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Abstract— For models trained on-premise but deployed in a
distributed fashion across multiple entities, we demonstrate that
minimizing distance correlation between sensitive data such as
faces and intermediary representations enables prediction while
preventing reconstruction attacks. Leakage (measured using
distance correlation between input and intermediate represen-
tations) is the risk associated with the reconstruction of raw face
data from intermediary representations that are communicated
in a distributed setting. We demonstrate on face datasets
that our method is resilient to reconstruction attacks during
distributed inference while maintaining information required
to sustain good classification accuracy. We share modular code
for performing NoPeek-Infer at http://tiny.cc/nopeek
along with corresponding trained models for benchmarking
attack techniques.

I. INTRODUCTION

Data sharing and distributed computation while preserving
privacy and safety has been identified amongst important cur-
rent trends in the adoption of computer vision and machine
learning technologies. In this setting with several client-
server entities interacting in a distributed fashion, there is
a need for privacy preserving technologies to handle face
and gesture data such that attackers residing in one or more
entities cannot reconstruct face data belonging to genuine
clients. This would help to deploy powerful face recognition
technologies such as biometric authentication, facial expres-
sion analysis and consumer attention/engagement analysis in
a truly distributed fashion across a wide array of device types
while maintaining privacy.

We now elaborate on the sub-problem of private collabora-
tive inference that is the setting in which this paper proposes
a method to prevent face reconstruction attacks. With rapid
advances in computing, organizations are now able to train
ultra-large machine learning models on huge data sets with
massive computing resources. This opens up a new set of
problems for external clients that intend to predict with these
models on their query test data. The client would not like to
download these large models in their entirety on their device
given that they often have billions of parameters. Generation
of predictions with these trained models is computationally
intensive if solely performed on-device by the client.

In this setting, we propose a method (NoPeek-Infer) for
the client to share activations from a chosen intermediate
layer such that reconstruction attacks of raw face data can
be prevented while the rest of the prediction after this layer
is performed on a server. We test this on several face datasets
to measure the efficacy of NoPeek-Infer on preventing face

reconstruction attacks within the task of distributed predictive
inference.

A. Motivation

Activation sharing: This setting of distributed learning
with communication of intermediate activations upon split-
ting the deep learning model such that some layers lie with
the client and the rest with the server is popular in split
learning [12], [44], an important variant of federated learn-
ing [19], [28], [18]. Sharing of activations from intermediate
layers is also relevant in distributed learning approaches
of local parallelism [21], features replay [17], divide and
conquer quantization [11] and in task-independent privacy-
respecting data crowdsourcing [22]. The client’s data records
on which the predictions need to be obtained are private
and therefore the model’s intermediate representations (or
activations) that are communicated in this setting need to be
desensitized to prevent reconstruction attacks. This opens up
the relatively new problem of private collaborative inference
(PCI) where the model is split across the client and server.

This is in contrast to an alternate setting of federated
learning with considerable existing work where the server
intends to privately share the weights of a trained model, the
privacy desired is with regards to the server’s own training
data. Traditionally two standard modes of machine learning
deployment exist for practical applications: a.) on-device
prediction and b.) machine learning as a service (MLaaS).
In the MLaaS setup, the service provider is assumed to be
trusted by the client using the service. The assumption is not
valid if the client’s data is sensitive.

The following issues motivate the design of practical PCI
algorithms and systems for on-device prediction:
1) Computation efficiency: Recent state-of-the-art models
require a lot of computation even during inference. These
models cannot fit into hardware limited devices such as
smartphones and other edge/IoT devices.
2) Secrecy of the models: Parameters of a model or archi-
tecture can be a secret or intellectual property of the server.
In such cases, it is not possible to ship the models locally.
3) Shipping updates to the model: To update the model
parameters, the server needs to apply updates to all clients in
on-device machine learning. Within PCI, server can update
server-side parameters and treat the client’s model as frozen.
Privacy preserving ML for faces: Recent privacy pre-
serving machine learning techniques applied to face data
include blurring techniques such as [33]. We compare the



performance of NoPeek-Infer against this method in the
experimental section. Earlier works on blurring such as
[32] have shown how earlier approaches of blurring fail to
preserve privacy in home-based video conferencing setups.
Other recent baselines we compare our method against in-
clude siamese embedding based privacy [34] and adversarial
baselines such as DeepObfuscator [23] that was originally
benchmarkd on faces and with Privacy Adversarial Networks
[26] that was benchmarked on non face images. We note that
recent works such as [6] were applied to faces for preventing
reconstruction of specifically chosen attributes about the face
as opposed to altogether preventing reconstruction of the
entire face. We note that NoPeek-Infer deals with this latter
problem of preventing face reconstruction attacks as opposed
to any attribute specific reconstruction. In addition, we also
compare against other face reconstruction defenses such as
noising and blur based approaches.

