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Abstract

This thesis seeks to combine numerical analysis, digital filtering techniques, and paral-
lel computer architectures to achieve highly parallel computational schemes for solv-
ing elliptic partial differential equations (PDEs). Four main topics are considered :
finite-difference discretization formulas, single-grid solution methods, multigrid solu-
tion methods and parallel processing. In the area of finite-difference discretization for-
mulas, a new mode-dependent finite-difference method is developed. In the area of
single-grid methods, two algorithms, namely, a local relaxation method and a two-
level four-color SOR method are presented. In the context of multigrid methods, mul-
tigrid algorithms employing the red/black Gauss-Seidel and SOR smoothers are stu-
died. Finally, in the area of parallel processing, the implementation of single-grid and
multigrid solution methods on multiprocessor arrays is examined. Throughout this
thesis, a unified transform domain approach is used to analyze and design the discreti-
zation and solution procedures which are developed.
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Chapter 1 : Introduction

1.1 Motivation

Research on parallel computer arch‘itectures and parallel algorithms for solving
partial differential equations (PDEs) has progressed very rapidly during the last 15
years [43]. The emergence of this field as an important area of scientific research is
motivated by the desire to solve large scale scientific and engineering problems such as
those arising in weather forecasting, aerodynamic simulation and geophysical explora-
tion, as well as real-time problems of the type arising in military applications, robotic
control and process control, among many other examples. In order to meet these
demanding computational requirements, parallel processing is indispensable [15]. The
objective of this thesis is to analyze and design highly parallel computation schemes
for the solution of elliptic PDEs. Various aspects of the numerical solution of elliptic
PDEs are investigated. The aspects that we consider include the development of
finite-diff erencé discretization formulas, both single-grid and multigrid solution

methods and their parallel implementation on multiprocessor arrays.

‘The research described in this thesis has two important features. First, in con-
trast with the conventional space domain approach, where the solution of elliptic PDEs
is based on a sparse matrix formulation, a transform domain approach is used
throughout. This approach is motivated by the digital filtering techniques used in the
field of digital signal processing (DSP). From this point of view, each local operator is
treated as a digital filter and is studied according to its spectral properties. The
transform domain approach not only provides a convenient analytical tool, but also

puts in evidence certain design issues. As a result, it provides new insights into the
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choice of discretization and solution schemes for elliptic PDEs, so that we are able to

develop new versatile and efficient techniques.

Second, the interaction between computational algorithms and their supporting
computer architectures is emphasized. One approach to parallel computation is pri-
marily architecture-oriented [30] [33]. The goal of this approach is to build general
purpose lsupercomputers which use parallelism to get better performance. Current
supercomputers such as the Cray X-MP and the Cyber 205 use pipelining and vector
- processing to achieve a high throughput and, generally speaking, these computers are
presently the most powerful computing machines for solving PDEs. In spite of their
great power, the use of supercomputers remains limited because of cost considerations.
A more economical way to achieve a high computing capability consists of using an
array processor such as the FPS AP-120B attached to a minicomputer, say a VAX-11,
where the attached processor is mainly used for number crunching purposes, and pipe-
lining is used within this processor to speed up computations. Another approach,
which is algorithm-oriented, has received a large amount of attention recently [12].
This point of view is stimulated by VLSI technology, which makes it economically
feasible to build versatile special purpose architectures. Earlier work on systolic and
waveffont arrays has primarily focused on matrix computation and signal processing
algorithms [35]-[37]. This thesis adopts an algorithm-oriented approach whose objec-
tive is to take full advantage of the special structure of PDE problems. Specifically,
"~ the locality property of discretized PDEs is exploited to obtain parallel algorithms for
their solution and, hence, these algorithms can be conveniently implemented on special

. purpose processor arrays whose architectures are selected to match the algorithms.
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The work of this thesis in fact belongs to an interdisciplinary research area that
lies at the intersection of three fields: numerical PDE algorithms, digital filtering tech-
niques and parallel computer architectures (see Figure 1.1). The relationship between
these three- areas will be emphaSized in the introductory chapter. Specifically, tﬁe link
existing between the theory of digital filters and the numerical solution of PDEs will
be explai;led in Section 1.2, and an ovef\}iew of current developments in parallel archi-
tectures and algorithms for solving numerical PDEs will be presented in Section 1.3.
The contributions and organization of this thesis are then outlined in Sections 1.4 and

L.5.

Computer
Engineering

Numerical/

Figure 1.1: Interdisciplinary research area among three fields
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1.2 Numerical Solution of PDEs and Digital Filtering

Digital filters are generally defined as a way to process a uniformly sampled data
sequence defined on a one-dimensional or multidimensional domain. Usually, we are
interested in linear digital filters. For example, consider an input sequence u, and an

output sequence v, which are related by the following formula

=2wazun—z =l=2°°bz"n—z , n&€l. (1)

The specification of the coefficients a; and b; defines a 1D linear filter. This definition

can easily be generalized to highé.i" dimensional spaces [21].

There is a close relationship between the analysis and design of linear digital
filters and the transform domain approach. If the coefficients ¢; and &, in (1) are
independent of the index n of the sequences u, and v,, (1) is a linear shift-invariant
(LSI) system whose eigenfunctions are given by e** , where h is the distance between.
two consecutive sampling points and k is arbitrary. Therefore, transform methods
such as the discrete-time Fourier transform and the Z -transform provide a natural

way to analyze and synthesize LSI systems [42].

For the numerical solution of elliptic PDEs, linear digital filters arise in many
different situations. For example, the finite-difference methods which are used to
discretize PDE operators can be interpreted in terms of digital filters, as well as the
iteration (or smoothing) operators required to solve elliptic PDEs iteratively, or even
the interpolation and restriction operations associated to the transfer of data from one
»grid to another in multigrid methods. The problem that concerns us in this context is

that of selecting a performance criterion for each filter and finding some coefficients g;
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and b; so that the resulting filter has the best possible performance. The first issue
corresponds to the problem of filzer specification and the second one corresponds to

that of filter design.

The transf orm domain approach associated with the digital filtering concept can
be rigorqusly applied to simple model problems such as constant-coefficient PDEs with
- Dirichlet or periodic boundary conditions on a rectangular domain. Hence, for most
PDE problems of interest, the transform domain approach is usually regarded as
“ heuristic.  In spite of this shortcoming, it is one of the most powerful tools for under-
standing the numerical behavior of PDE algorithms. Efforts to make transform
domain analysis rigorous have been made recently [7][28][29], and further develop-
ments in this direction are expected. Nevertheless, a rigorous treatment of the
transf orm domain analysis for general PDEs is not a major concern in this thesis.
Instead, we are primarily interested in using the transform domain approach to
develop new discretization and solution schemes. These schemes are derived by using
a local analysis, where we assume that the local differential operator is linear and has
constant coefficients. The analytic results that we obtain are therefore valid for the
case where the global operator happens to be a linear constant-coefficient operator. For
general PDEs with spatially-varying coefficients, the efficiency of these schemes will be

tested by computer simulations.

The main goal of this section is to describe more precisely the link existing
between the numerical solution of PDEs and digital filtering. We consider a simple

model problem consisting of the 1D Poisson equation
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%22=fc(x), x € Q=1[0,1] (2)

where u, (0) and u, (1) are given. In this section, the subscript c is used to distinguish
continuous functions and their Laplace transforms from sampled functions and their

Z-transforms.
1.2.1 Digital Filters for Finite-difference Discretization

A general finite-difference discretization scheme for the 1D Poisson equation

assumes the form

= 1

L L
Y Quay= 3 bfna. ' (3)
l=—L 2

where 1, is the estimate of the value u. (nh ) and f, = f.(nh ) is the sampled driving
function. Equation (3) is known among numerical analysts as the HODIE (High-Order
Difference approximation with Identity Expansions) or OCI (Operator Compact Impli-
cit) scheme [4)[39]. From a digital filtering viewpoint, (3) defines an infinite impulse
response (IIR) filter [42]. We want to find coefficients @; and b, so that (2) is well

approximated by (3).

Let us view u, (x ) and u, as inputsand f.(x)and f, as outputs. In the interior
region of Q, we can ignore the effect of boundary conditions and treat (2) and (3) as if
they were valid over an infinite domain. Then, by using the Laplace and Z transforms,
(2) and (3) can be repicsented in the transform domain by two block diagrams as
shown in Figure 1.2(a) and (b), where H, (s ) and H (z ) are the system functions of
(2) and (3) [42] and 4, (s ), #(z), f.(s) and f (z) are the transforms of u. (x), u,,

fc(x)and f,, respectively.
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The system function H.(s) is the spectrum ‘of the ideal filter that we want to
approximate and H (z) is the spectrum of the discrete filter under construction. The
determination of the coefficients ¢; and 3, depends on what criterion we adopt to
specify how H(z) and H, (s) must resemble each other. Hence, in this framework,

the finite-difference discretization problem can be viewed as a filter specification prob-

lem.
U(s)— A(s)=s? | o F(s) Uz)—] H(z)= 2 |« F(2)
' z=—L2blz-l
(a) . (b)

Figure 1.2 : Digital filter for the finite-difference discretization

The specification of various 1D and 2D filters for approximating the ordinary and par-

tial differential operators will be discussed in Chapter 2.
1.2.2 Digital Filters for Relaxation

Suppose that (2) is discretized by a 3-point central difference scheme as
Up—y —2Up Uy =h2f, .
The damped Jacobi relaxation scheme and the SOR scheme with red/black partitioning
are two relaxation methods which are commonly used for solving this equation. They

are both parameterized by a relaxation parameter o and are defined respectively as

Cuptl = (1~ + o (ufiy +uly —h2f, ),

and
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unm+1=(l—(o)unm+£2°-(unm—1 +ul —hifn ), n even,
untl = (1—ou + % Curdit +urdt —h2f, ), n odd.
Define the error at the m th iteration as e* = u—i, , where i, denotes the exact solu-

tion and where u," is the approximation of u, obtained at the m th iteration. The error

dynamics for the damped Jacobi relaxation can be written as

er*l=(1—wley + 5 (g +ely ). (4)
By treating the error at the m th iteration as the input and the error at the m +1th
iteration as the output of a digital filter, we find that (4) corresponds to a finite-
impulse respoﬁse (FIR) filter [42). The frequency response of (4) is represented by the

block diagfam of Figure 1.3.

Ef —=(l—w) + ocos(kh ) . VAR

- Figure 1.3 :Digital filter for the damped Jacobi iteration

- The equation describing the error dynamics for the red/black SOR scheme is given

by
er+l = (l-wel + -‘20— (el y +elyy ), n even , (52)

er+l = (1—w)e + %— (emHl +em4! ), n odd . (5b)
The above system of equations is not shift-invariant. To transform it into a shift-

invariant system, let us construct two sequences from e, : the red sequence r, and the

black sequence b, . The red sequence is defined as
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R =ey, n even,
while r* with odd index n is obtained by interpolating the value of r* with even
index; Similarly, the black sequence is defined as
T=eml, n odd,
and b* with even index n is obtained by interpolating 57 with odd index (see the dis-

cussion in Chapter 4). Then, (5) can be written as an LSI system where
rrtl = (1~ + 5 (B +b74; ), foralln , | (6a)

bt = (1—w)b + 52‘)- [(Q—)rry +rm, ) + %—(b,’{‘_z +2b+b7 5 )], foralln . (6b)
Therefore, a transform domain analysis can be applied to (6). By using the discrete

Fourier transform, (6) can be represented by the diagram shown in Figure 1.4. -

- (1-w)
Rﬁ" Rl" +1
o (1—w) cos(kh )
o cos(kh ) -
B | /L = Bt

(1—)+w2cos*(kh )

Figure 1.4: Digital filter for the red/black SOR iteration

In tefms of filter specification, the relaxation filter has to satisfy two require; |
ments. First, the filter corresponding to an iterative algorithm has to be consistent
with the given finite-difference equation. If the input sequence of thé filter is the solu-
tion #, of the system of difference equations, the output should also be the same
sequence i, . Second, since this filter can be interpreted as a smoothing filter which

reduces the magnitude of all the Fourier components of the initial error in the
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transform domain, the magnitude of the frequency response of the filter for all feasi-
ble error components should be less than one so that all error components will be

reduced to zero eventually.

There are many different filters satisfying the above two requirements. Thus we
are lead to a filter design problem. Note that the filters for the damped Jacobi and the
'SOR iterations have very different structures. In addition, for each type of filter, the

appropriate relaxation parameter o can be determined according to different criteria.

Digital filters used to smooth out iteratively the error for ODEs and PDEs are dis-

cussed in Chapters 3, 4 and S.
1.2.3 Digital Filters for Restriction and Interpolation

Another type of digital filter appears when functions are transferred between two
grid levels in multigrid algorithms [5). Consider two grids Qj and Q. with A= 2h.
A restriction operator R{' which maps a function »; defined on Q; into a function w;.

defined on Q: can be defined as follows

Wn = t QUzp— -
==L
Similarly, an interpolation operator /£ which maps a function w;- defined on Q- into

a function u; defined on Q4 can be defined as

1_17-

Uyp = Wy, and Urp'p1 = t b,wn,_,___
{=—L 2 2

! odd

- Conceptually, it is convenient to view the restriction operator R}  as composed of

two steps [18]:
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Step 1: low-pass filter on the fine grid Qy,

VYn = t, Qun—;
L

1==

where v; is also defined on Q,, and

Step 2: down-sampler from the fine grid €, to the coarse grid .,

Wn="Vn'.
Similarly, the interpolation operator I{+ can be conceptually decomposed into two

steps:

Step 1: up-sampler from the coarse grid Q- to the fine grid Q,,

Step 2: low-pass filter on the fine grid Q,

U, = t bi1vn—; -
L

==
Since restriction and interpolation operators are lowpass filters cascaded with simple
up-sampling and down-sampling operations, the above decompositions have the effect
of reducing the design of restriction and interpolation operators to that of appropriate
low-pass filters. Block diagrams illustrating the above two decompositions are
presented in Figure 1.5. The design of restriction and interpolation schemes based on

these ideas will be treated in Sections 5.3 of Chapter 5.
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filtering  [V(z} sampling sampling [M(z) filtering
_ = W(z) W(z)-—=

ta,z’ 2:1 1:2 ib,z’
£= 1571
(a) (b)

Figure 1.5 :Digital filters for the restriction and interpolation

- U (z)
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1.3 Parallel Computation of PDEs : An Overview

This section contains a brief review of previous work on parallel computation of
PDEs. First we look at two architectures which are currently available for large scale
computation, namely, vector computers and attached array processors. Then we
examine new architectures either in the experimental stage or still under investigation,

and discuss some issues related with the implementation of parallel PDE algorithms.

We do not intend to be exhaustive in this brief review, since a survey has been
published recently by | Ortega and Voigt [43], and there are also several textbooks
devoted to parallel computers and parallel computation such as [32] and [33]. This sec-
tion attempts only to present an overview of current research activities centered
around parallel computation of PDEs and, in the process we point out the important

issues related to each approach.
1.3.1 Current Technology for Large-Scale Computation
(1) Vector Computers

Vector computers such as the Cray 1, Cyber 205, and Fujitsu VP-200 are the
- mbst powerful computing machines currently available for scientific and engineering
applications, and the i)eak computation speed which can be achieved by these comput-
- ers is in the range of 100 - 500 rﬁegaﬂops (million floating-point operations per second).
The architectures of the Cray 1 and Cyber 205 were described in [46] and [38] respec-
. tively, and the architecture of the Fujitsu VP-200 computer was discussed in a special
issue of IEEE Computer magazine [17]. New vector computers such as the Cray X-MP
and the Cray 2 which connect several vector machines together have also come to the

market recently. The maximum computation speed for these machines is expected to
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be 1 - 10 gigafiops (billion floating-point operations per second). The application of
vector computers to the solution of PDEs is discussed in Rodrigue [45] and in a special

issue of the Proceedings of IEEE [44], among other conference proceedings and reports.

The two key features on which all vector computers rely to obtain high perfor-
mance computation are special hardware and firmware ‘design suitable for vector
operations, and highly pipelined systems including instruction pipelining and arith-
metic pipelining. As a consequence, the efficiency of these machines depends on two
factors: (1) how to achieve the maximum pipelining [34], and (2) how to get the max-
imum amount of vector operations. The percentage of code that can be vectorized
ranges from 10 to 90 percent for a broad range of problems and the remaining non-

vectorizable scalar operations constitute the major bottleneck of these vector machines.
(2) Attached Array Processors

Another popular approach to obtain high computation speeds is to usé an array
processor attached to a host computer. . This combination can achieve a computation
speed of 10 megaﬂops; however, it costs much less than vector supercomputers. There
have been two special issues on attached array processor architec;tures and applications
in Computer magazine [11] [14]. The use of an attached array processor to solve ellip-

tic PDEs has also been discussed by Schultz [48].

One problem with this approach is that programming array processors usually
takes more time. Furthermore, this approach is only appropriate for problems of

moderate size [14].
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1.3.2 Parallel Computer Architectures

One simple way to construct a large parallel computer is to connect several vector
computers together. Architectures of this type have been tested at the Lawrence
Livermore National Laboratdry and designed by some companies, but it is not clear
that this(architecture is the right one to use for parallel computation in the long run.
Researchers are currently developing some alternate architectures among which we
will mention data flow computers, multiprocessor systems (MIMD machines), and

processor arrays (SIMD machines).
(1) Data Flow Computers

Data flow computers are based on the data driven computation concept. Research
on data flow computers was initiated with the analysis of data flow program graphs
and was influenced by the development of functional languages. Most of the early
work in this area has focused on the design of data flow languages and their compilers.
A few protofype machines are presently being built. The structure of a practical data

‘flow machine was described in [27].

Among various data flow computer projects, we can list the Dennis static data
flow machine and the Arvind dynamic data iow machine at MIT, the DDM project at
the University of Utah, the EDDY system in Japan, and the Manchester machine in
England. A special issue on data flow computers appeared in the IEEE Computer

magazine [13], which presented an overview of research up to that time.

The advantages of data flow computers include the potential to achievev high
parallelism at the instruction level, the ability to issue multiple memory requests, and

the functional programming style that allows easier proofs of correctness. However,
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there are also some disadvantages, among which are a high system overhead to detect
parallelism and to schedule the available processors, difficulties in treating complex
data structures, and the lack of memory hierarchy [3] and [23]. Another problem is
with the hardware implementation, namely, the design of the switching network. This
problem seems solvable, but, it will limit the performance of such machines if the size

of the network becomes too large.

PDE problems are an important application area for data flow computers and the

implementation of PDE solvers has been the subject of some studies [2] [20].

Although data driven computing is an interesting and attractive idea, many prob-
lems still need to be solved. Other researchers are looking at approaches where a
number of traditional von Neumann type machines are connected together to obtain a
parallel machine with improved computation speed. The machines which are obtained
by this process can be divided into two categories: MIMD (Multiple Instruction Multi-

ple Data) machines and SIMD (Single Instruction Multiple Data) machines.
(2) Multiprocessor Systems (MIMD Machines)

An MIMD machine can be viewed as a network of interconnected minicomputers,
each of which has its own memory, control commands, and even 1/O devices, and can
operate asynchronously and independéntly of other processors. However, some of
these processors may also share common resources, say a common memory and I/0
channels. In some sense, an MIMD machine is similar to a local area network system.
However, the goal in designing an MIMD computer is to obtain a general purpose high
speed computing machine, while the design of a local area network merely aims at

resource sharing and information exchange. Since the goals are different, the design
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considerations will also be different. Currently, MIMD projects are trying to cpnnect
tens or hundreds of processors together. In the future, it is expected that thousands of
processors will be connected into a "big" parallel machine. The performance of each
processor may be similar to or better than that of a minicomputer such as the VAX:
family. Assuming that each processor can perform 10 megafliops and that all processors
are bu;sy;solving a single problem, the maximum speed that can be achieved with one

thousand processors and a "smart” communication scheme among them is 10 gigaflops.

There are many MIMD machine projects in universities, such as the Ultracom-
puter at N.Y.U., the TRAC (Texas Reconfigurable Array Computer) project at the
University of Texas, the Cedar project at the University of Illinois, the Dynamic Mul-
ticomputer System at the University of Florida, the Database Machine at the Univer-
sity of Wisconsin, the PASM project at Purdue University, and the Cosmic Cube pro-
ject at Caltech. These projects are funded by DOE, DARPA, NSF, ONR, and NASA
[47]. Some companies in industry are also building commercial multiprocessor systems
such as hypercube computers, tree machines, and so on. The MIMD machines are usu-
aily designed as general purpose computers. However, some MIMD machines are
designed for specific applications, such as the FEM (Finite Element Machme) at the
NASA/Langley Research Center for structural engineering applications, and the NSC
‘(Navier-Stokes Computer) at Princeton University for solving fluid dynamic prob-

lems.

The key to the success of MIMD machines is the communication scheme among
the processors inside each machine [50] [52]. Other important issues are the partition-

~ing of problems, the mapping of the partitioned problems to processors [25], and an
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efficient access to shared resources [24]

Some preliminary studies on the use of hypercube computers to solve PDEs have

been performed in [9] and [10].
(3) Processor Arrays (SIMD Machines)

An SIMD machine is also an interconnected network of multiple processors. How-
ever, these processors are much simpler, have each a small local memory and an ALU,
communicate only with the host computer or neighboring processors, and usually
operate under a synchronized global clock. Typical examples are the Illiac IV, systolic
arrays, the MPP (Massively Parallel Processor), and the Connection Machine. Current
SIMD machines under development include the Warp machine (a linear 10 processor

systolic array) at CMU, and the blue chip project at Purdue.

It is feasible nowadays to connect hundreds of processors together, and it may be
possible to obtain an array with 10 processors or more before long. Let us roughly
esﬁma.te the computation capability of such an array. Assuming that the maximum
speed of each processor is 10 megaflops and that all processors are busy in solving the
same problem with local communication only, then the maximum computation speed
of such an array is 100 gigafiops or more, which is about 1000 times faster than the

Cray 1.

The success of SIMD machines depends on how algorithms and architectures are
matched. If there exists a highly parallel algorithm with a well matched architectﬁre
for some importént applicaﬁons, SIMD machines may provide the most advantageous
solution. Since parallelism is exploited at the algorithmic level, the overhead in detect-

ing parallei.ism is not necessary and the control can be much simpler.
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1.3.3 Parallel Numerical PDE Algorithms

So far, there are few algorithms which were truly developed from a parallel com-
putation point of view. Most parallel algdrithms can be viewed as parallel implementa-
tions of traditional algorithms. As a consequence, we cannot separate parallel algo-
rithms f rom parallel computers. For diff erent parallel machines, the criterion of paral-
lelizability can be quite different. For example, for a vector computer, parallelization is
- more or less the same as vectorization and communication constraints are not impor-
tant. However, communication requirements become critical for multiprocessor sys-

tems.

An ideal parallel computer model, called PRAM (Parallel Random Access
Machine), is sometimes used to illustrate parallel algorithms [49]. In this model, we
assume that an infinite number of processors are connected to a shared central memory
and that each read or write operation on a memory cell for any processor takes one
unit cycle. Algorithms based on this model may be of theoretical interest; however,
this machine model is not realistic. The implementation of PRAM by a real machine

usually needs an overhead of O (log/V ) to achieve the communication requirements.

Some researchers have proposed parallel algorithms to solve a linear system of
equafions which use more than O ( N ) processors, where N is the number of unk-
nowns [35]. These methods can be used for a linear system of moderate size, say, when
N < 100. However, they are not practical for systems of equations obtained from
discretized PDEs, where NV is usually larger than 104 Therefore, based on this con-
sideration, a reaﬁstic multiprocessor system for PDEs should contain at most O( N )

Processors.
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Parallel numerical algorithms have been reviewed by Miranker [40], Heller [31],
and Ortega and Voigt [43]. The topics covered in Miranker’s paper are quite broad,
including optimization, root finding, differential equations, and linear equations.
Heller’s papei‘ focused on parallel numerical linear algebra, while Ortega and Voigt's
paper concentrates on parallel numerical PDE algorithms, which is most relevant to
our discﬁssion here. Parallel direct methods for solving PDEs may be categorized into
three classes: factorization methods - parallel implementations of the Gaussian elimi-
nation and Givens rotation methods, ordering methods - parallel implementations of
the nested disection method, and special fast algorithms - special methods for tridiago-
nal systems and fast Poisson solvers. Parallel irerative methods can be divided into
two classes: parallel implementations of gradient-type algorithms and parallel imple-
mentations of relaxation-type algorithms, where in this category we include multigrid
methods [8){26]. The details can be found in Ortega and Voigt’s paper [43] and the

references therein.
1.3.4 Future Trends

In the future, it is expected that both general purpose and special purpose com-
puters will exist, since different users have different needs. In the general purpose
computer market, today;s vector supercomputers may be replaced by MIMD super-
computers or data flow supercomputers. Whether the processor in an MIMD machine
is a vector computer or a minicomputer will be the designers’ choice. As to the special
purpose computer market, attached array processors may be replaced by processor
arrays such as SIMD machines. Since the trend goes from central to distributed Sys-

~tems, researchers in computer architecture will put more effort in the design of inter-
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connection networks. In addition, the development of software for distributed sys-
tems such as distributed operating systems, parallel programming languages, and com-

pilers for parallel programs will become more and more important.

Due to the evolution of computer architectures, the research activity in the field
of parall91 algorithms will shift from "vectorized" parallel algorithms to "distributed”
parallel algorithms. In a distributed computational environfnent, communication com-
plexity in an algorithm is almost as important as computation complexity. A new
complexity theory for parallel algorithms should include both. In addition to the
parallel implementations of traditional algorithms, we also expect that some new algo-
rithms will be developed which can fully utilize parallel distributed compufation
structures. However, this kind of research requires a deeper understanding of algo-

rithms and some knowledge of feasible computer architectures [1][6][22].
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1.4 Thesis Contributions

The contributions of this thesis are of two sorts: a methodology and a succession

of algorithmic results based on it.

The methodology is to apply digital filtering techniques to the analysis and design
of numerical PDE algorithms. It appears that this application has not yet been fully
pursued so far. The reason for this relative void is that researchers in digital filtering
and numerical PDEs are trained in different departments and seldom communicate
with each other. As to algorithmic results, several methods concerning the discretiza-
tion and solution of elliptic PDEs have been developed. These results are summarized

below.
Chapter 2: Mode-dependent Finite-difference Method

Finite-difference approximations are not usually studied from the transform
domain‘ ‘point of view. Based on this viewpoint, we derive new high order finite-
difference schemes. For an Rth order ODE, we develop a systematic approach to
obfain an (R +1)-point mode-dependent finite-difference scheme, which is exact when
used to discretize linear constant-coefficient ODEs. For the two-dimensional second
order constant-coefficient Helmholtz and convection-diffusion equations, we obtain 5-
point, rotated 5-point, and 9-point stencil discretizations which have accuracy of

0 (nr2), 0(h?)and O (h6) respectively.
Chapter 3: Local Relaxation Method

We prove the convergence of a local relaxation method which solves Ax = b,

where A is symmetric positive definite, by using space-adaptive relaxation parameters.
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The local Fourier analysis approach is used to analyze the SOR method with red/black
ordering. For the model Poisson problem, the optimal relaxation parameter and the
convergence rate of the method obtained are consistent with Young’s results [53]. For
spatially varying coefficient PDEs, computer simulation shows that the local relaxation
method is slightly better than the standard SOR method which uses time-adaptive

relaxation parameters. We also derive a local relaxation method for a 9-point stencil

2

2 2
discretization of the operator —asz- +a é’CLa}’ + gyz and prove its convergence. The ,

convergence rates of the 5-point and the 9-point local relaxation methods are both pro-

portional to O (& ).
Chapter 4: Two-level Four-color SOR Method

We study the SOR acceleration effect from a transform domain point of view, and
develop a new two-level four-color SOR method for solving the system of equations
resulting from the 9-point stencil discretization of the Laplacian. The two-level SOR
method contains both block and point iterations, which use different relaxation param-
eters. A closed form expression is then derived for both the block and point relaxation

parameters.
Chapter 5: Two-color Multigrid Methods

We use a variant of Fourier analysis called the wo-color Fourier analysis to clar-
ify the physical mechanism of a multigrid method which employs the red/black
- Gauss-Seidel smoothing iteration for a model problem consisting of the Poisson equa-

tion on the unit square with Dirichlet boundary conditions.
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The two-color Fourier analysis not only serves as an analytical tool but also as a
design tool. This is particularly evident for the 1D problem, for which the two-color
two-grid Fourier analysis is used to design a fast direct method. For 2D problems,
several design issues such as rearranging the smoothing order, and smoothing with a
relaxation parameter @ 7 1 are also investigated from the same viewpoint.

4
L

- Chapter 6: Parallel Implementations of Single-Grid and Multigrid Methods

- We study the communication and computation requirements associated to the
implementation of iterative algorithms for elliptic PDEs on a mesh-connected proces-
sor array. We show that the acceleration effect of the traditional SOR and conjugate
gradient methods is canceled out by the necessity to use global commurﬁcations at each
iteration, and argue that the local relaxation method developed in Chapter 3 is an ideal
scheme for parallel implementation on a mesh-connected array. The optimality of this

implementation, which requires O (/N ) total running time, is explained.

We also present a brief survey of current research work on parallel implementa-

tions of single-grid and multigrid solution methods on various multiprocessor arrays.
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1.5 Organization of the Thesis

This thesis is based on several reports written at different stages of my Ph.D.
research. Since each report has its own introduction, conclusion and references, this
feature is preserved in each chapter for convenience. An advantage of this organization
is that eaph chapter can be read independently of other chapters. This feature should
prove to be convenient for readers who are interested only in a subset of the topics |

discussed here.

However, efforts have been made to unify all the concepts and notations appear-
ing in the different reports corresponding to each chapter, so that the thesis has its own ,

integrity and consistency.

