
MIT Open Access Articles

Wikxhibit: Using HTML and Wikidata to Author 
Applications that Link Data Across the Web

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Alrashed, Tarfah, Verou, Lea and Karger, David. 2022. "Wikxhibit: Using HTML and 
Wikidata to Author Applications that Link Data Across the Web."

As Published: https://doi.org/10.1145/3526113.3545706

Publisher: ACM|The 35th Annual ACM Symposium on User Interface Software and Technology 
CD-ROM

Persistent URL: https://hdl.handle.net/1721.1/146507

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146507
https://creativecommons.org/licenses/by/4.0/


Wikxhibit: Using HTML and Wikidata to Author Applications 
that Link Data Across the Web 

Tarfah Alrashed Lea Verou David R. Karger 
MIT CSAIL MIT CSAIL MIT CSAIL 

tarfah@mit.edu leaverou@mit.edu karger@mit.edu 

ABSTRACT 
Wikidata is a companion to Wikipedia that captures a substantial 
part of the information about most Wikipedia entities in machine-
readable structured form. In addition to directly representing infor-
mation from Wikipedia itself, Wikidata also cross-references how 
additional information about these entities can be accessed through 
APIs on hundreds of other websites. 

This trove of valuable information has become a source of numer-
ous domain-specifc information presentations on the web, such as 
art galleries or directories of actors. Developers have created a num-
ber of such tools that present Wikidata data, sometimes combined 
with data accessed through Wikidata’s cross-referenced web APIs. 
However, the creation of these presentations requires signifcant 
programming efort and is often impossible for non-programmers. 

In this work, we empower users, even non-programmers, to cre-
ate presentations of Wikidata and other sources of data on the web, 
using only HTML with no additional programming. We present 
Wikxhibit, a JavaScript library for creating HTML-based data pre-
sentations of data on Wikidata and the other data APIs it cross-
references. Wikxhibit allows a user to author plain HTML that, with 
the addition of a few new attributes, is able to dynamically fetch 
and display any Wikidata data or its cross-referenced Web APIs. 
Wikxhibit’s JavaScript library uses Wikidata as the bridge to con-
nect all the cross-referenced web APIs, allowing users to aggregate 
data from multiple Web APIs at once, seamlessly connecting object 
to object, without even realizing that they are pulling data from 
multiple websites. We integrate Wikxhibit with Mavo, an HTML 
language extension for describing web applications declaratively, 
to empower plain-HTML authors to create presentations of Wiki-
data. Our evaluation shows that users, even non-programmers, can 
create presentations of Wikidata and other sources of web data 
using Wikxhibit in just 5 minutes. 

CCS CONCEPTS 
• Information systems → Web interfaces; Mashups; Web ser-
vices; Mediators and data integration. 

KEYWORDS 
Wikidata, Web APIs, Mashup, Data Integration, Semantic Web 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’22, October 29-November 2, 2022, Bend, OR, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9320-1/22/10. 
https://doi.org/10.1145/3526113.3545706 

ACM Reference Format: 
Tarfah Alrashed, Lea Verou, and David R. Karger. 2022. Wikxhibit: Using 
HTML and Wikidata to Author Applications that Link Data Across the 
Web. In The 35th Annual ACM Symposium on User Interface Software and 
Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, 
New York, NY, USA, 15 pages. https://doi.org/10.1145/3526113.3545706 

1 INTRODUCTION 
There has been a longstanding vision of somehow taking all the 
valuable data that is distributed through the web and aggregat-
ing it into some coherent structure that could be used to drive 
powerful web applications. But the diversity of formats, schemas, 
and protocols has proven a formidable barrier. Large scale stan-
dardization eforts have been put forward, such as the Semantic 
Web and Linked Open Data [3], the Open Graph Protocol [14], 
and Schema.org [12], but none of these has become dominant. In-
stead, individual programmers with specifc application needs have 
crafted special purpose code that accesses and merges together data 
from specifc website APIs [9]. 

In this work, we propose a new, alternative approach to crafting 
applications that merge data across multiple websites. At its center 
is Wikidata [32], a companion to Wikipedia that holds structured 
data about many Wikipedia entities in a structured form, and also 
provides many links to external information about these entities 
on other websites. We combine this “data directory” with an API 
description language that can be used to declaratively specify how 
to access data behind a particular web API, and a data templating 
language that can be used to author presentations of structured data 
using only HTML. Combined, these three components permit an 
HTML author, using no additional programming, to create rich pre-
sentations that aggregate and link data from multiple API-backed 
websites. 

To construct an application that incorporates data from multiple 
distinct websites, a person needs to accomplish several things: 

• access the data needed from each website 
• normalize the schema so that the data coming from the dif-
ferent websites can be treated the same way 

• link entities to combine data about the same entity found on 
distinct sites 

• present the information in appealing, human-readable form. 
Wikxhibit incorporates 4 components to tackle the tasks. Shapir [2] 

uses a declarative API description language to simplify access to 
distinct web APIs and uses Schema.org [12] to normalize the dif-
ferent site schemas. We use Wikidata to provide the crosslinking 
information needed to unify entities. And we use Mavo [30, 31] 
to generate rich interactive presentations of the resulting unifed 
information. Figure 1 shows a Wikxhibit application—described 
entirely in HTML—that integrates and presents data from diferent 
websites. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526113.3545706
https://doi.org/10.1145/3526113.3545706
https://Schema.org
https://Schema.org


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger

1 <div mv-app mv-source="wikxhibit" mv-source-service="wikidata" mv-source-id="Q19848">
2 <img property="image" />
3 <h1 property="label"></h1>
4 ...
5 <div property="SpotifyArtist" >
6 <div property="albums" mv-multiple>
7 <img property="image" />
8 <h5 property="name"></h5>
9 <p property="numTracks"></p>
10 </div>
11 <div property="tracks" mv-multiple>
12 <iframe src="[embedUrl]"></iframe>
13 </div>
14 </div>
15 <div property="YouTubeChannel">
16 <div property="videos" mv-multiple>
17 <iframe src="[embedUrl]"></iframe>
18 </div>
19 </div>
20 <div property="SongkickArtist">
21 <div property="events" mv-multiple>
22 <h5 property="name"></h5>
23 <p property="location"></p>
24 <p property="startDate"></p>
25 </div>
26 </div>
27 </div>

Figure 1: An artist page made with Wikxhibit that displays integrated data from different websites: general information about
the artist fromWikidata, their albums and tracks from Spotify, their videos from YouTube, and their events from Songkick

entirely in HTML—that integrates and presents data from different
websites.

Our Contribution
This paper demonstrates the viability of easily crafting applications
that link data across multiple websites that describe the same entity,
using only HTML with no additional programming. Our contribu-
tion comes as a sum of many parts. We depend on these parts, but
Wikxhibit offers the architectural vision and additions needed to
achieve it.

A key contribution is the idea of using Wikidata as a universal
join table to cross-reference entities across different third-party
APIs. However, Wikidata alone does not suffice. End-users can not
effectively leverage Wikidata alone to interact with the data behind
other sites that this join table refers to, let alone build applications
that merge data from these different sites. Combining that universal
join table with Mavo-Shapir gives us a whole that is greater than
the sum of its parts.

Conversely, although Mavo-Shapir lets users build applications
that combine data from multiple APIs, such as conference papers
from IEEE and recorded conference talks from YouTube, it offers
no mechanism to link data from these multiple APIs about a single
entity. For example, to indicate that a particular paper from IEEE is
the one being presented in the video. A user would have to write

code (e.g., JavaScript) to link data from multiple sites that describe
the same entity. This paper demonstrates the idea of usingWikidata
to do so and solves the design problem of extending Mavo-Shapir
to express (in HTML) and carry out the desired entity unification.

Making entity resolution available and showing how these com-
ponents can work together to give end-users something powerful is
part of our technical contribution. All prior mashup tools, including
Shapir, expect users to develop their heuristics for entity resolution
across different sites. These prior tools could have used Wikidata,
but none of them did, possibly because of how challenging it would
be to incorporate it manually.

In a survey of Wikidata users that we conducted, they expressed
the desire to create presentations of Wikidata and the challenges
they faced creating these presentations with enriching them with
data from other websites. We conducted two user studies with 12
Wikidata users to test whether they could use Wikxhibit to author
HTML-based applications that present data combining Wikidata
and data from other sites. Not only were participants able to create
applications that combine data from different websites in as little
as 5 minutes, but they were enthusiastic about the ease with which
they could do so.

Our contribution can be seen in two ways. From a Wikidata-
centric perspective, we are making it easy to incorporate data from
all over the web into the Wikidata entities, broadening the reach of

Figure 1: An artist page made with Wikxhibit that displays integrated data from diferent websites: general information about 
the artist from Wikidata, their albums and tracks from Spotify, their videos from YouTube, and their events from Songkick 

Our Contribution 
This paper demonstrates the viability of easily crafting applications 
that link data across multiple websites that describe the same entity, 
using only HTML with no additional programming. Our contribu-
tion comes as a sum of many parts. We depend on these parts, but 
Wikxhibit ofers the architectural vision and additions needed to 
achieve it. 

A key contribution is the idea of using Wikidata as a universal 
join table to cross-reference entities across diferent third-party 
APIs. However, Wikidata alone does not sufce. End-users can not 
efectively leverage Wikidata alone to interact with the data behind 
other sites that this join table refers to, let alone build applications 
that merge data from these diferent sites. Combining that universal 
join table with Mavo-Shapir gives us a whole that is greater than 
the sum of its parts. 

Conversely, although Mavo-Shapir lets users build applications 
that combine data from multiple APIs, such as conference papers 
from IEEE and recorded conference talks from YouTube, it ofers 
no mechanism to link data from these multiple APIs about a single 
entity. For example, to indicate that a particular paper from IEEE is 
the one being presented in the video. A user would have to write 
code (e.g., JavaScript) to link data from multiple sites that describe 
the same entity. This paper demonstrates the idea of using Wikidata 
to do so and solves the design problem of extending Mavo-Shapir 
to express (in HTML) and carry out the desired entity unifcation. 

Making entity resolution available and showing how these com-
ponents can work together to give end-users something powerful is 
part of our technical contribution. All prior mashup tools, including 
Shapir, expect users to develop their heuristics for entity resolution 
across diferent sites. These prior tools could have used Wikidata, 
but none of them did, possibly because of how challenging it would 
be to incorporate it manually. 

In a survey of Wikidata users that we conducted, they expressed 
the desire to create presentations of Wikidata and the challenges 
they faced creating these presentations with enriching them with 
data from other websites. We conducted two user studies with 12 
Wikidata users to test whether they could use Wikxhibit to author 
HTML-based applications that present data combining Wikidata 
and data from other sites. Not only were participants able to create 
applications that combine data from diferent websites in as little 
as 5 minutes, but they were enthusiastic about the ease with which 
they could do so. 

Our contribution can be seen in two ways. From a Wikidata-
centric perspective, we are making it easy to incorporate data from 
all over the web into the Wikidata entities, broadening the reach of 
Wikipedia. From a web-wide perspective, we show how Wikidata 
can be used as the interchange for linking data across arbitrary web-
sites. While Wikxhibit supports both perspectives, our evaluation 
has focused on the Wikidata community, who have shown a keen 



Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

interest in generating presentations of Wikidata that incorporates 
information from other websites. 

