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Chapter 1

Introduction

This thesis is about vision in general and machine stereo vision in particular. Vision,
whether human or machine, presents many fascinating problems and challenges, the
most obvious of which is the question “How is vision possible?” Everyone knows that
vision is possible. Indeed, most people can see, and without apparent effort. This
lack of apparent effort is deceptive; vision is terribly complicated, and our attempts
to make machines “see” have resulted in only limited successes to date.

In order to study vision, one nust be able to pose meaningful questions about
it. To do that, one must have some understanding of what vision is, that is, what
are the goals of vision and what data are to be processed to achieve those goals. It
is also necessary to have a framework or approach within which to operate, a way
of addressing the problem of vision that provides a context for asking fundamental
questions. The first portion of this work treats exactly these issues, following the
lines of the computational appreach to vision articulated by the late David Marr of
MIT (Marr [1982]). The objective here is to examine in detail the computational
approach to visioa in order to refine and make more precise some of the arguments
put forward by Marr. The motivatior is the belief that one should seek not just to
understand what a computational theory means, but to understand its basis. This
will lead to a detailed computational framework for understanding problems in vision.
The framework divides a computational problem into two components: assumptions
and constraints, which establish the set of admissible solutions, and principles, which

let one choose a particular solution from the admissible set. Several existing stereo
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algorithms are analyzed using the proposed framework.

The computational approach can be applied to any aspect of perception, not just
vision (for the application of the computational approach to reading see Brady [1981],
for the application of the computational approach to motor control see Hildreth &
Hollerbach [1985]). It also can be applied to any aspect of vision (Brady {1982]).
Edge detection (Hildreth [1980], Marr & Hildreth [1980], Canny [1986]), shape-from-
shading (Horn [1977], Brooks [1982], Pentland [1984]), shape-from-motion (Ullman
[1979], Hildreth [1983]), shape-from-texture (Stevens [1980], Witkin [1981]), passive
navigation (B-uss & Horn [1983], Negahdaripour [1986]), and stereopsis (Grimson
[1981a], Mayhew & Frisby [1981], Mayhew & Longuet-Higgins [1984]) are some of the
problems that can be tackled in this way. The second portion of this thesis applies
the computational framework to the problem of machine stereopsis.

Before the computational framework can be applied, however, it is necessary to
consider stereo image formation in detail. It is well-known that different views of
the same scene produce different brightness patterns. This has been : rarded as an
obstacle to brightness-based image matching—the same object point geunerally has
a different brightness value in each image. If the brightness transformation between
images could be modeled, then it could be compensated for, and the main hindrance
to brightness-based image matching would vanish. We show that the brightness
values between images in a stereo pair transform in constrained ways. By developing
a model for the transformation of brightness, it becomes possible to match image
brightness values to solve the stereo problem.

The combination of computational framework and image brightness transforma-
tion model lead to a new method for performing stereo image analysis based upon
the direct matching of image brightnesses. The algorithm is based on the solution
of an optimization problem derived from the variational calculus. The problem is
formulated strictly in accordance with the computational framework; as a result, the

use of heuristics has been avoided.
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1.1 The Computational Approach to Vision

The computational approach to vision (Marr [1982]) assumes that vision (perception)
is the process of building representations of the environment from sensory informa-
tion. Our model of perception will therefore be one in which sensors produce an
initial description of the visual world (one form of representation), which is then
acted upon (processed) by various modules (processors) to generate new descrip-
tions (representations). The modules may be applied in serial or parallel, depending
on the exact nature of the problem. There are thus two major components to be
considered: the processes and the representations.

The processes of vision are transformations applied to the representations. There
are several levels at which these transformations can be understood. At the most
elementary level, the implementational level, one may ask: What are the actual
operations that take place on the representations? At this level, the representational
scheme is extremely important. Each representation scheme makes some operations
more or less difficult. At the most abstract level, the computational theory level, one
may ask: What computations are performed and why? These questions are generally
independent of the implementational level. The answers will be seen not to depend in
general on the representations chosen. Intermediate between the implementational
and computational theory levels lies the algorithmic level. At this level one may ask:
What representations are used, and what algorithms are used on them? In other
words, how is the computation carried out?

This thesis focuses on the most abstract level, that of computational theory. The
issues of concern here are what to compute and why. Naturally, the answers depend
on the ultimate goals of vision, but they also depend on the visual environment, and
what it is assumed to contain. For example, if the visual environment were to consist
only of planar surfaces of uniform reflectance, then certain quantities could in theory
be computed (or could not be computed!). Albedo and surface orientation would
not need to be computed everywhere, a single value of each per visible surface would
suffice. On the other hand, the quantities one wished to compute might be different
for a world in which surfaces were curved, or were allowed to vary in reflectance. The

concepts of surface curvature and shading would have to be introduced.
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Thus, a major component of a computational theory is the set of assumptions one
makes. From them, one derives constraints on visual computation. Constraints de-
termine the kinds of solutions cne is willing to deem acceptable. As s ich, constraints
form admissibility criteria on the space of solutions. Continuing with the above ex-
ample, if all surfaces were assumed to be planar, curved surfaces (and many others)
would not be admissible, and there would be no need to consider them further.

A distinction must be made between assumptions and constraints; they are not
the same thing. They are, of course, intimately related, but the distinction bears
elaboration. Assumptions reflect one’s model of the visual world. They are generally
couched in non-mathematical, but precise, language. Assumptions should be chosen
on as realistic a basis as is feasible. Constraints are mathematical consequences
that follow from assumptions. For example, the planar surface assumption above
leads to the following surface normal constraint: dn/dx = 0 within a surface patch.
The relationship between assumptions and constraints is not necessarily one-to-one;
more than one constraint may follow from a single assumption, and more than one
assumption may be required in order to derive a particular constraint.

Principles compose the third component of a computational theory. Just as con-
straints restrict the space of admissible solutions, principles enable one to select a
solution from this space. As such, principles do not follow from assumptions about
the world. Rather, they reflect one’s preferences, ar designer! of a visual information
processing system, for some solutions cver others. For example, robustness in the
face of modeling errors is a principle; it does not follow from any assumption about
the physical world, yet it does permit one to prefer certain solutions, namely those
that are insensitive to perturbations in the models. If constraints are admissibility
criteria, delimiting the solution space for a computational problem, then principles
are performance? criteria, allowing one to evaluate conflicting admissible solutions by

assigning values (performance) to all points in the solution space. Whereas assump-

'Nature herself may be considered a designer within this framework, neglecting questions of

intensionality in her case! Of course, any natural design is subject to evolutionary limitations.
2The performance vs. admissibility distinction made here is not to be confused with the per-

formance vs. competency distinction made by Chomsky [1965] (p. 4) in his work on linguistic
perception.
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tions depend on the environment in which a system will operate, principles reflect
the goals and objectives of the system in that environment.

The first part of this work proposes a computational framework for stereo vision,
but this approach can be extended to other problems in perception. Some of t!.-
specific assumptions that are made, and the constraints derived therefrom, are unique
to stereopsis, having no equivalent in other perceptual modalities. Others are relevant
only for a limited number of modalities; in this regard, shape-from-motion is perhaps
closest to stereopsis in that many ideas relating to matching also apply. Yet others
are applicable to all types of perceptual problems. One could extend the approach
by incorporating assumptions and deriving constraints that do not apply to stereo
vision. No such attempt is made here.

One goal of this research is to develop a stereo vision system with the widest
possible applicability, based upon the most general assumptions about the world>.
To this end, a framework is proposed for analyzing problems in machine vision based
upon assumptions, constraints, and principles. A more rigorous approach to defining
these terms is taken than that of Binford [1981, 1984], whose assumptions are closer
to heuristics. Specifically, those assumptions, constraints, and principles will be
applied to stereo vision. This framework forms the basis for a computational theory
of stereo vision (a Type I theory in the sense of Marr [1977]). In his recent work,
Grimson [1981a,b, 1982, 1983a,b, 1984a,b, 1985] als> presents a computational theory
of stereo vision. This work differs from his in many ways, primarily because the choice

of principles differ. Very different systems result.

1.1.1 The Roles of Visual Psychophysics and Neurophysiology

The stereo vision problem is simply stated: Given two views of a scene taken from
different vantage points, determine the surface height. That a solution exists is
evident from considering human performance on this problem; we can solve it under

the right circumstances. Of course, that does not help much when we try to impart

3This thesis will consider only monochromatic imagery, ignoring the claim of Blicher [1983] that
for monochromatic images, the matching problem is insoluble. His fault lies in failure to identify

sufficient constraint to guarantee a solution.
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our machines with stereo (or any other) perception, it just gives us hope that the
task is solvable.

In fact, there is a potential danger in taking biologica! systems as models of
perception. Although, from a computational perspective, biological and machine
systems may solve the same problem, they may in fact solve it very differently.
Constraints used by one system to restrict the range of solutions need not apply if
the problem is reformulated by the other. Also, different systems may operate on
different principles. While we are inspired by biological vision, there is no need to
duplicate it. Thus, our machine-based stereo vision system shall not be obliged to
suffer the same limitations as a biological one. Hopefully, it will at least suffer the
same successes.

That is not to say that the discoveries of visual psychophysics and neurophysiol-
ogy are without merit, or even inapplicable to the determination of a computational
theory. Visual psychophysics can be of extreme value by helping to point out what

types of computation a biological system does and does not perform. For example,

~optical illusions (Held [1971]) generally arise when some assumption of the visual

system is violated. The investigation of Richards [1970] into the psychophysics of
stereoblindness has identified specific pools of disparitv-detecting cells. Failures of
specific pools lead to specific stereo perception deficiencies. Efforts such as these, by
illustrating failures of the visual system, may provide clues as to which constraints
the human visual system actually uses, and which principles it follows.

Neurophysiology can also be helpful, because by understanding a particular im-
plementation of a solution to the problem of vision, one may learn something more
general about vision. But what one learns will only be useful for a computational
theory to the extent that it can be abstracted and given a high-level explanation. In
the case of edge detection, the work of Hubel & Wiesel [1968] and others was crucial
for the eventual development of a computational theory of edge detection (Marr &
Hildreth [1980]). The time lag between neurophysiology and computational theory
can be attributed to a failure to understand why the observed phenomena in the
primate cortex were taking piace.

To summarize then, both visual psychophysics and neurophysiology have impor-

tant roles to play in the development of computational theories, provided that their
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actual contribution is well understood. But it is not necessary to duplicate either the

failures revealed by psychophysics, or the mechanisms revealed by neurophysiology.

1.1.2 Connectionism vs. Computational Approaches

Along a completely different tack lie connectionist models (Hinton & Anderson [1981]
and Rumelhart & McClelland [1985]). This work has as its goal the exploration of
intelligence by emulation of the processes of intelligence. In this view, intelligence is
an emergent property of a large collection of simple computing elements (neurons).
By emulating in a computer the behavior of neurons, it is hoped that a machine may
exhibit intelligence.

Connectionist models differ from computational approaches in that it is rot nec-
essary to develop a theory of the task domain in order to apply a conrectionist
theory. Instead, the computing elements adapt to the task, and as the input-output
relationship of the entire agglomeration converges, the network may be said to have
learned. Issues such as assumptions, constraints, and principles are ignored. Knowl-
edge representation is an open question, since knowledge is not made explicit in such
a network. Rather, it is implicit in the network connections and their weights.

The distinction is that the power of the computational approach comes from its
explanatory ability. It tells what must be computed and why. [t embodies knowledge
about the domain, and that knowledge is made explicit in the representations that
are used. To a certain extent, connectionism represents a retreat from explanation.
Connectionism may yet overcome this objection, but the issue is by no means settled

at present.

1.2 Stereo Matching

The stereo problem is ofter thought of as a matching problem. This is not the only
possible way to think of it; the next subsection considers sicreo .s a reconstruction
problem. This section considers the matching aspects of stereo, leading to the cor-
respondence problem. As Marr [1974] (p. 4) pointed out, a correct solution to the

stereo problem must consist of three steps:

1. A particular location on a surface in the scene must be located in 0. * image;
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2. The identical location must be identified in the other image; and

3. The relative positions of the two images of that location must be measured.

Having determined the disparity, the difference in position of the images of the same
object location, the depth computation is a simple matter of geometry. The main
difficulty lies in the second step. Having selected a location in one image, one must
find the corresponding location in the other image. To be sure, the corresponding
location must “look similar,” but how can this notion be quantified? A simple
approach might be to measure some attributes at possible match points, assigning
a match to the point whose attributes are most similar. For example, one could
use correlation over small patches between image intensities as match predicates.
This iails for two reasons. First, there may be many potential match points whose
attributes are similar. Choosing among them can be difficult or impossible. This
is know:: as the “correspondence problem.” Second, the attributes may not be the
same in both images. Image grey levels will differ in the two images because of
photometric (attributable to the sensor and its optics), radicmetric (attributable to
the surface reflectance characteristics), and geometric (attributable to the cpatial
arrangement of light source, viewer, and surface) effects. Thus, exact matches are
usually not possible. The solution to the correspondence problem is to constrain the
set of possible solutions. The solution to the problem of attribute variance is to use
a sufficiently rich description of the elements to be matched, one that is immune to
or can account for photometric, radiometric and geometric effects. Systems that use
both approaches have enjoyed the greatest success in the past. Notable examples
are Grimson’s [1981a] implementation of the Marr & Poggio [1979] stereo matcher,
illustrating a careful analysis of feature-point matching and interpolation, and Kass’s

(1983] multiple-measurement-based stereo matcher.

1.2.1 Stereo Reconstruction and Search

The stereo problem can also be formulated as a surface reconstruction problem.
One is given two views of a three-dimensional scene from which to reconstruct a
representation of the three-dimensional structure of that scene. The reconstruction

obtained should be the correct one. That is, it should be an accurate representation
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of the scene. Failing that, it should be as accurate as possible in the presence of
noise in the image and uncertainty as to the true composition of the scene. Since
there is ambiguity in the images, the reconstruction constitutes an interpretation of
the images. This interpretation is admittedly low-level, but it is an interpretation
nonetheless.

The stereo problem is underconstrained. For any pair of images, an infinity
of three-dimensional scenes can be constructed that will give rise to those images.
However, the human visual system usually generates only one, and it is almost always
the correct one. How is this accomplished?

It is accomplished in two ways. First, the set of possible interpretations of the
scene is restricted. This is equivalent to imposing admissibility criteria on the scenes.
Certain scenes are admissible or legal, others are not. Those representations that
correspond to inadmissible scenes need never be considered as potential interpreta-
tions of the images. Those representations that correspond to admissible scenes must
then vie against each other for selection as the correct or best interpretation.

Second, there must be a means of evaluating the admissible interpretations of
the given views in order to select one. This can be done by defining performance
criteria over the set of admissible representations. The stereo reconstruction can then
be recast as a search problem. Given the two views of a scene, find the admissible
interpretation that is best according to the performance criteria.

The admissibility and performance criteria are necessary and sufficient conditions
for an interpretation. Together, these criteria must uniquely specify the coizect or
best interpretation. Of course, it is not required that all possible interpretations
be generated only to have the admissibility criteria reject most of them. Nor is it
required that the performance criteria actually be applied to all admissible represen-
tations. Rather, the criteria must work together to ultimately produce the correct
or best interpretation.

This shows the direct link between the computational framework presented earlier
and the problem of stereo reconstruction. The space of solutions admitted by the
reconstruction process is entirely determined by the assumptions and constraints.
Which solution is selected is likewise determined by the set of principles. Both are

required, else the correspondence problem would be insoluble.
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1.3 Organization of the Thesis

This thesis is organized in two parts: A Computational Theory of Stereopsis and A
New Method of Stereopsis. Part I, computational theory, proposes a computational
framework and analyzes existing approaches to stereo using this framewock. Chapter
2 in part I proposes a computational framework for understanding problems in vision,
with particular emphasis on stereo vision. The interpretation of a computational
theory in terms of assumptions, constraints, and principles is reviewed, and those
that are relevant to stereo vision are discussed in depth. Most of the assumptions,
constraints, and principles have been expounded before in the literature, others have
not been made explicit previously, although they could have been implicit. An
attempt is made to justify each assumption and principle, and to rigorously justify
each constraint, especially those that appear here for the first time.

Chapter 3 is an analysis of existing stereo techniques. Stereo techniques can
generally be grouped according to the primitive elements that are used for matching.
The choice of matching elements is not an arbitrary one, but is seen to result from
the principles that are used. When robustness of matches is the primary concern,
eloments that tend to be invariant to changes in viewer position are chosen. This
leads to feature-point based methods. When using all available information is the
primary concern, information at all pixels must be used. This leads to brightness-
based matching, a new version of which is presented in Part II.

Chapter 4, Part II, presents a model for image brightness matching. Since im-
age brightness values will rarely match exactly, a model of image intensities is pro-
posed that has sufficient free parameters to account for photometric, radiometric,
and geometric effects without precise a priori knowledge of the surface reflectance
characteristics. This model is less restrictive than most image models, and can be
justified for different assumptions on the object surface reflectance function. The
proposed model enables direct matching of image brightness, whether the problem
being considered is stereo, visual motion, or object recognition.

Chapter 5 applies the brightness transformation model to perform sterec match-
ing. It uses image brightness at all points in both images as the matching primitives.

The approach taken is to find the best match between the images in a stereo pair,
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subject to the proposed model. This problem can be framed as a problem in the
calculus of variations, where a cost functional is defined to measure the “goodness”
of any solution. Solving the variational problem finds the best solution.

Chapter 6 discusses the implementation of the stereo algorithm. It has been
implemented on two vastly different kinds of computers. The first implementation
utilizes a conventional single-processor machine, the second utilizes a highly parallel
processor. The parallel processor resulted in a speed improvement of over a hundred-
fold. Other differences between the implementations are discussed, including image
size and algorithm convergence/stability.

Chapter 7 presents some examples of the performance of the algorithm. A variety
of images are used: synthetic images, random-dot stereograms, aerial photographs,
and indoor scenes.

Chapter 8 draws some conclusions from this research, and discusses the practical-

ity of direct methods in vision. Some suggestions for future work are also presented.
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COMPUTATIONAL THEORY
OF STEREOPSIS
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Chapter 2

Framework for a

Computational Theory

Any machine carrying out information processing tasks can be understood at three
levels (Marr [1982], also Brady [1981] for a review of computational approaches to im-
age understanding). They are computational theory; representation and algorithm;
and hardware implementation. These levels are almost independent; given a compu-
tational theory, there may exist different representations and algorithms capable of
satisfying that tbeory. Likewise, there may be different hardware implementations
capable of carrying out a particular algorithm. In general, the computational theory
imposes constraints on the representation and algorithm, these in turn constrain the
implementation. To a lesser degree the reverse may also occur, as some hardware
implementations facilitate certain algorithms, for example.

In our case, the admissibility and performance criteria, together with their justi-
fications, form a computational theory of stereo vision. That is, they specify what is
to be computed and why. This is an abstract description of the stereo computation;
it refers neither to algorithm ncr implementation. As such, it must be derivable from
basics. We shall be paying the most attention to this level.

The basics are assumptions and principles. Assumptions define the primitive
elements to which one may refer, and set forth their properties. Principles, on
the other hand, reflect one’s preferences on the solutions. There are three kinds
of assumption: assumptions about the scene being imaged, assumptions about the
stereo imaging process, and assumptions about stereopsis. We shall assume, for

example, that scenes are composed of surfaces that reflect or emit light. We shall

13
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also assume that these surfaces are smooth almost everywhere. These are just a few
of our scene assumptions. Without them one could not speak meaningfully about
smooth surfaces. Another scene assumption, one that we shall not make, is that all
surfaces are Lambertian and illuminated by a point source.

Assumptions about the stereo imaging process will define the kinds of images that
result from a scene. One can assume that each image is the projection of a real-wo:ld
scene. This assumption actually holds for any image formation process, including,
but not limited to, sterec image formation. One could also assume (although one
need not) that a particular imaging geometry is used. Many stzreo systems make this
assumption, since it can greatly simplify the matching process through application
of the Epipolar Constraint.

Assumptions about stereopsis will enable us to talk of matching be‘ween two im-
ages. For example, the Fundamental Assumption of Stereopsis (Marr [1982]) tells us
when we have a physically correct correspondence between elements of a stereo pair.
This assumption provides grounds for evaluating the effectiveness of any proposed
matching scheme. Without it, it would be impossible to speak meaningfully about
the correctness of a match.

Constraints are derived from assumptions. The Epipolar Constraint follows from
assumptions on the imaging geometry, and the Ordering Constraint (Baker [1982])
relies on an assumption that no visible surface lies in a “forbidden zone”, to name two
constraints. They are explained in detail later. These constraints are the concrete
expression of the abstract assumption. Since constraints serve to disallow certain in-
terpretations of the images, they are admissibility criteria. The Epipolar Constraint
and the Ordering Constraint each forbid certain matches. This is most obvious in
the case of the ordering constraint, which forbids matches within a specific region of
space. Thus the constraints form necessary conditions which any proposed interpre-
tation must satisfy.

Assumptions (and, by implication, constraints) reflect the real world and .he
stereo image generation process. The only assumption-related choices open to the
designer of a visual system involve decisions about how accurately to model the scene
and the imaging process. That is, the 2ssumptions one makes are closely related to

”

the models one uses. Whenever one says, “Let us assume that ... ,” what is really
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meant is “Let us use as a model the following ... .” If one wants one’s assumptions
to be realistic to within a certain degree, then one must base them upor models
whose accuracy depends on the desired degree of realism.

There is another class of decisions that must be made, and this is the set of
principles. Rubustness, for example, is a property that ocne would prefer a system
to have. It is expressed not as an assumption, but as a principle, the Principle of
Graceful Degradation. It is a performance criterion with which to choose between
competing, admissible interpretations.

Another important principle is the Principle of Errorful Images. This principle,

“described in more detail later, requires that all errors and discrepancies be related to
the input images, since that is where errors occur. Errors and discrepancies should
not be in terms of scene elements, because the scene does not contain errors. When
applied to stereo reconstruction, this principle tells us how to formulate an error
minimization procedure. It is only one of several possible, competing choices. Bv
making one’s choice explicit in a principle, one can study its ramifications.

Assumptions and constraints affect only the computaliona! theory level of an
information processing task. Combined with the computational theory principles,
they completely determine a computational theory. However, some principles can
be applied at levels other than the computational theory level. For example, the
Principle of Least Commitment is only meaningful at the algorithmic level, because
it (the principle) specifies the order in which compu’ations should be performed
(computations that may need to be undone are performed last) rather than what
should be computed. The Principle of Graceful Degradation also can be applied at
the algorithmic level.

Summarizing, the following framework has been established: One sta'ts with
models of the scene being imaged and the image formation process. Thesz mod-
els are incorporated into assumptions. Other assumptions concern stereopsis itself.
From the assumptions one can derive constraints on the reconstructions. These
constraints ars admissibility criteria on the scene interpretations. One also has prin-
ciples, selected becouse they reflect one’s preferences as to the solution to the prob-
lem. These principles constitute performance criteria on the scene interpretations.

Together, the assumptions, constraints, and principles constitute a computational
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ADMISSIBILITY PERFORMANCE

ASSUMPTIONS (MODELS)

CONSTRAINTS PRINCIPLES

COMPUTATIONAL THEORY

Figure 2.1: Components of a computational theory. Assumptions and constraints delimit
the admissible regions of solution space. Principles define the performance criteria over the
admissible region.

theory. Equivalently, so do the combined admissibility and performance criteria and
their justifications. Figure 2.1 shows the relationships between the components of
the computational theory.

Some trade-offs are possible between admissibility and performance criteria. Any
admissibility criterion can be transformed into a performance criterion by imposing
a performance penalty on any non-admissible interpretation. If the penalty is severe
enough, no non-admissible interpretation will be accepted. The reverse can also ap-
ply. It may be possible to transform a performance criterion into an admissibility
one. For example, if a performance criterion is framed such that suboptimal solu-
tions need not be evaluated, then the performance criterion takes on aspects of an
admissibility criterion. An example of this is the Viterbi algorithm (Forney [1978]),
which is a form of branch and bound search, and which has been applied to stereo
matching by Baker [1982] and Ohta & Kanade [1985].

Both of these examples involve jumping across levels. While the criteria, formu-
lated at the computational theory level, refer either to admissibility or performance,
but never both, the embodiment of a specific criterion at the algorithmic level may

blur the admissibility/performance distinction. Nonetheless, one should stick to the
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notion that assumptions and constraints affect admissibility whereas principles affect
performance, Whenever possible, one should try to restrict the analysis of informa-
tion processing to within a particular level.

We have tried to be rigorous in our use of the words “assumption,” “constraint,”
and “principle.” Many researchers have been careless in their use of these terms,
often confounding them with heuristics or ad-hoc rules. Such carelessness is under-
standable, but not excusable. We hope that by making the meaning of these terms
explicit, further confusion will be avoided.

The next section presents the assumptions, constraints, and principles to be used
in the stereo system. Most of these have appeared elsewhere, although not necessarily
in the form given here. In the second part of this work, the assumptions, constraints
and principles are applied to the stereo problem to derive with a new computational

theory of stereo vision, with extensions to optical flow.

2.1 Assumptions

The first three assumptions come from Marr [1982). He was concerned with the
manner in which primitive elements (tokens) of an image could be organized into a
meaningful description. Thus, these assumptions are directly relevant to grouping
processes, although, as models of surfaces, they have some bearing on any visual
task.

2.1.1 First Physical Assumption

The visible world can be regarded as being composed of smooth surfaces

having reflectance functions whose spatial structure may be elaborate
(Marr [1982] p. 44).

Thus, fractal surface models (Pentland [1984]) are excluded.

2.1.2 Second Physical Assumption

The spatial organization of a surface’s reflectance function is often gen-

erated by a number of different processes, each operating at a different



2.1 Assumptions 18

scale (Marr [1982] p. 46).

The scale at which each process operates is of necessity no larger than the scale of
the entire surface. A moment’s reflection will show ihat this has to be—any surface
is the same size as or larger than the markings on it (i.e., is defined at an equal or
larger scale). Jumping ahead of ourselves for a moment, this idea can be extended
to cover all edge types. A step edge in an image can be due to a specular reflection,
a surface marking, an orientation discontinuity, a height discontinuity, or an illumi-
nation boundary. Specular reflections and surface markings occur at the smallest
scale, height discontinuities such as occluding boundaries at the largest. Orientation
discontinuities occur 2t intermediate scales. Thus, an edge that is detected by a
process operating at the finest possible resolution, and detected by no larger process,
must be a surface marking. There can be no evidence to label it otherwise—such
evidence would have to come from smaller scales, which we have just hypothesized
do not exist.

Events at larger scales can also be detected at smaller scales. For example, Yuille
& Poggio [1983] showed that edges identified with zero-crossings of the V2G operator
can be created but not eliminated as the V2G operator size is varied from large scale
to small. When a scene event is identified as occurring at a particular scale, we will
be referring to the largest scale at which the event appears. This is natural, since
large-scale scene events give rise to image events at a range of scales, but small-scale
scene events do not.

Ilumination boundaries, such as shadows, are difficult to analyze in term of the
scales at which they occur, because shadows are not necessarily observed on the
object causing the shadow. When an object is self-shadowing, then the shadow may
be treated as a surface marking, which occurs at a smaller scale than the object as a
whole, and the considerations that apply to surface markings will also apply to the
shadow. When an object is partially shadowed by another object, then the shadow
scale may be larger or smaller than the shadowed object scale, depending on the

object that is doing the shadowing.
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2.1.3 Third Physical Assumption

The items generated on a given surface by a reflectance-generating process
acting at a given scale tend to be more similar to one another in their
size, local contrast, color, and spatial organization than to other items
on that surface (Marr [1982] p. 47).

Since we are only concerned with monochromatic imagery, color similarity will be
unimportant. Similarity in other respects will make the correspondence problem
harder, since features to be matched may be discriminated from their neighbors only
with difficulty.

2.1.4 Surface Reflectance Assumption

The reflectance function of any surface has a matte or diffuse component

and a specular or glossy component, one of which may be zero.

Many researchers in computer graphics and computational vision have made this
assumption. Horn [1981] gives several examples of reflectance functions, so for the
greatest generality, one should not assume that the matte component of reflectance
is Lambertian, nor is it necessary to select a particular model for glossiness!. The
important thing is that we assume that reflectance has a matte component, and a
specular component. This justifies the inclusion of specular reflection as an edge

type in the next assumption.

2.1.5 Edge Classification Assumption (New)

All step changes in image brightness can be classified into one of four
types: (1) Surface markings, at which surface orientation and height
are continuous, (2) Surface orientation discontinuities, at which surface
height is continuous, (3) Surface height discontinuities, at which surface
orientation may also be discontinuous, (4) Specular reflections, and (5)

Shadows or illumination changes.

!Although Horn [1981] presents reasons for believing the model of Blinn and Newell [1976] is
more accurate than that of Phong [1975].



2.1 Assumptions 20

This assumption follows from the Image Irradiance Equation (Horn [1977]),
E(x) = R(n(x)), (2.1)

where E is the image irradiance at point x and R is the reflectance function of the
surface at orientation n. A step change in E is due to either a discontinuity in R
or n. A discontinuity in R is attributable to a surface marking, a specularity, or a
shadow, while a discontinuity in n is a surface orientation discontinuity, possibly also
a surface height discontinuity.

Furthermore, edges appearing at the finest scale tend to be surface markings,
and edges appearing at the coarsest scales tend to be height discontinuities, as noted
above. Specular reflections pose somewhat of a problem for stereo vision. In the case
of a single image, a specular reflection can be treated as a surface marking. In stereo,
this treatment no longer applies. When viewed stereoscopically, a glossy patch may
appear to float above or below the surface, because the position of the glossy patch
will change between views as the viewing direction changes. This gives the illusion
of depth. Blake [1984] uses this information to constrain surface shape at a glossy

patch in a technique he calls Specular Stereo.