The link between numerical PDE algorithms and digital filtering theory was dis-
cussed above in Section 1.2. Although the topics discussed in this thesis are varied,
digital filtering is in fact the main unifying theme behind the various discretization
and solution schemes that are proposed. Since Section 1.2 describes the general point

of view adopted in this thesis, interested readers will find it helpful to read it first.

Current develdpments in parallel computer architectures and algorithms for the
solution of PDEs wére also described in Section 1.3. This survey gives a retrospective
of thé general field and points out some future research directions. Above all, it pro-
vides a justification for the algorithm-oriented approach adopted in this research.
Throughout the thesis, we focus on numerical PDE algorithms which can be con-
veniently implemented on multiproceésor arrays (MIMD or SIMD machines). In such
a parallel/distributed computing environment, communication costs have to be taken

explicitly into account and, hence, local communication schemes are preferred. Due to
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this consideration, only finite-difference discretization schemes and iterative algo-

rithms with local operations are examined in this thesis.

A consistent set of notation is adopted in this thesis, which is summarized in

Table 1.1.

This thesis consists of four parts: discretization, single-grid and multigrid solu-
tion methods, and parallel processing. Each part has it own abstract, so that readers
will be able to identify the main issues discussed in each part with a small amount of

effort.

Equations are numbered sequentially within each section and referred accord-
ingly in the same section. When they are referred to in other sections, section numbers
associated with the desired equations are also included. For example, (1.2.1) denotes

-equation (1) in Section 1.2.
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X,y
n,ng,ny
N,Ng, N,
h,h,,hy
K, Kz, Ky
k. ke, Ky
6,0,.9,
S, 85,8y
Z,2:,2
un’vn’wn
Un, ;ny» Yo, ny» Wn, ny
i(z)

Uy

m

Q

Qp

r

Iy
D,D,, D,
E,E, . E,
L

Ly

Ny

C

Iy

Ly +

Ly x

Ly o

o, 0y, 0,
J

Jo

p

G

Go

Gw

A

spatial domain variables

integer indices of spatial domain variables

number of grid points

grid spacings

wavenumbers

integer indices of wavenumbers
wavenumber-grid spacing (x4 ) products
Laplace transform domain variables

Z transform domain variables
one-dimensional sequences
two-dimensional sequences

Z -transform of u,

Fourier transform of u,

number of iteration

problem domain

lattice with grid spacing A~ on domain Q
boundary of Q

boundary of Qj

basic differential operators

basic shift operators

differential operator

finite-difference operator defined on Q,
nullspace of operator L

coincident space

averaging operator defined on Q,
5-point stencil discretization operator

rotated 5-point stencil discretization operator

9-point stencil discretization operator
relaxation parameters

Jacobi relaxation operator

damped Jacobi relaxation operator
spectral radius of J

Gauss-Seidel relaxation operator
successive over- relaxation operator
local relaxation operator

spectral radius of G,

Table 1.1: Summary of notation
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PART I: DISCRETIZATION

The first part of this thesis discusses the discretization of boundary value prob-
lems with finite-difference methods. A new methodology utilizing the spectral
analysis of local differential operators is proposed in Chapter 2 to design and analyze
mode-dependent finite-difference schemes for linear homogeneous ordinary and partial
differential equations.

We\interpret the finite-difference method as a procedure for approximating
exactly a local differential operator over a finite-dimensional space of test functions
called the coincident space and show that the coincident space is basically determined
by the nullspace of the local differential operator. Since local operators are linear and
approximately with constant coefficients, we introduce a transform domain approach
to perform the spectral analysis. For the case of boundary-value ODEs, a mode-
dependent finite-difference scheme can be systematically obtained. For boundary-
value PDEs, mode-dependent 5-point, rotated 5-point and 9-point stencil discretiza-
tions for the Laplace, Helmholtz and convection-diffusion equations are developed.

The effectiveness of the resulting schemes is shown analytically, as well as by
considering several numerical examples.
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Chapter 2 : Mode-dependent Finite-difference Method

2.1 Introduction

In order to derive a finite-difference approximation for the delfivative of a smooth
function, a common procedure is to use a Taylor series to expand the function locally
and to select the coefficients such that the order of the discretization error is as high as
possible. This procedure is based on the assumption that smooth functions can be well
approximated by polynomials locally, and in fact it can be shown that the resulting
finite-difference approximation is exact for low order polynomials. However, when the
function is exponentially increasing (decreasing) or highly oscillatory, the polynomial
representation becomes poor and better finite-difference schemes can be derived if we
require that the derivative of exponential or trigonometric functions should be approx-
imated exactly. In our framework, polynomials, exponential and trigonometric func-
tions are all viewed as modes, and finite-difference schemes obtained by an exact
approximation of the derivative of a certain number of modes are called mode-
dependent finite-difference schemes. These modes are the coincident modes and the

space spanned by them is the coincident space.

Historically, the idea of selecting exponential functions as coincident modes was
first suggested by Allen and Southwell [1] for discretizing the convection-diffusion
equation. An important feature of this problem is that there are large first-order
terms in the governing second-order PDE. Due to these large first-order terms, there
exists a boundary layer which cannot be well approximated by poiynomials. The use
of trigonometric functions as coincident modes was first discussed by Gautschi [19] for

the numerical integration of ODEs which have periodic or oscillatéry solutions whose
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periods can be estimated in advance. In addition, high order finite-difference schemes
for the Laplace equation were derived by choosing some particular polynomials as

coihcident modes [32].

Although the concept of a modeédependént finite-difference discretization pro-
cedure has been known for years and mentioned repeatefily in literatures (see for
example; the references appearing in Section 2.6), few theoretical results about this
method have been obtained until now. Important problems, such as whether the
mode-dependent finite-difference discretization procedure can always be efficiently
- applied and how to design such a scheme, remain open. This chapter provides a metho-
dology utilizing the spectral analysis of local differential operators to answer these
questions. To avoid unnecessary distractions, we will concentrate on 1D and 2D homo-
geneous boundary-value problems. However, the general methodology described here

also applies to initial value problems as well as nonhomogeneous equations. We will

demonstrate this point by referring to some related work.

Since a differential operatbr is well approximated locally by a linear constant-
coefficient operator, the spectral analysis of this local operator becomes relatively easy
and a transform domain analysis can be conveniently applied. In the transform
domain, the differential and difference operators are algebraic expressions in terms of
the complex frequencies s and z. We interpret the mode-dependent finite-difference
discrefization procedure as a way to specify how these two expressions match each
other at a certain number of frequencies in the transform domain. This transform
domain viewpoint helps us to gain a better understanding of existing mode-dependent

finite-difference schemes and serves as a basis for designing new schemes.
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We apply the same methodology to both ODEs and PDEs, and develop several
mode-dependent finite-difference schemes. The main results include a (R +1)-point
mode-dependent central difference scheme for a R th-order boundary-value ODE, and
5-point, rotated 5-point, 9-point stencil discretizations for the 2D Laplace, Helmholtz
and convection-diffusion equations. The mode-dependent ﬁnife—diﬁ' erence schemes for
the Laplgice equation are the same as the conventional ones. However, we present a
new derivation. The mode-dependent 5-point and 9-point stencil discretizations of the
Helmholtz and convection-diffusion equations are new and have an accuracy propor-

tional to O (R %) and O (A 6) respectively.

This chapter is organized as follows. In Section 2.2, we describe the mode-
dependent finite-difference approximation concept in both the space and transform
domains. In Section 2.3, we study the discretization of boundary-value ODEs. The
problem of determining the coincident space for homogeneous ODEs is discussed and a
mode-dependent finite-difference scheme is presented. This scheme is shown to be exact
for constant-coefficient ODEs and has a high degree of accuracy for ODEs with
smoothly varying coefficients. The extension to the problem of discretizing nonhomo-
geneous ODEs is briefly addressed. In Section 2.4, we generalize the methodology from
one to two dimensions. In particular, we use the Laplace, Helmholtz and convection-
diffusion equations as examples to demonstrate the mode-dependent finite-difference
discretization procedure for PDEs. Numerical examples are presented in Section 2.5.
Section 2.6 discusses several previous related contributions. The main purpose of this
section is to organize the literature concerning the mode-dependent finite-difference

approximation so that more examples will be accessible to interested readers. Some
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generalizations and concluding remarks are given in Section 2.7.
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2.2 Mode-dependent Finite-difference Discretization

Consider the class of functions of the form

2 T
— X . X Sp X
U(x)—kgl[cko"'cklx + Cramr + +Ckn,-(n—k-)-!-]e ,
where each term x?s™*, 0 < p < ng, is called a mode of order p at the frequency
sy We are interested in approximating a linear R th-order constant-coefficient

differential operator operating on u (x ),

L(D)= ):oa,Dr,

where D = %, by a (r ;—r ;+1)-point finite-difference operator

Li(E)= ¥ bE",

r=r,
where E is the shift operator defined on a uniform grid Q;, with spacing &, i.e. for
nh, (n+r)h € Qp, E'u(nh)=u((n+r)h). L, corresponds to a forward, back-

ward or central difference operator depending on whether r; =0,r,=0o0r —r; = r,,

respectively. We use

P(s)={ulx): ulx)=es= § ¢ x* } (1)
k=0
to represent the space spanned by polynomials of degree at most n multiplied by the
factor e**. A mode-dependent finite-difference discretization scheme is obtained by
selecting the coefficients b, of L; such that
[L,(E)—LWD)]lux)=0 for u(x)€C and x € Q, , (2)

where C, called the coincident space of the operator L, , is the direct sum of subspaces

of the form (1), i.e.
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K .
C =98 P,(s). (3)
A mode in the coincident space C is called a coincident mode, and its frequency is

called a coincident frequency.

The mode-dependent finite-difference scheme can be conveniently f ormulated in
the transform domain. We define L (s ) by replacing D with s through the use of the

Laplace transform in the s -domain,

L(s)= f a, s,
r=0
while Ly (z ) is defined by replacing E with z through the use of the Z-transform in

the z -domain,

Li(z)= § bz"= F bersh.

r=r, r=r,

where the last equality is due to the fact that since E is related to D via E = ehl
[11], we have z = e*. Then, we can define the difference A between L and L, in
terms of a single variable s in the transform domain

A(s)=L,(es")~L(s),
and the characterization (2)-(3) of the mode-dependent finite-difference scheme can be

equivalently stated in the transform domain as

AP s, )=0, 0<p <np, 1<k £K, (4)

where A®)(s, ) = g%,(ts) ls=sk . To check that the characterization (4) is equivalent

to (2)-(3), we can proceed as follows. First, using the Taylor series expansion for

A(s ) around a coincident frequency s; , we have
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(s —s¢ )
Als )= Alse) + AV (s s —s¢ ) + AP (s )—5— + - -+ .

In addition, the Laplace transform of A(D )x? e > is

pia(s) _ PW(s) | paWs) | pA®(s)
(s—sk ¥ 7 (s—s P71 * (s—s P + 2(S—Sk)P—T+ : (5)

As a consequence of (4), the leading (n; +1) terms of (5) vanish, i.e.

- (ng +1) (ny +2)
p !A(S ) — A (Sk ) _ Ty —P A (Sk ) _ n,—p+1 ...
(S — )p+T = (nk FIT (S Sk) x + _(—T).'_nk'*' ] (S Sk) * +

The above function is analytic if and only if n, —p = 0. So, using the complex

inversion formula for the Laplace transform, we find that
A(D)xPe™** =0 for 0<p <np .
Since xPe™* with 0 < p < ng and 1 € k& < K is a basis of C, the finite-difference
approximation is exact for any vector in the space C .
Example 2.1: To illustrate the mode-dependent discretization procedure described

above, the coincident modes and coefficients of several 3-point central difference

schemes for the first-order derivative D are listed in Table 2.1.
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modes 1, e?*sin(wx ), e9* cos(wx ) 1,e%*  xe%* (g =0)
b e [osin(wh )—wcos(wh )]+ (1—oh Je%h —1
-1 2sin({whA Jlcos{wh )—coshloh )] 2hTcosh(oh )—1T
b wcos(wh )sinh(oh )—osin{wh )cosh(oh ) oh cosh(oh )—sinh(oh )
0 sin{whA Jcos{wh )—cosh(oh )] hlcosh(oh )=1]
b e~ [gsin(wh )+wcos(owh )]—o —(1+0h Je—9h +1
1 2sin{wh Jlcos{whA J—cosh(cA )T 2hTcosh(oh J—1T
modes 1,e” %% (0,5 0,) 1, x,x2
5 1 05(1—e " )—0,(1—e %) -1
-1 2 sinh[{o,—0;)h J+sinh{ oA J—sinh(o,A ) 2Rk
- 05sinh(04A )—0osinh(o A ) 0
bo SIARI(G,—01 A J7sinh( o, J—sinh(o5h T
5 1 01(1—e 7% )—g,(1— ") 1
1 2 sinhl{6,—0J)A [+sinh(o ;A J—sinh(oh ) 2R

Table 2.1: The approximation of the first-order derivative D ( L(s)=s ) by a cen-
tral mode-dependent finite-difference scheme.
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2.3 Discretization of Boundary-value ODEs
2.3.1 Homogeneous ODEs

Consider an R th-order homogeneous two-point boundary value problem on [0,1]
with Dirichlet boundary conditions. For convenience, we consider the case R =2m . The

case R=2m +1 gives rise to a similar analysis. The equation is written as

Lu=0, where L = fa,.(x)D" and a,,(x)=1, (1)
r=0 .

with given u(0) and u (1). We discretize (1) on a uniform grid with spacing 2 by a

(2m +1)-point central difference scheme,

Ly u, =0, where L, = rim b.(nh)E™ , (2)
and u, is the estimate of u on grid points. Suppose that ¢ is an arbitrary function in
the nullspace Ny of operator L, and that N is contained in the coincident space C of
L . Then, since

Lé=0 and [L,—-L]op=0,

we obtain
Lh 6=0. (3)
Since the discretization for an arbitrary function in the nullspace N; is exact, we con-

clude that equation (1) is exactly discretized by (2).

The nullspace N, is easy to find if the coefficients a, (x ) of L are coﬁstant. Even
if these coefficients are not constant but smoothly-varying, L still can be well apbrox—
imated by a constant-coefficient operator in a local region. This simplification is
always assumed for fuﬁte—diﬂ"erence schemes since the finite-difference method is a

local approximation method. For convenience, we drop the spatial dependency of
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coefficients a, (x ) and b, (x ), and use the notation a, = a,(x¢) and b, = b, (x,) inside
operators L and L, for the rest of this chapter. If a,(x) and b,(x) are spatially

varying, the discussion is understood to be a local analysis in the neighborhood of x .

The spectral analysis of a linear constant-coefficient operator L = f a- D" can
r=0

be easily performed in the transform domain. We choose the coincident frequencies
corresponding to modes in the nullspace of L to be roots of the characteristic equation,

L(s)=s? +ay, s 1+ .+« +a;5 +ag=0.

In general, L (s ) can be factored as

L(s)=ﬁ(s—sk T, where fnk=2m,
and s is known as a natural frequency of L of order n;. As a consequence, the opera-

tor L has the 2m -dimensional nullspace

K
NL = kgl Pnk_.l(Sk ) .

A (2m+1)-point finite difference scheme can be uniquely determined by a
(2m +1)-dimensional coincident space C. However, since a homogeneous finite-
difference equation such as (2) can be scaled arbitrarily, a 2m -dimensional coincident
space C is sufficient to specify Ly in (2). So, letting

C=N L >

we have an exact discretization scheme for (1). For this choice, L, can be determined

easily as

Ly(z)=A z7™ ﬁ (z —zg )™, where z; =e%*" (4)
E=1

where A is a scaling factor and the multiplication factor z~™ is due to the fact that
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‘'we want L, (z) to be a central difference scheme. This can be verified by substituting
L (s)and L (es? ) back into (2.2.4).

Hence, after inverse transformation, we obtain the following mode-dependent

finite-difference scheme for (1) in the space domain

Lyu, =0, where. Ly(E)=AE™ k]i(E—es"h )i (5)
and s; is a natural frequency of L of order n,. The scaling factor A does not affect
the solution of the system of equations (5). However, in order to analyze the discreti;
zation error A(s) appropriately, it is important to choose A such that L, (e ) and

L (s ) are consistent over fine grids. This consideration requires that the scaling factor

A of (5) should be proportional to T}_m— as A goes to zero.

Example 2.2: (1D Laplace equation) For L (D)= D2, we know that N, ={1,x }.

The coincident modes have the same frequency s; = 0. According to (5), we have

Ly((E)=AE1(E—-1)P2=A(E—-2+E™1),. 6)
If we choose C = Ny +{ x2}, the constant A can be uniquely determined. Solving

Lx?2= L;x?, where x € Q;, we find that A = Flz' Then, (6) reduces to the stan-
dard 3-point central difference scheme.

Example 2.3: (1D convection-diffusion equation) The differential operator is
L(D)=D2—-a;, D, where a; 0. In this case, Ny ={1,e°” } and s, =0, qa;.

Therefore, by (5), we have

Ly(E)=AEY(E-1)(E—-e"" )=A[E —(1+e®")4+e?"E-1]. ()

In particular, if C = Ny +{ x }, we find that A = Z(ﬂﬂaxl_l)' Then, (7) is identical
eVt — ,
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to the scheme considered by Allen and Southwell [1].

For comparison, consider the conventional finite-difference scheme for (1),

Lyetn =0, where Lyc(E)= 3 h™ Df sn (E), 8)
where A" Df 2 +1 (E) denotes the (2m +1)-point central difference operator for the
r th-order derivative D" which is obtained by selecting C = P,,, (0) as coincident
space, and by requiring consistency over fine grids. Then, by comparing (5) and (8),
we sée that the mode-dependent scheme (5) is obtained by discretizing term by term
the product form of the differential operator L (D ), whereas the conventional scheme

(8) is found by discretizing term by term the summation form of L (D).

According to the above discussion, the approximation of the differential operator
L (D) in (1) by Ly (E) given by (5) does not give rise to any discretization error when

the coefficients a, are constant. This fact is also supported by numerical results.

Of course, the mode-dependent scheme (5) gives rise to a discretization error
when the coefficients a, are spatially varying. This discretization error depends on the
smoothness of the ODE coefficients and the grid size 2. However, the exact form of
this dependency is still unknown, and we have yet to develop a general procedure for
estimating the size of the error in this case. In Section 2.5, we use a 1D éonvection—
diffusion equation as a test problem and find that the error of the mode-dependent
" scheme is proportional to O(ehZ2), where € is the first order derivative of the
coefficient function, while that of the conventional scheme is proportional to O (A 2)
[11]. The mode-dependent scheme is always better than the conventional central-

difference scheme in this test problem and the improvement in accuracy offorded by
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the mode-dependent scheme becomes larger as the coefficient of the convection-

diffusion equation becomes smoother.
2.3.2 Extensions to Nonhomogeneous ODEs

Suppose that (1) includes a driving function f (x ), so that
Lu—-f=0. (9)
By performing a Taylor series expansion of f (x) in the vicinity of a discretization
point xo, we can assume that f is approximated locally by a polynomial of low
degree, i.e.
Fx)=cog+cy1x +cyx24 ---
A general discretization scheme for (9), which has been proposed in the context of the
OCI and HODIE methods [4][7][31], is
Ly up —1In f =Lpu, —Ip Lu =0, (10)
where I; is an averaging operator.
The set of functions whose images through L are polynomials of degree less or

equal to ! defines the space

Pro={ulx):Lu =r20p,.x’ }.
Note that since the coefficients p, above can all be selected equal to zero, N is also
included in P; ;. The space P; , will be used here to approximate the solution space of
equation (9). Suppose that ¥ is an arbitrary function of the space Pr ;. Ideally, we
want

Lyy—I, Lv=0, (1D

in order to guarantee that the discretization (10) of the nonhomogeneous equation (9)

IS | RTTS | ik e ramy o am e em e v omeem e



-54 - SECTION 2.3

is exact in the approximated solution space Py ;.

In particular, if I, is chosen to be the identity operator 7, (11) becomes
Therefore, the coincident space C of the finite-difference operator L, for the nonho-
mogeneous equation (9) has to be

C=P L -
The major disadvantage of this choice is that the dimension of C is larger than that of
Ny . Hence, a finite-difference method with more than (2m +1)-points will be neces-

sary and more computations will be required.

The purpose of introducing / is to reduce the dimension of the coincident space.
For a (2m +1)-point finite-difference scheme, we can decompose the discretization
scheme (10) into two steps. First, by choosing C = P; o, we can uniquely determine
Ly . Then, by using an arbitrary function ¥ of the space Py 1 © Pp o as a test function
for (11), we can solve for the coefficients of I, . This procedure is illustrated by the

following example.

Example 2.4: (1D Poisson equation) In this case, we have L(D)=D2 N; ={1,x },

and Py ={1,x,x2%x3 --+,x!*2}. By choosing C = Py 4, we know from example

2 that

Ly(E)= 5 (E—2+E71).
Assuming that I, (E)=d _;E~1+d,+d, E with respect to the same grid Q; and

solving (11) with L, given above and ¥y = x3, x4, we obtain

TR A W SR~ E I e f by e Ewr = r m s v e e em e e
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L(E)= zE + 2 + LE.
Then, the discretization (11) is exact for any function in the space P; 2. More gen-
erally, we call Py ; the generalized coincident space C, ( Ly , I )for the approxima-
tion (10) of (9). Note that the dimension of C ¢ for the above example is 5, and that
there are 5 independent parameters in ( L , I, ) sin‘ce (11) can be scaled by an arbi-

trary constant.

The above approach is different from the HODIE method. For an R th-order
nonhomogeneous ODE, the HODIE method uses polynomials of degree less or equal to
n,ie. P,(0) withn > R, as the generalized coincident space C ¢ for equation (10). It
does not exploit any special structure of the differential operator L. In contrast, our
mode-dependent method uses the approximated solution space P; n—r as the general-
ized coincident space C, . Hence, a spectral analysis of the operator L is necessary. In
particular, when L = DX, P; ,_» is the same as P, (0). Then, there is no difference

between the HODIE and mode-dependent methods.

The determination of the averaging operator I; for the HODIE method ‘has been
discussed in detail [7][31]. For example, the operator /5 may be defined on an auxiliary
grid Q- different from the discretization grid Q. A similar approach can also be used
to design I f of the mode-dependent method. Note that the selection of the averaging
operator /; has no effect on functions in the nullspace N;. Therefore, the coincident
space C of L, has to contain N; so that the discretization error for functions in N L

can be eliminated by choosing an appropriate L . |
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In this chapter, we focus primarily on the determination of the coincident space
C and of the finite-difference operator L, . In the next section, we will therefore res-
trict our attention to homogeneous boundary-value PDEs and we will attempt to
extend the methodology developed in this section to the discretization of this specific

class of PDE problems.
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2.4 Discretization of Boundary-value PDEs

Consider a general two-dimensional boundary-value PDE on the square [0,1]2
L(D;,Dy)u =0, where L(D;,Dy)= 2ar sDID§ , (1)
r.,s

DI = —S{xT and Dy = -éiys—, with Dirichlet boundary conditions. We discretize (1)

with the finite-difference scheme

th A, (Ex ,Ey ) Uh, A, =0 , where L (Ex ,Ey ) = Zb,.,sE{E)‘f y (2)
r,s
and where E; and E, are respectively the shift operators in the x - and y -directions

on the grid Qp e Relying on a natural generalization of the 1D case, we have the

following associations between the 2D space domain operators and transform domain
variables
Dy e——>5s; , Dy e>s, , E; >z, , Ey >z, .

where 5, = 0;+i®, and s, = 0, +iw,. They are related via £, = eh"D", E, = ey,

** and z, = e™%. To simplify the following discussion, we will only con-

hz
2 =e
sider the case h; = h, = h.

Sy X +s,,

Substituting e ¥ inside (1), we obtain the characteristic equation

2ar ssisg=0. (3)
r.s
There are two complex variables in (3), but since we have only one (complex) equa-
tion, there are uncountably infinitely many solutions to this equation and therefore
infinitely many potential modes in N, . It is not possible to approximate all modes in
N, exactly. Thus, we have to select a finite-dimensional subspace D; c N 1, called

the dominant-mode space, as the coincident space C for Ly . The determination of D;
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depends on a rough estimation of the local behavior of the solution. This information
is usually provided by the structure of the PDE operator that we consider and the
corresponding boundary conditions. In this section, we restrict our attention to the
case where the dominant modes are either oscillating or exponentially growing (decay-
ing). In other words, coincident frequencies are selected among the sets

{ (52,89 ) 1 (52,8 )= (05,050} or {(s:,85):(s,5)= (i, dwy)}. (4)
We do not consider complex coincident frequencies, since they generally lead to
discretization schemes with complex coefficients which complicate the solution prb-
cedure. However, even under (4), the mode-dependent concept still does not lead to a
unique discretization scheme. By taking into account the symmetrical property of the
spectra of the diﬂ" erential and difference operators and the solubility of the resulting
finite-difference schemes, we can further constrain ourselves within a much smaller
design space. In the following, the 5-point, rotated 5-point and 9-point stencil discret-
izations for the Laplace, Helmholtz and convection-diffusion equations will be used as

examples to demonstrate the mode-dependent discretization concept.
2.4.1 Laplace Equation

For the Laplace equation, we have L(D,,D,)= D+ D;?. Since only one fre-
quency (s;,s, ) = (0,0) satisfies the characteristic equation and belongs to the sets (4)
of interest, (0,0) is selected as the unique coincident frequency. In this case, the

mode-dependent scheme is the same as the conventional scheme.

The following 5-point, rotated 5-point and 9-point stencil discretization schemes

have been derived by several approaches [11][25][32],
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L (B By) = oy (BN + B + BV +Ey —4), (5)
Ly (B By) = 55 (ECEN + ES'E, + E 71+ ELE, —4), 6)

Lyo= 6—,112- [4(E; +E;1+Ey +Ey™1) + (B By +E,'Ey +E, E;HETE;) — 201, (7)
It is well known that they have respectively an accuracy of O (h2), O (h2) and O (k)

when used to discretize the Laplace equation [25].

Here, we present another derivation of these schemes by matching L (s, Sy ) and
‘Lh (2,2, ) at the coincident frequency (0,0) in the transform domain. As before, we

consider the expansion of A = L;, — L around (0,0),

A(s, Sy )= A(O'O)(O,O) + A(1'°)(0,0)s, + A(O,l)(o,o)sy + A(2-°)(0,0)sx2

+ AGD(0,002s, 5, + A©2X(0,0)s,2 + 2@ X002+ N spg (8)
pPtg 23 pq:
pgZ0
where
A®2)(0,0) = 10 Alse sy ) |

Focdlsy |00

which is a function of the grid size A. Hence, (8) is in fact a power series expansion in
h. Our derivation attempts to make the order of the residual terms in (8) as high as

_possible.

The discretization schemes (5) and (6) can be derived by imposing the require-
ment that L and L, should be consistent over fine grids, and by requiring respectively _
that

ACO(0,0)=0, A190,0) =0, A@D(Q0)=0 , A29(0,0) = A02(0,0) ,

and
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- A00(0,0)=0, ATO(0,0)=0, ACD0)=0 , ACD00)=0 .

-~ Note that if AZ9X(0,0) = A©-2)(0,0), the fourth and sixth terms of the right-hand side

of (7) can be combined as A2:9(0,0)(s,2+s,2). This term becomes equal to zero if we
restrict our attention in (7) to the frequencies (s, ,s, ) which satisfy the characteristic
equation s,2+sy2=0 of the Laplacian operator. Similarly, the 9-point stencil formula

(7) can be derived by requiring

A0(0,0) =0, AL(00)=0, A©DQ0) =0, AZ9(0,0) = A©2(0,0) |,

ALD(,0)=0., ATD(0,0)=0, AZD(0)=0 , A49(0,0) = 3 A@2X(0,0).
2.4.2 Helmholtz Equation

For the Helmholtz equation, we have

L(D;,Dy)= D2+ D2+ ).

If s; and s, are purely imaginary, the characteristic equation becomes

0? +ol=2\2, (9)
which is a circle in the o, -0y plane, centered at the origin and with radius I\ 1.
There are infinitely Iﬁany natural f requenéies and, hence, there are many different
ways to select coincident f reﬁuencies. In this section, we design mode-dependent 5-
point, rotated 5-point and 9-point stencil discretization schemes based on the f ollowing
two considerations. First, if there is no further information about the dominant
modes, a reasonable strategy is to distribute coincident frequencies uniformly along
the contour (9). Second, we want to preserve the symmetry properties of L so that the

resulting discretization scheme is in a simple form and can easily be implemented.

Let us select
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CInteos(m+ami, INsin(ZEr+im)i ),  0<n <3,
as coincident frequencies as shown in Figure 2.1(a). With this choice, the discretization

along the x - and y -directions can be treated independently. The resulting scheme is

Ly(E: By) = A LE™ = 2005(-05 1 ) + E, + k(B ~ 2c05(-J5-h ) + B, ) 1.

