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ABSTRACT 

An outstanding problem in mechanics is the modeling of the phenomenon of initia- 
tion and development of localized shear bands in materials whose inelastic deformation 
behavior is inherently ratedependent. Clifton (1980) and Bai (1982) have presented a 
onedimensional linear perturbation stability analysis for the initiation of shear bands 
in viscoplaatic solids deforming in simple shear. Although this one-dimensional anal- 
ysis provides much insight into the phenomenon of shear localization, the results are 
not directly applicable to the practically more interesting problems in two and three 
dimensions. Accordingly, here, a three-dimensional generalization of this linear pertur- 
batiou stability analysis is presented for a J2 flow theory of plasticity which exhibits 
isotropic strain hardening or softening, strain rate hardening, and thermal softening. 
The results are then specialized to the simpler case of plane motions and the limiting 
cases of quasi-static isothermal deformations and dynamic adiabatic deformations are 
thoroughly analyzed. 

An inherent limitation of this linear perturbation analyses is that it provides only 
(a) the necessary conditions for the initiation of shear bands, and (b) the orientatiorrs 
and the incipient rate of growth of the emergent shear bands. It does not provide 
any information regarding the more interesting stages of localization when the strain, 
strain rate, and temperature in the shear bands becomes much larger than elsewhere. 
To predict the beginning stages of significant flow localization a new criterion has been 
developed for adiabatic flow localization. A history dependent dimensionless parameter 
X which represents the integral in time of the ratio of the rate of flow softening to the 
rate of strain-rate hardening is identified as a possible flow localization parameter, and 
the attainment of a critically large value Xc of X is suggested as a simple criterion for 
monitoring the beginning of severe adiabatic fiow localization. Fully two dimensional 
large deformation finite element simulations of plane strain compression, tension and 
U-notch bending tests on a class of thermo-elasto-viscoplastic materials under adiabatic 
conditions have been performed and the initiation and growth of naturally appearing 
band-like regions of localization is followed from slow early growth to severe localiza- 
tion. By simultaneo~isly monitoring level contours of X it is demonstrated that the 
time when there appeara a zone of noticeable size in which X > Xc within the specimen 
correlates very well with the beginning of significant shear localization. 

Thesis Supervisor: Lallit Anand 
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Chapter 1 
Introduction 

Localization of plastic flow into shear bands is a widely observed phenomenon. Once 

such bands are formed, they persist and the strains inside the bands can become very 

large. In situations where the attendant principal stresses are positive and large, the 

formation of shear bands is an important precursor to imminent ductile fracture. How- 

ever, in compressive stress fields, some materials can srlstain considerable subsequent 

inelastic deformation by continued shearing within the bands and by the formation 

of additional shear bands. Of course, even in compressive stress fields ductile fracture 

nuclei may be formed by local micrc~tensile fracturing which may (if dominantly tensile 

type of fracture can be suppressed by say the application of large hydrostatic pressure) 

lead to sliding-off types of fracture along the  hear bands. 

Shear band formation is usually associated with a flow softening behavior of the 

material with increasing deformation. Various softening mechanisms are possible. For 

quasi-static deformation conditions a major reason for flow softening is internal dam- 

age, for example that due to void nucleation and growth. Under high-rate plastic 

deformation conditions, any softening due to internal damage is enhanced due to ther- 

mal effects and the shear bands that form are called "adiabatic shear bands". In either 

case, the process of shear banding is an autocatalytic one : an increase in the strain in 

a soft zone causes a further softening of the material which causes a local increase in 

the strain and so on. 

Since the pioneering observation of adiabatic shear bands formed in a steel plate dur- 

ing punching by Zener and Hollomon [1944], various experimental observations has been 



made in different deformation processes such as machining (e.g., Recht 119641, Semiatin, 

Lahoti and Oh [1982]), dynamic torsion of hollow tubes (e.g., Culver [1973], Costin, 

Crisman, Hawley, and Duffy [1979]), ballist,ic impact (e.g., Backman and Finnegan 

[1973], Rogers and Shastry [1981], Leech [1985]), explosive loading of thick walled 

tubes (e.g., Thornton and Heiser [1971], Staker [1981]), isothermal and non-isothermal 

hot forging (e.g. Semiatin, Lahoti and Oh [1982]), sheet metal stretching (e.g., Bird 

and Carlson (19861) and plane strain tension and compression (e.g., Anand and Spitzig 

11980, 19821). Along with the experimental observations, considerable theoretical at- 

tention has been paid to this phenomenon with most studies confining their attention 

to the initiation of such a flow localization. For materials which can be modeled as 

mte-independent and considered to be deforming quasi-statically and isothermally, a 

mathematical method is available for analyzing the onset of shear band formation (cf. 

e.g., Rudnicki and Rice [1975], Rice [1977]). In this method, the onset of localiza- 

tion is viewed as a material ir.:stability, and critical conditions are sought at  which the 

rate-independent elaat ic-plastic constitutive relations first allow a bifurcation from a 

homogenous deformation into a shear band mode. It is found that a necessary condition 

for the existence of shear bands is that the velocity equations of continuing equilibrium 

suffer a loss of ellipticity, and this occurs when the rate of strain hardening reaches a 

critical value. Further, the boundaries of the emergent shear bands correspond to the 

msociated characteristic lines. 

For rate-dependent plastic flow, shear localization of plastic deformation is believed 

to be controlled by the interaction between softening and hardening features of the 

material behavior which include thermal softening, strain hardening and strain rate 

hardening. In an effort to predict the formation of shear bands in dynamic deformation 



processes, Recht 119641 suggested that "Catastrophic shear occurs when the local rate 

of change of temperature has a negative effect on strength which is equal or greater 

than the positive effect of strain hardeningn. This is equivalent to saying that the 

critical strain a t  which plastic instability takes place is that a t  which the slope of the 

true stress - strain curve vanishes. For quasi-static, isothermal deformation processes, 

this criterion requires that the rate of strain hardening should vanish or be negative 

for the occurence of shear band formation. Because of its simplicity, this criterion has 

been applied to shear localization problems in a wide variety of deformation processes 

by different investigators (e.g., Culver (19731, Staker [1981], Rogers and Shaatry [1981], 

Semiatin, Staker and Jonaa (19841). 

An alternative approach to the study of the criteria for the onset of shear 1ocal;zation 

has been recently considered by Clifton [I9801 and Bai (1982). These authors also 

treat shear localization as material instability, however, the method of mathematical 

analysis differs from that of the bifurcation analysis for rate-independent, materials and 

the simple stress maximum criterion outlined above. In their approach, Clifton and 

Bai seek critical conditions a t  which the rate-dependent constitutive relations, which 

exhibit strain hardening or softening, strain-rate hardening and t5ermal softening first 

allow the growth of infinitesimal periodic non-uniformities in an otherwise homogeneous 

simple shearing motion. The effects of inertia and heat conduction are included in the 

analysis. 

It is interesting to note here that the linear perturbation stability analyses for adia- 

batic simple shear deformation gives a necessary condition for shear localization which 

is the same as the one for shear band formation given by maximum flow stress crite- 

rion. Both types of analyses require that the strain hardening should be overcome by 



thermal softening such that the slope of the adiabatic flow stress-strain curve vanishes 

(e.g., compare equation (3) in Culver 119731 with equation (4.3) in Bai [1982]). 

The history of linear perturbation stability analyses for viscoplastic solids can be 

traced back to the paper by Rabotnov and Shesterikov (19581 on creep buckling of axi- 

ally compressed columns and plates. They define stability against buckling of columns 

and plates made from viscoplastic materials as follows: "If at  a certain moment a de- 

viation from straightness or plane form is given to the compressed colum or plate 

under creep, the deflection will increase of decrease during a subsequent short interval 

of time. According to whether the deflection increases or decreases, the initial state is 

considered unstable of stablen. As emphasized by Hoff [1958], an analysis based on such 

a notion of stability ".... simply indicates stability or instability in the classical sense 

immediately following the disturbance. It cannot predict the motion over an extended 

period of time." 

In addition to the work of Clifton and Bai on one-dimensional shear localization, 

and the papers of Rabotnov and Shesterikov and Hoff on creep buckling of axially 

compressed columns, of pertinence to the present discussion is the recent paper by 

Fressengeaa and Molinari 11985) on the necking mode of localization during uniaxial 

tensile testing of viscoplastic solids. These authors present a one-dimensional linear 

perturbation analysis for this problem, and elucidate a the role played by inertia and 

thermal effects on this localization phenomenon. Their analysis proceeds along lines 

similar to those of Clifton and Bai and they too arrive at  a characteristic stability 

equation from which they determine the conditions for the owet  of necking type of 

instability. Fressengeas and Molinari also carry out a numerical study of their full non- 

linear boundary value problem with an initial non-uniformity in the cross-sectional area 



of the bar, and a particular power-law type of viscoplastic constitutive equation. They 

obtain numerical predictions for the evolution of the initial defect size, and calculate 

the evolution of strains in cross-sections with and without the defect as a function of the 

nominal strain. Also, for small geometric non-uniformity they linearize their problem 

and obtain similar predictions, and then compare the predictions from their linearized 

boundary value problem against those from their non-linear analysis. They find that 

although the linearized theory qualitatively predicts the necking instability, it predicts 

significant localization at  nominal strains which are much smaller than those predicted 

by the full non-linear analysis. Similar conclusions have been previously reached by 

Hutchinson and Obrecht [1977] who have also studied problem of necking instabilities 

in viscoplastic solids, but have not accounted for inertia and thermal effects in their 

analysis. 

For most engineering materials which have positive strain-rate hardening, the speeds 

of the growth of perturbations are strongly controlled by the rate sensitivity. Unless the 

value of strain-rate hardening is extremely small such that a material is almost rate 

independent, the perturbations will growth with finite speeds and thus the stage of 

significant flow localization with unbounded strains and strain rates inside the localiza- 

tion zone will be postponed far after the onset of the growth of perturbations predicted 

by linear perturbation stability analyses. This feature of the shear localization in vis- 

coplastic solids can be observed in the fully nonlinear numerical simulations of simple 

shear deformation processes with the introduction of small geometric or temperature 

perturbations (e.g., Merzer [1982], Wright and Batra (19851, Shawki 119861). Thus it 

should be emphasized that although linear perturbations stability analyses predict the 

instability qualitatively, they cannot predict the amount of "attainable strainsn before 



the strains inside the localization zone become unbounded. This type of analysis can 

only predict the necessary conditions for the onset of flow localization. The same is 

true for the maximum flow stress criterion which agrees with the perturbation stability 

analyses upon the necessary condition for shear localization in adiabatic simple shear 

deformation process. 

In spite of these limitations of the linear perturbation analysis as compared to the 

full non-linear analysis, the linear perturbation stability analysis does predict the neces- 

sary conditions for the onset of formation of shear bands for a wide class of constitutive 

equations whereas the non-linear analysis requires the assumption of a special form for 

the viscoplastic constitutive equation and the use of numerical techniques. 

The plan of this thesis is as follows. In chapter 2, a 3-dimensional linear pertur- 

bation stability analysis for shear localization in viscoplastic solids will be presented. 

This analysis is a generalization of the 1-dimensional analysis prevously performed by 

Clifton and Bai. The constitutive equations considered here model isotropic, incom- 

pressible, viscoplastic materials which exhibit strain hardening or softening, strain-rate 

hardening, thermal softening and pressure sensitivity. Elastic effects are neglected. 