2.1.6 Smooth Discontinuity Assumption

The loci of discontinuities in depth or in surface orientation are smooth
almost everywhere (Marr [1982] p. 50).

This follows from the cohesiveness of matter. Physical objects and surfaces have
boundaries, and ¢xcepting fractals once again, the boundaries are smooth, possibly
straight, curves. Marr suggests that this assumption lies behind the perception of

subjective contours.

2.1.7 Viewing Geometry Assumption

Any image can be rectified so thai one can assume that the perspective
projection shown in figure 2.2 is an accurate representation of the viewing

geometry.
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epipolar lines

Figure 2.2: Stereo viewing geometry. Point x projects to x), in the left image and Xp in
the right image. Any point whose projection in the left image lies along the same epipolar
line as x}, will have a projection in the right image somewhere along the same epipolar line
as Xp.

We assume, without loss of generality, the viewing geometry shown in figure 2.2.
Each image has a focal point which we can take to be the origin O; of a coordinate
system for the i*! image, offset by an amount o; from an arbitrary global coordinate
system. The focal length f; points along the optical axis OA;. A point x in the scene
is projected into the i*® image according to
If;|?

X, = (x— o)
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In accord with the notational convention described in the appendix, X; is an image
point. This assumption permits us to speak of epipolar lines. In fact, the Epipolar
Constraint follows directly. By placing the image planes in front of the focal points

instead of behind, inversion of the image is eliminated.

2.1.8 Fundamental Assumption of Stereopsis

If a correspondence is estahlished between physically meaningful primi-
tives extracted from the left and right images of a scene that contains
a sufficient amount of detail, and if the correspondence satisfies the
three matching constraints, then that correspondence is physically correct
(Marr [1982] p. 114).

This assumption introduces the notion of primitives or matching tokens, but does
not specify what these primitives should be. Much early work on machine stereo
ignored this issue, using individual pixels as the primitive matching elements (Levine,
O’Handley, & Yagi [1973], Mori, Kidode, & Asada (1973], Sutro & Lerman [1Y73],
Hannah [1974], Gennery [1977], Yakimovsky & Cunningham [1978], see Konecny &
Pape [1981] for a review of early commercial systems, Binford et.al. [1982] has a
more extensive review of mostly academic systems). Nonetheless, some (e.g. Kelly
et.al[1977], Helava [1978]) achieved acceptable performance much of the time. Pixels
are not physically meaningful primitives, as Marr [1974] pointed out. Thus, any
stereo system based upon pixel correlation is inherently limited in its applicability.
Systems that use detected features as primitives are called feature-point based. These
features may be edges (Arnold [1978], Henderson, Miller, & Grosch (1979], Mayhew
& Frisby [1981], Grimson [1981b], Baker [1982], Burr & Chien [1983], Medioni &
Nevatia [1984], Ayache & Faverjon (1985], Clark [1985], Ohta & Kanade (1985], and,
of course, the work of Marr and associates Marr (1974], Marr & Poggio 1976, 1979],
and Marr, Palm, & Poggio (1978]). Nishihara [1983] used the sign of the imzyes after
filtering through a Laplacian of a Gaussian, which is related to, but not identjcal with,
the presence of edges. Other work has used interest operators (Moravec [1979, 1980,
1981], Barnard & Thompson [1980] and Thorpe [1984]) to select specific points to be

matched. These points are chosen because they exhibit some unusual property, such
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as high directional variance, and hence are easy to locate. Thcy often, but do not
always, have physical significance, sometimes corresponding to corners of objects, for
example. More recently, stochastic methods of stereo matching have attracted great
interest (Marroquin [1985] and Barnard [1986]). These methods attempt to match
pixel grey levels, but in a non-deterrninistic manner. Although they use pixels as
matching primitives, they avoid the pitfalls of correlation-based matching. For one
thing, by using stochastic relaxation, they are able to escape from local minima in
the match evaluation function, and often produce results that are close to optimal.

The three constraints referred to by Marr are compatibility, uniqueness, and

continuity. They are discussed next.

2.2 Constraints

The first three constraints form part of the Fundamental Assumption of Stereopsis
(Marr [1982]). The others come from assumptions on the imaging geometry and, in

the case of the Surface Consistency Constraint, assumptions on the scene reflectance.

2.2.1 Compatibility

If *wo descriptive elements could have arisen from the same physical

marking, then they can match. If they could not have, then they cannot

be matched.

This constraint comes directly from the First Fundamental Assumption of Stereopsis:
extracted primitives correspond to physically meaningful scene events. In order for
the primitives in each image to be matched, they must originate from the same
physical event. However, one must do more than detect primitive elements. It is
necessary to obtain a description of the event. The possible descriptions depend, of
course, on the types of primitives extracted.

For example, Baker & Binford [1982] used a detailed description of edges for
matching. The properties they used were contrast, brightness on either side, ori-
entation, and distance to other matched edges along the epipolar line. The last

two properties were obtained from the analysis of Arnold & Binford [1980]. By
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comparison, the method proposed by Marr & Poggio [1979] does not rely upon a
detailed description of detected edges, instead drawing its power from exploiting the
constraints of uniqueness and especially continuity.

It is not even necessary that descriptions be invariant (or nearly so) across images.
For example, Kass [1983] matches pixel grey-levels and derivatives after smoothing,
and accounting for geometric distortions. By including geometric effects, he in effect
uses a more descriptive element, and matching has a physical basis. In contrast,
earlier correlation-based work did not include this effect, and so did not have a
physical basis. On the other hand, using descriptions that are invariant across images
does simplify the matching process. This is one reason for the great success of
edge-based methods. Gruen [1985] uses a technique similar to Kass, in which the
radiometric and geometric parameters are automatically assessed and corrected, so
that in his case, the correlation primitives are physically meaningful. Nagel [1985]
also tried a similar technique, ir. which estimation procedures are used to derive
optimal matches. Hunt & Ryan [1978] analyze the errors from correlation stereo,
deriving the Cramér-Rao error bound for correlation. The problems with correlation
are spelled out in detail in Horn [1983].

Wildey [1973] attempted to match image brightnesses directly, without success.
His idea of matching is similar to the one presented in chapter 5, with the important
difference that his method ignored the variation of brightness with view direction.

Thus, his match primitives were meaningless, and guaranteed failure.

2.2.2 Uniqueness

The Uniqueness Constraint means that, except in rare cases, each de-

scriptive item can match only one item from the other image.

This is because each item corresponds to some physical event on an objeci surface.
Since physical events are localized in space, they cannot be in two places at once.
Marr suggested that the exceptions to this rule occur when two different surface
events line up so as to project to the same point in one image. Then this one point
will have two correlates in the other image. True, but in that case there should

be two descriptive items for the different surface events; they would just happen to
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occur at the same place. This was handled well by Baker [1982]. He treated an edge
as the conjunction ot a left-edge and a right-edge. In this manner it was possible for
the same point in one image to match two different points in the other. It was not

possible for a single descriptive item to have more than one match, however.

2.2.3 Continuity

The disparity of the matches varies smoothly almost everywhere over the

image.

This follows from our assumption that the world is composed of smooth surfaces.
However, one place where disparity does not vary smoothly is at an occluding bound-
ary. Since occluding boundaries will generally be detected as edges, we cannot assume
that disparity varies smoothly at edges. This is a significant oversight of the origi-
nal Marr-Poggio-Grimson stereo algorithm. An improvement was made by Grimson
[1985], when he proposed that disparity varies smoothly along zero-crossing contours,
but not necessarily along them. The Continuity Constraint should not be construed
as requiring that disparity be perfectly smooth at all places that are not occluding

boundaries. But see the next constraint.

2.2.4 Surface Consistency Constraint

The absence of zero-crossings constrains the possible surface shapes (Grim-
son [1981a] p. 107).

This constraint arises when interpolating disparities from an edge-based stereo al-
gorithm (Grimson [1981b]). The edge-based algorithm only produces surface height
along contours in the images, yielding a sparse depth map. Interpolation is therefore
necessary to generate a dense depth map. Also known as “No news is good news,”
this constraint establishes that under certain conditions, many surface shapes give
rise to edges (defined by Grimson as zero-crossings in the second directioral deriva-
tive of the image) with high probability. The absence of such edges eliminates most

possible surface shapes from consideration.
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2.2.5 Figural Continuity Constraint

If an ambiguity in left/right zero-crossing matches arises, those matches
which preserve figural continuity are to be preferred (Mayhew & Frisby
(1981]).

This constraint comes from the Smooth Discontinuity Assumption and the First
Physical Assumption. Discontinuous scene events tend to lie along smooth curves in
space; these curves are projected into smooth curves in the images, independent of
the viewing geometry. A single zero-crossing, or for that matter, any one-dimensional
image feature, is usually the projection of a single scene event. Therefore, when there
are compatible zero-crossings (i.e., zero-crossings which could have originated with
the same scene event), it is most likely that they are from the same object, and
they will form a correct match. This formed the basis for Mayhew & Frisby’s stereo
algorithm called STEREOEDGE.

2.2.86 Positive Disparity Constraint

Disparity must be positive everywhere.

This constraint follows directly from the imaging geometry. Disparity is the difference

between the projection of a scene point into the left and right images.

b
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where z is the component of x along the optical axis. It is assumed here that the
baseline is perpendicular to the camera optical axes, and that the cameras have
identical focal lengths. Only points in front of a camera will be imaged; z must be
positive. If we take the baseline to be along the positive z axis, then the T component

of disparity will always be positive.

2.2.7 Epipolar Constraint

A point in one image can only be matched with a point in the other image

that lies along the corresponding epipolar line.
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Photogrammetrists have been aware of this constraint for a long time (Thompson
[1966]). In fact, it is one of the most basic constraints, coming directly from the
imaging geometry. The author knows of no stereo system that does not exploit this
constraint in some fashion.

Referring to figure 2.2, any plane containing the baseline b is called an epipolar
plane; the intersection of an epipolar plane with an image plane is an epipolar line.
For any epipolar plane there is a pair of epipolar lines, one in each image. An image
point lies along some epipolar line in some epipolar plane. The epipolar constraint
says that the corresponding point in the other image lies along the corresponding
epipolar line, and this line lies in the same epipolar plane. Thus the correspondence
problem is reduced to a one-dimensional search along epipolar lines. This constraint

can reduce the search space by a factor equal to the number of scan lines.

2.2.8 (Generalized) Ordering Constraint

Right-to-left order must be preserved among elements along an epipolarc

line in both images.

This constraint is based upon our assumption that visible surfaces result from single
solid objects, and that one is not looking at opposite sides of an opaque sheet. If one
has the situation shown in figure 2.3 where points A and B lie in the same epipolar
plane, then B will appear to the right of A in both images. The hatched lines
signify the “forbidden zone” of point A. Any point C lying in A’s forbidden zone
will appear to the left of A in one image, and to the right of A in the other. Thus, A
and C cannot be part of the same surface. The advantage of this constraint is that
is severely restricts the combinatorics of matching. Consider the simple problem of
matcking features (points) along a single epipolar line. If there are m features in one
image, and n features in the other, m < n, then allowing any feature to have either
a single match in the other image or no match at all, without the ordering constraint

the number of possibie matches is

- m!n!
.-;)(m—i)!i!(n_i)g'
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Figire 2.3: View within an epipolar plane. C lies within the forbidden zone of 4, and
so the projections of A and C violaie the ordering constraint. B is outside A’s forbidden
zone.

With the ordering constraint the number of possible matches is

S - (")

=0

which is considerably smaller. For example, when m = n = 10 there are 184, 756

possible matches with the ordering const:aint, compared with 234,662,231 without

it. Thus the ordering constraint greatly reduces the search space for this problem.
This result can be misleading. What it shows is that a great reduction in search

space can be had over a single epipolar line. It does not consider the possibility that
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tower ‘shadow’

..................

(a) (b)

Figure 2.4: Violation of the ordering coustraint. The tower “shadow” in each image is
the set of points whose projections cannot be seen in the other image because the tower
overshadows them.

information from more than one epipolar line can be used. The Continuity Constraint
can be brought to bear here. This constraint, as explained earlier, limits dispanty
changes over a small neighborhood. Because surfaces are generally continuous, the
disparity can change only gradually at most places in the images. Thus, when one
includes the figural continuity constraint and considers the total search space over
an entire image, the search spaces with and without the ordering constraint are more
nearly similar in size. A detailed analysis is required hefore one can say exactly how
the size of the search spaces compare in general.

There are situations in which the ordering constraint deces not apply. Consider
the images in figure 2.4. In 2.4(a) the tree is to the left of the tower. In 2.4(b)
the situation is reversed. Such a configuration would be disallowed by the ordering
constraint. The reason is that the orderirg constraint assumes that the tree and tower

are part of a single surface. This is not always the case. In fact, it appears that the
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human visual system may make the same assumption; we also have difficulty when
the ordering constraint is violated. So we see that although the ord_ring constraint
must hold locally, i.e., over patches of the same surface, it does not apply globally,
when multiple surfaces are considered.

Yuille & Poggio [1984] derived the generalized ordering constraint as the natural
extension to the case of a completely general viewing geometry of the ordering con-
straint of Baker & Binford [1981] and Ohta & Kanade [1985]. A different version is
given in Mayhew & Frisby [1982], where they relate it to the “opacity constraint.”
The opacity constraint is nothing more than our First Physical Assumption, i.e., the

world is composed of smootk, opaque surfaces.

2.2.9 Disparicy Gradient Constraint

If the disparity gradient exceeds a certain value (= 1) then fusion does
not occur (Burt & Julesz [1980]).

This constraint has been used as the basis for the stereo algorithm of Pollard, May-
hew, & Frisby [1985]. The Disparity Gradient Constraint was observed experimen-
tally by Burt & Julesz [1980], and was used by them to explain a variety of psy-
chophysical findings in stereopsis. For example, the Disparity Gradient Cornstraint
can explain certain ordering reversals, Panum's limiting case, disparity scaling, and
the “forbidden zone.”

The disparity gradient is defined between two binocularly observed points. There
are thus 4 observed vector quantities, the left and right images of each point. Call
these observations aj, aj, b, and bj. The binocular disparity is the disparity
difference between the two points, (a}, — alg) — (b}, — b%). The cyclopean separation
is the distance hetween the midpoints of the two pairs of points, (ay, +ag)/2 — (b}, +

7)/2. Finally, the disparity gradient is defined as the ratio of the magnitude of
binocular disparity to the magnitude of cyclopean separation.
ol a) = (b, = b)) 5)
|(az + ak) — (bZ + bR)|

It has been observed that binocular fusion only occurs for values of I less than or

equai to one. Pollard et.al. [1985] have shown that this is equivalent to imposing a
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Lipschitz continuity requirement on scenes in the world. While Lipschitz continuity
does guarantee cohesiveness, it is overly restrictive. In particular, it is possible for

real-world non-self occluding surfaces tc have a disparity gradient as large as 2.

2.3 Principles

Marr [1976] set down four principles for the organization of complex symbolic pro-
cesses. The first two are the Principle of Explicit Naming and the Principle of
Modular Design. These principles apply to the implementational level of a system.
Since we are more concerned with the algorithmic and especially the computational

levels, we shall only discuss Marr’s third and fourth principles.

2.3.1 Principle of Least Commitment

The principle of least commitment states that one should never do some-
thing that may later have to be undone, and I believe that it applies to
all situations in which performance is fluent (Marr [1976] p. 106).

This principle applies at the algorithmic level, telling one to avoid searches that may
require backtracking, for exampie. But it is still a principle in the sense described
above, that is, it expresses a preference on the algorithm, rather than being connected

with the real world, as an assumption or constraint would be.

2.3.2 Principle of Gracefirl Degradation

This principle is designed to ensure that wherever possible, degrading
the data will not prevent one from delivering at least some of the an-
swer. It amounts to a condition on the continuity of the relation between
descriptions computed at different stages in the processing (Marr [1976]
p. 106).

In other words, half a loaf is better than none. This requires a robust system. There
is a wide range of possible degradations, from small perturbations to gross errors.

When the input contains small perturbations, such as noise, one would like the
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system to produce an output that is as close to the noise-free case as possible. This
is only possible if the problem is well-posed (Poggio & Torre [1984]). Regularization
theory can be used to make an ill-posed problem well-posed. This has already done
for some problems in early vision, such as edge detection (Poggio, Voorhees, & Yuille
[1985]).

2.3.3 Existence and Uniqueness of a Solution

It is important to guarantee that a solution exists to a computational

problem, and that the solution is unique.

If no solution exists, then there is no point in trying to solve the problem. If the
solution is not unique, then one may get different solutions tc the same problem.
These principles, existence and uniqueness, were mentioned by Grimson [1981a] as
being key mathematical difficulties, although he did not call them principles. He
used them to solve the surface interpolation problem—existence restricting the form
of the functional used to measure surface consistency, and uniqueness choosing among

them, namely, the functional with the smaller nullspace.

2.3.4 Principle of Using Everything You Have (New)

It is generally better for an algorithm to use all the information available

to it than to ignore some information.

Any algorithm that uses only part of the information presented to it is unlikely to
be optimal. It is only optimal if the ignored information is redundant or useless, in
which case the information that was not ignored must be a sufficient statistic (Van
Trees [1968]). Now the grey levels of all pixels are of course a sufficient statistic,
therefore an optimal algorithm can in principle be devised that uses them as input.
But as we have already seen, correlating grey levels is not the way to go. On the
other hand, any algorithm that uses only detected edges will be suboptimal, unless
the edges uniquely determine the brightness.

There is some good news and some bad news in this. The good news is that,
except for a scaling factor and a harmonic function, the scale map of the zero-

crossings of almost all signals filtered by the Laplacian of a Gaussian of variable
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size determines the signal uniquely (Yuille & Poggio [1983]). So, if one were to
detect edges at all scales using zero-crossings of the Laplacian of a Gaussian for
edge detection, then this information could in principle be the input for an optimal
algorithm.

Now for the bad news. First, the reconstructibility of a signal from its finger-
prints depends on knowing the zero-crossing locations exactly. Single pixel precision
is not enough. Second, it is difficult to see how to use the entire range of scales
in a fingerprint for stereo. It is true that some algorithms (Marr & Poggio [1979],
Clark [1985]) use multiple resolutions, however, they use it solely to solve the cor-
respondence problem. Ultimately, their algorithms depend on the precise location
of the finest scale edges. They do not depend on the precise location of the coarser
edges, as long as they are localized sufficiently to permit the finer edges to be unam-
biguously matched. Having determined the correspondence between the finest scale
edges, interpolation is performed to obtain a dense depth map.

The interpolation process pays no attention to image brightness values, in effect
assuming that all the important information has already been captured. Indeed, the
Surface Consistency Constraint guarantees that most of the important information
has been captured. But not all of it. For it is certainly possible for more than one
surface to give rise to the same set of zero-crossings at the finest scale. Thus, a

process using only edges is suboptimal.

2.3.5 Principle of Errorful Images (New)

All errors and discrepancies must be related to the input images, since
that is where errors occur, and should not be in terms of scene elements,

because scenes do not contain errors.

This principle tells us how to model errors when there is a choice of models, stating
that the preferred error model is that errors occur in images, as opposed to scenes.
That is, objects in the reai world are not subject to errors. They have an existence
completely independent of any observation process. Errors are introduced into images
through the sensors. Non-idea! lense:, resolution limitations, quantization, and finite

dynamic range all cause deviations between scene radiance and image irradiance.
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O

Figure 2.5: Stereo triangulation geometry. When image points x/, and x/, lie on different
epipolar lines, the rays defined by ozx}, and ogxz do not intersect, and so no real-world
point x could have given rise to the projections. A common solution is to use a least-squares
technique to find the point closest to hoth rays. This solution, however, violates the
Principle of Errorful Images.

Processing of images can also introduce errors. Edge detectors do not locate edges
with 100% accuracy; they too introduce some error. Non-zero probability of missed
detection and false alarms, localization uncertainty, and image noise cause deviations
between the projection of scene edges into the image and detected edges.

This principle can be illustrated with a simple example from stereo triangulation.
Suppose one has two images with geometry as shown in figure 2.5. One Cetects a

point in one image and the corresponding point in the other. The two image points
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might not obey the epipolar constraint if there is any error in the images or in the
way the points are selected. Violation of the epipolar constraint is guaranteed to
occur if the two selected points and the two camera focal points are not coplanar. In
this case, no point in space could give rise to the selected image poirts. Despite the
presence of error, one would like to identify some point in three-space corresponding
to the selected image points. How does one do this?

The solution given by books on the subject (for example, Duda & Hart [1973])
would have one draw a ray in each image, from the focal point through the selected
point, and beyond. The point in space closest to both rays is called the solution. If
the epipolar constraint is obeyed, then the rays intersect, and there is no error. If the
epipolar constraint is not obeyed, then the rays do not intersect, and the chosen point

will be equidistant from each ray. The error that is minimized by this formulation is
e = |x— (o + tx})[* + |x — (on + sxp)[*. (2.6)

This quantity must be minimized with respect to ¢ and s. Setting derivatives to zero

gives
d
d_i = 2t|x}|* + 2x} - (oL — x) = 0,
de
- = 2s |x|? + 2x% - (or — x) = 0.

The solution is given by

er+or (X x Xg) - (b x X)X + (x], X Xf) - (b x x;)x})
— + . . (2.7)
2 2 IXL X XRI

where the baseline b is og — 0o7. The resulting minimal error is

(b 3_L_>.<_x_a_) (2.8)

") x x|

L] [

e = min|x — (o + txp)[" + |x ~ (0 + sxR)[" =

Note that both the solution (2.7) and error (2.8) do not change as either x}, or xj is
scaled; what matters are simply the directions in which they point.
The minimral error can be determined by purely geometric argument. Referring

to figure 2.5, consider the tetrahedron whose edges include x}, xj, b, and the short
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line segment, which we shall call d, passing through x perpendicular to the two rays.

The tetrahedron has volume equal to
v =1b - (x} x xR). (2.9)

Alternatively, the volume can be calculated as

|d| |x7, x x% (2.10)

since d is perpendicular to both x} and x%, and is therefors parallel to their cross-
product. Now (2.9) must equal (2.10) and |d|? is twice e*, so that
e_=l(b._x',‘x_xh)2 (2.11)
2\ Ixp x xg]| '
as before. Comparing (2.8) and (2.11), they are seen to be identical.

This solution incorporates a peculiar model of the world, in which the imaging and
point-selection processes are exact, and the world is probabilistic. This may apply
when one is imaging objects at a scale at which the Heisenberg uncertainty principle
is important, but we arc not interested in that case here! A better formulation of
the problemn is obtained by considering the selected image points as the projection
of an actual point in three-space, where the projection is subject to some error. This

error is

2

2
+ lfR|2 ’

2
If2] g mp b (2.12)

-x
—or)-f,

e= (x-—oz,)(x (x--oR)(x

Setting the derivative of (2.12) with respect to x to zero gives a necessary condi-

tion for a minimum. To simplify the analysis, assume that the origin of the global

coordinate system is located midway along the baseline, so that o, = —b/2 and
or = +b/2. Now,
T by eT 2
de b, |fif ) ( (x+ DL ) Ifi|
0T=—=2(x+——r——x' - X4
ey ) b n) e b
T byeT 2
b, |fa / ) ( (x = Dz ) ||
+2(x—-———-—-x I- . (2.13
( 2)(x-g)-fa R (x—2)-fa) (x—-2) -z )
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This is a more difficult problem to solve because of the nonlinearity in x. With the
special geometry already assumed, the optical axes are parallel to each other and
perpendicular to the baseline, and the same focal length applies to each image, so
that fy = fp =f with b f = 0. (2.13) reduces to

of = ((X+ P— E—X'L)T (I— _(x+ %)fT)

2'x-f x-f
T b\¢T
b Iff (x = B)f ;
+ ((X— 5 ﬁ - XR) (I— —X—f_ . (..14)

Taking the dot-product of (2.14) with f and simplifying gives the distance to the
object point
|bl* )£}

X = - B

(2.15)

Substituting (2.15) into (2.14), taking the dot-product with x, and simplifying gives

2

s~ (X, +xp)| =0,

2(le - x'R) ' b|b=2

or,
_Xp+xp b
2 b-(xf -xg)

Recall that this solution was obtained under the assumption that the global coordi-

nate system origin is located midway along the baseline. If this restriction is removed,

we get
_or+op  Xp+Xj |b?
T2 2 b-(xp—xpk)

The two formulations produce different answers, even in simple situations. For

(2.16)

example, suppose the cameras are arranged with parallel optical axes perpendicular
to the baseline (the same geometry assumed in (2.14)). Now suppose a point is
detected such that it projects directly along the optical axis of eack image. The
image points are thus the same as the photo principal points?, and the parallax is
identically zero. According to the first formulation, the actual object point cannot

be exactly specified; any point lying equidistant between the parallel optical axes

2A photo principal point is the intersection of the optical axis with the photo (image) plane.
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will minimize the error (2.6). This error will have a non-zero value, since the image
rays never intersect. This is most unsatisfying. However, according to the second
formulation, the actual object point lies infinitely far away, and produces zero error.
This is intuitively much more satisfying.

Unfortunately, the absence of disparity causes some difficulty with the solution
equations (2.7) and (2.16), as each has zeros in both numerator and denominator.
This can be remedied by considering the case where there is no horizontal disparity,
but there is some vertical disparity, so that the detected points do not lie precisely
along the optical axes. In this case, the second formulation still predicts that the
object is infinitely distant, but the first solution now predicts that the object lies
between the lens centers! The second solution is clearly to be preferred.

This example shows that the two methods do not produce the same answer. As
to which is to be preferred, it has already been suggested that the second method
is based on a better model of the error-generating process. Hunt & Ryan [1978]
and Torre et.al. [1985] performed analyses of stereo accuracy, showing that errors in
depth tend to be larger at greater distances from the cameras, for a given camera
set-up. Specifically, they show that depth errors exhibit a sensitivity that increases
as the square of the distance from the image planes to the surface. This effect was
already well-known from photogrammetry (Thompson [1966]). This suggests that,
in order to reduce this effect, one should not try to minimize depth errors directly,
but should try to minimize disparity errors, which are monotonically related to depth
errors. Disparity errors have the advantage that they are image-based, not world-

based, and so minimizing them accords with the Principle of Errorful Images.

Application to Navigation

This principle can also be applied to the navigation problem. Matthies & Shafer
[1986] formulate the problem as follows: A mobile robot observes a set of point
vectors q; from its current position. (Their implementation used stereo matching,
although other methods could conceivably be employed.) It must relate them to the
same point vectors observed from its previous position; those coordinates are p;. The

problem then is to determine translation t and rotation R to bring the observations
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into perfect correspondence. Ideally,
q: = Rp; + t.
In practice, there will be errors, given by
e.=q;— Rp; -t
It is necessary to minimize the weighted sum of these errors,
e= E e;?rW,-e.-,
i

where W is a matrix of weights. If the components of the error e; are independent,
W; will be a diagonal matrix. If the components of e; are correlated, W; will have
non-zero off-diagonal entries. The relative sizes of the eigenvalues of W; allow more
uncertainty to be assigned to certain components of the observations. Matthies &
Shafer assign greater uncertainty to the observations in the direction away from the
cameras. A similar inverse scaling was proposed by Moravec [1980], who justified it

on the grounds that uncertainty grows with distance.

2.3.8 Express Confidence (New)

The output of any information processing module should include an es-

timate of the confidence in the result.

The confidence should be as formal as possible, e.g., the estimator variance every-
where in the field is better than an ad-hoc confidence factor. This allows information
from different modules to be fused intelligently. With an estimate of the reliability
of each module, fusion can depend more heavily on the more robust module outputs.

This principle is not used in most current vision systems. Their output generally
does not include any error metric, making it hard to tell when performance drops.
Correlation-based stereo algorithms often simply lose track and get lost in regions
where there is little (or ambiguous) information; manual intervention is called for.

We wish to avoid this problem.
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2.3.7 Relativity Principle (New)

When dealing with a series of images, there is no preferred reference frame

attached to one particular image.

One image should not be favored over another. For example, one should not try to
match only the right image to the left image by calculating disparity for the right
image. It is permissible to match the right image to the left, and to match the left
image to the right, but not to perform only one match. Specifically, disparity cannot
be computed over only one image, it must be calculated for both images. There are
two ways to do this.

First, one can assume that the depth maps (equivalently, disparity maps) are
dense. In order for the images to match, it must be true that I'1(x7) matches Ip(x}y).
The image grey levels need not be exactly equal, and in general, they will not be.

Disparities in the images are given by
xp =xp—dp(xp) and  xp=xp +di(x]),
from which one conclades that
dy(x;) = dp(xR)-
Note also that the disparities must obey the fixed-point relations
dy(xg) = dp(xp +d5(xL)  and  di(xk) = dp(xp — dR(xR)).

It would be simpler to calculate only a single disparity, putting half of the disparity
into each image. In world coordinates, one should combute d’(x’), then match I (x'+
3d'(x’)) with Ip(x’ — 3d'(x')) (Horn [1986] pp. 316-318). This has the advantage of
requiring only a single disparity field, instead of two, mutually constrained, fields.

The Relativity Principle and Relative Orientation

The fact that no image lies in a preferred reference frame has important implica-

tions for other photogrammetric problems as well. Consider the problem of relative
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orientation, whkich must be solved by any truly useful stereo system. The relative ori-
entation problem involves determining the coordinate transformation between a pair
of camera stations. The most cornmon method for performing relative orientation
consists of fixing one image, and determining the translation and rotation need<d to
bring the second image into alignment with the first (See, for example, Wolf [1963]
or Horn [1986]). If the left image is fixed, then the problem can be stated as one of
finding translation (baseline) vector b and rotation matrix R such that any object
point can be transformed from the left to the right coordinate system. For the i*h
object point,

xpi=Rx;;+b, RIR=L (2.17)

(2.17) is actually directly applicable to recovering absolute orientation (see, for ex-
ample, Horn [1987]), since it assumes that the object point’s coordinates are known
exactly in both coordinate frames. (2.17) is not directly applicable to the relative
orientation problem, as neither xz; nor xg; are known exactly yet. Instead, one must
work only with image points x7; and xk;. Applying the image projection equation
(2.2) to (2.17) gives

|fL}®
fr - xLi

IfL]? fr - X: :
P T

b (2.18)

Unfortunately, (2.18) is not strictly in image coordinates; fg - Xg,; and f; - x;; terms
cannot be eliminated. Instead, they (or at least their ratio) must be solved for. (2.18)
is simpler than (2.17) insofar as fewer components must be determined.