Two parameters A and « remain undetermined in the above expression. The parameter
Kk is selected such that the discretization error A(s, /Sy ) at natural frequencies is pro-
portional to O(A2), and the parameter A is used to normalize the above scheme so

that Ly is consistent with L. A simple choice of k and A for the Helmholtz equation

isk=1and A = 712’ Hence, this gives a symmetrical 5-point stencil discretization

operator

Ly oEe By )= 2y [ET 4 E, + B + By —doos(5 1) 1. (10)

Rotating the above four coincident frequencies in the transform domain and the above
5-point stencil in the space domain by an angle 711-17', we obtain another mode-

dependent 5-point stencil discretization. In this scheme, the coincident f requencies

become

( lMcos(-Z—rr)i , l)\lsin(%w)i ), 0<n <3.

as shown in Figure 2.1(b), and the resulting 5-point stencil operator is

Ly Bz By ) = oy |ECIE + ECE, + E BN+ E,E, — deosCINIA)]. (1)
Notice that this rotated 5-point stencil can be viewed as corresponding to a discretiza-
tion scheme on a grid with spacing /2. By appropriately combining (10), (11) and

adding a constant term, we obtain the 9-point stencil discretization operator,
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Figure 2.1: Coincident frequencies of the .mode-dependent (a) 5-point (b)
rotated 5-point and (c) 9-point stencils discretizations of the Helmholtz equa-
tion.
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— __Yx Y+ _ Ix Y+ ,
L '9(Ex E )= Yxty+ L '+(EI £ )+ Yxty+ Ln 'X(Ex = ) Yxty+ © (12)
Then, if

I Y
yx=Lnxle 2" ey = L Leos(VBINIA) + 1~ 2cos(1M17)],

yo=Lnalet™Mr )= L [ocos(inin) + 2 —doos(93n) 1,

we are able to match Ly (z;,zy) and L (s, s, ) at 8 frequencies

( lucos(%n)i , |x|sin(%ﬂ)i ), o0<n <7.

as shown in Figure 2.1(c). Thus, (12) is the desired mode-dependent 9-point stencil

discretization operator.

When |A| goes to zero, the Helmholtz equation reduces to the Laplace equation
and schemes (10)-(12) converge to (5)-(7). So, schemes (10)-(12) can be viewed as a
natural generalization of (5)-(7) and apply to both A=0 and As20. The error estimate
of the above schemes for the test functions e****¥¥ | where s, and sy satisfy the
characteristic equation s +s,2+A2=0, can obtained in a straightforward way.
Since

A(D, Dy )e™ ™+ = [, (ePeh eDyh )oa45y = [ (o%h o%h )p5T sy ,

we only have to replace E; and E, with e™” and e™” inside L, (E, E,) and use a
‘Taylor series expansion to simplify the resulting algebraic equation, which is a power
series of A and the leading term is defined as the accuracy of the corresponding
discretization scheme. By using this approach, we find that the two 5-point stencil
discretization schemes (10), (11) and the 9-point stencil scheme (12) have an accuracy

of O (~2),0(h?2) and O (h°) respectively (see the appendix on page 70).
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Unlike in the ODE case, the mode-dependent schemes for PDEs cannot catch all
modes in the null space of L, so that there exist discretization errors even for
constant-coefficient PDEs. Rigorously speaking, the above error estimate applies 6n1y to

-constant-coefficient PDEs. If the coeflicients of the PDE of interest are spatially vary-
ing, the error associated to mode-dependent schemes is still unknown. But, we suspect
that Whén the coefficients are smoothly varying, the error is approx’imately the same as

for constant coefficients.

Conventional finite-difference schemes for the Helmholtz equation are derived by
discretizing the Laplacian with operators (5)-(7) and then combining them with the
‘remaining term A%z . The resulting schemes have all an accuracy of O (h2). Therefore,
the conventional 9-point discretization scheme is much worse than the mode-
dependent 9-point scheme. Although the conventional and mode-dependent 5-point
schemes have the same order of accuracy, the mode-dependent schemes (10) and (11)
are more accurate than conventional schemes along the contour (9). To show this, the
discretization errors for mode-dependent and conventional S5-point discretization

schemes are plotted in Figure 2.2 for the case where A = 10 and A = O.1.
On the other hand, we can also consider the discretization of the operator

L(D;,Dy)= D2+ D2—)\2.
Considering only the real frequencies (s, ,s,) = (0,,0,), we have the characteristic
| equation,

o2+ 0}=2\2.

Thus, for the present case, we examine the o —0y plane, instead of the o, —w, plane.




- 65 - SECTION 2.4

e.08 fq)
0.06 ;
) ) . , 1.5 o 2

Figure 2.2: Plot of IA(w,,wy)! as a function of c along the contour
(wr,0y) = (IXIcos(c7),INIsin(c 7)), for (a) conventional and (b) mode-
dependent S-point stencil discretizations of the Helmholtz equation.
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By using an approach similar to the one described above, we get the following 5-point

and 9-point stencil discretization schemes
Iy B By) = 5 [EV+E + B+ E, - dcosh(55-1) 1,

In ,X(E,Ey)= %f [EE, ' + ESE, + E B\ + ELE, — dcosh(IA1A) ],

7 Yx Y
Ld9(E Ey)— y Lh+(E .E,.)+ th(E Ey ) — 'y:+'y:’
where
yx = - [cosh(VZIAIR) + 1 —2cosh(INIR) ], y, = —[2cosh(|)\lh)+2 4cosh(|—\>§|—h)].

These schemes have an accuracy of O (h2), O (22) and O (4 ¢) respectively.
2.4.3 Convection-diffusion Equation

For the convection-diff usion equation, the differential operator takes the form
L(D;,D,)= D2+ D2 —2aD, — 2BD, .
In particular, if we consider only real frequencies (s;,s,) = (0,0, ), the correspond-
ing characteristic equation is
0+ 0}—~2a0; —2B0, =0, (13)
which is a circle in the o, -0y plane centered at ( «, B ) with radius d = ~/a2+32.
The conventional approach for discretizing the above equation relies on a central
difference scheme to approximate the first and second order derivatives separately.

This gives

L, (E E)= — [(1+ah)ES + (1—ah)E, — 4 + (1+8R)E, + (1—BR)E, ], (14)
which corresponds to selecting a single coincident frequency at the origin. Allen and

- Southwell combined two 1D mode-dependent schemes along the x - and y —directions
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[1] (also see example 3 in Section 3). This leads to

Lh AS (E ..E ) 71—[ 211’1 1 (e 2ahE -l_l—e 2eh +E )+Tﬁ%(e ZﬂhE _l—l_e 2k +E)’ )]. (15)
which corresponds to selecting (0,0), (2¢,0), (0,28), (2,2B) as coincident frequencies.
Motivated by the discussion in the previous section, we select the coincident f requen-

cies

( a+d cos(-g-w+7}'-17) , B+d sin(%w+%—1r) ), 0<n <3,

uniformly along the contour (13) and obtain the following stencil

Ly +(E; E,) = Flf [e*E; 1+ e E, +efhET + e FRE, — 4cosh(-7dé—h )1. (16)
The multiplication of E; by the factor e~ in the x -direction of the space domain
corresponds to a shift in the s; -coordinate in the transform domain, where s, becomes
Sy — o, and a similar argument applies also to the y -direction. Therefore, the above
scheme in fact shifts the center («,B) of the circle (13) back to the origin and treats it
as the Helmholtz equation with radius d. The coincident frequencies of these three
schemes are plotted in Figure 2.3. Although all schemes have an accuracy of O (h2),
schemes (15) and (16) are always diagonally dominant while the conventional scheme
(14) loses this property for large cell Reynolds numbers w# andBh . This is one major

disadvantage associated with the conventional central difference scheme.

Following a similar procedure, we can also design mode-dependent rotated 5-
point and 9-point stencil discretization schemes for the convection-diffusion equation.

This gives



-68 - SECTION 2.4

%y

()

Figure 2.3: Coincident frequencies of the (a) central diff erence, (b) Allen-
Southwell, and (c) uniformly-distributed mode-dependent S-point stencil
discretizations of the convection-diffusion equation.
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Ly x(E; .E,) = %2-[ eltOrENIESL 4 olaPh B -IE

+ e (—a+Bh E, Ey—l + ¢ ~(atBn E.E, — 4cosh(dh )], an
= I Y+ _ Yx Y+ |
Ln o By ) = oL (B By ) + L (B By ) — 200 (18)

with

Yx = fli [ cosh(V2dh) + 1 —2cosh(dh) ], y, = % [ 2cosh(dh ) + 2 — 4cosh(7dfh )].

These schemes have an accuracy of O (22) and O (4 6) respectively.
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Appendix to Section 2.4: Derivation of the accuracy of the 5-point, rotated 5

point and 9-point stencil discretizations.

In this appendix, we show analytically that Ly 4, Ly x and Ly ¢ in (10), (11) and
(12) have an accuracy of O(h2), O(h2) and O(A%) for the test functions e***+5?
where s; and s, satisfy

s+ 52 =—-\2. (A1)
The following equalities can be derived directly from (A1),
S+ st =N - 25,252, (55 +sy ) + (s, —sy =2\ + 8s.2s,2 , (A2)

52+ 58 = A6+ 3\%s. 252, (s:+s5y )6 + (s, —s, )6 = —2A6 — 24)2s,25.2 . (A3)

Applying a Taylor series expansion to Ly, (™" %" ) and 7, (%" ") and utiliz-

ing equalities (A2) and (A3), we find that
Ld ’+(es‘h h ) = hZ( -21-)\,4 B-Sx Sy ) + h4(m>\6 + m)\zsxzs 2 ) + 0 (h 6) (A4)
Lo (e5" e5h) = %h 25252 — ’3!6’1 N2s25,2 + 0 (h6). (A5)

PYITY
h h
Since y, = Ly 1(e!'** 1) and vy, = L, x(el V2 et V2 ), we also have

¥+ = h = NS+ 0(R6), yx= Tph2— oA +0(RS).  (a6)
Combining (A4)-(A6), we have Yx+v:=0(2) and

Crxty )Ly (e™" ") =y Ly (e e ) + y, Ly x(e5" e ) — gy, =018 . (A7)
We know that both Ly , and L x have an accuracy of O (A2) from (A4) and (A5),

and that Ly ¢ has an accuracy of O (h¢) from (A7).
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2.5 Numerical Examples

We use the 1D and 2D convection-diffusion equations as test problems to demon-

strate the efficiency of the mode-dependent finite-difference method.
2.5.1 1D Test Problem

Consider the 1D convection-diffusion equation on [0,1]

cai';uf—a(x)%= , where a(x)=10+ex+TU-fex’ (1)

with given 2 (0) and u(1). Our goal is to study the effect of the linear perturbation
term e€x on the accuracy of the mode dependent discretization scheme described in
Section 3. Note that when €= 0, the coefficient a (x ) is constant, and according to our

analysis we expect that in this case the mode-dependent discretization will be exact.

The term ﬁ- is added so that (1) has the following analytic solution

' 2)—
u(x) =0 +[u(1) —u(0) ] EEIGEHIEDL - o exp(x) = ex .

The boundary conditions z(0) = 1 and u (1) = 10 are selected. We compare the con-

ventional and mode-dependent central difference schemes, i.e.

(l—inz—ll)un.,.l —2u, + (1+£"2£)un_1‘ =0, (2a)
a, h a,h a, h
exp(—Thzn = 2cosh(—2—)u,, + exp(T)un 1=0, (2b)

where A = %',un =up(nh)=u(nh)forl1 <n K N—1,upo=1u(0)and uy = u(1).

First, we study the effect of the grid size A when the parameter €= 1. Figure 2.4
shows that the errors of both schemes are proportional to O (22). Next, we study the
impact on the error of variations of the coefficient function a (x ). The first derivative

of the coefficient function a (x ) is approximately measured by the parameter ¢, so that
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€ can be used as a measure of the local variations of a (x ). Errors versus ¢ for a fixed
grid size h = —113- are plotted in Figure 2.5. From this figure, we see that the conven-

tional scheme is insensitive to changes in € while the error of the mode-dependent

scheme is proportional to O (¢ ).
2.5.2 2D Test Problem
The 2D test problem is the equation on [0,1]?

u |, du €
-%7+-%[—(8+exx+m)%—(6+eyy+mey€y—y)%=0, (3)

with Dirichlet boundary conditions associated with the f ollowing three exact solutions

(a)e, =€, =0,ulx,y) = expl( 4+5cos(lgl) dx +( 3+55in(7T'”) )y 1 (4a)
e, = € =0.ulx,y)=(02+6e8 )(0.01 +2eb ), (4b)

(c)e, =€ =0.002,u(x.y)=[02+ 6 exp(8x +10—3x2) ] [ 0.01 + 2 exp(6y +10-3y2)]. (4c)
We use the finite-difference schemes (4.14)-(4.18) discussed in Section 4.3 to discretize

(3) with grid size » = 711- -é— —115- and ?}2— The resulting systems of equations are

solved by the SOR method for test cases (a) and (b) and by a local relaxation method
described in [8], [26] and [27] for test case (c). We plot the errors versus the grid size

in Figures 2.6 - 2.8.

For test case (a), the solution contains a single mode. All 5-point stencil discreti-
zation schemes have an accuracy of O (h2). The 9-point stencil discretization has an

accuracy close to O (A ¢) when the grid sizes are still coarse.

For test case (b), the solution contains four modes 1, ¢3%, ¢6Y and e8*+6Y . In this

case, since the Allen-Southwell scheme catches all these modes, it should be an exact
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method. Thus, its error represents the numerical rounding error instead of the discreti-
zation error. The other 5-point stencil discretizations give an error proportional to
O (h2) for fine grids. The 9-point stencil scheme is considerably more accurate than the

other 5-point stencil schemes. It comes close to the exact method when the grid size is

1
37-

Test case (c) can be viewed as obtained from test case (2) by introducing linear
perturbation terms ¢ x and ¢y with ¢ = éy = 0.002 in the coefficient functions.
We consider the effect of small variations of the coefficient functions. The Allen-
Southwell scheme is not exact any longer, but still has a high accuracy. The 9-point
discretization scheme hés almost the same performance as the Allen-Southwell
scheme. However, if we compare Figures 2.7 and 2.8, we see that the coefficient varia-
tions due to ¢ and ¢ make the error of the 9-point scheme 10 times larger for the
unperturbed case depicted in Figure 2.7. The accuracy of the vother 5-point stencil

schemes remains approximately the same.
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/(-)

Figure 2.4: [ ,-norm of the error versus the grid size 2 for (1) with e=1: (a)
the central difference scheme and (b) the mode-dependent scheme.
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Figure 2.5: [ -norm of the error versus the parameter e for (1) with & =

1.
_1%'.

(a) the central difference scheme and (b) the mode-dependent scheme.
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Figure 2.6: [ ,-norm of the error versus the grid size & for (4a) : () Ly ., (b)
Ly AS > (C) Ly +9 (d) Ly X and (e) L, ,9 given by (2.4.14)—(2.4.18).
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Figure 2.7 [ ,-norm of the error versus the grid size ~ for (4b)
Ly as, (©) Ly +, (d) Ly x and (e) Ly o given by (2.4.14)-(2.4.18).
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'00.02 e.es 0.1 0.2 . 8.5

Figure 2.8 [-norm of the error versus the grid size & for (4c) : (a) Ly ., (b)
Li as, (¢) Ly 4, (d) Ly x and () Ly ¢ given by (2.4.14)-(2.4.18).
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2.6 Conclusions and Extensions

Although its properties were not always well understood, the mode-dependent
finite-difference method has been discovered and rediscovered several times by a
number of researchers and has been applied to the discretization of several types of

ODEs and PDEs.

As was mentioned earlier, when the cell Reynolds number is large, the conven-
tional central difference discretization of the convection-diffusion equation has conver-
gence difficulties. Hence, the need for a mode-dependent scheme arises naturally when
discretizing this equation, and more generally, when considering singular perturbation
problems. Allen and Southwell [1] presented the first discretization of this type. A
more detailed investigation of this scheme was performed by Dennis [12]. Since then,
there have been a number of rediscoveries and elaborations such as [3] [9] [18] [28] [29]
[35] [36] [39] [40]. Applications of Allen-Southwell’s scheme to 2-D or 3-D fluid flow
problems can be found in [2] [13]-[17] [37] [38] [41]. Some researchers extended the
mode-dependent idea to the design of finite-element methods, see e.g. [6] [10] [21]-{24]
[33]. The methodology described in this chapter can also be applied to the discretiza-
tion of initial value ODEs. A mode-dependent finite-difference scheme for initial-value
ODEs waé first studied by Gautschi [19]. Some generalizations of Gautschi’s work can

be found in [5] [30] [34] [42] [43].

Interestingly, the mode-dependent scheme has been introduced under a number of
different names such as the locally exact technique [3], the weighted-mean scheme
[18], the smart upwind method [20], the optimal finite analytic method [32] and the

upstream-weighted difference scheme [35].
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In this chapter, we have used the spectral structure of differential operators to
obtain more accurate fnite-difference schemes. The transform domain point of view
was shown to be simple and useful. For the case of homogeneous ODEs, we pfoposed a
universal mode-dependent finite-difference scheme which is exact for constant-
coefficient equations, and has a very high accuracy for equations with srﬁoothly vary-
ing coeffzcients. For homogeneous PDEs, we considered ‘mode-dependent 5-point,
rotated 5-point and 9-point stencil discretizations of the Laplace, Helmholtz and
convection-diffusion equations. The mode-dependent schemes for the Helmholtz and

convection-diffusion equations turn out to be natural extensions of the schemes

derived for the Laplace equation.

There exist similarities and differences between the mode-dependent finite-
difference method and spectral methods. Both discretization techniques are based on a
spectral analysis of the differential and difference operators and try to match their
spectral properties. However, the spectral method analyzes spectra by using Fourier
basis functions, i.e. functions with frequencies along the imaginary axis. In this
approach, a large number of basis functions is usually required to synthesize a given
function. Hence, in order to get a high degree of accuracy, more grid points are neces-
sary and the resulting scheme is a global one. The mode-dependent finite-difference
method enlarges fhe set of basis functions so that the spectral analysis can be per-
formed in the entire transform domain. Since fewer basis functions arevrequired to
synthesize a function due to this enlargement, the resulting scheme is local. This local
nature of the mode-dependent finite-difference method makes it easy to analyze and

insensitive to boundary conditions. In contrast, spectral methods are relatively more
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complicated and sensitive to different types of boundary conditions.

We basically focused on the discretization of a differential operator in the interior
region and assumed the simplest Dirichlet boundary conditions throughout this
chapter. Since the finite-diff erénce method is local, the discretization scheme for grid
points in the interior region will not be affected by the specific nature of the boundary
conditions. However, grid points aldng the boundary need some special treatment.
Although the general mode-dependent concept should still apply in this case, some
details need to be examined in later work. In addition, as mentioned above, it would
be of interest to find a general procedure for estimating the error of mode-dependent
" finite-difference schemes when they are applied to varying-coefficient differential equa-

tions.
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PART II : SINGLE-GRID METHODS

The second part of this thesis examines iterative solution schemes, especially the
SOR iteration, for elliptic PDEs discretized with a single uniform grid. It contains two
chapters.

A local relaxation method is proposed in Chapter 4 to solve a class of elliptic PDE
problems whose discretized form can be written in terms of a symmetric positive
definite matrix. We prove the convergence of the local relaxation algorithm and use a
Fourier analysis approach to analyze the relaxation method and to determine the
optimal local relaxation parameters.

In Chapter 5, a 2-level 4-color SOR method is proposed for the 9-point discretiza-
tion of the Poisson equation on a square. Instead of examining the Jacobi iteration
matrix in the space domain, we consider an equivalent but much simpler 4-color itera-
tion matrix in the frequency domain. A 2-level SOR method is introduced to increase
the convergence rate for the frequency-domain iteration matrix. At a first level, the
red and orange points, and then the black and green points are treated as groups, and a
block SOR iteration is performed on these two groups. At a second level, another SOR
iteration is used to decouple values at the red and orange points, and then at the black
and green points. The conventional red/black SOR iteration for a 5-point stencil is
-~ shown to be a degenerate case of the general 2-level 4-color SOR method. For the case
of the 9-point stencil, a closed-form expression for the optimal relaxation parameters
wp and o, at the two iteration levels is given.
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Chapter 3 : Local Relaxation Method

3.1 Introduction

The research described in this section has an objective to solve a‘2-D linear elliptic
PDE on a square discretized by a finite-difference method with a multiprocessor array.
Suppose we assign one processor to each grid point and connect every processor to its
four nearest neighbors. This kind of computer architecture, known as a mesh-
connected processor array, suggests a natural parallel computation scheme to solve the

above system of equations, i.e., parallel computation in the space domain.

Jacobi and Gauss-Seidel relaxation methods seem particularly suitable for mesh-
connected processors, since each processor uses only the most recent values computed
by its neighbors to update its own value. Unfortunately, the convergence rate of these
algorithms is slow. The convergence rate can be improved by various acceleration
schevmes such as successive over-relaxation (SOR) and Chebyshev semi-iterative relax-
ation (CSI) [17]. However, to obtain the acceleration effect requires that the accelera-
tion factors should be estimated adaptively [8]. This procedure requires global com-
munication on a mesh-connected processor array and increases the computation time
per iteration enormously. Any time savings due to acceleration may be canceled out
by the increased communication time. In order to improve the vconvergence rate as well
as to avoid global communication, a recently developed approach known as the ad hoc

SOR [5] [6] or local relaxation [3] method seems to be useful.

The local relaxation scheme was found empirically by Ehrlich [5] [6] and Botta

~ and Veldman [3). They applied this method to a very broad class of problems and
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found its efficiency by studying many numerical examples. In this chapter, we
approach the same problem from an analytical point of view, clearly prove the con-
vergence of this method for the case of symmetric positive-definite matrices, and pro-

vide an analytical explanation for the good performance of the method.

The \conventional way to analyze the SOR method is to use matrix analysis [17]. |
This approach depends heavily on the ordering of the grid points and on the properties
of the resulting sparse matrix. An alternative technique, which was employed in [12],
[14], and [15] to analyze relaxation algorithms, is to use Fourier analysis. Strictly
speaking, Fourier analysis applies only to linear constant coefficient PDEs on an infinite
domain, or with periodic boundary conditions. Nevertheless, at a heuristic level this
approach provides a useful tool for the analysis of more general PDE problems, and it
has been used by Brandt [4] to study the error smoothing effect of relaxation algo-
rithms and to develop multigrid methods. Since then, the Fourier analysis approach
has received a large amount of attention in the study of multigrid methods [16]. Fol-
lowing the same idea, we shall apply the Fourier analysis approach to the SOR
method. For the Poisson Problem defined on the unit square with Dirichlet boundary
conditions, we obtain the same result as Young’s SOR method. However, our deriva-
tion is simpler. For space-varying PDEs, the local relaxation scheme uses space adap-

tive relaxation parameters. This is different from Young’s SOR method which uses

time adaptive relaxation parameters [8].

This chapter is organized as follows. Section 3.2 proves the convergence of the
local relaxation method. The Fourier analysis approach is ‘used to determine the

‘optimal relaxation parameteres of the local relaxation method for 5-point and 9-point
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stencils respectively in Sections 3.3 and 3.4. We also show that the convergence
analysis of the local relaxation method for the 9-point stencil discretization requires a
slight modification of the basic convergence result of Section 3.2. Section 3.5 shows
the results of a computer simulation on a test problem ‘which indicates that the con-
vergence rate of the local relaxation method is superior to that of the adaptive SOR
rﬁethod. ;Some further extensions and conclusions are mentioned in Section 3.6. The
implementation of the Jacobi, Gauss-Seidel, adaptive SOR, and local relaxation
methods on mesh-connected processor arrays will be discussed in a separate chapter,

~ i.e. Chapter 6.
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3.2 Local Relaxation Algorithm

Consider a self-adjoint second-order linear PDE defined on a closed unit square

Q =[0,1] x [0,1],

——aaj—c-{p(x,y)-g%}—%{q(x,y)%}+o(x,y)u =f(xy) (xy)€Q, (1a)

with the following boundary condition on T, the boundary of Q,

oe(x.y)u+B(x,y)-g%=y(x,y), (x,y) €T, (1b)

where ou denotes the outward derivative normal to I'. The coefficient functions are

on

assumed to be smooth and to satisfy

pxy)>0, ¢glxy)>0, olxy)20, (x,y)€Q,

olx,y)20, Blxy)=20, a+B>0, (x,y)€T.
If we discretize (1) on a uniform grid Q, with grid spacing A, = A, = 1 by a 5-point

stencil, the finite difference equation at an interior point (n, ,n, ) can be written as [17]

dn, ny Ungny, — T ny Un, +1,n, — Ln.,‘ ny Un,—1n, = In, ny Un, n,+1

- bnl Ty Un, my—1 = Sn, ny ' (2)
with
ln, My =an —%,ny » Tn, ny, =P, +¥%,n, bn, oy =9, ny~% In, = 9n, n,+% (3a)
dn, mn, = DPn, ;llz,ny + Pn, +%,n, +4n, my =% + ¢n, My +t0n My hZ, Sn, n, =fn, ,nyh 2 (3p)

where p,_, is defined as p (nyh ,nyh). Similar discretized equations can be obtained
for the boundary points where u,, . is unknown. Let us choose a particular order for
those equations, and construct vectors z and s from the variables u, ., and s, n

arranged in the selected order; then the interior and boundary equations can be

arranged in matrix form
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Au=s, (4)

where A contains the coefficients d,,_ o la, ny Tngmy» In, o and b, e The matrix A is
symmetric, since [, +1n, = Tn. n, and bn, P In, ny In addition, A is positive
definite, since it is irreducibly diagonal dominant [17, p. 23].

A particularly simple iteration for the solution of (4) is the Jacobi method which

can be written as

= 4 -1 '
ug: :'r-zi = dn, 7y (Ln, Ty U, -1, +ra, My ug: +1,n, "'bnx 7y Un, ny—1 +in, Ty Uy my+1 +Sn 7y ).

Another simple iteration for this problem is the Gauss-Seidel relaxation with

red/black point partitioning. The corresponding local equations can be written as

red points ( n; +ny iseven ):

ug: ;11 = dn:,lny (er,l Ty Un, -1,n, +7rn, 7y Uy +1,n, +bn, 7y Uy ny =1 +n, my ug ny+1 +sn, ny ),

black points (n; +ny isodd ):

ult il = dih, Un, gy W20, +7n, n, U Hin, +Bn, n, WL R -1 Hn ) U541 ¥, )

Note that the difference between the Jacobi and the Gauss-Seidel relaxation methods is
that the Jacobi method updates the values of all nodes at one iteration while the
Gauss-Seidel method updates the values of half of these nodes during a first step and
updates the values of the other half during a second step based on the previously
‘updated information, and these two steps form a complete iteration. The chief
shortcoming of the Jacobi or Gauss-Seidel iterative methods lies in their slow conver-
gence rate. The spectral radius of the relaxation matrix is equal to 1 — O (22). There-
fore, in ‘order to let the difference of the computed and exact solutions be within the

accuracy of the discretization error O (22) of (2), the number of iterations needed is

proportional to O (A ~2) [17].
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By applying different acceleration schemes to the Jacobi and Gauss-Seidel tech-
niques, we can derive a variety of accelerated relaxation algorithms. Two typical
examples are the Chebyshev semi-iterative (CSI) method and the successive over-
relaxation (SOR) method. These acceleration schemes use carefully chosen relaxation
parameters to reduce the spectral radii of the iterative matrices so that the iterative
algorithrr;s converge faster. To determine the relaxation parameters, CSI acceleration
uses knowledge of the largest and smallest eigenvalues of the basic relaxation matrix
and SOR acceleration uses knowledge of the spectral radius of the basic relaxation

matrix [17). To our knowledge, all the estimation procedures developed require the

computation of the norms of some global vectors.

The local relaxation method proposed by Ehrlich [5] [6] and Botta and Veldman

[3] can be written as

red points (n; +n, iseven ):

utdl = (1=, Jultn (5a)
townn dn:,lny (ln, 7y, uy -1, +7n, Ty U +1,n, +bn, 7y ug ny—1 +in, 7y Uy, iy +1 +Sp, My ),

Xy

‘black points ( n; +n, isodd ):

un": :‘1:1; =(1- On ,ny) un”: ny _ (5b)

: -1 m+ m+ m+1 m<+1
+ “)n, My dn, My (Ln, My . —},ny +rn, My Un, +},ny +bnx My u-n., ,ny—l +tnx My unx My +1 +Sn, My )r

where @, n, 18 called the local relaxation parameter.

‘Assuming Dirichlet boundary conditions and N; X Ny = N unknowns within
the unit square, it was suggested in [5] [6] that a good choice of local relaxation param-

eters @, is given by
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2

(I)nx,ny = 1 +( T — pnzl 'ny)x/z ’ (6)
where
_ 2 1% T : 1 T
oy = Tyt Uneimy o) ST + (i, By )% cOSTT .M

Since we consider only the case of symmetric discretized matrices, the parameter p,

is alwayé real. This gives us the ad hoc SOR method or the local relaxation method for
a symmetric matrix. However, the local relaxation method can also be applied to more

general matrices such that p, n is purely imaginary or complex. An ad hoc formula

to determine the local relaxation parameters for these cases can be found in [3],[5] and
[6]. In this chapter, we will focus on the local relaxation method for a system of

equations A u = s where A is symmetric positive definite.

Although the local relaxation method was empirically shown to be 'powerful,
there are several questions which were left unanswered by the papers of Ehrlich,
Botta, and Veldman. First, they did not prove that the local relaxation method con-
verges. Furthermore, there was no explanation of why the local relaxation method

converges very fast. In the following sections, we will explore these two issues.
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3.3 Convergence Analysis

In this section, we give a sufficient condition for the convergence of a local relaxa-
tion procedure. Then, we show that the local relaxation method given by equations

(3.2.5) - (3.2.7) indeed converges.

In order to obtain a convergence resu}t which covers the most general type of
local relaxation procedure, we use a matrix formulation, since such a formulation
includes not only the 5-point stencil corresponding to the discretized equation (3.2.2),
but also other kinds of stencils. Given a linear system of equations,‘ A u =s , where
A is an N X N real symmetric positive definite matrix with positive diagonal ele-
ments, we may rewrite A as

A=D—E—-F=D(I—-L—-U),and ET =F,
where I, D, E and F represent identity, diagonal, lower and upper triangular
matrices, and L = D"'E and U = D~1 F. Let W be the diagonal matrix formed by
the local relaxation parameters, i.e., W =diag (®; ,®3,..., oy ). Then, a local
relaxation procedure can be written in matrix iterative form as

umtl = (] =W L) [(I =W )+WUJu™ +(I —W LYW D15 . (1)

Let Z be the solution of the above iterative equation, so that
g=(I -WL'[(I-W)+WUlZa+(I -WL)Y'WD1ls.
Define the error vector at n th iteration as e™) = u(m) — . Then the matrix iterative
equation in the error space becomes

et l=(] —WL)I[(I-W)+WU]Jem™ . (2)
The iteration matrix of the local relaxation procedure (1) is therefore given by

Gw =(I —W L ) '[(I —W )+ W U ]. The iteration procedure will converge for
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all initial estimates Z® if and only if all eigenvalues of Gy, are less than one in mag-
nitude, i.e. if the spectral radius plGw] of the iteration matrix Gy is less than 1. A

simple sufficient condition for convergence is given by the following theorem.