After briefly discussing the field equations, the linear perturbation stability analysis 

which helps determine the necessary conditions for the formation of shear  band^ will 

be presented. Then attention will be paid to plane motions and the criteria for the onset 

of shear localization and the directions of the emergent shear bands for the physically 

important special cases of quasi-static isothermal deformations and dynamic adiabatic 

deformations will be discussed. An important prediction of the perturbation analyais is 

that shear bands can initiate in two directions even in simple shear. This is contrary to 

the common perturbation analysis assumption (e.g., Clifton [1980], Bai [1982]) that in 



simple shear, a shear band can initiate on!y in the direction parallel to the direction of 

shear. This theoretical prediction is shown to be in agreement with some simple shear 

experiments on the polymer polycarbonate. This and some other observations will be 

made in this chapter. 

In Chapter 3, a new approach to the problem of flow localization in viscoplastic 

solids will be taken. To overcome the difficulty of the underestimation of critical strains 

predicted by linear perturbation stability analyses, a new flow localization criterion for 

adiabatic shear banding in viscoplastic solids will be developed. In contrast to the linear 

perturbation stability analysis which predicts the onset of shear localization as when 

the strain hardening is overcome by thermal softening, the new criterion predicts that 

the beginning of significant flow localization is possible when the time history of the 

ratio of the rate of flow softening to the rate of strain rate hardening attains a critically 

large value. 

In chapter 4, the results from the numerical simulations of a few adiabatic deforma- 

tion processes: plane strain compression, plane strain tension, and plane strain bending 

of a u-notched specimen, are presented. Fully non-linear solutions to these problems 

are compared against the predictions of the linear perturbation analysis and the new lo- 

calization criterion developed in chapter 3. Classical underestimation of critical strains 

to significant shear localization is obtained by the linear perturbation analysis. On the 

other hand, it is observed that the new criterion gives reasonable predictions for the 

beginning of shear localization in plane strain defurmations. 

Finally in chapter 5, some conclusions regarding the performance of the linear per- 

turbation stability analysis and the new localization criterion are presented, and some 

aspects of the shear localization phenomenon which needs to be investigated further 



are discussed. 



Chapter 2 
Linear Perturbation Stability Analysis for Shear Localization 

Since the introduction of linear perturbation s t  ability analysis for the prediction of 

thermo-mechanical shear instability in simple shear deformat ion of viscoplastic solids 

by Clifton [I9821 and Bai (19823, linear perturbation st-ability analysis has received 

considerable attention as an analytical tool for the prediction of the critical conditions 

for the onset of shear localization. Various analyses (see e.g., Clifton, Duffy, Hartley 

and Shawki [1384], Shawki [1986], Molinari and Clifton (19861 ) show that even in 

simple shear, the shear localization is the result of a complex interplay between various 

factors such as the strain hardening and softening features of a material, heat transfer, 

inertial effects, initial field inhomogeneity and boundary conditions. 

Although the results from 1-dimensional linear perturbation analysis of simple shear 

provides much insight into the nature of shear localization phenomenon in viscoplas- 

tic solids, these results are not directly applicable to the practically important 2- 

dimensional or 3-dimensional deformation processes. In the following, a 3-dimensional 

generalization of the 1-dimensional linear perturbation stability analysis of Clifton and 

Bai will be presented. 



2.1 Field Equations 

In the following analysis, x denotes the position of a particle of a body in the 

current configuration a t  time t. Also, v(x,t) denotes the spatial description of velocity. 

L(x. t)  grad v the velocity gradient, D(x,  t )  -. sym L the stretching, T(x,t)  the 

Cauchy stress, and B(x, t )  the absolute temperature. 

It will be assumed that the effects of elasticity are negligible, and that the flow rule 

is given by1 

Here, with 

denoting the stress deviator, 

the mean normal pressure, and 

the equivalent shear stress, 

is the "directionn of plastic flow, and 

'No yield condition and switching rulea are aaaumed 



with 

is the equivalent plastic shear strain rate. In equation (6) 

is the equivalent plastic shear strain. 

It is assumed that the strain-rate function f in equation (6) is invertible such that 

For latet use, the rates of strain-rate hardening, strain hardening, thermal softening, 

and pressure hardening are defined by 

R E ag/a+, 

S r ag/dq, 

T n -ag/dB, 

and 

respectively. 

The corlstitutive equations ( 1 )  - (7) may be alternatively witten aa 

where the c~calar function 



by analogy to the constitutive equatioil for a Newtonian fluid, is called the viscosity 

of the viscoplastic solid. However, unlike a Newtonian fluid, this viscosity is not a 

constant but given by the constitutive equation (lob). 

The equation of motioli in the absence of body force is 

and the energy balance equation is 

Here, p is the mass density, c is the specific heat, K is the thermal conductivity (here 

assumed to be independent of position), A9 is the Laplacian of 9 and w ,  a scalar in the 

range 0.85 5 w 5 1, is the fraction of plastic work that is converted to heat. 



2.2 Linear Perturbation Stability Analysis for %-Dimensions 

Let Bt and Bz denote configurations of a body at  times t and r > t ,  respectively. 

The relative motion of the body is characterized by a function 

which gives the place occupied at  time r by a material particle which a t  time t occupied 

the place x. The vector valued functions 

a 
&(x, r )  = -ut(x, r ) ,  

ar  

a= 
u;(x,7) - -ut(x,r), ar2  

describe the relative displacement, the relative velocity, and the relative acceleration, 

respectively. 

Equation (11) for the balance of linear momentum (in the absence of body forces) 

at  time r may be expressed as 

where S; is the relative first Piola Kirchhoff stress tensor which describes the actual 

forces in the configuration B, per unit area of the configuration Bt. It is defined by 

the relation 

where F; = ap;/ax is the relative deformation gradient, (detFt) its determinant, F ; ~  

the transpose of its inverse. Also, equation (12) for the balance of energy a t  time T 

may be expressed as 



For the perturbation stability analysis, the body is considered to be homogeneous 

and homogeneously deformed in its current configuration Bt. If the body is subjected to 

boundary conditions which could give rise to continued homogeneous deformation, then 

the field equations together with the appropriate boundary conditions determine the 

homogeneous solution [ui, B O ,  S:]. Next, we wish to determine that if this homogeneous 

solution is perturbed so that the configuration B, of the body, with At = ( r  - t )  + 0,  

differs only by infinitesimal displacements of a shear band mode relative to Bt, then 

can this perturbation grow while the field variables still satisly the field equations? 

Let the normal to the shear band perturbation have an orientation n in Bt. The 

homogeneous solution [u;, d o ,  Si) is assumed to be perturbed by a small fluctuation 

which varies with ( x  - 0 )  . n, that is, with position across the band. Accordingly, we 

assume that the relative velocity field can be written as 

u t ( x , r ) = u ; ) ( x , r ) + ~ ? ,  € < < I ,  

corresponding to which 

# t ( ~ ,  r ) ,  = F ; ( T )  + c grad + 
For the perturbation velocity field (18) to be of a form which may lead to shear band 

formation, it is required that 

grad3 = a @ n 

where 

a = a ( ( x  - 0 )  .n ,At ) ,  

is an amplitude vector, and 



Further, we assume that the perturbations in the temperature and the stress are: 

- 
O(X, T )  = BO(r) -t. €0, 

with 

a = a((, - 0 )  . ,, at), i 
and 

S,(x, T )  = s; ( I )  + L+, 

with 

Substituting from (18)-(21) into ( 1 5 )  and (17) and retaining only the t e r m  of first 

order in E ,  we obtain the following differential equations for the perturbed quantities: 

and 

pcd A G a a + u[$ k; + (grad?) S;] (23) 

Since At = (T  - t )  -+ 0,  F; B Lo and S; B To. Using this, the symmetry of To, 

and the near symmetry of *, we obtain 



Also, since T D = 74, the term [+ *Do + ?) To] can be replaced by [?$' ++'I, where 
I 

and $ are the perturbations in the equivalent shear stress and the equivalent shear 

strain rate, respectively. With this, the energy ,balance equation (23) may be written 

as 

Ln order to analyze the stability of the homogeneous solution, the following form of 

~olutions for (22) and (24) is considered. 

= pee, e. = constant 

v. E constant, v, n = 0. 

For this assumed form of the perturbation in the velocity 

grad9 = a @ n, 

with 

a = it?, a - n  = 0,  

and 

> 

%' = pT*, T* E constant. 

and this satisfies the requirement (19). In parallel, for the perturbations in the tem- 

perature and the stress, the following forms are considered. 



Here ( is the reciprocal of the wavelength of the periodic perturbation in the direction 

normal to the shear band and is called the wave number. IF a solution in the form of 

equations (25) exists with r )  real and positive, then the perturbation may grow with 

time and a shear band type instability is possible. However, if q ia real and negative, 

then the perturbed solution is likely to decay with increasing time and the homogeneous 

solution is considered stable. 

Since iy2 = 2D D, the perturbation can be written as 

where 

5.  = (ic)g -., 

with 

g = ( 2 / q 0 ) ~ ~ n .  

Alao, since ( l /q )  has dimension6 of time, the perturbation 5 in the equivalent shear 

strain can be estimated by 

Further, from the'conetitutive equations, the perturbation in the equivalent ehear 

stress is 

with 



where RO,SO,TO and Po are the values of the rates of strain-rate hardening, strain 

hardening, thermal softening and pressure hardening, respectively, evaluated a t  the 

homogeneous solution a t  time t. It is important to note that these are time varying 

quantities. Also, in writing (28), it has been assumed that the perturbation in the 

mean normal pressure p can be written as 

Next, from the constitutive equations and equations (25)-(29), it follows that 

Finally, upon substituting (25) in (22) and (24), and upon further substitution from 

(26), (28) and (30) for +.,T. and T., we obtain 

\ 

T. = [{RO + ~ ~ / q } + . b O  + (~0/4O){(i()(v. n + n 8 v.) - +.DO)] 

-{T"D')~* + ( P O D 0  - l )p* ,  

where 

Do =  DO/+') I 

+ [(i€)(TOg)l e. + [(iE)(n - POg)l P. = 0 

and 

(30) 
b 

Equations (31) and (32), together with the kinematic constraint on the direction of 

velocity perturbation vector 



constitute the basic equations of the current perturbation analysis. 

Let 

denote a spectral representation of the homogeneous stretching. Here {Bi )  are the 

eigenvectors and {CQ) are the eigenvalues of Do. For the current constitutive model 

{Q) are also the principal directions of the stress To. Next, let { v , ~ )  denote the 

components of v, relative to the basis (C i ) .  Then the component form of system of 

equations (31) - (33 ) ,  with respect to the basis { h i )  may be written in the following 

form 

where the solution vector is 

and the entries of the coefficient matrix A are given in Appendix A. For non-trivial y, 

equation (35)  implies that 

det A = 0. (37)  

Equation (37) will yield a characteristic polynomial for q .  If for a given state and a 

given wave number 6 this characteristic polynomial has real positive roots for q ,  then 

the perturbation may grow and a shear band instability is possible. The direction of 

the emergent shear band will be characterized by that q  for which q  has maximum real 

positive root. 

In the next section, attention will be focused on plane motions and two important 

special cases of the resulting characteristic stability equation will be discussed. 



2.3 Initiation of Localized Shear Bands in Plane Motions 

For plane motions, US = 0, and the homogeneous stretching tensor Do can be put 

in the spectral form 

Do = @ i!il + (-a)h2 @ &, a > 0. 