II. CONTRIBUTIONS

This paper proposes a way to mitigate reconstruction
attacks on raw data in the distributed machine learning
settings of private collaborative inference. To this end, the
contributions of this work can be summarized as follows:

1) We introduce NoPeek-Infer to prevent reconstruction at-
tacks during activation sharing in PCI via minimization of
a statistical dependency measure called distance correlation
[41], [40]between raw data and any intermediary communi-
cations across the clients or server.
2) We evaluate the performance of our method on face
datasets and share detailed results upon applying two state of
the art reconstruction attacks: i) supervised decoder attacks
and ii) likelihood maximization attacks in addition to some
standard baselines. The likelihood maximization attack has
not received attention in current works on private activation
sharing while it has been widely used [43] in the computer
vision community of late.
3) In order to promote rigorous benchmarking in the PCI
domain, we introduce a dataset of privatized activations using
different PCI techniques for two face datasets Fairface [20]
and CelebA [27]. This dataset will act as a benchmark for
the evaluation of existing and future attack and defense
techniques.

A. Benefits of NoPeek-Infer

1) A key benefit of the NoPeek-Infer defense over other
existing defenses is that it does not require any additional
adversarial network for it to be learnt unlike the rest. This
reduces the number of parameters that need to be trained
in NoPeek-Infer in comparison to other existing defense
methods.
2) NoPeek-Infer does not require any modification to the
client side architecture which holds the network up to an
intermediate layer unlike existing methods thereby making it
highly suitable for the machine learning as a service (MLaaS)
mode of deployments.

III. RELATED WORK:

A. Attacks

Attacks in distributed machine learning can be categorized
as shown in Table Ia based on time of attack (during
train/test) and mode of training (distributed, peer to peer,
on-premise). Other factors include the type of input (entire
dataset/specific attributes) that the malicious attacker has
access to and the target dataset that it aims to reconstruct.
Attackers can reside in any client or server that receives
communications from another client. We now enumerate
various reconstruction attacks. We compare the performance
of NoPeek-Infer in defending against the supervised decoder
and likelihood maximization based reconstruction attacks.
These two are the most relevant to our settings from this
list of attacks.
1) Feature space hijacking attack is applied for distributed
training of neural networks to reconstruct private data sam-
ples from the shared activations [36]. As opposed to their
setup, our focus in NoPeek-Infer is to protect client’s query
data in distributed prediction/inference phase.
2) Federated/client-side attack: In federated learning [28],
[19], [18], the untrusted party has access to the averaged
weights of all the clients. Similarly in split learning [12],
[44], the local weights of the client-side network need to be
shared peer to peer with one other adjacent client.
3) Attribute attack: In this setting the attacker attempts to
reconstruct only a subset of input data attributes that are
considered to be sensitive [13], [29], [37], [38], [31], [47] as
opposed to the entire input sample as in NoPeek-Infer.
4) Offline supervised decoder attack: In a worst-case re-
construction attack setting, the attacker has access to a leaked
subset of samples of training data x along with corresponding
transformed activations z at a given layer, which are always
exposed to other clients/server for distributed training of
the network to be possible. The attacker could reside in
any untrusted client or server that is part of the distributed
training setup. The attacker also has access to the rest of the
activations corresponding to unleaked training data at the
same layer. This is also by design, for distributed training
to be possible. The attacker tries to learn an image to
image translation model from the transformed activations to
the leaked raw data. The attacker can then use this model
to reconstruct raw data from activations corresponding to
unleaked training data or unleaked test/validation data. This
offline attack is also illustrated in Figure 1.
5) Likelihood maximization attack: Unlike the above
scheme, this attack does not require pairs of raw images
and corresponding activations, (z, x) in order to reconstruct
the sensitive input. Instead, the attacker uses weights θ1 of
the client side network. The attacker randomly initializes a
network f̂(θ̂; ·) such that it generates an image x̂ to produce
ẑ = f1(θ1, x̂). Then the loss `2(ẑ, z) between random and
sensitive activations is minimized by optimizing for the
weights θ̂. This attack scheme is inspired by deep image
prior [43] for feature inversion. One drawback with this
attack is that it is only applicable to the sensitive input