The Relativity Principle suggests another formulation of the relative orientation
problem. Instead of finding a rotation and translation that relate one coordinate
frame to another, find a rotation and translation that relate both ccordinate frames
to a third, neutral, reference frame. That is, find translation (baseline) vector ¢ and
rotation matrix S such that any object point can be transformed from either the left

or the right coordinate system to the neutral coordinate system.

xr; = S7'x; — ¢, Xpi = SX; + ¢, STS =1

Xpi = S%xr; + (52 +I)c (2.19)
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Comparison of (2.17) with (2.19) shows that S = R"/? and ¢ = (R+I)"'b. Thus
the two formulations are equivalent.

A third possible formulation that inherently obeys the Relativity Principle is as
follows: Assuming that the translation vector ¢ is fixed, find (not necessarily equal)

rotation matrices Sy and Sk such that

Xri =SLX.'—C, S{SL=I

Xpi = SrX; + ¢, $TSr=1 (2.20)

This formulation has more degrees of freedom than needed, so one might try to
find the smallest rotations Sy, and Sz that satisfy 2.20.

The Reiativity Principle and Multiple Resolutions

The Relativity Principle can also be extended to cover multi-level image descriptions:
Any description that is permissible at one scale must also be permissible at all others.
The levels in a multilevel image description differ only in resolution, they use the
same primitives for describing the scene. While the Relativity Principle originally
stated that no image in a stereo pair should be favored, the extension propo:es that
no level in an image be favored, either. The exceptions to this rule come from the
very highest and lowest levels. Certain descriptions may not be allowed at the highest
and lowest levels; the disallowed descriptions are those which depend on yet higher or
lower levels, respectively, which are absent. For example, when classifying edges into
surface markings, orientation discontinuities, and height discontinuities, the level of
highest resolution can only contain surface markings; there is no information available
at a finer resolution that could be used to decide otherwise. Likewise, any assertion
that is generated top-down cannot be found at the coarsest resoluticn; there is no

coarser-level information available to generate such an assertion.

2.3.8 Principle of Concentrated Effort (New)

The greatest amount of computational effort should be expended where

it will do the most good.
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This is a result of being limited by the computational power available. In the case that
computational resources are unlimited, there is no need to be careful with how they
are used. Concentrated Effort is a strategy employed by biological vision systems;
they compute the important things first, such as predator and prey detection. The
fovea of the eye is an example of the application of this principle. The fovea allows
a concentrated effort in a portion of the visual field that has been determined to be
important.

Machine vision systems have on occasion employed this principle. The stereo
system of Levine, O’'Handley, & Yagi [1973] is one example. Most of their effort was
concentrated on regions where there was a lot of brightness texture, and therefore
likely to contain non-planar surfaces. The interest operator of Moravec [1981] serves

a similar purpose, as ounly “interesting” regions are considered for matching.

2.4 Surmmary

In this chapter, we have discussed assuinptions, constraints, and principles. Numer-
ous examples of each were provided. We have seen that assumptions are related to
the world models that are used, and that constraints derive from the assumptions.
Assumptions and constraints delimit, the set of admissible solutions to a computa-
tional problem. Finally, there are principles, externally imposed objectives that it
is desirable for a system to satisfy, independent of the system’s environment. One
of our goals was to clarify the distinction between the different kinds of informa-
tion that a computaticnal system uses. Many researchers have been careless in their
terminology, confounding assumptions, assumption, principles, and heuristics. By
being rigorous, we hope to avoid further confusion. Our other goal was the estab-
lishment of a framework for understanding computational problems. We will use the

framework in the next chapter to examine three existing stereo systems.



Chapter 3

Analysis of
Existing Stereo Methods

This chapter analyzes three stereo methods using the framework proposed in the
previous chapter. For each major class of stereo algorithm, one representative al-
gorithm will be selected and discussed at length. Levine, O’Handley, & Yagi [1973]
will be used for the correlation methods, Marr-Poggio-Grimson (Grimson [1981a])
will be used for the edge-based methods, and Moravec {1981] will be used for the
point-based methods.

The goal of this chapter is not to analyze exhaustively any particular approach to
performing stereo. Rather, the goal is to examine the role played by the fundamental
elements of the computational framework in each approach. Such an examination
cannot cover all stereo methods; there are simply too many. The chosen examples

are intended to illustrate the important points.

3.1 The Method of Levine—~O’Handley-Yagi

Levine, O’Handley, & Yagi [1973] present a method for the automatic determination
of depth maps. Their work was conducted in support of a planned trip to Mars by
autonomous machines for exploration of the pianet’s surface. Prior knowledge of the
surface of Mars provided some restriction on the scenes that could be encountered.
Some of the techniques developed exploited those restrictions, other techniques were
more general.

This section examines some of the assumptions used and the resulting constraints.

44
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First, let us review their approach.

3.1.1 Algorithm Description

There are 5 stages of processing in this method. First, images arz acquired and
subimages extracted. Next, tie-points, reference points that are easily matched, are
selected from each image. The tie-points are matched. Then an attempt is made to
match the remaining image points. These two steps may fail to match some points.
Last, an interpolation step assigns depth values to points that are not yet matched.
With the exception of image acquisition, these processing stages will be described in
detail.

We are given digitized left and right images, IL(%,j) and Ig(¢,j), sampled on a
rectangular grid of size m x n, where 7 is the row index and j is the column index.
The range picture p(z, j) is defined on the same grid as the right image, which is
taken to be the reference array. The problem is to find matching points in the left
array. Because of the imaging geometry, a point (¢, j) in the right image will match
(Z,p) in the left, with retinal disparity

and range

p(i,5) = K/d(i, j)
for some constant K, which is known beforehand. To determine the range, it is
sufficient to find the retinal disparity. This is accomplished using correlation to find
matching poin's.

A (2u + 1) x (2v + 1) window is centered on point (¢, ;) in the reference image.

This is correlated with an equal-sized window in the other image according to

Cett ity (Ta(€, M)IL(é,n + d) — pr(, 5L, 5 + d))
(2u+1)(2v + D)or(i, ))os (i, + )

¢(d) = (3.1)

with window meaus given by

1 i+u  J+v

=i-un=j—v
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and 4
1 i+u  Jtd4v

plhi+d) = GGy T D EZ 2 Iiln

=t—un=j+d-v

The numerator in equation 3.1 equals

> (- pL)Ir— pR).

The correlation is normalized by an estimate of the standard deviation of window

brightness, equal to the square root of the window variance. Window variances are

given by
2, . du v IRY
oRlhd) = (2u+1)(2v-¥-1) 6_;”_2]:”(’&(5”7) ZCE)
and

itu  Jrd+v

2u + 1)(2v 1) CZ 2

=i—-u n=j+d-v

o3(i,j+d) = (1et&m) = pair + )
A peak in ¢(d) indicates that the disparity at (¢,j) is d. Because ¢ may be a
multimodal function of d, it will be necessary to search ¢ for the best matching
point.

The size of the correlation window is adjusted based upon the image statistics.
If the window size is small, then small differences between the images will dominate,
resulting in false matches. This is especially true over regions where there is little
scene texture. Overly large windows also pose a problem; they do not allow good
localization of depth edges. This is because with larger windows, the probability
increases that unrelated scene components are included in the window. When the
correlation window is centered on a particular scere component, unrelated scene
components may be considered noise. The noise due to unrelated components impairs
correlation. '

Thus, the size of the correlation window is adjusted (actually, only v is adjusted)
so that a larger window is used when there is little scene texture, and a smaller
window is used when there is adequate scene texture. The already-computed variance

of the reference image 0% is used as a measure of scene texture. Minimum and
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maximum window sizes are predetermined; window size obeys a linear law within
these limits. The scheme for adjusting window sizes is ad hoc.

Several strategies are used to reduce the amount of computation required. Most
importantly, only a few rows are selected. The rows are sampled such that there is
an equal expected disparity change between selected rows. As a result, sampling is
not uniform. Assuming that the scene consists of a tilted plane with objects (rocks)
on it, the spacing between selected rows is uniform.! The unselected rows will be
processed later, during the interpolation procedure.

Another important strategy is the use of tie-points. These are points in the
reference image that are chosen for correlation based on image texture. A small
fraction of all points in the selected rows are chosen. Where there is little texture,
the scene is likely to consist of a flat plane, and only a few tie-points suffice to
characterize the scene. Where there is a great deal of texture, it is more likely that
there are objects present, and the range can be expected to vary considerably. For
this reason, more tie-points are selected in areas of high texture. Also, if there is
little texture, the tie-points will not be reliably detected. Local variance is used as
a measure of texture. The texture measure of a potential tie-pcint must exceed a
threshold, otherwise the point is rejected.

An exhaustive search of ¢(d) is required to find the corresponding pcint for each
tie-point. The correlation for each candidate match is computed according to equa-
tion 3.1, and the match point yielding the maximum is selected. The matching
procedure is robust because tie-point thresholding ensures that only tie-points with
a large amount of texture are used. This helps eliminate false matches.

The ranges of the tie-points form a coarse dcpth ‘map for the scene. In order to
refine the depth map, correlation is performed over the rest of the image points in
the selected rows. Tie-points are used to constrain the search for these remaining
points, and an exhaustive search is not needed. Define a limit buffer A = {1, Ap}

at each point in the reference image, where Ay, and \p are the left and right search

Levine et.al. state incorrectly that the spacing is hyperbolic. If the ground plane is given by
x-n = 1 and points are imaged according to (2.2), x’ = x|f)* /(x-f), then x'-n = |f|* /(x-f). From
(2.4), disparity is d = b|f|* /(x - f) = bx’ - n, which is linear, not hyperbolic, in image position.
Distance to the ground plane is hyperbolic.
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limits of disparity, respectively. Only disparity values within the limits given by the
limit buffer need to be considered.

The limit buffer is determined in the following ad hoc manner: Let row ¢ be a row
containing tie-points. For a subsequent row 7+ 8 the limit buffer is filled in according

to

AL +6,5) = min(d(i, j1), (i, 52)) — 6,
ARG + 6, 5) = max(d(i, j1),d(i, j2)) + 6

where (¢, 7;) and (¢, j,) are consecutive tie-points with j, < 7 < j, and § is a positive

A(G+6,5) ={

number.

The ordering assumption is used to eliminate some false matches from consider-
ation. This assumption states that, for any row, the order of points is unchanged in
the two images. There are situations in which this assumption may prove false. such
as in the presence of very thin objects, but these are not expected to be found on
Mars. The ordering assumption permits one to narrow the size of the limit buffer.
As matching proceeds within a row, the limit buffer is updated by tightening the

limits to eliminate any possibility of violating the ordering assumption.

3.1.2 Computational Explanation of the Method

The Levine-O’Handley-Yagi algorithm can be understood by using the proposed
computational framework. The algorithm incorporates a computational theory suit-
able for stereoscopic viewing of the Martian surface. What may seem like arbitrary
design decisions can be justified when the proposed environment is taken into ac-
count. In what follows, we will examine each assumption, and show how ezch can be
translated into a constraint on the stereo process. We will also discuss the rzlevant

principles.

Fundamental Assumption

The Levine-O’Handley-Yagi algorithm incorporates a fundamental assumption sim-
ilar to Marr’s [1982] Fundamental Assumption of Stereopsis. Marr identified three
matching constraints that must be met by any physically meaningful primitives in

order for a correct match to exist. Those constraints are compatibility, uniqueness,
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and continuity. This work can be construed as obeying this assumption, with the
understanding that pixel brightness values are the matching primitives. There is
nothing wrong with using grey-levels as match primitives; this is a perfectly reason-
able approach, which we shall adopt in chapters 4 and 5.

Uniqueness and continuity are obeyed by this algorithm. Uniqueness is a con-
sequence of the correlation maximization procedure. Continuity results from the
interpolation and limit buffer procedures. Compatibility is more difficult to show.
Correlation does not always indicate the compatibility of the underlying image bright-
ness functions. This is especially true when the surface being viewed is tilted. It is
possible for the correlation windows to cover different areas, as in figure 3.1. This
problem is common to all correlation-based stereo approaches. Mori, Kidode, &
Asada [1973] address this problem; their solution is to warp one image so tha: the
correlation windows in both images correspond to the same surface patch. The
Gestalt photomapper (Kelly et.al. [1977]) also solves this problem using a similar

iterative scheme.

Martian Surface Assumption

The Martian surface is different from much of the Earth’s, most closely resembling
a rock-strewn desert. The designers of this algorithm have taken these differences
into account in several ways. Let us quickly examine two of these differences. First,
the Martian surface is light in tone and almost flat, with many objects (rocks) of
various sizes protruding. Second, the ground plane is almost uniformiy textureless,
whereas protruding objects tend to be darker and of irregular shape and texture.
This illustrates the two kinds of assumption that can be made about the scene:
topographic and radiometric.

The assumption of a flat ground plane was exploited at almost every step of the
stereo algorithm. Recall that not every line in the stereo images is processed initially.
The lines that are selected are chosen under the assumption of a flat ground plane,
and are spaced so that there is approximately an equal change in disparity between
selected lines. Thus, when tie-points are selected, there will be an approximately

even sampling of disparities by the tie-points.
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Figure 3.1: Correlation window geometry. It is possible for the correlation windows to

cover different areas when the surface is tilted.
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The differences in texture between ground plane and object are used in several
ways. For example, tie-points are chosen at places where the texture measure is
large, especially at the edges of objects, or on them. This takes advantage of the
association between greater image texture and the presence of objects in the scene.

Another use of the object texture occurs during interpolation. Given a point at
which disparity is to be interpolated, the disparity and texture of the nearest tie-
points are measured. The interpolated disparity is obtained from whichever tie-point
has the lower texture. This is justified on the basis that when the tie-points have
different textures, one of them is probably in the ground plane, and the other at
the edge of an object. All points on a line between them also belong on the ground
plane, and therefore should be assigned the same disparity as the less-textured tie-
point. This works well provided that the tie-point at the edge of zn object is the
first high-texture point encountered. This will generally hold, because the edge of an
object is a local texture maximum, having half of its neighboring points dark, and
half light. One could call this the Untertured Ground Plane Constraint.

Viewing Geometry Assumption

It has been assumed that the cameras are aligned so that epipolar lines are hori-
zontal and correspond to the same scan lines in each image. This is a reasonable
assumption, especially since the optical system designers can mount the cameras in
a fixture to guarantee proper image alignment. This geometry makes the search for
corresponding points simpler, since, to match a point on scan lire 7 of the reference
image, it is only necessary to search line 7 of the other image. Thus, the Epipolar
Constraint is automatically and trivially satisfied.

There is another constraint that can be derived from the assumed viewing ge-
ometry. Recall that the image is assumed to consist of a tilted ground plane with
objects on it. Eecause the cameras are aligned so that the baseline between the
cameras is parallel to the ground plane, the horizon, if it is visible, will be horizontal
in both images. The cameras may be commanded to tilt up and down together, but
not independently. As a result, lines of equal distance to the ground plane will form

parallel lines in each image, as shown in figure 3.2. Recall that for a tilted ground
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Figure 3.2: Mars rover viewing geometry. The camera baseline is parallel to the ground
plane.

plane, lines of equal distance change are spaced hyperbolically and lines of equal
disparity change are spaced uniformly. This is the origin of the Uniform Spacing

Constraint between lines of equal disparity in the images.

Ordering Constraint

The Ordering Constraint is very important for reducing the size of the search space.

In this implementation, the Ordering Constraint reduces the search space by narrow-



3.1 The Method of Levine-O’Handley-Yagi 53

ing the limit buffer A. With the given imaging geometry, the Ordering Constraint
states that within any row, the order of points is the same in each image. The
authors note that violations may occur for “thin” objects. However, the Martian
Surface Assumption shows this to b= unlikely.

The Ordering Constraint follows from assumptions about the imaging geometry
and the absence of thin objects. The latter is the Martian Surface Assumption.
There is another assumption more fundamental than, and implicit in, the Martian
Surface Assumption, and that is, the underlying assumption about the cohesiveness
of matter, which corresponds to the First Physical Assumption of Marr (section
2.1.1).

Principle of Concentrated Effort

One principle that occurs repeatedly in this work is what one might call the Principle
of Concentrated Effort, which says that most of the computational effort should be
expended where it is needed most and will do the most good. A good example
of its application is the tie-point selection algorithm. Since most of the Martian
surface is assumed to be flat, locating a tie-point in a flat region yields little new
information. Instead, tie-points are selected at places where there is some evidence
(namely, the possible presence of objects) that the surface is not smooth. Thus, tie-
points are chosen at places where they will do the most good, where they yield new
information. Tie-points located in non-textured areas of the images are more likely
to produce no new information, and so there are fewer tie-points selected there.
Another example of the Principle of Concentrated Effort arises in the selection of
a subset of rows for processing, and the later interpolation to cover non-selected rows.
Because of the Physical Suriace Assumptions (and the Martian Surface Assumption
in particular), disparities are contiruous, and neighboring points tend to have similar
disparity values. This priciple allows one to ~mit the disparity computation at some
points, provided that their neighbors can be used to interpolate reasonable values.
This results in the expensive correlation calculation being replaced by the simpler

interpolation step.
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3.1.3 Summary and Discussion of the Method

The assumptions, constraints, and principles used by this method are:
e Martian Surface Assumption (First Physical Assumption)
e Viewing Geometry Assumption
e Fundamental Assumption of Stereopsis
e Compatibility
e Uniqueness
e Continuity
e Epipolar Constraint
e Ordering Constraint
o Uniform Spacing Constraint
e Untextured Ground Plane Constraint
e Principle of Concentrated Effort

Note that while the method uses many constraints based upon assumptions about
the Martian surface, it uses only one principle. The question naturally arises, “Is this
the best algorithm that could exploit theses constraints?” The answer is perhaps not,
and by examining overlooked principles, we may find possible areas for improvement.

Not every principle can be applied to this stereo problem. In particular, the
Principle of Using Everything You Have is incompatible with the principle of con-
centrated effort. THe first states that no information should be ignored, the second
states that the computational effort should be expended where it will do the most
good. If a vehicle is to navigate across the Martian surface in a reasonable amount
of time, it should not have to waste time on unimportant matters. On the other
hand, if the algorithm were to be used on Earth to process images that had been
transmitted by the rover, and processing time were not a prime consideration, then
Using Everything would make more sense. This illustrates the importance of the

system goals in determining the relevant principles.
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The Principle of Graceful Degradation was not used for this system. This is
unfortunate, because it seems likely that the stereo system will occasionally make
gross matching errors. If some particularly smooth terrain were to be encountered,
or visibility were to be reduced by dust, the system may fail to produce correct
matches. Unless the system has been built with robustness as a design goal, one
would not have confidence in its ability to degrade gracefully.

One way to incorporate the Principle ¢f Graceful Degradation would be to apply
a consistency check to the stereo output. If the check fails, then resort to some
error recovery procedure. The simplest consistency check would be to perform the
same stereo processing, but this time taking the left image as the reference image. If
the identical tie-point matches are produced, the results are probably correct. This
form of consistency check would accord with the Relativity Principle, which was not
used previously. It would also not need to significantly slow processing, since stereo
matching using the right image as the reference could be performed in parallel with
with matching using the left image as the reference. Comparing the tie-point matches
would have to be done as a separate step, but it would not take long compared with
the time spent on correlation.

Another possible consistercy check would be to have the system store a previ-
ously computed depth map. If the rover does not move too far after acquiring and
processing a stereo image pair, subsequent images should reveal the same features.
The presence of the same features (displaced, of course) in a sezond depth map wouid
be good confirming evidence that both maps were correct.

In ary case, it is possible to improve upon the performance of the rover stereo
system by including the Principle of Graceful Degradation, and also the Relativity
Principle.

We have seen that the Levine-O’Handley- Yagi method of stereo incorporates sev-
eral important assumptions, constraints, and princinles. Some of them were made
explicit, others were implicit. Some depended upon the special domain in which the
system was to be deployed, others were more general. Using the proposed frame-
work, this method for performing stereo can be interpreted as an embodiment of a

computational theory of stereopsis of the surface of Mars.
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3.2 The Method of Marr—Poggio—Grimson

This approach to stereo vision was described by Marr & Poggio [1979], and imple-
mented by Grimson {1981a]. Some of the detaiis of the work appear in Grimson
[1981b, 1982, 1983a,b, 1984a). The edge detection work is described in Marr &
Hildreth [1980]. Closely related work can be found in Grimson [1984b, 1985].

The Marr-Poggio-Grimson theory of stereopsis was developed in part to account
for human stereo perception performance. The implementation was tested against
a variety of scenes, both natural and man-made. Additionally, it was tested using
random-dot stercograms—stereo pairs containing only random dots. It has been
shown that humans can fuse random-dot stereograms, despite the total absence of
monocular depth clues (Julesz [1960]). The performance of the algorithm rivals
human performance on such images, leading its developers to propose their theory

as a model of human stereopsis.

3.2.1 Algorithm Description

There are 5 stages to the algorithm. First, images are acquired and subimages se-
lected. Next, the images are convolved with the Laplacian of a Gaussian operator
(V2QG) at 4 different scales, or operator size. Zero-crossings of the convolved signals
are then extracted at each scale. Up to this point, each image is processed indepen-
dently. Now, information in both images is combined in the actual matching process.
The result of matching is a disparity map along zero-crossing contours. Finally, a
dense depth map is created by surface interpolation. Such a map might be used to
create the 21-D sketch (Marr & Nishihara [1978]). Each stage will be explained in
turn, except for image acquisition, which is trivially implemented.

The stereo matching algorithm can be considered independently of the interpola-
tion algorithm. However, stereo matching and edge detection are more closely linked.
We start with edge detection.

According to the theory of edge detection proposed by Marr & Hildreth [1980],
edges can be detected by looking for zero-crossings in the Laplacian of a Gaussian-
smoothed image. Since the Laplacian differential operator and Gaussian smoothing

are both linear operators, they are associative, and the irnage may be convolved with
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Figure 3.3: Laplacian of a Gaussian operator. Edges are found by detecting
zero-crossings of the cenvolution of this operator with the images.

a single operator which is the Laplacian of a Gaussian.

z? + y2 -- 202 (22 +y?)/(207)
2m0b
Different sized operators (actually, different amounts of Gaussian smoothing) are

sz(mv y) =

used to provide information at different scules. The size of an operator determines
the range of spatial frequencies to which it responds; large operators respond to
lower frequencies than small operators. If the operator sizes are carefully chosen,
the spatial frequency response of each will exhibit little overlap. Each operator scale
(size) may then be said to correspond to an independent (non-overlapping) channel.
Significant features are indicated by the persistence of features over several scales.
Four scales are used, roughly corresponding to the four channels of human vision
(Wilson & Bergen [1979]).2 The channels are spaced at octave intervals, that is,

each operator is twice as large as the next smaller one. The Laplacian of a Gaussian

2There is some evidence for a fifth channel (Marr, Poggio, & Hildreth [1980]).
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operator has the shape of an inverted sombrero (figure 3.3). The central depression
of the operator has width
Wap = 2\/50’ .

The implementation takes wyp equal to 4, 9, 17, and 35.

Only zero-crossings that are not near horizontally oriented are used for match-
ing, because horizontal zero-crossings do not allow for unambiguous calculation of
disparity. For each zero-crossing, the sign and approximate orientation are recorded.
The sign is determined by noting whether the convolution values increase or decrease
proceeding from left to right. Orientation is defined as the gradient direction at a
zero-crossing point, and is recorded in 30° increments. Note that no zero-crossing that
is used can have an orientation of 90° or 270°. Zero-crossings are localized to single
pixel resolution. Subpixel-resolution techniques exist {Hildreth [1980], MacVicar-
Whelan & Binford [1981], Tabatabai & Mitchell [.584], and Huertas & Medioni
[1986]), but are not exploited in this algorithm.

Matching proceeds from coarse scale to fine, as shown in figure 3.4. For each
scale, the starting position of the eyes (vergence) is obtained from the disparity at the
previous, larger scale. For the coarsest scale, an initial disparity of zero is assumed.
The eyes are verged so that with this initial disparity, zero-crossings detected at the
pre.ious scale will be brought into alignment. Assuming that the previous matches
were correct, but poorly localized, the current scale must improve on the previous
disparity estimates. The size of the region that must be searched depends on the
zero-crossing operator size; smaller operators entail a smaller search space. Using the
initial disparity to guide the search, a range of disparities from +w, where w is the
current operator size, is examined. The number of potential matches is reduced by
only considering matches that have similar orientation. Orientation must not differ
by more than 30° in the implementation.

Although the method uses operators of increasingly finer scale, it is not a pyramid
scheme, as the input data is not reduced at each level. That is, full-size images are
used at each level; it is only the edge detector and search region sizes that vary. At
the coarsest scale, a large area must be searched to find potential matches, however,

the large search area is offset by the relatively small number of edges to be matched
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and the correspondingly small number of potential matches in the other image. Thus,
the coarse-to-fine strategy is not computationally expensive.

There are several possible outcomes from matching. An edge element may have
no match, one match, or more than one match within the search area. If there
are none or one, then we are done. If there are multiple possible matches, then a
disambiguation procedure is attempted. This procedure relies upon the continuity
assumption, i.e., neighboring surface patches should have similar disparity. Con-
tinuity allows one to let known good matches “pull” the correct potential match
into alignment. Matches of neighboring edges are checked; if we are fortunate then
the neigiiboring edges will be consistent with only one of the ambiguous matches,
namely, the correct one. If one iteration of disambiguation is insufficient to resolve
an ambiguity, the process can be repeated. Eventually, almost ail edges are assigned
a single match.

There are two optional consistency checks possible. First, matching can be per-
formed from both left image to right and right imags to left. This ensures that
the maximum amount of disambiguation will be performed. It also adheres to the
relativity principle. We shall have more to say about this later.

Second, the reliability of matching can be evaluated by examining the match
statistics. Wherever the correct match has been found, neighboring edge points will
have almost certainly been correctly matched. However, if a match is incorrect, then
neighboring edge points will have only a .7 probability of being matched at all (Marr
& Poggio [1979]). Thus, if within some neighborhood of a matched point 30% of all
edge points have no match, then the matched point has probably been incorrectly
matched, and the match can be undone.

For each level, matching results are stored in a buffer for use at the next level as
initial values. The stored matches also control the vergence mechanism.

Once matching is complete across all levels, surface interpolation is performed
to create a dense disparity map. The approach taken is to find the surface that
is best in the sense of simultaneously being the smoothest under some smoothness
measure while coming closest to the disparity data wherever such data exists. These
two requirements are contradictory. The smoothest possible surface might fail to

pass through any of the known disparity values; by the same token, a surface that
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passed exactly through the disparity values would not necessarily be very smooth, as
measured by the semi-norm. These two goals, smoothness and goodness of fit, can
be traded off according to some parameter £.

Departure from smoothness is measured by the quadratic variation in surface
gradient, and this can be justified on several grounds. The quadratic variation is
rotationally symmetric, monotonically related to the variation in surface orientation,
and defines a semi-norm on the space of possible surfaces. Furthermore, it has the
smallest nullspace of any second-order operator. This is important because it allows
one to find the interpolated solution that is most probably correct. Combining

smoothness and goodness of fit into a single functional, we have
2 2 2 2
O(s) = // (sn + 2s;, + sw) dz dy + ,BZ(s(z,-, vi) — o(zi, y,-)) , (3.2)

where s is the surface, A the above-mentioned tradeoff parameter, and c(z;,y;) the
known surface at point z.

When 2 is finite, this is a problem of surface approximation. The surface will not
be required to pass through the known surface points, although it should pass close
by. It is only in the limit as 8 approaches infinity that the surface passes exactly
through the points of known depth. In the other limiting case, when 3 equals zero,
the reconstructed surface is entirely independent of any known depth values. In
this case, the best approximation would be a plane with arbitrary orientation and
position.

When the functional (3.2) is solved on a discrete grid, a linear equation is obtained
at each grid point. Each equation is local, using only neighboring point values. For
an m x m grid the straightforward technique of solving a set of linear equations by
matrix inversion is impractical. Instead, an iterative technique is used to generate
an approximate solution. Since the objective function is convex, convergence to the

optimal solution is guaranteed.

3.2.2 Computational Explanation of the Method

The Marr-Poggio-Grimson theory of stereopsis was developed from a computational

viewpoint. As such, it contains many of the assumptions, constraints, and principles
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discussed in chapter 2. Qur analysis begins with the assumptions. Next we shall
see how each is translated into a constraint. Finally, the relevant principles will be
discussed.

Fundamental Assumption

This work is based on Marr’s Fundamental Assumption of Stereopsis, discussed in
section 2.1.8. To review, the assumption states that a match between physically
meacingful pririitives is correct when it satisfies three requirements: compatibility,
uniqueness, aud continuity. Edges are used as primitives because edges are robust
and can be reliably detected. Only non-horizontally oriented edges are used, since no
(more precisely, only weak) disparity information is available at a horizontal edge.

The compatibility constraint is satisfied by requiring that matching zero-crossings
have the same sign when traversed from left-to-right, and by requiring that they have
similar orientation. These requirements could have been combined into a single re-
quirement that matching edges have similar orientation provided that a full 360° of
possible orientations were used. Edges that have the same direction, but different
signs would be 180° apart, and thus would not be permitted to match. The orienta-
tion requirement of the compatibility constraint can be considered an apnroximation
to the disparity gradient limit, as discussed below.