Since $0  = d m ,  from (38), we obtain 

It will be assumed that the trace of the shear band lies in the plane of the motion, that 

is, 

Then, for plane motion, equation (35) reduces to 

B c  = 0, 

where the solution vector is 

and the entries of the coefficient matrix B are given in Appendix B. 

For non-trivial z, equation (41) implies that 

det B = 0. 



Upon evaluating this determinant, the following cubic equation for q is obtained : 

cOq3 + c l q 2  + c2v + cs = 0 

where 

with 

2 2 2 
XI = sin 2% = 4n,n2 

and 

2 2 x2 = cos 2x  - n2 - n,  

Here, x stands for the inclination of the trace of the shear band relative to the maximum 

principal stretching (stress) axis 6,. 

Equation (44) is the central equation for the problem2. If for a given state, a wave 

number ( and an orientation X, this cubic equation for q has real positive roots, .then 

the periodic perturbation may grow and a shear band instability is possible. 

It is important to note that whether or not such an instability devefops when q 

is positive cannot be determined from this linear perturbation analysis because the 

=It is noted here that if pressure sensitivity is neglected, i.e. P = 0,  and if we ae.sume a priori that ahear 
bands form at angles x = f 1r/4 with respect to maximum principal stress direction, then equation 
(44) reduces to equation (3.10) in Bai's 1982 paper. 



value of q is time-dependent since it is a root of the polynomial equation (44) whose 

coefficients Co through Cs (which characterize the state of the material when the per- 

turbation is introduced) are time-dependent. However, since these coefficients may be 

considered to be approximately constant during a short interval of time, the positive 

root q of this equation does give information about the incipient rate of growth of the 

localized mode. The linear perturbation theory can give information about the time 

for growth of the iocalized mode only under conditions in which it may be assumed 

that the perturbation grows on a time scale that is short relative to the variation of the 

coefficients in the characteristic stability equation; however, as mentioned previously, 

such an approach always underestimates the time for instability to develop (cf. e.g., 

Clifton et al. (1984), Fressengeas and Molinari (1985)). 

In the following sub-sections, attention will be confined to the class of materials for 

which 

that is , attention will be restricted to the materials which exhibit positive strain-rate 

hardening, strain hardening or strain softening, thermal softening, and which are either 

pressure insensitive or exhibit some pressure hardening. 



2.3.1 Quasi-Static, Isothermal Deformations 

This limit is obtained by neglecting the inertial term on the left hand side of the 

equation of motion (ll), neglecting the energy balance equation (l2), and assuming 

that the partial derivative T defined in (9) (corresponding to thermal softening) is 

zero-valued. With respect to the stability equation (44), this corresponds to neglecting 

all coefficients containing the mass density p, and letting the thermal conductivity n 

become infinite. In this case, the characteristic equation reducts to 

from which, the only possible root for q is 

-so 

where 

4 P (TO/+O) > 0 

and 

fi(x, Po) = (1 + Po sec (2~) )  cot2(2x) 

It is noted here that this expression for q is independent of the wave number of the 

perturbation. 



2.3.la Pressure-Insensitive Materials(P = 0) 

Here, equation (46) reduces to 

Since the denominator in (47) is always positive valued for x E f (O,lr/2), a growing 

mode can exist only if 

that is, if the material exhibits strain-softening. For a short period of time after So 

becomes negative, q is positive and it may then be thought to represent the incipient 

rate of growth of the localized mode. 

The angles x which give the largest incipient rate of growth are 

and this maximum rate 

That is, the fastest growth rate is inversely proportional to the strain-rate sensitivity 

and directly proportional to the extent to which the localization is past the onset of 

instability. It is apparent from this expression that a weak strain rate sensitivity (i.e., 

small RO) promotes faster growth rates. 



2.3.lb Pressure-Sensitive Materials(0 < P < 1) 

From (46), two conditions under which perturbations can grow are identified. 

Case 1 

If 

for a given (Re, P o ,  p O )  and all possible orientations x E f (0 ,7r /2 ) ,  then for a growing 

mode to exist, it is necessary that 

that is, for a shear band instability to be possibie the material must exhibit strain 

softening. 

In this case the most probable orientations of the shear bands are given by those x 

for which {RO + p' fl ( x ,  P o ) )  has the least positive value. This occurs for 

X c t  = f [(n/4) + (P/2)1 

with 

For 0 < Po a: 1, that is for only slightly pressure sensitive materials, (52) reduces to 

and the corresponding maximum value of 7 is 

n,. = [ - S o ] /  [R' - I 
1 p"(p012)2  - ( P 0 / 2 ) 2 ]  I 



from which it is clear that for strain softening materials a slight pressure sensitivity 

accelerates the growth rate. 

Case 2 

If 

for a given ( R O ,  P O , p o )  and some orientation x E f (0, n / 2 ) ,  then instability is possible 

with So > 0. Let 

The behavior of the function f2 with respect to x at  a fixed P o  is sketched in Fig. 

1. Since attention has been confined to materials which exhibit a positive strain rate 

sensitivity, i.e., RO > 0, it is seen that the instability condition can be satisfied for a 

sufficiently large P o  and some x E f ( ( s / 4 ) , ( 7 r / 4  + P 0 / 2 ) ) .  From Fig. 1 ,  for a given 

P o ,  the maximum negative value of f2 is 

f; = - ( P 0 / 2 ) *  

and it occurs a t  

x' = * [ ( ~ / 4 )  + ( P 0 / 4 ) l  

In this case 

and the most probable orientations of the shear bands are given by those x for which 

R0 + I(" 
sin' ( z X )  f z (x ,  P o )  



has the least negative value. 

In the limit RO + 0, that is for nearly rate-independent materials, extremely fast 

finite rates of incipient growth are attained in the directions 

= f [(7r/4) f 61 

or 

x!:' = f [ ( ~ / 4 )  + (P0/2) - 61 

with 

6 < 1.0 

For RO finite, there are a pair of critical orientations which depend on the precise values 

of (RO,  In any event, these critical orientations are bound from below by (a/4), 

and from above by [(*/4) + (P0/2)]. 



2.3.2 Dynamic, Adiabatic Deformations 

This limiting case is obtained by setting the thermal conductivity K, to zero in the 

characteristic equation (44). In this limit, the characteristic equation for q reduces to 

the following quadratic equation: 

where 

Co = p2c(l + x2 Po) 

and 

The roots of the quadratic equation (60) are: 

In what follows, we limit our attention to strain-hardening materials, So > 0, and treat 

pressure-insensitive materials separately from pressure-sensitive materials. 



2.3.2a Pressure Insensitive Materials(P = 0) 

In this case, Co > 0 and C1 > 0. Thus, for q to have a positive root, it is required 

that C2, and hence the function H(x) ,  must be negative. The behavior of the function 

H ( x )  is sketched in Fig. Za, from which it is clear that the necessary condition for 

H ( x )  to be negative is that pcSO < w7"T0, and this condition for instability may be 

written as 

where 

is an efectiue rate of thermal sojtening. The quantity H," is interpreted as a measure of 

the slope of the shear stress-strain curve at  a constant shear strain rate under adiabatic 

conditions. Ite value depends on the interaction between strain hardening and thermal 

softening. 

It is important to note that the critical condition (64) is independent of the wave 

number ( of the initial inhomogeneity and the strain rate sensitivity R of the material. 

Although the critical condition (64) for instability is independent of and R, the 

incipient rate of growth of the inhomogeneity depends on these quantitiesg. An in- 

dication of the form of this dependence can be obtained by observing that for small 

negative values of C2, that is for conditions slightly beyond the onset of instability, the 

eigenvalue q+ A -C2/C1 is given by 

SRecall that the incipient rate of growth of the inhomogeneitiea in the caae of quaai-atatic, iaothermal 
deformations did not depend on the wave number. 



Since q+ increases with increasing wave number, the perturbation with the largest wave 

number is predicted to grow at  the highest rate. Thus, as -, w, 

The orientation dependent function in the denominator of (67) is sketched in Fig. 

2b. Examining Figs. 2a and 2b, it is concluded that q+ has its maximum value for an 

orientation X' in the ranges (x , ,  xb) and (-x,, -xb) where 

1 xo = - sin"' 
2 

with 

and 

B = w t O T O  

Further, if p0 > RO, then q+ haa an absolute maximum 

for 

The considerations of this eection clearly show the interplay between the stabiliz- 

ing effect of strain hardening and the destabilizing effect of thermal eoftening. High 

30 



strength metallic materials generally exhibit relatively low strain hardening so the re- 

sistance to adiabatic shear localization in these materials is low. Note from (65) that 

the effective rate of thermal softening O increases with increasing flow stress ;r and 

decreasing density p. Also, the flow stress 7 increases, the specific heat decreases, and 

the thermal softening T is enhanced aa the temperature decreases. Thus high strength 

materials which exhibit a low rate of strain and strain-rate hardening are very suscep- 

tible to adiabatic shear localization a t  low temperatures. 



2.3.213 Pressure Sensitive M a t e r i a l s ( 0  < P < 1) 

From (60) - (63), two conditions under which perturbations can grow are identified: 

Case 1 

If C1 > 0, i.e., if (with fi defined in equation (56)) 

for a given state and all possible orientations x E f (0,7r/2), then, for a growing mode 

to exist, it is again necessary to satisfy the insta'bility condition (64). The direction 

of the fastest growing modes are still in the ranges (x,, xb) and (-x,, -xb) and are 

determined by requiring that r]+ (Po # 0) attain the maximum positive value. 

Case 2 

If C, < 0, i.e., if 

for a given Po and some x E f (O,7r/2), then a growing mode exists even if H," > 0. 

Clearly, as RO -, 0 smaller amounts of pressure sensitivity are necessary to satisfy 

(71). The orientation of the fastest growing mode is the one that gives the maximum f ~ +  

for given values of (RO, So, To,  Po, clO, +', 0. This orientation is not necessarily f n/4. 



2.4 Discussion 

In previous analyses of the onset of shear localization in viscoplastic materials, the 

problem of localization in simple shear has been the prototypical problem that has 

been considered(e.g., Clifton (1980), Bai (1982)). A common starting point for these 

analyses is the assumption that the deformation can localize only in one narrow band 

which is parallel to the direction of shear. However, simple shearing is a special plane 

motion and the current analysis for the onset of shear instability predicts that even in 

simple shear, shear bands can initiate in two directions. This will be briefly discussed 

in what follows and some experimental evidence in support of the current theoretical 

predictions will be presented. 

In simple shearing motion the velocity v is given by 

where a is a positive constant and el and e2 are orthogonal unit vectors. The stretching 

tensor corresponding to this velocity is 

where 

and 

are the principal directions of stretching. According our analysis for quasi-static, 

isothermal deformations, shear bands are expected to form at angles 



with 

P = sin-' [(I/ pO)(l  - d-)] 

For Po < 1, ,O A P0/2 and as Po approaches zero, so does the angle P.  Thus, for 

pressure insensitive materials, the traces of the shear Lands are expected to coincide 

with the shear direction el, and the direction ez which is perpendicular to the shearing 

planes. For pressure sensitive materials, they are predicted to form at angles larger 

than f ( ~ / 4 )  from the - direction, see Fig. 3. In Fig. 4, a micrograph of shear bands 

observed in a simple shear test conducted on the polymer polycarbonate at a shear 

strain rate of 10-~/sec is shown. The shear bands were found to initiate just before the 

peak in the shear stress-strain curve. Note that, as predicted by the analysis, there are 

two sets of shear bands. Further, since plastic deformation in polycarbonate is pressure 

sensitive, the shear bands form at orientations which are qualitatively similar to those 

sketched in Fig. 3. Thus, the analysis clczrly indicates, and the experiments show 

that shear bands can initiate in two directions even in simple shear. This is contrary 

to the common perturbation analysis assumption that in simple shear a shear band is 

initiated only in the direction of shear. 