Attack name Time of attack Mode of training Mode of prediction Input for attacker Target of attack
Feature space hijacking attack Training Distributed Distributed/On-premise Intermediate activations Training/Test Data

Federated/Client-side attack Training P2P/Distributed Distributed/On-premise Client weights Training/Test Data
Attribute attack Train/Test Distributed Distributed/On-Premise Intermediate activations/weights Specific attributes

Decoder and Likelihood attacks Test On-premise Distributed Intermediate activations/weights Test Data

(a) We categorize several forms of reconstruction attacks within the context of distributed machine learning. The last row shows the attacks that are relevant
to the setting of private collaborative inference considered in this paper.

Method Sensitive Input Sensitive Attribute No client arch. alteration Adversary Free
Osia et al [35] 7 7

Min-max filters [13] 7 7

DeepObfuscator [23] 7

Shredder [29] 7 7

Mitigating information [37] 7 7

Kernelized ARL [38] 7 7

PrivacyNet [31] 7 7 7

IdentityDP [47] 7 7 7

NoPeek-Infer (Ours) 7

(b) Different defense mechanisms for private inference. The third column no alteration of client architecture refers to techniques where additional operations
or layers are not required for removing sensitive information from data. The last column adversary free refers to techniques which require a proxy adversary
during training. Sensitive input refers to protection of entire raw data and sensitive attribute refers to techniques that protect only a given subset of attributes.

TABLE I
RECONSTRUCTION ATTACKS AND DEFENCES STUDIED WITHIN THE CONTEXT OF SPLIT LEARNING AND ITS VARIANTS.

protection and not sensitive attribute. This attack setting is
stronger and also harder to defend against because it does
not require access to the (z, x) pairs.

B. Defenses

Defenses that are relevant to our work are categorized
in Table I. We categorize them based on a.) the type of
sensitive data under consideration and b.) whether additional
privatizing operations and/or an additional adversarial model
is required. Our proposed method of NoPeek-Infer is the
only method to the best of our knowledge that does not have
either of the requirements stated in b.). We also note that
NoPeek-Infer focuses on preventing reconstruction of input
data, as opposed to specific attributes that has been the focus
of the majority of the defense schemes.
1) Noisy perturbations: Differential privacy [10] is a popu-
lar notion of privacy for various queries to prevent member-
ship inference attacks. In the context of model training it is
implemented via noisy perturbations of gradient updates as in
[1], [46], [48], [2], [5], [47]. Our proposed mechanism of No-
Peek Infer is instead for the setting of private collaborative
inference rather than training. In the context of split learning,
[35] and [29] learn informal noisy perturbations to prevent
reconstruction attacks but require altering the architecture of
the client network that is being privatized. These works are
also specific to preventing reconstruction of a target attribute
as opposed to the input dataset itself. Typically, adding noise
to the activations leads to a costly trade-off of privacy versus
accuracy.
2) Siamese defense: In this defense, a contrastive loss is
used to nudge points from same class label to be closer to
each other in a learnt representation space. This loss is used
in combination with an accuracy loss for prediction purposes.
Such siamese embeddings have been used in various works

Fig. 1. Face reconstruction attack The attack is possible when activations
are shared for distributed predictive inference if a proper defense is not in
place. Information about sensitive raw input data can get leaked through
intermediate activations even after input data passes through multiple layers.
Upon sending these intermediate activations from a trusted network on a
client to an untrusted network for computing rest of the task, an adversary
on server-side can reconstruct original raw face data from the activations.

outside the realm of privacy prior to being introduced by
[34] solely for privacy purposes within the distributed setting
involving intermediate activation sharing.
3) Adversarial defenses: [23], [37], [38], [24], [31], [39]
attempt to learn activations of a given network at chosen
layers while attempting to protect against an adversary that
attempts to reconstruct raw data or partial attributes of
raw data from these activations. These methods require an
adversarial deep network to be trained in addition to the
original deep network that is used for prediction. This is in
contrast to our method which does not require any other
additional network, which sharply reduces the number of
parameters to be trained in our case.

