important role in the real world. Social interaction
is the influence received by the ego agent from its neighbors. It
is an abstract problem to model and simulate. More works that
model traffic-agent interactions achieve better results. Helbing et
al. [16] take social interaction and inner motivation into consid-
eration called social force. The simulation is based on hand-craft
rules but achieves surprisingly good results in some simple scenes.
However, it can not be generalized on modern datasets.

Recently, more researchers utilize the power of deep learning
methods to tackle this problem. The majority of them use RNN
based encoder-decoder paradigm. [3, 11, 23, 26, 27] used LSTM
encoder-decoder architecture to predict vehicle trajectories. How-
ever, the simple vanilla LSTM in their methods omits a large amount
of historical information, which is critical in traffic systems. For the
pedestrian trajectory prediction, Social LSTM [1], Social GAN [14]
and Social Attention [38] are pioneering methods modeling so-
cial interaction with grid maps. Generative Adversarial Networks
(GANs) based LSTM can generate multiple possible results of tra-
jectories. However, these grid-based methods suffer from inher-
ent inaccuracies due to the discretization of continuous 2D space.
Furthermore, the sparse grids occupy large storage and require
excessive computational power to traverse through. The aforemen-
tioned methods can not capture the interaction between different
categories of agents in heterogeneous scenarios.
Heterogeneous Trajectory Prediction. Recently, heterogeneous
methods have attracted more attention. TrafficPredict [25] used
a complete graph with LSTMs to learn different agent interac-
tions. However, their complete graph is uninterpretable due to
the LSTM-based edge encoding, as well as their complete graph
can not choose neighbors adaptively. Convolutional Neural Net-
works (CNN), achieving great results and used as a paradigm in
computer vision, are also applied in trajectory prediction prob-
lems [2, 9, 13, 21, 28, 29]. [7, 8] propose the prediction methods
with horizon and neighbor state-spaces convolutional neural net-
work. They combine CNN and LSTM as a hybrid model and use
grid-based pooling to measure agent interactions. However, the
drawbacks of these state-of-the-art methods include: (1) the ‘wrong’
parameter sharing in the representation of agents interaction; (2)
the heuristic-based methods in the neighbor selection.

6 CONCLUSION
Trajectory prediction in dense and heterogeneous scenarios is a
challenging problem for autonomous driving that lacks effective
solutions. In this work, we propose HeGA, a novel heterogeneous
graph aggregation network that predicts the trajectories for dif-
ferent categories of agents in high-density heterogeneous traffics.
Extensive empirical studies based on real datasets confirm the su-
periority of our network over the state-of-the-art approaches in
terms of ADE and FDE. We also deploy HeGA in a prediction-and-
search framework for autonomous driving, proving its superior
applicability based on three simulated environments.

ACKNOWLEDGMENTS
This work is partially supported by NSFC (No. 61972069, 61836007
and 61832017), and Shenzhen Municipal Science and Technology
R&D Funding Basic Research Program (JCYJ20210324133607021).

1327

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Shuncheng Liu et al.

REFERENCES
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li

Fei-Fei, and Silvio Savarese. 2016. Social lstm: Human trajectory prediction in
crowded spaces. In CVPR. 961–971.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding
of a convolutional neural network. In ICET. 1–6.

[3] F. Altché and A. de La Fortelle. 2017. An LSTM network for highway trajectory
prediction. In ITSC. 353–359.

[4] Georges S Aoude, Vishnu R Desaraju, Lauren H Stephens, and Jonathan P How.
2012. Driver behavior classification at intersections and validation on large
naturalistic data set. IEEE Transactions on Intelligent Transportation Systems
(2012), 724–736.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[6] WilliamChan, Navdeep Jaitly, Quoc Le, andOriol Vinyals. 2016. Listen, attend and
spell: A neural network for large vocabulary conversational speech recognition.
In ICASSP. 4960–4964.

[7] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. 2019.
Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted
interactions. In CVPR. 8483–8492.

[8] Rohan Chandra, Uttaran Bhattacharya, Christian Roncal, Aniket Bera, and Dinesh
Manocha. 2019. RobustTP: End-to-End Trajectory Prediction for Heterogeneous
Road-Agents in Dense Traffic with Noisy Sensor Inputs. In ACM Computer Science
in Cars Symposium. 1–9.

[9] Liwei Deng, Hao Sun, Rui Sun, Yan Zhao, and Han Su. 2022. Efficient and Effective
Similar Subtrajectory Search: A Spatial-aware Comprehension Approach. TIST
13, 3 (2022), 35:1–35:22.

[10] Nachiket Deo and Mohan M Trivedi. 2018. Convolutional social pooling for
vehicle trajectory prediction. InWorkshops on CVPR. 1468–1476.

[11] N. Deo and M. M. Trivedi. 2018. Multi-Modal Trajectory Prediction of Surround-
ing Vehicles with Maneuver based LSTMs. In IEEE Intelligent Vehicles Symposium
(IV). 1179–1184.