Theorem 3.1 (Sufficient Condition for the Convergence of a Local Relaxation Pro-
cedure) '

\

Suppose A is an N X N real symmetric positive definite matrix. For the local relaxa-
tion procedure given by equation (1), if 0 < w, <2for1 <n < N, then plGw] < 1
and the iterative algorithm converges.

Proof:
Let A\ and p be an arbitrary eigenvalue, eigenvector pair of Gw. Then

Gw p = A p, or equivalently,

(I -W)+WUIlp=rA(I-WL)p. (3)
Premultiplying by p D W1 on both sides, we obtain

pHDWlp —pHDp+pH DUp=XpEDW1lp—-AxpEDLP.
SinceEf = F,E=D L,and F =D U, it is easy to check that

H H -1
Defining z = LHD—L—E and % =2 D Wpl the equation (3) can be simplified as

or equivalently,

Letz =1 etf then

2oy 1 ©(2-w0)(1=27r cosf)
A Ar=1 (1—wr cosB)+ w?r’sin?6 (4)
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We know that | A 12 is always positive. If we can show that the second term in the
above expression is also positive, then we can conclude that | A | is less than 1. The
denominator of the second term of equation (4) is positive, so that we only have to

consider the numerator. We have

piDLp pfDUp

2rcos0=2Re(z )=z +z =
“ p? Dp p? Dp

H A
p" Dp
where the inequality is due to the fact that A and D are both positive definite. Note

=1 <1,

that since A is positive definite, the matrix D formed with the diagonal elements of A
is also positive definite. Therefore, we know that 1 —27 cos @ > 0. Now, consider

the range of the parameter w. Since W = diag (@, ,@3,..., oy ),

W-l=diag( 0!, 03l,..., oyl ).

A'ssuming that all relaxation factors are positive, we have

I pp 12 dp 0,71
pEDWlp ngl Pr 0 En On

1
<
Wmax pH Dp

ﬁ | P |2dn ®Omin

n=1

where &, and g, are the largest and smallest eigenvalues of the matrix W and p,
is the n th element of the vector p. If we set 0 < @pin € @Omax < 2, then

0< Omin SO L Oy <2 .
Under this condition, the second term in equation (4) is always positive, so that the
eigenvalues of the matrix Gy are all less than 1 and the local relaxation procedure (D

converges.
Q.E.D.

The above theorem gives the range of the local relaxation parameters which guarantees
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that a local relaxation procedure converges; however, it does not tell us how to choose
the relaxation parameters to make a local relaxation procedure converge faster. The
local relaxation method mentioned in the last section is a special case of a local relaxa-
tion procedure, where the local relaxation parameters are specified for a 5-point stencil
discretization. To show its convergence, we only have to show that all relaxation

parametefs chosen by the rule (3.2.6), (3.2.7) are between O and 2.

Corollary (Convergence of the Local Relaxation Method for a S-point Stencﬂ
Discretization)

The local relaxation method for a 5-point stencil given by (3.2.5) - (3.2.7) converges

Proof:

From the discussion in the previous section, we know that the matrix A obtained

by discretizing (1) is symmetric positive definite.

Since p(x,y) and ¢(x,y) are positive functions and ¢(x,y) is a nonnegative

function, we know from (3.2.3) that [, > Trgny» bryny» Tn ny» @nd dp_ 5 are all posi-

tive. In addition, 0 < cos-P”Tl— < 1for 1 <P <oo. Therefore p, n given by (3.2.7)

is also positive. Using the inequalities

2(ln,,nyrn,,ny) \Ln My +rn T, 9 2(tn‘,nb

x Tty y Tx Tt y) \t"x'"

Fbnn

we have

Pn,n, =

Y n, ny

[ o, 2, Tr )/‘cos-N— + (tn, 7,0, 0, )% cosNy”Tl]

I‘nx My o n 2‘n,, n,+bn n

x "y e 4 xry

T
cosNI . | + .

Ttx Ty = Ty

N

T
COSN,F1
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Ln, My +rn‘ My +tn, N

dn, My

tonny o
=

Y

<
where the last inequality is obtained by noting that o, . 2 0 in equation (3b). It is
easy to see that

2
1+(1=pZ )

0<wn n, = 7 <2

\
for 0 < pp, n, < 1. The local relaxation parameters chosen by the local relaxation

method satisfy the sufficient condition given in Theorem 3.1, so that the relaxation

method converges.

Q.E.D.
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3.4 Determination of Local Relaxation Parameters

The convergence rate of a local relaxation procedure depends on how we choose
the local relaxation parameters. The conventional SOR method chooses a spatially

invariant relaxation parameter wp n, = © to minimize the asymptotic convergence

rate, or, equivalently, minimize the spectral radius of Gy . Young [18] showed that the

optimal choice for ® in the accelerated Gauss-Seidel iteration is

2
1+(1—p2 )%

where p is the spectral radius of D~1(E+F ). For this relaxation parameter, all eigen-

w =

values of Gy, where W = o], can be shown to have magnitude & — 1. In practice, it
is quite difficult to calculate p exactly, and thus adaptive procedures are required to
estimate p as the computation proceeds. In this section, we will use a Fourier analysis
approach to derive a simple formula for a spatially varying relaxation parameter. Our
formula is identical to that suggested by Ehrlich [5]. Our approach demonstrates that
this formula will indeed achieve an excellent convergence rate. This study also gives

some new insight into Young’s SOR method.

For a linear constant coefficient PDE with Dirichlet or periodic bouﬁdary condi-
tions, the eigenfunctions of D ~(E+F ) are sinusoidal functions. Therefore, the spec-
tral radius of this iterative matrix can be obtained by usirig Fourier analysis. How-
ever, for a space-varying coefficient PDE with general boundary conditions, the
sinusoidal functions are not eigenfunctions. As a consequence, Fourier analysis cannot
be applied rigorously. Notwithstanding this disadvantage, Fourier ahalysis is still a
convenient tool for understanding the convergence properties of relaxation methods

[16]. A more rigorous treatment to make Fourier analysis applicable to space-varying
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coefficient PDEs with general boundary conditions is needed and is currently under
study. Roughly speaking, the reason why Fourier analysis often works in spatially
varying PDE problems is that the eigenfunctions can be regarded as sinusoidal func-
"tions plus some perturbations. As long as the perturbation is comparatively small, the
sinusoidal function is a good approximation of the original eigenfunction. Therefore,
Fourier ;malysis is still a good analytical tool. A detailed formulation of Fourief

analysis in this general context will be presented elsewhere.

In Section 3.1, we will show how to find the lowest Fourier component for given
boundary conditions. Then, we use Fourier analysis to analyze the Jabobi relaxation
method in Section 3.2. This approach is sometimes called the local Fourier analysis [16].
Finally, we justify the efficiency of the local relaxation method. The derivation can be
viewed as a generalization of Brandt’s local Fourier analysis to the Successive Over-

Relaxation case.
3.4.1 Admissible Error Function Space and Its Lowest Fourier Component

Let T;, 1 < i <4 denote the four boundaries of the unit square. Consider a set of
linear first-order boundary conditions such as (3.2.1b) on the boundaries of the unit
square,

Biu=g onl; 1<i<4, (1
where B; represents the boundary condition operator on the i -th boundary. It is more
convenient to analyze the relaxation in the error space rather than in the solution
space, because the error equations are homogeneous. The error formulation for the

boundary conditions can be obtained as follows. Let & be the actual solution so that
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Biu=g onl;, 1<i <4, (2)
- Subtracting (2) from (1), we obtain the homogeneous PDE in the error,

B;e=0 onI; 1<i <4, (3)

The functions defined on the unit square and satisfying the homogeneous boun-
dary conditions (3) are called the admissible error functiens, since any error function
ailowed 1n the relaxation process should always satisfy the given boundary condi-
tions. All admissible error functions form the admissible error function space. The
sinusoidal functions in the admissible error function space can be chosen as a basis of
this space because of their completeness. As far as the convergence rate is concerned,
we will see that only the lowest frequency component is relevant. Thus, we will find

that only the lowest frequency of this basis needs to be determined.

We assume that all B;’s are constant-coefficient operators. Under this assumption,
B, and Bj are independent of the y -direction, B, and B, are independent of the x -
direction, and since the problem domain is square, the admissible Fourier components
can be written in separable form as v, (x ) v, (y ), where v; () and vy () are two

1-D sinusoidal functions. The boundary condition on I'; becomes

31vx(x)vy(y)=vy(y)31vx(x)=0 ,

Blvx(x)=0

Similarly, we simplify the boundary conditions on I';, I'3, and T'4, and decompose the

2-D problem into two independent 1-D problems.

(DB;v;(x)=0 whenx =0, B;v,(x)=0 whenx =1, (4a)
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(II) B,vy(y)=0 wheny =0, B4vy(y)=0 wheny =1. (4b)
From (4a) and (4b), we can determine the lowest frequencies K, and f(y separately.
We only show how to get k. from (I); then ;Z}, can be obtained from (II) in the same

way.

Consider the mixed type boundary operators,

Bl=b1+bzg—x forx=0, (58.)
33=b3+b4g—x forx =1 . (5b)

The Fourier component v (k,,x) of v.(x) at the frequency x,; can be written as a

linear combination of two complex sinusoidse' = * ande™ = *,i. e,

s(x,,x)=c(f<x)ei“‘x+c(—xx)e—i"’x . (6)

Substituting (6) into (5), we obtain

(by+ibyrs e (ke )+ (b1 —ibyk; Jc(—k; )=0
(bs+ibake e %c (ke )+ (b3—i bk, e 'S5 Fc(—k,)=0

In order to get nonzero values for ¢ ( k; Jand ¢ (—k; ), the determinant of the 2x2

coefficient matrix should equal zero, or equivalently

2K, _ (b1+ib2KI)(b3—ib4K1) (7)
e T B, =1 02K, J(bs+Ibak; )

Therefore, we conclude that the frequency k, of any admissible 1-D sinusoidal func-

tion with respect to the boundary conditions (5) must satisfy equation (7).

Let us look at two examples. If the boundary conditions on both I'; and I'; are
Dirichlet type boundary conditions, which means b, and b, are zeros, then (7)

becomes

el?% =1 or cos2k; +isin2k, =1
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The solutions are k;, = k 7, k =0, £1, £2,.... However, it is easy to see that the
zero frequency cannot be allowed. Thus, the lowest Fourier frequency Ky in the
admissible error space is 7. If we change the boundary condition on I'; to be of Neu-

mann type, i. e., b3 = 0 but b4 7= 0, then (7) becomes

. e'?% =—1 or cos2k, +isin2k, =—1

The solutions are k; = 1 k m , where k is odd and the lowest frequency R, is -,
z 2z

3.4.2 Local Jacobi Relaxation Operator and Its Properties

In this section, we use a Fourier analysis approach to analyze the local Jacobi
operator and to determine its largest eigenvalue, or spectral radius, for given boundary
conditions as previously discussed. The spectral radius of a local Jacobi operator will
be used to determine the optimal local relaxation parameter of the local relaxation

scheme in Section 3.4.3.

Define the x -direction ( y -direction ) forward-shift and backward-shift opera-
' tors, E; and E;”! (E, and E;71), as
E; Un, n, = Un,+1,n, E1 Un n, = Un,—1p,

—_ -1 — .
Ey Un n, = Un, n,+1 E Up ), = Un,n, -1

Then, the 5-point discretization formula for an interior grid point can be written as

Lnx ny Un, My = Sn,n

x Ty

where

Ln, My = dn, ny T ( Tn, My E, + ln, My Ex_l + Z‘n,‘ My Ey + bnx My Ey—l )

is the local discretized differential operator at node (n, ,n, ). The Jacobi relaxation at a

local node can be written as
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where

Jn, ny = dn:,lny ( I'n, My Ex + ln, My Ex_l + z‘n,‘ My Ey + bn, My Ey—l )

is the local Jacobi relaxation operator. From the error point of view, we get

m+l — m
\ enx My T Ingny enl My n > 0.

If the input error function en(,".ln)y is the complex sinusoid e 10 % +'°’y), we have

Jn, My ei(le-H(yy) = I‘L‘ﬂx.ﬂ-y(KJ: ’K)' ) ei(‘c‘x-‘—x}'y)

where
_ P —ix R ik, h —ik,h
/.L,.,“ny(rc, Ky )= dn,,lny (rnpnye“" + 1y, e Ha +t,1x,nye”‘y + by, 0@ HY).
Therefore, we may view e ®*+%Y) a5 an eigenfunction of Jn, n, With eigenvalue
7oy ,ny(K, Ky ). The magnitude of u, ,,,y(K, Ky ) provides some information on how the

errors of different frequency components are smoothed out by the Jacobi relaxation

process. This quantity can be computed as

| ftn, ,ny(Kx Ky )= (8)

1
(¢ nyFloy n, Jeosx, h +(2,_ nytba, deosx, b P+{(r,, ny "ny n, Jsink, b +(t,_ 2, ~bn )sink, h J2 | %

nyg ny

Assuming that the coefficient functions are smooth so that

—_— L"'x .ny = Ln,‘+1,ny_l‘nx 'n,y = O (h ) a.nd tnx 'n)! -_ bn = bnx .ny+1 — bnx ,Tl-y = O (h ),

then the two cosine terms in | w5 | are the dominant terms.

T n, ,le x 'ny

The eigenvalue function u, , (k. ,ky) is usually called the frequency response in
% Ty y y4

signal processing [11] and the Jacobi relaxation operator can be viewed as a filtering

process in the f requency domain. The frequency response function with the
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magnitude shown in (8), in fact, represents a 2-D notch filter instead of a lowpass
filter. However, if the discretization space A is small enough and the waveforms are
band-limited, this is not a significant problem. The reason is best explained from the

Taylor’s series approximation of a function f (x), i e,

(x —xo)

2
filx)=7f (xo)+(x—xo)f'(xo)+—'—2'!—o-—f"(xo)+

Supposing f (x)=e!** and x = xo+ h, the high order terms are negligible only if
thé product kA is reasonably small, say, less than 1. That means that as long as the
magnitude of wavevector k is bounded, we can always find a discretization spacing A
which is fine enough so that the dimensionless frequencies 0 =x;h and 6, =k, h
are always inside the unit circle in the ( 0, , 8, ) plane. In this region, the notch filter
behaves like a lowpass filter. The lowpass filtering property makes the error at higher

‘frequencies converge to zero faster than that at lower frequencies.

The eigenvalue with the largest magnitude is the dominant factor in the asymp- .

* -totic convergence rate analysis, so that we will focus our attention on this quantity.

Following the above discussion, we define the spectral radius p, » of J, n, 8 the

y

- largest magnitude of u, , (k:,ky), ie.,
XMy y

Pr, n, = Iléla%( I Hr, ,ny(Kx Ky )1
For the symmetric positive definite matrix case, the magnitude of u, ny (ks Ky ) is the
largest at the lowest frequency (7(I ,;Ey ), since such a choice makes the dominant cosine

~ terms of (8) as large as possible. Therefore, we obtain

Pn = | /-‘-nx,n),(Kx ,Ky) I

X ’ny
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The above procedure, known as local Fourier analysis of Jp, =n,» has two implicit
assumptions. First, J,_ my is space-invariant. Secondly, the problem domain should be

either extended to infinity or be rectangular but with periodic boundary conditions. In

general, these two assumptions do not hold. As a consequence, pn, n, is a spatially

varying function and is not equal to the spectral radius p of the original Jacobi relaxa-
tion matrix J = D~YE+F ). An important question to be answered is whether the

knowledge of p, ;n, can provide us with some information about p. Two observations

may be of help. First, the same lowest frequency gives the spectral radii of all local
Jacobi relaxation operators, so this frequency should play a role in determining the
eigenfunction giving the spectral radius of the Jacobi relaxation matrix J. Further-

more, for a given low frequency (RI ,Ry ), Pr, .n, is a very smooth function in space. It

is neither sensitive to variations of the coefficient functions nor sensitive to changes in

the boundary conditions. For example, the values of p,_ my given by equations (3.2.7)

and (8), computed for Dirichlet and periodic boundary conditions separately, are only
slightly different under the assumption that the coefficient functions are smooth. Let

min pn, n . Then, it is our conjecture that p should be a quan-

n

n x Ty

- p= maX p,_n and p=
n,, y x o'ty L
tity somewhere between p and p. Usually, the difference between p and p is so small

that any pn, n, €an give us an estimate of p.

Notice that in order to determine the spectral radius of a local relaxation opera-
tor, we only have to know the lowest admissible Fourier component corresponding to

the given boundary conditions, discussed in Section 3.4.1, and then to compute pp, n

- according to (8).
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3.4.3 Applying Fourier Analysis to the Local Relaxation Method

Let us reconsider the local relaxation method, i.e., equation (3.2.5). We divide
the problem domain into red and black points and update one color at each time step.
Suppose we start with the relaxation of the red points and, then update the black

points. The local equations for the error can be written as
\

e#:‘r—tl =(1_wn M )errzn,n +mn 7 Jn M er’tn,n nx+ eVen (9)
x 'ty x 'ty x 'ty x "y Xty x0Ty

Jnx m

+1 = (1 —
erh = (1 On, n, )eg;,,,y + wn n ,

Yy

e,’zj,";é nz+n, odd (10)
Consider the neighborhood Q, n, of a point (n,,n, ), where all J,, ;'S are approxi-

mately the same. Then, within Q, , , we can combine (9) with (10) and rewrite

equation (10) as

67-7:;11 = (1 _“)nx,ny )er,z:,ny '}'(‘)n“,ny ( l_mn,,ny )Jnx,ny erzzl’:,ny (11)

2 2
+ o4 ny Jr ny en. ny n.+n, odd.

Equations (9) and (11) describe, in fact, the evolution of two waves - the red and

black waves in the local region Qp ny- To see this, let us first perform the local

Fourier expansion of the values at the red and black points

n'y+n 'y even , (12a)

en-z,n~y = Z T‘:nx_ny(f(x Ky )ei(Kle'xh toynyh ) ,
Kxf"'y ’

e, - 'y = 5nx'ny(Kx ,Ky )ei(“-;ﬂ';h + Kyn'yh ) , nlx +n 'y odd , (12b)
ks Ky

where (n'; ,n"y) € Qn, n, and the summation includes all admissible frequencies for

the problem domain Q. Then, by substituting (12) into (9) and (11), we obtain the

following relation between two successive iterations in the wavenumber domain,
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Frrl T n
tm+l | = GOn, .n,(mn, my Hn, .n,) tm | s
n, m, n, ny
where
Gy, . (@ )= 1= Oy sy Hony 2y (13)
ey Oy sy : @n, ny 1-o, 2y ) tn, My 1=, , to? ny Ko, 2y
i + .
i 5+, ¥ ) associated to the

and where Hn, n, is the eigenvalue for the eigenfunction e

operator J,,_ my We use A, n, t0 denote the eigenvalues of G, n, (co,,x iy ohhn, ).

In the space domain, we can associate (13) with a 2 X 2 matrix operator

Go (@ T ) = LT ey e ny T2y
n,n n,n n,n - — —_ 2 2
xSy Ry Ty ™Ry Ty Wn, n, 1 @n n, )J’lx ~y 1—-w, a, t ol , T n,

which is called the local relaxation operator with relaxation factor w, n, at node
(ny ,ny ). Its spectral radius p[G,, y (on, P )] is defined to be the spectral radius

of the matrix Gn, n, (@n, 7, b, _,,y) given by (13).
We know from (13) that un_ » ( Kz , Ky Jand N 5 (ks , k; ) are related via

an n ( On, n, » M, g ) — )\n, My, I |=0,

y

where | . | stands for the determinant. This gives

an*’ny _(2_2(‘)”3’"')! +(°"'21'"'y #77'2:'"'); )an'ny +(1 —m”xm) )2= 0.

Therefore, we have
OF n, Bhn, | JE
x"x ny = 1-— On, My + —x_yz#tT ’ (142)
where

A=4(1_mn,,ny ol a ,uﬂz,,n "l"‘)rf,‘,ﬂ.y FL#,,ny . (14b)

x 7Ty y
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Let us consider the special case, ®,_ n, = 1, which corresponds to the Gauss-Seidel
relaxation method. The eigenvectors of the 2 X 2 matrix G, n (“)nx ny » By n, ) are
(1,0) and (1, u,, ,n, )T and the corresponding eigenvalues are O and w2 - This

means that if we start with two sinusoidal waveforms at the same frequency but with
diﬁ‘erent\amplitudes, one of them, the red wave represented by the vector (1,0),
disappears in one step. The other wave remains and alternates between the red and
black points thereafter. The ratio between the updated wave and the old wave is

equal to the constant u, . , so that the amplitude is reduced by a factor of w2 n, Per
cycle.

The purpose of introducing the relaxation parameter @, , is to make the eigen-
value Ap ,ny(xx Ky On .n,) of the new operator G, n, smaller than the eigenvalue
Mo, m, (kz ,ky ) of the old operator J, e For a fixed real u,_ ,ny(K, Ky ), the relationship
vbetween An, ny and d)n, ;n, Can be described by the root locus technique depicted in Fig-

ure 3.1.
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Iy, 5, ()]

Re[An, -, (@)]

Figure 3.1: Root loci of A, » (@ ) with fixed un_
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When 0 < o, ny < 2, the magnitude of A, n, is less than one. By Theorem 3.1,
we know that if 0 < @, », < 2 foralln,n, then plGw ] < 1 and the local relaxation
algorithm converges. When A = 0, the two eigenvalues A, 1 and A, ny 2 coincide,

and the largest possible magnitude of these two eigenvalues,

an_ny’mEmaX( | )‘n,,ny,l i, | an,ny.z | ),

is minimized. The value of ®,_ ny which sets A = 0 is called the optimal relaxation fac-

tor with respect to a specific tn, n, and is denoted by @, n opr 7 n ). By solving
A=4 ( 1 _mnx,ny )(')nzxmy /H%,ny + mrt,ny ﬂ-r‘tt,ny =0

and requiring

0<wpn <2,
we find that

2
mn,,ny,opt (ﬂ'n,,ny )= 1+ (1 _'u} Yoo (15)

X 'ny

The general relation between A, 7y m and op, &, can be derived in a straightforward

way from equation (14) and is given by

an,uy,m=mnx ny —1 wnx,ny,opl (F'n,,ny ) S @, £y <2, (16a)

2
W g Vo, ) | HOZ 5 g2 o +4(1—0, , )%
)‘nxﬂyﬂ'= y ° y x 2y x Mty y 0<wn,ﬂy<wﬂxﬂy.¢wt (#nxﬂy) (16b)

The minimum value of all possible An,_n s is, therefore, @, n opt 7 n )—1.

Since i, n, is @ function of frequency, equation (15) implies that different fre-

quencies require different optimal relaxation factors. However, we are allowed to

choose only one &, , , SO We have to consider the overall performance, i.e., ®, , has
X y x » y

to be selected so that the maximum of plG,_ 7, (@n 0T, n, )] over all frequencies is

y
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minimized.

Let pn, ny be the spectral radius of the local operator J, my and u, my be an arbi-
trary eigenvalue of J, ne By definition, |u, n, | < Pn, n,» SO We know that
@n, opt Cting i, ) < ©p, ) opt CPry ) from (15). Using the relation in (16), we rea-
son as follows. If we choose @n, n = @n, n opt (ktn, m ), An, nym (atn, .n,) achigves its
minimum value of @n n opr (tn, .n,) —1 but Ay n m (pn, ,ny) is greater than
©n, 7 opt (pn, ,n,) — 1. On the other hand, if @, n ,‘_;,pt (pn, ,n,) is chosen as the relaxa-
tion factor, both Ap_ . m (ttn, n ) and A o m (pr, o ) are equal 10 @n 5 ot (P50, ) — 1.
Comparing these two cases, the latter choice is the best scheme to minimize the spectral
radius of Gp, (o, I m, ). This optimal value of w,_ , is denoted as w; , , and is
given by

) _ _ 2
©n ny, = ®n ., opt ( Pn, My )= 1+(1— p,.%x ny i

This is exactly the same formula as suggested by Erhlich. The reason that this is a
good choice is due to the fact that the eigenfunction with the largest eigenvalue of the
Jacobi relaxation operator is the one corresponding to the lowest frequency component,

and to the observation that the space varying relaxation parameter “’77, e optimizes the

convergence of this lowest frequency mode.
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3.5 Local Relaxation for a 9-point Stencil Discretization
The above derivation applies to a 5-point stencil, which appears when we discre-
v . . 2 |
tize a linear second-order elliptic PDE without the crossover term —Lax 5 If there is a

crossover term, a finite difference discretization gives a 9-point stencil. In this section,
we will proposev a local relaxation scheme for a 9-point stencil, give a sufficient condi-
tion for its convergence, and use a Fourier analysis approach to explain the rule for
selecting good local relaxation parameters. The approach is similar to that used in Sec-

tion 3.4.

In order to make the presentation clear, we use a simple problem mentioned in [1]
as an illustrative example. Consider the linear partial differential operator defined on

Q =1[0,1] x [0,1],

L—.LT+a(x,y)axay a > (1)

where | a(x,y) | <2, with appropriate boundary conditions. The condition
| a(x,y) | < 2isrequired to guarantee that L is an elliptic operator. We also assume
that a (x,y ) is sufficiently smooth so that it can be viewed as being approximately con-

stant locally. The following discretization scheme is used

2 E, —2+E;! 2 —2+E!
aach oo B m 2B aa ;e D2 2 Ey
& E.Ey +E'Ej'—EE —E B

dxay T 4h2
The local Jacobi relaxation operator J, -, €an be decomposed into two parts Jn, ny 1

and ]nx ’ny '2, it e.
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Jn,,ny = Jn,,n,,l + jn,,ny,z ’

where

=1 - -
=5 (E, +E'+E, +E7),

Jn; ,ny,l

Tnyny2= g Can ssan suBx By + Gn, oy wETE™ = @ kBT By = @ siin, B BT
and where
Qn, n, = aln hnyh).

Suppose we use the red/black partitioning, then the J,_ =n,,1 operator couples nodes
of different colors While the J,, »n, 2 Operator couples nodes of the same color. A four-
color scheme which leads to a four-color SOR method has been proposed for this prob-
lem [1]. Here, we propose a different local relaxation scheme which uses only red/black

partitioning, so that the iteration equations for the error in the local region can be

written as
eftl=(1—0, 5 )eF + ©n_ [ Jnony 1 €F + Jn a2 e}Fl , (2a)
egl +1 — (1 - Q_)nx My )eg2 + O)nz My [ Jn; ’ny.l eE”"‘l -+ Jnx 'ny'2 egi ’ (2b)

“or, equivalently,

ef 1 _ eg
egt +1| — an My, ((‘)nx ny a-]nx My 1 »]n, My, ,2) eg‘ ’
where
G"-x»"'y (wnz,,y ']"'xﬂy-l'Jnxﬂy-z): . (3)
1-w, a, +0n, n, I, ny 2 @n, n, T, iyl
2 2 2
Wn, ,ny(l_wn, Ty )]n, Ty .l+wn, Ty Jn, Ayl ]n, ny 2 l—wn, Ty 'I"""n,t Ny ]n, ny .2+mnx 2y Jn, ny,l

In general, the linear system of equations, A z = s for a 9-point stencil which is

obtained by discretizing an elliptic PDE with a crossover term can be decomposed as
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Au=(D—E—~F—-C)u=D(I-L-U-V)u=s, @)

where A isan N X N real symmetric positive definite matrix and D, E, F', and C are

diagonal, lower and upper triangular, and block diagonal matrices respectively. In (4),

we view the 9-point stencil as the superposition of a standard 5-point stencil and of a

4-point stencil formed by the nodes at the four corners. The standard 5-point stencil

is accounted for by D — E — F, while the remaining 4-point stencil due to the cross-
over term is represented by the matrix C = D V. It is not hard to see that

ET=F, and CT=C.
According to the local relaxation method specified by (2), the matrix iterative equation
in the error space becomes
emtl=(] —-WL)[(I-W)I)+WU+WYV ]Jem , (5)
where W is a diagonal matrix formed by local relaxation parameters. The iteration

matrix is therefore given by

Gw =(I —-WL ) [(I-W)+WU+WV].
A simple sufficient condition for the convergence of (5), or (2), can be obtained by
generalizing Theorem 3.1. Following the same steps as in the proof of Theorem 3.1, we

find that

= lmo(l-o)teZ
l-—wz ’

H
where A, p is an arbitrary eigenvalue/eigenvector pair of Gy, z = ET—‘EP DDLP ,

H
,and o= %H%% Since C is symmetric, « is a real number.

Letz =r el then
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ol2—0(1—a)]J(1—a—27 cosb)
(1—or cos8)+w?r?sint b ’

which is similar to (3.5). Now, consider

IAI12=1— (6)

a+2r cosf=a+2Re(z )=a+Z +z

_2"DVvp p"DLp pHDUp
pP Dp p" D p p" Dp
2 A

p7 Dp

where the inequality is due to the fact that A and D are both positive definite. Furth-

=1 <1,

ermore, let us assume that o < 1. In order to guarantee that | A | < 1 for all possi-

ble eigenvalues, the sufficient condition becomes

2
0 < ©Omin < wn,,ny < Omax < T—any
where
. H C
amin—n}mp Do’ (7)

and where the minimization is over all eigenvectors p of the matrix Gw . Therefore,

we have the following theorem.