IV. METHOD

Key idea: The key idea of our proposed method is to re-
duce information leakage by adding an additional loss term to
the commonly used classification loss term, categorical cross-
entropy. The information leakage reduction loss term we use



Fig. 2. Reconstruction results on CelebA: We apply the likelihood max-
imization attack on activations obtained from different blocks of ResNet-
18 [14] for different mechanisms. For brevity we only show block 4-7 since
blocks before 4 get full reconstruction and blocks after 8 do not obtain a
reasonable reconstruction.

Fig. 3. Visualization of the activations of the first layer of a ResNet. In the
activation maps in the second row, subtle facial features can be observed
from the activations about the raw image while, in the third row, the NoPeek-
Infer-Infer method forces the network to decorrelate the features with respect
to raw data, hence making it hard to interpret.

is distance correlation [41]; a powerful measure of non-linear
(and linear) statistical dependence between random variables.
The distance correlation loss is minimized between raw input
data and the output of any chosen layer whose outputs need
to be communicated from the client to another untrusted
client or untrusted server. This setting is crucial to some
popular forms of distributed machine learning that require
sharing of activations from an intermediate layer. This has
been motivated under the ‘activation sharing’ subsection in
the motivation section.

Optimization of this combination of losses helps ensure the
activations resulting from the protected layer have minimal
information for reconstructing raw data while still being
useful enough to achieve reasonable classification accura-
cies upon post-processing. The quality of preventing recon-
struction of raw input data while maintaining reasonable
classification accuracies is qualitatively and quantitatively
substantiated in the experiments section. The joint minimiza-
tion of distance correlation with cross entropy leads to a
specialized feature extraction or transformation such that it
is imperceptible in leaking information about the raw dataset
with respect to both the human visual system and more
sophisticated reconstruction attacks as we show later in the
experiments section.

Loss function: The total loss function using n samples of
input data X, activations from protected layer Z, true labels
Ytrue, predicted labels Y, and scalar weight α is given along
with distance correlation being DCOR and categorical cross
entropy being CCE as

αDCOR(X,Z) + (1− α)CCE(Ytrue,Y) (1)

The following subsections introduce the definition of dis-
tance correlation while the gradient of distance correlation
is provided for optimization purposes in Appendix although
we optimize our loss using Autograd, thereby not requiring
this gradient in an explicit manner. That said, useful deep
learning friendly code for computing distance correlation is
also provided in Appendix for reproducibility.
Sample Distance Correlation [41]: We first give some
required notation for defining sample distance correlation
which is a statistical estimator for population distance cor-
relation. We denote i.i.d samples of data as X × Y =
{(xk,yk)|k = 1, 2, 3, . . . , n} and corresponding double cen-
tered Euclidean distance matrices as ÊX and ÊY obtained
by multiplying each of the corresponding Euclidean distance
matrix from both sides with a centering matrix given by
I− 1

nee
T where I is the identity matrix and e is a vector all

1’s. Now the squared sample distance covariance is defined
as,

ν̂2(X,Y) =
1

n2

n∑
k,l=1

[ÊX]k,l[ÊY]k,l, (2)

and using this the sample distance correlation is given by

ρ̂2(X,Y) =

{
ν̂2(X,Y)√

ν̂2(X,X)ν̂2(Y,Y)
, ν̂2(X,X)ν̂2(Y,Y) > 0.

0, ν̂2(X,X)ν̂2(Y,Y) = 0.

This sample distance correlation is a statistical estimator
for the following population distance correlation which is
defined below.
Distance Covariance [41]: Distance covariance between
random variables x ∈ Rd and y ∈ Rm with finite first
moments is a nonnegative number given by

ν2(x,y) =

∫
Rd+m

|fx,y(t, s)− fx(t)fy(s)|2w(t, s)dtds

where fx, fy are characteristic functions of x,y, fx,y is the
joint characteristic function, and w(t, s) is a weight function
defined as

w(t, s) = (C(p, α)C(q, α)|t|α+pp |s|α+qq )−1

with

C(d, α) =
2πd/2Γ(1− α/2)