In summary, for materials whose rate-dependent plastic deformation behavior can 

be modeled by the simple phenomenological constitutive model of section 2, a linear 

perturbation stability analysis for the onset of formation of shear bands has been pre- 

sented. The predictions of this analysis have been explored for the important limiting 

cases of (1) plane quasi-static, isothermal deformations and (2) plane dynamic, adia- 

batic deformations. The predictions of (a) the critical conditions for the formation of 

shear bands, (b) the direction of emergent shear bands, and (c) the incipient rate of 



growth of these bands for these cases are qualitatively correct and intuitively satisfying. 

For the more general problems of localization of dynamic deformations in which heat 

conduction effects cannot be neglected, the predictions of the stability equations (44) 

and (37) remains to be explored. 



Chapter 3 

Integral Criterion for Adiabatic Flow Localization 

3.1 Background 

FOP the present discussion we note that an analysis of the stability of two-dimensional 

plane homogeneous deformations has been presented in chapter 2. In the previous 

analysis we aasumed isotropy, neglected elasticity and used a flow rule for the (plastic) 

stretching in which the direction of viscoplastic flow is in the direction of the deviator T' 

of the Cauchy stress T, while the magnitude of plastic flow is proportional to an equiv- 

alent plastic strain rate +P which is constitutively defined by a function )lP = f ( T ,  ?P, 8) 

with the neglect of pressure aenaitivity. Here r 4 W . T '  is the equivalent shear 

stress; qP, the time integral of .;yP, is the equivalent plastic shear strain; and 0 is the 

absolute temperature. It has been assumed that the strain rate function f is invertible 

such that one can write 

Corresponding to (72), the partial derivatives 

denote the ratea of strain hardening, strain-rate hardening and thermal softening, re- 

spectively. Further, for adiabatic deformations we take the energy balance equation to 

be 



where p,  c, and w ( w  0.9) are the mass density, specific heat, and the fraction of plastic 

work converted to heat. Confining attention to materials for which S > 0, R > 0 and 

T > 0, we have found that for dynamic (i.e., inclusion of inertial effects), adiabatic 

(i.e., neglect of heat conduction) deformations: 

1. The necessary condition for the initiation of shear bands is 

2. The maximum incipient rate of growth is for shear band perturbation8 at angles 

relative to the maximum principal stress direction. Accordingly, the emergent 

shear bands are expected to form at orientations given by (78). 

3. The incipient rate of growth of the emergent shear bands is given by (-P), where 

These results clearly bring out the interactions of various material characteristics on 

adiabatic shear localization. They show the important interplay between the stabiliz- 

ing effect of strain hardening and the destabilizing effect of thermal softening. High 

strength metallic materials generally exhibit relatively low strain hardening so that 

the resistance to adiabatic shear localization in these materials is low. Note that the 

effects of thermal softening increase with increasing flow stress F and decreasing den- 

sity p. Also, the flow stress T increases, the specific heat c decreases, and the thermal 

softening T is enhanced as the temperature decreases. Thus, high strength materials 

which exhibit a low rate of strain hardening are very susceptible to adiabatic shear 



localization at  low temperatures. Note also that the incipient rate of growth of the 

shear hand is inversely proportional to the rate of strain-rate hardening R. Thus a 

weak strain rate sensitivity, that is a small value of R, promotes faster growth rates. 

An inherent limitation of this (and all other) linear perturbation analyses is that 

it provides only (a) the necessary conditions for the initiation of shear bands, and (b) 

the orientatiow and the incipient rate of growth of the emergent shear bands. It does 

not provide any information regarding the more interesting stages of localization when 

the strain, strain rate, and temperature in the shear bands becomes much larger than 

elsewhere. To predict the beginning stage of significant flow localization with any rea- 

sonable accuracy, except perhaps for materials with a very low strain-rate sensitivity, 

it seems necessary to devise a new criterion. To this end, in what follows we attempt to 

formulate a simple new criterion for significant adiabatic flow localization in viscoplas- 

tic solids. 



3.2 Localization Criterion 

Here we do not neglect elasticity and thermal expansion effects, and we take the 

rate constitutive equation for the stress to be given by 

Tv = LI[D - Dp] - IIe 

where with W denoting the spin tensor, 

TVET-WT+TW, 

is the Jaumann derivative of the Cauchy stress; with p and rc the elastic shear and bulk 

moduli and X and I the fourth and second order identity tensors, 

is the fourth order isotropic elasticity tensor; with a! the coefficient of thermal expm- 

sion, 

II = 3nal  

is the second order isotropic stress-temperature tensor; D is the streching tensor, and 

the flow rule is taken as 

Dp = Y(T'/~T),  

where TI is the deviatoric part of Cauchy stress tensor T , P is the equivalent shear 

stress, and 

is the equivalent plastic shear strain-rate. As before, it is assumed that the strain-rate 

function f can be inverted to give 7 in terms of ';3P, +P and 8; see equation (72). 

Differentiation of (72) with respect to time gives 



where S, R and T are the rates of strain hardening, strain-rate hardening and thermal 

softening defined in equations (73)-(75). For adiabatic deforrn,ations the energy balance 

equation is given by (76). Substituting for ) from (76) into (80) and rearranging, one 

obtains 

where P is defined in (79) and Q (+/R). This equation was first derived by Shawki 

[I9861 who points out that it may be viewed "locallyn as a nonlinear ordinary differential 

equation for This equation has the (implicit) "solutionn : 

where 5; is the value of $p a t  some initial time t i ,  and 

Note that equations (82) and (83) hold for arbitrary three-dimensional adiabatic de- 

formations of bodies obeying the generic form of the constitutive equations assumed 

here. 

For S > 0, R > 0, T > 0, the linear perturbation stability analysis gave the result 

that in homogeneous plane adiabatic motions shear band instability becomes possible 

when the parameter P becomes negative. Semiatin et al. [I9841 have previously de- 

duced a "flow localization parametern a (see their equation (15) in ref. 16) which is 

proportional to the flow softening rate and inversely pr~portional to the strain rate sen- 

sit ivity. From t heir numerous studies they have concluded that noticeable localization 



usually does not occur until a M 5. If we interpret4 their a as (-P/$'), then a possible 

criterion for noticeable flow localization is that P should be "sufficiently negative". 

Such a criterion has also been suggested by Shawki [1986] who uses G (see his equation 

(2.172)) to denote the parameter that we have here called P. 

Semiatin and Jonas 11984, p. 751 remark, "the a parameter provides an insight 

into the tendency to form shear bands as well as the likely degree of localization or 

severity of shear banding. Although the a = 5 criterion is principally a rule of thumb, 

process modeling using finite element methods has confirmed the usefulness of this 

~ a r a r n e t e r . ~  A few pages later (p. 84) they remark, "Another feature illustrated by 

the process simulation results is the fact that flow localizatiorl is a process not an 

event. Strain and strain-rate concentrations do not occur instantaneously. For this 

reason, flow localization cannot be expected to appear fully developed when a reaches 

some critical value (such as 5) a t  some point in the flow field." 

Based on these remarks, and as is clearly suggested by equations (82) and (83), we 

note that the occurrerice of a large value of the equivalent plastic shear strain-rate at 

a material p i n t  depends not only on the instantaneous sign of P or an instantaneous 

negative value of P, but on the sign and value of the integrated history A of -P. 

Inspection of equation (82) reveals that in general there is a complicated interaction 

between the term exp(X) and the term in the square brackets. However, it can be 

argued that the term in the square bracket of the equation (82) is bounded between 

the numbers one and zero such that the dominant term which contributes to the high 

value of the equivalent plastic shear strain-rate is exp(X) (See Appendix C). Thus a 

simple criterion ("rule of thumb") for the localization of plastic deformation is 

'The considerations of Semiatin, Jonaa and ceworkem are tied very closely to a particular power-law 
type constitutive equation for the shear stress. 



A > A,. (84) 

The sati~faction oj  this criterion at a material point should indicate that the equivalent 

plmtic shear strain-rate at that point is very high. 

To make this criterion specific we need to specify the lower limit of integration t i  in 

equations (82)  and (83), and specify the value of A, in (84). Two possible choices for 

t i  are: 

2 .  t i  = the time when P first changes sign from positive to negative. 

Recall that as long as P is positive the linear perturbation analysis predicts that 

the material is stable and the necessary condition for the formation of shear bands 

is not satisfied. Thus for materials which exhibit some strain hardening, if choice 1 

is made then A is accumulating a negative contribution6 until such time as P turns 

negative. Since, as graphically commented by R. J. Cliftone,"You can't put stability 

in the bank!", this choice for the lower limit of integration is not attractive, and the 

choice for t i  to be preferred is the time when P first changes sign from positive to 

negative. In this case A is always positive, and A, has to be "sufficiently positiven. 

As with the a-criterion of Semiatin, Jonas and co-workers, there does not appear to 

be a rigorous way to precisely specify the value of A,. However, it should be possible 

to "calibrate" the value of A, by performing full non-linear finite-element analyses of 

representative numerical experiments such as plane-strain tension and compression, 

and axi-symmetric tension and compression for different constitutive functions. 

'For materials which show no etrain hardening A is always positive. 

OP~-ivate communication with Anand. 



Localization of deformation into a region (band-like or otherwise) is an initiation 

and growth phenomenon in which the strain, strain-rate and temperature in the region 

becomes much larger than elsewhere. In what follows we report on a numerical ex- 

periment which demonstrates a procedure for obtaining a calibration of the critically 

positive value of X by performing simulations of the plane strain tension and compres- 

sion tests. We show that by monitoring the nucleation and growth of regiono of A, 

we can follow the initiation and development of regions of intense plastic deformation 

in the body. The appearance of a significant sized region of "significantly positiven X 

in the body correlates very well with the beginning of significant flow localization as 

judged from the distortion of the finite-element mesh, the contours of the equivalent 

plastic shear strain, shear strain-rate and temperature, and also with the rapid drop in 

the load carrying capacity of the specimen. In the plane strain tension and compression 

test simulations the shape of the region of localized plastic flow which evolves naturally 

is a band-like region. 



Chapter 4 

Numerical Examples 

For the class of large deformation rate constitutive equations for isotropic thermo- 

elast~viscoplaaticity described in the previous section, Anand et al. [1985] have devel- 

oped special semi-implicit time-integration procedure, and they have incorp~ra~ted this 

time-integration procedure into the general-purpose, non-linear finite element computer 

program ABAQUS (19841. The numerical simulation reported here was performed by 

using this computer code. 