Theorem 3.2 (Sufficient Condition for the Convergence of a Local Relaxation Pro-
cedure for a 9-point Stencil Discretization)

Suppose that A is an N X N real symmetric positive definite matrix. For the local
relaxation procedure given by (4) and the constant op;, defined by (7), if

0< o, < —I+min for 1 <n <N, then pl[Gw] < 1 and the iterative algorithm

converges.

Note that if there is no crossover term, the matrix C is zero and « is also zero. In
this case, the 9-point stencil reduces to a 5-point stencil and Theorem 3.2 reduces to

Theorem 3.1. Therefore, our proposed local relaxation scheme for a 9-point stencil,
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equation (5), is a natural generalization of the conventional SOR method for a 5-point

stencil, specified by equation (3.3.2).

H
In the above derivation, we have used the assumption that o = %H%‘;T is less

than 1 for any eigenvector p of the matrix Gy . Now, let us estimate the value of o by
examining the example given by (1). For simplicity, we consider the special case
where a(x,y ) = a is constant and assume that the boundary conditions are periodic,
ie.u(0y)=u(ly)for0<y <1,u(x,00=u(x,1)for0< x S.l. In this case, the
eigenvectors p of Gy can be found in closed form and are given by one of the follow-

ing two dimensional arrays,

sin(k,n, h+x,n,h), cos(k,n, h+k,n,h), sin(k,n,h—k,n,h) and cos(k,n,h—xk,n,h),

where n; and n, range from 1 to VN , 2 = 771V_’ and K ,k, are multiples of 27.

Then, after some computations, we find that

H
a(p)=§ﬂ%%= + %simc,hsinr(yh and lalp)l <%—I forallp .

Therefore, if we choose w, between O and zﬂga_l_’ the local relaxation algorithm for
this particular problem will converge. However, this choice is too conservative to give

a good convergence rate when la | is close to 2.

Generally speaking, two types of errors arise in the numerical solution of elliptic
PDEs by iterative methods. The first of these is caused by the error between the initial
guess and the true solution. The other is the numerical rounding error due to the finite
precision arithmetic. The first error is usually concentrated in the low frequency
region, whereas the second can exist at all possible frequencies. The numerical round-

ing error is usually so small that it can be ignored, provided it does not grow with the
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number of iterations. Thus, the error smoothing primarily aims at reducing errors in

the low frequency region where the initial guess errors are substantial.

Let us temporarily ignore the numerical rounding error and focus on the initial .
guess error only. In order to guarantee the convergence of all components in the low

frequency region, we need only to select

Olmin = ok = —%Lsin(zJt h Jsin(ky A )
where ;x and Ey are the largest frequencies of interest. Usually the mesh is so fine
that aL;, is of order O (2 2). Although this conclusion is obtained from a simple exam-
ple, it seems reasonable to believe that ai, is also of order O (2?2) for more general
second-order elliptic PDEs with space-varying coefficients and other boundary condi-

tions.

The remaining problem is to select a set of local relaxation parameters such that
the iterative algorithm converges as quickly as possible in the low frequency region.
“We can use the Fourier analysis approach introduced in Section 3.4 to analyze the local

2 X 2 matrix operator G, » (@, » ,Jn. n. 1.Jn. n. 2) given by (3).
x ofly x 1Tty x sty r x Tty »

Let ptn, o 10Kz Ky )y fin, ) 2(Ks Ky ) @nd pn, o (ks Ky ) De eigenvalues of Jn a1,
Jn, n,.2 and J,_ n respectively. Following the procedure used before, we find that the

optimal local relaxation factor for (1) is

2

Op n = :
SECARI T RN Ry S ®)

where €, = tn, n 2 (Kz Ky )y Pon, = Mo, 1 (kg ,ky ) and (kg ,ky ) is the mode

which maximizes un,_ ny, = Mnn + o, n, .20 The spectral radius of the local relaxa-
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tion operator G, my is

)\n,,n (Gn n (m;x,n anx,ny,l ,]nx,n,,z ))= (‘)r:‘,ny (14 an,ny )—1. (9)

y Xy y

Typical values for w; , and N, , can be obtained by considering example (1

with Dirichlet boundary conditions, which is of more interest compared to the periodic

boundary, conditions in practice. Since a(x,y) is smooth, we can approximate I, 2
by

~an¥’v — — — —
Jn,,n,,z"'ml( ExE’,+Ez1Ey I_ExIEy_ExEyl) .

The values of fn, 1Kz Ky ), y 2Kz Ky ), and p, ’ny(Kx Ky ) are
Hng oy, 1 (kz 1Ky )= -é— (cosk;h + cosky h )
an, n,
B, ny 2 (Ke oy ) = £ —g 2 [ cos(kz +xy Jh — cos(kz =y )R ]

aTl r
=+ -jjn—’ sink, h sinky h

and

. ,
75y ,ny(K, Ky ) = -é— (cosk, h + coskyh ) % ﬁn—’ sink; & sink, h .

In the low frequency region, J, .1 is a lowpass filter, while J,_ ny.2 is a highpass
filter. J, n, is similar to J,_ 7yl in this region, because un_ my .2 is almost zero for very
low frequencies. Therefore, we can view J, . » as a perturbation. Thus, J, n is a
perturbed lowpass filter. Its spectral radius p, .n,( Jn, n, ) is determined by the

lowest admissible frequency. For this particular problem, the lowest admissible fre-

quency mode turns out to be (k; ,Ry ) = (7,7). Therefore,



-120 - SECTION 3.5

lan, n,

— 02 =
&, n, = —7 — sin mh , pn, n, = coswh .

Substituting these values back into (8) and (9), we find

o . = 2 %2[1—(1+—2—Ia“""’I Yerh 1,
LY |(1nx n | . ’ (loa)
1+ (1+——2— Y*7h ‘
My 1= (@421 | Vomh (10b)

In general, ki, is of O (A?) so that for sufficiently small values of A, the above
optimal relaxation parameters satisfy the sufficient condition of Theorem 3.2. Hence,
the convergence of the local relaxation method in the low frequency region is
guaranteed and the convergence rate can be estimated by examining the spectral radius

- of the local relaxation operator given by (10b).

Now let us go back to the effect of numerical rounding errors. The optimal relax-

ation parameters ®, n, given by (10a) may be outside the convergence range defined

by O and 1—_%[(—}”- for some eigenvectors p corresponding to high frequency error

components. Therefore, we expect that the error in the high frequency region will
grow. The error growth rate is problem dependent and can be analyzed by Fourier
analysis. If the error growth rate is so slow that it does not effect the answer much,
we can stick to a single set of optimal local relaxation parameters. On the other hand, |
if the error growth rate is relatively large, we may use two sets of local relaxation
parameters. One set aims at reducing the low frequency error quickly and the other

set, formed by smaller values of w,_ 18 used to smooth the high frequency error

once in a while so that the rounding errors do not accumulate. This mixed scheme

should perform much better than a scheme using a single set of conservative local
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relaxation parameters. However, the optimal scheduling of these two sets of local
relaxation parameters is still unknown. We believe that it depends on the problem to
be solved. Some numerical experiments will be needed to gain a better understanding

of this issue.
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3.6 Convergence Rate Analysis and Numerical Examples
3.6.1 Convergence Rate Analysis for the Linear Constant-Coefficient Case

For a linear constant coefficient PDE defined on a unit square with Dirichlet boun-
dary conditions, the spectral radii of all local Jacobi operators are the same, and thus
all local lrelaxation parameters and the spectral radii of all local relaxation operators

are the same, i.e. for all n, ,n,

pnx’ny=p, O)nx’ny=0), )\,n n = A. (1)

X7y

In this case, the local relai(ation method is the same as SOR.
The asymptotic convergence rate of an arbitrary global iterative operator P,
denoted by R, ( P ), is defined as [17]

Under the conditions (1), the asymptotic convergence rate is also given by

Ro(P)=—Inp(P, 5 )

where P,_n is the local relaxation operator of P.

In particular, let us use the Poisson equation on the unit square with Dirichlet
boundary conditions as an example. The local Jacobi operator for this particular prob-

lem is

1 - -
Jngm, =7 (Ex +ETT+E, +E71).
Applying Fourier analysis to J,_ n,» We find that the spectral radius of J,_ n, is coswh ,
where h is the grid spacing. The global asymptotic convergence rate of the Jacobi

method, the Gauss-Seidel method, and the local relaxation method can be computed as

(8]
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Rm(Jacobi)=—1np(an,ny )= —In cosmh zé— m2h? .

R ( Gauss—Seidel ) = —In X [G,, .n, (1,75, .n,) 1= —1n cos?wh

=~ ,rzhz ,

R (local relaxation )= — In A [ ( G, n (0*/, ,n,) ]J=—In(0*—1)

2

\ —_— e
In ( 1+(1—cos?mh )*

—1 )=27h .

Therefore, the number of iterations is proportional to O ( 711- ), i.e. O( /N ), for the
local relaxation method.
3.6.2 Numerical Examples

For general space-varying coefficient PDEs, it is difficult to analyze the conver-
gence rate as shown in Section 3.6.1. So, a simple numerical example is used to illus-
trate the convergence rate of the local relaxation method for solving space-varying
coefficient PDEs. The convergence rates of the SOR and CG methods are also shown
for the purpose of comparison. For the SOR and CG methods, the Ellpack software

package [13] was used.

The example chosen is

_L_z_zu+ - _Lz.zu+ o _ - ou . 1

xy xy xy xy

e 3 e 3y e¥y 3 e™ x &5 llxlyu v (2)
= e2¥sinwy [(2y? — #2)sinrx + 37wy cos7x ]+ 7 sinwx ( x coswy — 7 sinwy )

e™ sinwx sinwy
1+x +y

on the unit square, with the boundary conditions

+

u(x,y)=0, forx=0,x=1,y=0,andy =1, (3)

and its solution is e® sinzx sin7y. Although equation (2) does not have the same
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form as (2.1), it is easy to verify that the discretized matrix is still symmetric positive
‘definite so that Theorem 3.1 applies here. The lowest frequency mode for this problem

is (K, ,;Ey ) = (#r,7) because of the Dirichlet boundary conditions.

For this test problem, three 5-point discretization schemes are used with grid

. 1 1 1 . as ,
spacings , , and . Starting from the initial guess z%x,y ) = 0 for all grid
pacings 7o 30 30 4 8 Y grid

points, the maximum errors at each iteration are plotted in Figure 3.2. The results
indicate that on a single processor the convergence rate of the local relaxation method |
is better than that of the SOR method and worse than that of the CG method. How-
ever, on a mesh-connected array the local relaxation takes constant time for each itera-
tion while the CG and SOR methods take O (/N ) time per iteration, so that the local
relaxation method is much faster (see Chapter 5). We also note bthat the number of
iterations required for the local relaxation method is proportional to /V . This is con-

sistent with the analysis of the previous section.
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:
\
X

o H 10 15 20

Q.5

(a)

Figure 3.2: Computer simulation results for given example (2)-(3) with (a) 11 X 11,
(b) 31 x 31, and (c) 51 x 51 grids.The x-axis is the number of iterations and the y-axis
is the maximum error at each iteration.
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3.7 Conclusions and Extensions

The local relaxation method includes two important steps. The first is to deter-
mine the admissible lowest frequencies using boundary condition information. The
secohd is to approximate the PDE operator locally by a linear finite difference operator,
divide the nodes into red and black points, and form a locally accelerated successive
over-rela;(ation (local relaxation) operator. In previous discussions, some ideal
assumptions were made so that the analysis and design of the local relaxation algo-
rithm become very simple. However, we may encounter several difficulties in applying

the local relaxation method directly to real world problems.

Under the assumption that the problem domain is a unit square and that the
boundary condition operator is constant along each edge, the procedure for determin-
ing the lowest admissible frequencies is straightforward. These assumptions make the
basis functions separable and easy to analyze. However, in practice, the above
assumptions may not hold. The problem domain is usually of irregular shape and the
boundary condition operators may have space-varying coefficients. As a consequence, it
is considerably more difficult to find the lowest frequency error component than for

the case we have considered in this chapter.

The second 'diﬂicultyis felated to the construction of the local relaxation opera-
tor. If the coefficients of a PDE operator have some discontinuities in some region, the
Jacobi relaxation operator is not smooth over the region with discontinuous
coefficients. In this case, the determination of the optimal local relaxation factors for

such abruptly changing operators is still an open question.
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Chapter 4 : Two-level Four-color SOR Method

4.1 Introduction

The successive overrelaxation (SOR) method introduced in the early 1950’s is an
effective scheme for accelerating basic relaxation methods such as the Jacobi and
Gauss-Seidel iterations [7)[12]. The acceleration effect relies on the properties of a spe-
cial class of matrices known as the p-cyclic [11] or the consistently ordered [13] |
matrices. By discretjzing elliptic PDEs with fnite diff. erehce schemes, we often obtain
sparse matrix equations where the matrix is consistently ordered. Consequently, the

SOR method has a wide range of applications.

Three types of approaches, the pure space domain, semi-frequency domain and
pure frequency domain approaches, can be used to study the SOR iteration for solving
elliptic PDEs. Young’s work [12] [13] is a typical example of the pure space domain
approach. This approach starts from an expression for the SOR iteration in the space
domain. Then, under some conditions such as consistent ordering and property A [13],
an argument based on matrix algebra is used to find a relation between the optimal
relaxation parameter for the SOR method and the spectral radius of the Jacobi relaxa-
tion matrix. This procedure does not exploit any information provided by the eigen-
functions of the iteration matrix, so that the result obtained by this approach can be
applied to a large class of problems such as space-varying coefficient PDEs on irregﬁlar

domains.

The approach used in [2], [7], [8], [9] and [10] can be viewed as a semi-frequency

domain approach, which adopts the space domain formulation but uses a frequency
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domain, or Fourier, analysis technique. This approach still starts from a fixed expres-
sion for the SOR iteration in the space domain. Then, under the assumption that the
PDEs have constant coefficients and are defined on a rectangular domain with Dirichlet
or periodic boundary conditions, sinusoidal functions turn out to be eigenfunctions of
the discretized system of equations [7][10]. Hence, the system of equations can be
decouplec\l by using these functions as a basis and, as a consequence, each frequency

can be considered separately. This approach, although only rigorous for a restricted

class of problems, provides a simple explanation of how the SOR method works.

A common feature of the above two approaches is that an SOR iteration form in
the space domain has to be specified a priori. For simple cases such as for a 5-point
discretization of the Poisson equation, most reasonable SOR iteration forms lead to an
analysis in which the optimal relaxation parameter can be determined in closed form.
However, for more complicated cases, such as the 9-point stencil case, it is hot easy to
specify in advance an iteration form whose analysis will be easy [1][3]. A class of 9-
point stencil SOR iteration forms in the space domain was analyzed by Adams,
LeVeque and Young [2]. Since the iteration matrices obtained from these forms are not
consistently ordered, the traditional SOR theory cannot be applied for determining the
optimal relaxation parameter. Hence, Adams et al. used a separation of variables tech-
nique to study the eigenvalues and 'eigenf unctions of the system of equations, and
showed that the optimal relaxation parametér can be determined by solving a quartic

equation [2].

In this chapter, we siudy the same problem, i.e., we develop an SOR method for

the 9-point discretization of the Poisson equation. However, we use a pure frequency
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domain approach. This approach makes use of the traditional SOR theory for p -cyclic
matrices in the frequency domain. We first divide grid points into 4 colors. By assum-
ing that the PDE has constant coefficients and is defined on a square, we can apply
Fourier analysis to eaéh color so that a 4-color matrix equation can be obtained in the
frequency domain. The 4-color matrix is block diagonal with 4 X 4 matrix blocks
along the‘di'agonal. Each of these blocks relates Fourier components of the 4 colors at a
single frequency. If we partition the 4 X 4 matrix associated to a fixed frequency into
four 2 X 2 blocks, the block partitioned matrix is 2-cyclic. Therefore, at a first level,
we can use a standard block SOR iteration to accelerate the block Jacobi relaxation.
Then, to decouple values of two different colors within the same block, we have to
invert a 2 X 2 matrix. This can be easily accomplished by using a point SOR iteration
at a second level. Once the appropriate 2-level SOR iteration form is determined in the
frequency domain, it is straightforward to transform it back to the space domain. The

details are described in Section 4.3.

This pure frequency domain approach yields a new 2-level 4-color SOR method
which is ;:ompletely different from the single-level SOR method studied in [2]. For a
fixed color ordering, the 2-level 4-color SOR method can be described as follows. At a
first level, ihe red and orange poinis, and then the black and green points are treated as
groups, and a block SOR iteration is performed on these two groups. At a second level, :
another SOR iteration is used to decouple values at the red and orange points, and then
at the black and green points. The optimal relaxation parameters w; and w, at the
two iteration levels can be expressed in closed-form. The 2-level SOR method is easy

to implement, and its spectral radius is of the form 1 — Ch, where C is a constant
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comparable to the one obtained in [2].

The chapter is organized as follows. In Section 4.2, we use a simple 1-D 2-color
SOR method to demonstrate our pure frequency domain approach. Section‘ 4.3
describes the main result of this chapter, i.e., the 2-D 2-level 4-color SOR algorithm
for a 9—p?int discretization of the Poisson equation. Then, in Section 4.4, we show that
the conventional 2-D single-level 2-color SOR method for the 5—pbint stencil case is a
degenerate case of the general 2-level 4-color scheme. Closed-form formulas for the
optimal relaxation parameters @, and w, corresponding to the 2 iteration levels are
obtained in Section 4.5, where the convergence rate of the 2-level SOR method is also

analyzed. Finally, some numerical results are presented in Section 4.6.
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4.2 1-D 2-color SOR Method

Ih this section, we consider a simple 1-D model problem and show how the 2-
color SOR method can be derived from the Jacobi- iteration method by first transform-
ing the problem to the frequency domain and then introducing the relaxation .parame—
ter w inséde the frequency-domain iteration matrix. Although the final result is well
known, the approach we are taking is new and provides some new insight. The saﬁle

approach will be used to develop a 2-level iteration method in the next section.
4.2.1 Problem Formulation

Consider the discrete 1-D Poisson equation on [0,1] with grid spacing A

%(%—1—2%+%+1)=fn ’ n=12,---,N—1,
where ug, uy are given, and N = %— Suppose we divide the problem domain into red

and black points corresponding respectively to points with even and odd indices. With

this partitioning, the Jacobi iteration method takes the form
uptl = -15 (ury +u™y —2h%2f,) n even,

uptl= 5 (wfiy +ulyy —2h2f,) n odd.
Denote the exact solution by i, and define the error as e/* = ™ — i, . Then, the error

equations can be written as

1
en+l= vl (ey +e™; ) n even,

(1)
erti=z (el +efi ) noodd,

with epo=¢€ny = 0.
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Since (1) is a system of linear constant-coefficient equations with homogeneous

boundary conditions, the eigenfunctions of this system are given by sin(k 7nh ), where

k=1,2, --,(N—1). These functions form a basis, so that
2’;:—‘,1 Frsin(k7nh) 1<n SN-1,
NE_T', Fsinlfkmnh) 1 <n <N-1, (2)
where the coefficients 7{* and 5{‘ are chosen such that
m—=pm
foy Toodd . (3)

In other words, r;* and b* are two sequences which coincide with the errors at red and
black points respectively. They can be viewed as interpolations of the errors at the red
and black points to all grid points. Note that there are 2(NV —1) undetermined
coefficients in (2) and only N —1 constraints in (3). Since (2) and (3) form a under-
determined system of equation, there are many ways to choose 7/* and 5{‘. However,
the actual values of these coefficients are not important. We are primarily concerned

with how they evolve as the iteration proceeds.

Consider the error dynamics relating r, and b,,

rm+1=3‘;(b L)+ b )

1
bm+1_'2'(rn—1 + 174 ) 1

<n <N-1, @
<

n <N—

Although (4) contains more information than (1), all the information contained in (1)
is preserved by (4) and the dynamic behavior of (1) can be obtained by studying the
dynamic behavior of (4). Conceptually, (4) is easier to analyze than (1) since it is a

spatially invariant system for both red and black colors.
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By substituting (2) inside (4), for k =1, 2, ..., N —1, we have

o )
;ﬁﬂ = B(k) gg (5)
where

is called the Jacobi iteration matrix for the f requency k 7, which has two eigenvalues
ur = * coslkwh).

Intuitively speaking, we use the fact that the sinusoidal functions are eigenfunctions

of the linear system (4) so that, by changing the coordinate from the space domain to

the frequency domain, we are able to decompose the loosely coupled system (4) into a

decoupled system which is a block diagonal matrix containing many 2 X 2 matrices

along the diagonal.

Since the spectral radius of B (k) is less than 1 for any &, the iteration (5) con-
verges. Consequently, the asymptotic values 7> and 5,;’" obtained by this iteration
procedure are 73> = 5> = 0, and (5) can be viewed as obtained by solving the linear

system

1 —cos(k 7wh )

, with Ak)= | o5k 7h ) 1 '

Ak)

=[g

by the Jacobi iteration in the frequency domain. In order to increase the convergence

T
o™

rate of (5), we have to reduce the spectral radius of B (k).
4.2.2 Point SOR Iteration

The key idea of this paper is that instead of considering the SOR method for the

large matrix corresponding to (1), we can study the SOR scheme for each small 2 X 2
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matrix given by (6) separately and, then, seek the best SOR scheme for all of them.
Once the SOR scheme is obtained in the frequency domain, we transform the problem
back to the space domain so that the corresponding spatial SOR iteration can be deter-

mined.

It is important to observe in this context that A (k) and B (k) are consistently
ordered matrix. Since the SOR method was originally developed to accelerate the con-
vergence rate of consistently ordered matrices, the SOR method can be applied directly
to the iteration (5). The definition of consistent ordering and the details of the SOR

theory are all presented in [11] and [13]
Since this is a standard procedure, we only summarize the result here. Let

Ak)=I—-Lk)-U(k)
where L (k) and U (k) are lower and upper triangular matrices respectively. Then,
for a fixed frequency k 7, the Jacobi iteration matrix is

Bk)=Lk&)+Uk)

and the SOR iteration matrix associated with the frequency &k 7 is

Gok)=(I —oL&K)) {(1-0)] +0Uk)}. (7
In addition, the eigenvalues A; of G (k) and the eigenvalues wu; of B (k) are related

by [11, p.106]

()\,k +(ok—1)2=)\k (J.)%,U.g.

Hence,
+ _
}\k=(M2—\fA—)Z where A= owZug—4 (o, — 1),

and the spectral radius of (7) is
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I | *
(i L if A>0
Pr = W, — 1 lf A < 0 °
The above quantity can be minimized for all £ by choosing
o*= 2
1+ [1—p 2., %

and the resulting spectral radius is

where  fUpax = L<IEx lue | = cos(mh ), (8)

pPr=0'—1~1—-2sin(zh)=1—-27A .
In particular, since the SOR method is applied to A (k ) partitioned with 1 X 1 diagonal

submatrices, we call it the point SOR method.

The remaining problem is to transform the SOR iteration matrix (7) back to the

space domain. By using the correspondence,

cos(k wlh ) = -é—(e”“’”’ +e kTR ) é—( Et+E™) 1=1,2, -+,
where E! and E* are the [ -th order forward and backward shift operators defined as
Elu, =u,4 and E~ u, =u,_,, we find that the SOR iteration for r7 and b1

becomes

r7zn+l=(1_m*)r#+-(%:(b,¥"_1 +b,¥"+1) ©)

prtl=(1—0")br+ 5 (rml + o4t )
Vi i

It is straightforward to reconstruct the SOR iteration from (9), i.e.
uptl=(1—o)ul+ 5 (ufy +ulyy —h2f, )  n even,

unm.;.l:(l_mt)unm_k%_(%m_-iil +unm+-0i1 _han) n Odd,

which is consistent with the conventional SOR method with red/black partitioning.
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4.3 2-D 2-Level 4-color SOR Method
4.3.1 Problem Formulation

The 1-D 2-color SOR scheme discussed in the previous section can be naturally

generalized to the 2-D case by using 4 colors.

Consider the following discretized system with uniform grid spacing 4 ,

1
Y { 41(Un,+1,n, + up, —1,ny) + QZ(Un, n,+1 + Un, ,ny—l) + 43(u‘n,+1,ny+l T Un, +1,0,-1

+ u‘nx—l,ny+1 + unx—l,ny—l) -9 Un‘,ny }= fnx,ny Ng, Ny = 1,2, ---, \/N-_lr (1)

where

g =2q1+2¢g,+4gq3,

assumed that values at all boundary points are given. The system (1) can be viewed

as obtained from a 5-point or 9-point stencil discretization of the equation

2
q'l%ﬁ+q'2%ﬂ=f(x,y) wheregqg’y;,¢', >0, (2)

on the unit square [0,1)*> with Dirichlet boundary conditions. In particular, when
¢’y = q'3, (2) becomes the Poisson equation. In this section, we present a f requency-
domain approach for the design of a 2-level 4-color SOR method for the solution of

(1). Several concrete examples will then be examined in Sections 4.4-4.6.

We can divide the grid points into four groups, say, red, black, green, and orange.
A grid point is red if both n, and n, are even, black if n, is odd and ny is even, green
if n; is even and n, is odd, and orange if both n, and ny are odd, as shown in Figure

4.1.
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Figure 4.1: 4-color partitioning for the 9-point stencil discretization.
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Following the procedure described in the previous section, to understand the error
dynamics of the error associated to the Jacobi iteration for the system (1), we examine

the dynamiés of the four 2-D sequences

m
Tn,ny

— N/ R \/1_&:—1

Pk, sin(k; 7n h ) sinlkywnyh) 1 <n.,ny, <N -1,
k=1 k=1

A : .
_l F— . -
byt n, = 'k E_:l ‘f—t_ll b7 x, sin(k, 7n; h ) sin(k, 7nyh) 1 <ny,n, <N -1,
x = y
Nl VAL . , )
gr?:,ny = ﬁl J}{EI gﬂ,k, sin(k, 7n . h ) sm(ky wny h ) 1< n,, n, <JN -1,
x = y -

—1 VN1 . . ‘
OF n, = “kil “kE_:l o7 k, sin(k; 7n;h ) sin(kywnyh) 1< n.,ny, <N -1,
x y

where the coefficients 7Z, x . 5,{“ x, » &%, k, » OF, x, are chosen such that

TR n, = em o, ny even ny even, b, =eq n; odd ny even,
—_— m -—
8, n, = €, n, ny even ny odd, ogft. =ei n n; odd n, odd,

where e n = Ul o —ip 5 iS the m th iteration error at grid point (n, My ).

As shown before, we can transform the Jacobi iteration for 777, , &7 n » &n, n,
and o' ;n, » OT equivalently for the errors in the space domain at the red, black, green,
and orange points, into an equivalent set of iterations for the Fourier coefficients f{: &, »

5£j X, » & , and 6f° k, in the frequency domain. These iterations can be viewed as

solving the system

Pk, 0

Atk k) | 255 =5
.k‘ Ky 0
8, k,

where
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1 — 3 — O] — @)
— 3 1 - — o
A (kg Ky ) = —a; —oay 1 —az| (3)
— Oy — Oy — (3 1
‘and where
oy = 2q icos(k, wh ) oy = 2q ;cos(ky wh ) = 4q scos(k, wh Jcos(ky 7mh ) . @)

v g ’ q 3 q

4.3.2 Block SOR Iteration

The matrix A (k; ,k, ) partitioned such that its diagonal submatrices are all 1 X 1
matrices is not a consistently ordered matrix. However, if A (k, ,ky) is partitioned
with 2 X 2 block diagonal submatrices, it is a block consistently ordered matrix.
Hence, the block SOR iteration can be appiied to A (k. ,ky, ) with this kind of partition-
ing.

'The matrix A can be written as

A (kg by ) = D (kg ky ) — E(ke by ) — F (ke ky)

where
1 —a3 O 0 0 0 o o
—o3 1 0 0 0 0 a; o
Dkzhy)=| g 0 1 —oas|l> Ekey)=|0 0 0 0]
0 0 — 3 1 0 0 0 0
and F(k; ky) =ET (ks &y ). In addition, we can define

L (kg ky) = Dk, ky ) E(ky by ) and U (K, ky ) = D=1k, by ) F (K by ), e,

0 0 00 0 0 B B

0O 0 0O . 0 0 B B
Llc:ky)=|pg 8, 0 0| YUkeky)=10 0 0 o0 |-

B, B 0 O 0O 06 0 O

where
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8, = oy + a0z B, = oy + oo

Then, the block Jacobi iteration matrix is

B(ky ky) = L(kz ky)+U (ks ky) (5)

and the corresponding block SOR iteration matrix is

\Golke iy )=(I —0 Lk ky) ) (1=0)] +0Ulk k). (6)
It is easy to find that the eigenvalues of B (k; Ky ) are double roots at

(1’1+(12 xX; — o)
1—0’3 ’ 1+0’3 )

(7)

e g, = B1 £ By =
In addition, the eigenvalues sy, x of the Jacobi iteration matrix B (k. ky) and the
eigenvalues A, « of the SOR iteration matrix G o(k; ky ) are related by

(Mi, g, + Or, k, — 1 Y= hi, g, o2 k, ué &, -

Hence, if we proceed as in the 1-D case, except for a change of subscript from the 1-D

index £ to the 2-D index (k; ,ky ), we find that

ky o, e, e, E B
2

©
)\k,Jc,=( > where A=mé,ky#é,k,_4(‘°kxky—l)

and the spectral radius of G (,(kx ky ) is

g & M | £ VA
(—=2 5 » if A>0

Pr, k, = mkz,cy—i it A<0

The above quantity is minimized for all ¢ and m by choosing the following optimal

relaxation parameter

2

 _ —_
o = 1 +[1_,U~nz;ax]‘/z where Mmax = ISkg}g;%xw/N-—l Il“k,‘,kyI ’ v (8)

and the spectral radius of the corresponding SOR matrix is
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p# =*—1 .
4.3.3 2-1evel SOR Iteration
Suppose that one of the coefficients ¢, g2 Or g3 is zero, or equivalently, that one
of ay, oy, or w3 is zero for all (k, &y ). Then, the 4-color block SOR method described

above red\uces to an equivalent 2—color SOR method, which corresponds to a degenerate

case that will be discussed in Section 4.4.
For the moment, consider the nondegenerate case in which 71, 42, and ¢ 3 are all
greater than zero. In this case, the pure f requency-domain block SOR method given by

(6) cannot be successf ully transformed back to the space domain. To see this, let us

write the space domain equation corresponding to (6),

r,i’:";,i =(1—0w*) Tn, T (Bf"b,’l’:,ny + Bfg,:’:yny ),
onh =(l1-e0 ol +o*(BfbL, +Bf el . ), 9
b =(l1-0) b7 n, +w* (Bf T+ Bfo,’,’:j;li ),

),

where Bf and B represent the space domain operators corresponding to 8; and 8, in

gLH, =(1=0" ) gl +0 (BS 73l +Bfops

the frequency domain. It is straightforward to derive that

991(E1+E{1 ) + go93(E+E? YEL+EST)

B = S T T e R

@@ 1(E+ETY) + g9 (B +E? Y(E,+E51)) x

1+ (LPE e r 2 E e 4 -
where £y, E{1, E,, and E5! are forward and backward shift operators in the n, and

ny directions respectively. A similar expression can be written for B5 by
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interchanging ¢, and ¢2- Although values of the solution corresponding to different
colors at the n +1th iteration are totally decoupled in (9), the implementation of (9) is

Very expensive in terms of the amount of computation and communication required.