α2αΓ((α+ d)/2)

for chosen values of α which refers to the choice of norm
considered in obtaining the distance matrices. Γ refers to the
popular complete Gamma function, that is defined to be an
extension of the concept of a factorial to complex and real
numbers as opposed to just the integers. Note that for random
variables that admit a density, the characteristic function is
the Fourier transform of the probability density function.
From above definition of distance covariance, we have the
following expression for the square of distance correlation
between random variables x ∈ Rd and y ∈ Rm with finite
first moments and is a non-negative number defined as

ρ2(x,y) =

{
ν2(x,y)√

ν2(x,x)ν2(y,y)
, ν2(x,x)ν2(y,y) > 0.

0, ν2(x,x)ν2(y,y) = 0.



Fig. 4. Likelihood vs. Decoder Reconstruction Attacks: A qualitative
comparison between likelihood and supervised decoder reconstruction at-
tacks on traditional and NoPeek methods. While likelihood attack performs
a visually similar reconstruction for the traditional approach, the decoder
attack gets a better reconstruction result for NoPeek. However, in the case of
NoPeek the attack results in a blurred and average face image across certain
set of facial attributes. The purpose of this result is to illustrate the relative
benefit of using different types of adversaries when evaluating NoPeek and
other baselines.

This always lies within the interval [0, 1] with 0 referring to
independence and 1 referring to dependence.

A. Advantages of using distance correlation

Estimation of classical information theoretic-measures as
used in [30], [50], [49] is a known hard problem. Recent
approaches to estimate it effectively like [3] are based on
iterative optimization. A recent data efficient version of it
requires 3 nested for loops of optimization [25]. In the
context of deep learning, every epoch of learning the weights
is dependent on this iterative optimization. In contrast our
approach uses distance correlation. Fast estimators of dis-
tance correlation requires O(nlogn) [7], [16] computational
complexity for univariate and O(nKlogn) complexity [15]
for multivariate settings with O(max(n,K)) memory, where
K is the number of random projections required as part of
the estimation. Distance correlation has been shown to be
a simpler special case of other recent popular measures of
dependence such as Hilbert-Schmidt Independence Criterion
(HSIC), Maximum Mean Discrepancy (MMD) and Kernel-
ized Mutual Information (KMI) that have been extensively
studied and used in the machine learning and statistics
community [40], [42]An advantage of using a simpler al-
ternative is that in addition to being differentiable and easily
computable with a closed-form, it requires no other tuning
of parameters and is self-contained unlike HSIC, MMD
and KMI that depend on a choice of separate kernels for
features as well as labels along with their respective tuning
parameters.

V. EXPERIMENTS

Reconstruction attack testbed: We empirically examine
the privacy aspects of our method by designing a testbed that
performs feature inversion [8] under different threat models
for PCI. The goal of the testbed is to emulate attackers in
order to examine information leakage both qualitatively and

Fig. 5. Privacy-Utility Trade-off: We vary the value of α to display the
relationship between privacy leakage and task utility. Leakage is measured as
the SSIM score between input and reconstructed images from the likelihood
attack scheme.

quantitatively. We use the attack testbed for both supervised
decoder and likelihood maximization attacks as described in
the attacks part of section III.

The decoder attack architecture consists of upsampling
layers composed of transpose convolutions. Similar archi-
tectures have been used in generative models for generating
images from low-dimensional latent codes. Under the threat
model for decoder attack, the attacker has access to a dataset
consisting of multiple samples of (zl, x). Input to the testbed
is the intermediate activations, zl from any arbitrary layer
l of the target model, and output is the generated image
x̂. After the training of the defense component (NoPeek
or baselines), we use a held-out validation set to generate
intermediate activations using the client network of de-
fense component. We thereby generate a paired dataset of
activations and corresponding images. We use this paired
dataset to train the reconstruction testbed to emulate the
attacker. We use 90% of the original validation dataset for
training the reconstruction testbed and the remaining 10%
as the test-set for qualitative evaluation of reconstruction
quality. The training is a standard supervised decoder training
on a dataset of zl, x pairs with a loss function of the
euclidean norm between x and x̂. We want to emphasize

tc

Fig. 6. We plot distance
correlation during training
and testing as the network
gets trained on UTK faces
with and without NoPeek-
Infer.