2 RELATED WORK 
Our work builds on contributions from several research areas in-
cluding the Semantic Web, mashup tools and data integration. 

2.1 The Semantic Web 
The Semantic Web provides a common framework that allows data 
to be shared and reused across diferent organizations. Fundamen-
tal to adopting the Semantic Web vision was the development of 
SPARQL, a protocol and query language for RDF data. The vision of 
the Semantic Web is that if all websites expose their data through a 
SPARQL endpoint, people will be able to access it uniformly. 

However, despite SPARQL’s widespread adoption within the 
Semantic Web community, it has not spread more widely. For web 
developers, the Semantic Web is unpopular because of its complex-
ity [9]. SPARQL is associated with a high learning curve, which 
prevents its wide adoption by developers who typically access and 
query data using web APIs. When RDF data is exposed through 
SPARQL endpoints, many developers fnd it difcult to access. Thus, 
there were several eforts aiming to convert any given SPARQL 
endpoint into a simple REST API [9, 19, 26]. 

On the publisher side, there would be great value in having all 
the web data on the Semantic Web, but that value seems not to 
accrue to the companies publishing the data. Instead, a substantial 
amount of this data is made available through web APIs since that 
seems to be what developers want. Even some organizations that 
have adopted Semantic Web technologies to manage their data, 
such as data.gov and Wikidata [32], typically provide web APIs to 
serve their RDF data to developers. 

If most websites exposed their data through SPARQL endpoints, 
we would be able to access and integrate data from these sites and 
use Mavo to allow end-users to build applications on top of this 
data. But given that is not the case, building Wikxhibit is necessary 
to connect data across diferent websites and create this uniform 
data model that HTML authors can access to create applications 
that present this data. Wikxhibit provides a less ambiguous but 
more practical approach than the Semantic Web by using Wikidata 
to connect all its cross-referenced APIs. 

2.2 Mashup Tools 
Kicked of by ChicagoCrime.org [15], a long line of research has 
explored ways to let end users create alternative presentations 
over data accessed through web APIs. The earliest mashups were 
hand-crafted by programmers. A later generation of tools, such as 
Marmite [37], Carpé Data [29] and D.mix [13] helped users author 
the applications but assumed the existence of pre-programmed web 
API connectors to access specifc data sources or for programmers 
to create new ones. 

Gneiss [5] gives users a spreadsheet-like interface to build appli-
cation queries over any publicly accessible data APIs. However, it 
expects users to enter an API request URL with parameters man-
ually; thus, it requires each user to learn the API and construct 
API query strings. Gneiss also expects the user to connect difer-
ent APIs through their spreadsheet-like interface. Mavo [31] is a 

library that lets a user build an interactive application over any 
JSON data source simply by authoring and annotating an HTML 
document (we will use Mavo as part of our overall system). But like 
the other tools above, Mavo posits that programmers will provide 
the connectors to those JSON data sources. 

Easing the burden further, Spinel [6] does help end-users connect 
data APIs to mobile applications without programming. Spinel has 
a form-based query-builder for describing these APIs. However, 
similar to previous mashup tools, Spinel does not connect these 
APIs and expects the user to traverse this connection. Shapir [2] 
is a system that empowers end-users to create interactive web 
applications that operate on data accessible through web APIs (we 
will use Shapir as Wikxhibit’s web API access layer). Shapir allows 
relatively inexperienced programmers to describe and connect web 
APIs without writing code or assembling any query strings. Unlike 
previous mashup tools, Shapir standardizes the data model of web 
APIs that ofer semantically similar data types. Thus, Shapir makes 
it possible for users to create an application over one web API and 
then use it, unchanged, with other APIs that ofer semantically 
similar data. However, Shapir does not support the integration of 
heterogeneous types of data from diferent websites and expects 
the user to make this connection. 

These prior tools focus more on building applications and mashups 
over easily accessible data. Wikxhibit would allow all these past 
tools to access this uniform data model of all web APIs and integrate 
them into their workfow. Wikxhibit’s primary focus is to make 
linked data easily accessible. In addition, it allows relatively inex-
perienced programmers to access any web APIs without writing 
code or assembling any query strings. With Mavo, Wikxhibit also 
enables non-programmers to create HTML applications to query 
and access web APIs. 

These prior tools focus on querying and retrieving individual 
API data; none supports easy access to heterogeneous types of data 
from diferent web APIs, which Wikxhibit supports. 

Data fow language tools such as Yahoo Pipes [25], and Node-
RED [23] allow users to edit and connect data through APIs. Node-
RED allows users to confgure individual HTTP requests and con-
nect them using a web form. Node-RED does not ofer an easy way 
for end-users to link data from Node-RED to their applications. 
Users need to make changes to their application and write code to 
make this connection. In addition, studies have found that the data 
fow representation is often difcult for end-users to understand [4]. 

2.3 Data Integration 
Several eforts have been made to help users integrate data from 
multiple sources. Research on mashup tools has provided ways to 
let users extract and integrate web data from diferent websites 
without having to write conventional code [10]. Mashup tools like 
MashMaker [11] and Vegemite [18] allow users to scrape web data 
directly from web pages and allow users to create a mashup by 
browsing and combining diferent web pages. Potluck [16] is an-
other data integration tool that allows users to combine, clean, 
and merge data coming from various sources. However, most of 
these mashup tools do not support the reuse and integration of the 
created Mashups. In addition to mashup tools, the Semantic Web 
vision includes representations like RDFS and OWL that can be 

https://ChicagoCrime.org
https://data.gov


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

used to drive inference engines able to transform data between mul-
tiple schemas. RDFS aims to support transformation between any 
two schemas at any time. Shapir ofers a less ambitious but more 
practical approach to describing and executing a translation from a 
specifc website’s API to Schema.org standard as it fetches the data. 
No transformations need to be applied during computation. How-
ever, the integration that Shapir ofers is limited to the types of data 
provided by APIs; only web APIs with semantically similar types 
of data can be integrated using Shapir. Wikxhibit uses Shapir’s type 
unifcation of web APIs and, together with Wikidata, extends this 
unifcation to support the integration of many heterogeneous types 
of data from diferent websites. 

3 BACKGROUND 
Our system builds heavily on three pieces of prior work that we 
describe here: Wikidata, Mavo, and Shapir. 

3.1 Wikidata 
Wikidata [32] is a knowledge base with tens of millions of data 
entities or items that anyone can access and edit. Item refers to 
a real-world object, concept, or event that is given an identifer 
in Wikidata together with information about it. Each item has an 
identifer (which starts with “Q” followed by one or more digits), 
label, description, aliases, and properties with their values. Each 
Wikidata property has its identifer (which starts with “P” followed 
by one or more digits). Properties have their pages on Wikidata 
and are connected to items, resulting in a linked data structure. 

Figure 2(left) shows a Wikidata item’s page for the artist Lady 
Gaga, which contains the item’s identifer (Q19848); label (Lady 
Gaga); description (American singer, songwriter, and actress); and 
other properties and their values such as instance of and image. 
Wikidata items are connected; for example, Lady Gaga (Q19848) 
is an instance of human (Q5). Some of the Wikidata properties 
are external identifers. These identifers link Wikidata items to 
external databases, authority control fles, or encyclopedia articles 
about the entity; for example, an ISBN for a book or the unique 
part of the URL of a movie or an actor in IMDb. Wikidata cross-
references how additional information about items or entities can 
be accessed through APIs on hundreds of other websites using these 
external identifers. In Figure 2(left), we highlight three external 
identifers which identify the artist Lady Gaga on Spotify, YouTube, 
and Songkick. The values for these external identifers are links 
to external web pages. For example, the value for the Spotify 
artist id property is a URL that links to the Spotify web page for 
Lady Gaga. Wikxhibit uses these links to connect to the web APIs 
for these sites and fetch data from them about these entities. For 
example, Wikxhibit calls the Spotify artist API to fetch data about 
Lady Gaga from Spotify using the value of her Spotify artist 
id provided by Wikidata (more details about this in section 5.2). 

Wikidata allows users to query and retrieve its data, mainly 
through its SPARQL Query Service GUI [35] and API. Recently, 
Wikidata introduced the Wikidata Query Builder [34], which pro-
vides a visual interface for building a simple Wikidata query for 
users with little or no experience in SPARQL. Wikidata Query Ser-
vice allows users to view their query result (depending on the query) 
as a table, an image grid, or a simple visualization. 

Developers used the Wikidata SPARQL endpoint and created 
several applications that present Wikidata data [36]. However, these 
applications were built by skilled programmers. And according to 
a discussion we had with Wikidata engineers, there are no existing 
tools provided by Wikidata or other organizations that simplify this 
process for programmers and make it possible for non-programmers 
to create presentations of Wikidata and its cross-referenced APIs. 

3.2 Mavo 
Mavo [30, 31] is a bidirectional HTML templating language that ex-
tends the declarative syntax of HTML to describe Web applications 
that manage, store and transform data. Mavo aligns hierarchically 
structured data to a hierarchically structured web page. Authors 
link a page to a data source, then add a few attributes and expres-
sions to their HTML elements to transform a static web page into a 
persistent, data-driven web application. 

Mavo uses popular cloud services for storing and retrieving app 
data, such as Dropbox or GitHub. Authors specify which of these 
predefned services they intend to use by using mv-storage (read-
write) or mv-source (read-only) HTML attributes. Support for new 
APIs can be added by authoring JavaScript plugins. 

Loading data from arbitrary APIs in Mavo applications is tech-
nically already possible. Any URL that returns JSON is a valid 
mv-source for Mavo. However, this requires authors to assem-
ble API-invocation URLs manually. In addition, Mavo does not 
integrate data from diferent sources. 

3.3 Shapir 
Shapir [2] is a system that simplifes the work for users to create 
interactive web applications that operate on standardized data ac-
cessible through arbitrary web APIs. It consists of three related 
components: WoOPI, ShapirJS, and ShapirUI. WoOPI is a standard-
ized, machine-readable API ontology that can describe an API in 
terms of objects conforming to the canonical type defnitions pro-
vided by Schema.org [12]. ShapirJS is a JavaScript library that uses 
a WoOPI description to present the API’s data as typed objects in 
the local environment. And ShapirUI is a graphical tool that lets 
even non-programmers create the required WoOPI descriptions 
using standard data types. These three components are connected. 
A person uses ShapirUI to describe an API, and ShapirUI generates 
a corresponding WoOPI description of it. The ShapirJS JavaScript 
client library can read that WoOPI description to provide simple, 
local-environment access to the data behind the API. The WoOPI 
description only needs to be authored once; then anyone can use it. 
ShapirJS is also integrated with Mavo to empower users to create 
applications interacting with APIs’ data by writing only HTML, 
with no JavaScript programming required. 

Shapir unifes web APIs based on the type of data they ofer. 
Using Shapir, a user can write an application over one web API 
and then use it unchanged with other APIs that ofer semantically 
similar data types. However, Shapir does not support the integration 
of many heterogeneous types of data from diferent websites. 