The particular constitutive function for the equivalent tensile stress 7 used in the 

numerical analysis is an equation proposed by Lindholm and Johnson [1983]. These 

authors have reported dynamic torsion test data obtained from short gage-length, thin- 

walled tubular specimens made from several metals, and they have proposed a consti- 

tutive equation for the shear stress which accounts for strain hardening, strain-rate 

hardening and thermal softening. For small elastic strains and under the assumption 

of isotropy the constitutive equation proposed by these authors may be interpreted to 

have the following form: 

where 

7 (0) = [(ern - e ) / ( e m  - e0)la, (86) 

and A, B, C, n, j.0 and a are material constants, Bo is a reference temperature and 

8, is the melting temperature. In their experiments Lindholm and Johnson found 

the steel AMS 6418 to be very vulnerable to shear localization. Another material 



alumimum 2024-T351 has also been selected for the numerical analysis. This material 

has rate sensitivity and strain hardening capability much higher than those of AMS 

6418 steel and is expected to have much higher resistance to shear localization. Thus 

it is interesting to investigate whether A, in our integral criterion can be calibrated 

to the same value for these significantly different materials. For these two materials 

Lindholm and Johnson report the values of the material constants in equation (85) and 

(86) as shown in Table 1. Further, the selected values for the fraction of plastic work 

converted to heat, mass density, specific heat and elastic bulk and shear moduli for 

these two materials are also listed in Table 1. 

Table 1. Material constants for AMS 6418 steel and aluminum 2024-T351. 

Lindholm and Johnson have proposed the value a = 1 in equation (86), however to 

accelerate the localization process in our numerical simulation, we have used the value 

a = 2. 

The numerical examples considered here are the simulations of (1) plane strain com- 

pression, (2) plane strain tension and (3) bending of a u-notched specimen under plane 



strain conditions. Plane strain compression and tension problems have been chosen to 

investigate whether the value of A, in our integral criterion can be calibrated to the 

same value for those two different deformation processes both known to be vulnera- 

ble to shear localization. It has been found that A, = 10 serves well to predict the 

beginning of significant shear localization in all the different combinations of deforma- 

tion processes and material properties described above. The problem of plane strain 

bending of a U-notched specimen has been chosen to investigate the applicability of 

the X > A, criterion for shear localization in an extremely inhomogenous deformation 

processes. 

Each mesh consists of ABAQUS continuum plane strain 4-node isoparametric quadri- 

lateral (CPE4) elements. The mesh for numerical simulation has been refined in the 

region where deformation localization is expected. Finite element analyses of shear 

bands based on fine meshes of quadrilateral elements built up from four crossed tri- 

angles have been previously used (e.g., LeMonds and Needleman [I9861 and Becker 

and Needleman [1986]) to numerically capture sharply localized shear bands. In the 

problems of adiabatic plane strain compression and tension, shear bands form across 

the specimen and thus it is possible to refine the mesh with a proper pre-orientation to 

capture the sharpest shear bands for given element size. Proper pre-orientation of the 

mesh with crossed-triangular elements has been obtained by a trial and error effort. In 

these regions two of the nodes of a typical quadrilateral element have been collapsed 

to produce a triangular element, and such triangular elements are arranged to build 

quadrilaterals made from four crossed triangles. In the problem of the bending of a 

U-notched specimen, there nucleates a deformat ion localization zone on the free surface 

of the notch after a certain amount of deformation and then it subsequently propagates 



into the deforming zone under the notch. There is no shear band which encompasses 

the entire deformation field within the specimen. In this sense, flow localization in this 

problem is highly local when compared against the cases of plane strain compression 

and tension. Moreover, as the deformation field is extremely inhomogeneous, it is dif- 

ficult to monitor the nucleation and development of shear localization until there is a 

global mesh distortion. Thus even though the mesh has been refined in the deformation 

zone under the notch using the four node quadrilateral elements, further trial and error 

effort to refine the mesh with the optimum pre-orientation of the triangular elements 

has not been made for this problem. 

The boandary conditions on plane strain compression and tension specimen have 

been chosen such that nominal plastic shear strain rate of -1000sec-' is obtained in 

the prospective localization zone of each specimen. In the numerical analysis the ef- 

fects of inertia are neglected and using the static procedures of the finite element code 

ABAQUS the full non-linear solution to the problem has been obtained. Values of the 

equivalent plastic shear strain 7P, equivalent plastic shear strain rate +', absolute tem- 

perature 8 ,  the parameter P and the parameter X were calculated at  every integration 

point a t  the end of every displacement increment, and level contours of these variables 

were obtained a t  numerous representative increments. A plot of the overall load versus 

displacement curve was also obtained. 



4.1 Plane Strain Compression 

A 320 element mesh shown in Fig. 5 has been used to approximate the plane 

strain compression of AMS 6418 steel and aluminum 2024-T351 between two friction- 

less platens. Triangular elements obtained by collapsing an edge of 4 node continuum 

elements have been used to capture the sharp shear band a t  later stages of compres- 

sion. The top boundary of the mesh respresenting one quadrant of the specimen with 

initial temperature of 300°K has been compressed down at a constant speed without 

any constraint on the horizontal degrees of freedom. Specimen geometry allows homo- 

geneous deformation under frictionless compression. Hence it is necessary to introduce 

a small perturbation which can trigger flow localization. An initial temperature per- 

turbation of 1°C has been introduced into an element at  the lower left corner of the 

mesh (element A in Fig. 5). Shapes of the deformed mesh and the values of equivalent 

plastic shear strain if, temperature 8 ,  equivalent plastic shear strain rate +', parame- 

ters P = (S - ( w ~ / p c ) T ) / R  and X = J:, -Pdt together with the value of the total load 

have been monitored throughout the deformation process. 

Special attention has been given to three specific moments: 

1. Time t l  at which the value of the parameter P changes its sign throughout the 

specimen from positive to negative. 

2. Time t 2  a t  which the load carrying capacity of the specimen reaches its maximum 

value and when there develops a mild flow localization of shear band mode. 

3. Time t s  at which the load carrying capacity of the specimen is decreasing rapidly 

and most of the deformation is cosicentrated onto a narrow shear band. 



The deformed mesh and the field variable contours together with the total load - time 

curve are shown for these three time moments in Fig. G - Fig. 8 for AMS 6418 steel 

and in Fig, 9 - Fig. 11 for aluminum 2024-T351. 

Before time t l  the strain hardening has been overcoming the thermal softening even 

though there is an adiabatic temperature rise. Thus even with the introduction of 

a finite temperature perturbation at  the lower left corner of the mesh, deformation 

localization has been supressed up to time t l .  At time t l  as shown in Fig. 6 and 

Fig. 9, deformation field is essentially homogeneous throughout the specimen. Due to 

geometric hardening, load is on the increasing slope of its time curve. According to 

the linear perturbation stability analysis, a necessary condition for the onset of shear 

localization in plane strain deformation is P (S - ( u ~ / p c ) T ) / R  < 0 (cf. chapter 

2.3.2). Thus time t l  is the moment when the growth of field inhomogeneities into a 

shear band becomes possible. However, no significant localization process has been 

observed just after time t l .  

At time t 2 ,  as shown in Fig. 7 and Fig. 10, the total load is at  its peak value and 

there has formed a mildly developed shear band. At this time there appears a zone of 

noticeable region within each specimen where X > 5. Subsequent deformation corltinues 

to concentrate within this zone which develops into a band-like region shortly. Thus 

time t z  can be considered to be a beginning of catastrophic shear localization. All five 

contour plots agree on the location and shape of the localization zone in the form of a 

band. 

After time t 2 ,  the deformation localization develops significantly. A severely de- 

formed mesh now clearly shows the shear band. The load carrying capacity is decreas- 

ing rapidly and the shear localization a t  this stage is essentially catastrophic. Time t s  



has been chosen to show a fully developed stage of the shear localization with moderate 

distortion of the elements inside the band (Figs. 8 and 11). At this time the value of 

X in the band is X = 30. After this stage mesh rezoning is necessary to continue the 

analysis with any accuracy. Due to the finite size of the elements used for the analysis, 

there exists a finite lower bound to the numerically obtained band thickness. 



4.2 Plane Strain Tension 

As AMS 6418 steel and aluminum 2024-T351 can sustain different amounts of strains 

before the development of adiabatic shear bands, slightly different meshes have been 

used for the numerical simulations. For AMS 6418 steel a 456 element mesh shown in 

Fig. 12 and for aluminum 2024-T351 a 520 element mesh shown in Fig. 16 have been 

chosen to approximate the specimen geometry used by Clausing [1970] To capture the 

sharp shear bands in the catastrophic stages of the shear localization in each material 

mesh had to be refined with proper pre-orientatisn of the quadrilaterals with cross 

triangles in the central regions of the specimen. By a trial and error approach, the 

mesh has been refined in the central region of the specimen where most of deformation 

localization is expected. The top boundary of the one quarter of the specimen shown 

in Fig. 12 and Fig.16 has been pulled upward at  a constant speed which gives a 

nominal plastic shear strain rate of - l ~ ~ s e c - '  in the central gage section with the 

initial temperature of 300°K, Due to the geometry of the specimen, deformation is 

not homogeneous right from the beginning and thus there is no need to introduce a 

perturbation into the model to trigger the shear localization expected a t  later stages of 

deformation. As will be shown later, there is a gradual diffuse necking process observed 

in the central region of the specimen. As the necking progresses, eventually there appear 

shear localization zones in the form of bands inside the neck. Subsequently, most of 

deformation is severely localized onto those bands and the total load decreases rapidly. 

As in the previous example, the field variables used to monitor the deformation 

process are equivalent plastic shear strain qP, temperature 0, equivalent plastic shear 

strain rate .;IP and the parameters P and X together with the deformed mesh and the 



total load. 

Special attention has been given to three specific moments: 

1. Time tl  at  which the value of the parameter P changes its sign at the center of 

the specimen from positive to negative. 

2. Time t2 at which the total load begins to drop more rapidly, and there develops 

a significant amount of flow localization. 

3. Time t3 at which shear localization is in its fully developed catastrophic stage. 

At time tl, as shown in Fig. 13 and Fig. 17, the total load is past its maximum and 

there is a region of negative P developed at the center of the specimen. Inhomogeneity 

of the deformation field is very mild throughout the central region of the specimen. 

According to the linear perturbation stability analysis, with a negative value of P such 

that S < ( w ~ / p c ) T ,  it is now the time for the growth of field inhomogeneities to form 

shear bands. However, due to the stabilizing effect of positive strain rate hardening, 

the epeeds of the growth of field inhomogeneities are not high enough to develop any 

significant flow localization immediately after time tl. Up to time t2 the localization 

process is very gradual. 

At time t 2 ,  a zone of noticeable size where X > 5 - 10 nucleates at the center of 

the neck and shortly, it propagates from the center of the neck to the free surface of 

the specimen to form a band-like region. Localization as evidenced by the five field 

variable contours has intensified, the load is beginning to drop more rapidly, and the 

mesh begins to deform heavily; see Fig. 14 and Fig. 18. 

At time ts, the deformation localization is so severe that even without the aid of 

contour plots, shear bands are readily visible as shown in Fig. 15 and Fig. 19. The 



load carrying capacity is dropping rapidly. At this time the value of X in the band is 

X % 30 for AMS 6418 steel and = 18 for aluminum 2024-T351. After time t3  some 

elements begin to deform severely, and the subsequent finite element analysis requires 

mesh rezoning for its accuracy. 