Uniqueness is achieved by a combination of the expected spacing between zero-
crossings and the disambiguation process. Zero-crossings at a given scale are not
arbitrarily close together. Rather, the expected distribution of zero-crossing spacings
gives some confidence that most zero-crossings will have only a single candidate
match. Although it is possible for a zero-crossing to be assigned more than one
raatch candidate, the continuity constraint helps choose the correct one.

Continuity is enforced by the constraint that the neighbors of a successfully
matched zero-crossing must also be successfully matched. Since only 70% of the
neighboring zero-crossings will be matched when the match is incorrect, continuity
is easily checked.

The third constraint is sufficiently important that we treat it separately.
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The Continuity Assurnption

Three different continuity constraints have been made here. The first is that zero-
crossing contours are continuous. This is a consequence of the low-pass properties of
Gaussian smoothing. The second is that disparity is continuous along a zero-crossing
contour. This is true to the extent that a given zero-crossing contour 11 an image
derives from a single event in the scene that is itself continuous, such as a surface
marking or a depth or surface orientation discontinuity. This form of continuity
enables checking for successful matches. The third form of continuity constraint
states that surfaces are everywhere continuous. This is only an approximation; places
where it fails are of measure zero. However, it is these failures of continuity that are
most important to this stereo method, since zero-crossings corresponding to surface
depth and orientation discontinuities are so critical. They are critical because they
are the ones that will be detected first, at ccarser scales. This is especially true of
depth discontinuities, which arise from occluding boundaries in the scene.

The problem is that although surfaces are continuous almost everywhere, it is
precisely at discontinuities that we get the best disparity measurements. What is
needed is a method that can distinguish among the three sources of zero-crossing, and
use the appropriate continuity constraint. A recent modification to the Marr-Poggio-
Grimson algorithm by Grimson [1985] replaces the third form of continuity constraint
by the second. Instead of relying on surface continuity everywhere, the modification
depends on the continuity of the events that give rise to zero-crossing contours. This
is related to the Figural Continuity Constraint of Mayhew & Frisby [1981], which
is based on the Smooth Discontinuity Assumption. Grimson also derived means for
checking the consistency of matches by computing the number of matched points
along an edge.

Although this modified stereo matching algorithm reduces the problem of incor-
rect matches due to abrupt changes in depth, the unmodified surface interpolation
algorithm still attempts to fit a thin plate through all matched zero-crossings, even at
depth discontinuities. What is needed is a method for detecting depth and orienta-
tion discontinuities, so that interpolation will not smooth out the discontinuities. For

example, the Edge Classification Assumption could be used to determine which type
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of edge gave rise to a given zero-crossing. Based on the edge type, it might not be
necessary or desirable to interpolate. Grimson & Pavlidis [1985] proposed a method
for detecting discontinuities in depth data. Their idea was to look at the error resid-
uais produced by a planar approximation to the depth data. Discontinuities give rise
to specific patterns of residuals, which can be detected. This method lets one find
regions within which interpolation can be correctly performed. Another approach
to depth discontinuity detection was taken by Terzopoulos [1986]. He introduced
controlled-continuity constraints, applicable when there are both continuous regions

and discontinuities.

The Smooth Surface Assumption and the Surface Consistency Theorem

Surfaces tend to be continuous as a consequence of the cokesiveness of matter. This
motivates the continuity constraint above. The Smooth Surface Assumption also
plays a crucial role in the interpolation/approximation algorithm. The objective of
interpolation/approximation is to produce the surface that is most consistent with
the known depth data. The Surface Consistency Theorem (Grimson [1981a]), also
known as No News is Good News, shows that the absence of zero-crossings in a region
of the image constrains the possible surfaces that may give rise to that image, and
that the surface that is most probable, given the absence of zero-crossings, is the
smoothes: surface, where the smoothest surface is defined as having the least spatial
variation in surface orientation.

The Smooth Surface Assumption also provides a weak form of the Ordering Con-
straint. Recall that the Ordering Constraint demands that left-to-right order be
preserved in each image. Any interpolated surface that fails to obey left-to-right or-
der, su:h as the surface shown in figure 3.5, also introduces spurious zero-crossings.
Therefore, such a surface violates the conditions of the Surface Consistency Theorem
and the Smooth Surface Assumption.

The Marr-Poggio-Grimson theory of stereopsis lacks a stronger form of the Or-
dering Constraint. Violations of the ordering constraint are not explicitly excluded,
and in fact have been observed. When the algorithm is used on Panum’s limiting

case (features in one image having two equally good matches in the other image),
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Zero-crossings
created by

interpolation

Interpolated
surface

Loci of known depth

Figure 3.5: Weak Ordering Constraint violation. Although the surface shown passes
through the loci of known depth, such a surface would give rise to additional zero-crossings.
That no additional zero-crossings are actually observed is evidence that this surface is
not the most probable one. Such an extreme violation of the Weak Ordering Constraint
inevitably also violates the Surface Consistency Constraint.

inatched edges separate into two planes. The ordering constraint is violated, but

correctly so!

Viewing Geometry Assumption

As with the method of Levine-O’Handley-Yagi, this method assumes that the cam-
eras are aligned so that epipolar lines are horizontal and correspond to the same

scan lines in each image. This is a reasonable assumption, especially since the opti-
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cal system designers can mount the cameras in a fixture to guarantee proper image
alignment. This geometry makes the search for corresponding points simpler, since,
to match a point on scan line ¢ of the reference image, it is only necessary to search
line ¢ of the other image. Thus, the Epipolar Constraint is automatically satisfied.
The Viewing Geometry Assumption is behind the disallowal of horizontally ori-
ented zero-crossing segments as match primitives. More generally, for an arbitrary
viewing geometry, one wishes to exclude zero-crossing segments that lie along any

epipolar line. With the current geometry, these are horizontal lines.

Surface Reflectance Assumption

This work assumes that the surfaces being viewed are not glossy, but have slowly
varying reflectance functions. This assumption enters in two places: the meaningful-
ness of match primitives, and the validity of interpolation.

The Fundamental Assumption requires the extraction of meaningful match prim-
itives, which correspond reliably to events on surfaces in the scene. Zero-crossings
at specularities in an image pair do not arise from the same surface points—they are
not the projection of an object surface feature. They are virtual edges, the reflection
of the illumination sou.ce boundaries from the object surface. Edges due to glossy
reflections do not meet the criteria of meaningful match primitives.

The interpolation algorithm also relies on the absence of specularities. One of
the necessary conditions under which the interpolation scheme is valid is that there
should be no extrema in the reflectance map between zero-crossing contours. When
this condition is satisfied, the absence of zero-crossings can be directly related to the
smoothness of the object surface. If there had been a reflectance extremum, such as
a specularity would have caused, then it is possible that it could have occurred at
precisely the correct position to negate the effects of a surface event. This is unlikely;

the primary difficulty with specularities is they cannot be used as match primitives.

Disparity Gradient Constraint

The implementation restricts matches based upon edge orientation. Edge orienta-

tions must agree within 30°. This approximates the Disparity Gradient Constraint
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Figure 3.6: Disparity gradient. In the left image, a line segment makes angle 8, with
the z-axis. In the right image, the corresponding segment makes angle 6g.

with a disparity gradient limit of one. To see this, consider edge segments extending
from a}, to b7 in the left image, and from a; to b, in the right. Assume that there
is no vertical disparity, so that the a;’s lie along a single epipolar line, and the b;’s
lie along a single epipolar line as shown in figure 3.6.

Recall from equation 2.5 that the disparity gradient limit is given by

|(af — ak) — (b — bR)l
r=2 <1
(a% + ak) — (bl + bR}

To simplify matters, let v = a] — b} and vg = a — b; be vectors representing the
left and right image edge segments, respectively.

Ive = val <1 (3.3)
lve + val ~

From figure 3.6 it is apparent that the edge segments can be written as

|ve|cos OL]

V7 =
L |ve|sindg

[vr|cos OR]
and VR = ) .
|VR]|sinfg

Since there is no vertical disparity, the edge segments must have the same vertical
component:

IVLl sinHL = |VR| sin 03,

sc that . .
[ |vi|sinfg cos g/ sin 03]
VR =

|vi|sindy
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The binocular disparity is
|vL| (cos 8L — sin 0 cos Or/ sinOR)] vl [sin(GR —0L)

: 0] o

VL —Vp= ;
L R [ sm03

and the cyclopean separation is
vi+ver , [lvLl(cosfL +sinfy cosOr/ sinﬂn)J vl [ sin(fg + 0r) ]

" 2sinfp

2 2 2|v|sinéy 2sin 0 sinfg

(3.5)
Combining equations 3.3, 3.4, and 3.5, we have

sin®(0r + 01) + 4sin® Orsin® 0, > 4sin*(0r — 0L).
A few trigonometric substitutions produce
5cos?(0r — 0L) — 2cos(9p + 01) cos(fr—9L) —3 >0,

with solution

cos(fp + 0p) & \/cos2(6p + 0) + 15
5

The negative solution corresponds to |vL| < 0, therefore, choose the positive solution.

cos(0p + 0) + \/cos?(0p + 0.) + 15)

COS(GR -— 0;,) 2

(3.6)

|6r — 01 < cos™! ( 3

The allowable match orientations according to (3.6) are shown in figure 3.7a. The

30° approximation used by Grimson’s implementation is shown in figure 3.7b.

Principles of Existence and Uniqueness

Existence and Uniqueness are key to Marr, Poggio, & Grimson’s approach. The
search for the optimal interpolation operator is driven by these two concerns. In
particular, it can be shown (Grimson [1981a]) that if the functional used to evaluate
the performance of a proposea surface is an inner-product on the Hilbert space of
possible surfaces, then a unique most consistent surface must exist.

The space of all second-order functionals that can be considered is spanned by
only two functionals: the squared Laplacian, and the quadratic variation. The
quadratic variation is chosen for its smaller nullspace. In other words, the quadratic

variation leads to “more unique” results.
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Figure 3.7: Allowable match orientations (a) using a disparity gradient limit of 1, (b)
using a 30° approximation.
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Relativity Principle

The Relativity Principle is obeyed when matching zero-crossings. Each zero-cressing
in the left image is matched with a set of zero-crossings in the right image (if we
are fortunate then the matching will be one-to-one), and each zero-crossing in the
right image is matched with a set of zero-crossings in the left image (again, if we are
fortunate, then the matching will be one-to-one). For a match to be valid, the left-
right match must be the same as the right-left match. Should match disambiguation
be necessary, then a unique match from left-to-right may pull the appropriate right-
to-left match from the pool of possible matches, if the right-to-left match obeys the
compatibility constraint. Likewise, a unique right-to-left match can relieve ambiguity
in the left-to-right match pool. Thus, there is no preferred image frame; left and right

images are equally important.

Principle of Graceful Degradation

This is the first implemented stereo algorithm known to the author for which graceful
degradation was an explicit geal. Graceful degradation is accomplished by using
operators with large regions of support for detecting zero-crossings. Smaller operators
are also used, and they exhibit better localization properties than do the larger
operators, but they are inherently more susceptible to noise. The large operators
are less vulnerable, since they exhibit better signal-to-noise ratio (Canny [1986)).
Numerous experiments with the Marr-Poggio-Grimson stereo algorithm (Grimson
[1981a]) confirm this. Adding noise, slightly decorrelating regions, and otherwise

perturbing the inputs resuit in degraded, but not crippled, performance.

3.2.3 Summary and Discussion of the Method

The assumptions, constraints, and prir.rinles used by this method are:
e Fundamental Assumption of Stereopsis
e Compatibility
e Uuniqueness

¢ Cortinuity
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e First and Second Physical Assumptions

e The Smooth Surface Assumption and the Surface Consistency Theorem
e Viewing Geometry Assumption

o Surface Reflectance Assumption

Epipolar Constraint

Ordering Constraint

Disparity Gradient Constraint

P inciples of Existence and Uniqueness

Relativity Priuciple

e Principle of Graceful Degradation

It was reported (Grimson [1985]) that incorrect matches are occasionally assigned
near depth discontinuities. The problem is that the Smoothness Assumption does not
apply at depth edges, and the Compatibility Constraint must therefore be reformu-
lated. We have already seen that the prcblem can be remedied by using the Figural
Continuity Constraint, which is based on the Smooth Discontinuity Assumption.
This is an example of how we were able to recognize potential areas for improvement
by examining the assumptions and constraints which this method used.

We have seen that the Marr-Poggio-Grimson method of stereo incorporates sev-
eral importani assumptions, constraiits, and principles, most of whict we-e made
explicit. They tended to be general, and in experiments, this was confirmed by the
performance of the method on natural scenes, man-made objects, and randora-dot
stereograms. This method was proposed as a computational theory of human stereo
vision. Although its relevance to human vision has not been proven, it performs well

on test images.

3.3 The Method of Moravec

Moravec [1979, 1980, 1981] investigated the problems of robot navigation and obsta-
cle avoidance using 2 mobile robot (the “cart”). This work had several innovations,

including interest operators, slider stereo, and obstacle avoidance. The cart ran both
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indoors and out. In the next subsection, we shall describe the stereo vision portion
of the cart, including the interest operator and correlation algorithm.

The key to this work is slider stereo, in which a single camera is used to take
several piciures of a scene. It was motivated by the observation that lizards move
their heads from side to side while tracking prey. This side-to-side motion allows for
a form of stereo processing, in which the retinal disparity of an object is constantly
changing. Moravec discretizes this approach, and rather than considering continu-
ous camera motion, 9 discrete camera positions are used, providing a great deal of

redundancy. The advantages obtained by this redundancy will be discussed later.

3.3.1 Algorithm Description

There are 5 stages of processing in this method. First, 9 images are acquired, the
camera being shifted a controlled amount between images. The middle (5'") image is
the reference image. Second, an interest operator is applied to the reference image to
locate “features,” distinguished points that can be recognized in all or most images.
Approximately 30 feature points are chosen. Next, the correlator attempts to find
each feature in the other eight images. The location of each feature will be known
in as many as 9 images, or up to (2) = 36 image pairs. Each image pair is treated
as a stereo pair for each feature, and since the baseline is known, feature distance
and variance of feature distance ar~ computed. Finally, the 35 distance estimates
for each feature are combined; distance estimates with lower variance are weighted
more heavily. This provides a highly reliable estimatc of the distance to each of the
30 or so feature points.

The distance to each feature point is used by the cart to plan a collision-free path
around obstacles. A direction and quantity of movement are computed, and the cart
is ordered to move. Features that are picked up with the cart in different positions
give rise to motion parallax, which is exploited as motion stereo, Moravec’s term
for passive navigation. Our concern is with binocular stereo (actually, nonocular
stereo, meaning nine-eyed, and not to be confused with non-ocular stereo, meaning
eye-less!); motion stereo will not be discussed further here. The 5 steps of nenocular

stereo will be described in more detail.
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Image acquisition is the first step. Images are taken by a camera mounted on a
track; the camera position is precisely controlled. The camera is stepped exactly 6.5
cm between images, and 9 images are taken, for a maximum baseline of 52 cm. All
images are stored at full resolution and reduced resolution. To compute the reduced
resolution images, each image is compressed by a factor of two in both directions by
averaging 2 x 2 neighborhoods, the result stored, and the process iterated, until only
a single pixel remains for each image. The resulting multilevel image descriptions
are used for correlation.

The interest operator? is applied to the reference image to find features. A feature
is an image point that can be unambiguously identified in several images. Good
features arise from scene events, not from accidental alignment of object borders.
Points such as object corners and vertices make good features. Features are declared
to exist at image points that are local maxima of the interest operator output, called
the interest measure, provided the interest measure is iarge enough. The interest
measure is calculated as the minimum of four measures of directional grey-level
variance, where directional variance is calculated using square 3 x 3 pixel windows.

The interest measure m(z,y) in the image is

m(z,y) = minmy(z,y) (3.7)
where the m; are given by

. . 2
me = (1($+zy+1) 1(w+z,y+1+1))

. . . . 2

m = (Iz+c,y+1)-l(x+z+1,y+1+1))
. . . ~\2
my = (Ix+z,y+1)-1(m+z+1,y+1))

. . . . 2
my = Z(I(z+z,y+1)—l(z+z+ Ly+j-1)
J
Equation 3.7 can be expressed more compactly in vector notation. The interest

measure m(x’) at image point x’ is given by

=min 3 (IX+€&)-I(x+€+dy),  fork=0,...,3, (38)
€] <

3Thorpe [1984] contains a more detailed discussion of several interest operators.
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where d} is the k*® direction vector in the image, given by

T
d;, = [sgn(sin(,%r)),sgn(cos(%z))} .

Here, ||, is the Lo, norm or mazimum norm: |a|_ = max; |a;|.
Local maxima of (3.8) are determined when m(x’) is greater than the interest

measure of all overlapping and adjacent windows, that is, when

m(x’) = max m(x’'+¢')
€|,<

Features are recorded as a series of multiple resolution 6 x 6 pixel subimages
centered on the feature point. Image resolution is reduced by a factor of two in the
horizontal and vertical directions at each level. The finest subimage contains the
36 pixels around the feature. The next subimage also contains 36 pixels, but each
pixel in this subimage corresponds to four pixels in the finest resolution subimage.
Each subsequent subimage is the same s'ze, but with a factor of two reduction in
resolution. Each feature is represented by a series of 6 x 6 subimages, starting with a
very blurry rendition of the entire image, to a sharp view of the feature. An example
is shown in figure 3.8.

The correlator takes as input the multilevel representation of a feature from one
image, and finds the best match in another image. It uses a coarse-to-fine strategy,
first matching the coarsest description of a feature, and using that match to narrow
the set of possible match locations at the next level of resolution. This is repeated
at each resolution, until the finest level has been matched. Only matches within a
narrow horizontal band are considered; this amounts to a form of epipolar constraint.

At the coarsest level, the image will have been reduced 16-fold. An input image
which is 240 x 256 pixels will be compressed to 15 x 16. Locating a 6 x 6 subimage
in the 15 x 16 reduced resolution image can be accomplished quickly and easily. At
all other resolution levels, a 12 x 12 search area is used. The search area is centered
at the best match found at the previous level.

A straightforward correlation measure is the normalized correlation,
L ALAR

0= ——————,
VZ AL T AR

(3.9)
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Figure 3.8: Interest operator feature representation. The “conventional” representation
of a feature (top) used in documents such as this one, and a more realistic version which
graphically demonstrates the reduced resolution of the larger windows. The bottom picture
picture was reconstructed entirely from the window sequence used with a binary search
correlation. The coarse outer windows were interpolated to reduce quantization artifacts.
(From Moravec [1980], p. 35.)

where A; = I; — I;, for i = L, R. This operation removes the window mean from
each image window. Normalized correlation has the desirable property of being
unchanged when the inputs are linearly transformed. However, (3.9) is not used
in practice, because in regions where either image exhibits no brightness variation,

the normalized correlation is undefined. To overcome this drawback, a correlation
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measure called the pseudo-normalized correlation is used, given by

Y ALAR
ZA"L + ZA%

The pseudo-normalized correlation is well-defined, even when one image exlibits

o=2

(3.10)

little or no brightness variation. It should be apparent that pseudo-normalized cor-
relation is not invariant with respect to linear transformations of a single image. This
is actually helpful, for it has been found that the complete insensitivity of the nor-
malized correlation to linear brightness variation is excessive, occasionally permitting
incorrect matches.

The correlation step involves applying equation 3.10 to the detected features and
multiresolution images. Because there is a 25% overlap between the search area of
adjacent levels, correlation does not need to be perfect. In particular, localization
does not need to be precise, provided that it is accurate to within 3 pixels. The next
finer level will refine feature localization.

Up to 36 matches for each feature must be combined in an error-insensitive man-
ner. Error insensitivity is achieved by assuming that each r.iatch reflects an under-
lying Gaussian distribution of possible distances, centered at the computed distance
(inverse disparity) for the match. The distribution variance is the uncertainty in
distance of the matched feature. If correlation accuracy for features is assumed to
be one pixel, then the positional uncertainty of the feature is inversely proportional
to the baseline for that particular image pair.

The distributions for all match pairs are summed, with ttie contribution of each
match weighted by two factors: Matches with a large pseudo-normalized correlation
are weighted more heavily, matches with a large vertical disparity are weighted less.
Summing the Gaussian distributions for each match yields another, not necessarily
Gaussian, distribution. The peak of this distribution is taken to be at the distance
to the feature, as shown in figure 3.9.

Because so many matches are considered, the systems is tolerant of mismatches.
Correct matches tend to reinforce one another, whereas mismatches do not. There-
fore, only 3 or 4 correct rnatches are required for the matcher to correctly estimate

distance.
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Figure 3.9: Combining ranging information. The peak of this distribution, formed by
summing the contribution from each match pair, is taken to indicate the distance to the
featuvre.

3.3.2 Computational Explanation of “ne Method

Moravec’s slider stereo system was not developed with a computational theory in
mind. It contains a number of heuristics that are difficult to jus ‘fy. However, a rig-
orous justification was not the intent of this work, an operational stereo system was.
Thus, performance issues dominate theoretical concerns. On the other hand, because
slider stereo does not place much reliance on constraints, greater emphasis is placed

on principles, which are design choices motivated by desired system performance.



3.8 The Method of Moravec 78

We shall see examples of this below.

Fundamental Assumption

Slider stereo is based on the correlation matching of discrete features. It does not
strictly follow Marr’s Fundamental Assumption of Stereopsis, because all of the con-
straints of the Fundamental Assumption are not met. The Fundamental Assump-
tion has 4 components: the assumption that physically significant primitives must
be matched, and the three matching constraints: compatibility, uniqueness, and
continuity. Compatibility and uniqueness are trivially satisfied by the slider stereo
system. Continuity, however, is not meaningful when dealing wiih discrete points,
as in the current situation. In Marr’s stereo formulation, continuity helps solve the
correspondence problem by disallowing physically implausible matches. In Moravec’s
formulation, determining correspondence is less difficult, because the richness of the
feature representations make false matches unlikely.

The main assumption :z slider stereo is that detected features are suitable match-
ing primitives. Features usually correspond to semantically meaningful scene ele-
ments. They are robust, and can be reliably detected. A thorough analysis of fea-
ture detection is lacking. Thorpe [1984] provides a good discussion, but no thorough
theory, of feature detection.

One source of feature detection error noted in Moravec [1980] is the possibility
that the large interest measure at a particular feature may be the result of a fore-
ground object occluding a background object. An image edge on the background
object might intersect the occluding boundary of the closer object, possibly forming
a “T-junction.” A T-junction would have a high interest measure, and might be
picked up by the interest operator, although the junction would lack physical sig-
nificance. The same junction might or might not be detected in other images. If it
were, then its position would not be correctly identified in the other images. In any
case, errors such as this are unlikely to cause problems for the slider stereo system,
since features that are not physically significant lead to false or inconsistent matches,

which are ignored during distance estimation.
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Compatibility

The features to be matched must be compatible. This is ensured by the correlation
mechanism, which measures the pseudo-normalized correlation between features. Al-
though we ciaimed that features are interesting points, this is a simplification. Each
feature is a variable resolution representation of the entire image, with the finest
resolution centered at some especially interesting point. Each feature automatically
incorporates a great deal of context. In order for features to be matched, the features
mrist exhibit global compatibility, since correlation is performed at all levels of res-
olution. This contrasts with most other matching approaches, which use only local

compatibility.

Uniqueness

Every feature detected from the central image of the slider image sequence is assigned
a unique disparity. The assigned disparity corresponds to the histogram maximum
(figure 3.9). Computationally, deciding on a maximum is simple, the important
question is: Does the maximum correspond to the distance to any physical object?
The answer is yes, provided that there are sufficient correct matches to overcome
any false matches. Moravec suggests that correct matches among 3 or 4 of the nine

images suffice.

Viewing Geometry Assumption

Slider stereo is capable of operation in a variety of environments. It makes no as-
sumptions about the scene geometry, such as the presence of a ground plane or
horizon. It is ass'med that the images are acquired while the camera undergoes
horizontal translation, since the slider system constrains the camera motion to hori-
zontal translation. Exact knowledge of the imaging geometry allows the imposition

of the Epipolar Constraint.
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Epipolar Constraint

Only matches within a horizontal band are considered. The row (scan line) on which
a feature is detected in the reference image must be the same as the rows on which the
feature is located in subsequent images. Moravec [1980] reports that this constraint

has little effect on matching speed, but leads to fewer incorrect matches.

Principle of Least Commitment

At each resolution of matching, the image area available for matching is reduced
bv a factor of two. A large region is maintained around the correct match, and is
still considered a possible match region for the next resolution. Each correlation
operation therefore performs a small reduction in the search space. It is likely that
when there is more than one viable match at a given level, both potential matches
may be considered at the next resolution level. This is especially true when poten-
tial matches are close together. Thus, commitment to a specific match is delayed

whenever possible.

Principle of Graceful Degradation

Slider siereo exhibits graceful degradation in the presence of errors because of its
robustness. Robustness was a primary design goal of slider stereo. Two related
mechanisms contribute to the robust behavior: using many images, and weighting
the contribution of each match according to its reliability.

By using many images, the algorithm achieves insensitivity to errors occurring in
a single image or a few images. This is fortunate, since the correlator often makes
incorrect matches. However, incorrect matches usually produce inconsistent disparity
estimates. The histogramming mechanism for combining distance measurements
requires many reinforcing distance estimates. Therefore, inconsistent matcties rarely
contribute to the final result.

Weighting each match according to its reliability is an obvious means of improving
overall performance, and can be shown to be the optimal way to combine information.

This is discussed next as the Principle of Expressing Confidence.
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Figure 3.10: Alternative methods for computing distance. In this simplified slider stereo
example, only 5 images are used, with the camera focal points as indicated. Open circles
indicate matches that slider stereo would compute. The average of the open circle match
locations is given by the solid circle, which is the final location that slider stereo would
produce. A better estimate would be the location that minimizes distance from the 5
observed rays, one from each camera position. This location is indicated by a solid triangle.
These methods for computing distance do not give the same result.

Principle of Expressing Confidence

There can be as many as 36 match pairs, so it is important to combine the information
frein them in an optimal, or near optimal, manner. This can be done by weighting
‘he contribution of each match according to its reliability, which the inverse of the
standard deviation of each distance estimate. This is optimal provided that the

distance estimates are independent. Such is not the case however, since the 36
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distance estimates come from detecting a feature in 9 images.

The histogramming question thus answers the wrong question: How can the 36
distance measurements be optimally combined? The correct question should be:
What is the best distance estimate given that a feature has been detected in 9
images? A good answer would be: The distance estimate which is most consistent
with the observed data. Since the observed data consists of the feature locations in
each images, not the computed pairwise matches, the 36 distance estimates are a
poor choice of data with which to be consistent.

An example may make this more clear. In figure 3.10, the best distance estimate
using the pairwise match data is indicated by a solid circle, and the best distance
estimate using the observed data is indicated by a solid triangle. The two estimates
are not in agreement, the triangie being most consistent with the observed data. This
is similar to the problem encountered in the discussion of The Principle of Errorful
Images (section 2.3.5), in which different methods of defiring “best match” yield

differing results.

3.3.3 Summary and Discussion of the Method

The assumptions, constraints, and principles used by this method are:
e Fundamental Assumption of Stereopsis, except for continuity
e Compatibility

e Uniqueness

Viewing Geometry Assumption

Epipolar Constraint

Principle of Least Commitment

Principle of Graceful Degradation

Principle of Expressing Confidence

Note that while Moravec’s method uses many principles, reflecting a concern
with performance, it uses few constraints. The question naturally arises, “Could this

algorithm have made more use of constraints?” The answur is yes, but at a price.
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This method uses few constraints because it makes few assumptions about the
surfaces being viewed. This gives it an advantage over other methods when processing
scenes with many discontinuities. For example, many of the indoor scenes that
were analyzed contained thin structures, such as chair legs, that could give rise to
violations of the Ordering Constraint. On the other hand, by treating every point in
isolation from every other point, the results of one match cannot be used to constrain
other matches. Each match computation is ignorant of previously computed matches.
As a result, the search space for each match is larger than it has to be.

If one were willing to sacrifice the ability to match thin structures, one could use
the Ordering Constraint to restrict the search space. Since we have already assumed a
special viewing geometry, the Epipolar Constraint holds, and matches must lie along
epipolar lines. Suppose that a feature to be matched lies along the same epipolar line
as a previously matched feature. There is no need to consider matches that would
violate the Ordering Constraint. This would halve the search space, and subsequent
features along the sam= epipolar line would have an even smaller search space.

The Epipolar Constraint might not apply at enough points to make much dif-
ference, since it requires that feature be on the same epipolar line. With over 200
lines in an image, most lines will have zero or one feature. The Disparity Gradient
Constraint could be used instead, because it applies even when features are on dif-
ferent epipolar lines. It would have the effect of reducing the search space more than
the Epipolar Constraint. Of course, either constraint would require adding some
assumptions about the scene.

We have seen that Moravec’s method of slider stereo can be understood in terms
of the assumptions, constraints, and principles that we have been discussing. In
his system, the computational elements were mostly ‘mplicit, and required some
work to uncover. A greater emphasis was placed on principles, reflecting the greator
concern with performance. Although Moravec’s work can be analyzed using our

computational framework, it is not a computational theory.
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3.4 Summary

The proposed computational framework has been used to analyze different stereo
systems. The framework revealed some of the shortcomings of each system, by
identifying assumr—tions, constraints, and principles that had not bzen utilized. Our
next task will be to use the framework to develop a new method for stereo that
exploits as many assumptions, constraints, and principles as possible. First, we

must develop a model for ir2ge matching.
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Chapter 4

An Image Model
for Brightness-Based Matching

Corresponding points in a pair of stereo images rarely have exactly the same bright-
ness value. However, corresponding points do tend to have similar values, and this
observation is the key to matching image brightness patterns. Corresponding points
will not have similar values in the case of specular reflection; this must be handled
in other ways, as in Blake [1984].