In this work, we recognize that an object in one web API often 
describes the same real-world entity as an object in a diferent API. 
Thus, we use ShapirJS as the web API access layer for Wikxhibit, 

https://Schema.org
https://Schema.org


Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

Figure 2: An illustration of the relationship between the diferent components that form Wikxhibit. We use Wikidata as a 
universal join table to cross-reference entities across diferent third-party APIs using its external identifers (highlighted). We 
feed Shapir Wikidata’s external IDs. We extend Mavo to support custom properties that hold the data returned by the APIs 

allowing a user to create applications that link and interact with 
data drawn from multiple websites simultaneously. 

Wikxhibit could be built on top of any web API access libraries 
(e.g., Swagger [27] or ScrAPIr [1]). But we choose to use ShapirJS 
because it ofers additional advantages over the other API access 
libraries. Shapir presents the data behind a given web API as a uni-
form collection of readable and writeable standard-typed connected 
objects. Unlike accessing APIs directly or through any machine-
generated library from a low-level API description, ShapirJS presents 
the object connections implicitly without requiring the user to in-
voke API endpoints to traverse the connections. The API’s objects 
are connected through the properties of the object. For example, the 
artist object in Spotify is connected to its album and track objects. 
When users access the Spotify artist object, they can implicitly read 
the artist’s albums and tracks. 

4 EXPERIENCES WITH CREATING 
PRESENTATIONS OF WIKIDATA 

We began by investigating people’s experiences with Wikidata by 
surveying 25 Wikidata users; 75% of them use Wikidata daily, and 
the rest have used it several times. Participants use Wikidata for 
diferent purposes: 83% query Wikidata using the Wikidata Query 
Service, 33% query it using the Wikidata API, 75% edit Wikidata, 
and 16% build tools for/using Wikidata. Our participants come from 
the following backgrounds: Data Journalism, media art, biophysics, 
software engineering, tech support, and communications. 

We asked what Wikidata presentations subjects wanted to create 
and why. We then asked how respondents tried to create these 
presentations and whether they succeeded. 

90% of respondents expressed a desire to create presentations 
of Wikidata data, but only 44% had actually attempted to do so. Of 
those who attempted to create Wikidata presentations, only 20% 

were sometimes successful, while 22% were never successful. These 
results imply that while there is strong interest in creating presen-
tations of Wikidata, there exist barriers to doing so, even among 
those who have the technical skills to complete the task. Table 1 
lists some applications respondents are interested in creating. 

All respondents who want to create presentations of Wikidata 
expressed the desire to integrate Wikidata’s data with other data 
sources. Some of these presentations that respondents wanted to 
create but have not succeeded in are: aligning music entities from 
Wikidata with its information from MusicBrainz; unifying geo-
entity in Wikidata with GeoNames and others; and creating a pre-
sentation that combines data from hi-knowledge.org with scholarly 
data from Wikidata. However, given that data integration from dif-
ferent websites is challenging, half of the respondents either never 
tried or tried and always failed. 

Our respondents indicated three main obstacles to creating ap-
plications that integrate Wikidata with other data sources: (1) it 
requires advanced programming skills, which many of our respon-
dents did not have; (2) it takes a lot of time and efort; and (3) it 
requires the unifcation of diferent data formats and schemas from 
multiple websites. Wikxhibit overcomes these obstacles. 

5 WIKXHIBIT 
Wikxhibit is a JavaScript library for creating HTML-based data 
presentations of Wikidata and its cross-referenced web APIs. Wikx-
hibit allows a user to author plain HTML that, with a few new 
attributes, can dynamically fetch and display any of the data that 
users can access through Wikidata and its cross-referenced APIs. 
Wikxhibit uses Wikidata as the bridge to connect all the cross-
referenced APIs. It allows users to aggregate data from diferent 
websites at once, seamlessly connecting object to object, without 
even realizing that they are pulling data from multiple websites. 

https://hi-knowledge.org


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

Presentations Wikidata Other 

Display music entities from Wikidata along ✓ ✓ 
with information about them from Mu-
sicBrainz 
Combine scholarly data from Wikidata with ✓ ✓ 
data from hi-knowledge.org 
Display artworks with their provenances, ✓ ✓ 
collections, inventory numbers, etc., and in-
tegrate them with information in museum 
collections databases via the artwork IDs for 
the museums which are already in Wikidata 
Integrate Wikidata data with data journal- ✓ ✓ 
ism curriculum and news projects 
Unify geo-entity in Wikidata with GeoN- ✓ ✓ 
ames and others 
List political parties of any country ✓ 
Present information about traditional ✓ 
Ghanaian rulers 
List superior courts in California ✓ 

Table 1: Some of the applications that our survey respon-
dents are interested in creating. Some of these applications 
integrate data from Wikidata and other data sources 

Wikxhibit integrates with Shapir, a system that standardizes access 
to web APIs by presenting the API’s data as standardized typed 
objects in the user’s local environment. This integration allows 
users to access data behind Wikidata’s cross-referenced APIs. We 
integrate Wikxhibit with Mavo, an HTML language extension for 
describing web applications declaratively, to empower plain-HTML 
authors to create presentations of Wikidata. We implement Wikx-
hibit as a Mavo plugin that registers a new data source type. Mavo 
authors invoke it using mv-source="wikxhibit" on their Mavo 
root element (Figure 3, line 1). Wikxhibit provides Mavo users with 
a high-level syntax that does not require them to write SPARQL 
queries and make HTTP requests. 

Wikxhibit creates this network of linked data objects and em-
powers end-users to author presentations in just HTML that fetch 
data from these web data objects and display their values. Users 
can create beautiful presentations over this virtual data model we 
created without understanding the technical details behind how it 
works. 

This section describes the kind of applications end users can 
create using Wikxhibit. 

5.1 Creating Presentations of Wikidata 
Using Wikxhibit, users can author applications that read and present 
data from Wikidata in a few lines of HTML code. Figure 3 shows 
an art gallery application of paintings by the painter Gustav Klimt, 
and for each painting it displays its image, title, and inception. 
To present a list of paintings for a specifc painter, a user can specify 
that they want to get paintings from Wikidata by specifying the 
type of entities they want to show using mv-source-instance-of= 
"painting" (Figure 3, line 4) and in which language (line 3). Then 
they can use an input property (line 7) in order to collect the name of 

a painter that they would like to show using mv-source-creator= 
"[painter]" (line 5). The user can then describe a template for 
each of the paintings they would like to display, and they do this by 
specifying which Wikidata properties they want to include, using 
the property attribute provided by Mavo, and how they want to 
show them (lines 9-11). To display multiple paintings, the user uses 
the mv-multiple attribute provided by Mavo (line 8), which will 
then make a copy of the painting template for each of the paintings 
they are displaying. The user can specify the number of paintings 
they would like to display by using the mv-source-numberOfItems 
property (line 6). 

Figure 3: An art gallery of paintings by Gustav Klimt using 
Wikxhibit 

In addition to presenting a list of data (e.g., paintings), users can 
create diferent types of applications that use data from Wikidata. 
Figure 4 shows a game application to guess the names of countries 
from their fags and other data about them, with the data being 
read from Wikidata. 

5.1.1 Qery Wikidata using human-readable properties and values. 
With the Wikidata Query Service, users need to query Wikidata 
using its SPARQL endpoint. Figure 5 shows a SPARQL query that 
fetches a list of paintings by Gustav Klimt. 

With Wikxhibit, users do not need to learn SPARQL query lan-
guage nor be familiar with the identifers for the Wikidata proper-
ties and items. They can use the human-readable names or labels 
for the properties and entities, as provided by Wikidata. In the 
art gallery application in Figure 3, we use the Wikidata properties 

https://hi-knowledge.org


Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA

1 <div mv-app mv-source="wikxhibit"
2 mv-source-service="wikidata"
3 mv-source-instance-of="country"
4 mv-source-continent="[continent]">
5 <!-- the rest of the HTML code can be found
6 in the Wikxhibit site-->
7 </div>

Figure 4: A game application to guess the names of countries
from their flags and other data about them formWikidata

using its SPARQL endpoint. Figure 5 shows a SPARQL query that
fetches a list of paintings by Gustav Klimt.

With Wikxhibit, users do not need to learn SPARQL query lan-
guage nor be familiar with the identifiers for the Wikidata proper-
ties and items. They can use the human-readable names or labels
for the properties and entities, as provided by Wikidata. In the
art gallery application in Figure 3, we use the Wikidata properties
instance of and creator to get a list of paintings by Gustav Klimt.
The Wikxhibit library takes these property names and queries the
Wikidata API to get the identifiers for these properties, P31 and
P170, respectively. Then, the Wikxhibit library runs the SPARQL
query in Figure 5 and returns a list of painting objects by Gustav
Klimt with all of their properties and values.

5.1.2 Access Wikidata linked entities. Wikidata consists of linked
data. Wikxhibit allows users to traverse the connection between
these linked data objects easily. Figure 6 shows a movie page
that presents information about the movie and its cast members.
In this application, we are displaying information about three
linked entities: the movie, its cast members, and the schools where
each cast member was educated at. To be able to traverse these
linked entities and display information about them, the user will
first need to specify the movie they would like to display using
mv-source-id="[movie]" (line 3). Then, the user can display vari-
ous information about the movie, like its label, description, and
image (lines 4-6). To display information about the movie’s cast
members, the user can define a container element with property=
"castMember" (line 8). Within that container, they can display the

1 SELECT *
2 WHERE{
3 ?item wdt:P31 wd:Q3305213 .
4 ?item wdt:P170 wd:Q34661 .
5 ?item wdt:P1476 ?title .
6 ?item wdt:P18 ?image .
7 ?item wdt:P571 ?inception .
8 SERVICE wikibase:label {
9 bd:serviceParam
10 wikibase:language "[AUTO_LANGUAGE],en".
11 }
12 }
13 LIMIT 15

Figure 5: A SPARQL query to get a list of paintings by Gustav
Klimt using the Wikidata Query Service

properties of each cast member (lines 9-11), including the schools
where each cast member was educated (line 12), which is a linked
entity to the cast member. Wikxhibit makes it possible for users to
traverse Wikidata’s linked entities seamlessly through their prop-
erties.

5.1.3 Support Multiple Languages. Wikidata is an international
and thus multilingual project. While English is the default language,
the project is intended to be used by users of every language. Wiki-
data users are familiar with Wikidata entities and properties in
their language. Accordingly, Wikxhibit allows users to query Wiki-
data and get the data in their preferred language by specifying it
using the language property. For example, a French user can get
the paintings by Gustav Klimt using the properties créateur and
nature de l’élément, and the returned results will be displayed
in French.

5.1.4 Support Property and Item Identifiers. We choose to support
human-readable properties and values because it is easier on users,
specifically non-programmers or users who might not be very fa-
miliar with Wikidata identifiers. However, this approach has two
limitations: Wikidata property names could change (but not often),
and entity names are not necessarily unique. Nevertheless, their
identifiers stay the same. For example, the Wikidata property has
parts was changed by Wikidata editors to has part or parts,
but its identifier remains the same (P527). Given that using identi-
fiers is more robust, we also choose to support identifiers to query
Wikidata using Wikxhibit.