4.3 Plane Strain Bending of a U-notched Specimen 

A 542 element mesh and accompanying boundary conditions ~ h o w n  in Fig. 20 has 

been chosen to approximate the specimen geometry and experimental scheme used by 

Zuber (1985) for this problem. A number of quasi-static, isothermal four point bending 

experiments have been performed by Zuber on polycarbonate, aluminum and 2. zsrag-  

ing steel specimens. In each material, intense shear localization followed by ductile 

fracture has been observed. Even though the mechanism of shear localization in adia- 

batic deformation processes is different from that of quasi-static isothermal processes, 

the problem of adiabatic plane strain bending of a u-notched specimen has been chosen 

for the numerical simulation. The deformation field is extremely inhomogenoua and 

unlike the previous cases of plane strain compression and tension where localization 

began inside the deforming body, shear localization in this case is expected to initiate 

at  the free surface of the notch and then propagate into the material. Due to the inho- 

mogenous nature of the deformation field, the beginning of significant shear localization 
i 

is less clear when compared with the previous examples. However, it will be demon- 

strated that the linear perturbation stability analysis still underestimates the time to 

significant shear localization and this can be greatly improved by the new integral cri- 

terion. Again, the field variables q P ,  0, .fP, P and X together with the deformed mesh 

and the total load have been monitored throughout the deformation process. Special 

attention has been given to three specific moments: 

1. Time t l  at which the parameter P has negative values in the deforming regions 

under the notch and under the back surface of the notch. 

2. Time t z  a t  which the parameter X has values greater than 10 in both of the 



deforming regions. 

3. Time ts at  which there are fully developed shear localization zones in both of the 

deforming regions. 

In the beginning of the deformation, strain hardening overcomes the thermal soft- 

ening such that P > 0 throughout the deformation field. After an elapse of a certain 

amount of time, a small negative P zone nucleates under the root of the notch and this 

negative P zone propagates into the material quickly. This propagation of negative 

P zone is stopped by the relatively non-deforming region in the neutral plane of the 

specimen. After P changes its sign from positive to negative in the deforming region 

under the notch, there appears another negative P zone in the deforming region under 

the back surface of the notch. By the time tl, there are two well developed negative P 

zones in the two deforming regions separated by a neutral plane as shown in Fig. 21. At 

this time the total load is past its maximum value on its time trajectory. Even though 

the deformation field is inhomogenous, there is no significant shear mode localization 

observed a t  this stage of deformation. The value of X is less than its critical value of 

10 over the deforming regions except in the vicinity of a small zone on the free surface 

away from the center of the notch as seen in Fig. 21. 

After time tl , the X > 10 zone propagates from its nucleation site into the deforming 

region under the notch. This propagation of X > 10 zone is again stopped by the neutral 

plane. Highest strain rate is observed at  this nucleation site on the free surface off the 

center of the notch. Then there nucleates another X > 10 zone on the back surface of 

the notch. This X > 10 zone also propagates into the deforming region under the back 

surface of the notch and get stopped by the neutral plane. Thus by the time t2, there 

are two X > 10 zones developed in the deforming regions under the notch and under 



the back surface of the notch as shown in Fig. 22. Deformed mesh and contour plots 

indicate that there is a localization process centered around the point where X > 10 

region has first nucleated a t  time t l .  At this stage, mesh distortion reveals moderate 

shear localization in the deforming region under the notch. 

After time t 2  the shear localization in the deforming region under the notch becomes 

more developed and mesh distortion becomes more prominent. Along with the shear 

localization in this region, there develops another shear mode flow localization in the 

deforming region under the back surface of the notch. Fig. 23 shows a fully developed 

stage of shear localization at  time t 3 .  At this stage, shear bands are readily observable 

even without the aid of contour plots due to the heavy distortion of the finite element 

mesh. The numerical results a t  this stage is probably inaccurate and mesh rezoning 

will be necessary to continue the analysis. 



Chapter 5 
Discussion and Conclusions 

In chapter 2, a linear perturbation stability analysis for shear localization in 3 di- 

mensional flow of viscoplastic solids has been performed. Shear localization is regarded 

as a material instability and a general framework for obtaining a characteristic equa- 

tion for the shear localization in 3 dimensional flow has been presented from which 

conditions for the onset of shear localization can be deduced. For the special cases of 2 

dimensional plane deformation, conditions for the onset of shear localization have been 

obtained in terms of the material parameters such as strain hardening, effective ther- 

mal softening, strain-rate hardening and pressure sensitivity. It has been demonstrated 

that linear perturbation stability analysis predicts: 

a The necessary conditions for the initiation of shear bands. 

The incipient orientations of the shear bands. 

The incipient rate of growth of the emergent shear bands. 

However, it has been widely known from the study of the shear localization in 

one dimensional simple shear deformation that linear perturbation stability analysis 

significantly underpredicts the amount of attainable strain prior to the significant de- 

velopment of shear localization. Fully nonlinear numerical simulations of simple shear 

deformation of viscoplaetic solids reveal that there is no noticeable development of shear 

bands at the moment of shear band initiation predicted from the linear perturbation 

stability analysis. Significant development of shear localization is usually postponed 

until much later stages of deformation. 



Motivated by these observations, another approach to the problem of shear local- 

ization in rate sensitive materials has been considered in chapter 3. For the purpose 

of the argument, attention has been focused upon the adiabatic shear localization. 

Again, the phenomenon of sheax localization is regarded as a material instability and 

an attempt is made to devise a criterion for significant shear localization in terms of 

the material parameters for a class of viscoplastic materials. The development of the 

new criterion is based upon the fact that due to the autocatalytic nature of adiabatic 

shear localization, strain rates can be very large within the localization zone once the 

shear band formation is taking place. A nonlinear first order differential equation for 

the equivalent plastic shear strain rate +P has been obtained for a class of viscoplastic 

materials undergoing adiabatic deformation. An implicit solution to this equation has 

been obtained. The form of this solution suggests that unbounded growth of the equiv- 

alent plastic shear strain rate +P a t  a material point is possible when a dimensionless, 

history dependent parameter 

reaches a certain value. Here, the lower limit of the integration ti has been chosen as 

the time when P defined in equation (79) changes its sign from positive to negative. 

This is the time of the initiation of shear localization predicted by linear perturbation 

stability analysis for plane deformation. Thus a simple criterion for the localization of 

plastic deformation has been suggested as 

where A, is a positive number which can be calibrated for a class of constitutive equa- 

tions and deformation processes. Attainment of the condition above in the deformation 



localization zones will take a finite amount of time from the time ti and thus the new 

criterion is supposed to improve the underprediction of the critical strain to signifi- 

cant shear localization from linear perturbation stability analysis. Another feature of 

the new criterion is that in contrast to the linear perturbation stability analysis which 

characterizes the initiation of shear localization in terms of the instantaneous values 

of the material parameters such as P, the new criterion suggests that the catastrophic 

stage of shear localization is characterized by the time history of P. 

Finite element simulations of adiabatic plane strain compression, tension and bend- 

ing of materials described by a set of viscoplastic constitutive equations have been 

successfully performed. Elasticity, thermal expansion and large geometry changes are 

accounted for, but inertial effects have been neglected. The numerical simulations of 

plane strain compression and tension tests have been used to follow the initiation and 

growth of a band-like region of localization through slow early growth to severe lo- 

calization. It is shown, as expected, that the significant stage of severe localization, 

i.e. when the load starts to drop rapidly, is poorly correlated with the instant when 

{P (S - (w ~ / p  c) T) /R) turns negative. However, the beginning of severe localiza- 

tion correlates fairly well with the time when there first develops a band-like region of 

A = Jt P d t  > A, R 10 across the specimen. 

In order to follow the localization process in an arbitrary deformation history it 

appears attractive to monitor the parameter X and its contours in addition to the 

parameters ( q p ,  +', 9) and their contours. It is important to note that like y p  and 

9, the parameter X depends upon the entire deformation history experienced by each 

material point. Because of the point-wise nature of the parameter A,  the attainment of 

a sufficiently positive value of X does not by itself predict localization which is usually 



l~ndcrstood to occur whm the s t r an ,  stran-rate and temperature In a region (band-like 

LIT c~therwlse) becomes much larger zhm the rcgrons which surrouna it. Euwever, ily 

monitoring the nucleation and growth oi clf a region whore A IS pusltivc! we woiiid have 

 ruto om^-tically monitored the regon where the stram, stran-rate mu temperature aro  

,;rester than In the regions which surround ~ t .  'I'D tietermme the &ape oi tfic rcglon UI 

localized deformation In a g ~ v m  bo~~ndrrry value problem, the hill nmi-linear solution 

to the problem  ha^ to be cmxed out. Ln the plme strain compression m d  toension 

reat simulations the shape of the region of localized fiow which evolves naturally 1s a 

11and-lib region. ?or plane strain bending of a u-notched spt?clmen, due to the severe 

~nhomogeneity of the deformation field the shape of the A . X, ione w m  not so simple 

In the cases of piane stram compressron and tension. nowever, the formntion of 

significant sized X >. X, aone within the deforming regions of tohe speclmen correlated 

fairly well with the beg~nning of the ~iginficant shear localization in these regions. 

For the derivation of the parameter X, no specrfic assumption as to the mode oi 

tieformation has been made even though the main purpose uf the derivation was for 

the shear mode of !ocalization. Thus it is interesting to see if the same parameter X 

can be applied to a different mode of fiow localization such a necking in axisymmetric 

tension. 

Apart from the interest in monitoring regions of X during numerical studies con- 

ducted to understand the physical phenomenon of flow localization, the monitoring of 

this parameter may be useful for determining the stage in a finite (dement analysis 

when it may become necessary to start worrying about significant mesh (listortion crnd 

the need for a re-zoning operation. 

There is an another issue in relatian to the applicability of the localization criterion 



A > A, to interrupted deformation histories. In situations such as forging, the flow 

field can be extremely inhomogenous and the boundary conditions can be continuously 

changing with time due to the change of the workpiece geometry. Thus it is possible that 

for certain stages of the deformation process shear localization is promoted within the 

deforming body but later on further development of the shear localization is suppressed 

by the new loading conditions. In these cases, it is possible that the strain rates in 

the interrupted shear localization zone are no longer allowed to grow with time but 

eventually will be forced to return to zero values. On the oth.er hand, there is no upper 

limit provided for the time integration for the parameter A defined in equation (83). For 

the parameter A to be applicable for such cases of interrupted deformation histories, it 

should be shown that X will decrease or at  least stop increasing when the values of the 

strain rates return to zero. For a class of viscoplasic materials for which the flow stress 

7 is a function of the equivalent plastic shear strain rate 5' such that 

with $ In?, the strain rate hardening R defined in equation (74) will be inversely 

proportional to the equivalent plastic shear strain rate +' such as 

As the parameter P defined in equation (79) is inversely proportional to the strain-rate 

hardening R, it can be said that for a class of viscoplastic materials (except the linear 

viscous limit) that 

Thus for viscoplastic materials the value of the parameter P will return to zero and 

the value of the localization parameter X will be frozen to its previous value whenever 



the strain rates are forced to zero values. 

In spite of the efforts made in this thesis, the understanding of the shear localization 

phenomerion is far from being complete. There are a number of issues upon which our 

future effort should be concentrated. First of all, the complete feature of the three 

dimensional generalization of Clifton and Bai's linear perturbation stability analysis has 

not been fully examined primarily because of the complexity of the coefficient matrix 

A shown in Appendix A. Even though linear perturbation stability analysis cannot 

give the critical strains to shear loczlization in rate-dependent materials, the result is 

supposed to provide the further understanding of the roles of various features of the 

three dimensional deformation field. For the simplicity of the mathematical operations, 

relatively simple constitutive assumptions has been used for the analysis. Obviously, the 

analysis can be improved by incorporating the effects of elasticity, dilatancy together 

with pressure sensitivity and more complex features constitutive behavior of anisotropic 

materials. 