In order to avoid this difficulty, we can rewrite (6) as

Ga,(kx,ky)=(D(kx,ky)—mE(k,,ky))‘l{(l—m)D(kx_,ky)+mF(k,,ky)},

and the corresponding space domain equation associated to the optimal block relaxa-

tion parameter »* becomes

i —oz_a}'o"'+1 = (1—w* )(rp ny Tofol, )+ w* Caf b " ny +a29gn_n
_ags’rm+1 +o,{:;; =(1—¢.,-)(_a§r,;';,zy +o,;;ﬂy)+w:(a§b,;:ﬂy +afg,;';ﬂy ). (10)
bt —afgmil = (1—y=)( b 5, —afgn, )t o (ozfr'"+1 +afomil

nx Tty

—afb,,’:"}i tens =(1—w*) (- afpm ieny T &N A )+ @0 (c:rggr'""‘1 +afo’"+1)

where of, af, and of are space domain operators corresponding respect1ve1y 10 oy, as,

and o3 respectively, i.e.

of =Ll (B +Ef1 ), ase L (B, +E51),
af = % (E,+Ef! J(E,+E1 ),
The right-hand side of (10) is much easier to implement than that of (9), However, the
price that we pay is that values at the red and Orange points and values of the black

and green points at the (m +1)th iteration are coupled together as indicated in the

left-hand side of (10)

We can divide (10) into two sets of equations: the first two and the last two.

Within each set, for example the first two €quations, instead of solving r’”+1 and

On ‘;: directly, we can apply a point SOR scheme to these two equations and sdlve
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T ",’11 and o7 t,i iteratively. As a consequence, we obtain a 2-level SOR method.

A pref:ise description of the 2-level SOR algorithm for (1) in terms of the matrix
A (k, ,ky ) specified by (3) is given in Table 4.1. At the Ist level, we treat all red and
orange points as a group ( n;+n, even ) and all black and green points as another
group ( ng -+;ny odd ) and perform a block SOR iteration between these two groups.

The output of this iteration is denoted by f ,:': b,:, ' and is used as driving function for

the 2nd-level iteration. At the 2nd level, we perform a point SOR iteration to further

decouple values at red and orange points, or at black and green points.

A data flow diagram which illustrates how grid points exchange values with their

neighboring points at each iteration for the above algorithm is shown in Figure 4.2.

Note that we use different relaxation parameters at different levels, i.e., we use
respectively w;, and w, for the block and point SOR iterations. It is a well known
result that both the block and point SOR iterations applied to a positive definite matrix
converge if and only if their relaxation parameters are between O and 2 [11]). Hence,
the convergence of the 2-level SOR scheme that we present can be achieved by first
choosing

0<w, <2, M sufficiently large, (11a)
where M denotes the total number of point SOR iterations performed at the second
level, so tha{ the point SOR iteration converges inside each block SOR iteration. Under
condition (11a), a 2-level SOR iteration is not different from a single-level block SOR

iteration. Therefore, by imposing the additional constraint,

O0<w, <2, (11b)
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G 0 G O G 0 G O
R B—)%(-—B R->BeR B
G—aé«—(T; o G O0—G+O0
R 11; R B R B R B
(a) . (d)
G O G 0 G 0 G O
R B\R/B R B R B
G O G\O G 0 G O
R B R B R B R B
(v) (e) |
G 0 G O G 0 G O
"R B R B R B R B
| »G\‘o/c 0 G © G/o
'R/B\R B R B R\B

(c) ' )

Figure 4.2: Data flow diagram for a 2-level 4-color SOR method with computa-
tional order { red — orange — black — green } (a) Block SOR iteration for red
and orange points. (b) and (c) Point SOR iterations for red and orange points.
(d) Block SOR iteration for black and green points. (e) and (f) Point SOR itera-
tions for black and green points.
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formy, =0,1,2, -
/beginning of a block SOR sweep/
for n,+n, even /red & orange/

+1
1’1’:b,ny 1= (1—wp )(unrtb,n), —af unn:b,ny Hoyp (O‘isun":b,ny +of ﬂ:b,ny —h2f n, ,ny)

0 =
Vn, Myt u‘n, My

form, =0,1,2,.., M—1
/beginning of a point SOR sweep at red & orange points/

for n, even /red/

m_+1 m m m, +1
Vnln 1= (1-o, )Vn,':ny +o, (o:fvnx{ny + 1 nn, )
forny odd /orange/

m_+1 m m_+1 m, +1
Vo ln, 1T (1= Jon 2, +0p (afvrPn +Fn'n, )

/end of the point SOR sweep at red & orange points/

my +1
X 'ny

for ny+n, odd /black & green/

=y M
. Ty Ty,

m, +1 m, +1

+1
Tig oMy = (l—mb )(unr:"b.ny —ajg uﬂn:b,ny )+Cl)b (afu::”,ny +ozfun —h Zf s ,ny )

X ,77.),
vn? Wy, = un”:b,ny
form, =0,1,2,..,M-1
/beginning of a point SOR sweep at black & green points/
for n, even  /black/

m_ +1 m m m, +1
P = P P 4
Vnln, (1—wp, vy 'n, TOp €730 ny T8 nm, )
forny, odd /green/
m_+1 m m_+1 m, +1
P = 4 P b
Vo0, (1—wp Iv, 'n, F0p (aegvp, 'y I n,0n, )

/end of the point SOR sweep at black & green points/

mb+1 e M
n

x 1Tty x My

/end of the block SOR sweep/

Table 4.1: 2-1evel 4-color SOR Method

R T T s ] P - v P Y Smm———a e e W G S
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the 2-level SOR method is guaranteed to converge. In Section 4.5, we will discuss how
to select the value of M and optimal relaxation parameters w, and w; to maximize the

convergence rate of the 2-level SOR method.
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4.4 Degenerate Case: 5-point Stencils

In this section, we show that the traditional single-level 2-color SOR method' for
a 5-point stencil is in fact a degenerate case of the general 2-level 4-color SOR method
described in Table 1. The following discussion also gives us more insight into the 2-

level SOR\ algorithm.
4.4.1 Standard S-point Stencil

The standard 5-point stencil discretization of the Poisson equation is

1
Y3 ( Un, +1,n, + Un, ~1,n, +u, Ay +1 +u, my=1 4 Un Ty )= fn, ay o

which is a special case of (3.1) with

g1=1, g,=1, ¢g3=0, and ¢ =4.

Hence, we have

cos(k, 7h ) cos(ky wh )

(11=———2—"—, C(z———g_, (1’3=0,

and

af=£3rﬁ+:Ex—;l, ozf=%£y—_l, af=0.

For this case, we know that w; = O from (2.8). It is easy to check that the 2nd-level
point SOR iteration becomes trivial and that only the 1st-level block SOR iteration is
necessary, which is exactly the same as the traditional red/black SOR method with the

following optimal relaxation parameter

* ¥ — 2 ~ —_—
1 + [1—cos2(#h )]% 2-27h . (1)
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4.4.2 Rotated 5-point Stencil

Another 5-point stencil discretization of the Poisson equation is [5]

2_}1‘2' ( Up, +1,n,+1 + u'n, +1,n,—1 + u‘nx —1,n,+1 + u'nx—l,ny—l -4 unx My ) = fn, My
which is also a special case of (3.1) with

4

1
71=0, ¢2=0, ¢g3=», and ¢ =2.
Consequently, we find that

o; =0, =0, a3= coslk;wh )cos(kymh),

and

«f=0, af=0, af= (EI+EX—121(Ey +Ey-1).

It turns out that @y = 1 and in this case the 1-st level block SOR iteration becomes

trivial. Only the 2nd-level point SOR iteration is necessary, which can be written as
| . 1
uln = (1—w") uf: ny ofaful » —5h3fn n)  (ncny) red or black

¢

. 1
up il = (-0 ul +oXefull )l —5h%f, ) (ngny) orange or green

where

t=m#= 2

P14+ [l;cos‘(#h NG ~2-2V27h . (2)

w

By comparing (1) and (2), we find that the only‘diﬁ‘ erence between the standard
and rotated S-point stencil discretizations is that the mesh size is 2 in the first case,
and /2% in the second case. The optimal relaxation parameter w* and spectral radius
p* = o*— 1 have therefore to be adjusted accordingly. Note however that the above
observation depends on the isotropy of the Poisson equation, since the standard and

‘rotated 5-point stencils give rise to different discretizations in the anisotropic case.
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4.5 Convergence Rate Analysis

In this section, we show how to select the optimal relaxation parameters w; and
w, for the 2-level 4-color SOR method described in Section 4.3, and we analyze the
convergence rate of the resulting method when it is applied to equation (4.3.1) with

nondegeqerate coefficients, i.e., for

g1>0, g,>0, g3>0.

4.5.1 Determination of Optimal 2-level Relaxation Parameters

First, let us concentrate on the 2nd-level point iteration. In order to determine the
optimal relaxation parameter, we need to find the spectral radius of the point Jacobi

iteration which is given by

4q scos?(7h ) 4q
= m lazl = = (1-72n2),
Fpmaz =y, B —1 13 q q
where the maximum value of lasz! occurs for (&, ,ky) = (1,1) and (VN —1,/N —1).
Since the spectral radius of the point Jacobi iteration is bounded by the constant %

which is less than 1, even a simple point Jacobi relaxation converges reasonably fast.
Nevertheless, this can be further improved by a point SOR iteration using the follow-

ing optimal relaxation parameter

* = 2 ~ 4gs .,
“r 1+ [1— (4413)200254(1rh)],/z 1+ ( 7 )2, W

with the spectral radius

4
pr = wy =1~ (2. (2)

For a typical example, we have ¢3 = 1 and ¢ = 20 (see Section 4.6) so that p; = 0.01.
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Since the error can be damped approximately at the rate 1072 | where M is the

SECTION 4.5

number of 2nd-level iterations, only 2 or 3 point SOR iterations inside each biock SOR

iteration are necessary. The fact that the 2nd-level point SOR iteration requires only a
constant number M of steps to converge, where M is usually 2 or 3, plays a crucial

role in our analysis of the convergence rate of the 2-level SOR method. By using this

\

observation, it will be shown below that the convergence rate of the 2-level SOR

scheme is similar to that of the standard SOR method for a 5-point stencil, or of the

9-point SOR scheme discussed in [2].

Next, we examine the 1st-level block iteration. The spectral radius of the block

Jacobi iteration matrix (4.3.5) is given by

(¢4 +a2 a1—0y

2(q 1+q 3)cos(7h )

= I,
K max 1<k,,§c?2xﬁ—1{ I—a3

which occurs at

(ke ky)=(1,1), (1,V/N —-1), (VN —1,1) and (VN —1,/N —1).

- By using the fact that ¢ =2¢ 1+2¢ ,+4¢q 4, we can simplify gy n,x as

_ (g—4g3)cos(zh)

= ~ — 2n 2
Homaz = 0 4g scos (wh ) 1 (7+q—zqs)"”’ .

Hence, the optimal relaxation parameter for the block SOR iteration is

* 2 ~nn__ 8q3 i

and the spectrai radius is

pp=wy—1= 1—2(1+ )'/2

Therefore, if g3 = 1and ¢ = 20, thenpf =1 — J617h

I+os = g —4q scos?(mh )

(3)

(4)
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Since for a fixed point, the 2-level SOR method divides neighboring points into
two groups and operates on one group at the block iteration level and on the other
group at the point iteration level, and since each block SOR iteration at the first level
reqﬁires M point SOR iterations at the second level, it is convenient to define the

effective number of iterations for one 2-level SOR iteration as
v

— ‘WPM + wy
Neg = T, (5)

where w, and w, represent the amount of work required per block and per point
iteration respectively. The number n,s measures approximately the computational
burden of one full 2-level SOR iteration in terms of equivalent 9-point Jacobi itera-

tions.

If the point SOR iteration converges in M iterations, the convergence rate of the
2-level SOR method is then only determined by that of the block SOR iteration.

Therefore, we can define the effective spectral radius of the 2-level SOR iteration as

1 Wy +w,

by = Cp5 )™ = (s )7+, ©)
which is used to measure the average smoothing rate per effective iteration of the 2-

level SOR scheme. |

For the above example, since the amount of computational work for each block

and point SOR iteration is the same, we have w, = w;, so that
M+1 . 2
neg = g P T 1= gpypVorh .
When M = 2, we find therefore that '

ng =3=15, py =1—163mh . )
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The above effective spectral radius p;ﬁr should be compared with the spectral radius
ps = 1— 1.797h that was obtained for the 9-point SOR method discussed by [2]. In
the next section, we will present a 2-level SOR method with a different computational

ordering whose effective spectral radius is p;y =~ 1 — 2.267h .

We see from the above comparison that the 2-level SOR method and the 9-point
SOR procedure of [2] have very similar convergence rates. The main difference is of
course that the method of [2] is a single-level method which uses only one relaxation
parameter o . In addition, its convergence rate analysis requires the study of the solu-
tion of a quartic equation, and does not yield closed-form relations between p°, "
and the spectral radius x4 of the 9-point Jacobi iteration matrix. By comparison, the
approach that we have used above to study the convergence of the 2-level SOR method
relies on standard SOR theory, and provides closed-form relations between p,, ®,, and

HMp maz » and between pg, wp, and Hy max -

Finally, note that the amount of work required by each effective iteration for the
9-point stencil case is about twice as large as for a standard 5-point SOR itefation.
Thus, to compare the convergence rate of the 2-level SOR method with that of the
standard S5-point SOR scheme, we must compare p,; with the spectral radius
(ps)2=1-— 4mh corresponding to two 5-point SOR iterations. This comparison seems
to indicate that the 5-point SOR iteration converges faster than the 2-level SOR
method, or the 9-point SOR method discussed in [2]. However, the 9-point stencil
discretization is more accurate than the corresponding 5-point stencil discretization.
Thus, for the saine accuracy, we can select A larger for the 9-point stencil discretiza-

tion so that in actuality the 2-level or single-level 9-point SOR methods may converge
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faster than the standard S-point SOR method.
4.5.2 Computational Order

In the above discussion, we havg used a particular computational order, i.e., { red
— orange — black — green }. Now, let us consider other computational orderings.
Although there exist 4! = 24 different ways to permute the computational order for
these 4 colors, they only result in 3 different 2-level SOR iteration schemes. By inter-
changing the relative positions of «;, &3, and a3 in the matrix A (k. Ky, ), we can obtain
only 6 different matrices, each of which corresponds to 4 different cofnputational ord-

erings. Furthermore, we can divide these 6 matrices into 3 classes:

1l —o —ay; —a3 1l —a; —a3 —oy

- 0 1 — 3 — 0y — 1 —; — (3

Class 1: —ay —a3 1 —a and —ay —a; 1 —ay
— 3 — 0y — O 1 — 0 T3 T 1

I —op —ap —og 1 —a; —a3 —oy

—w; 1 —a3 —m -0y 1 —a; —oj

Class 2 : —a; —a; 1 —oy and —a3 —a; 1 —oy
— 3 — ] Ty 1 — ] T3 Ty 1

1 — a3 — @ — oy 1 — Q3 —0; T

— 3 1 —ay; — 0y - O3 1 — ] Ty

Class 3: —a —ay; 1 —as and —ay —o; 1 —aj
— Q) — O] — 3 1 — ] — Oy — Q3 1

It is easy to see that the same 2-level SOR method applies to matrices within the
same class. Although the discussion in Section 4.1 applies only to matrices of Class 3,
we can use a similar approach to obtain optimal block and point relaxation parameters

and spectral radii for a 2-level SOR method for matrices of Classes 1 and 2. For
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matrices of Class 1, we find

. 2 e 1,2
oy =1+ g (LR, oy = (SR, (8)
* o~ q+4q3 1 * o~ q+4Q3 z
o earh ~1-2 Verrh .
@8 =22 g iR s =g, @

and for matrices of Class 2, we need only to replace ¢; by ¢, in the above expressions.

\
The data flow diagram for the computational order { red — black — green —

orange }, which corresponds to a 2-level SOR method applied to matrices of Class 1, is

shown in Figure 4.3. Let us analyze the convergence rate for this 2-level SOR itera-
tion. From Figure 4.3, it is easy to see that w, = -15 wp, . Therefore, from (5) and (6),

we have

3+M . —

Neg = - Pep = (Pb)3+M .

Consider now the typical example where ¢; = ¢, = 4 and ¢3 = 1. By using (8) and
(9), we find that the spectral radius of the point SOR iteration becomes larger, but the
spectral radius of the block SOR iteration becomes smaller, i.e.

pp T4x1072, pp =1—Brh .

Therefore, the effective spectral radius can be expressed as
C 4
Peg = 1= JrgzBrh .
This gives

peg = 1—226mh if M =2, p;p =1—1897h if M =3. (10)
By comparing (7) and (10), we observe that the performance of a 2-level SOR iteration

applied to matrices of the first or second class is in fact better for this specific example.

e e . P e v . ey mem B b e e —————_
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G O. G O G O G O
494
X R R B R B
ZTRAN NI
oG o G O O
/TN
R B R B R" BB R B
(a) (d)
G O G O G 0 G O
R B—>R<«—B - R B R B
G 0O G O G 0—G+~0
R B R B R B R B
(b) _ (e)
G O G O G 0 G O
R—>B<—R B R B R B
G O G O G—>0<«<G O
R B R B R B R B

() . ' (f)

Figure 4.3: Data flow diagram for a 2-level 4-color SOR method with computa-

tional order { red — black — green — orange }. (a) Block SOR iteration for red
and black points. (b) and (c) Point SOR iterations for red and black points. (d)

Block SOR iteration for orange and green points. (e) and (f) Point SOR itera-
tions for orange and green points. :
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4.6 Numerical Examples

We consider the system of equations obtained from a 9-point stencil discretiza-

tion of the isotropic Poisson equation, i.e.,

1
oz L in Fun, 10 48, a1t )+, iny Htin, i

i
Fin _n o Hn n )= 20U 0 V= fan, neny =12, 00, YN -1, (1)

with zero boundary conditions and h = v%v- = -210- In this case, ¢; = ¢, =4, and

g3 = 1. Since in this example the performance of the 2-level SOR method for matrices
A (k. ky ) of Classes 1 and 2 is the same, we compare only the following two compu-

tational orders:
order (a): { red — orange — black — green },
order (b): { red — black — green — orange }.

The computational orders (a) and (b) are obtained by applying the 2-level SOR itera-
tion to matrices A (k; ,ky ) belonging respectively to Classes 3 and 1. Their spectral
radii and optimal relaxation parameters for the block SOR and the point SOR iterations

are summarized in Table 4.2.

order Wy | Py W, Ps
(a) 1.679931 0.679931 1.009702 0.009702
(b) 1.640105 0.640105 1.042400 0.042400

Table 4.2: Optimal block and point relxation parameters

We use the following two test problems:

Example 4.1: The driving function is e5* [2x (x—1) + y (y —=1)(25x2—5x —8)] and the

true solution is e3*x (x—1)y(y —1). In this case, the solution is a smooth function
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with a wideband 2-D Fourier spectrum which is concentrated in the region where k,

and )‘cy are small.

Example 4.2: The driving function is —747%sin(57x )sin(77y ) and the true solution is
sin(57x )sin(7#7y ). This corresponds to the case when the solution is a rapidly oscilla-

tory f un(ition containing a single Fourier component at (k; ,k, ) = (5,7).

The compilted results are shown in Figures 4.4 and 4.5, where we plot the max-
imum error at each iteration as a function of the ‘number of block SOR iterations. Each
curve is parameterized by the number M of point SOR iterations that we have used. It
is almost impossible to distinguish the curves with M = 2,3,4 for computational order
(a) in both examples. Hence, it is reasonable to choose M = 2 in this case. When the
computational order (b) is applied to the first example, where the solution contains
low frequency components, the curve for M = 3 is slightly better than for M = 2.
Nevertheless, the difference is very small. For the second example, the curves with
M = 2,3,4 are in fact not distinguishable. Thus, for computational order (b), it is still |

preferable to choose M = 2, since less computations are required.

| Finally, to demonstrate the convergence rate of the 2-level SOR method, we
choose another test problem which has zero driving function, zero boundary condi-
tions, and x (x—1)y (y —1) as the initial value. The same test problem was also con-
sidered in [2]. This is in fact a homogeneous Laplacian equation, and its solution is
zero. In Figure 4.6, we plot the 2-norm of the error versus the eff ecﬁve number ( Nef )
of iterations for the above two computational orders and M =2. The results show that
the 2-level SOR method with computational order (b) is better than that with order

(a).
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\.
(a)

Figure 4.4: Computer simulation results for Example 4.1 with the computa-
tional orders (a) { red — orange — black — green } and (b) { red — black —
green — orange }. The x-axis is the number of 1st-level block iterations and
the y-axis is the maximum error at each iteration.
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2

(a)

Figure 4.5: Computer simulation results for Example 4.2 with the computa-
tional orders (a) { red — orange — black — green } and (b) { red — black —
green — orange }. The x-axis is the number of 1st-level block iterations and
the y-axis is the maximum error at each iteration.



SECTION 4.6

- 165 -

paN

(®) -



- 166 - SECTION 4.6

AN
X

G - x\\
10 B
lo.d 2

30 “ “ ol

Figure 4.6: Convergence history (2-norm of the error versus the number of
effective iterations) for the computational orders (a) { red — orange — black —

green } and (b) { red — black — green — orange } with M=2. The driving
function is zero and the initial value is x (x —Dy(y-1).
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4.7 Conclusions and Extensions

The 2-level SOR iteration method presented here can be generalized easily td
higher-dimensional problems. A 3-level 8-color SOR scheme is described as follows.
Consider a nondegenerate 27-point discretization of the 3-D Poisson equation. Suppose
that each grid point is indexed by (n,n,,n;). We can label these points with 8 colors
depending on whether n., n,, and n, are even or odd. Following a procedure similar
to the one used in Section 4.3, we transform the discretized system from the space
domain to the frequency domain so that in the frequency domain we obtain an discret-
ization matrix which is block diagonal with 8 X 8 block matrices alo’ng the diagonal.
Each of these blocks describes the coupling of the Fourier components of the 8 colors
at a fixed frequency. Since the discretization scheme is nondegenerate, each 8 X 8
matrix block is full. In order to apply the SOR method for each of these 8 X 8
matrices, we can block partition them into 4 X 4 submatrices. This results in a 1Ist
level block SOR iteration. However, the 1st level block SOR iteration requires invert-
ing 4‘x 4 full matrices, which can be accomplished by performing several 2nd level
block SOR and 3rd level point SOR iterations. Note that both the 2nd levei block SOR

and 3rd level point SOR iterations require a constant number of steps to converge. The
total number of iterations required by the above 3-level SOR method, which is O (711-),

is therefore determined primarily by the convergence rate of the 1st level block SOR

iteration.

There are many different possible computational orders for the above 3-level SOR
procedure. A typical one can be chosen as follows. At the 1st level, we can distinguish

two big blocks depending on whether (n, +n, +n,) is even or odd. At the 2nd level,
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within each big block, points are further divided into two smaller blocks according to
whether (n; +n, ) is even or odd. Finally, at the 3rd level, each color can be separated

from each other.

It is straightforward to generalize the above procedure to obtain an [-D I-level

2! _color SOR method. Here, we have considered the case where l =2,

Another generalization of interest would be to extend the 2-level SOR iteration
procedure describe_d in this chapter to PDEs with spacé—varying coefficients. It is
natural in this context to combine the 2-level SOR method discussed here with the
local relaxation procedure developed in [4], [6] and [9]. The main idea of the local
relaxation method can be roughly stated as follows. Each local finite difference equa-
tion is viewed as if it were homogeneous over the entire problem domain so that at
each point a local relaxation parameter is determined on the basis of the local
coefficients of the PDE and of the boundary conditions for the whole domain. Hence, a
2-level local relaxation method would use the local coefficients and boundary condi-
tions to choose optimal local block and point relaxation parameters at each grid point,
so that different grid points would have therefore different block and point relaxation

parameters.

Note also that the pure frequency domain approach that we adopted in this
chapter depends heavily on the multicolor partitioning scheme. The relation existing
between the single-level rowwise and multicolor SOR methods for the 5-point stencil
and the 9-point stencil cases can be explained by introducing a tilted grid [10])[2]. There
does not seem to be an easy Waj to apply the tilted grid concept to obtain a 2-level

rowwise SOR method. Note however that the multicolor and rowwise SOR iterations
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usually have the same efficiency [1]. In addition, the multicolor SOR method is espe-

cially attractive for parallel processing [1][3][9].

In this chapter, we have transformed the system of equations for the discretized
PDE from the space domain to the frequency domain so that we were able to interpret
the SOR method from a new point of view. This new formulation has helped us to
design a 2-level SOR method with optimal block and point relaxation parameters. The
resulting 2-level 4-color SOR method for the 9-point stencil discretization of the Pois-
son equation was shown to be efficient with spectral radius 1 — Ch, and numerical

examples confirm our analysis.
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PART III : MULTIGRID METHODS

The third part of this thesis focuses on multigrid methods for the solution of
elliptic PDEs.

A two-color Fourier analytical approach is proposed in Chapter 5 to analyze and
design multigrid methods which rely on the red/black Gauss-Seidel smoothing itera-
tion. In this approach, Fourier components in the high wavenumber region are folded
into the low wavenumber region so that the coupling between the low and high
Fourier components is transformed into a coupling between components of red and
black computational waves in the low wavenumber region. With this new tool, we
develop a two-color multigrid direct solver for the 1D Poisson equation. For the 2D
case, we show that the two—color two-grid method asymptotically reduces to a one-
color two-grid method whose physical mechanism is more transparent than for its ori-
ginal two-color form. Several design issues such as rearranging the smoothing order
and smoothing with a relaxation parameter o = 1 are also studied from the same
viewpoint.
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Chapter 5 : Two-color Multigrid Methods

5.1 Introduction

It is well known that the multigrid method which employs the red/black Gauss-
Seidel smoothing iteration provides a very effective way of solving elliptic PDEs [3][8].
The red/black relaxation scheme is also attractive for parallel computation [2]. How-
ever, the mechanism of this method is not as transparent as for methods which use
other types of smoothers such as the damped Jacobi iteration [6][8]. Through the
red/black Gauss-Seidel iteration, low and high wavenumber components of the solu-
tion are coupled together, so that some high wavenumber components are in fact pri-
marily computed by the coarse-grid correction procedure. Therefore, it is more
difficult to give a physical explanation of this phenomenon. A two-grid analysis of
this method for a model problem consisting of the Poisson equation on the unit square
with Dirichlet boundary conditions has been performed by Stiiben and Trottenberg [8].
Their analysis is mathematically so involved that it provides little insight into the
mechanism of this method. The objective of this chapter is to use a variant of Fourier

‘analysis called the rwo-color Fourier analysis to clarify the physical mechanism of the
red/black Gauss-Seidel multigrid method and to investigate several design issues such

as rearranging the smoothing order, and smoothing with a relaxation parameter o = 1.

The red/black relaxation operator and the restriction and interpolation opefators
are linear periodic operators. A straightforward Fourier analysis does not apply since
they are spatially dependent. Nevertheless, the periodic propefty can be exploited to
reformulate the conventional Fourier analysis as a two-color Fourier analysis as

presented in Chapters 3 and 4. From this new viewpoint, components in the high
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wavenumber region are folded into the low wavenumber region so that there exist
two, i.e. red and black, computational waves in the low wavenumber region. The cou-
pling between the low and high conventional Fourier components is therefore
transformed into a coupling between red and black computational waves with the
same wayenumber in the low wavenumber region. With this new Fourier tool, the
spectral representation of every operator in the two-grid anélysis can be easily derived
and interpreted. Then, we show that the two-color two-grid method asymptotically
reduces to a one-color two-grid method which is easier to analyze than in its original
two-color form. Although our analysis is different from that of Stiiben and Trotten-

berg [8], it turns out, without surprise, that they are mathematically equivalent and

lead to the same results.