5.2 Creating Presentations of Wikidata’s
Cross-referenced APIs

Wikxhibit connects Wikidata’s linked data objects to objects on
other websites, allowing users to create beautiful presentations
over this virtual data model. Figure 1 shows an artist page that com-
bines data from multiple websites: Wikidata, Spotify, YouTube, and
Songkick. When the user reads data from Wikidata about a specific
artist (line 1), they can access information about this artist from
other websites through custom properties created by Wikxhibit
to connect the artist object in Wikidata to objects on other sites
(highlighted properties in lines 5, 15 and 20). The user can list the

Figure 4: A game application to guess the names of countries 
from their fags and other data about them form Wikidata 

instance of and creator to get a list of paintings by Gustav Klimt. 
The Wikxhibit library takes these property names and queries the 
Wikidata API to get the identifers for these properties, P31 and 
P170, respectively. Then, the Wikxhibit library runs the SPARQL 
query in Figure 5 and returns a list of painting objects by Gustav 
Klimt with all of their properties and values. Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA

1 <div mv-app mv-source="wikxhibit"
2 mv-source-service="wikidata"
3 mv-source-instance-of="country"
4 mv-source-continent="[continent]">
5 <!-- the rest of the HTML code can be found
6 in the Wikxhibit site-->
7 </div>

Figure 4: A game application to guess the names of countries
from their flags and other data about them form Wikidata

using its SPARQL endpoint. Figure 5 shows a SPARQL query that
fetches a list of paintings by Gustav Klimt.

With Wikxhibit, users do not need to learn SPARQL query lan-
guage nor be familiar with the identifiers for the Wikidata proper-
ties and items. They can use the human-readable names or labels
for the properties and entities, as provided by Wikidata. In the
art gallery application in Figure 3, we use the Wikidata properties
instance of and creator to get a list of paintings by Gustav Klimt.
The Wikxhibit library takes these property names and queries the
Wikidata API to get the identifiers for these properties, P31 and
P170, respectively. Then, the Wikxhibit library runs the SPARQL
query in Figure 5 and returns a list of painting objects by Gustav
Klimt with all of their properties and values.

5.1.2 Access Wikidata linked entities. Wikidata consists of linked
data. Wikxhibit allows users to traverse the connection between
these linked data objects easily. Figure 6 shows a movie page
that presents information about the movie and its cast members.
In this application, we are displaying information about three
linked entities: the movie, its cast members, and the schools where
each cast member was educated at. To be able to traverse these
linked entities and display information about them, the user will
first need to specify the movie they would like to display using
mv-source-id="[movie]" (line 3). Then, the user can display vari-
ous information about the movie, like its label, description, and
image (lines 4-6). To display information about the movie’s cast
members, the user can define a container element with property=
"castMember" (line 8). Within that container, they can display the

1 SELECT *
2 WHERE{
3 ?item wdt:P31 wd:Q3305213 .
4 ?item wdt:P170 wd:Q34661 .
5 ?item wdt:P1476 ?title .
6 ?item wdt:P18 ?image .
7 ?item wdt:P571 ?inception .
8 SERVICE wikibase:label {
9 bd:serviceParam
10 wikibase:language "[AUTO_LANGUAGE],en".
11 }
12 }
13 LIMIT 15

Figure 5: A SPARQL query to get a list of paintings by Gustav
Klimt using the Wikidata Query Service

properties of each cast member (lines 9-11), including the schools
where each cast member was educated (line 12), which is a linked
entity to the cast member. Wikxhibit makes it possible for users to
traverse Wikidata’s linked entities seamlessly through their prop-
erties.

5.1.3 Support Multiple Languages. Wikidata is an international
and thus multilingual project. While English is the default language,
the project is intended to be used by users of every language. Wiki-
data users are familiar with Wikidata entities and properties in
their language. Accordingly, Wikxhibit allows users to query Wiki-
data and get the data in their preferred language by specifying it
using the language property. For example, a French user can get
the paintings by Gustav Klimt using the properties créateur and
nature de l’élément, and the returned results will be displayed
in French.

5.1.4 Support Property and Item Identifiers. We choose to support
human-readable properties and values because it is easier on users,
specifically non-programmers or users who might not be very fa-
miliar with Wikidata identifiers. However, this approach has two
limitations: Wikidata property names could change (but not often),
and entity names are not necessarily unique. Nevertheless, their
identifiers stay the same. For example, the Wikidata property has
parts was changed by Wikidata editors to has part or parts,
but its identifier remains the same (P527). Given that using identi-
fiers is more robust, we also choose to support identifiers to query
Wikidata using Wikxhibit.

5.2 Creating Presentations of Wikidata’s
Cross-referenced APIs

Wikxhibit connects Wikidata’s linked data objects to objects on
other websites, allowing users to create beautiful presentations
over this virtual data model. Figure 1 shows an artist page that com-
bines data from multiple websites: Wikidata, Spotify, YouTube, and
Songkick. When the user reads data from Wikidata about a specific
artist (line 1), they can access information about this artist from
other websites through custom properties created by Wikxhibit
to connect the artist object in Wikidata to objects on other sites
(highlighted properties in lines 5, 15 and 20). The user can list the

Figure 5: A SPARQL query to get a list of paintings by Gustav 
Klimt using the Wikidata Query Service 

5.1.2 Access Wikidata linked entities. Wikidata consists of linked 
data. Wikxhibit allows users to traverse the connection between 
these linked data objects easily. Figure 6 shows a movie page 

that presents information about the movie and its cast members. 
In this application, we are displaying information about three 
linked entities: the movie, its cast members, and the schools where 
each cast member was educated at. To be able to traverse these 
linked entities and display information about them, the user will 
frst need to specify the movie they would like to display using 
mv-source-id="[movie]" (line 3). Then, the user can display vari-
ous information about the movie, like its label, description, and 
image (lines 4-6). To display information about the movie’s cast 
members, the user can defne a container element with property= 
"castMember" (line 8). Within that container, they can display the 
properties of each cast member (lines 9-11), including the schools 
where each cast member was educated (line 12), which is a linked 
entity to the cast member. Wikxhibit makes it possible for users to 
traverse Wikidata’s linked entities seamlessly through their prop-
erties. UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger

1 <div mv-app mv-source="wikxhibit"
2 mv-source-service="wikidata"
3 mv-source-id="[movie]">
4 <h5 property="label"></h5>
5 <p property="description"></p>
6 <img property="image" />
7 ...
8 <div property="castMember" mv-multiple>
9 <img property="image" />
10 <h5 property="label"></h5>
11 <p property="description"></p>
12 <div property="educatedAt" mv-multiple>
13 <h5 property="label"></h5>
14 </div>
15 </div>
16 </div>

Figure 6: A movie page that presents information about the
movie and its cast members

artist’s albums (line 6) from Spotify and play their tracks (line 11),
albums and tracks are objects connected to the Spotify artist object.
In addition, to Spotify, the user can also play the artist’s videos
from YouTube and list their upcoming events from Songkick.

Wikxhibit provides a network of linked objects about a specific
entity (the artist in this case) from various websites: Wikxhibit
connects Wikidata artist object to Spotify artist object, YouTube
channel object, and Songkick artist object. Moreover, each one of
these objects is connected to other objects within the same site (e.g.,
YouTube channel has videos). Wikxhibit makes it easy for end-
users to traverse these connections between objects from different
websites without even knowing that they are moving from one
website to the other.

Wikxhibit uses Wikidata, which cross-references how additional
information about its entities can be accessed through other sites’
APIs, as shown in Figure 2. Wikidata does not provide access to
the data behind these web APIs. However, it provides external
identifiers/URLs that link its entities to information about them
on other web pages. Wikxhibit uses these external identifiers of
other websites and queries these sites’ APIs, then creates custom

properties containing the data returned by these APIs. Wikxhibit
integrates with Shapir to access these web APIs.

5.2.1 Integrate Wikxhibit with Shapir. We integrateWikxhibit with
ShapirJS, a JavaScript library that allows users to access data be-
hind a web API as a uniform collection of readable and writeable
standard-typed connected objects. Shapir acts as the web API access
layer for Wikxhibit to fetch data about Wikidata’s cross-referenced
web APIs. Shapir has a repository of web APIs descriptions of mul-
tiple websites, which Wikxhibit uses to access these APIs and fetch
data from them. Each API description describes the functions that
fetch and update the different types of objects supported by the API.
Wikxhibit uses the APIs’ functions that fetch data about these APIs’
objects and return that data in custom properties that it returns
with Wikidata entities.

5.2.2 Create custom proprieties of external objects. This section
describes how Wikxhibit connects Wikidata entities to data ob-
jects on other websites. When a user presents information about
a Wikidata artist using Wikxhibit (Figure 1), Wikxhibit returns
all the artist properties with their values from Wikidata. Wikx-
hibit then reads all the external identifiers for this artist, such
as Spotify artist ID, YouTube channel ID, and Songkick
artist ID. Moreover, for each identifier, Wikxhibit uses Shapir
to access the appropriate site’s API function or endpoint, which
returns the object related to the artist from that site. For exam-
ple, for the Spotify artist ID, Wikxhibit will access the Spotify
API endpoint https://api.spotify.com/v1/artists/{Spotify-artist-ID}
which returns an artist object from Spotify. Wikxhibit then creates
a custom property SpotifyArtist, using the name of the exter-
nal identifier, which contains all of the properties that Wikxhibit
fetched from the Spotify artist API endpoint. Similarly, when Wiki-
data provides a YouTube channel ID and a Songkick artist
ID. In that case, Wikxhibit will use these identifiers and query
the YouTube and Songkick APIs and defines YouTubeChannel and
SongkickArtist properties that contain that returned data from
YouTube and Songkick APIs, respectively. These properties are
highlighted in Figure 1.

We use Shapir because it implicitly presents APIs’ object connec-
tions without requiring the user to invoke API endpoints to traverse
the connections. For example, the user can access the albums and
tracks for the artist from Spotify. Shapir maintains the ID of the
artist internally so it can pass it to relevant API endpoints to read
that artist’s album and track objects. In addition, given that Shapir
normalizes the data models of semantically similar data APIs, it
makes it easier for users to integrate similar types of data from
different sites like videos on YouTube and Vimeo.

5.2.3 Unify Entities Across Multiple Websites. Given that a Wiki-
data entity links to external sources of data, it provides this notion
of a uniform identifier that identifies this entity onmultiple websites.
Using Wikxhibit, users can create the artist page in Figure 1 by
referencing one of this artist’s identifiers; it does not have to be the
Wikidata one (in line 1). The user can use the YouTube channel
ID, the Spotty artist ID, or any other identifier that represents
this entity in Wikidata.

Figure 6: A movie page that presents information about the 
movie and its cast members 

5.1.3 Support Multiple Languages. Wikidata is an international 
and thus multilingual project. While English is the default language, 



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

the project is intended to be used by users of every language. Wiki-
data users are familiar with Wikidata entities and properties in 
their language. Accordingly, Wikxhibit allows users to query Wiki-
data and get the data in their preferred language by specifying it 
using the language property. For example, a French user can get 
the paintings by Gustav Klimt using the properties créateur and 
nature de l’élément, and the returned results will be displayed 
in French. 