The new criterion which employs a dimensionless parameter X haa been developed 

to overcome the underprediction of the critical strains to shear localizaiton by linear 

perturbation stability analysis. It has been asserted that due to the autocatalytic 

nature of the adiabatic shear localization, the critical stage can be determined as when 

the values of strain, strain rate and temperature in the localization zone become very 

large compared to their values elsewhere. This approach cannot be applied to quasi- 

static deformation processes and the study of failure criterion becomes necessary. The 

study of shear localization cannot be complete without the understanding of failure 

mechanism by which the shear localization process is terminated in many cases. It 

might be possible to modify the new criterion such as X > for the catastrophic 



stage of shear localization. Of course it is now an open question how X jailure should be 

determined. 

Another aspect of the new criterion which should be studied further is that the 

derivation of X has not bean based upon the spatial gradients of the plastic strain rate. 

The phenomenon of shear localization is best evidenced by the intense spatial gradients 

of the field variables such as strains, strain rates and temperature in case of adiabatic 

deformation rather than their absolute values at  each material point. Ch.aracterization 

of the phenomenon in terms of the spatial gradients of the field variables might lead to 

an improved criterion for shear localization. 

To determine the range of the values for A,, numerical solution procedures had to be 

used together with a set of specific constitutive equations. This procedure will be better 

substantiated with an analysis of the sensitivity of the value of A, to the constitutive 

model. 

In all of the numerical examples presented in this thesis, it has been observed that 

the finite element analysis results become inaccurate when there appears a significant 

distortion of the mesh due to the shear localization. For the continuation of the analysis 

without losing its accuracy, it is obvious that mesh rezoning is essential. This capability 

which is not available at  present should be developed into the finite element program 

in future. 

Only numerical simulations have been performed and presented in this thesis. Ac- 

curate modeling methodology for the constitutive behavior of viscoplastic materials 

which incorporates all the important features relevant to the shear localization, criteria 

for shear mode localization and subsequent failure in their maximum generality, and 

automatic mesh rezoning capability for finite element analyses should provide the tools 



• for the quantitative comparison between experiments and model prediction when they 

are fully developed and integrated. 
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Appendix A. The entries of the matrix A 

The entries of the coefficient matrix A in (35) are: 

so 
A31 = (' [ ( R O  + - ( f )  } ($) ~ ~ a ~ n ~ n ~ ]  
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Appendix B. The entries of the matrix B 

The entries of the coefficient matrix B in (41) are 



Appendix C. Time behavior of the term 

We assume that material has strain hardening, thermal softening and strain-rate 

hardening capabilities which are all positive. When such a material is subjected adia- 

batic deformation, the flow stress 7 will increase initially due to strain hardening but 

the effect of temperature rise will ultimately overcome the effect of strain hardening 

and thus the flow stress will begin to decrease with time. At material points located 

in a adiabatic flow localization zone this process will continue due to its autocatalytic 

nature. Thus at  such material points the time histories of flow stress T and the term Q 

defined in relation to equation (81) can be represented by the tirne trajectories such as 

shown in Fig. 24(a) and Fig. 24(b). We also note that from equations (76) and (80) 

we have 

where P has been defined in equation (79). For most engineering materials the con- 

tribution from the strain rate hardening to the total value of the flow stress I is small 

when compared to the contributions from the strain hardening or thermal softening 

(eg., ref. Table 1). For such materials the following approximation can be made: 

Hence for a given deformation history a t  a materal point within a flow localization 

zone, the time when the flow stress 7 reaches its maximum value will be approximately 

equal to the time ti when P changes its sign from positive to negative such as sketched 

in Fig. 2.?(c). From the given time history of P sketched in Fig. 24(c), the time 



trajectory of the parameter X defined in equation (83) and hence the time trajectory of 

the term Qexp(-A) has been sketched in Fig. 24(d) and Fig. 24(e). From Fig. 24(e) 

it is obvious that the term 1 + (;IP)-' J;. Qexp(-X)dt will have a value of I a t  time 

ti and will subsequently continue to decrease monotonically. In view of the fact that 

the equivalent plastic shear strain rate 5' cannot have negative values and from the 

equation (82) it is also clear that the term 1 + (+')-I J:. Q exp(--A)dt also cannot have 

negative values. Thus as sketched in Fig. 24(f),  the term 1 + (;Ip)-' ,f:i Qexp(-X)dt 

will continue to decrease from its value of 1 at time ti to a positive finite value or zero 

value asymptotically. Thus we can conclude that within a adiabatic flow localization 

zone 

0 5 1 + (;IP)-' /' Qexp(-X)dt 5 1 for t 2 ti 
t i  



Appendix D. ABAQUS Input Files 

For each of the numerical simulations presented in chapter 4, three input files have 

been provided. Following is the description of these files. 

Input Data File 

This file defines the model in terms of mesh geometry, boundary conditions, 

material properties, numerical solution procedure, and the format of the solution 

output to be recorded. For the three types (compression, tension and bending) 

of the problems the Lnput Data Files are essentially similar to each other. An 

input data file for the problem of plane strain tension of 2024-T351 Aluminum is 

shown here. 

User-Defined Material Subroutine UMAT 

This file contains the information regarding the specific set of constitutive equa- 

tions and the associated numerical integration procedure. This subroutine is 

called a t  each integration point during the ABAQUS solution procedure. 

User-Defined Displacement Boundary Condition Subroutine DISP 

This file is used to prescribe the kinematic boundary conditions for the model 

defined by the Input Date File. This subroutine is called a t  each increment of 

the solution process. 



'HEAD1 NG 

a 520 ELEMENT MlDEL FOR 1100 ALXMIERM, PLANE STRAIN TENSION. 
'NODE 

1 .0000E+00 .1200E+02 .0000E+00 
2 .4000E+01 .1200E+02 .0000E+00 
3 .8000E+01 .1200E+02 .0000E+00 
4 .1200E+02 .1200E+02 .0000E+00 
5 .1600E+02 .1200E+02 .0000E+00 
6 .0000E+00 .1400E+02 .0000E+00 
7 .4000E+01 .1400E+02 .0000E+00 
8 .8000E+01 .1400E+02 .0000E+00 
9 .1200E+02 .1400E+02 .3000E+00 

10 .1600E+02 .1400E+02 .0000E+00 
11 .0000E+00 .1600E+02 .0000E+00 
12  .4000E+01 .1600E+02 .0000E+00 
1 3  .8000E+01 .1600E+02 .0000E+00 
1 4  .1200E+02 .1600E+02 .0000E+00 
1 5  .1600E+02 .1600E+02 .0000E+00 
16  .0000E+00 .1900E+02 .0000E+00 
17 .4000E+01 .1900E+02 .0000E+00 
1 8  .8000E+01 .1900E+02 .0000E+00 
19  .1200E+02 .1900E+02 .0000E+00 
20 .1600E+02 .1900E+02 .0000E+00 
21  .0000E+00 .2200E+02 .0000E+00 
22 .4000E+01 .2200E+02 .0000E+00 
2 3  .8000E+01 .2200E+02 .0000E+00 
24 .1200E+02 .2200E+02 .0000E+00 
25  .1600E+02 .2200E+02 .0000E+00 
26 .0000E+00 .2500E+02 .0000E+00 
27 .4000E+01 .2500E+02 .0000E+00 
28  .8000E+01 .2500E+02 .0000E+00 
29 .1200E+02 .2500E+02 .0000E+00 
30 .1600E+02 .2500E+02 .0000E+00 





1 6 , 1 3 , i i , 7  
*-TION 
2  
9 3 , 2 , 1 . , 9 2 , 2 , - 1 .  
2  
9 4 , 2 , 1 . , 9 2 , 2 , - 1 .  
2  
9 5 , 2 , 1 . , 9 2 , 2 , - 1 .  
'MDC 
1 , 3 2 7 , 1 , 2  
1 , 3 3 1 , 2 , 3  
1 , 3 3 4 , 3 , 4  
1 , 3 3 7 , 4 , 5  
* P L m  
520 ELEMENT MESH 
1 0 , 1 0 , 2 . 5 , 2 . 5  
*DETAI L 
0.0,0.0,0.0,17.0,18.5,0.0 
*DRAW 
'BaJNIxRY ,OP-NEW 
E l  , 2 ,  , O .  
E 2 , 1 ,  , O .  
E 3 , 2 ,  ,O. 
*MATERIAL 
*USER M4TERIAL,aDNSTANTS-15 
0.02,0.75,0.9,152.0,300.0,26000.0,68000.0,6.7D-6, 
2.77 ,0 .875 ,1 .0 ,0 .015 ,202 . ,0 .34 ,775 .0  
*DEWAR 
8 
*RESTART ,W I TE , -- 1  0 
*STEP, ING200 ,CYCLE16 ,NWE(M,AMP-RAMP 
* V I S O O , V T O G l O . O , ~ G 2 . E - 3  
4.OE-8,6.0000E-4,l.OE-10 
*EumlxRY ,OPIM3D 
E 3 , 2 ,  , 0 .  
*EL FILE,ELSET-C,DEWAR,FREQll 



2,2 
2,2,2 
1,1,1,1 
*NODE F I L E , N S E T - E 3 , ~ 1  
281,181,1,2 
*NODE BRINT,NSET-E3,F'REC+500 
2,1,1,1,1,2 
*PLOT,FREQ-10 
DEE(9RMED MESH 
*DETAIL 
0.0,0.0,0.0,17.0,32.0,0.0 
*Dl SPIACED 
1,l. ,I 
* P I m ' , ~ l O  
EQUIVALENT PLASTIC STRAIN 
'DETAIL 
0.0,0.0,0.0,17.0,32.0,0.0 
*(IDNIOUR 
8 4 
*pm,FRE+10 
EQUIVALENT PLASTIC SHEAR STRAIN RATE 
*DETAIL 
0.0,0.0,0.0,17.0,32.0,0.0 
*(xrvlmR 
8 3 
*PWl',FREQIlO 
TEMPERATURE 
*DETAIL 
0.0,0.0,0.0,17.0,32.0,0.0 
* m m  
8 2 
* P L U r , ~ l O  
P 
"DETAIL 
0.0,0 .0 ,0 .0 ,17.0 ,32.0 ,0 .0  
* o m  
85 
*PIm',FREQIlO 
m 
*DETAIL 

0.0,0.0,0.0,17.0,32.0,0.0 
*oNTOUR 
8 7 
*END STEP 



S U B R ~ I N E  ~T(STRESS,STATEV,DDSDDE,SSE,SPD,S(=D,STRAN,~TRAN, 
1 TIME,mIME,W,W,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 
2 N S T A W ,  PROPS , NPROPS , COORDS ) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C Isotropic Thermo-Elasto-Viscoplasticity w i t h  pressure sensitive 
C plastic f l o w  and plastic dilatancy. 
C~~I*~;******;L**;*.**~*IS*$****~***S**$********~*****A**************** 