This chapter presents and justifies a model for image brightness transformation
between images. This model can be used for any image matching problem either
involving observer motion, scene motion, or both. It can be applied to stereo, passive

navigation, and optical flow. We use a multiplicative model,
Il(xl) = mlz(X2),

where m is a spatially varying quantity.! This model is justified for two cases: (1)
When surface markings (albedo changes) contribute more to variations in surface
brightness than do geometric dependencies (shading), and (2) When a Minnaert
surface reflectance model applies. The brightness matching model is a good approxi-
mation under other surface reflectance inodels; however, it is not possible to examine
each and every possible model of surface reflectance. The brightness matching model
does not apply in the case of specular reflection, as will be shown.

Section 4.1 reviews the factors that determine image brightness. The relationships

! An earlier model had I} = mI, + ¢, where ¢ was a spatially varying offset. The offset ¢ turned
out to be unnecessary, both in theory and in practice.
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optical axis

e e e e e— ceme osee cmes o—

to object

image plane

Figure 4.1: Optical system geometry. d is the lens diameter, f is the distance from the
lens to the image plane, and « is the angle an incoming ray makes with the optical axis.

between surface normals, viewer and illumination directions, and scene radiance
are discussed. Although the arguments that follow will show that scene radiance
undergoes a scaling between images, image brightness is directly related to scene
radiance, so that the arguments that apply to scene radiance also apply to image
brightness.

Sections 4.2 and 4.3 justify the multiplicative image brightness transformation
model for two cases. The arguments show that the multiplicative model may apply
over image regions that correspond to a single surface. In the case of overlapping
objects, the model may fail to apply along occluding boundaries. The model does

not apply where there is glossy reflection, as shown in section 4.4.

4.1 What Determines Image Brightness

This section reviews the mathematics of scene radiance and image brightness for re-
flective surfaces. First, it is necessary to present a few definitions. Image brightness,

also known as image irradiance, is the light flux received by a sensing device per
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Figure 4.2: Bidirectional reflectance distribution function (BRDF). The BRDF is the
ratio of emitted to incident light for a small surface patch.

unit area. It equals the ratio of incident light flux to surface area for an infinites-
imal surface patch. Image brightness depends upon the camera optics, which will
be assumed to remain fixed throughout a sequence of images, and scene radiance,
which is the amount of light emitted by a surface toward the camera.? The image
brightness E is related to scene radiance L by (Horn [1986])

r(d) 4
E = LZ (?) cos® a, (4.1)

where d is the lens diameter and f is the distance of the lens from the image plane.
Both are properties of the optical system and are fixed. a is the angle between the
point in the scene and the imaging system optical axis, as shown in figure 4.1.

Radiance is the amount of light emitted by surfaces in the scene per unit area

2Image brightness may also depend upon atmospheric effects, and it ma, be possible to exploit
this dependency (Sjoberg & Horn [1983]). We shall not consider further any effects due to the light
transmission path.
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per unit solid angle in the direction of the viewer. For a reflecting surface, it is
proportional to the amount of illumination. Radiance is also dependent on the
illumination and emittance directions, and the surface material properties. These
factors, apart from illumination amount, contribute to the reflectance of the surface.
The notion of surface reflectance is made more precise by considering the bidirectional
reflectance distribution function (BRDF), the extent to which radiation from the
incident direction is re-emitted in the emitta.ice direction. The BRDF of a surface is
defined as the ratio of the amount of light reflected in the emittance direction from a
small patch to the amount of light entering from the incident direction. The BRDF
f(s; v) is given by

f(sv) = %‘3 (42)
where L(v) is the light emitted toward the viewer in direction v and E(s) is the light
incident from the illumination source in direction s, as shown in figure 4.2. v and s
are both unit vectors.

BRDF is usually given as a function of polar coordinates, f = f(6;, ¢:; 0., ¢.);
however, using vector notation reinforces the fact that the arguments to f are direc-
tions. The BRDF is only meaningful for an isotropic surface, since for an anisotropic
surface, a different reflectance applies as the surface is rotated about the surface
normal.

The BRDF can be decomposed into two factors, one describing the directional-
ity of the reflectance, the other describing the total reflectance of a surface. The
latter term is the bihemispherical reflectance, that fraction of the incident light that
is eventually re-emitted when a surface is uniformly illuminated from all possible
directions. Since light will in general not be emitted in only one direction, but may
be scattered into a wide range of directions, bihemispherical reflectance may be cal-
culated as the ratio of the integral over all emittance directions of emitted light to

the integral over all incidence directions of incident light. Following Nicodemus et.al.

[1977], the bihemispherical reflectance p(27;27)? is given by

1
p(2m;27) = ;/ves+ /seS+ f(s;v)dsdv,

3We write p(27;27) because we integrate -wer two unit hemispheres; each hemisphere has solid
angle 27.
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where St is the hemisphere visible from the surface. The bihemispherical reflectance
is sometimes called the albedo, but albedo does not have a standardized definition,
and the term albedo will be used below to mean something slightly different. Bihemi-
spherical reflectance is a surface characteristic, and is constant for a given surface
material. Note that the bihemispherical reflectance is not the total fraction of light
emitted for an arbitrary light source geometry, but is only the average value of the
fraction of light emitted, where the average is taken over all possible light source
directions.

The remaining factor in the BRDF describes the variation in reflectance as a
function of emittance and incident light directions. This term is the reflectance map
R(n,s, v), where n is the surface normal. If the light source location is fixed, one may
write R(n, v), and if the viewer direction is also fixed, the reflectance map becomes

a function of just the surface normal, R(n). This is the formulation used by Horn
[1977]). Thus,
f(s;v) = p(2m; 27) R(n) (4.3)

Combining equations 4.1, 4.2, and 4.3 gives

E =E L (i)zcos“a (2m;27)R(n)
- 04 f P y eT

= pR(n) (4.4)

where Ej is the light source radiance. All factors that do not depend on the surface
orientation have been gathered into p =, and this term will henceforth be called the
albedo. The most significant source of variation in p will be the bihemispherical re-
flectance, changes in which indicate a change in surface material or a surface marking
in the scene. Variations in R(n), which are attributable to changes in surface normal

n, are called shading. Equation 4.4 is the Image Irradiance Equation of Horn [1977].

A.2 Case 1: Albedo Changes Faster than Shading

This section considers the case in which albedo changes faster than shading. This will
occur when, for example, an object has many surface markings, so that the variation

in brightness over the surface of the object is due primarily to the markings, and not
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due to shading. Under this assumption, a surface patch viewed from two different
views will exhibit a proportional relationship in brightness values from view to view.

Rewriting equation 4.4, and letting the reflectance map depend on the view direction,
Ei(x) = p(x)R(n(x),vi) = p(x)Ri(n(x))  fori=1,2 (4.5)

Consider a small patch of surface centered around xo with surface normal ny. For

small displacements §x around X¢, equation 4.5 can be expanded in a Taylor series.

OR:(n(x))

E:(x) = p(xo) Ri(no) + [p(xo)—a;—— + R;(no)"’j—x")] Sx4...  (46)

where

aRi(n(x)) _ (aR.-(n))T dn(x)
0x ~\ On dx

and dn(x)/dx is the Hessian matriz for the surface.
If the relative change in albedo is much greater than the relative change in shad-
ing, that is,
-——> R ox (4.7)

then
. dp
£1(x) = p(x0)Ra(no) + Rl(no)ﬂ‘sx

Eg()() ~ p(xg)Rg(no) + Rz(ﬂo)%&)(
= mEl(x) (48)

with m = Rg(no)/Rl(no).
Equivalently, one could have required that the change in logarithm of albedo be

much greater than the change in logarithm of shading,

dinp > dnR
dx ox '’

from which equation 4.7 follows immediately.

In (4.4), the illumination source strength, which was assumed constant, was
lumped into the albedo term. However, illumination is not always constant in prac-

tice, and often a single surface will have some regions that are exposed to more or
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less of the illuminant. The image matching model is valid nonetheiess. A change in
image irradiance due to differing amounts of illumination striking a surface may be
treated identically to a change in image irradiance due to variation in bihemispheri-
cal reflectance. There is no change in any of the equations above, since illumination
strength plays a role in the albedo equal in importance to the rolz played by sur-
face material. It is just that illumination is often treated as constant, although this

treatment is not always required nor jusiified.

4.2.1 The More General Case

Equation 4.8 is a specific instance of a more general case. It is possible for the
multiplier model to apply even when the variation in shading is not negligible in
comparison with the variation in albedo. To see this, divide the Taylor series for the

image irradiance (4.6) by the irradiance at point xo.

EI(X) _ 1 BRl(x) 1 dp(X)

Eyo _1+[R10 ox +l—’; dx ox

EQ(X) _ LaRQ(X) 1 dp(x)

—Em =1+ [Rzo o + 2o dx 6x (4.9)

The ratios above will be equal, and equation 4.8 will apply, if the terms in square

brackets are equal.

Equality will hold if
1 R, 1 OR,

RIO ox - Rgo ox’

or,

OlnR, O0InR,
ox =~ Ox '’
where d1ln R;/0x = (1/R;)0R;/dx is the relative shading in the i*P image. If the

relative shading is the same in both images, then the multiplier brightness matching
model will apply.

In the case where irradiance variation due to changes in albedo are much greater
than those due to reflectance changes, the ratios in (4.9) are only approximately
equal. As the shading effects contribute less and less, d1ln R;/0x approaches zero,
and we approach the situation in section 4.2 as the multiplier brightness model

becomes increasingly accurate.
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4.3 Case 2: Minnaert Surfaces

A Minnaert surface belongs to a broad class of surfaces with BRDF given by (Horn
[1986])

E+1
2

(n-s)*Y(n-v)*1, n-s>0,n-v>0, (4.10)
P

f(sv) =
where 0 < k < 1 is a parameter that depends on the surface material. The restric-
tions on n - s and n - v ensure that brightness v/ill be non-negative. Specifically, the
restriction on §; ensures that the surface is not selt-shadowed; the restriction on 6,
ensures that the surface does not face away irom the viewer.
Under point source illumination of radiance Ey the surface radiance will be

k+1
2T

L=EF, (n-s)f(n-v)F1, n-s>0,n-v2>0, (4.11)

Scanning electron microscopes generate images for which £ = 0, the maria of the
moon can be approximated by k = .5, and a perfectly diffuse or Lambertian reflector
has £k = 1. Lambertian surfaces are commonly found in practice, and many non-
specular surfaces can be approximated by a Lambertian reflectance. The special
case of a Lambertian surface will be discussed in more detail at the end of this
section.

Figure 4.3 shows the relationships between source and viewer directions, surface
normal, and the angles between them. The incident angle is measured between the
illumination source direction and surface normal; its cosine is cos8; = s - n. The
emittance angle is measured between the viewer direction and surface normal; its
cosine is cos §, = v - n. The phase angle 6, plays no role in a Minnaert surface.

We wish to examine the ratio of image brightness values from each image. From
equation 4.4, the image brightness ratio will be the same as the surface radiance
ratio, since image brightness and surface radiance differ only by a scale factor. This
scale factor, depending on camera optics, will be the same for each image. Therefore,
E)/E, = L,/ L,.

Substituting the direction cosine relations into equation 4.11, and taking the ratio

between two views,

Eg (v,-n

1-k
22 _ . 0<wv-n,vyen. 4.12
El Vg'n) SVvitmva-n ( )
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Figure 4.3: Surface reflection geometry. Illumination from direction s strikes a point on
the surface with normal n and is reflected toward the viewer in direction v. 6;, 8., and 6§,
are the incident, emitted, and phase angles, respectively.

Only points whose surface normal satisfies 0 < vy - n, v, - n can be seen in both
images, therefore, these are the only points that will be considered. Points that
satisfy either relation with equality will be on the terminator for that view.

Of primary interest are loci where the ratio E,/E, is constant (or nearly o).
That is where the multiplier relation between image brightnesses will apply. From
equation 4.12, this will happen where (v,-n)/(v;-n) is constant. Let us characterize

those points whose surface normals obey

vi-n _
v c, (4.13)
or
(vi—ecv2):n=0. (4.14)

where c is the (assumed-to-be-constant) ratio. Several facts are deducible from equa-
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tion 4.14.

First, in general, not all points on a surface will be related by the same transfor-
mation, because for different values of ¢, different surface normals will satisfy (4.14).

Second, all points satisfying equation 4.14 for a given ¢ will have surface normals
lying in the same plane. This plane cuts the Gaussian Sphere (figure 4.4) in a great
circle. This can be seen as follows: For fixed ¢ equation 4.14 describes a plane whose
surface normal is (v; — cv;), passing through the origin. Since the Gaussian Sphere
is symmetric about the origin, any plane passing through the origin must separate
the Gaussian Sphere into two equal-sized pieces. The intersection of such a plane
with the Gaussian Sphere is a great circle.

Third, all loci on the Gaussian Sphere satisfying equation 4.14 pass through
the poles given by p and —p, where p = (v; X v3)/|vi X v2|. p has been made
into a unit vectcr by normalization. Substituting +p into (4.14), the constraint is
satisfied irrespective of the value of c.* Therefore the great circles of constant ¢ form
meridians.

Fourth, if we take any two points on the Gaussian Sphere that are visible from
both view directions, and construct the shortest (great circle) path between the
chosen points, then as we move along this path from voint to point, the ratio Ey/E,
will be a monotonic function of path length. Furthermore, if the two chosen points
do not lie along a great circle that includes the poles +p, then the ratio is either a
strictly increasing or strictly decreasing function of path length, depending on the
direction of traversal of the path.

To see this, consider the lune or wedge-shaped region of the Gaussian Sphere
corresponding to points visible from both views. Let T be that portion of the

terminator for view 1 that is visible in view 2. Tj is the set of points on the Gaussian

Sphere defined by
T, = {x such that [x| =1, x-v; =0, x- v, > 0}

E;/E, =0 along T. T; is defined similarly.

4Although (4.14) is satisfied at the poles, (4.13) blows up there. Fortunately, one can always
find a point arbitrarily close to either pole that does satisfy (4.13) without blowing up.
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portion of the Gaussian Sphere not visible

from one or both views

lines of constant E, /E1

Figure 4.4: Gaussian Sphere of surface orientations. Any surface normal can be rep-
resented as a point on the surface of the Gaussian Sphere. When a Minnaert surface
is viewed from directions v; and v, lines of constant brightness ratio form great circles

passing through the poles p = (v1 X v2)/|v1 X v2| and —p.
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E,/E, has no extrema nor points of inflection except at the poles, where T} and
T, intersect, as can be ascertained by differentiating equation 4.12 with respect to n

and finding where the derivative is zero.

)"
dn E1 =

Ao n (V2 : n)2

= (1= K)(vi-n)*(va 02 (n x (vi x va)) (4.15)

Ignoring for a moment the case where k = 1, treated at the end of this section, (4.15)
can only be satisfied at the poles, since £p x (v; x v;) = 0. Along T the ratio is
zero, and along T, the ratio is undefined (it approaches infinity).

Let points a and b lie within the region of the Gaussian Sphere visible from both
views. Either they have the same value of F;/E; or they do not. If they do, then
they must lie along a great circle passing through the poles. The proof in this case
is straightforward:

Since a and b have the same value of E;/E;, we have

v;ra v;-b
vy-a - v2-b

or

= (vi-a)(v2-b) — (v~ a)(v1 - b)
b- ( (V1 x VQ))
b-

(a x p)[v1 x vq

For a given value of a, what possible values could b assume? The above equation
constrains b to a plane passing through the origin with normal given by a x p. This
plane passes through both a and p. Since b has unit length by virtue of lying on the
Gaussian Sphere, b lies on the great circle passing through a and p.

It remains to show that when a and b have different values of E,/E,, then E,/F,
is strictly monotonic along the shortest (great circle) path connecting them. Let ab
be that path. Proceed by assuming that E;/E; is not strictly monotonic along ab

and then derive a contradiction, completing the proof.



4.3 Case 2: Minnaert Surfaces 98

Gaussian Sphere
Image

lines of constant E, /E1

Figure 4.5: Lines of constant E,/E;. Away from the poles, these lines are approximately
parallel.

E,/E, is continuous, except along T3, so that there must exist some point along
the path ab at which E;/E, is statiorary. Since lines of constant E;/E; on the
Gaussian Sphere are great circles, ab (which is a segment of a great circle) must
be tangent to such a line in order for stationarity to hold. But great circles are
only tangent when they are the same great circle; different great circles intersect in
exactly 2 antipodal points and are nowhere tangent. Therefore, a and b must have
the same value of E,/E,, contradicting our original assumption. Thus, that E,/E,
is a strictly monotonic function between a and b.

Choose a region of the lune far from either pole, and examine lines of constant
E3/E;. These lines will be approximately parallel, and of steadily increasing value
with increasing longitude, as shown in figure 4.5. Therefore, over any such region,
the image model

E, =mE,

holds, with m varying in one direction only. Furthermore, to the extent that E,/E,
varies linearly in that direction, V2m = 0 also. This will be important in chapter
5 where constraints on m are discussed. Therefore, a multiplicative relationship

between image brightness values obtains when a Minnaert surface reflectance model
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applies.

For what surface orientations is the linear m approximation for a Minnaert surface
valid? We have just seen that a linear m is a good approximation far from either
pole. Near the poles +p, lines of constant E;/FE; converge, so that assumptions
about m varying in only one direction do not apply. The poles are the locations at
which the terminators meet, and m does not behave well at either terminator. At
Ty, m = 0 and at T,, m approaches infinity. Obviously, V?m # 0 along T5. Thus,
the model may fail along the terminators in general and the poles in particular.
These points are closest to being occluded, and will suffer the greatest amount of
foreshortening, so that one would expect errors there. Also, because foreshortening
is greatest, a surface patch near a terminator will project into a much smaller area
in the images than would a surface patch far from the terminators. The bad effects
near the terminators are reduced in significance as the projected area in the images
is not that great.

Note that when the surface parameter k is near 1.0, E,/FE; will be close to 1.0
for a larger range of surface orientations, and the range of surface orientations over
which the multiplicative brightness model applies will be large. In the case of a
Lambertian surface, k¥ = 1 in equation 4.11, and therefore F;/F; = 1 from (4.12).
This shows that the brightness of a Lambertian surface does not depend on the view
direction. In such a case our brightness matching model applies everywhere, with

m = 1.0.

4.3.1 Logarithmic Multiplier Model

The model presented so far has m varying linearly. This may not always be the best
model to use; the next chapter argues on computational grounds that it is better to
consider the logarithm of the multiplier. This section examines the mathematics of
the logarithmic multiplier model.

Consider the natural logarithm of m,

E2 vi‘n 1-k
lnm=ln-—-=( ) )
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Gaussian Sphere

Figure 4.6: Specular reflection on the Gaussian Sphere. Each image has a brightness
maximum at a different orientation n;. At orientation n* lying between the n, image
brightnesses are not linearly related according the proposed model.
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with derivative

(4.16)

T T

=(1-k)| 222 )
vi-n \ o

T

(nx(levg))

Equation 4.16 shows the behavior of the multiplier logarithm. Since, at a termi-

nator, v; - n = 0, (4.16) blows up. This is especially true at the poles.

4.4 Case 3: Specular Reflection

The brightness matching model does not apply in the case of specular reflection.
A glossy surface has a brightness maximum wherever the surface normal is exactly
between the viewer and source directions. Most models of gloss predict a sharp
brightness peak, such that nonspecular components of reflection can be ignored at a
specularity. In two views of a glossy surface, therefore, the maximum brightness in
image 7 should be located where the surface normal is

Vi+s
vl

n;

Referring to figure 4.6, which is a slice through the Gaussian Sphere including n,
and n,, brightness will be sharply peaked at different surface orientations.

Consider any surface point with orientation lying between the two specular di-
rections, for example, the midpoint n* = (n; + nz)/|n; + nz|. At n* the brightness
gradiert has opposite signs in the two images. Therefore, if a multiplicative rela-
tionship is to hold between image brightness values, the multiplier must be negative.
This cannot be true for two reasons.

First, image brightness cannot be negative. Yet if I; = mI; with m negative,
one image would have to be negative. Second, m negative violates our notion of
image similarity. Recall that the entire objective of an image brightness matching
model was to permit matching of similar, though not necessarily identical, brightness

values. As illustrated in figure 4.6, m is negative precisely because the brightness
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values are not similar, and in fact behave quite differently in each image. Thus, the
proposed brightness-based matching model does not apply in the case of specular

reflection.

4.5 Summary

This chapter started out by reviewing the factors that contribute to image brightness.
Horn’s [1977] Image Irradiance Equation was rederived, showing the dependence of
image brightness on surface orientation via the reflectance map, and the dependence
on albedo, including the bihemispherical reflectance. Using this decomposition, we
have seen that image brightness values in different views are related, and that a
multiplier model is a good local approximation to that relationship. It was proven
that the relationship holds for two cases; when variations in albedo (for example,
surface markings) dominant shading (geometric dependencies), and when a Minnaert
surface reflectance applies. It was shown that the multiplier model breaks down for
specular surfaces. We assume non-specularity and apply the multiplier model in the

next chapter to develop a new theory of stereo matching.



Chapter 5

A Computational Theory

of Stereopsis

Chapter 2 laid oat the framework for a computational theory of stereopsis by identi-
fying the assumptions, constraints, and principles that could be used, and chapter 4
presented a model of brightness-based image matching. It now remains to combine
the framework and the model to synthesize a useful theory.

The resulting theory of stereopsis is related to the work of Wildey {1973}, although
he attempted to match image brightnesses directly, which we have already suggested
in section 2.1.8 is generally impossible. His method also assumed perfect image
registration, any misalignment would have been disastrous. Horn [1986) also discusses
image brightness matching, using a variational approach similar to ours, but without
the image matchiag model used here. Kass [1983, 1986] implemented a method of
computing stereo that has some similarities to our approach. He proposed that one
should pass each image through several independent filters; matching points were
found when every filter in both images matched. The geometric distortion between
images and its effect on filtering was studied, but without modeling the effect of

reflectance dependencies on image brightness.

5.1 Computational Stereo

The approach taken here is to treat the stereo reconstruction problem as one of re-
covering (horizontal) disparity, multiplier, and vertical disparity fields from a pair

of images. We define a cost functional that maps the solution space of all possible
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disparity, multiplier, and vertical disparity fields onto the real numbers. The solu-
tion with the lowest cost is the best solution. With the appropriate choice of cost
functional, the variational calculus can give necessary and sufficient conditions that
the lowest cost solution must satisfy.

It should be noted that, although both necessary and sufficient conditions can
be derived, this work derives only the necessary conditions and ignores sufficiency.
It is possible for a solution of the necessary conditions to be a worst solution, not
a best one. However, since, for the stereo problem considered here, the cost of the
worst solution is unbounded, the fact that bounded solutions are always obtained
indicates that the solutions produced are optimal. Unfortunately, local minima may
exist that are not globally optimal. Section 5.3 proposes a method for avoiding local
minima while finding the optimal solution.

The cost functional must be chosen carefully. The rest of this section discusses
that choice and the factors that influence it. The cost functional must simultaneously
allow for the resolution of conflicting goals, such as smoothness of the disparity
field, good image matching, etc. Several independent cost functionals are defined;
each measures distance from a particular goal. In the case of the image grey-level
differences, the cost functional is an error to be minimized. Strictly speaking, the
other cost functionals are not errors. Since they express the non-desirability of certain
possible solutions, they may correctly be called penalty functionals.

It is impossible to simultaneously minimize all of the cost functionals, but it is
possible to minimize some combination of them. We will let the overall cost functional

be a linear combination of contributing terms.
e= A€+ Ageq + Anem + Ay

where the \’s are parameters that weight the relative contributions of each error and

penalty. We turn our attention to the error and penalty functionals.

5.1.1 Brightness Matching Error

The proposed method is based on matching brightness values between two images.

It is a refinement of Horn’s [1986] propcsed method. He suggested looking for a
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disparity function d(z,y) such that

I (2 + }d(2,9),y) = Ir (2 - }d(z,9),y) - (5.1)

Note that this formulation, which places half of the disparity in the left image and
half in the right image, obeys the Relativity Principle.

Since image brightness measurements are rarely exact, one should not require
exact grey-level matching. Instead, one should minimize some measure of brightness

matching error, such as
ei = [[(I~ In)? dzdy,

where I}, and Ip are measured as in (5.1). One can do better by using the model of
brightness transformation developed in chapter 4. The simplest application of the

model is to replece the brightness error term with

ei= [[(mIL ~ 1) dzdy,

where m is a spatially-varying multiplier. m = 1 corresponds to the case considered
by Horn. In general, this will not be the best solution to the new problem.

Unfortunately, this simple formulation of brightness matching error violates the
Relativity Principle, since the multiplier affects only the left image grey levels. It
would be better to spread the multiplier over both images by either

ei= [[(vml, - \/1—513)2 dz dy (5.2)

or
1

e = //(mIL - ;IR)2 dr dy (5.3)

(5.2) and (5.3) are completely equivalent under the correct choice of multiplier

penalty functional,-as shown in section-5.2.1.

5.1.2 Disparity Smooti.uess Penalty

Disparity should vary smoothly almost everywhere, so one should try to find a solu-
tion that minimizes some measure of departure from smoothness, such as the square

gradient

ea = [[(&+d&2)dzdy,
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square Laplacian (suggested by Horn)

ear = / / (V2d)? dz dy = / / (2, + 2dzed,y + d2,) dz dy,

or quadratic variation

eds = / / (&2, + 242, + d2,) dz dy.

If the scene is assumed to contain only planar surfaces oriented parallel to the image
planes, then e;; would be the best choice for a non-smoothness measure because
it penalizes all surfaces that are not parallel to the image planes, i.e., those with
non-constant disparity. This seems to be too restrictive an assumption; it would
be better to allow arbitrary surface orientations and smooth disparity variations.
Both e4. and ey3 permit arbitrary planar surface orientations without penalty; either
would be satisfactory. The space of disparity functions that are passed unpenalized
by a penalty functional® is the nullspace of the penalty functional. The nullspace of
the square Laplacian is the set of all harmonic functions and the nullspace of the
quadratic variation is the set of all linear functions, which is a proper subset of all
harmonic functions.

Choosing between the square Laplacian and quadratic variation was one of the
problems that faced Grimson [1982] when considering surface interpolation. As we
shall see, both non-smoothness measures produce the same Euler-Lagrange equa-
tions. The only difference, as Grimson pointed out, is found along the boundary.
Because the boundary conditions differ, the nullspaces of the two resulting opera-
tors differ, with the quadratic variation yielding the smaller nullspace. Therefore,
we will use ey = e43 as the measure of departure from smoothness. It turns out
that the choice of non-smoothness measure is less critical in this formulation of the
stereo problem than in the interpolation problem. This is discussed in more detail

in section 5.2.2.

1The disparity penalty functional used here must not be confused with the disparity functional
of Eastman & Waxman [1987). Their disparity functional is actually a polynomial approximation

to disparity having nothing to do with functionals in sense of the variational calculus.
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5.1.3 Multiplier Smoothness Penalty

It is also necessary to consider penalty functionals for the multiplier. The multiplier
m must not be allowed to take on arbitrary values; it must obey some constraints.
Otherwise, it would be possible for d to be any function in the nullspace of e,
with m varying in such a way as to make e; zero. Referring back to the derivation
of the brightness matching model in section 4.3, m tends to vary linearly and in
only one direction over a small surface patch on the surface of a smooth object. A
penalty functional should be imposed on m which would permit such variations while
penalizing more rapid multiplier fluctuations. Possible penalty functionals are the
square gradient, square Laplacian, and quadratic variation, the same penalties that
were considered for the disparity.

The square gradient might seem like a poor choice of multiplier non-smoothness
measure, because it tends to force m to be constant, rather than allowing for linear
variation. However, one expects that m will generally be close to 1.0, since very small
or large values of m are more likely to be associated wiih surfaces that are viewed
obliquely, and sharply tilted surfaces occupy only a small fraction of most images
(Arnold & Binford {1980]). Experiments with real images reveal that m usually

~ranges between 0.8 and 1.2. Thus, any “flattening” of the multiplier due to applying
the square gradient measure will not be too severe, since m is already “flat.”

Consider the square-root formulation of the brightness matching term (5.2). If

the square gradient of the multiplier

€m1 = //(mf. + m:) dz dy

is adopted as the penalty functional, then the Relativity Principle will be violated.
Recall that the Relativity Principle requires that one be able to interchange the roles
of the left and right images, yet obtain the same solution, appropriate changes being
made. If

li=lIp, Iy=l, &=-d and m"=—,

then the same solution should be recoversd. Indeed,

e; = [[(vmr; - \/:7?1;2)2 dz dy
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but
e # [[(m2+m™) dzdy.
Therefore, the same solution will not be recovered, since m and 1/m are not treated
equally.
One way around this difficulty is to alter the multiplier variation penalty func-
tional to operate on some function of the multiplier. For example, replacing m by

m+1/m in en; gives an alternative multiplier penalty which does obey the Relativity

ez = [ ((%): (%)2) (m+ -%) dz dy

Unfortunately, e,z is a poor choice for the multiplier variation penalty. It is too flat

Principle.

near m = 1, and at m = 1, den2/dm = 0. In a small neighborhood around m =1,
although the multiplier penalty is not strictly zero, it is very shallow. Using ¢m2, too
much variation of the multiplier would be allowed. The multiplier m could not vary
too far, but it could vary too rapidly.

One requirement on the multiplier variation penalty is that it have a non-zero
derivative everywhere, to ensure that the penalty be nowhere too shallow. A second
requirement is that the multiplier variation penalty should depend upon the relative
change in multiplier, given by §m/m, since a variation in multiplier from 1.0 to 1.1
should be treated the same as from 1.5 to 1.65. The logarithm of m satisfies both

requirements, so we will use

em = // ((a—az-)z-i- (565)2) (Inm)dzdy = // %(mi+m§)dmdy (5.4)

5.1.4 Vertical Disparity Penalty

A further refinement can be made by allowing for some vertical disparity. As
presently stated, the matching term seeks to match intensities along horizontal lines,
assuming the viewing geometry of figure 2.2. This may not be entirely realistic,
because small deviations from alignment are often found in actual stereo systems.