5.1.4 Support Property and Item Identifiers. We choose to support 
human-readable properties and values because it is easier on users, 
specifcally non-programmers or users who might not be very fa-
miliar with Wikidata identifers. However, this approach has two 
limitations: Wikidata property names could change (but not often), 
and entity names are not necessarily unique. Nevertheless, their 
identifers stay the same. For example, the Wikidata property has 
parts was changed by Wikidata editors to has part or parts, 
but its identifer remains the same (P527). Given that using identi-
fers is more robust, we also choose to support identifers to query 
Wikidata using Wikxhibit. 

5.2 Creating Presentations of Wikidata’s 
Cross-referenced APIs 

Wikxhibit connects Wikidata’s linked data objects to objects on 
other websites, allowing users to create beautiful presentations 
over this virtual data model. Figure 1 shows an artist page that com-
bines data from multiple websites: Wikidata, Spotify, YouTube, and 
Songkick. When the user reads data from Wikidata about a specifc 
artist (line 1), they can access information about this artist from 
other websites through custom properties created by Wikxhibit 
to connect the artist object in Wikidata to objects on other sites 
(highlighted properties in lines 5, 15 and 20). The user can list the 
artist’s albums (line 6) from Spotify and play their tracks (line 11), 
albums and tracks are objects connected to the Spotify artist object. 
In addition, to Spotify, the user can also play the artist’s videos 
from YouTube and list their upcoming events from Songkick. 

Wikxhibit provides a network of linked objects about a specifc 
entity (the artist in this case) from various websites: Wikxhibit 
connects Wikidata artist object to Spotify artist object, YouTube 
channel object, and Songkick artist object. Moreover, each one of 
these objects is connected to other objects within the same site (e.g., 
YouTube channel has videos). Wikxhibit makes it easy for end-
users to traverse these connections between objects from diferent 
websites without even knowing that they are moving from one 
website to the other. 

Wikxhibit uses Wikidata, which cross-references how additional 
information about its entities can be accessed through other sites’ 
APIs, as shown in Figure 2. Wikidata does not provide access to 
the data behind these web APIs. However, it provides external 
identifers/URLs that link its entities to information about them 
on other web pages. Wikxhibit uses these external identifers of 
other websites and queries these sites’ APIs, then creates custom 
properties containing the data returned by these APIs. Wikxhibit 
integrates with Shapir to access these web APIs. 

5.2.1 Integrate Wikxhibit with Shapir. We integrate Wikxhibit with 
ShapirJS, a JavaScript library that allows users to access data be-
hind a web API as a uniform collection of readable and writeable 
standard-typed connected objects. Shapir acts as the web API access 
layer for Wikxhibit to fetch data about Wikidata’s cross-referenced 
web APIs. Shapir has a repository of web APIs descriptions of mul-
tiple websites, which Wikxhibit uses to access these APIs and fetch 
data from them. Each API description describes the functions that 
fetch and update the diferent types of objects supported by the API. 
Wikxhibit uses the APIs’ functions that fetch data about these APIs’ 
objects and return that data in custom properties that it returns 
with Wikidata entities. 

5.2.2 Create custom proprieties of external objects. This section 
describes how Wikxhibit connects Wikidata entities to data ob-
jects on other websites. When a user presents information about 
a Wikidata artist using Wikxhibit (Figure 1), Wikxhibit returns 
all the artist properties with their values from Wikidata. Wikx-
hibit then reads all the external identifers for this artist, such 
as Spotify artist ID, YouTube channel ID, and Songkick 
artist ID. Moreover, for each identifer, Wikxhibit uses Shapir 
to access the appropriate site’s API function or endpoint, which 
returns the object related to the artist from that site. For exam-
ple, for the Spotify artist ID, Wikxhibit will access the Spotify 
API endpoint https://api.spotify.com/v1/artists/{Spotify-artist-ID} 
which returns an artist object from Spotify. Wikxhibit then creates 
a custom property SpotifyArtist, using the name of the exter-
nal identifer, which contains all of the properties that Wikxhibit 
fetched from the Spotify artist API endpoint. Similarly, when Wiki-
data provides a YouTube channel ID and a Songkick artist 
ID. In that case, Wikxhibit will use these identifers and query 
the YouTube and Songkick APIs and defnes YouTubeChannel and 
SongkickArtist properties that contain that returned data from 
YouTube and Songkick APIs, respectively. These properties are 
highlighted in Figure 1. 

We use Shapir because it implicitly presents APIs’ object connec-
tions without requiring the user to invoke API endpoints to traverse 
the connections. For example, the user can access the albums and 
tracks for the artist from Spotify. Shapir maintains the ID of the 
artist internally so it can pass it to relevant API endpoints to read 
that artist’s album and track objects. In addition, given that Shapir 
normalizes the data models of semantically similar data APIs, it 
makes it easier for users to integrate similar types of data from 
diferent sites like videos on YouTube and Vimeo. 

5.2.3 Unify Entities Across Multiple Websites. Given that a Wiki-
data entity links to external sources of data, it provides this notion 
of a uniform identifer that identifes this entity on multiple websites. 
Using Wikxhibit, users can create the artist page in Figure 1 by 
referencing one of this artist’s identifers; it does not have to be the 
Wikidata one (in line 1). The user can use the YouTube channel 
ID, the Spotty artist ID, or any other identifer that represents 
this entity in Wikidata. 

For example, if a user wants to refer to an entity on the web 
using an identifer, other than the Wikidata one, they can spec-
ify the identifer and the service that identifer belongs to via 
the mv-source-service and mv-source-id attributes. For exam-
ple, we can create the same artist page in Figure 3, by replacing 

https://api.spotify.com/v1/artists/{Spotify-artist-ID}


Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

mv-source-service="wikidata" with mv-source-service="sp 
otify" and mv-source-id="Q19848" with the Spotify’s artist ID 
mv-source-id="1HY2Jd0NmPuamShAr6KMms" or mv-source-id=" 
https://open.spotify.com/artist/1HY2Jd0NmPuamShAr6KMms". 

We support this functionality because we would like to give 
access to this rich uniform data model, even to users who might 
not be familiar with Wikidata. So Wikxhibit allows users to refer 
to an entity on the web from any site and get a lot of information 
about them from diferent websites. 

5.3 Demos and Code Generator 
Wikxhibit’s website provides demos that users can use to create 
their applications. Users can download the source code of these 
demos, and they can fork these demos using CodePen [7], an online 
HTML and CSS editor, and see the resulting page immediately. 
This really shows the power of a serverless system like Wikxhibit. 
Because there is no server, users can add their whole application 
on CodePen, so other people can fork it and edit it. 

In addition to the demos, Wikxhibit provides a code generator 
that, based on the properties and values specifed by the user, will 
generate a simple application that helps users get started with 
Wikxhibit. The objective of this code generator is to (1) help users 
fnd relevant properties and entities to query and display Wikidata’s 
data and (2) help users know the properties that are returned by 
Wikidata’s cross-referenced APIs. 

6 IMPLEMENTATION 
Wikxhibit has a frontend web interface, built using JavaScript, 
HTML, and CSS, and a backend component, built using JavaScript. 
We implement Wikxhibit as a JavaScript library that queries Wiki-
data using its SPARQL endpoint and other web APIs using the 
ShapirJS library. Using Wikidata and Shapir, Wikxhibit creates a 
virtual data model that links entities across diferent websites. Wikx-
hibit queries Wikidata, using its SPARQL endpoint, and returns 
the result as an entity or a list of entities, each with properties and 
values. Wikxhibit uses the entities’ external identifers to fetch data 
about those entities from other web APIs using the appropriate 
functions provided by ShapirJS. Wikxhibit integrates with Mavo 
through a plugin that adds Wikxhibit as a new Mavo backend. It 
takes care of translating HTML attributes to Wikxhibit function 
calls that allow HTML authors to query Wikidata and other web 
APIs and present their data. 

7 EVALUATION 
In our evaluation, we examined whether Wikxhibit could be learned 
and applied by users, including non-programmers, to create various 
applications that present data from Wikidata and other data sources 
in a short amount of time. 

It has already been shown [31] that non-programmers with basic 
HTML knowledge can quickly create Mavo applications to manip-
ulate data that is defned and stored locally. The improvement 
provided by Wikxhibit is to empower those same types of authors 
to create the same kinds of applications but to present data from 
Wikidata and other web APIs. 

In order to understand both the usability and fexibility of Wikx-
hibit, we designed two user studies. For a frst structured study, 

we authored two Wikidata presentations and then gave users a 
series of Wikxhibit authoring tasks that gradually evolved those 
presentations into complete ones. We then asked users to create a 
presentation of specifc Wikidata data from scratch. This study fo-
cused on learnability and usability. For a second freestyle study, we 
asked participants to create presentations of their preferred Wiki-
data data. This study focused on whether Wikxhibit’s capabilities 
were sufcient to create presentations envisioned by users. 

7.1 Preparation 
7.1.1 Procedure. We recruited 12 Wikidata users (mean age 45.75, 
SD 7.1; 84% male, 8% female, 8% other) by publishing a call to partici-
pate in the structured study on the Wikidata mailing list, forum, and 
social media. And for the freestyle study, we conducted a workshop 
at a Wikidata conference, where we asked Wikidata users to create 
their applications. Of the participants, 8 identifed as beginner or 
intermediate in HTML, and 4 as advanced or expert. When they 
were asked about programming languages, 7 described themselves 
as beginners or worse in any programming language, while 5 con-
sidered themselves intermediate or better. Of these participants, 
7 participated in the structured study, and 5 participated in the 
freestyle study. 

Before the structure study, we interviewed each user, asking 
them how they are using Wikidata, what type of presentations they 
would like to create, and the challenges that prevented them from 
doing so; we then gave them a tutorial on Wikxhibit. Before the 
freestyle study and during the workshop, we presented Wikxhibit, 
then gave all users a tutorial on Wikxhibit. 

7.1.2 Participants Background. The participants we recruited for 
this study were all users of Wikidata; some have used Wikidata more 
than others. 3 of the participants were Wikidata editors: an editor of 
music data, an editor of German non-proft organizations data, and 
a communications manager in Wikidata. These Wikidata editors 
are beginners or worse in any programming language. In addition 
to editors, 3 other participants were professors: a digital humanity 
professor, a data journalism professor, and a software engineering 
and project management professor. Moreover, 3 participants are 
developers who have built tools using Wikidata, and their work is 
featured on the Wikidata tools page [36]. The rest of the participants 
are using Wikidata for their personal use. 

7.2 The Structured Study 
For the structured study, participants were assigned three Wikidata 
presentations or applications, two of which we created for the study. 
Our participants were given static HTML and CSS mockups of these 
applications and were asked to carry out a series of tasks by editing 
the HTML. These tasks tested their ability to use diferent aspects 
of Wikxhibit, as shown in Figure 7. The frst application allows 
users to browse information about diferent tech companies: the 
company structure (its parent organization and subsidiaries), their 
products, etc. The other application presents information about US 
presidents: their family background, education, positions they have 
held, videos of their speeches, and posts about them on social media 
(e.g., Reddit). This application combines data from Wikidata and 
other websites (YouTube and Reddit). The third application was one 

https://open.spotify.com/artist/1HY2Jd0NmPuamShAr6KMms


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

that we asked participants to build from scratch. This application 
displays information about botanical gardens in France. 

We provided tasks to the user one at a time, letting them complete 
one before revealing the next. Participants were asked to speak 
aloud about their thoughts and confusion as they worked. 