that there may potentially be a
better design for architectures of
the reconstruction testbed and bet-
ter loss functions, but the goal
of this paper is just to have a
fair comparison between NoPeek-
Infer based training and regular
training of deep networks using a
reasonable reconstruction architec-
ture. The number of upsampling
layers in the architecture of the
testbed vary depending upon the
difference in the dimensionality of
zl and x. Next, we evaluate the
performance on likelihood maxi-
mization attack. The threat model
for likelihood maximization attack
requires the adversary to have access to client network
weights and the architecture. The details of the likelihood
maximization attack inspired by the work on deep image
priors [43] is described in section III. This attack has not



been used in the privacy community looking at the feature
inversion problem but used for several vision tasks like super-
resolution, denoising and feature inversion.

A. Datasets

1) CelebA: CelebA [27] is a large scale celebrity face
dataset with 202,599 face images that are well aligned and
centered. These faces span 10,177 identities each of which
is associated with 40 different binary attributes.

2) Fairface: Fairface [20] is a dataset of 108,501 face
images with three attributes – gender, race, and ethnicity.
The images are centered but contain different poses and
lighting. We evaluate our approach using gender as the
target attribute for both datasets.

Baselines: Our experiments consists of four categories
of activation sharing methods - traditional (no defense),
adversarial defense, siamese embedding defense and noise
based defense as detailed in section III-B. Traditional refers
to the setup where activations are shared by the client to
the server without any specific defense. Adversarial refers
to the set of techniques [23], [4] that jointly trains a
proxy adversary resulting in a min-max optimization be-
tween the adversary and client network. Siamese embed-
ding based privacy is via a combiination of a contrastive
loss and an accuracy loss as detailed in [34]. Noise is
the category of baseline where we add Gaussian noise to
the intermediate activations. While not related to activation
sharing, many differentially private mechanisms add similar
noise calibrated to sensitivity [9], [10]. Even though we
do not calibrate the noise, we try a broad range of noise
spanning across the highest and lowest attainable utility.

Fig. 7. By introducing
NoPeek-Infer in the training
of the network, we obtain a
major decrease in the distance
correlation from 0.6 (base-
line) to 0.22 (NoPeek-Infer)
while the decrease in the ac-
curacies is relatively much
lesser.

In all of our experiments, we
train a standard ResNet-18 [14]
for minimizing the loss on the
main task. In all of our reported
experiments, we use Adam op-
timizer with an initial learning
rate of 1 × e−3 and exponential
decay for training. In the first
experiment, we study the role of
intermediate layer l by evaluating
privacy and utility across differ-
ent blocks of ResNet-18 for dif-
ferent methods. Figure 2 shows
the qualitative results for differ-
ent approaches. For the first five
blocks, all techniques fail to de-
fend against the likelihood attack.
However, NoPeek-Infer provides
adequate protection at the block-6. In order to prevent
any selection bias for the qualitative result, we also show
reconstruction for six random samples from the dataset in
Figure 8. We compared the baselines and NoPeek-Infer
on different metrics of image reconstruction quality and
predictive utility of the model as shown in Table II. We
compared defenses of NoPeek-Infer & various baselines on

reconstruction of sensitive input with respect to likelihood
maximization attack & observe that the defense of NoPeek-
Infer performs the best by achieving a worst reconstruction
when attacked which indicates that NoPeek-Infer is a better
method for preventing reconstruction attacks. In terms of
the broader trend we observe that NoPeek-Infer fared the
best followed by DeepObfuscator and then followed by
Siamese Embedding, PAN and Noise (& Blur) approaches in
preventing the reconstruction attack in terms of SSIM score,
PSNR and l1 metrics. We also compare against a primitive
baseline that is based on reduction of linear correlation as
opposed to our proposed approach of nonlinear correlation
minimization to show that the distance correlation (or nonlin-
ear correlation) based approach is substantially better. While
this comes at the cost of a small drop in accuracy, we note
that the improvement in privacy is much higher than the
corresponding reduction in utility. To further examine the
privacy-utility trade-off, we vary the trade-off parameter for
both adversarial and NoPeek-Infer and plot different points
along the privacy-utility trade-off in Figure 5. As we reach
towards higher privacy, the utility performance drops faster
for adversarial in comparison to NoPeek-Infer. This makes
NoPeek-Infer amenable for high privacy regimes without
any significant loss in the utility. It is an accepted standard
that the privacy-utility trade-offs exist in privacy preserving
machine learning; and thereby the above tradeoff observed
in NoPeek-Infer is competitive.