Some stereo systems compensate by searching over two or more scan lines. In the
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current scheme, it is possible to compensate by modifying the brightness match-
ing term to explicitly incorporate some vertical disparity. To do this, measure
I, at the point (a: + 3d(z,y),y + %—v(:c,y)) in the left image and Ir at the point
(z — 2d(z,y),y — %v(x,y)) in the right image. As before, we introduce a term to

keep the vertical disparity small, such as the squared gradient

ey = //(vi +v2)dz dy

or the quadratic variation

€2 = //(vf., + 202, +v})) dz dy.

The quadratic variation permits any linear function of vertical disparity to pass
without penalty. In particular, the quadratic variation penalty on the horizontal
and vertical disparity can accommodate any amount of translation or rotation of one
image relative to another. To see this, note that translating one image relative to the
other involves adding constants to the horizontal and vertical disparities. Rotation
maps a point [z,y] to [z cos§ —ysin 8,z sind + y cos 0], which contributes a disparity
of
d=1z(1 —cosf) —ysind and v=cxsinf+ y(l —cosh).

For either rotation or translation, the horizontal and vertical disparities are linear
functions of z and y; tu<y are in the nullspaces of the disparity penalties, and can
be completely accommodated.

One important distinction must be made between the horizontal and vertical
disparity penalty functions. Since we are trying to find the horizontal disparity,
while expecting the vertical disparity to be small, we should weight vertical disparity
variations much more heavily than horizontal ones. That is, A, > \;. Failure to
make the vertical disparity A much larger could lead to the following problem, shown
in figure 5.1. Let A\, = A4. If there is a linear feature (edge or gradient) oriented at
a 45° angle to both axes, the best match of the feature in both images would make
the horizontal and vertical disparities equal! This might be fine for optical flow, but

for stereo, we’d prefer less vertical and more horizontal disparity.
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incorrect disparity

right image featuxe

left image feature

/ s correct disparity

Figure 5.1: Confusion of horizontal and vertical disparity. If A, = A4, the incorrect
disparity will be computed.

5.2 Euler-Lagrange Equations

Having identified the cost functionals, the optimal solution can be obtained using

the calculus of variations. The overall functional to be minimized is
e = Aie; + Aded + Amem + Apey.
If the cost functional is expressed as

e =//‘Il(a:,y,d,dz, dy,dzzy dzy, dyy,

M, My, My, Maz, May, Myy, V, Uz, Vy, Uz, Ury, Vyy) AT dy

then the Euler equation is

d 0 0? 62 62
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Here, f stands for d, m, or v. For each variable, an Euler-Lagrange equation can be
derived. The stereo problem is solved when is solution is found that simultaneously
satisfies all three Euler-Lagrange equations.

Using the multiplier square-root formulation for brightness matching (5.2), the

Euler-Lagrange equations turn out to be

1 BIL 1 0Igr 4 _
A,-(\/mIL - ——,_mIR) (\/ =5d ) + x,Vid =0, (56)
1
| 1 oL, | 1 9l .
Ai(vmlip — —ﬁIﬂ) (\/ \/_ 5o ) + A,V =0. (5.8)

In (5.6)~(5.8) I, 8I1/8d and 8I./8v are measured at (z + d/2,y + v/2) and IR,
0Ir/0d and 8Ip/dv are measured at (z —d/2,y — v/2).

Note that
i](z+ldy+lv)=l_‘?_ (z + Ld,y + Lv) (5.9)
ad - 2e 2 20z It 20T 2 '
%Ia(x —ldy—3v) = —liln(x d,y — 3v). (5.10)
oI 161
a: =5 ayL (5.11)
oI 191
-(,)-;i = 53—:. (5.12)

The change in brightness with disparity is proportional to the change in brightness
with image position. These relations greatly simplify brightness derivative calcula-
tions.

Along the image boundary B, the natural boundary conditions must be satisfied
(Courant & Hilbert [1953]). The natural boundary conditions for d, m, and v are

—V2d 4 (dg2? + 2d,,2,y, + dyyy?) =0 (5.13)

0, a
5V + 5 (dzsZnzs + 2dzy (s + T,yn)dyyy?) =0 (5.14)

m, m

Ys m—:.": =0 (5.15)
—V + (v2222 + 2v,,2,y, + vy2) =0 (5.16)

0 <, g
‘a_nv v+ &= a (vxzznz: + zvzy(znys + zsyn)vaa) 0 (517)
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where s is arclength around B, d/38s indicates the partial derivative tangent to the

boundary, and 8/8n indicates the partial derivative normal to the boundary.

5.2.1 Equivalence of Brightness Matching Formulations

It was stated in 5.1.1 that the two brightness matching formulations, one with the
multiplier, the other without the square root of the multiplier, are ¢quivalent. To
see this, let d*, m*, and v* be the optimal solution to the brightness matching
problem with parameters A;, Ag, Am1, and A,. Then d*, m*, and v* satisfy (5.6)-
(5.8). Now let m; = \/m, corresponding to equation 5.3. To show the equivalence
of the formulations, it suffices to show that the same solution is attained. The

Euler-Lagrange equations for the new problem are

M(maly — = L —In) (mgaa{: + 12 3;;) + AV =0, (5.18)

A(mal2 — —12) Fhns L | Omyf? — A,,,%V’mg 0, (5.19)
and " 2

Ai(maly, — ;1;13) (m,%% + ng%L:) + AV = 0. (5.20)

The multiplier equation can be rewritten using |[Vm,|* = [Vm|® /(4m) and V?m, =
V2m/(2y/m) — |Vm|? /(4my/m). Dividing 5.21 by m, and making the indicated

substitutions,

1 1 {|Vm]? 1 (VPm  |Vm|
= N(T%2 . ]2 —_ — — -
0 =X mglﬂ) + A'"mg ( 4m ) A"’m% (2m1/2 4m>/?
1 1 1
— 2 2 2 2
= /\,‘(IL - mln) + Amﬁ leI - A,,,WV m (521)
Comparing equations (5.6)-(5.8) with (5.18), {5.20), and (5.21), it is clear that if

d*, m*, and v* are the optimal solution to the first problem with parameters A;,

A, Am1, and ),, then d*, m3, and v* must be the solution to the second problem
with parameters \;, Ay, Am2 = 4\ 1, and A,. Since the A’s are arbitrary parameters,
scaling any of them leaves the problem essentially unchanged. Therefore, the two
brightness matching formulations are rquivalent. The rest of this chapter will use

only the square-root version.
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5.2.2 A Closer Look at Cost Functionals

The reasons for using the quadratic variation and not the square Laplacian in the cost

functionals were discussed in section 5.1.2. However, both functionals yield the same

Euler-Lagrange equations. To see this, censider the contribution of the quadratic

variation to the disparity Euler-Lagrange equation. The disparity Euler equation is
g g i 0? 0?

Uy — —Wy, — %‘I’J, E 7> Yd.. + 320y —Va4,, + gy—z‘l’d,,,,

Or =0,

where the quadratic variation d2, + 2d%, -+ d?, only contributes to the second-order
terms on the left. The Euler-Lagrange equation is
i d° d°
Uy + Ad 9z 22d + m‘ld 3y 22dyy =Uy+ Ad(QdIIJ;, + 4d$zyy + 2dww)
=Y, + 2/\4V4d.

Had the square Laplacian (V2d)? been chosen, the Euler-Lagrange equation would
be

62

62
Yyt A ( 2(du' + dys) + Q(du a dyy)) =W, + ’\d(2d:r:ra:r + 4duyy + dew)

=¥, + 2/\4V4d,

which is the same as for the quadratic variation.

The Euler-Lagrange equations only apply in the interior of the image; there are
still boundary conditions to consider. The boundary conditions for the two func-
tionals differ. Repeating (5.13) and (5.14), for the quadratic variation the foliowing

conditions must hold along the boundary:

~Vid + (d.tzzf + 2d:yT,ys + dyyyf) =0

8, 0
%V d+ — a (dm:xnza + 2d:v($nya + xayn)dwyf) =0

For the square Laplacian the following conditions must hold along the boundary:

-V =0

0 e
aan—O
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Brightness-based stereo matching differs from surface interpolation in a way that
makes the choice of non-smoothness measure less important. Surface interpolation,
by its nature, operates on sparse data. In the specific problem considered by Grimson,
the interpolation of disparity along zero-crossing segments, there arises the question
of uniqueness: Under what conditions do the data determine a unique solution?
This is the Dirichelet problem in analysis. In the case of the quadratic variation,
disparity must be known at three non-colinear points, a condition that is almost
surely satisfied. In the case of the square Laplacian, disparity must be known along
a closed curve (Grimson [1981a]). This condition cannot be satisfied exactly, because
the matched curves along which disparity is known include no horizontal segments
(cf. section 3.2.1).

For the present problem, the Euler-Lagrange equation is not of the form
Vid = 0,

rather, from (5.6) and using the relations (5.9)—(5.12), it is

Vi =~ 2 (il — = Tn) (r st \/1_‘96’;) (5.22)

These equations are the same only when

(Ve — %IR) =0,

B, 1 BIg) _
(‘/’" \/—6)“"

In the first case, the brightness patterns in the two images are in perfect agreement.

or

In the second case, there is no preferred direction in which to alter the disparity to
improve the brightness match. This is an unstabie equilibrium point, where the image
brightnesses change in exactly the correct ratio. A special case of this occurs when
there is no brightness change in either image, i.e., 0I/0xr = ¢Ig/0z = 0. These
are the only cases for which the brightness matching algorithm can be construed
as performing interpolation. Otherwise, the right-hand side of equation 5.22 forces
a solution which will not satisfy the biharmonic equation V4d = 0. In general,

because of the forcing, solutions to (5.22) will be neither linear functions nor harmonic
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functions, so that arguments about nullspace size are not directly relevant when there

is sufficient brightness variation.

5.2.3 Multiplier Simplification

The system of equations (5.6)—(5.8) is difficult to work with because the equations
are highly non-linear. The multiplier equation is the most difficult of the three. The
difficulty may be reduced by approximating (5.7) by a differential equation which is
linear iz ém = m — 1.

To justify this approximation, recall that m is generally between 0.8 and 1.2, i.e.
|6m| < 0.2. Since m and its derivatives only appear in the cost functional ¥ via /m
and Inm, one may investigate the effect of using 1 + ém in place of m and dropping

high-order terms.
VI+ém=1+1m—3m*+... =1+ 36m

The error in the approximation is at most (0.2)2/8 = 0.005. This is less than 1%,
and thus is negligible. Also,

1
vV1+ém

with a larger, but still acceptable approximation error of 0.015, which is less than

2%.
Also,

=1—%6m+%5m2——...z1—-%6m

In(1 + 6m) = ém — 16m® + ... = ém

The error in the appreximation is at most (0.2)2/2 = 0.02, which is 10%. This is
acceptable. It is more important to have a good approximation for \/m, since the
accuracy of the approximation will directly affect the matching accuracy. The Inm
approximation does not directly affect matching accuracy, because it only occurs in
the multiplier non-smoothness penalty.

The Euler-Lagrange equations can be rewritten using 1 + ém in place of m to

produce a much simpler multiplier equation, and little added complexity for the other
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equations.
(@) - (- p) 1) (04 59) G+ (1= 49) G 09 =0
(5.23)
NER(I, + In) + M(I2 = I3) — 20, V36m =0, (5.24)
and
(14 52) - (1- ) 1) ((1 +62) %L: +(1-22) %) + A =0,
(5.25)

Equation 5.24 was derived by referring tc (5.5) and using the multiplier approxima-
tion above. (5.23)-(5.25) are still non-linear, because I and Ir depend on d, ém,

and v in a non-linear way, but the non-linearity is less pronounced than in (5.6)—(5.8).

5.3 Solving the Euler-Lagrange Equations

The problem of stereo matching has been converted into the problem of satisfying
the Euler-Lagrange equations (5.23)-(5.25). How are solutions to be found?

One way is to turn the Euler-Lagrange equations into update equations. If one
had good estimates for d, ém, and v, the update equations would allow us to generate
better estimates. Better here means producing a lower cost functional. By applying
the updatz equations to the new estimates, even better results may be obtained. The
process may be repeated until additional iteration produces no further improvement.

This is fine provided that good estimates are available. Where do the initial es-
timates come from? Good initial estimates of the stereo parameters can be had by
solving a simpler problem, a problem with much less data and many fewer parame-
ters. Such a simpler problem may be obtained by considering the original problem
at a coarser scale. If we find the global minimum for the simpler problem, then the
solution it provides will be close to the global minimum for the original problem.
This will help us to avoid getting stuck in local minima when solving the original
problem.

Suppose that the original problem is specified on a 2-dimensional grid of points.
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Figure 5.2: Multiple-level information flow. At a given level, the images I, and Ig are
used to construct the next coarsest level images and to compute d, ém, and v for that level.
d, ém, and v are used to initialize the next finer level.
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A simpler problem can be obtained by sampling? every other grid point in both the
horizontal and vertical directions. This problem has one quarter the data and one
quarter the parameters of the original. If this problem can be solved, the results
may be used as initial estimates for the full resolution problem. This does not com-
pletely solve the problem of obtaining initial estimates, because the coarse resolution
problem still requires them. Initial estimates for the coarser resolution problem may
be obtained by recourse to yet coarser resolution. The recursion cannot be repeated
indefinitely; at some point it is necessary to stop and use an arbitrary set of initial
values. Setting all fields to zero is most obvious. The multiple-level processing is de-
picted in figure 5.2. The geometric reduction in image sizes leads to a pyramid-type
scheme. Implementation using multi-grid methods (Terzopoulos [1982]) would also
be possible.

One issue that must be addressed concerns estimating image brightness at points
that are not on the grid. Since d and v do not have to be integers, I p(z £d/2,y £
v/2) will not in general lie on a grid point. The image brightness values must be
interpolated from nearby grid points. A fuller discussion will be deferred until section
6.2.

The number of levels of iteration depends on the maximum disparity in the full
resolution images. The fewer levels used, the less computation required. On the other
hand, each additional level requires only one quarter the effort of the next finer level,
so that the computational penalty for using too many levels is very small. If the
amount of computation for solving the full resolution problem is set to 1 in arbitrary
units, then the amount of computation required for solving the two-level problem is
5/4, and the computation required to solve the problem with any number of levels
is limited from above by 4/3. This ignores the computational overhead of image
compression and expansion, but these operations require much less computation
than an update step.

The number of resolution levels must be sufficient for the coarsest level initial

estimates to be approximately correct. Since the update equations use only local in-

2It is desirable to smooth before sampling to reduce the effects of high spatial frequency infor-
mation in the images. These high frequency components may cause false matches unless they are
attenuated, especially when more than two levels of resolution are used.
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formation (see below), the initial disparity estimate for each level should be accurate
to within 1 pixel at that level. If the initial disparity estimate for the coarsest level
is zero, representing at least 1 pixel accuracy for the coarsest level, then the greatest
allowable disparity at full resolution is 2¥=!, where N is the number of levels, and
there are N — 1 resolution reductions. For a typical value of N = 5, un to 16 pixels
of disparity are permitted at full resolution.

A similar argument can be used to fix limits on the amount of image rotation
that can be accommodated. Suppose that one image is rotated about its center by
« radians. If each image has n x n pixels, then a pixel at the image border will
be displaced by an/2 in the full resolution image, but only 2!~ times that in the
coarsest resolution image. If the initial disparity estimates for the coarsest image
must be accurate to 1 pixel, then an/2V < 1. For typical values of N = 5 and
n = 128, a = 0.25 radians or 14°.

5.3.1 Update Equations

In order to derive update equations, it is first necessary to find discrete approxima-
tions to the Euler-Lagrange equations. The Euler-Lagrange equations are contiru-
ous, partial differential equations, yet the input data consists of discrete values, and
all processing takes place on a discrete grid. The continucus PDE’s can be converted
to difference equations by replacing partial derivatives by directional differences. For

example,

W S i(fet 1) - flz - 1)
f _
32z 2 f@+1y) - 2f(z.9) + f(z - Ly)

This technique can be readily extended to the Laplacian and biharmonic operators
by decomposing these operators into linear combinations of simpler operators.
*f  0f
Vif = — 4 —=
f 0z? + 0y?
zf(a:+1,y)+f(x,y+ 1) +f($ - lay)+f(zay_ 1) '_4f($1y)'
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Since the biharmonic operator is just the Laplacian of the Laplacian,
0? o?
ar _ 2
Vi = (3 P oy )V d
~ f(z+2,9) + f(z,y +2) + f(z - 2,9) + fz,y - 2)
+2(fe+Ly+ D)+ flz-Ly+ 1)+ flz-Ly-1)+ flz+ 1,y - 1))
—8(f(z +1,9) + fz,y + 1) + flz = Ly) + f(z,y — 1))
+20f(z,y).
It is possible to derive better approximations using methods of numerical analysis.
Such an approach is beyond the scope of this work (see, for example, Abramowitz &
Stegun [1965] or Horn [1986)).
With these approximations, the Euler-Lagrange equations (5.23)—(5.25) can be
converted into a new set of equations. These new equations describe the relationships
between d, ém, and v that must hold at every image point.

The horizontal disparity equation

() - (- ) 1) (o) e+ (1-5p) G2 ) v o,
(5.23)
yields
A ém )
day) = -5 (1 + ) 1 - (1- ) In)
((1+‘7"‘)(IL(x+1+%d,y+§v)—1,,(x—1+§d,y+%v))
_( _57'") (In(x+l—%d,y—%v)—lg(z—l—%d,y—;-v)))
+ 3 (dz + Ly} +d(z,y +1) +d(z ~ 1,y) + d(z,y ~ 1))
~&(de+Ly+1)+dz—1,y+1)+dz -1,y — 1) +d(z +1,y - 1))
~ &(d(z +2,9) + d(z,y +1) + d(z — 1,y) + d(z,y - 1)). (5.26)

The multiplier equation
N2 (I + IR + N(I] - IR) = 20, V26m = (5.24)
yields

om(z,y) =
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213 — IB) — 4Am(8m(z + 1 y) + 6m(z,y +1) + ém(z — 1,y) + §m(z,y — 1))
—4 -4 — X(IL + IR)?

(5.27)

The vertical disparity equation

(4 5) - (-9 1) (14 29) G+ (1-22) Z2) + 0w o
(5.25)
yields

v(z,y) = —r/?\fa)‘—d((l + ST'") I, - ( - §2ﬂ) IR)
((1+%) (e + 4y +14 }o) - (e + 2,y = 1+ 1)

~ (1= %) (Tale — 3y + 1= }o) ~ In(z — by — 1 - o)) )

+ 2—85(1)(:1: +1,y)+v(z,y+1)+v(z—1,y) + v(z,y — 1))
- :—o(v(z+1,y+ D4+v(z—1,y+)+v(z—-1Ly—1)+v(z+1,y— 1))
— % (v(z +2,9) + o(z,y +1) +v(z ~ 1,y) + v(z,y - 1)). (5.28)
Equations 5.26-5.28 are of the form
d = f(d, ém,v) (5.29)
ém = fo(d, ém,v) (5.30)
v = fs(d, 5m, v) (5.31)

These relations will in general be violated by the initial estimates of d, ém, and
v. The sought-after update equations should reduce the error in these equations.
To turn these equations into update equations, it is only necessary to realize that,
although a particular set of parameter estimates may violate (5.29)-(5.31), the error
can be reduced by choosing a new set of parameters that exactly satisfies the right

hand sides of (5.29)~(5.31). Since this is an iterative process, at the i*" iteration, set

d*! = fi(d', 6m',v") (5.32)
sm't! = fo(d', 6m’,v') (5.33)
vt = fa(d', 6m', ). (5.34)

These are the stereo field update equations.
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5.4 Incorporating Constraints

Up to this point, the theory of stereo matching has been presented from the stand-
point of finding matching points using the brightness transformation model of chapter
4. None of the constraints mentioned in chapter 2 have been incorporated explicitly.
In this section, those constraints will be added in a natural way. A complete dis-
cussion of the assumptions, constraints and principles will be delayed until the next
section.

The essential characteristic of constraints is that they delimit admissible regions
of solution space. For example, the Positive Disparity Constraint states that d > 0.
The other constraints have similar, simple interpretations.

The Uniqueness Constraint implies that d, §m, and v are single-valued functions.

The Compatibility Constraint can be interpreted as requiring more than just
image brightness matching. It can be extended to require that the sign of the image
brightness derivatives agree.®> However, the sign of image brightness derivatives can
Le used to confirm matches. When the signs are different, an error has occurred, and
a potential match should be rejected. Match rejection is accomplished by relaxing the
brightness match constraint where a mismatch has occurred. At mismatch locations,

the Euler-Lagrange equations (5.23)-(5.25) simplify to

Vid =0 (5.35)
Vm =0 (5.36)
Viy = (5.37)

These equations are easily solved, for example by setting A; to zero in the update
equations (5.26)-(5.28).
The Epipolar Constraint requires that v = 0, however, this is an idealization.
This particular constraint is relaxed, keeping v small by using a large value of A,.
The Ordering Constraint, which requires that left-to-right order in the images
be preserved, implies that |d(z % 1,y) — d(z,y)| < 2. To see this, consider adjacent

3Section 5.5.6 shows that it is not possible to match brightness gradients using the same multi-

plicative model used so far.
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pixels that obey the Ordering Constraint. In the left image,
z+3d(z,y) Sz+1+1dz+1,y).
In the right image,
z—3d(z,y) <z +1-3dz+1,y)

Combining,
-2<d(z +1,y)—d(z y) <2

Likewise,
-2<d(z —-1,y) — d(z,y) < 2.
The Disparity Gradient Constraint is a more restrictive relative of the Ordering

Constraint. The disparity gradient limit from equation 2.5 is given by

|(a — ag) — (b}, — bj)|
(L %a? £ = =I'<1.
|(af + ak) — (by + bj)|

Identifying aj, — ag with d(a’), (al, + az)/2 with a’, and likewise for b’, this reduces

to

da) - d(b)]
<1
bl

Taking limits as a’ — b’, the ratio becomes the gradient, i.e., |[Vd| < 1. It can be

implemented on a discrete grid by requiring that
(d(a: +1,y) - d(a:,y))2 + (d(a:,y) ~d(z,y + 1))2 <1l
A good approximation is
ld(z +£1,y) —d(z,y)| <1 and |d(z,y 1) -d(z,y)| <1,

which is very similar to the Ordering Constraint.

5.5 Assumptions, Constraints, and Principles

In this section, the proposed method of brightness-based stereo matching is examined

from the perspective of the assumptions, constraints, and principles of chapter 2.



5.5 Assumptions, Constraints, and Principles 124

5.5.1 First Physical Assumptior.

The First Physical Assumption holds that the real world consists of smooth surfaces
with possibly elaborate reflectance functions. This assumption is behind the entire
notion of surface depth and surface reflectance. (The proposed system recovers dis-
parity, which is the inverse of depth.) This assumption, which provides a basis for
talking about surface depth, also provides a basis for surface disparity.

Surface smoothness was considered when developing the disparity non-smoothness
measure. It was assumed that the surface which gave rise to the observed brightness
patterns must be smooth. Without this assumption it would be impossible to make
a defensible choice of disparity penalty functional.

The assumption that surfaces possess reflectance functions whose spatial struc-
ture may be elaborate was used in developing the brightness transformation model.
Specular reflectance functions have been disallowed, however, because they violate
the model.

5.5.2 Second Physical Assumption

The Second Physical Assumption holds that a surface’s reflectance function may be
generated by processes operating at different scales. This assumption was exploited
in the multi-level brightness matching process. Specifically, the method depends on
the presence of some low frequency component to the brightness signal. The low
frequency component is processed at reduced resolution, where the high frequency
signal is suppressed.

If this assumption is violated because there is only a single scale of process in
operation, then matches tend to be inherently ambiguous, and disambiguation at
finer of coarser scales will not be possible. In the extreme case, when the scene
has completely periodic structure, then there are many possible matches, all equally
plausible. Examples of this include aerial views of field crops, such as corn fields or
wheat fields, and regular wall patterns such as that found on some wallpaper.

The Third Physical Assumption, that a process acting at a given scale tends
to generate patterns that are similar in color, texture, etc., is more important for

perceptual grouping than for stereopsis, so it is omitted.
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5.5.3 Surface Reflectance Assumption

The Surface Reflectance Assumption holds that a reflectance function can be decom-
posed into specular and diffuse reflectance terms, one of which may be zero. This as-
sumption, related to the First Physical Assumption, makes explicit the specular/non-
specular dichotomy. Here, it has been assumed that the specular component is zero,
having shown that specular reflections invalidate the brightness matching model of

section 4.

5.5.4 Viewing Geometry Ascumption

Originally, it was assumed that the images were acquired from cameras with parallel
cptical axes and with the same image plane, and that the cameras were aligned
with the baseline in the z direction. This is the geometry depicted in figure 2.2.
Later, this assumption was relaxed with the introduction of horizontal and vertical
disparity parameters into the stereo matching model. However, best results will be
obtained when the cameras are at least approximately correctiy aligned. Should they
be completely misaligned, there may be inadequate overlap between images, leading
to meaningless results. Even if the cameras cover the same field of view, it must
be possible for the iterative disparity estimation method to approximate the correct
transformation parameters. The argument given at the end of section 5.3 indicates
that approximately 14° of rotation can be accommodated for typical values of image

size and number of levels.

5.5.5 Fundamental Assumption of Stereopsis

The Fundamental Assumption of Stereopsis states that a correct correspondence be-
tween physically meaningful primitives must satisfy the constraints of compatibility,
uniqueness, and continuity. The first issue to be addressed is the meaningfulne:s of
the primitives. It was argued earlier that grey-levels are a poor choice as primitives
because they lack inherent meaning. Image brightness depends on several factors,
not all of which are intrinsic to the surface. To the extent that image brightness de-
pends on intrinsic surface characteristics such as surface reflectance, grey-levels are

meaningful primitives. However, geometric, photometric, and radiometric effects are
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not intrinsic to the surface. To the extent that image brightness depends on these
factors, grey-levels are not meaningful primitives.

It was shown in chapter 4 how one factor, viewer position, contributes to image
brightness. By presenting a model of brightness transformation under viewer motion,
it is possible to separate the cont ribution of viewer motion from other effects. Since a
change in view position is the only factor giving rise to brightness change in stereopsis
and passive navigation, image grey-levels that have been corrected for view position
are meaningful match primitives. For the stereo problem, although Ir # Ig in
general, mI; =~ Ir, when m is given by the model of chapter 4. Thus, provided
that the multiplier m can be estimated, the multiplier/grey-level combination is

meaningful and can ke used for matchiug.

5.5.6 Compatibility Constraint

The Compatibility Constraint states that it is possible to establish a correspondence
between match primitives if and only if the primitives could have have arisen from
the same physical event. This constraint is satisfied in the proposed system, since
identical viewer-direction corrected grey-levels could always have arisen from the
same event.

The notion of compatibility could be extended to take account of image brightness
gradients as well. That is, one could require that viewer-direction corrected grey-level
gradients match in order to achieve correspondence in addition to the grey-levels.

This approach suffers a number of drawbacks.

e It is necessary to develop a model of image brightness gradient transformation
between images, analogous to the image brightness transformation developed
previously. Recall the argument made for a linear multiplier model in the case
where albedo changes faster than shading. Expanding the Image Irradiance

Equation in a Taylor series

E(x) = Ei(%)+ [p(x0) & Ri(n(x) + Ri(n(x0)) p(0)] x + ... (46)
~ Ri(no)p(xo0) + Ri(no) £6x
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because the right term in square brackets is negligible. Therefore

Ei(x) = Rl(no)P(xo)"r‘Rl(no)j—;‘sx
EQ(X) ~ Rg(no)p(xo)+R2(no)g,%5x

Applying the same reasoning to brightness gradients,
OB(x) _ , . dp(x)
% —R,(no) dx . (538)
3*R;(n)  OR;(n)dp(x) d?p(x)
lp( ) o T ok dx + Ri(n)——— T2 xo'no6:»<+...
However, the brightness gradients are linearly related over the surface patch
only if
AE,(x dp(x d?p(x
= Rioe) G+ R
Xo Xo
0E,(x dp(x d?
az( )~ Ra(ng) 23| 4 Ry(no) p(X)l
X dx Xo %0
_ 3E'1(x)
= m— =, (5.39)
which in turn only holds if
d? O*R; OR;d
R-L s pZ o TRCP (5.40)

dx? ax? | 9x dx
Equation 5.40 does not follow from the assumption that albedo changes ont-
weigh shading changes, R;dp/dx > pOR;/0x. (5.40) must be assumed for
the model to predict a linear relationship between brightness gradients. There
seems to be no good reason to make such an assumption; any relationship
between brightness gradients will therefore be more complicated than the mul-

tiplicative relationship between grey-levels.

e Ifthere were a simple transformation Letween brightness gradients, there would
have to be some means for incorporating brightness gradient matching into the
cost functional. For example, one could define a brightness gradient error

functional by

eo= [[|(1+%) VI - (1- ) Vin| dzay. (5.41)



5.5 Assumptions, Constraints, und Principles 128

with Age, added into the cost functional. That raises the question of how much
to weight the brightness relative to the brightness gradient. Should A, be less

than, equal to, or greater than \;?

o If the brightness gradient functional given by 5.41 is used, then the Euler-
Lagrange equations for d, ém, and v will contain terms which depend on the
second derivatives (second differences) of image brightness. Taking second
derivatives of image brightness is more noise-prone than taking first deriva-
tives. Small amounts of noise will cause iarger errors in the second derivative
estimation, making brightness gradient matching less robust than brightness
matching, not more. This is the most serious of the three problems facing

brightness gradient matching.