7.2.1 Study Tasks. In the case of the tech company application, 
users had 6 tasks to complete, while for the US president applica-
tion, users had 5 tasks. The tasks increased in difculty in order 
to challenge the users. Figure 7 shows the tasks we assigned the 
participants and the solution to these tasks. We only show the part 
of the HTML that participants have to write to perform the tasks. 
The tasks test diferent aspects of how Wikxhibit displays data from 
Wikidata and other websites: properties with primitive values (e.g., 
App#1/Task#1), properties with object values, those that link to 
other entities (e.g., App#1/Task#5), properties with multiple values 
(e.g., App#1/Task#4), and properties of objects from websites other 
than Wikidata (e.g., App#2/Task#3). In addition to displaying dif-
ferent types of properties from Wikidata and other sites, we tested 
how users will be able to query Wikidata using diferent sets of 
properties and values (e.g., App#3/Task#1). 

7.2.2 Result. After going through the tutorial, 6 users went on to 
complete all the tasks for their three applications with no failures, 
and 1 user had no failures but had to leave before fnishing the 
last application. The 6 users who completed all tasks successfully 
took, on average, 14 minutes (Tech Company, 6 tasks), 9 minutes 
(US President, 5 tasks), and 5 minutes (Botanical Gardens, build an 
app from scratch) to build the entire application. Some tasks were 
easier for participants to carry out than others. For instance, all 
participants were quickly able to display properties with primitive 
values with an average time of 1 minute or less. For properties 
that link to other entities, such as getting information about the 
company’s co-founders (App#1/Task#4), participants were able to 
perform these types of tasks with an average time of 2-3 minutes. 
For the more challenging task that asked participants to query 
Wikidata (App#1/Task#6 and App#3/Task#1), participants spent 5 
minutes on average performing these tasks. 

7.2.3 Challenges and Suggested Improvements to Wikxhibit. During 
the study sessions, we observed some common challenges and 
limitations of Wikxhibit. This section presents some of the main 
challenges our participants faced during the study. 

Finding relevant Wikidata properties. Users need to use en-
tity and property names as defned by Wikidata. They need to look 
up these properties on the Wikidata website. The easiest way to 
fnd relevant properties is to look for an example entity page on 
Wikidata and check its properties. For example, in App#3, most 
participants looked for a French botanical garden page in Wikidata 
(e.g., Jardin des plantes(Q730948)) and checked the properties 
available for this garden. From there, they were able to fnd the 
instance of with value botanical garden to use it to query 
Wikidata. Not all participants did that, so it was challenging for 
them to know which property to use to get a list of botanical gar-
dens from Wikidata. So, to help users fnd relevant information 
from Wikidata, we created a property and entity search widget 
with auto-complete. 

Inconsistency with property names. In Wikxhibit, we use two 
diferent property syntaxes: One for querying Wikidata and another 
for displaying the values for these properties. To query Wikidata 
using Wikxhibit, we use hyphens to separate the words in property 
names (instance-of). However, if we want to display the value 
of property instance of on the page, we would use instanceOf. 
Using two diferent syntaxes to write properties is an obvious lim-
itation of Wikxhibit. We do it this way because Shapir maps the 
properties from Wikidata’s cross-referenced APIs to Schema.org. 
And Schema.org does not use hyphens in its property names. So, 
we wanted Wikidata properties to be consistent with Schema.org’s 
properties. We can not use this syntax to query Wikidata, where we 
use hyphens instead because Mavo does not distinguish between 
capital and small letters. Wikxhibit needs a way to separate the 
words in property names to query Wikidata. It was confusing for 
participants to learn the two diferent syntaxes at frst, but they 
quickly got used to it after the frst application. 

Showing multiple values. If a property returns a list of values, 
users have to use the mv-multiple attribute to show the list of 
values (e.g., App#1/Task#3). If the user does not add this attribute, 
Mavo will only show one of the values. Some participants forgot 
to add the mv-multiple attribute to these properties, and only 
when they saw that Wikxhibit/Mavo displayed one value did they 
remember to add the mv-multiple attribute to show all the values. 
One improvement to Mavo would be for it to detect that a property 
has a single or multiple values automatically, without the user 
explicitly indicating that. 

Feedback. Wikidata entity and property names are case-sensitive. 
When users use these entities to query Wikidata in Wikxhibit, 
they need to use them as Wikidata defnes them. For example, 
in App#3/Task#1, participants were asked to query Wikidata to 
get a list of botanical gardens from France, using the following 
properties and values: instance-of="botanical garden" and 
country="France". Note that the value of instance of uses small 
letters, and the value of country starts with a capital letter. This is 
because these two values are defned that way in Wikidata. Cur-
rently, Wikxhibit does not return any error messages telling the 
user what could have gone wrong. A necessary improvement to 
Wikxhibit would be to show error messages that help guide users 
when they make mistakes, which we are working on adding to 
Wikxhibit. 

Documentation. Wikxhibit provides documentation with ex-
amples and demos. One participant suggested we add our Wikxhibit 
documentation on a wiki page “The documentation could be moved 
on a wiki, so the community can help to expand and improve it”. This 
would really help the Wikidata community share their applications 
with the community and build on top of each other’s work. We 
have already created a Wikxhibit page on Wikidata1, and we plan 
on adding our detailed documentation to it. 

7.3 The Freestyle Study 
Our second freestyle user study was part of a workshop we con-
ducted during a Wikidata conference. The conference’s primary 
goal is to provide a space to bring together anyone interested in 
using Wikidata’s data. More specifcally, to bring together Wikidata 

1https://www.wikidata.org/wiki/Wikidata:Wikxhibit 

https://www.wikidata.org/wiki/Wikidata:Wikxhibit
https://Schema.org
https://Schema.org


Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA

<!-- Task#6 show a list of 5 companies that are part of big tech in the United States of America-->
<div mv-app mv-source="wikxhibit" mv-source-service="wikidata"
mv-source-part-of="Big Tech" mv-source-country="United States of America"
mv-source-numberOfItems="5">
<!-- Task#1 Show description-->
<p property="description"></p>
<!-- Task#2 Show inception date-->
<time property="inception"></time>
...
<!-- Task#3 Show the types of industry-->
<div property="industry" mv-multiple>

<p property="label"></p>
</div>
<!-- Task#4 Show the co-founders names and images-->
<div property="foundedBy" mv-multiple>

<img property="image" />
<p property="label"></p>

</div>
<!-- Task#5 Show the total equity of the parent organization-->
<div property="parentOrganization">

<p property="totalEquity"></p>
</div>

</div>

<div mv-app mv-source="wikxhibit" mv-source-service="wikidata" mv-source-id="[presidentId]">
...
<!-- Task#1 Show the father's occupation-->
<div property="father">

<div property="occupation">
<p property="label"></p>

</div>
</div>
<!-- Task#2 Show the mother's religion-->
<div property="mother">

<div property="religionOrWorldView">
<p property="label"></p>

</div>
</div>
<!-- Task#3 Show videos from Obama's YouTube Channel -->
<div property="YouTubeChannel">

<div property="videos" mv-multiple>
<iframe src="[embedUrl]"></iframe>

</div>
</div>
<!-- Task#4 Show Obama's Reddit posts -->
<div property="RedditUsername">

<p property="text"></p>
</div>
<!-- Task#5 Replace Obama with Trump -->

</div>

<!-- Task#1 Show a list of 15 botanical gardens in France -->
<div mv-app mv-source="wikxhibit" mv-source-service="wikidata"
mv-source-instance-of="botanical garden"
mv-source-country="France"
mv-source-numberOfItems="15">

<!-- Task#2 For each garden, show its label, description, image,
and location-->

<div property="items" mv-multiple>
<h1 property="label"></h1>
<p property="description"></p>
<img property="image" width="10%"/>
<div property="locatedInTheAdministrativeTerritorialEntity">

<h5 property="label"></h5>
</div>

</div>

</div>

Figure 7: Wikxhibit user study tasks with their solutions. Participants were assigned 3 presentations (right) with tasks, in-lined
as comments, and the code (left) is what participants added to perform the given tasks

Figure 7: Wikxhibit user study tasks with their solutions. Participants were assigned 3 presentations (right) with tasks, in-lined 
as comments, and the code (left) is what participants added to perform the given tasks 



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

users, data editors, and developers who want to build applications 
on top of Wikidata’s data to understand better what they are build-
ing and their users’ needs and wishes regarding Wikidata’s data. 
Each group of users can hear the other’s perspective on using Wiki-
data’s data. 

This conference was a perfect event to present Wikxhibit to the 
Wikidata community, get them to use it, and get their feedback. 
During the workshop, we presented Wikxhibit, then showed a 
demo of how to create an application that uses Wikxhibit and 
its cross-referenced APIs. Then, we asked participants to create 
their own applications within 30 minutes. Participants had access 
to the Wikxhibit documentation and demos and were allowed to 
ask us questions about Wikxhibit. Around 30 people attended the 
workshop, and 5 participants shared their applications with us 
during the workshop and gave us their feedback. We conducted 
this study to test whether Wikxhibit’s capabilities were sufcient 
to create presentations envisioned by users. 

7.3.1 Result. The Wikxhibit website provides several demos that 
users can fork and edit to create their applications. 4 of the 5 par-
ticipants forked some of our demos, and 1 participant created their 
presentation from scratch. 3/5 participants created their Wikidata 
presentations in less than 15 minutes; the rest fnished them within 
30 minutes. 

One participant created a page about the movie “The Big Lebowski”. 
The page displays general information about this movie from Wiki-
data (the director, cast members, etc.). In addition to data from 
Wikidata, the page displayed movie ratings from IMDb, images 
from The Movie Database, movie clips from YouTube, and news 
articles about the movie from NY Times, integrating data from 
diferent websites seamlessly using only HTML. This participant 
used one of our demos and customized it to show their favorite 
movie. 

Another participant created a presentation that showed a list of 
the superior courts of California. This participant also started their 
application using one of our demos. They used mv-source-part-of= 
"Superior Courts of California" to query Wikidata and dis-
play information about the superior courts of California. 

The third participant created a page that shows the political 
parties based on the country specifed by the user using an input 
feld. The application uses mv-source-instance-of="political 
party" and mv-source-country="Peru" to query Wikidata and 
display the label, description, official website, and political 
ideology, etc. for each political party. 

The fourth participant recreated an application they had already 
built by writing code. They wanted to test if they could create that 
same application using Wikxhibit more efciently. The application 
shows information about comic strips that are part of xkcd [38], 
which is a webcomic of romance, sarcasm, math, and language 
created by Randall Munroe. The participant was pleasantly sur-
prised that they could recreate this application using Wikxhibit 
in about 10 minutes. In contrast, they spent an hour building that 
same application in JavaScript. 

The last participant used our art gallery demo to show paintings 
of their favorite painter. We added some of the applications created 
by our participants to the Wikxhibit website. 

7.4 Participant Feedback 
In a post study survey, we asked participants to rate how easy they 
found the Wikxhibit syntax with the tasks assigned. Participants 
answered all questions with a fve-point Likert scale, from 1 (very 
easy to use) to 5 (very difcult to use). The average ratings were 2 
and 3 for programmers and non-programmers respectively. 