The two-color Fourier analysis not only serves as an arialytical tool but is also a
useful design tool. This is particularly evident for the 1D problem, for which the
two-color two-grid Fourier analysis is used to design a fast direct method. For 2D
problems, we show how to rearrange the smoothing order in such a way that some
computational work required in the standard restriction and interpolation procedures

can be saved without impairing the convergence rate of the overall algorithm.
o

Despite the fact that the red/black SOR iteration is an effective single grid solu-
tion method, its usefulness in the context of multigrid methods remains doubtful
[6](8]. From numerical experiments, we find that the red/black SOR iteration with a
relaxation parameter « slightly greater than 1, can indeed improve the convergence
rate. Practically speaking, the introduction of the felaxation parameter w increases the

required computational work, and the improvement of the convergence rate may not
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offset the additional computational cost. The practical use of such a multigrid method -
is theref ore questionable. Nevertheless, from a theoretical point of view, this is an
interesting problem since it provides a link between single-grid and multigrid solution
methods. We propose a simplified analysis to explaiﬁ this phenomenon and to predict

the optimal relaxation parameter.
\

This chapter is organized as follows. The 1D problem is studied in Section 5.2.
~ The analysis and design of 2D two-grid methods is presented in Sections 5.3 and 5.4

respectively. Concluding remarks and extensions are given in Section 5.5.
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52 Analysis and design of 1D two-color multigrid method

Consider a (h ,2h ) two-grid method for solving the discretized 1-D Poisson equa-

tion on Q=[0,1] with boundary values uz (0) and z (1), i.e.

L (=2 4 )=fn . n=12 - ,N-1, (1)
where u, is the estimate of u(nh ), & is the grid spacing, and N = 71-1— is even. The
difference between the exact solution iZ, and the estimate v, is the error e, = u, — i, .
For a two-grid method, the error equation can be written as

enev — MhZheald ,
wheree = (e, * - - ,ey—1)7 and M2 is the two-grid iteration operator [8],
My = S5 Ki2h S
where S, is the smoothing operator ( smoother ) for the A -grid Qj, »; and v, are the
numbers of presmoothing and postsmoothing iterations, and K;2* is the coarse-grid
correction operator ( coarse-grid corrector )
Kt =1, —I% L2, ,
and where I, I4,, Ly, I;?%, Ly are the identity, interpolation, coarse-grid Laplacian,

restriction, and fine-grid Laplacian operators respectively.
S5.2.1 Two-color Fourier analysis

" The analysis of M;2" is often performed in the wavenumber domain so that we

consider the coefficients &, 1<k <N —1, of the Fourier expansion

e, = NZ_I éx sin(k 7nh ) . (2)
K=1

The decomposition (2) is particularly convenient for understanding multigrid methods



- 176 - SECTION 5.2

which employ the damped Jacobi smoothing iteration [8]. However, when we use the
red/black Gauss-Seidel smoothing iteration,’ the Fourier components €, and éy_, are
coupled together. In this paper, a modified Fourier analysis is introduced to analyze
this type of smoother. As usual, we call grid points with even and odd indices the red |
and black points. Errors at red and black points form red and black sequences, which

\ .
- can be expanded in Fourier series as

N_,

e, = 3: fysinfk wnh) , n even, (3a)
N

e, = tEk sin(fk#7nh) , n odd. (3b)
=1

It is straightforward to see that the Fourier components of the red and black sequences

are related to the Fourier components of the complete sequence e, via

~

Tk
b

1 -1
1 1

G 1<k <81 and By=éy.
2 2

EN—k

_ 1
-2

The decomposition (3), called the two-color Fourier analysis, is particularly con-

venient for operators operating on grid points on a periodical basis.

For example, consider a Jacobi relaxation operation operating at the red points

only,

1 _
e,?‘""=-2-[e,.?’£1+e,‘,’zf1] n even, elM¥=¢eld n odd.

In the spectral domain, the matrix representation of this iteration describing its action

on(Fy b J, 1<k S—g——l,is given by

0 cosf

§h,(6)= 0 1 , 9=k7fh.

For k = %’- Sh » (—727—) is a mapping from by onto itself and equals to 1. Similarly, a
Z
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Jacobi relaxation operation operating at the black points only gives

1 O

Sh 2@ = |cos0 0

, 0<9<—727—, and §h_b(—727;)=0. (4)
Hence, the spectral representation of the red/black Gauss-Seidel iteration can be easily

obtained as

Spr s (8) = S1 5 ) 5, (8) = | O P

0 cos26

0<9<%—, and gh,r/b(g')=0 .
5.2.2 A two-color multigrid direct solver

Now, let us study the coarse-grid corrector K;** by using the basis ( 7 , b, ).

Let the restriction operator 7,2 and the interpolation operator 74, be

I;2h ll,l,llﬁh and I% : l1c,1l,c 14, (5)
T2 7

where ¢ is an arbitrary constant. Since points of the coarse grid coincide exactly with
red points of the fine grid for the 1D case, [;2%(#), which is a mapping from (7,5, ) to

7., and 14, (6), a mapping from 7 to (7,5 )T, assume the following simple forms,

1

=1L, 997 and  75,0)= | 5 a0

In the red/black spectral domain, the 2k -grid, the h -grid discretized Laplacian opera-

tors and the identity matrix are represented respectively by

—1 cosb

2(cos26—1)
cosf -1

f‘Zh (9) = (2h

. L®) =3

AR [(1) ?l .

Hence, we obtain

0 0
—2ccosf 1

R;2(0) = I}, (6) — I3, (0)L 72(0)1,2%(0)L 5, (6) = (6)

Equation (6) shows that all red computational waves are eliminated by the

coarse-grid corrector K32, Suppose that we are able to eliminate the effect of all black
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computational waves by some smoothing operation. Then, one coarse-grid correction

followed by such a smoothing operation is sufficient for solving the two-grid problem

; 1

exactly. From (4), we know that a simple Jacobi iteration at the black points, i.e. Sy
serves this purpose. Consequently, by choosing

M2t = Sy p K2, with Kph=1, =I5, L3020, , (7

M;2(8) are 2 x 2 zero matrices for all 0<9<—g—. Besides, Mhz"(—g—) is also zero. Thus;,
the two-grid method (7) is exact.
5.2.3 Modification and generalization

Although the above analysis is independent of the value ¢, the choice ¢ = 0 saves
computational work and, therefore, is preferable in practice. It is possible to reduce
the computational work of (7) further by using Sy » or Sy 5 as presmoother. Depend-
ing on whether we use S » or Sy 5, the residues at the red or black points are zero,

and in this case the restriction operator I;2" in (5) can be replaced either by

[711-,.0.71[-],%" or [0.-5—,0];3".
In particular, if we use S 5 as presmoother and let ¢ = 0, a modified two~color two-

grid direct solver can be described as follows:

(1) Perform a Jacobi iteration at black points.
(2) Calculate residues at the red points and multiply them by -é—

(3) Solve the system of residue equations on the 2k -grid and add the coarse-grid
solution back to the original values at the red points.

(4) Perform a Jacobi iteration at black points.

This algorithm corresponds to the following two-grid operator
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Mph =8, (1, _Lz_h]'é'Lh,r )Shp (8)
~ where Lj , is the restriction of the discretized Laplacian operator to the red points of
the h -grid, and I, , is the identity operator for the red, points. For 0 < 6 < —727-, the

spectral representation of Ly , and I , is given by

—1 cosf 10
0O O 0 0} -

Note that the calculation of the residue takes the same amount of work as the smooth-

. IO =

J:h,,(e)=72f

ing operation at every grid point. We compute the residues at all grid points in (7)
while we perform the smoothing operation at one half of the grid points and compute
the residue at the other half of the grid points in (8). The saving comes from the fact

that a 3-point averaging operation is needed by (7) and that only a multiplication of
-é— is required by (8). The saving in the restriction and interpolation procedures will
be generalized to the 2D case in Section 5.4.1.

A two-color L -grid direct solver ( L > 2 ) can be defined by using the above

two-color two-grid method recursively, i.e.

Mh2h=Sh,b (Ih,l‘ —th %Lh'r )Sh,b ’ (93.)
with |

1
2

It can be proved by induction that (9) is a direct method for the system of equations

(1).

Xp =MZ h=o ,2<I<L-1, and Xy =Ly ,h=%. (%)

There exists no analog of equation (6) for 2D problems so that there is no 2D

direct solver corresponding to the one described above. However, a relation similar to
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(6) holds in the low wavenumber region which means that the 2D coarse-grid correc-

tor can reduce errors of low wavenumber components effectively.
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5.3 Analysis of 2D two-color multigrid method

In this section, the two—color Fourier analysis is used to analyze a (2 ,2k ) two-

grid method. We choose the discretized 2D Poisson equation,

712- (1.:,‘3‘_1,1y t ity sin, ¥l a1 LR ST )= fn“zy 1S n,.n, SN-1, (1)

where Un, my is given for ng,ny =0orN,and N = %— is even, as an example. Since
this two-grid algorithm has been analyzed by Stiiben and Trottenberg with the stan-
dard Fourier analysis [8], the physical interpretation associated to the two-color
Fourier analysis, rather than the specific mathematical result that we derive, will be

emphasized in the following discussion.
5.3.1 2D two-color Fourier analysis

The errors e, ny associated to (1) can be expanded as

N1 Nz o . .
€n, n, = kél :Zl &k, &, sin(k; mn, h )sin(k, 7mny b ).
x y

We divide grid points with indices n = (n, My ) into red and black points, depending
on whether n, +n, is even or odd. Then, errors at red and black points define red and

black sequences, which can be expanded as

RSy

€n, n, = kg{ Pro x, sin(k; 7nz h Jsin(k, 7n,h ), n.+n, even,
€n, n, = . é{ 5’& , sin(k, #n, h )sin(k, 7ny k), n:+n, odd,
b

where X, = K and K, = K U {(-[QV—,—jgv-)},andWhere

K ={ (ke ky) €125 ketky SN=1, ke ky 21 o ky=N —k; , 1<k -1},

‘For k € X, we denote (N —k, ,N —ky ) by k. It is straightforward to check that f'k,
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By, 8y, éx are related via

1 1
1 —1

Px | _ 1
bey| — 2

, k€K and by=8, k=012,
The original and the folded two-color Fourier domains are depicted in Figure 5.1.

Note that X, and K, differs only by a single element (_12\/_,_12\[) and, therefore, at the
\
N N s
wavenumber (—2—,—2-) we have only a scalar by n- As before, we define
. Tl—z'

0=(6;,0))=(k;7h kywh) and ® denotes the set of 6 whose corresponding k

belongs to K.’
5.3.2 Analysis of two-color two-grid method

We consider the two-grid iteration matrix with one red/black Gauss-Seidel itera-
tion
MR = K258y 5 Sn, (or Sp S, Ki?t), Kh=1, — I Ly L, , (2)
where L, and L,; are the 5-point discretizations of the Laplacian on the h and 2h

grids, and I;?* and I%, are the full-weighting restriction and linear interpolation

operators, given by

1 11 2h
i€ 3 16
Ihzh: % % -;— (3&)
1 1 1
i ¥ 16 |,
and
DU TS B
4 2 4
g 32 1 L (3b)
1 1 1
4 2 4 25
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ey
(0,7
o ék
ék *
0
(0,0) (7,0)
(a)
by
(0,7)
(Fx.bx)
0,
(0,0) (7,0)
(b)

Figure 5.1: (a) Conventional and (b) folded two-color Fourier domains.
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The problem is to determine the spectral radius p(M;?") of the two-grid iteration
matrix.

Each of the 4 X 4 wavenumber domain matrices appearing below corresponds to a

mapping from a vector space formed by the vector

(re,—rg, by ,=bg N,

onto itself, where

N —

2 Ky) if ke >k,
ks N —ky) i

N N
2 x
L

k =(k; k) 1<keky <, K=

We also use the abbreviations

cosf, +cosh . cosB, +cosh, - s A
o= _2__.‘ Y o= —2—’ Y-, B=cosf,cosf, , B= cosh, cosfy, .

(1) Smoothing
For 6, , 6}, < —g—, the wavenumber domain matrix corresponding to the red/black

Gauss-Seidel iteration is

I0 0 J
J O 0 J2

where 0O is the 2 X 2 zero matrix, /7 is the 2 X 2 identity matrix, and

0J
07

gh r0)= §h »(0) '§h F(0)= , (4)

o 0

J = 0 o

When 6 or 6, is equal to —g— Sh »/6 iS @ 2 X 2 matrix

0 «

St 15 (8) = 0 o?

which is a mapping from (7y,6x) to (Fy,6, ). Finally, for 6, =0, = -g—,

.§h -6 = 0, which is a mapping from & k to itself.
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Note that when the first partial step of the red/black Gauss-Seidel iteration, i.e.
the Jacobi iteration at red points, is performed, the original values of the red points are
discarded and, hence, the computational process that follows is only determined by
the initial values of the black points. This observation is the basis for reducing the

two—color analysis to a one-color analysis.
\

(2) Coarse-grid correction

Let us first consider the case 8, , 6, < —’27- The wavenumber domain matrices for

operators [, Ly and L 53! in (2) can be written as

70
07

In (4) and (5), there is no coupling between vectors (7,6, ) and (7 £.65). The cou-

-1 J

L@ = C L= | Lae=Lty =201 (5)

pling between them comes from the full-weighting restriction and linear interpolation
operations, which are more complicated than in the 1D case since the coarse-grid points

do not coincide any longer with the red points of the A -grid.

The decomposition, shown in Figure 5.2 and comrrionly used in the rhultirate sig-
nal processing context [4], is very useful for understanding the physical mechanism of
interpolation and restriction operators, and for deriving their wavenumber domain

matrices. Conceptually, we decompose the restriction procedure into two steps.

Step 1: lowpass filtering ( or averaging ) at every point of Qj, where the weight-.

ing coefficients are specified by stencil (3a).

Step 2: down-sampling ( or injecting ) values from Qp to Q,; .
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down
lowpass :
sampling | _
filtering Q, : Qo
(a)
up. lowpass
sampling e
Q¢ Qs filtering
(b)

Figure 5.2: Decomposition of the (a) restriction and (b) interpolation operators.
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The interpolation operator 74, is also decomposed into two steps.

Step 1: up-sampling values from Q,, to Q,, by which we assign O to points

which belong to Q; —Q 5

Step 2: lowpass filtering at every point of Q,, where the weighting coefficients

are specified by stencil (3b).

It is relatively easy to find a wavenumber domain matrix representation for each of

the above steps. Combining them together, we obtain

1+ 0_ 2 O

0 2a ~ ~
% 2?1 133 1+8 (;1 = %[1+B 1+8 2« 2a], (6a)

0 20 0 1+8

I20)= [1 1 0 0)x

and

1+ 0_ 2a O 1 1+8

a _ 0 148 0 2« 1|11 _1/|1+8

@)= 2 0 148 0| X7 |0|=%|2a]|- (6b)
0 2 0 1+8 0 2&

Thus, in the wavenumber domain, the down-sampling operation adds the high
wavenumber component —7; to the low wavenumber component 7y. This
. phenomenon is known as aliasing [4]. On the other hand, the up-sampling operation
| duplicates the low wavenumber component 7 in the high wavenumber region in the
form of —7 g, which is called imaging [4]. The lowpass filters cascaded with the
down-sampling and the up-sampling operators are basically used to reduce the aliasing
and imaging effects. For example, when 6, and 6, arecloset0 0, = 1,3~ 1, & = 0,

and B = —1. Hence, the aliasing and imaging effects occurring between (7,6, ) and

(Fg.b)T are substantially eliminated by the associated lowpass filters.
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The product 13, (6)1:2%(0) can be expressed as

. Fy F (1482 (148)(1+B)

5@ O)=g | £, Fpy|» where Fu=|( a4 (1+872 |- 2
2a(1+B) 2&(1+§) _ | 40? daw

Fip=Ff = 20(14B) 2a(1+8) | ° Fa= 4daxe 402

Therefore, from (5) and (7), we obtain the coarse-grid corrector,

. Kn K
20(0) —
K;2h(0) = Ky K|
where
K11=I—-315-(F121—F11), Kzz=f—7[18'(Fz1f—Fzz),
K= Ze(FrJ—Fyy), Ky = Z5(Fyl—Fy),

which holds for 6; , 6, < —727— For the remaining cases, we can show that K;2%(0) is
either the 2 X 2 identity matrix or 1, depending on whether only one of 6, , 0, is -g- or
both 6, and 6, are —Z—

(3) Two-grid iteration

Combining results in the previous discussion, we find that in the wavenumber

domain My?h = K;?2 §, ., is represented as

. 0 Ky J+K,J2 ’

MhZh(e) = 0 KZIJ +K22J2 , Gx y Gy < -727— , : (8&)
=0 %1, 6, or 6, =%, (8b)
M;2(0)=0, 0. =6, = 7. (8¢c)

Therefore, the spectral radius of M;2%(8) is
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p(K;_l./' +K22J2) 61 , 9y < g—
o(M1,2(8)) = | o 0, ory =7, (9
0 Gx = ey = %

and finally the spectral radius of the two-grid iteration matrix is

\ -~
p(My#) = max p(M2M6)).
6,8, <3

The two-to-one color reduction is mathematically clear from equations (8) and (9).

Note that the two-grid iteration process M;?*(8) is the combination of two processes
Mlz(e) = K11J+K12]2 , Mzz(e) = K21]+Kzz]2 ’

which describe the evolution from (by,~b5 ) to (ry,—r ;¥ and (by,—bg )’ respec-

tively. Since the m -fold repetition of M?* gives

[( M:270) Y2 )y = M12(0) M%7 (8),  [( M2H(0) )™ )y = M3, (8),
the convergence of the two-grid method depends entirely on the process M ,,(0).

The above derivation can be easily generalized to the case with more than one
red/black Gauss-Seidel smoothing operation. Suppose that v; and v, such smoothing
operations are used respectively for the presmoother and postsmoother, then

P M2 (w1, v )] = p(SR2 1 KiaSi 1n ) = p(KASHY2)

where the last equality comes from the fact p(AB ) = p(BA ), and

P(K 217 P 714K 5, %) 0, .0, < _g_
p(M3#(v,02,0)) = { a? 9, or 6, = g_ ,
0 0, =6, = _727_

where v = v; + v,.
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Let us examine the matrix

Meq = KZI.,ZV_1+K22JZV ’ (10) :

which represents a one-color two-grid iteration process and can be expressed as

M, = JK,J¥1, (11)

where

1= +8)a?=1)  _ (1+B)&*—1)
20 20

S )= ; '
Ra =1=gg/7FallP=D= | (upye-n | _ asb)a—1)

is the equivalent one-color coarse-grid corrector. Since P(UK o J271) = p(K,y J?), we
see that /2 can be viewed as the equivalent one-color smoother Seq » Which corresponds

to two Jacobi relaxation steps for the black component & .
In [8], Stliben and Trottenberg reduced their analysis to the determination of the
largest value among all the spectral radii of matrices J PKeq, 0 <6, By < -g-, and a

closed form of this quantity has been derived ( pp. 104-108 ). Since the same result

holds here, we summarize it as follows

1

: : T ‘ v=1
LM (=i +v) 1= 7] |
+1
7 (T v22

In the above expression, the maximum of p[M;2%(8)] occurs at § = (—Z—,O) or (0,—75-)

when v =1 and at ( cos‘l[(Tf_—I-)%] , cos‘l[(%l- )%]) when v 2> 2.
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5.4 Design of 2D two-color multigrid methods
5.4.1 Rearrangement of the smoothing order

Suppose that we rearrange the smoothing order from { red — black } to
{ black — red } for the two-grid iteration discussed before. In the wavenumber

domain, 'ghe black/red Gauss-Seidel iteration matrix becomes

J2 0 a2 0
J 0 o 0

This indicates that the computational process that follows is determined by the initial

'§h,b/r (6) = ex ’ey < ‘12'7'; , GI or Gy = —727— ; O, 61:9}':% .

values of the red points only. Several facts can be obtained by modifying the deriva-
tion in the previous section slightly. The two-grid method with black/red Gauss-
Seidel relaxation consists of two processes

Mu(e) : (rk,—rf)T — (rk,—rE)T ’ Mz1(9) : (rk,—rg)T - (bk,—bE)T .
Asymptotically, its rate of convergence is determined by that of the process M 11(6).

In mathematical terms, we have

PK 13] 2714 K 1T 2) 6: .6, < -127-
Pl Ri2(6) 3/, (0) 1= | o O or6y = 7 .
0 6, =6, = _"27_

Since 1, = F%; , we obtain the equality

p(K12]2V_1+K11f2")= p(KZIsz—I_l_KZZJZv) , ‘
which implies that the spectral radii of the two-grid methods with either the

red/black or black/red Gauss-Seidel relaxation are the same.
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Motivated by the 1D algorithm (5.2.8), we consider an improved multigrid
method whose two-grid iteration operator M;?? is of the form
M2t = Sp b Kp¥} Shr Kt =1In, =I5 L5101y 4
where /; , is the identity operator at red points, Ly ; is the restriction of the 5-point
discretized Laplacian operator to the black points of Q, and I;?* and 7 5» are the
\

black-to-coarse restriction and coarse-to-red interpolation operators defined by,

2K
o & 0 1 4 1
1 1 4 4
> | 5 0 T and 1%, : (1) 1 ? (1)
1 + 0 <
0 5 0 \ 4 T |,

Comparing (5.3.3) and (1), we see that the simplified restriction operator I;2* and
interpolation operator 75, are in fact obtained respectively by setting the coefficients
of the red points of the full weighting operator /;?* and of the black points of the

linear interpolation operator 7%, equal to 0. This change is motivated by the observa-

tion that

Shp KithSp, =Snp Ki?t S, ,

since the residues at the red points are zero before the restriction operation and the

values at the black points are not used after the interpolation. The corresponding

computational algorithm is stated below.

(1) Perform a Jacobi iteration at the red points.

(2) Calculate residues at the black points and average them with the coefficients
specified by 7,?* to obtain residue values at the coarse-grid points.

(3) Solve the system of residue equations on the 24 -grid, and interpolate the
coarse-grid solution 1o the red points according to 75,, which is then added back
to the original values at the red points.
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(4) Perform a Jacobi iteration at the black points.

One important feature of the improved method is that it splits one complete iteration
Snr Sup into two separate operations and uses S; , and Sy, as presmoother and
postsmoother respectively. It is this particular arrangement that makes possible the
reduction_l of coinput_ational work associated 1:6 the use of the simplified restriction and
intérpolation operators (1). The iinproved method has the same convergence rate as
the conventional method using either red/black or black/red Gauss-Seidel relaxation,

since

P(Sh o Kt Snr)=p(Shp K Sp )= p(Ks? Sppsr )= p(Ks2" Sy 15 ).
The generalization of the improved method to v 2 2 is straightforward. The key
is to position S, , just before the residue restriction step and S, 5 just after the solu-
tion interpolation step. For example, when v = 2, the improved two-grid methods can

be

Snpir K% Snprr v Shs K Shr Shrse» OF Snyin Shp K2 Sh, .
5.4.2 Smoothing with a relaxation parameter

The red/black Gauss-Seidel relaxation method is a special case of the red/black
SOR iteration with the relaxation parameter @ = 1. In the context of single-grid itera- -
tive methods, an optimal choice of the relaxation parameter usually improves the con-
vergence rate significantly. However, it has been observed empirically that the choice
@ =1 gives the best efficiency for multigrid methods [3)[8]. Since every multigrid
method uses a certain kind of single-grid solution method as an essential building
block, i.e. for the smoother, there exists a close relationship between single-grid and

multigrid methods. Hence, an interesting problem consists in analyzing the link
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existing between the SOR single-grid method and its corresponding multigrid method.

One common way to analyze a multigrid method is to approximate it by an
analysis of a two-grid method as shown in Sections 5.2 and 5.3. However, for e 5= 1,
the 4 X 4 two-grid iteration matrices are of full rank and the resulting analysis
requires t_\he determination of the largest value of the spectral radii of 4 X 4 matrices.
Consequently, it is difficult to perform an exact two-grid analysis. The other common
simplified analysis is based on the assumption that ideal restriction and interpolation
operators are used to partition the wavenumber domain into low and high
wavenumber regions [8], whefe the partitioning is normally done according to whether
they can or cannot be represented on the coarse grid. By such a simplification, we can
focus on the error smoothing property in the high wavenumber region. Nevertheless,

this analysis does not help to understand the multigrid SOR method either.
S5.4.2.1 Analysis

A simplified analysis is proposed below to explain how the multigrid red/black
SOR method works and to predict the optimal relaxation parameter. Our analysis is
motivated by the observation that in a two-grid method errors are reduced by two
effects: the smoothing and the coarse-grid correction effects. So, we first partition the
wavenumber domain into the smoothing region © and the coarse-grid correction
region ©° depending on which effect is dominant. Then, we concentrate on the
smoothing effect in the smoothing region, where the coarse-grid correction effect is
ignored. This analysis is appliéd to the equivalent one-color two-grid matrix given by

(5.3.11) below.



- 195 - SECTION 5.4

Step 1: determination of the smoothing region
We require that the coarse-grid correction region should be within the square

0<6;,6, < —727- Within such a square, two parameters n and «,

’

0, 6,)= U2l =a?, k(O 8,)= Kyl = 1 - LHBNe?=1)
are used ELo measure the smoothing and the coarse-grici effects of the two-grid method
(5.3.11). The choice n = o? is obvious. The choice k = [K.; 111 is based on the obser-
vation that the coupling term [K,, ];, is negligible when (6, By ) is close to the origin.v
However, the nonideal characteristics of J;>* and /%, are still preserved by [Keg Ji1 so

that there exists a transition between the coarse-grid correction and the smoothing

effects. A reasonable choice of smoothing region is

{(6:0,)€©: 6, > or 6, > % or n(6,,6,)<x(6,.6,),if (6,0, )€, 52} .
Since the contour n(6;,0, ) = (6, ,8, ) cannot be parameterized easily, for simplicity
we modify the above choice slightly and define the smoothing region as

O =1{(6:,8,)€0: o? <ny, where mo=n660)= k(80,80 } .
In the above definition, (84,8¢) is the point along the line §, = 6, where the smoothing
parameter m and the coarse-grid correction parameter k have the same value ng. This

value is then used as threshold to specify the smoothing region. For 8, = g, =0,

K(08)=1— % (1+cos),  n(6,0)=cos? 6,
which are plotted in Figure 5.3. We see that the smoothing region ®° increases as v
increases. The partitioning of the smoothing and coarse-grid correction regions in the

folded two-color Fourier domain is depicted in Figure 5.4(a).
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Figure 5.3: Plot of the smoothing parameter 1(6,0), 1 S v < 5, and of the
coarse-grid correction parameter «(6,6) as functions of §, 0 < 8 < -g—
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0
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Figure 5.4: Partitioning of the smoothing region and the coarse-grid correction
region with » = 2 in the (a) folded two-color and (b) conventional Fourier
domains.
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In particular, the single-grid method can be viewed as an extreme case of the
two-grid method where v is so large that the smoothing region covers all feasible

discrete wavenumbers. By solving k(64,6¢) = n(6y,8,) with » = 1 and 2, we find that

1
v=1
no=n(8080) = | 5 .
T

We can also examine the partitioning of the smoothing and coarse-grid regions in
the conventional Fourier domain as shown in Figure 5.4(b), where the domain is parti-
tioned into three bands: the low, middle and high wavenumber bands. We see that the
red/black Gauss-Seidel relaxation is an effective middle band smoother. The smooth-
ing property becomes poor when (6; .6, ) is close to (0,0) or (7,7) and errors in these

regions are primarily solved by the coarse-grid correction operation.
Step 2: design of the SOR smoother in the smoothing region

Once the smoothing region is determined, we adopt a further simplification. It is
assumed that within the smoothing region, the coarse-grid correction effect is negligible
so that the coarse-grid correction operator is treated as if it were an identity operator.
Then, the remaining task is simply to determine the best single-grid SOR method in
©°. Since the analysis is standard, we simply summarize the result [9][10]. With

respect to (7Fy b x ), the red/black SOR iteration matrix is

1 O

o 1—o

l1—o oo
(1 woae o?2a?+l-o|’

11— o«

G0.0)=25;5000)8,,(0,0)= 0 1

0, +cosf
where a = &Qﬂs—y, and S - () and Sj, , (@) are the damped Jacobi relaxation

~operators with parameter w at red and black points. The optimal relaxation parameter
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o* which minimizes max plG (0,0)] is

1
v

2
*= where a2, = max o2 = (ng)? ,
max 0c o (4]

©= 1 + [1_(1nz-llax]W ’

and we define

=max pl G B0)]=0*—1,
\ A= ma plG(0,0)]=0w
as the smoothing rate. In particular, when v=1 or 2, we find that the predicted

optimal relaxation parameter and smoothing rate are given by

. 1.101 v=1
Wpre = | 1.171 p=2 - (2)
_ 0.101 v=1
Hpre = 10.171 y=2 -

The predicted convergence rate of the multigrid method is usually related to the

smoothing rate via p,r. = g, [8], so that we have

_]0.101 v
- | 0.029 v

For larger v, we have a larger smoothing region as well as a larger optimal relaxation

1
> (3)

Ppre

parameter w®. When ©° = @, the two-grid method behaves like a single-grid SOR

method and, hence, an optimal relaxation parameter close to 2 is then needed.
5.4.2.2 Numerical results

To study the convergence rate of the V-cycle multigrid method With the

red/black SOR smbother, we consider the discretized Laplacian equation on the unit
square with zero boundary conditions and A, = hy = BIZ" which has zero as its exact

solution.
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Although the optimal relaxation parameter w* may vary slightly for different

problems, we observe that

. 1.10 (vy,v) = (1,0) (4)
Wexp ™ | 1.15 (v1,0) =(1,1) » 4

generally gives the optimal or nearly optimal convergence rate. The convergence his-

tory for initial guesses corresponding to
(1) a random 2D sequence, and
(2) a smooth function, i.e. x (x —1)sin(7y ),

are plotted in Figures 5.5 and 5.6. The y-axis is the 2-norm of the error and the x-axis

is the number of V-cycle multigrid iteration. The observed convergence rates are

0.31
0.25

1(1]8 ’ (VI’VZ) = (1,0) , (5a)

~

Pexp ~

and

~ ] 0.12 o = 1.00

Pexp ™ l0.03 ©=1.15 > (r,v) = (1,1). : (5b)
From (2) - (5), we see that the simple analysis presented in the previous section
matches the experimental results closely for v = 2. However, for v = 1, there exists a

significant discrepancy between our theoretical analysis and the observed convergence

rate.