A better approach that does not violate the multiplicative transformation model
is to use the sign of the brightness derivatives as a check on matching. If a correct
match has been established, then the left and right image brightness derivatives in
the z direction should have the same sign, even if the derivatives themselves are not
identical. When the signs are different, that is a good indication that the match is
incorrect, and that the match should be rejected.

In the current system, rejecting a potential match is equivalent to deciding that
brightnesses do not match locally, although it is still necessary that the disparity,
multiplier, and vertical disparity be smooth-valued functions. Lifting the brightness
match constraint can be accomplished by setting the brightness error equation weight
A; to zero at those places where a mismatch has occurred. At mismatch locations,

the Euler-Lagrange equations (5.23)-(5.25) simplify to

Vid =0, Vi6m =0, and Vi =0.

5.5.7 Uniqueness Constraint

The Uniqueness Constraint allows at most one match for each primitive element,
except in rare cases. This is accomplished by requiring that d, ém and v be single-

valued runctions.
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5.5.8 Continuity Constraint

The Continuity Constraint holds that disparity varies smoothly almost everywhere.
This constraint was explicitly considered when deciding upon a non-smoothness
penalty functional for the disparity. The disparity can only vary smoothly; no dis-
continuities are allowed by the method. Linearly varying disparities are preferred,

since they constitute the nullspace of the quadratic variation.

5.5.9 Surface Consistency Constraint

In Grimson’s [1981a] implementation of the Marr-Poggio-Grimson theory of stere-
opsis, the Surface Consistency Constraint was strictly interpretad as a condition on
zero-crossings—the absence of zero-crossings constrains the possible surface shapes.
The approach to stereo proposed here does not conform to this constraint, sirce
zero-crossings are not used. A broader reading of the Surface Consistency Constraint
holds that the recovered surface shape should be the most consistent with the avail-
able data. With this interpretation, the disparity field recovered by brightness-based
stereo matching is consistent with the given images. Arguably, it is more consis-
tent with the image data than the surface produced by edge-based methods, because
brightness-based stereo minimizes the matching error everywhere. This produces a

disparity field that is most consistent at every image point.

5.5.10 Positive Disparity Constraint

Disparity inust be positive everyw.ere. This follows from the imaging geometry;
points in front of the camera have positive z and since d is inversely proportional
to z, disparity must also be positive. This constraint is enforced by restricting d to

take on positive values in the update equation
d*t! = max (fl(d‘, sm',v'), 0)

Disparity may take on negative values if the viewing geometry assumption is violated.
A translation of one image with respect to the other will add a constant term to the
disparity. If the constant term is negative, then it will be possible for negative

disparities to be present. Image misalignment resulting in rotaticn may also cause
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negative disparity values. For example, if the relative rotation is 2« (to follow the
Relativity Principle, let the images be rotated by a and —«, respectively) then a

correspondence will be established between points given by

Fx'+%.-. ~ [ cosa —sina | [-a:i-g 3 'zcosa+§cosa—ysina—%sina.
-y.+t:7.. - .sina cosa | _y+§j B _ycosa+;-icosa+:tsina+g-sina_
( ._%‘ [ cosa  sina | rm—g-. _ P:L'cosa—g-cosa+ysina—%sina-
_y‘—"2—°_ - | —sina cosa | |y — 3 | Bl _ycosa—%cosa—a:sina+%sinaJ
d* | _ -dcosa—2ysina
v* | B | 2zsina + vcosa

In this case, it is easy to see that for positive rotations, a negative rotated disparity
will result when the true disparity is small and y is large and positive, and that for
negative rotations, a negative rotated disparity will result when the true disparity
is small and y is large and negative. When negative disparities are expected, the

Positive Disparity Constraint must be turned off.

5.5.11 Epipolar Constraint

The Epipolar Constraint requires that matching points lie along epipolar lines. Most
stereo systems assume that the epipolar lines are horizontal in each image. This
assumption is re.ixed slightly here, as some vertical disparity is tolerated. The
introduction of vertical disparity induces a deformation of the epipolar lines into
“epipolar curves.” As long as the vertical disparity remains small, the epipolar
curves within a single image will not intersect, and there will still be a one-to-one
relationship between points along an epipolar curve in one image and points along

the corresponding epipolar curve in the other image.

5.5.12 Ordering Constraint

The Ordering Constraint requires that left-to-right order be preserved along epipolar
lines. Because of vertical disparity, order should be preserved along epipolar curves.
However, the epipolar curves are close to being horizontal lines, so it suffices to

maintain order in the horizontal direction. Let points A and B lie along the same
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— \"\ e

IL epipolar curves IR

Figure 5.3: Vertical disparity-induced epipolar deformation. The presence of vertical
disparity will cause the epipolar lines to deform, producing “epipolar curves.”

epipolar line. Then either A is to the left of B in both images, 4+d4/2 < zp+dp/2
and r4 — d4/2 < zp — dp/2 or A is to the right of B in both images, 4 + d4/2 >
zp+dpg/2 and 4 —d4/2 > zp—dp/2. In any case, the difference in disparity must
satisfy

|d4 —dp| < 2|z4 — z5|

In particular, adjacent pixels must satisfy the Ordering Constraint, so that

ld(z £1,y) —d(z,y) <2|.

5.5.13 Disparity Gradient Constraint

The Disparity Gradient Constraint requires that the disparity gradient be less than
1 for fusion to occur. This constraint differs from the others in that it is not based
on assumptions, but has been observed experimentally. As already pointed out, it is

similar to the Ordering Constraint, but more restrictive. A quick approximation is
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to require that
d(z £ 1,y 1) - d(z,y) < 1.

5.5.14 Principle of Least Commitment

The Principle of Least Commitment requires that one should never do something that
may have to be undone. This Principle effectively prohibits searches that may require
backtracking. The proposed stereo method does not have any search component.
Least Commitment is obeyed in two places in the stereo algorithm, between levels
and within each level. Between levels, there is a top-down refinement of the stereo
parameters. Estimates from previous levels are never undone, they are merely refined.

Similarly, within levels, estimates are further refined.

5.5.15 Principle of Graceful Degradation

The Principle of Graceful Degradation requires that the system produce the best
possible answer when provided with noisy data. This requires a robust system.
Robustness is achieved by the multi-level scheme. The image at each level is obtained
by averaging the next finer level. Since the averaging technique used maps four pixels
into one, a four-fold reduction in noise power (variance) is achieved at the coarser
resolution. Thus, even when the original image is badly degraded, there will be
sufficient signal at a coarser level to perform matching.

Graceful Degradation is one reason for not using brightness gradients for match-
ing. As shown in section 5.5.6, brightness gradients require one to estimate second-
order derivatives of the image brightness function. Estimating second-order deriva-

tives is an ill-posed problem, and is likely to be error-prone in the presence of noise.

5.5.16 Existence and Uniqueness

The Principies of Existence and Uniqueness require that a solution be guaranteed
and that it be unique. A solution is guaranteed by the proposed method. At every
level, and at every iteration, estimates of the stereo parameters are available. The
estimates are continually refined, yet they always exist. Existence of a solution is

not a problem here.
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Uniqueness is another matter. It is extremely difficult to show uniqueness because
of the non-linearity of the problem. The cost functional defines a mapping from a
vector space W to the positive real numbers. Consider instead the square-root of
the cost functional as the mapping © : W +—» R*, where W = D x M x V is
the cross-product of the disparity, multiplier, and vertical disparity spaces. It is a
straightforward exercise to prove uniqueness if © is either a norm or a semi-norm.

For © to be a norm, three conditions must hold:
1. O(v+w) < O(v) + O(w), Yo, w € W,
2. O(aw) = |a| O(w), w € W, a scalar,
3. O(w) >0, Yo # 0.

If only the first two conditions hold, then O is a semi-norm.

Unfortunately, © is neither a norm nor a semi-norm, so that not only is W not a
normed space, it is generally not possible to associate it with a normed space. None
of the conditions hold; the reason is that the cost functional contains a dependence
on vVmIp(z+d/2,y+v/2)—1//mIg(z —d/2,y —v/2) and there is no restriction on
the brightness matching error that would result from adding two disparities together
or multiplying the disparity by a constant. The square root of m also causes trouble
with the triangle inequality (1).

There is one set of circumstances under which uniqueness will hold. If I} and Ig
are equal and constant, and m is replaced by 1+ ém, then the first two conditions will
hold. © then becomes a semi-norm, and it is possible to show that a solution exists
wkich unique to within an element of the nullspace. Since the image brightnesses
are identical, this is no longer a problem of brightness-based image matching. It is a

problem of interpolation, for which uniqueness has been proven by Grimson {1981a].

5.5.17 Principle of Using Everything You Have

The Principle of Using Everything You Have requires that an algorithm use all the
information available to it. The proposed method takes advantage of all information.

It is only necessary to refer to the Euler-Lagrange equations 5.26-5.28 to see that
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changing the value of any pixel in either image will change the solution. However,
changing a grey level in a manner inconsistent with the objectives of smooth disparity

and tolerance of small errors will not change the solution much.

5.5.18 Principle of Errorful Images

The Principle of Errorful Images states that all errors and penalties should be related
to the input images, not the scene. This principle is followed in two places. First,
the brightness matching error depends on the difference in corrected brightness value
appearing in each image. The supposition is that the scene reflects light without
error, errors are introduced in the image transduction process. A formulation that
attempted to minimize an errcr which depended directly on surface emissivity would
violate this principle.

The Principle of Errorful Images also plays a role in the selectior. of the departure-
from-smoothness penalty functional. Because images brightness patterns should
match, the problem was posed in terms of finding a disparity field that would align
the brightness patterns. It would have been possible to define the entire problem in
terms of distance z to the scene along the optical axis. The non-smoothness measure
would then be the quadratic variation of z. But z is a scene-based quantity, not an
image one; it is better to use disparity. Furthermore, the image brightness matching
error would have to be defined in terms of z as

ei= [f (\/FUL(z + gg,y +3)- \/l—ﬁrnu - gg,y - ‘5’)) dz dy

This would make the Euler-Lagrange equation for z horrendous. It would also in-
troduce an asymmetry in the treatment of horizontal and vertical disparity. The

formulation that is used avoids these problems.

5.5.19 Relativity Principle

The Relativity Principle requires that no image frame be preferred. This principle
has been followed from the beginning. It was most important for determining the
form of the brightness matching error, and the multiplier non-smoothness penalty.

In the case of the brightness matching error, it was decided that the horizontal and
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vertical disparities and multiplier should effect both images equally. Neither left nor
right coordinate system is preferred. The only preferred coordinate system is one
originating equidistant between the left and right images.

The Relativity Principle was pivotal in choosing a penalty functional for multiplier
non-smoothness. It was necessary that it be possible to exchange the roles of the
images and still get the same solution, within a possible disparity sign change or

inverted multiplier. This lead naturally to the selection of |VInm|* as the penalty

functional.

5.6 Summary

The assumptions, constraints, and principles used by this method are:
e First Physical Assumption
e Second Physical Assumption
e Surface Reflectance Assumption
e Viewing Geometry Assumption
¢ Fundamental Assumption of Stereopsis
e Compatibility
e Uniqueness
e Continuity
e Surface Consistency Constraint
e Positive Disparity Constraint
e Epipolar Constraint
e Ordering Constraint
e Disparity Gradient Constraint

o Least Commitment

Graceful Degradation

e Existence and Uniqueness
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e Using Everything You Have
e Principle of Errorful Images
e Relativity Principle

We have seen that brightness-based stereo can be understood in terms of the
assumptions, constraints, and principles of chapter 2. By considering each of the
assumptions, constraints, and principles in turn, it has been possible to devise a
stereo method which is on a sounder theoretical footing than methods which were
developed ad hoc.

In the next chapter, we examine implementation issues and present a detailed
description of the algorithm. We also address the issues of stability and convergence

of the algorithm.



Chapter 6

Implementation

This section discusses the implementation of image brightness matching for stereo.
The algorithm has been implemented on two machines with very different architec-
tures. The conventional implementation runs on a Symbolics 3600-family computer.
The parallel implementation runs on a Thinking Machines CM-1 Connection Ma-
chine.

Outwardly, the implementations appear to be very similar. The biggest apparent
difference is speed; the parallel version can run over 100 times faster than the conven-
tional version. There are other differences, such as image size, stability, and rate of

convergence, but these differences are less noticeable (although they are important).

6.1 Detailed Algorithm

Brightness matching is «.»ly effective when an approximate solution is already avail-
able. To obtain an approximate solution, the multi-level, pyramid scheme described
in section 5.3 is used.

The number of levels is a constant that is set before processing starts. Five
levels are typically used. Processing begins at the coarsest level. First, a reduced
resolution image pair must be constructed, where the reduction factor is 2V-!, N
being the number of levels. A factor-of-2 reduced resolution image pair is constructed

by averaging 2 x 2 regions of the initial images.! The process is repeated N —1 times

1]deally, one should low-pass filter the images before sampling. Averaging is a rough approx-

137
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Figure 6.1: Interpolation. I(z,y) = Ioo(1 - z)(1 - y) + Io1z(1 — y) + Lio(1 — z)y + 1 Ty.

to obtain the coarsest resolution image pair. Each reduced resolution image is saved,
so that the computation of subsequent levels will not need to repeat the resolution
reduction step.

To start the iteration, initial values of d = ém = v = 0 are used. The conven-
tional and parallel implementations differ in the order in which individual pixels are
processed. In the conventional implementation, pixels are considered one at a time.
New values of d, §m, and v are computed for the current pixel using update equations
5.32-5.34; the new values are written back into their arrays immediately, so that the
updated values will be available for the next pixel. In the parallel implementation,
all pixels are considered at the same time. New values of d, ém, and v are computed
for all pixels simultaneously using the update equations; these values are written
back into their arrays, but are not available until the next iteration.

The number of iterations within each level is a constant that is set before pro-
cessing starts. We have found from experimentation that five to ten iterations suf-
fice. Fewer iterations do not produce an adequate approximation to the larger-scale

problem—the algorithm can get stuck in a local minimum. More iterations produce

imation to the ideal (sinz)/z filtering function. Nonetheless, we use averaging because of its

computational simplicity and efficiency.
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only a marginal improvement, but do no harm. The conventional implementation
generally requires fewer iterations than the parallel implementation, because the con-
ventional implementation converges faster, and because the parallel implementation
must be damped. These concerns are related, and are explained below.

When all iterations at a given level have been performed, processing advances to
the next finer resolution, if there is one. To start the next finer level, the appropr:ate
stored reduced resolution image pair is lcaded. It is also necessary to generate an
initial set of estimates for this level. The values of d, ém, and v that were generated on
the last iteration of the previous level are used as initial estimates. Since these initial
estimates come from the previous level, they have only half the needed resolution.
To get the resolution required, each value is written four times, intc a 2 x 2 region
in the new arrays at the higher resolution.? Processing proceeds as before.

The following shows how the levels and iterations are managed:

for i from 1 to no-of-levels
if i = no-of-levels
then use full resolution images
else get reduced resolution images
ifi=1
then get initial solution
else expand prior solution
for j from 1 to no-of-iterations
for all points
update disparity, multiplier, vertical disparity

6.2 Interpolation

The left and right images Iy and Ir and stereo field variables, d, ém, and v are

defined on a regular grid of points. The stereo field update equations require image

2As with low-pass filter before sampling, the ideal interpolant is (sinz)/z. We use the simpler
pixel replication technique because it is computationally efficicnt and because it is the inverse of
the averaging technique used earlier.
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brightness values Iy, p(z £ d/2,y + v/2) that are not necessarily at grid points. Non-
grid point values must be interpolated from neighboring grid points. Ideally, the
interpolation will yield a grid point value when d and v are even integers.

The situation is as shown in figure 6.1, where the four nearest grid points are
ased to compute interior values. Let 0 < z,y < 1. To compute I(z,y), use a series
expansion I(z,y) = ago + a1 + a0y + . ... If the expansion is truncated at the first
three terms, the underlying function will be approximated by a plane. Unfortunately,
the planar approximation has only three coefficients; if the expansion is to be exact
at the grid points (0,0), (0,1), (1,0), and (1,1), at least four coefficients will be
needed. The added coefficient must be independent of the others. For simplicity, use
anzy. To get an exact match at the grid points, the following matrix relation must
hold:

100 0)\ /[ ac Ioo
1100 an | _ Io
1010 ao | | Io
1111 an I |

The SOIUtiOﬂ iS Qoo = Ioo, adoy = IOl —Ioo, Qo = IIO_IOOa a.nd a)n = Ioo—Im —110+In,
with
I(z,y) = Ioo(1 — z)(1 — y) + Iz(1 — y) + Lio(1 — z)y + Inzy.

Rifman & McKinnon [1974] and Abdou & Wong [1982] present arn alternate inter-

polation method based on bicubic splines.

6.3 Implementation Differences

The conventional and parallel imglementations differ in a few respects. One difference
in the implementations is the size of the images that can be used. The conventional
implementation is limited by the amount of memory; the parallel implementation is
limited by the number of processors and the memory per processor.

Another difference is the rate of convergence of the aigorithms. Because the
parallel implementation uses the Jacobi method, it exhibits slower convergence than

the conventional implementation, which uses the Gauss-Seidel method.



6.8 Implementation Differences 141

Related to the rate of convergence is stability. The conventional implementation
is more stable than the parallel implementation. Special measures, such as damping
(under-relaxation), must be taken to stabilize the parallel implementation.

These differences are examined in more detail below. Timing differences are an
artifact of the implementation differences, which, while important, are less funda-

menial. They are discussed later.

6.3.1 Image Size

The size of the largest images that can be used differs for the conventional and parallel
implementations. The conventio..al implementation is limited only by the machine’s
memory. It is necessary to store left and right images, disparity, multiplier, and
vertical disparity for each level, for a total of five arrays per level. The image arrays
hold integers from zero to 255, requiring a single byte per array element. The other
arrays are floating point numbers, requiring four bytes per array element. Thus, the
total array storage is _juivalent to 14 image< or single-byte arrays per level. Using
an upper limit of (1 4+ 1/4 4+ ...) = 4/3 for the ratio of the total amount of image
data at all levels to the amount of image data at the finest level, then image whose
size is n - (3/4) - (1/14) may be handled, where n is the machine’s memory size in
bytes. For a machine with room for 70 megabytes of data (the paging space on the
machine used, after subtracting program space), the largest image is 3.75 megapixels,
or 1936 x 1936. Due to the large amount of time it would take to process such a
large image, none that large were tried.

The parallel implementation is more restrictive. Under the parallel implementa-
tion, one processor is assigned to each picture cell. The processors are connected in =
hypercube configuration; the hypercube can be flattened into a two-dimensional grid,
or NEWS network. Thus, the connectivity of the processors mimics the connectivity
of the pixels (assuming 4-connectedness). One restriction of the Connection Mackine
is the number of processors along each side of the grid must be a power of two. This
limitation applies to the images as well.

It is possible to increase the number of pixels by using virtual processors. With

virtual processors, a single physical processor emulates one or more virtual processors
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by timeshiring its physical resources among each virtual process. The assignment
of virtual processors to physical processors is handled by microcode, and is almost
transparent to the user and program. When using virtual processors, the following

effects will be noticed:

e The number of virtual processors per physical processor (the virtual processor
ratio) must be a power of two. This enables the virtual processors as well as

the physical processors to maintain a hypercube topology.

o Increasing the number of virtual processors slows the machine in direct propor-
tion to the virtual processor ratio, and decreases the amount of storage avail-
able per virtual processor. This is a consequence of timesharing each physical

Processor.

e Whereas the storage of intermediate results takes a negligible amount of space
on the conventional implementation, intermediate results on the parallel imple-
mentation take a significant amount of space. Although the space is eventually
veclaimed, the virtual processor ratio for the stereo program is limited to two.
(This blurs the memory/processor distinction made earlier, since the mem-
ory per virtual processor turns out to be the true limiting factor.) On a 16

kiloprocessor parallel machine, the largest image is 32 kilopixels, or 128 x 256.

6.3.2 Stability and Convergence

Another difference between the implementations concerns convergence and stability.
Because the conventional implementation uses the Gauss—Seidel method, it converges
faster than the parallel implementation, which uses the Jacobi method. Strang [1976
p. 285] states “a single Gauss—Seidel step is worth two Jacobi steps,” and claims that
this rule holds in a large class of applications. This explains why only five iterations
per level are needed for the conventional implementation, yet ten are needed for the
parallel implementation.

Stability of the algorithm for either implementation is difficult to prove. The
biggest difficulty is that the problem is non-convex because of the existence of local
minima. Thus, while both Gauss-Seidel and Jacobi are guaranteed to converge for

a convex problem, no such guarantee exists for the non-convex problem considered
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here. It turns out that the Gauss-Seidel implementation is usually stable for a wide
range of inputs and A’s. Unfortunately, the parallel Jacobi method has been observed
to be unstable in many cases.

This instability can be eliminated by “damping” the update equations. To gain
some insight into the problem, define a vector y whose elements are d, ém and v at
every point. Every possible solution to the stereo problem is represented as a single

point in a space with very high dimensionality.
y= [duo, dmoo, Yoo, dor, 6moy, vor, - - . , d10, 810, V10, d11, 61, V11, - - -]T-

The Euler-Lagrange equations 5.26-5.28 can be combined into one equation
g(y) =0, = E

Here g is the gradient of the cost functional e. The method of steepest descent

(Strang [1986]) updates y from an initial guess according to

y't -y = —wg(y'), (6.1)

where w indicates the step size to take in direction —g(y*), which is the steepest
direction. When w = 1, the steepest desceat update equation 6.1 is identical to the set
of stereo field update equations 5.32-5.34. Larger values of w are less stable. When
w < 1, the updates are damped, and the system of equations becomes more stable.
Smaller values of w, although promoting stability, decrease the rate of convergence.
When w = 0, there is perfect stability, yet no convergence at all. Experiments
show that w = 0.3 provides a satisfactory trade-off between stability and specd of

convergence.

6.4 Timing

Table 6.1 shows a comparison of running times for several different settings of the
number of levels and the number of iterations for the conventional and parallel imple-
mentations. Run times should be independent of the A parameters. All timings are
for the 128 x 128 images in figures 7.6. The conventional implementation was run on

a Symbolics 3640 Lisp Machine. The parallel implementation was run on a Thinking
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‘Table 6.1: Sample Timings
# iterations # levels conventional (sec) parallel (sec)

5 3 1352 24

5 4 1378 31

5 5 1385 39
10 3 2716 46
10 4 2756 62
10 5 2762 77
20 3 5439 92
20 4 5502 121
20 ) 5518 153

Machines 8 kiloprocessor CM-1 Connection Machine (the other § kiloprocessors were
unavailable when the experiment was conducted), with a virtual processor ratio of
two. The parallel implementation is from 35 to 59 times faster than the conventional
implementation. A virtual processor ratio of one would make the parallel implemen-
tation twice as fast, over 100 times faster than the conventional implernentation, but
was unavailable when these experiments were conducted. Note that the parallel im-
plementation is unable to take advantage of the smaller image sizes when more levels
are used. The parallel implementation takes a constant amount of time per level,
using only a fraction of the available processors at finer levels. The conventional
implementation is able to spend less effort on finer levels, so that adding more levels
does not slow it down appreciably. It might be possible to improve the performance
of the parallel implementation using multi-grid methods. This approach has not yet
been tried.



Chapter 7

Experiments

Brightness-based stereo has been tested on a variety of synthetic and real images.
This section presents some examples. The synthetic images include a random-dot
stereogram, a sinusoidal pattern, and a shaded sphere. Real images include aerial
photographs of a university campus, photographs of the surface of Mars, and an
indoor scene.

All experiments presented here were run with identical parameters. It was felt
that it would be unfair to tailor the parameters for a particular stereo pair; the
experiments should show the general applicability of the approach, not the results of

fine-tuning. Recall that the overall cost function to be minimized is
e = Xe;+ dgeqg + Amem + Ae,

The parameters were A\; = 0.1, Ay = 5.0, A\, = 500.0, and A\, = 400.0. These vaiues
were found by experimentation to work well for a variety of input images. The
relaxation parameter w was 0.3 and 5 levels were used, with 100 iterations per level.
The large number of iterations guaranteed that the results were the best possible.
Good results can be obtained with fewer iterations.

All images are 128 x 128. For each stereo pair, the original images, disparity,
multiplier, and vertical disparity are pictured using a ha..-tone technique. The images
have all been processed using histogram normalization prior to half-toning to bring
out the details. The half-toned disparity images are difficult to interpret, although

darker regions are farther away and lighter regions are closer. Three-dimensional

145
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plots and contour maps of disparity, which are easier to interpret than the half-toned
images, are also included. For the synthetic data, three-dimensional plots of the true
disparity values are presented. Note that the vertical disparity is much less than a
pixel and the multiplier ranges from 0.9 to 1.1 in most cases.

To illustri.te the matching of brightness values, there are graphs of horizontal
image slices and selected disparity values. The horizontal image slices show only 30
disparity values for the sake of clarity; to include more values would reduce read-
ability. An offset has been added to each left image slice to place it above the right
image slice. From these graphs, it is easy to see which points in each image have
been matched. Also shown are histograms of the disparity, multiplier and vertical
disparity.

Finally, four examples are shown in which the synthetic images have been deiip-
erately distorted to show the ability of the algorithm to compensate. Two examples
illustrate the multiplier model and two examples illustrate vertical disparity. The
random-dot and sinusoidal stereograms were used for each pair of examples. In the
vertical disparity examples, the left images have been shifted down by one row and
the right images have been shifted up by the same amount, for a vertical disparity
of 2 pixels. The algorithm is able to correct for much of the added vertical disparity
and recover horizontal disparity. Two pixels of vertical disparity slightly impair the
recovery of horizontal disparity; four pixels of vertical disparity make it impossible to
perform stereo inatching and recover horizontal disparity. In the multiplier examples,
the left images have been multiplied by a ramp function that rises from 0.5 to 1.0
going from left to right. The right images have been multiplied by a ramp function
that rises from 0.5 to 1.0 going from top to bottom. The two imaes have the same
brightness values along the diagonal running from the upper left to the lower right.
The fact that matching is acceptable evi:rywhere, and is not restricted to this line,

is evidence that the multiplier model is successful.

7.1 Synthetic Imagery
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Figure 7.1: Random-dot stereogram. (a) Left image. (b) Right image. (c) Disparity

image. (d) Disparity contours. (e) Three-dimensional disparity plot.
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Figure 7.1 {(con’t): (f) Disparity histogram. (g) Matched points along row 63.

Left image is above, right image is below. (h) Disparity along row 63.
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Figure 7.1 (con’t): (i) Multiplier image. (j) Multiplier histogram.

disparity image. (1) Vertical disparity histogram. (m) Actual disparity.
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Random Dot Stereogram

Figures 7.1(a) and 7.1(b) are a random-dot stereogram. Each pixel is black (grey-
level 0) or white (grey-level 255) with equal probability. The left image is a copy of
the right image, where the central square of the left image has been shifted 6 pixels
to the right. The region of the left image from which dots were shifted out was filled
with a different random dot pattern.

As can be seen from 7.1(c) and 7.1(e), the recovered disparity is slightly noisy,
but the “floating square” structure is clearly visible. Compare these figures with a
plot of the actual disparity in 7.1(m). The largest errors are found at the edges of the
square where some pixels in one image have no match in the other. The histogram
of disparity values in figure 7.1(f) shows that almost all points have disparity values
of 0 or 6.

Figure 7.1(g) shows matches along a typical row. Only 30 matches are shown,
although disparity is computed everywhere. Figure 7.1(h) shows disparity along the
same row.

The multiplier and vertical disparity components of the stereo model are not
needed for this example. For completeness, they are included as figures 7.1(i)-7.1(1).
The multiplier ranges from 0.99 to 1.01 and the vertical disparity ranges from -0.05
to 0.13. Both of these ranges are so small as to be inconsequential. The multiplier
image 7.1(i) and the vertical disparity image 7.1(k) appear to depart significantly
from constancy, but the images have been normalized to bring out details, and the

true departure from constancy is very slight.

Sinusoidal Pattern Stereogram

Figures 7.2(a) and 7.2(b) are a sinusoidal pattern with a sinusoidal disparity field.
Disparity, always non-negative, is given by
d(z,y) = 4(1 — cos 37T).

Image brightness, also non-negative, is given by

I(z + %d,y) = Ip(z — 3d,y) = 31(1 4 cos 0.4y)(2 + cos 0.1z + cos 0.3z).
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Figure 7.2 (con’t): (i) Multiplier image. (j) Multiplier histogram. (k) Vertical
disparity image. (1) Vertical disparity histogram. (m) Actual disparity.
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Two different frequencies of brightness pattern are used in the horizontal direction
to provide information at more than a single scale (Second Physical Assumption).

As can be seen from 7.2(c) and 7.2(e), the recovered disparity is approximately
correct. The raised cosine structure is clearly visible. Compare these figures with
a piot of the actual disparity in figure 7.2(m). The histogram of disparity values in
figure 7.2(f) shows that the disparity values tend to be evenly distributed between 0
and 11, with peaks around 4 and 8. These peaks are probably due to the “shoulders”
in figure 7.2(e), which appear as large featureless regions in the contour plot of figure
7.2(d). Note that the computed disparity has been incorrectly influenced by the
vertical variation in image brightness.

Figure 7.2(g) shows matches along a typical row. Some mismatches can be seen,
although most of the peaks and troughs are correctly matched. Figure 7.2(h) shows
disparity along the same row.