7.4.1 Pros and Cons of Using Wikxhibit. We asked participants 
what they liked and did not like about using Wikxhibit. Participants 
found Wikxhibit to be easy to use. Wikxhibit hides the complex-
ity of querying Wikidata and other data sources and presents its 
data using simple HTML syntax. One participant said“Querying 
Wikidata is a superpower, and to be able to do more than just query 
Wikidata and display the results on a beautiful webpage is simply 
wonderful”, and another said, “compared to the complexity of the 
application built it was surprisingly simple.” More specifcally, they 
liked the immediate results that Wikxhibit presents, integrating 
data from Wikidata and other websites, where one said “very in-
tuitive and fast once you get the hang of the core principles, very 
rewarding seeing the results immediately”. 

We noticed two main challenges. First, participants familiar with 
Wikidata entities/properties found it uncommon to use the human-
readable names of the entities/properties “As a Wikidata editor, it 
was a little exotic thinking in terms of labels rather than Q and P 
numbers” The other challenge was in fnding suitable properties 
to display. Given that Wikidata provides more than 9 thousand 
properties, users have to go to Wikidata and search for the prop-
erties they want to show for a given entity. One said “something 
that would be great would be a property and entity search widget 
and/or autocomplete”. Based on these two challenges, we made the 
following improvements to Wikxhibit: To support both the sim-
plicity of using the human-readable names of properties and the 
robustness of using their identifers, we extend Wikxhibit to sup-
port using the identifers in querying Wikidata. To help users fnd 
relevant properties, we created a property/entity search widget 
with auto-complete. We connect this widget with a code generator 
that creates a simple application based on the properties a user 
chooses to query Wikidata. 

7.4.2 Wikxhibit in the Wild. We will be working closely with some 
of the participants to support their real-world use cases of Wikx-
hibit. Our participants indicated that Wikxhibit could be useful for 
various purposes: educational, enriching current Wikidata appli-
cations with data from other websites, exploring Wikidata linked 
data, supporting specifc types of Wikidata entities, and being able 
to share quick demos of Wikidata presentations with friends and 
colleagues. 

Educational purposes. Professor participants expressed inter-
est in using Wikxhibit to help their students with their class projects. 
A Digital Humanity professor said, “In my class, students build dig-
ital exhibitions with tools like Omeka or Wax. This takes time, due 
to installations, etc.”. Omeka [20] and Wax [21] are libraries for 
producing and publishing media-rich exhibitions with minimal 
computing principles. The exhibition in [28] is an example of one 
that the Digital Humanity students are expected to create. This 
exhibition allows users to browse an author from Wikidata and 
display a collection of their photographs and manuscripts. This 



Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

exhibition combines data from Wikidata with other sites like VAIF 
to get more information about the authors. 

Creating such an exhibition requires an advanced technical back-
ground. But with Wikxhibit, it is possible to create these exhibitions 
only by authoring HTML and CSS. Students in the Digital Human-
ity class come from a Social Science/Humanities background and do 
not necessarily have the programming experience needed to create 
such exhibitions. But, those students learn how to use HTML and 
CSS as part of the class, making Wikxhibit a perfect tool for their 
projects. Wikidata provides the VAIF ID for authors; Wikxhibit uses 
this ID and gets the authors data using the VAIF API, making it 
easy for students to combine the VAIF data with Wikidata. 

Enriching current Wikidata tools with data from other web-
sites. Two participants who have built Wikidata tools expressed 
their desire to integrate data from other websites into their applica-
tions. One participant is building Scholia [22], a tool that handles 
scientifc bibliographic information through Wikidata, and cur-
rently working on combining data from hi-knowledge.org with the 
data from Wikidata. This participant indicated that making this 
data integration easy will simplify the work of enriching Scholia’s 
Wikidata with data from other sites. 

Another participant built Conzept [8], a topic-exploration tool 
based on Wikipedia, Wikidata, Open Library, YouTube, and other 
data sources. The participant is interested in enriching their tool 
with more data sources, such as archive.org. Wikxhibit makes this 
possible by using Wikidata’s Internet Archive ID to fetch rele-
vant data from the Internet Archive API. 

Exploring Wikidata linked data. Another usage of Wikxhibit 
that some participants expressed is to visualize the relationship 
between Wikidata entities, where one participant said, “this frame-
work can help me easily understand the relationship between diferent 
Wikidata items by visualizing it and presenting it in a page”. There 
are more than 99 million connected entities or items in Wikidata. 
Wikxhibit provides an easy way to visualize these connections and 
make sense of them. 

Supporting specifc types of Wikidata entities. Our partici-
pants, who manage and edit specifc types of Wikidata entities, such 
as music and non-governmental organizations (NGOs), each have a 
particular use case in mind with how they want to use Wikxhibit. 

The music editor wants to create an application that will show a 
timeline of diferent types of music from Wikidata and information 
about them from MusicBrainz. The NGOs Wikidata editor had to 
hire a developer to create a website that displays all the NGOs in 
Germany [17] from Wikidata. This editor created the HTML and 
CSS, but the developer wrote the code to fetch and present the 
data from Wikidata onto the page. The editor said, “I wish I had 
Wikxhibit at the time to use it to build this website myself ”. The 
editor is now working on using Wikxhibit to create a page for each 
NGO to present information about it from Wikidata. The editor 
will only need to create one page that would work with any NGO 
entity in Wikidata. 

8 DISCUSSION 
Accessing and integrating data from multiple websites has become 
essential to modern applications. But it is also a signifcant obstacle. 

Past eforts, such as the Semantic Web, hold out the vision of repre-
senting all that data in a common simple model to make it easier to 
build such cross-web applications. But there has not been enough 
uptake, because the websites that hold much of the data do not see 
enough value in joining the efort. 

Instead, we propose an ecosystem that produces a common 
model of web data without demanding the assistance of the sites 
that hold the data. We make it possible for end users to create ap-
plications that link and integrate data from multiple websites using 
HTML and with no additional programming. Wikxhibit combines 
4 components. Shapir uses a declarative API description language 
to simplify access to distinct web APIs and uses Schema.org to 
normalize the diferent site schemas. To this we add the main con-
tribution of this work: using Wikidata to provide the crosslinking 
information needed to unify entities. We then use Mavo to generate 
rich interactive presentations of the resulting unifed information. 

This work is a capstone project; it relies on the prior innovations 
of Mavo, Shapir, and Wikidata. Our contribution is to show how 
these prior innovations can be integrated to create a whole greater 
than the sum of the parts. 

8.1 Wikidata versus Schema.org 
Schema.org provides a vocabulary for structured data markup on 
the Web, which can be found on more than 30% of web pages. 
Schema.org is structurally much simpler than Wikidata to ease 
adoption. A challenge for applications using Schema.org is aggre-
gating data about a given entity from diferent websites. Schema.org 
defnes standardized properties and types, but the identifers for the 
individual entities were not standardized. And because Schema.org 
does not provide entity identifers, it is encouraging the use of Wiki-
data as a common entity base for the target of the schema:sameAs 
relation [33]. The schema:sameAs is allows web publishers to de-
fne a URL of a reference Web page that unambiguously indicates 
the item’s identity (e.g., the URL of the item’s Wikipedia entity). 

In a slightly ironic twist, the schema used by Wikidata to repre-
sent its own information about entities is completely diferent from 
the Schema.org schema that Shapir uses to represent the informa-
tion it fetches about those entities from all other websites. Thus, 
while Shapir allows schematically uniform access to, e.g., all the 
album information on Spotify and Apple Music, the information 
that Wikidata holds about albums is schematical distinct. Thus, 
the most natural approach for a Wikxhibit user is either to use 
only Wikidata information, or to ignore the Wikidata information 
(aside from its entity unifcation) and use only the schematically 
uniform information fetched from other websites. The obvious way 
to overcome this limitation is to use Shapir to write a Schema.org 
wrapper for Wikidata. But this is a signifcant challenge, because 
Wikidata is essentially intended to represent all conceivable entities, 
which requires a much broader API than those typically presented 
by vertical websites. 

There are small eforts that tried to map Schema.org to the Wiki-
data model. One is YAGO 4 [24], a knowledge base that is based on 
Wikidata entities. The top-level classes and properties come from 
Schema.org, and the lower-level classes are a selection of Wikidata 
classes. But unfortunately, YAGO only covers 198 properties out 
of 9,840 properties provided by Wikidata. Wikidata also provides a 

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://archive.org
https://hi-knowledge.org


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Tarfah Alrashed, Lea Verou, David R. Karger 

SPARQL query that maps its properties to Schema.org properties, 
but similar to YAGO, it is only mapping 156 of Wikidata properties 
to Schema.org. 

One approach we consider promising for would be to use Shapir 
to map Wikidata to Schema.org piecewise. For example, if a user is 
interested in getting a list of movies from Wikidata, they can use 
Shapir to map the movie properties from Wikidata to Schema.org/Movie 
properties. Then, the user will be able to create applications that 
integrate and present movies from Wikidata and IMDb, for example. 

8.2 Data Unifcation Challenges 
Wikxhibit builds on and strengthens the benefts of Shapir. Shapir 
performs type unifcation, mapping the data coming from distinct 
websites to common Schema.org types. This allows users to substi-
tute diferent sources of data without changing their application 
and even lets them work with mixed collections of data from multi-
ple sources all under the same schema. However, Shapir does no 
entity unifcation. An application built with Shapir may present a 
collection of albums combined from Apple Music and Spotify data. 
But, the collection will contain duplicate entities, where Apple and 
Spotify both provide information that will be treated as distinct 
entities by Shapir. Wikxhibit provides the additional information 
needed to merge information about the same entity coming from 
diferent sources. 

But this stronger merger creates a new problem: resolving in-
consistencies. Although Shapir ensures that the Apple and Spotify 
Album descriptions share the same schema, we cannot guaran-
tee that the two APIs provide consistent data. They may disagree 
about an album name or track ordering, for example. Coming up 
with automatic resolutions of these inconsistencies is an impor-
tant problem for future research. At present, Wikxhibit skirts the 
problem by keeping the information from diferent APIs distinct, 
even when under the same schema. A user working with an album 
entity in Wikxhibit can use the SpotifyAlbum property to access 
the data from Spotify (represented in the standard Album schema) 
and the AppleMusicAlbum property to access the data from Apple 
(represented under the same schema). If they wish, they can encode 
special purpose rules for merging that data in their application, but 
we do not attempt a general solution. 

8.3 Technical and Design Challenges 
Our core technical challenge is designing how to incorporate en-
tity unifcation into a modular set of components that let non-
programmers create rich web applications. Wikxhibit democratizes 
entity unifcation. There is tons of literature on entity unifcation. 
However, all this literature is directed toward skilled programmers 
in the database community. We are not aware of any tools that allow 
end-user programmers to access the power of entity unifcation, as 
we provide in Wikxhibit. 

We grant that given the proposal to use Wikidata to build ap-
plications over resolved entities from multiple sites, actually im-
plementing the connection is not very challenging. We believe our 
contribution centers on recognizing the new capabilities that would 
emerge from combining previous components, by determining how 
to expose the entity resolution capability to users via our extension 

of Mavo and on our presentation and user evaluation of an archi-
tectural vision of how these distinct components (API connection, 
UI description, and entity resolution) can be combined to support 
powerful end-user programming. 