VI. DISCUSSION

Fig. 8. Reconstruction across dif-
ferent samples: For illustrating re-
construction results, we plot images
randomly sampled from CelebA’s test
set under ’Original’. Reconstruction
was performed using likelihood attack
on sixth block of ResNet-18. Results
showed good reconstruction for tradi-
tional (no defense) while adversarial
obtains certain degree of protection as
very few facial attributes can be in-
ferred. In comparison, NoPeek does
not leak any facial attribute.

For comparing with
noise baseline, we add
gaussian noise to every
component of the zl
vector with varying
standard deviation
σ of the noise for
different experiments. We
empirically observe that
even for σ = 400 the
reconstruction happens
successfully using the
likelihood attack while
the utility gets close to
chance accuracy. This
illustrates that gaussian
noise mechanism is
approximately same as
the traditional category
due to its inability to
provide any privacy-
utility trade-off despite
adjusting σ = 0.

To show the trade-off between privacy and utility via
choice of α we plot the distance correlation of a given inter-
mediate activation during training a NoPeek-Infer network
and a traditional network without NoPeek-Infer in Figure 6.
This demonstrates that the network without NoPeek-Infer



Dataset Method SSIM ↓ PSNR ↓ `1 ↑ Utility ↑

Fairface

Traditional [12] 0.915 ± 0.110 72.982 ± 6.682 0.066 ± 0.051 0.9912
PAN [26] 0.777 ± 0.218 69.585 ± 7.403 0.097 ± 0.069 0.9864
NoPeek-Infer (Ours) 0.306 ± 0.141 60.453 ± 2.813 0.206 ± 0.057 0.9803
Blur [33] 0.893 ± 0.884 61.2864 ± 2.5906 0.1066 ± 0.045 0.9881
Gaussian Noise 0.842 ± 0.233 70.235 ± 2.672 0.0771 ± 0.045 0.8857
Laplacian Noise 0.733 ± 0.1495 69.488 ± 5.539 0.0701 ± 0.0858 0.8568
DeepObfuscator [23] 0.4467 ± 0.107 61.19 ± 3.935 0.191 ± 0.0894 0.9811
Siamese Embedding [34] 0.484 ± 0.117 61.712 ± 1.169 0.198 ± 0.066 0.9511
Linear Correlation 0.585 ± 0.02 67.789 ± 3.283 0.0625 ± 0.01 0.9115

CelebA

Traditional [12] 0.563 ± 0.237 65.655 ± 4.968 0.123 ± 0.067 0.9759
PAN [26] 0.646 ± 0.168 64.650 ± 4.485 0.121 ± 0.056 0.9513
NoPeek-Infer (Ours) 0.239 ± 0.081 58.901 ± 1.835 0.240 ± 0.053 0.9488
Blur [33] 0.524 ± 0.168 60.248 ± 5.15 0.1373 ± 0.0669 0.9452
Gaussian Noise 0.656 ± 0.187 63.584 ± 2.896 0.1348 ± 0.0352 0.9608
Laplacian Noise 0.6276 ± 0.168 61.868 ± 5.011 0.1487 ± 0.0572 0.966
DeepObfuscator [23] 0.2874 ± 0.0436 56.3463 ± 1.479 0.2189 ± 0.032 0.9531
Siamese Embedding [34] 0.539 ± 0.249 59.243 ± 3.5206 0.185 ± 0.085 0.9376
Linear Correlation 0.4154 ± 0.0913 60.342 ± 4.17 0.203 ± 0.0745 0.944

TABLE II
COMPARISON FOR SENSITIVE INPUT LEAKAGE: WE COMPARE

DEFENSES OF NOPEEK-INFER & BASELINES ON RECONSTRUCTION OF

SENSITIVE INPUT WITH RESPECT TO LIKELIHOOD MAXIMIZATION

ATTACK & OBSERVE THAT THE DEFENSE OF NOPEEK-INFER PERFORMS

THE BEST BY ACHIEVING A WORST RECONSTRUCTION WHEN ATTACKED.

naturally reduces distance correlation during training and our
proposed method can be seen as an additional regularizer
which forces the network to regularize for the reduction in
distance correlation at a much higher rate between raw data
and activations. The consistency between training and testing
distance correlation in Figure 6 also demonstrates the capa-
bility of weights learnt by NoPeek-Infer in generalizing the
decorrelation phenomenon to prevent reconstruction attacks.