[12] Jonas Firl, Hagen Stübing, Sorin A Huss, and Christoph Stiller. 2012. Predictive
maneuver evaluation for enhancement of car-to-xmobility data. In IEEE Intelligent
Vehicles Symposium (IV). 558–564.

[13] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and
Fabien Moutarde. 2021. Home: Heatmap output for future motion estimation.
In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).
IEEE, 500–507.

[14] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
2018. Social gan: Socially acceptable trajectories with generative adversarial
networks. In CVPR. 2255–2264.

[15] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In CVPR. 770–778.

[16] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E (1995), 4282.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural computation (1997), 1735–1780.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. 2012.
Recent development and applications of SUMO-Simulation of Urban MObility.
International journal on advances in systems and measurements (2012).

[20] Stéphanie Lefèvre, Christian Laugier, and Javier Ibañez-Guzmán. 2011. Exploiting
map information for driver intention estimation at road intersections. In IEEE
Intelligent Vehicles Symposium (IV). 583–588.

[21] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel
Urtasun. 2020. Learning lane graph representations for motion forecasting. In

European Conference on Computer Vision. Springer, 541–556.
[22] Shuncheng Liu, Han Su, Yan Zhao, Kai Zeng, and Kai Zheng. 2021. Lane Change

Scheduling for Autonomous Vehicle: A Prediction-and-Search Framework. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3343–3353.

[23] Shuncheng Liu, Zhi Xu, Huimin Ren, Tianfu He, Boyang Han, Jie Bao, Kai Zheng,
and Yu Zheng. 2022. Detecting Loaded Trajectories for Hazardous Chemicals
Transportation. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 3294–3306.

[24] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[25] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh
Manocha. 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-
agents. In AAAI. 6120–6127.

[26] K. Messaoud, I. Yahiaoui, A. Verroust, and F. Nashashibi. 2020. Attention Based
Vehicle Trajectory Prediction. IEEE Transactions on Intelligent Vehicles (2020),
175–185.

[27] Kaouther Messaoud, Itheri Yahiaoui, Anne Verroust-Blondet, and Fawzi
Nashashibi. 2019. Non-local social pooling for vehicle trajectory prediction.
In IEEE Intelligent Vehicles Symposium (IV). 975–980.

[28] Sriram Narayanan, Ramin Moslemi, Francesco Pittaluga, Buyu Liu, and Manmo-
han Chandraker. 2021. Divide-and-conquer for lane-aware diverse trajectory
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15799–15808.

[29] Nishant Nikhil and Brendan Tran Morris. 2018. Convolutional neural network
for trajectory prediction. InWorkshops on ECCV.

[30] Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang, Chung Choo Chung, and
Jun Won Choi. 2018. Sequence-to-sequence prediction of vehicle trajectory via
LSTM encoder-decoder architecture. In IEEE Intelligent Vehicles Symposium (IV).
1672–1678.

[31] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. 2009. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In ICCV. 261–268.

[32] Marcus Rickert, Kai Nagel, Michael Schreckenberg, and Andreas Latour. 1996.
Two lane traffic simulations using cellular automata. Physica A: Statistical Me-
chanics and its Applications (1996), 534–550.

[33] Matthias Schreier, Volker Willert, and Jürgen Adamy. 2014. Bayesian, maneuver-
based, long-term trajectory prediction and criticality assessment for driver assis-
tance systems. In ITSC. 334–341.

[34] Aditya Shrivastava, Jai Prakash V Verma, Swati Jain, and Sanjay Garg. 2021. A
deep learning based approach for trajectory estimation using geographically
clustered data. SN Applied Sciences (2021), 1–17.

[35] The Next Generation SIMulation. 2007. US Highway 101 Dataset. (2007).
[36] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2020. A

survey of trajectory distance measures and performance evaluation. The VLDB
Journal 29, 1 (2020), 3–32.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[38] Anirudh Vemula, Katharina Muelling, and Jean Oh. 2018. Social attention: Mod-
eling attention in human crowds. In ICRA. 1–7.

[39] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. InWWW. 2022–2032.

[40] Yi Xu, Jing Yang, and Shaoyi Du. 2020. CF-LSTM: Cascaded Feature-Based Long
Short-Term Networks for Predicting Pedestrian Trajectory. In AAAI.

[41] Hwasoo Yeo, Alexander Skabardonis, John Halkias, James Colyar, and Vassili
Alexiadis. 2008. Oversaturated freeway flow algorithm for use in next generation
simulation. Transportation Research Record (2008), 68–79.

1328

	Abstract
	1 Introduction
	2 Problem Definition and Workflow
	3 Heterogeneous Graph Aggregation
	3.1 Adaptive Neighbor Selector
	3.2 Encoder Layer
	3.3 Decoder Layer

	4 Experiments
	4.1 Experimental Settings
	4.2 End-to-End Evaluation of HeGA
	4.3 Effect of Adaptive Neighbor Selector
	4.4 Applicability of HeGA

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