8.4 Web Components 
Wikidata is a valuable resource that has emerged from Wikipedia, 
but it remains quite separate in some ways. Wikipedia manages 
massive amounts of human-readable text for human consumption, 
while Wikidata focuses on managing machine-readable data but 
seems to give little attention to its general use by people. Wikidata 
ofers relatively basic tools that support querying Wikidata (using 
the complex SPARQL language) and viewing and editing results in 
almost raw form. For a few special cases, such as Artists, developers 
have taken on the work of creating custom presentations. But most 
Wikidata is not accessible in a human-friendly way. 

Wikxhibit demonstrates that it is quite easy to “skin” Wikidata 
into elegant human-readable presentations. We believe this could 
signifcantly increase the usage and value of the data held by Wiki-
data. Many of the applications built by our study subjects were 
essentially “result views” for a particular type of Wikidata object. 
Mavo could be used to defne web components ofering suitable 
presentations of each type of object in Wikipedia (with built in 
editing functionality), and users browsing Wikidata could see the 
information they are looking at wrapped in presentations chosen 
according to the data type. 

8.5 Extension to Read/Write 
At present, Wikxhibit provides only read access through Wikidata 
and its cross-referenced web APIs. Mavo applications that fetch data 
from websites can still manipulate and store that data in Mavo’s 
usual storage locations. Thus, for example, an author could use 
Wikxhibit to connect to Wikidata to query and present paintings 
while managing those paintings that they store locally. Enabling 
Mavo to push edits back to websites requires changes to Mavo’s 
implementation of its core storage model, which we hope to pursue 
in the future. 

9 CONCLUSION 
This paper presents Wikxhibit, a JavaScript library for creating 
HTML-based data presentations of Wikidata and other data APIs 
it cross-references. Wikxhibit allows a user to author plain HTML 
that, with a few new attributes, can dynamically fetch and dis-
play any of the data that can be accessed through Wikidata or its 
cross-referenced APIs. Wikxhibit uses Wikidata as the bridge to 
connect all the cross-referenced APIs, allowing users to aggregate 
data from diferent sites simultaneously. We integrate Wikxhibit 
with Mavo, an HTML language extension for describing web appli-
cations declaratively, to empower plain-HTML authors to create 
presentations of Wikidata. Our evaluation showed that even non-
programmers could create data-based applications in just 5 minutes. 

ACKNOWLEDGMENTS 
We gratefully thank Lydia Pintscher and Denny Vrandečić from 
Wikidata for their valuable feedback throughout the project. 

https://Schema.org
https://Schema.org/Movie
https://Schema.org
https://Schema.org
https://Schema.org


Wikxhibit: Using HTML and Wikidata to Author Applications that Link Data Across the Web UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

REFERENCES 
[1] Tarfah Alrashed, Jumana Almahmoud, Amy X Zhang, and David R Karger. 2020. 

ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings of the 
2020 CHI conference on human factors in computing systems. 1–12. 

[2] Tarfah Alrashed, Lea Verou, and David R Karger. 2021. Shapir: Standardizing and 
Democratizing Access to Web APIs. In The 34th Annual ACM Symposium on User 
Interface Software and Technology. 1282–1304. 

[3] Tim Berners-Lee, James Hendler, Ora Lassila, et al. 2001. The semantic web. 
Scientifc american 284, 5 (2001), 28–37. 

[4] Jill Cao, Kyle Rector, Thomas H Park, Scott D Fleming, Margaret Burnett, and 
Susan Wiedenbeck. 2010. A debugging perspective on end-user mashup pro-
gramming. In 2010 IEEE Symposium on Visual Languages and Human-Centric 
Computing. IEEE, 149–156. 

[5] Kerry Shih-Ping Chang and Brad A Myers. 2017. Gneiss: spreadsheet program-
ming using structured web service data. Journal of Visual Languages & Computing 
39 (2017), 41–50. 

[6] Kerry Shih-Ping Chang, Brad A Myers, Gene M Cahill, Soumya Simanta, Edwin 
Morris, and Grace Lewis. 2013. A plug-in architecture for connecting to new 
data sources on mobile devices. In 2013 IEEE Symposium on Visual Languages 
and Human Centric Computing. IEEE, 51–58. 

[7] codepen. 2022. Chris Coyier and Alex Vazquez. Retrieved April 1, 2022 from 
https://codepen.io 

[8] Conzept. 2022. A modern topic-exploration tool based on Wikipedia, Wikidata, 
Open Library, GBIF, YouTube and other information sources. Retrieved April 3, 
2022 from https://conze.pt 

[9] Marilena Daquino, Ivan Heibi, Silvio Peroni, and David Shotton. 2020. Creating 
RESTful APIs over SPARQL endpoints using RAMOSE. Semantic Web Preprint 
(2020), 1–19. 

[10] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Benatallah. 2009. 
Data integration in mashups. ACM Sigmod Record 38, 1 (2009), 59–66. 

[11] Robert J Ennals and Minos N Garofalakis. 2007. MashMaker: mashups for the 
masses. In Proceedings of the 2007 ACM SIGMOD international conference on 
Management of data. 1116–1118. 

[12] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org: 
evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51. 

[13] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. 2007. Program-
ming by a sample: rapidly creating web applications with d. mix. In Proceedings 
of the 20th annual ACM symposium on User interface software and technology. 
ACM, 241–250. 

[14] Austin Haugen. 2010. The open graph protocol design decisions. In International 
Semantic Web Conference. Springer, 338–338. 

[15] Adrian Holovaty. 2005. ChicagoCrime. org. Available at http (2005). 
[16] David F Huynh, Robert C Miller, and David R Karger. 2007. Potluck: Data mash-up 

tool for casual users. In The Semantic Web. Springer, 239–252. 
[17] Jona Hölderle. 2022. Die größten Nonproft-Organisationen Deutschlands. Re-

trieved April 1, 2022 from https://sozialmarketing.de/die-groessten-nonprofts-
deutschlands 

[18] James Lin, Jefrey Wong, Jefrey Nichols, Allen Cypher, and Tessa A Lau. 2009. 
End-user programming of mashups with vegemite. In Proceedings of the 14th 

international conference on Intelligent user interfaces. ACM, 97–106. 
[19] Pasquale Lisena, Albert Meroño-Peñuela, Tobias Kuhn, and Raphaël Troncy. 2019. 

Easy web API development with SPARQL transformer. In International semantic 
web conference. Springer, 454–470. 

[20] minicomp. 2022. Omeka. Retrieved April 1, 2022 from https://omeka.org 
[21] minicomp. 2022. Wax. Retrieved April 1, 2022 from https://github.com/minicomp/ 

wax 
[22] Finn Årup Nielsen, Daniel Mietchen, and Egon Willighagen. 2017. Scholia and 

scientometrics with Wikidata. In Scientometrics 2017. 237–259. https://doi.org/ 
10.1007/978-3-319-70407-4_36 

[23] Node-RED. 2013. Retrieved August 15, 2019 from https://nodered.org 
[24] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. 2020. Yago 4: 

A reason-able knowledge base. In European Semantic Web Conference. Springer, 
583–596. 

[25] Mark Pruett. 2007. Yahoo! pipes. O’Reilly. 
[26] Markus Schröder, Jörn Hees, Ansgar Bernardi, Daniel Ewert, Peter Klotz, and 

Stefen Stadtmüller. 2018. Simplifed sparql rest api. In European Semantic Web 
Conference. Springer, 40–45. 

[27] Swagger. 2021. Swagger Client. Retrieved Marcth 29, 2021 from https://github. 
com/swagger-api/swagger-js 

[28] Celio Hernández Tornero. 2022. Navega por la colección. Retrieved April 1, 
2022 from https://celioht.github.io/damaboba/collection 

[29] Max Van Kleek, Daniel A Smith, Heather S Packer, Jim Skinner, and Nigel R 
Shadbolt. 2013. Carpé data: supporting serendipitous data integration in personal 
information management. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems. ACM, 2339–2348. 

[30] Lea Verou, Tarfah Alrashed, and David Karger. 2018. Extending a Reactive Expres-
sion Language with Data Update Actions for End-User Application Authoring.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and 
Technology. 379–387. 

[31] Lea Verou, Amy X Zhang, and David R Karger. 2016. Mavo: creating interactive 
data-driven web applications by authoring HTML. In Proceedings of the 29th 
Annual Symposium on User Interface Software and Technology. ACM, 483–496. 

[32] Denny Vrandečić. 2012. Wikidata: A new platform for collaborative data col-
lection. In Proceedings of the 21st international conference on world wide web. 
1063–1064. 

[33] Denny Vrandečić. 2022. Wikidata:Schema.org. Retrieved April 3, 2022 from 
https://www.wikidata.org/wiki/Wikidata:Schema.org 

[34] Wikidata. 2022. Wikidata Query Builder. Retrieved March 11, 2022 from 
https://query.wikidata.org/querybuilder 

[35] Wikidata. 2022. Wikidata Query Service. Retrieved March 11, 2022 from 
https://query.wikidata.org 

[36] Wikidata. 2022. Wikidata:Tools/Visualize data. Retrieved March 11, 2022 from 
https://www.wikidata.org/wiki/Wikidata:Tools/Visualize_data 

[37] Jefrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards 
end-user programming for the web. In Proceedings of the SIGCHI conference on 
Human factors in computing systems. ACM, 1435–1444. 

[38] xkcd. 2022. A webcomic of romance, sarcasm, math, and language. Retrieved 
April 3, 2022 from https://xkcd.com 

https://codepen.io
https://conze.pt
https://sozialmarketing.de/die-groessten-nonprofits-deutschlands
https://sozialmarketing.de/die-groessten-nonprofits-deutschlands
https://omeka.org
https://github.com/minicomp/wax
https://github.com/minicomp/wax
https://doi.org/10.1007/978-3-319-70407-4_36
https://doi.org/10.1007/978-3-319-70407-4_36
https://nodered.org
https://github.com/swagger-api/swagger-js
https://github.com/swagger-api/swagger-js
https://celioht.github.io/damaboba/collection
https://www.wikidata.org/wiki/Wikidata:Schema.org
https://query.wikidata.org/querybuilder
https://query.wikidata.org
https://www.wikidata.org/wiki/Wikidata:Tools/Visualize_data
https://xkcd.com
https://Wikidata:Schema.org

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Semantic Web
	2.2 Mashup Tools
	2.3 Data Integration

	3 Background
	3.1 Wikidata
	3.2 Mavo
	3.3 Shapir

	4 Experiences with Creating presentations of Wikidata
	5 Wikxhibit
	5.1 Creating Presentations of Wikidata
	5.2 Creating Presentations of Wikidata's Cross-referenced APIs
	5.3 Demos and Code Generator

	6 Implementation
	7 Evaluation
	7.1 Preparation
	7.2 The Structured Study
	7.3 The Freestyle Study
	7.4 Participant Feedback

	8 Discussion
	8.1 Wikidata versus Schema.org
	8.2 Data Unification Challenges
	8.3 Technical and Design Challenges
	8.4 Web Components
	8.5 Extension to Read/Write

	9 Conclusion
	Acknowledgments
	References