The multiplier and vertical disparity components of the stereo model are not
needed for this example. For completeness, they are included as figures 7.2(i)-7.2(1).
The multiplier ranges from 0.9 to 1.1 and the vertical disparity ranges from -0.15
to 0.06. The multiplier variation is probably responsible for some of the observed
mismatches. The vertical disparity range is so small as to be inconsequential. Note
that the vertical disparity variation is correlated -rith image brightness to form a
checkerboard pattern. This is explained by examining the iso-brightness contours
from a small portion of each image, as in figure 7.3. The arrows represent the
(horizontal and vertical) disparity vector field. Each arrow begins on a right image
contour and ends on the corresponding left image contour. If there were .10 computed
vertical disparity, all arrows would be horizontal and have the same length. By
permitting some vertical disparity, it is possible for some arrows to achieve a lower
total length by departing from horizontal. They do not depart much, because the
vertical dispariiy weighting parameter A, is very large. But this slight periodic

departure from zero vertical disparity shows up as a regular pattern in figure 7.2(k).
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-
- -

Figure 7.3: Explanation of vertical disparity checkerboard. Shown here are iso-brightness
contours for a small portion of the sinusoidal pattern images. Right image iso-brightness
contours are light, left image iso-brightness contours are dark. The arrows represent hor-

izontal and vertical disparity. Note that the vertical coinponent of disrarity is strongly
correlated with brightness.

Shaded Sphere Stereogram

Figures 7.4(a) and 7.4(b) are a shaded sphere with no markings.! They were gen-
erated assuming a Lambertian reflectance function with the light source behind the
point between both camera focal points. Disparity is at most 4 pixels. The complete
absence of surface markings makes this image pair extremely difficult to process
by computer. E:tperiments with human subjects indicate that fusion is possible
(Bilthoff & Mallot [1987)).

As can be seen from 7.4(c) and 7.4(e), the recovered disparity is very poor. The
disparity surface 7.4(e) is raised on the left side but not on the right. One would not
guess that this was a sphere. The actual disparity is shown in figure 7.4(m).

The histogram of disparity values in figure 7.4(f) shows that the disparity values

IThese images were supplied courtesy of Dr. Heinrich H. Bulthoff.



7.1 Synthetic Imagery 156

Figure 7.4: Shaded sphere. (a) Left image. (b) Right image. (c) Disparity image.
(d) Disparity contours. (e) Three-dimensional disparity plot.
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Figure 7.4 (con’t): (f) Disparity histogram. (g) Matched points along row 63. (h)

Disparity along row 63.
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Figure 7.4 (con’t): (i) Multiplier image. (j) Multiplier histogram. (k) Vertical
disparity image. (1) Vertical disparity histogram. (m) Actual disparity.
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tend to be evenly distributed between 0 and 2.4, with a slight peak around 1.0. Figure
7.4(g) shows matches along a typical row. Figure 7.4(h) shows disparity along the
same row. Note how far disparity departs from the expected semi-circular profile.

The multiplier and vertical disparity components of the stereo model should be
1.0 and 0.0, respectively, for this example, but as figures 7.4(i)-7.4(1) demonstrate,
the multiplier ranges from 0.95 to 1.05 and the vertical disparity ranges from -0.02
to 0.8.

The stereo algorithm performs poorly here because there is an insufficient amount
of texture present in the images. The assumption that image brightness depends
more on reflectance changes (surface markings) than on shading (surface orienta-
tion) does not apply. The problem is that with the multiplier and vertical disparity
parameters, the problem is grossly underdetermined, so that the algorithm is able to
reduce the amount of computed horizontal disparity by increasing the multiplier and
vertical disparity. It appears that changes in brightness due to disparity variations

are mistaken for multiplier and vertical disparity variations.

Shaded Sphere Stereogram without Multiplier and Vertical Disparity

Figure 7.5 shows the results of using the same images without the multiplier and ver-
tical disparity. The iso-disparity contours in figure 7.5(b), although not concentric
circles, represent a marked improvement. The recovered disparity more closely re-
sembles a sphere, although the hump in the middle of figure 7.5(c) is due to incorrect
matches. It is not known why the disparity histogram in figure 7.5(d) exhibits peaks
at 2.0, 3.9, and 5.3. Again, the lack of image texture is responsible for the errors in
the recovered disparity. One should note that it is impossible to obtain meaningful
results for this image pair using edge-based methods, since the only edges are the

sphere boundaries, and interpolation from the edges would lead to a flat disk.

7.2 Real Imagery
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Figure 7.5: Shaded sphere without multiplier and vertical disparity. (a) Disparity image.
(b) Disparity contours. (c) Three-dimensional disparity plot. (d) Disparity histogran:.
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Figure 7.6: University of British Columbia. (a) Left image. (b) Right image. (c)
Disparity image. (d) Disparity contours. (e) Three-dimensional disparity plot.
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(h)
Figure 7.6 (con’t): (f) Disparity histogram. (g) Matched points along row 46. (h)
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Figure 7.6 (con’t): (i) Multiplier image. (j) Multiplier histogram. (k) Vertical
disparity image. (1) Vertical disparity histogram.

UBC Aerial Photographs

Figures 7.6(a) and 7.6(b) are aerial images of the University of British Columbia.?

Ground truth is unknown, but relative heights can be estimated by comparing shadow

lengths. The main features are a tall building with a courtyard located in the center

of the images, with another tall building below the center.

These images were preprocessed (not by the author!) to remove some of the dis-

2These images were supplied courtesy of Professor Robert Woodham and the University of

British Columbia.
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parity. They have been processed too much, as some points have negative disparity.
Therefore, for this experiment, the positive disparity constraint was turned off. Also,
the left and right images are reversed. (This may be due to using dianegatives in
place of diapositives when the images were digitized.) Regions of small or negative
disparity, which appear dark in figure 7.6(c), are closer to the camera, hence taller.
Regions of larger, positive disparity appear lighter and are farther from the camera.
This is the opposite sense of the other disparity images. The three-dimensional dis-
parity plot in figure 7.6(e) uses negative disparity, so that closer (taller) objects do
in fact appear higher.

As can be seen from figures 7.6(c) and 7.6(e), the recovered disparity appears to
be generally correct. The buildings and courtyard are clearly visible. Figure 7.6(g)
shows matches along a typical row. Some mismatches can be seen, although most
of the peaks and troughs are correctly matched. Figure 7.6(h) shows disparity along
the same row.

The multiplier and vertical disparity components of the stereo model are included
as figures 7.6(i)-7.6(1). The multiplier ranges from 0.95 to 1.05. Interestingly, the
multiplier peak is not at 1.0. The vertical disparity ranges from -0.12 to 0.16. The
fact that the vertical disparity is approximately centered around 0.0, coupled with
increasing vertical dispaiity from left to right in figure 7.6(k), suggest that one image
might be slightly rotated.> Of course, we cannot tell which image is rotated, the best
we can do is estimate the differential rotation. The differential rotation may be
estimated by assuming that the minimum and maximuni vertical disparities occur
along the left and right edges, respectively. The range of vertical disparities divided
by the pixel separations yields the rotation in radians, i.e, 0.28/128 = .0022 or 7.5
arc minutes. It is difficult, if not impossible, to verify the subpixel vertical disparity
in the images. However, the images that were used were sampled subimages from
320 x 320 images. Close examination of the larger images clearly revealed that there
is a vertical disparity gradient totaiing approximately 1.0 over the entire image.
Repeating the rotation calculation yields an estimate of 0.0031 radians or 10.7 arc

minutes. This provides very strong evidence in support of the vertical disparity

3This was pointed out by Professors Berthold Horn and Eric Grimson.
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model, showing its ability to achieve subpixel accuracy.

Mars Surface Photographs

Figures 7.7(a) and 7.7(b) are images of the surface of Mars taken by a Viking lander.*
The views are extremely oblique, with disparities ranging from near zero at the
horizon to 100 pixels at the bottom of the images.

This range of disparity values is far too great for the algorithm to handle properly.
As a result, there are very few points with a computed disparity greater than 17
pixels, although many, if not most, image points exceed this disparity. Since lower
disparity indicates greater distance from the cameras, parts of the images near the
horizon have an acceptable disparity range, and are correctly processed. Performance
starts to degrade by row 40; by row 63 the algorithm is completely confused and does
not recover.

Consider only the top 40 rows. As can be seen from 7.7(c) and 7.7(e), disparity
steadily decreases as distance from the horizon increases, as one would expect. A
large disparity bulge is visible on the left, corresponding to a rise on the Martian
surface.

Figures 7.7(g)-7.7(k) show matches along several rows. In figure 7.7(g), the most
prominent features are three brightness peaks. These peaks are correctly matched,
although the brightness peaks in the right image have all been clipped at grey-level
255. The left image brightness peaks do not suffer from clipping, yet their structure
does not interfere with matching. Rows 24 and 32 appear to have all correct matches.
Performance starts to deteriorate at row 40, figure 7.7(j). The left side is good,
particularly near the brightness spike at column 23 of the left image. The right side
is poor, in particular, three brightness peaks from columns 80-100 of the right image
are mismatched. They should have a much larger disparity. For example, the peak
at column 100 should have a disparity value of 12. Instead, the computed disparity
is only 2. By row 63, figure 7.7(k), true disparity ranges from 20 to 30 pixels; correct

matching is impossible. All matches along this and subsequent rows are incorrect.

“These images were supplied courtesy of NASA and the National Space Science Data Center,
Greenbelt, Maryland (pictures IPL PIC ID 78/10/19/171012 and 78/10/19/175118).
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Figure 7.7: Martian surface. (a) Left image. (b) Right image. (¢) Disparity image.

() Disparity contours. (e) Three-dimensional disparity plot.
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Images and histograms of the multiplier and vertical disparity have been omitted
from this example because the gross mismatches over the lower two thirds of the

images distort these results.

Indoor Scene Photographs

Figures 7.8(a) and 7.8(b) are images of an indoor laboratory scene. The main features
are a video monitor and part of a Lisp Machine console. In figures 7.8(c) and 7.8(e),
the console, including the bezel, is clearly visible on the right. The outline of the
video moni. or is barely discernible. The apparent increase in disparity in the upper
left corner is due to an unmatched dark object in the right image.

Figure 7.8(g) shows matches zlong a typical row. Some mismatches can be seen
on the right, although most of the peaks and troughs are correctiy matched. Figure
7.8(h) shows disparity along the same row. The mismatches occurred where disparity
exceeded 30 pixels.

The multiplier and vertical dispari.y components of the stereo nicdel are included
as figures 7.8(i)-7.8(1). The multiplier ranges from 0.95 to 1.05 and the vertical

disparity ranges from 0 to 3.0. Both parameters contribute significantly in this case.

7.3 Distorted Imagery

Random-Dot Stereogram with Vertical Disparity

Figures 7.9(a) and 7.9(b) are a random-dot stereogram with vertical disparity added.
The images are identical to the random-dot images 7.1(a) ard 7.1(b) except that the
left image has b<en shifted down by one row and the right image has been shifted up
by the same amount. The row that was “shifted out” of the the bottom of the left
image has been used to fill in the top, and the row that was shifted out of the top of
the right image was similarly used to fill in the bottom. The total vertical disparity
is 2 pixels everywhere.

As can be seen from figures 7.9(c) and 7.9(e), the recovered horizontal disparity
is slightly more noisy than in the vertical disparity-free case, but tne floating square

structure is still clearly visibie. The largest errors are found at the edges of the
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Figure 7.8: Indoor scene. (a) Left image. (b) Right image. (c¢) Disparity image.
(d) Disparity contours. (e) Three-dimensional disparity plot.
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Figure 7.8 (con’t): (i) Multiplier image. (j) Multiplier histogram. (k) Vertical
disparity image. (1) Vertical disparity histogram.

square where some pixels in one image have no match in the other, and af the

near 0 or 6.

top and bottom of the image where entire rows have no match. The histogram of
disparity values in figure 7.9(f) shows that almost all points have disparity values

The histogram of vertical disparity values in figure 7.9(g) shows that most points
have a vertical disparity between 0.8 and 1.8 pixels. The mean value is 1.3. This is

not as close to the true value of 2.0 as one would hope, but it is a step in the right
direction. The three-dimensional disparity plot indicates that good matching has
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Figure 7.9: Random-dot stereogram with vertical disparity. (a) Left image. (b)
Right image. (c) Disparity image. (d) Disparity contours. (e) Three-dimensional

disparity plot.
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Figure 7.9 (con’t): (f) Disparity histogram. (g) Vertical disparity histogram. (h)

Vertical disparity image. (i) Vertical disparity contours.

been obtained despite having only an approximation to the correct vertical disparity.

This experiment was also tried wicth a vertical disparity of 4 pixels. It failed
miserably. This is due to the large value of A, compared with A4. Since A, is 4000
times greater than A4, the equations are very stiff in the v directions. The algorithm

prefers to modify disparity d instead of v.
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Figure 7.10: Random-dot stereogram with multiplier. (a) Left image. (b) Right
image. (c) Disparity image. (d) Disparity contours. (e) Three-dimensional disparity

plot.
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Figure 7.10 (con’t): (f) Disparity histogram. (g) Multiplier histogram. (h) Mul-

tiplier image. (i) Multiplier contours.

Random-Dot Stereogram with Multiplier

Figures 7.10(a) and 7.10(b) are a random-dot stereogram with a varying multiplier.
The images are identical to the random-dot images 7.1{a) and 7.1(b) except thati the
left image “white” pixels range irom grey-level 128 on the left to 255 on the right
and the right image “white” pixels range from grey-levei 128 on top to 255 on the
bottom. The multiplier ranges from 0.717 at the upper left corner to 1.41 at the
lower right. As a result, exact grey-level matches are only found along the diagonal

from (0,0) to (127,127). Nonetheless, the multiplier model is able to compensate and
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produce good matches.

As can be seen from figures 7.10(c) and 7.10(e), the recovered disparity is every
bit as good as in the unity-multiplier case. The largest errors are found at the
edges of the square where some pixels in one image have no match in the other.
The histogram of disparity values in figure 7.10(f) shows that almost all points have
disparity values of 0 or 6.

The histogram of mult‘plier values in figure 7.10(g) shows that the multiplier
ranges from 0.7 to 1.4, with a median of 1.0. The multiplier image, figure 7.10(h),
clearly shows the smoothness of the multiplier variation. Exceptions occur along the

edges of the floating square, as one would expect.

Siswusoidal Pettern Stereogram with Vertical Disparity

Figures 7.11(a) and 7.11(b) are a sinusoidal pattern stereogram with vertical disparity
added. The images are identical to the sinusoidal pattern images 7.2(a) and 7.2(b)
except that the left image has been shifted down by one row and the right image
has been shifted up by the same amount. The row that was “shifted out” of the the
bottom of the left image has been used to fill in the top, and the row that was shifted
out of the top of the right image was similarly used to fill in the bottom. The total
vertical disparity is 2 pixels everywhere.

As can be seen from figures 7.11(c) and 7.11(e), the recovered horizontal disparity
has more false bumps than in the vertical disparity-free case, but the raised cosine
structure is still clearly visible. The largest errors are found at the left edge, where
there is a row of peaks that should not be present. The histogram of disparity
values in figure 7.11(f) is very much like the corresponding histogram for the vertical
disparity-free case, fi, = 7.2(f). Again, peaks are present at 4 and 8 pixels disparity,
with a new peak at 2 pixels.

The histogram of vertical disparity values in figure 7.11(g) shows that most points
have a vertical disparity between 0.4 and 3.6 pixels, with a mean value of 2.2. This
is close to 2.0, the true value, although the variance is large. The three-dimensional
disparity plot indicates that good matching has been obtained despite having only

an approximation to the correct vertical disparity.
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Figure 7.11 (con’t): (f) Disparity histogram. (g) Vertical disparity histogram. (h)

Vertical disparity image. (i) Vertical disparity contours.

Sinusoidal Pattern Stereogram with Multiplier

Figures 7.12(a) and 7.12(b) are a sinusoidal pattern stereogram with a varying mul-

tiplier. The images are identical to the sinusoidal pattern images 7.2(a) and 7.2(b)

except that the left and right images has been multiplied by the same ramp functions

that were used in figure 7.10. Image brightness is given by

I(z + 1d,y) =31 (

128 + z
255

) (1 4 cos0.4y)(2 + cos 0.1z + cos 0.3z)  (7.1)
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Figure 7.12: Sinusoidal pattern with multiplier. (a) Left image. (b) Right image.

(c) Disparity image. (d) Disparity contours. (e) Three-di. ensional disparity plot.
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Figure 7.12 (con’t): (f) Disparity histogram. (g) Multiplier histogram. (hj Mul-

tiplier image. (i) Multiplier contours.

Ip(z — 3d,y) =31 (25—25-5;-—3/) (14 cos0.4y)(2 + cos 0.1z + cos 0.3z) (7.1

The multiplier ranges from 0.717 at the upper ieft corner to 1.41 at the lower right.
The multiplier model is able to compensate and preduce good matches.

As can be seen from figures 7.12(c) and 7.12(e), the recovered disparity is as good
as in the unity-multiplier case, if not better. The histogram of disparity values in
figure 7.12(f) is very much like the corresponding histogram for the vertical disparity-

free case, figure 7.2(f). Again, peaks are present at 4 and 8 pixels disparity.
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"he histogram of multiplier values in figure 7.12(g) shows that the computed
multiplier ranges from 0.7 to 1.3, with a median of 1.0. The iso-multiplier contours,
figure 7.12(i), show the diagonal trend of the multiplier. Although the contours
should be perfectly straight diagonal lines, they are not. Nonetheless, excellent

stereo matching results are produced.

7.4 Summary

The algorithm’s performance has been demonstrated on a variety of images. It did
well in almost every case. One case for which performance was poor was the shaded
sphere. That is not surprising, since there was little difference between the left and
right shaded sphere images. When the multiplier and vertical disparity components
of the model were not used, a fair approximation was produced even for the shaded
sphere. This is especially interesting since edge-based methods can only produce
a flat disk from this imagery. Recently, Biilthoff & Mallot [1987] have shown that
human observers can use the shading information in the sphere images. However,
more research is required to assess the relevance of our proposed method to human
stereopsis.

The Martian surface stereo pair was also difficult, but not because the images were
too similar. On the contrary, they were too dissimilar, as disparity was well beyond
the limits that the algorithm could accommodate. On those portions of the image
that had a smaller disparity range, performance was very good, as demonstrated by
samples of the top 40 rows.

For all the other image pairs, the algorithm performed very well. Random dots,
synthetic images, aerial photographs, and indoor scenes were analyzed with extreme
precision. Experiments where the multiplier was varied, or vertical disparity added,
clearly showed the ability of the method to compensate for these distortions. Surpris-
ingly, the UBC image pair, which was not previously suspected of exhibiting rotation,
was found to have 7.5 arc minutes of rotation. Such a small rotation could only be

detected because the horizontal and vertical disparity achieved subpixel resolution.



Chapter 8

Conclusions and

Future Work

8.1 Conclusions

This thesis has laid out a framework for understanding problems in vision, especially
stereo vision, in terms of assumptions, constraints, and principles. These words have
been used imprecisely by vision researchers in the past. It is hoped that they will be
used more precisely in the future.

Assumptions model the environment in which a visual system is to operate. One
assumes that certain types of surfaces will be encountered. The surfaces may have
reflectance properties, geometries, and topologies that can be modeled to arbitrary
precision. One also assumes something about the sensor and its behavior. In the
case of stereo, it is necessary to assume a geometry relating the two sensors.

Constraints are derived from assumptions. They delimit the solution space for
the problem under study, forming criteria that any admissible solution must meet.

Principles are externally imposed criteria for choosing one among many admis-
sible solutions. Principles can be considered performance criteria over the solution
space. The choice of principles depends on the task to be performed by the system,
rather than the environment within which the system operates.

A large number of assumptions, constraints, and principles were discussed within
the framework, showing the link between assumptions and constraints, and the in-
dependence of principles. The framework was used to analyze three existing stereo

systems. It helped focus attention on what each system assumed about its envi-
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ronment, and how that affected the system design. In one instance, performance
concerns were observed to outweigh modeling issues; in that case, the choice of prin-
ciples was more important than the assumptions and constraints. The framework
also enabled us to examine each system to find potential areas for improvement.

A model for brightness-based image matching was presented. The model is based
on a thorough analysis of the Image Irradiance Equation (Horn [1977]). The factors
contributing to image brightness were separated into those that depend on surface
orientation (shading), and those that depend on the surface material and markings
(albedo). It was shown that under certain conditions, grey levels in a stereo image
pair are related by a spatially varying multiplier. The multiplicative relationship
probably helds for almost any reflectance map, except where there is gloss.

Combining the framework and the multiplicative brightness matching model, a
new method for computing stereo correspondence was proposed. The method uses
the variational calculus to solve a functional minimization problem. A cost function
is defined that expresses our preference for certain solutions. Constraints restrict
the space of admissible solutions (sometimes by penalizing inadmissible solutions).
Principles determine the form of the cost function. The variables over which the
cost function is to be minimized are (horizontal) disparity, multiplier, and vertical
disparity. Disparity is inversely related to surface height; recovering it is the pri-
mary objective of our stereo system. The multiplier is estimated as a by-product
of image matching. Including vertical disparity allows some image misalignment to
be tolerated. Solving the minimization problem produces optimal estimates of these
quantit‘es.

A multi-resolution pyramid algorithm was proposed to solve the stereo problem.
Two versions were implemented, one for a highly parallel machine, the other for
a conventional serial machine. Diderences between the implementations were dis-
cussed. The most significant different is speed—the parallel implementation can
run over 100 times faster than the conventional implementation. Other differences
involve convergence and stability.

The performance of the proposed method was demonstrated on a variety of syn-
thetic and real images. The algorithm produced dense disparity maps with subpixel

accuracy. It did make occasional errors; in some cases, the causes are known and
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can be fixed. More work will be required to eliminate other errors.

The method performed well on random-dot stereograms, sinusoidal patterns,
aerial photographs, and indoor images. It performed less well on a shaded sphere
synthetic image pair and images of the Martian surface, its disappointing perfor-
mance can be explained in buth cases. For the shaded sphere images, the absence
of surface markings makes stereo matching very difficult, because the images are al-
most identical. For the Martian surface images, the disparity range greatly exceeded
the calculated performance limits of the algorithm. Nonetheless, the algorithm per-
formed well for those regions where disparity was in the acceptable range.

The ability of the algorithm to compensate for differences in image brightness
and vertical disparity was shown. For some image pairs, each image was multiplied
by a different non-constant function. Good matching was still obtained, and as a
side-effect, the relative multiplier was recovered. The multiplier model also showed
its utility when matching real images that had unequal grey levels, for example, when
saturation and clipping of brightness values occurred.

In other experiments, vertical disparity was introduced to some image pairs.
Good matching was still obtained, and as a side-effect, the vertical disparity was
recovered with subpixel accuracy. In one case, an image rotation of only 7.5 arc
minutes was detected and compensated for by the algorithm, amounting to only
-0.12 to 0.16 pixels of vertical disparity over the entire image.

For a long time, brightness-based approaches to stereo matching have been es-
chewed in favor of edge-based methods, because brightness-based stereo generally
meant image correlation. However, non-correlation brightness matching was gener-
ally overlooked. This thesis demonstrated that brightness matching can be a feasible
approach to stereo vision. However, more work will be required to exploit its full

potential.

8.2 Suggestions for Future Work

This is not expected to be the final word on brightness-based image matching. The
basic viability of the method was demonstrated, yet several avenues for future ex-

ploration remain open. Here are some unanswered questions:
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e When discussing the Disparity Gradient Constraint in the context of Marr-
Poggio—Grimson stereo, we explicitly computed the range of edge orientations
that a given edge could match. Under what conditions is it possible to use the
Disparity Gradient Constraint to unambiguously restrict the potential matches
of an edge, and is this sufficiently strong to base a stereo algorithm on? It
should be possible to use the allo\vable matching range from figure 3.7 and
equation 3.6 to restrict the set of possible matches by filtering candidate match-
ing edges. Mayhew & Frisby [1981] and Pollard et.al. [1985] used the Disparity

Gradient Constraint, but not in the match filtering form suggested here.

e Can one use the Edge Classification Assumption for matching? Most systems
that detect depth discontinuities do so after matching (Grimson & Pavlidis
[1985]), yet it might be possible to detect them during matching. Sorayama
[1984] used statistical measures to detect depth discontinuities assuming a very
simple image model: images in her model are white Gaussian noise with a single
step edge in depth. Can a more general formulation disambiguate between
depth discontinuities, orientation discontinuities, surface markings, specular

reflections, and shadows, simultaneously with image matching?

e Another promising approach is to combine edge-based and brightness-based
methods. One could use edges to obtain coarse disparity maps, instead of
using the current multi-level scheme. The finest level of detail would come
from employing brightness matching instead of interpolation to produce dense
disparity maps. This is similar to the method of Baker & Binford [1981], except

that they did not use the variational methods used here.

¢ The Principle of Expressing Confidence was not used. Every match is treated
as being equaily valid. They do not deserve equal treatment; disparity will be
known with greater accuracy in some places than in others. It should be pos-
sible to estimate the variance in the disparity estimates. Knowing how reliable
the disparity estimates were, one could give more weight to the more reliable
disparities. One could derive update equations for the variance estimator just
as was done for the disparity. This is similar to the Kalman filter in estimation

theory.
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e The brightness matching model may be applied to other problems, such as
optical flow (Gennert & Negahdaripour [1987]), general 3-d motion, passive

navigation, and change detection. Much work can be done here.

o Although the algorithm was run on different kinds of imagery, there are many
kinds of imagery that were not tried. Some potential applications are the
biomedical, cartographic and part inspection domains. Each imagery type may
require a slightly different set of assumptions, which might lead to new algo-
rithms tailored to the problem at hand. For the Martian surface imagery, we be-
lieve that had we used the viewing geometry assumption of Levir~, O’Handley,
& Yagi [1973], better results might have been obtained. They assumed that
the cameras had taken oblique photographs of the ground, with the horizon
near the top of the images. Had we made that assumption, and used an initial
disparity guess compatible with that assumption, it is possible that the algo-
rithm would have converged to the correct solution everywhere. We intend to

perform more experiments in this area.

There are many implementation questions that remain open, some relating to the

speed of the algorithm.

e How much faster would the method perform if it used a multi-grid technique
(Terzopoulos [1982]), in place of the pyramid scheme? How would convergence
and stability be effected?

¢ How much faster would the method perform if it used a more efficient opti-
mization procedure, such as the conjugate-gradient method (Strang {1986]), in

place of gradient descent? How would convergence and stability be effected?
e Can a neural network implementation solve the brightness matching problem?

¢ Could regularization theory (Poggio & Torre [1984]) be applied to this problem?
In section 5.5.6, we discussed the difficulties associated with matching image
brightness gradients. The most serious objection to matching gradients is that
one must then estimate second derivatives of image brightness, an ill-posed
task. However, if regularization were used to make the problem well-posed, it

might be possible.
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e The vertical multiplier model that was used seems to be too underconstrained.
In almost all cases, a simpler model, in which vertical disparity had a constant
component and a linear component, would have sufficed. The simpler model
would only require 2 or 3 parameters to characterize vertical disparity, instead
of the N? values used now, one per pixel. The simpler model may eliminate
some of the errors that occurred in texturally impoverished areas, such as the

shaded sphere examples.

e Simple approximations were used for image sampling, compression, expansion,
and interpolation It is possible that better results could be obtained by using
better approximations (Abramowitz & Stegun [1965] and Horn [1986]), at the
expease of computational efficiency. We intend to investigate these issues in

mode detail.

This work leaves many interesting questions open for future research. Nonetheless,
it accomplished its goals by suggesting a computational framework for understand-
ing problems in stereo vision, proposing a multiplicative model of image brightness
transformation in image sequences, and developing a new method of stereo image

matching based upon the framework and the model.



Appendix A

Notation

This thesis tries to use a consistent notation in order to render equations imme-
diately comprehensible. Vector and matrix notations are used throughout as they
greatly simplifies some equations. Matrices are denoted by boldface upper-case let-
ters, A, B, ..., while vectors are denoted by boldface lower-case letters, x, vcty,....
Points in space, as opposed to their vector representations, are upper-case in normal
typeface. Scalar quantities are lower-case in bold typeface. Greek letters may be
used, especially for angles and rotations.

Whenever a vector representing an image point is used together with an object
vector, the image vector will be primed. For example, if x is a point on an object,
then in a distortion-free single image system, x’ would be its projection in the image,
and would be given by

f2
L

f-x
assuming that the focal point is at the origin.

In the case of stereo images, x’ is the projection of object point X into a fictitious
image with coordinate system intermediate between the left and right coordinate
systems. It is not an observed quantity. x; and x}j are left and right image points
respectively, and are observed directly. If x is an object point, then x; and xg (not
primed!) are its representations in the two coordinate systems. They are not observed
quantities, either, but are translated and possibly rotated, but not projected, versions

of x. Thus, the goal of a stereo vision system is to recover x from measurements x}
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and xJk.
Differentiation of a vector with respect to a vector 1s also allowed, following the
rules outlined in the appendix of Horn [1986]. Specifically, the derivative of a vector

with respect to a vector is given by the Jacobian of the coordinate transformation

from a to b.
?; g_bn. Z_bz
db Y
= | gy by dby (A.1)
da dery day da;

dby  dbg  dby
dar day da,

If éa = [6a., ba,,8a,]T is a perturbation vector, then

db
= —6
éb Ta a
Clearly, p
—Ma =M.
da

In particular, if M is a row vector, i.e., M = cT, where c is a column vector, then

e T, _.T L aer= Lic.oa) =T
e a=c and da(a c) da(c a)=c

This is the transpose of an equation given in Horn [1986] p. 458. His other equations
must be modified accordingly.

Equation A.l can be used when scalars are involved:

da_

5= and

dt_[dt di dt]

da ~ |da,’ da,’ da,

au /. Q.
|5 afs

A scalar may also be differentiated with respect to a matrix, however, it is not
possible to define this operation to be consistent with the above convention. Instead,

define the derivative of a scalar with respect to a matrix by

df df df
dm dmyz2 dmyj

Y _ |y Ty Ty
dmz; dma; dma

dM df df df

dma] dmgg dm33

Care must be taken not to mix the different forms of differentiation.
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