The first row of Figure 3 shows some raw input images
and the output of the first layer of the trained network when
NoPeek-Infer is not used is shown in the second row. The
third row shows the output at the first layer in the case when
NoPeek-Infer is used. We restrict it to only three output
channels to visualize only the RGB component as part of
an qualitative investigation. As seen, the second row visually
leaks a lot of information about the raw image in comparison
to the third row. This demonstrates semantically meaningful
obfuscation performed by the layers of the client network
when trained with NoPeek-Infer. In Figure 7 we observe that
the accuracy dropped by a relatively small amount compared
to the drop in distance correlation (or leakage of sensitive
information) and this relative difference can be controlled
by tuning α. The important aspect to note from the figure is
that distance correlation between the samples and activations
can be reduced significantly without any significant drop in
accuracy.

VII. CONCLUSION

The proposed NoPeek-Infer schemes based on distance
correlation seem to have versatile applicability in the space
of privacy, computer vision and machine learning given
that it does not require major changes in the model setup
and architectures except for the proposed modification to
the loss function. It would be great to realize on-device
implementations of the NoPeek-Infer scheme. With regards
to human visual perception of bias and privacy, we would
also like to conduct a large-scale crowdsourced survey to
compare performance of human participants in deciphering

the true sensitive image upon looking at NoPeek-Infer results
in comparison to a uniform random choice.

APPENDIX

Distance correlation between centered data can be rep-
resented as Tr(XTXZTZ)√

Tr(XTX)2Tr(ZTZ)2
in a graph-theoretic dual

space [45]. Distance covariance in the numerator can be
written as Tr(XTZX) =

∑
ij〈zi, zj〉(‖xi−xj‖)2. This can

be written in matrix form using basis vectors ei, ej as∑
ij

[Tr(ZTeie
T
j Z)Tr(XT(ei − ej)(ei − ej)

TX)] (3)

Simplifying the notation with Mij = eie
T
j and

Aij = (ei − ej)(ei − ej)
T we have ∂Tr(ZTLZZ)

∂Z =∑
ij (2MijZ)Tr(XTAijX). On the lines of 3, we

have Tr(ZTLZZ) =
∑
ij [Tr(Z

TMijZ)Tr(ZTAijZ)].
Therefore utilizing these identities, the derivative of
squared distance correlation w.r.t Z can be written as
cxTr(Z

TLZZ)
∂Tr(XTLZX)

∂Z −[Tr(XTLZX)]2cx
∂Tr(ZTLZZ)

∂Z

[Tr(ZTLZZ)]2
upto a

constant.

A. Deep-learning friendly source code for sample distance
correlation

1 def pairwise_dist(A):
2 r = tf.reduce_sum(A*A, 1)
3 r = tf.reshape(r, [-1, 1])
4 D = tf.maximum(r - 2*tf.matmul(A, tf.

transpose(A)) + tf.transpose(r), 1e-7)
5 D = tf.sqrt(D)
6 return D
7

8 def dist_corr(X, Y):
9 n = tf.cast(tf.shape(X)[0], tf.float32)

10 a = pairwise_dist(X)
11 b = pairwise_dist(Y)
12 A = a - tf.reduce_mean(a, axis=1) -\
13 tf.expand_dims(tf.reduce_mean(a,axis=0),

axis=1)+\
14 tf.reduce_mean(a)
15 B = b - tf.reduce_mean(b, axis=1) -\
16 tf.expand_dims(tf.reduce_mean(b,axis=0),

axis=1)+\
17 tf.reduce_mean(b)
18 dCovXY = tf.sqrt(tf.reduce_sum(A*B) / (n

** 2))
19 dVarXX = tf.sqrt(tf.reduce_sum(A*A) / (n

** 2))
20 dVarYY = tf.sqrt(tf.reduce_sum(B*B) / (n

** 2))
21

22 dCorXY = dCovXY / tf.sqrt(dVarXX * dVarYY
)

23 return dCorXY
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