We can conclude that as far as the convergence rate is concerned, the V-cycle
multigrid method with (vq,v,) = (1,1) and «*= 1.15 usually gives the best result.
Thus, if we are interested in solving a system of algebraic equations to a very high
order of accuracy, it may be worthwhile to use the red/black SOR smoother in a mul-

tigrid algorithm. However, our objective is often to solve a system of equations which
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is used to approximate a partial differential equation. Since the discretization error for
* the 5-point discretized Laplacian is O (22), one or two cycles of a multigrid iteration
are sufficient to achieve this accuracy. In such a case, the improvement of the conver-
gence rate may not offset the additional computational work required by the introduc-
tion of a relaxation parameter different from 1. It is also important to emphasize that
the ull-iveighting restriction and the linear interpolation operators given by (5.3.3),
rather than the simplified restriction and interpolation operators specified by (1), have '

to be used when o = 1.
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IN . I E—

100

AL
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Figure 35.5: Oonvergencé history of the V-cycle multigrid method, where
(v4,v5) = (1,0), for two test examples with (a) w =1 and (b) ® = 1.1. The x-
axis is the number of cycles and the y-axis is the 2-norm of the error.




-203 - SECTION 5.4

o

Figure 5.6: Convergence history of the V-cycle multigrid method, where
 (v1,v,) = (1,1), for two test examples with (a) @ =1 and (b) @ = 1.15. The
X-axis is the number of cycles and the y-axis is the 2-norm of the error.
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5.5 Conclusions and extensions

A two-color Fourier analysis method has been proposed to analyze and design
-multigrid algorithms which employ the red/black Gauss-Seidel iteration. By this
analysis, we can clearly explain the coupling phenomenon existing between the low
and highﬁwavenumber components of the solution and give an more intuitive deriva-
tion of the two-grid analysis for the model Poisson problem. The same analytiéal
approach can also be conveniently applied to the MGR-CH ( Multigrid Reduction with .

checkered Gauss-Seidel relaxations ) method [5][7].

We also used a simplified analysis to predict the optimal relaxation parameter for
a multigrid SOR method. The improvement of the multigrid convergence rate has been
demonstrated both analytically and e)'(perimentally. Although multigrid SOR algo-
rithms do not present any advantage for the 5-point stencil discretization of the model
Poisson problem, they are expected to be useful for solving systems of equations
obtained from high-order discretization schemes such as the 9-point discretized Lapla-
cian operator. Various single-grid SOR schemes have been investigated for this prob-
lem already [1] ( also see Chapter 4 of this thesis ). It is an interesting future research

topic to incorporate these single-grid SOR smoothers inside multigrid procedures.
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PART IV : PARALLEL PROCESSING

The last part of this thesis examines the implementation of various single-grid
and multigrid solution methods on multiprocessor arrays.

We first study the parallel implementation single-grid solution methods on a
mesh-connected processor array. Consider a mesh-connected processor array consist-
ing of O (N ) processors used to solve a discretized elliptic PDE with O (N ) unknowns.
We show that the Jacobi, Gauss-Seidel, SOR, and Conjugate Gradient (CG) methods all
require O (N ) computation time while the local relaxation method presented in
Chapter 3 only requires O (/N ) computation time. The advantage of the local relaxa-
tion method is that it can achieve an acceleration effect with only local communica- -
tions at each iteration. :

Then, we give a brief survey of current research work on parallel implementa-
tions of single-grid and multigrid solution methods on multiprocessor arrays.
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Chapter 6 : Parallel Implementations of Single-grid and
Multigrid Methods on Multiprocessor Arrays

6.1 Introduction

The implementation of a given algorithm on a tightly-coupled multiprocessor
machine,\ can usually be accomplished in two steps, as shown in Figure 6.1. The first
step consists in implementing the algorithm on a virtual machine whose architecture
supports the algorithm in the most natural way. Then, in the second step, the virtual‘
machine is mapped into a specific physical machine. The first step requires an analysis
- of the parallelizability of the algorithm that we consider, and in particular a study of
the computation and communication requirements of this algorithm. The second step
focuses primarily on the topological structures of the virtual and physical multipro-

cessor machines, and on their relation.

implemen- virtual physical

algorithm mapping

tation machine machine

Figure 6.1 : Parallel implementation of algorithms

As discussed in Chapter 1, if the interconnection of the physical machine is
.chosen to be exactly the same as that of the virtual machine, the mapping problem
becomes trivial and the resulting special-purpose architecture is especially efficient for

the particular algorithm under consideration. Nevertheless, for most cases, the
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machine available is not identical with the virtual machine desired. So, the mapping
(or embedding) problem is often an interesting and important issue [3][4]. However, it
is quite different from the algorithm implementation problem, and it is therefore

preferable to treat these two problems separately.

This chapter has two objectives. The first objective is to study the parallel imple-

‘mentation of relaxation algorithms for a class of elliptic PDEs given by (3.2.1) on a 2D

domain with VA" X/N grid points on a VN X/N mesh-connected array. Section 6.2
shows that the performance of the local relaxation method is better than that of other
single-grid iterative methods with respect to this implementation. Let the sum of the
communication and computation times in one iteration be the processing time per itera-
tion. We find that the implementation of the Jacobi and Gauss-Seidel relaxation
schemes requires O (1) processing time per iteration and O (N ) iterations to achieve
convergence, and that the implementation of the conventional SOR and conjugate gra-
dient (CG) methods requires O (/N ) processing time per iteration and O (/N ) itera-
tions to achieve convergence. As a consequence, these various parallel implementations
have all a time complexity proportional to O (N ). In contrast, the local relaxation
algorithm developed in Chapter 3 requires O (1) processing time per iteration and
O (/N ) iterations and, therefore, its time complexity is proportional to O (/N ) only.
The second objective is tovreview research work concerning the parallel implementa-
tion of single-grid and multigrid methods on multiprocessor arrays, which will be

presented in Section 6.3. Finally, some concluding remarks are given in Section 6.4.
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6.2 Implementation of Single-grid Methods on Mesh-connected Arrays

 Consider an elliptic PDE problem on a square domain discretized by a finite-
difference method on a grid Q; with /N X{/N grid points. The most natural sup-
porting architecture for solving this problemris a VN x/N mesh—connected array.
This is d}le to the following observations. First, there is a one-to-one correspondence
between grid points of the discretization grid Q, and processors in the array and the
mapping between processors and grid points is trivial. Second, processors are con-
nected in the same way as discretization points are related to each other, so that the
- exchange of data which is required by the algorithm can often, but not always, be
easily implemented as a local communication exchange between neighboring proces-
sors. Hence, by assigning one processor to update the value of the solution at one grid
point, we obtain a natural parallel computational scheme to solve the discretized PDE

problem. In fact, this idea simply exploits the parallelizability of the PDE problem in

the space domain.

The total running time for an iterative algorithm equals the product of the pro-
cessing time per iteration and the number of iterations. In a sequential machine, the
processing time per iteration is‘ determined by operation counts, especially by the
number of floating point operations required. In a multipfocessor machine, however,
the processing time per iteration depends heavily on the communication scheme
required by the algorithm chosen. Algorithms using only local communication will
take O(1) communication time, while those using‘ global communication require
O (/N ) communication time per iteration since for an array with N processors, com-

munications between processors located on opposite sides of the array will take
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O (VN ) time. We thus seek algorithms with fast convergence rate, short computation

time, and primarily local communication.

Starting from equation (3.2.2), we can discuss the details of implementing
different iterative algorithms with a mesh-connected processor array. Let us label the
processor of a /N X /N array by a 2D index, and assign the processor at coordinate

\

(n, My ) the responsibility of calculating the value of Un, n,+ Direct communication is

allowed only between neighboring processors. At iteration m +1, each processor may -
combine the estimated value of u™ in neighboring processors, together with its own

estimate of u7 mn, 10 order to develop a new estimate ug ‘,‘1; .
For the Jacobi method, we have

+1 — 7 — m m
umtl —dnx }ny (l"x ny Un": -1,n, +75, my Un, +1,n, "'bnx myUn, n,—1 +tn, My un”: ny+1 +S,_ ny ).

Xy

According to the above iterative equation, each processor uses the values of u™
obtained by its nearest neighbors to update its value at the current iteration. Process-
ing time per iteration is constant, because both communication time and computation

time are constant.

If the grid point (n;,n,) is called a red point when n, +n, is even, and a black
point when n; +n, is odd, the Jacobi method can be viewed in spaée and time as con-
sisting of two interleaved, and totally independent compuzational waves alternating
between red and black points. This phenomenon is illustrated in Figure 6.2, where the
one dimensional grid with red/black partitioning is shown in the horizontal direction
while the evolution from one iteration to the next is indicated in the vertical direction.
The solid and dotted lines represent two value-updating processes evolving with time,

or two computational waves.
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x-coordinate

Figure 6.2: 1D Jacobi relaxation with red/black partitioning
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In fact, these two waves result in unnecessary redundancy. We need only one
wave to get the answer, since both waves converge to the same final values. If we
delete one computational wave, the rate of utilization of the processors becomes one
half, i.e., every processor works only half of the time. Therefore, we may group one
red point and one black point together and assign them to a single processor. This saves

half of the hardware cost without loss of computational efficiency (See Figure 6.3).

For the Gauss-Seidel relaxation with red/black point partitioning. we have the

local equations,

red points (n; +n, iseven ):

m+l — 7 —1 m m m m
Un,n, = dn, 7y (Lnx my Un,—1,n, +rp, my Un, +1,n, +bn, ny Ungn, -1 +p, my Ung ny+1 +5n, ny ),

black points (n; + n, isodd ) :

Un, tzi = 1'1:,111y (Ln, n, Uny i},n, +7n, 0, U, I}.ny +b,, n, Un, 711 -1+, n, Un, :;'z},+1 +Sn, n, ).
Other partitionings will lead to different Gauss-Seidel schemes; however, the red/black
partitioning approach is preferred for parallel implementation on mesh-connected
arrays, because of its efficiency and simplicity. For the case of a one-dimensional grid,
we find that the Gauss-Seidel iteration is equivalent to the computational wave of the
Jacobi iteration shown by the dotted line in Figure 6.2. Therefore, we can save one half

of the computational work by using Gauss-Seidel iteration on either a single processor

or a mesh-connected array.
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As mentioned in Chapter 3, the main limitation of the Jacobi or Gauss-Seidel
iterative methods is their slow convergence rate. The number of iterations needed to
achieve the accuracy of the discretization error O (h2) for the model Poisson problem
is proportional to O (V) [16][31]. Since the processing time per iteration is constant,

the total running time is also proportional to O (N ).

By éppropriately selecting relaxation parameters for accelerated relaxation algo-
rithms such as the Chebyshev semi-iterative (CSI) method and the successive over-
relaxation (SOR) method, these algorithms converge faster. For a given mesh-
connected processor array, if we know these quantities a priori and broadcast them to-
all processors in the loading stage, each processor can compute the acceleration parame-
ters on its own without additional communication cost. In this case, although the
accelerated schemes require a little more computation and memory than the basic
Jacobi and Gauss-Seidel relaxation schemes, they present some significant advantages.
The reason is that the number of iterations needed is reduced tremendously, becoming
O (/N ) for the model Poisson problem for both acceleration schemes [16]. However,
in general we do not know the eigenvalues of the basic relaxation' mairix in advance
and have to estimate them by some adaptive procedure. Since all the estimation pro-
cedures developed untii now require the computation of the norms of some global vec-
tors, global communicatiox-l cannot be avoided. This means that the communication
cost for a single iteration in a mesh-connected array becomes O (/N ). As a conse-
quence, the processing time per iteration is O (/N ) and the total running time

becomes O (V) again.
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Comparing this result with the result obtained for basic relaxation methods, it
seems that we do not benefit from acceleration schemes when we seek to implement
iterative algorithms in parallel on mesh—connected arrays. This can be easily explained
by noting that for a single processor, there is no distinction between local and global
communications, since all data are fetched from the same memory, while for a mesh-
connecteci processor array, long range communication costs much more than short
range communication. Any time saving due to the acceleration in these schemes is can-

~ celed out by the global communication required.

In addition to the above relaxation algorithms, another important class of algo-
rithms for solving systems of linear equations can be derived from an optimization
principle. The conjugate gradient (CG) algorithm is an example [16]. Without consid-
ering rounding errors, a theoretical analysis indicates that the CG algorithm is able to
solve the discretized PDE exactly in O (V) steps, using only O (N2) computation and
O (N ) storage on a single processor. In practice, experience shows that the CG method,
when applied to the PDE problem, usually converges in O (\/N ) steps even with
rounding errors. Unfortunately, on a mesh-connected array, this algorithm is slowed
by the need to compute several inner products of O (N ) length vector. Computing the .
inner product of two vectors whose entries are distributed over a mesh-connected
array requires global comn-lum'cation. We therefore encounter the same difficulties as

for the accelerated relaxation methods.

The local relaxation method presented in Chapter 3 is a computational algorithm
suitable for parallel implementation on mesh-connected processor arrays, because it
has the same acceleration effect as SOR and uses only local communication. For exam-

ple, let us repeat equations (3.2.5)-(3.2.7) as f oliows,
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red points (n, +n, iseven ): .

un”:";:, = ( 1 —O.).nx,ny) un":,ny ' (la)

+ o, n dn:,ln), (Ln,, 7y urz",:["--l,ny +rn, Ty un”: +1,n, +bn, ny, Un’:l My, =1 "_tnx o,y un”: ny+1 +Snx ny, )»

black points ( n; +ny isodd ):

u'nm 71’1, =.‘( 1 _mn, ,ﬁy) un":,ny (lb)

s )

-1 m+ m+ m+1 m+1
+ o, ny, dnx iy (Lnx My Un, —},ny +rn, My un, +},ny +bnx 7y Un, 7y, —1 +tnx ny, Un, My 1 +Sn, My )r

where
w = 2
T T+ (1=pZ o 0% (2)
and where
= _2 [ n T 2 )% COSmTrr + (2 Bn. n. )% cOSHr— ]
Promy = ot Unamy Tncm, N, +1 T Unony On o, NyFri (3

The implementation of the above local relaxation algorithm is straightforward. It is
easy to see that as long as we know the size of the grid, i.e., N, and Ny, , we can broad-
- cast this information to all processors in the loading stage. Each processor has to com-
pute its own relaxation parameters once according to equations (2) and (3); then the
local iterations specified by equation (1) can be performed in parallel for all Processors
with only local communication. Since the local relaxation method uses local commun-
ication; the computatidn time per iteration is O (1). We showed that the number of
iterations for typical test problems is proportional to O (/A ) in Section 3.6. There-

fore, the total running time becomes O (/N ).

For a VN X/N processor array, the constraint that each processor should con-
tain @ minimum amount of global information implies that the lower bound for the

computation time for any algorithm is O (/¥ ), since it takes O (/A ) time for the
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data at one edge of the array to move to the opposite edge. It turns out that the local

relaxation method achieves this lower bound. The above discussion is summarized in

‘Table 6.1.

Iterative Time per Number of - Total Time
Methods Iteration Iterations Needed
Jacobi Oo(1) O(N) O(N)
G-S o(1) O(N) O (N)
SOR O (VN ) O (JN ) O(N)
CG o (VN ) O (VN ) oO(N)
LR 0(1) O (VN ) O (/N )

Table 6.1 : Performance comparison of various single-grid algorithms implemented on
a /N x /N mesh-connected processor array for typical test problems.

Although the convergence and convergence rate properties of a local relaxation
version of the 2-level 4-color SOR method discussed in Chapter 4 have yet to be exam-
ined, there is no foreseeable fundamental difficulty in this generalization. Suppose this
generalization is possible. It is easy to see that the parallel implementation of the 2-
level 4-color local relaxation method is straightforward (cf. Figures 4.2 and 4.3). Each
processor needs to compute the local block and point relaxation parameters, ©p nyn,
and @, ,, n, based on the boundary conditions and the coefficients of the local
diff érence equation. Then, since all data exchange occurs between neighboring proces-
sors, the communication cost per iteration is O (1). We have already shown that the
number of iterations of the 2-level SOR scheme for the Poisson problem is proportional

to O (VN ). Hence, the total running time is proportional to O (/N ).
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6.3 Related Research Work

As mentioned in Chapter 1, one way to speed up single-grid algorithms is to vec-
torize operations and to pipeline them by using a vector supercomputer such as a
Cray-1 [19] or an array processor [29][18]. This computational scheme is basically a

uniprocessor approach, and will not be addressed here.
\

There has been a number of studies on parallel implementations of single-grid
and multigrid algorithms for solving elliptic PDEs in a multiprocessor computing -
environment. Different algorithms, architectures, or issues were examined by different

researchers, which are briefly reviewed in this section.
(1) Parallel Multicolor SOR Solvers

Work along this direction has been done by Evans [10], Adams and Ortega [1],
O’Leary [23], and Adams and Jordan [2]. In their work, several issues were investi-

gated under the assumption that a global relaxation parameter was available.

Evans examined the parallel implementation of the red/black SOR method for
solving the L>ap1avce equation with a small number of processors [10]. He gfouped
2 X 1,2 X 2or 3 X 3 points together as a block, and used 2, 4 or 9 processors to update
values of points within a block by a red/black SOR method. In fact, the basic idea
consists merely in using a small processor arr;-:ly to operate in a blockwise fashion on
grid points of a single-grid. ‘

In Adams and Ortega’s work [1], a multicolor SOR method was introduced in
which points of the same color are not coupled through the finite-difference discretiza-

tion scheme. For example, a 5-point stencil discretization requires 2 colors (red and
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black), a 9-point stencil discretization requires 4 colors (red, orange, black and blue),
and so on. Since values at points of the same color do not depend on each other due to

the nature of the coloring scheme, they can be updated simultaneously. If there are N
grid points, the maximal parallelism can be achieved by using % processors for a p -

color SOR scheme.
\

A more interesting problem is the analysis of the convergence of various SOR
schemes using different orderings or colorings [2][22][23]. Although more parallelism -
can be achieved by using the multicolor SOR scheme with different orderings, it is
important to know whether the convergence rate of these schemes remains the same as
that of the rowwise (or columnwise) ordered SOR scheme. A data flow or a tilted grid
concept was used to clarify this issue [2][23]. It appears that the multicolor SOR

scheme is usually as efficient as the SOR scheme using the rowwise ordering.

In contrast with the work mentioned above, work in this thesis focuses on the

selection of optimal relaxation parameters for various multicolor SOR schemes.
(2) Parallel Domain Decomposition Solvers

Numerical elliptic PDE algorithms relying on domain decomposition techniques
[8][20] are also easy to parallelize. Roughly speaking, these methods regard the
domain of a given problem as a union of several subdomains So that the problein in

each subdomain can be easily solved. These methods are particularly attractive for

PDEs with irregular domains, or with nonuniform properties in different regions.

The scheme considered by Chan and Resasco consists in dividing a rectangle into

- parallel strips, performing uncoupled fast Poisson solvers on each subdomain and,
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then, computing the interface variables by fast Fourier transform [8). It is suitable for
parallel implementation since problems in all subdomains can be solved in parallel and
since the only information that needs to be exchanged concerns interface variables.
Several preconditioned conjugate gradient-based domain decomposition techniques

implemented on a hypercube were compared by Keyes and Gropp [20].
' (3) Parallel Multigrid Solvers

Since multigrid methods provide the most efficient way of solving elliptic PDEs,
the implementation of multigrid algorithms on multiprocessor arrays has received a

large amount attention recently [SI[71[91[12][15][17][21].

The most natural architecture for implementing multigrid algorithms is a pyram-
idal processor array [12][21)[30]. Nevertheless, it has been shown that if we assign one
processor to each grid point, this design cannot avoid a loss of efficiency as the grid size
tends to zero [7]. There are two possible ways to limit the loss of efficiency. The first
is to design some kmd of grouping scheme which maps a certain number of grid points
to a single processor. The second is to design concurrent multigrid algorithms which
operate at every grid level simultaneously [21]. Details of these two ideas remain to

be pursued.

- The mapping of multigrid algorithms on other types of processor arrays such as

mesh-connected arrays [5][151[17] and hypercubes [9], has also been studied.
-(4) Other Parallel Elliptic Solvers

In addition to the previous three classes of algorithms, parallel implementations

of other single-grid algorithms such as the preconditioned conjugate gradient (PCG)
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method [26], the alternating direction implicit (ADI) method [6] and a banded Gaus-
sian elimination method [6][25] in a multiprocessor environment, especially on a

- hypercube, have also been considered by researchers.
(5) Mapping, Partitioning and Communication Schemes

Other problems related to the parallel implementation of single-grid algorithms
in a muitiprocessor environment include the mapping frdm an irregular problem
domain into a regular processor domain [4][11][13], the partitioning of grid points .
among processors [24], and the choice of communication scheme for different architec-
tures [14][27][28]. Since most practical problems have irregular domains and the
number of grid points is usually larger than that of processors, the investigation of

these problems is important in practice.
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6.4 Conclusions and Extensions

In this chapter, we have compared parallel implementations of several iterative
methods on a mesh-connected processor array, and showed that the local relaxation
method is particularly attractive since it only requires local communication and has a
very fast convergence rate. There are problems which should be investigated more
caref uII); in the future. One question is how to terminate the local relaxation method.
A centralized termination scheme can work as follows. The residues of the local pro-
Cessors are pipelined to a certain processor, say, the central one. Then this processor
determines the termination time of the relaxation algorithm and broadcasts a "stop"
signal to all processors. The above procedure can be performed concurrently with the
local relaxation procedure. Note however that because we avoid the use of global com-
munications in the termination procedure by pipelining the local residues which are
sent to the central processor, this processor uses the error residues of the local proces-
sors at different iterations in determining whether the algorithm should be stopped. A

distributed termination scheme would also be useful.

We have also reviewed current research work on the parallel implementation of
numerical PDE algorithms on multiprocessor arrays. This is a rapidly growing field so
that it is difficult to give a complete survey. Nevertheless, we have tried to divide
current research activities into broad areas and to identify the main trends in this
field. In particular, we feel that domain decomposition techniques and parallelized
multigrid algorithms are two promising areas for further investigation. Also,
although mapping and partitioning problems have already been studied by researchers,

the results that have been obtained in this area are rather preliminary, and further

studies are needed.
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Chapter 7 : Conclusions and Extensions

7.1 Fourier Transform Domain Approach for Numerical PDEs: A Retrospective

The partial differential equations listed in Table 7.1 below play an important role
in numerical analysis, since these equations not only govern many common physical
phenomena but can also be used to approximate more complicated equations; As is
clear from Table 7.1, the equations that we consider are first- and second-order

diﬁ‘ erential equations involving two variables.

(a) First-order wave equation c %.Z;' =%
(b) Second-order wave equation c? -3%”5 = _gtiuf
(c) Heat equation o %7 =
(d) Poisson equation iﬁ‘z_ + .@. =f
ox oy
- 2y 2y 2.
(e) Helmholtz equation -g;[ + -%. +k2u=0
. e . | u U _ du
(f) Convection-diffusion equation o -3;2— +c &= %
(g) Cauchy-Ri ti ox = 0y
g) Cauchy-Riemann equation o _ v _
v ¢
sci - o _
(h) Inviscid Burgers equation v £ =%
) . : 2u du _ ju
(i) Burgers equation o —g;r +u Tl
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An understanding of the essential issues occurring in the numerical solution of these
equations helps us to understand the solution of more general problems. The above
equations are therefore called model equations [2]. The first order wave equation, the
heat equation and Poisson equation are the simplest hyperbolic, parabolic and elliptic
PDEs respectively. The inviscid Burgers and Burgers equations are nonlinear, and their
linearizeci" forms are respectively the first-order wave equation and the convection-

diffusion equation.

In Part I of this thesis, finite-difference formulas were derived for discretizing the
Poisson, Helmholtz and convection-diffusion equations. In Parts II and III of this
thesis, single-grid and multigrid solution methods were designed primarily for solving
the Poisson equation. All developments were based on the Fourier transform domain
approach. Since equations (a) to (g) are all linear and have constant-coefficients,
Fburier analysis and its variations often play an important role in analyzing their

discretization and solution.

The Fourier approach has been applied to time-dependent problems for a long
time. In the area of finite-difference methods, it has been used for example to study
the stability of linear multistep methods for the numerical integration of ODEs [11].
* For linear hyperbolic and parabolic PDEs with simple boundary conditions, a common
stability test based on qurier analysis is known as the von Neumann method [16].
This has been generalized to problems with more complicated boundary conditions or
interfaces [8][21]. Furthermore, when a numerical wave propagates in a grid according
to a finite-difference model, some interesting phenomena such as dispersion, dissipa-

tion, and parasitic waves occur. These phenomena can also be easily explained by
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Fourier analysis [19)[20][23). In the area of spectral methods, Fourier spectral
methods are naturally developed and analyzed by the Fourier approach [5][13]. Since
Fourier analysis provides a simple analytical tool, Fourier spectfal methods are better
understood than other spectral methods such as the Chebyshev spectral methods

[9][24].

\
The application of the Fourier approach to elliptic problems has received much

less attention than for time-dependent problems. When comparing different iterative -
methods for solving elliptic PDEs, a standard tést problem is the Poisson equation on
the square with Dirichlet boundary conditions, which is therefore called the model
problem (for elliptic PDEs). The model problem analysis can be viewed as a variation
of the Fourier approach, where a set of sine functions is used as the basis. In the area
of single-grid methods, the model problem analysis applies to many stationary itera-
tive methods including the Jacobi method, the Gauss-Seidel method, the SOR method,
the Chebyshev semi-iterative method [22], alternating direction implicit methods [22],
and approximate factorization methods [10][17]. In [4], Chan and Elman applied
Fourier analysis to reexamine these methods as well as preconditioners for the Poisson
equation with periodic boundary conditions, and compared their results with the clas-
sical results based on Dirichlet boundary conditions. It turns out that results obt‘ained
by Fourier analysis and tﬁe model problem analysis are consistent in many, but not
!

all, cases. In the area of multigrid methods, smoothing is conveniently analyzed by

Fourier analysis [3][12]. A two-grid model problem analysis has been presented in [18].

Since this thesis focuses on methods related to the SOR iteration, we give a histor-

ical survey concerning the Fourier analysis of this method. For the 5-point stencil
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case, the earliest model problem analysis was given by Frankel [6]. He derived the
optimal relaxation parameter and the convergence rate for the SOR method with
natural ordering [6], which are consistent with Young’s result [22][25] for this special
case. Recently, LeVeque and Trefethen [15] used a tilted grid to interpret Frankel’s
result in a more intuitive way. The model problem analysis for the SOR method with
red/black\ ordering first appeared in [14] and is included in Chapter 3 of this ‘thesis.
For the 9-point stencil case, there have been relatively few results. A rough estima-
tion for the relaxation parameter was given by Garabedian [7]. More recently, a more
precise analysis was performed by Adams, LeVeque and Young [1]. In the above two
cases, they considered the 9-point SOR method with a single relaxation parameter.
The two-level SOR method described in Chapter 4 is a diﬂ‘ erent method which relies
on block level as well as point level relaxation iterations and uses two different relax-
ation parameters. The analysis that was used to study this method is the model prob-

lem analysis performed in the transform domain.




-230- SECTION 7.2

7.2 Future Extensions

The Fourier transform domain approach can be rigorously applied, if the

differential equatioq and its discretization satisfy four conditions:

(I) linearity of the diff erential equation,

(1) constant coefficient functions for the differential operator,

(IID) regularity of the prbblem domain and appropriate boundary conditions,
(IV) a uniform discretization grid.

Due to condition (IV), the Fourier transform domain approach applies to finite-
difference and Fourier spectral methods but not to finite-element or Chebyshev spec-
tral methods. In this thesis, except the local relaxation method of Chapter 3, all the
analysis was restricted to the model Poisson equation which satisfies all the above con-
ditions. Nevertheless, empirical studies seem to suggest that the range of validity of
Fourier analysis, and in particular of local Fourier analysis, is much larger than was
previously suspected. It is therefore important to attempt to delineate very precisely
the range of validity of Fourier methods. This issﬁe_ is not merely one of mathemati-
cal rigor, but also a practical one, since we would like to know which ones of condi-
tions (I)-(IV) can be relaxed, and which ones cannot. For example, it seems that con-
ditions (II) and (III) are not as necessary as conditions (I) and (IV) in the case of ellip-
tic PDEs [4] ( also see Chapter 3 ). A better understanding of these issues may also

lead to modifications and generalizations of current Fourier techniques.

One general future research direction is to examine how digital filtering theory

can enrich Fourier methods for solving PDEs. Although digital filtering theory can be
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viewed as a branch of Fourier analysis, it has developed intq an independent and rich
field. In this thesis, we showed how to use the Laplace transform and Z-transform to
design a mode-dependent finite-difference method in Chapter 2, and the multirate sig-
nal processing techniques to study the restriction and interpolation operators in
Chapter 5. It is reasonable to believe that more fruitful results may be obtained by
investiga‘lting further the relationship between digital filtering and numerical PDE
algorithms. Another potential research direction is the link between the control
theory and the solution of time-dependent PDEs, since Stability is the common central
theme in these two fields and the generalized Fourier techniques such as the Laplace

transform and Z-transform seem to be ideal common analytic tools.

Research on parallel computation is an important trend now as well as in the
future. In this thesis, we have considered special purpose computer architectures such
as mesh-connected processor arrays and we have examined parallel PDE algorithms
such as the local relaxation method. In the future, special-purpose architectures and
algorithms for solving hyperbolic and parabolic equations will also need to be
developed. Practically speaking, a parallel Navier-Stokes solver would have a much

greater impact than the parallel Poisson solver that we have studied here.
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