C This W T  version interfaces w i t h  the *VISaD procedure in ABAQUS. 
C Automatic timestep control is done using the CEMAX parameter. The 
C timestep is decreased if CEhlW[ exceeds CEII)L. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C This lMAT version is not for use in plane stress or any other cases 
C where more strain terms than stress terms are used. 
C * * * * * * * * * * * * * * * * * * * * * * ~ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C State Variables: 
c STATEV( 1) - s (plastic f l o w  resistance,tensile,suggcsted 
C units are N/m2) 
C STATEV(2) - TH (temperature,auggeated units are Deg.K) 
C Five more are for debu ging and plotting purposes. 
C STATEv(3) - OAMPBlXI'fplastic shear strain rate) 
C STATEV(4) - W B  (plastic shear strain) 
C STATEV(5) - P :(SS-(aMEGA*TAUB/RHO*C)*T)/R 
C STATEV(~) - L A M B W  - INTEGRAL OF P SINCE t-(0). 
C WEFE 
C S S - dTAUB / dGAMPB ; STRAIN HARDENING 
C R- dTAUB / dGAMPBDOT ; STRA I N W,TE HARDEN I NG 
C T- - dTAUB /dTH ; mE'IVrU SOFTENING 
C STAmr(7) IAMB- = INTEGRAL OF (-PI SINCE P CHANGES NEGATIVE. 
C STATEV(~) - T H E V A L U E O F G A M D O T ~  P CHANGES NEGATIVE. 
L' AFRIL 13, 1987 M N  HEE KIM 
C****************************************************4***************** 
C Contents of PROPS vector in this version: 
c J PROPS(J) c--- - - - - - m e - - -  

C 1 PLSLMT - -  limit on equiv. plastic tensile strain increment 
C 2 PHI - -  degree of implicitness (ranges from 0 to 1) 
C 3 (MEGA - -  fraction of plastic work going into adiabatic heating 
C 4 S O  - -  initial value for internal variable S 
C 5 T O  - -  initial value for temperature 
C 6 AMJ - -  shear modulus 
C 7 AKAPPA - -  bulk modulus 
2 8 ALPHA - -  thermal expansion coefficient 
C 9  R .  - -  density 
C 10  C - -  specific heat 
C 11 GAk.WI'O - -  REFERENCE STRAIN RATE 
C 12 (XI - -  RATE 03NSTANl' 
C 13 B - -  STREIWIM ODEFFICIE3W 
C 14 N - -  STRAIN HARDENINNG EXPONENT 
C 15 'IM - -  MELTINO T!M'ERATURE 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * f l l t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C See subroutines W R O P ,  G A K U T ,  and SWI' for suggested unite for 
C the above properties. 
c * * * * * * * 8 * * 8 * * 8 * 8 * * * t * * * * . S * $ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 8 * * * * 8 * * * * @ * *  

C The parameter PHI controls the degree of implicitness of the 
C integration procedure. 
C PHI-0.0 - - - -  explicit 
C PHI-1.0 - - - -  fully implicit 
C Suggested value of PWI: equal to or greater than 0.50 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C The parameter (MEGA controls whether the problem is isothennal or 
C adiabatic. 
C avlEM-0.0 , - - - -  isothermal 
C (MEGA-1.0 - - - -  adiabatic 



C Suggested value for fast deformations is 0.9 
C 8 ~ 8 ~ 8 ~ 8 8 8 ~ 8 8 8 8 8 8 8 8 8 8 8 8 8 ~ 8 8 * 8 ~ 8 8 8 8 * 8 8 * 8 ~ 8 8 8 8 8 8 8 * ~ * ~ 8 ~ ~ ~ ~ 8 ~ * ~ ~ 8 8 8 8 ~ 8 ~ 8 ~ ~  

IMPLICIT REAL88(A-H,O-Z) 
C 8 8 8 ~ 8 l 8 * 8 8 ~ ~ 8 8 8 8 8 * ~ 8 8 * ~ 8 8 8 8 * 8 * * * * ~ * ~ * 8 * 8 8 ~ * 8 ~ 8 ~ 8 8 ~ ~ ~ ~ 8 ~ ~ ~ 8 ~ ~ ~ ~ ~ ~ ~ 8 ~ 8 8 *  

C Comnon blocks CElZROR and ONSTS ap p e a r  here exactly as they exist in 
CABAQUS version 4-5-159. They will generally be different for other 
C AMQUS versions. 
C 8 8 8 * 8 8 S S 8 8 8 8 * * * 8 t 8 8 8 8 * 8 * * * * * * * 8 * * * * * * * * * * * 8 * 8 8 8 * 8 * 8 8 8 8 8 8 * 8 8 * 8 * 8 8 8 8 * 8 * 8  

ON/CnzROR/REsMAx( 30) , JNREMX( 30) , ERRMAX( 2 ) ,CEIDL ,CSLIM, 
1 C E M A X , ~ L , T L I M I T , P S U B I N , R E W I N , W ( ~ O ) , J ~ ( ~ O ) , E R R P R E ,  
2 U D E L S S , ~ L , M L , ~ , ~ , S I G T ,  
3 VM4X ,V4M4X,AMAX,A4MAX ,'MIX, EPPMAX ,RM4X,R4MC,tGOPEN ,lGCIBS, 
4 R m L , R m A C , J R I K N I ) , N I N m , R I m , R I ~ ,  
5 RI~O,RIKOLD,RIKLMX,QMAX,~,STRRATIP~,RIKD~ 

C ~ 8 8 8 8 8 8 8 8 8 Y 8 8 8 8 8 8 8 8 8 . b . * 8 8 8 * * 8 8 . L 1 * 8 * 8 * 8 8 * 8 8 8 8 * 8 8 8 8 8 8 8 * 8 B 8 8 ~ ~ 8 8 * 8  

~ N / ~ S T S / P I , S I N ~ ~ , O D S ~ O , K ~ O S ~ ( ~ ) , K ~ O S ~ ( ~ ) , Z E R O , L Z E R O , ~ ,  
1 O N E , ~ , H A L F , A B I G , ~ , B ~ I G l ~ ~ R ~ 2 , 3 ~ , T H 1 R ~ , P R E C I S , B L ~ ~  

~ 8 8 8 8 8 * 8 8 8 8 8 B ~ ~ 8 8 * 8 8 8 8 ~ 8 ~ 8 8 8 * 8 ~ 8 8 8 ~ 8 ~ ~ 8 ~ ~ 8 8 8 8 ~ 8 8 ~ 8 8 ~ 8 8 8 8 8 ~ 8 8 8 8 8 8 ~ 8 8 8 8 8 8  

DIMENSION S T R E S S ( ~ S  1, STATEV(NSTATV) ,DDSUDE(NS), 
1 ~TRAN(~S),D~TRAN(NTENS),PREDEF(~),DPRED(~),PROPS(NPROPS), 
2 mRDs(3) 

C 8 8 8 8 8 8 8 8 8 8 * 8 8 ~ * 8 * 8 ~ 8 ~ * * ~ 8 8 8 * 8 8 8 8 8 * 8 8 8 8 8 8 ~ ~ 8 * ~ 8 8 8 8 8 8 8 ~ 8 8 8 8 * 8 ~ * 8 8 ~ 8 8 8 8 ~ 8  

SQART3-'IW8SIN60 
NDIP1-NDI+1 
PHIDT-PROPS(2 ) 'DTIME 

C 8 8 8 8 8 * 8 8 8 8 8 8 ~ * 8 8 8 8 * 8 8 8 8 * 8 f 8 8 * 8 * 8 8 * 8 8 8 8 8 8 8 8 8 * 8 8 ~ 8 8 ~ 8 8 8 ~ 8 ~ ~ 8 ~ 8 8 8 8 8 8 8 8 8 8 ~  

C Initialize the state variables, if necessary. 
C 8 8 8 * * 8 * * 8 8 8 8 * 8 * 8 8 8 * * 8 8 . * 8 * 8 8 8 * $ * l 8 8 8 8 8 8 8 ~ 8 ~ ~ 8 ~ 8 8 B 8 B 8 * ~ 8 8 8 ~ 8 8 8 8 8 ~ 8  

IF (STATEV(~).LE.ZERO) THEN 
S T A W (  1 )-PROPS ( 4 ) 
STATEiV( 2 )-PROPS ( 5 ) 
STATEV(4)-ZERO 
STAW(6 )-ZERO 
STATEV(7)-ZERO 
EM> IF 

C ~ * 8 8 8 8 8 8 8 t 8 8 8 8 8 ~ t 8 8 8 8 ~ 8 8 8 8 8 8 8 8 ~ 8 8 8 8 * * 8 8 ~ ~ 8 8 8 8 8 8 8 8 8 * 8 8 8 8 8 * 8 8 8 * 8 8 8 8 * 8 8 8 B  

C Set the state variables. 
C * 8 * 8 8 8 8 * 8 S L 8 * 8 8 8 8 * 8 8 B 8 8 8 8 8 t . * 8 8 8 8 8 8 8 * 8 8 8 8 * 8 8 8 * 8 8 8 8 8 8 8 * 8 8 8 * 8 8  

S-STATEV( 1 ) 
TH=STATEV( 2 
WB-STATEV( 4 ) 

C888*f8**S*8888888888888888888***888*8*88888*88*8***8888*88*8888*8**888 

C Subroutine W K O P  determines AhaJ,AKAPPA,ALPHA,RHO,and C based. upon 
C the temperature 'IH, using d a t a  supplied in PROPS. For the present 
C case, the properties a r e  assumed constant and input directly in PROPS. 
C In other cases, additional data constants defining functions of TH for 
C each property mag be input. 
~ ~ * * ~ * I * ~ * ~ * S * S S ~ S * * * ~ * * * ~ * ~ * * * * * * ~ * * * * ~ * ~ ~ * * * * * ~ * * * * * * B ; * * * * * * * * * * * * * *  

CALL W R O P  (A~~J,AKAPPA,ALPHA,RIK),C,TH,PROPS,NPROPS) 
~ ~ 8 8 8 8 8 8 ~ 8 ~ 8 ~ 8 8 ~ 8 8 8 8 8 ~ ~ 8 8 8 8 ~ 8 8 8 8 ~ ~ 8 8 8 8 ~ 8 8 ~ 8 8 ~ 8 8 8 8 ~ 8 8 8 8 8 ~ 8 8 8 8 8 8 8 ~ 8 * B 8 8 8 ~  

C I'ressure PB and equivalent shear s t r e s s  TAUB 
C ~ 8 8 8 * 8 8 8 * 8 * 8 8 8 * 8 8 ~ 8 8 8 ~ ~ 8 * 8 * 8 8 8 8 8 8 8 8 8 ~ * 8 ~ ~ 8 8 8 8 8 8 * ~ ~ ~ * * ~ 8 8 8 8 8 8 ~ 8 8 8 8 ~ B * * 8  

CAU SINV tSTRESS,SINVl ,SINV2) 
TAUB-SINV2/SQART3 
T A W D T A U B  
PB--S INV1 

C**8**888888*8*88I*88888*8*~*888888888*88*~8*8*88***8*888*8**~888*8**** 

C Subroutine GAMXYT determines the equivalent plastic shear etrain rats 
C F and its derivatives PIYi,PDB,PDC,PDDwith respect to TAUB,PB,'IH,and 
C S, respectively. To make the sdbsequent calculations more convenient, 
C PDB,PDC, and PIXI a r e  returned as: 
C RATIOB - PDB/PIM 
C RATIOC - PDC/PW 



C RATIOD - PI=D/PDA 
~ * * * * * * * * * * * * * * 8 * * 8 + * * * * * * * * * m * * * * * * * * * * * * * * * * * * * * 8 * * 8 8 8 * * 8 8 8 * * 8 8 8 * 8 * * * *  

CALL GAMlDI' (IERROR,TAUB,PB,TH,S,PROPS,NPROPS,SQART3, 
1 F1, PM,RATIOB ,RATIOC,RATIOD) 
IF(IERROR.EQ.I)M 
WRITE( 6,5000 ) 

5000 FORMAT(~HI,~OX,~~H**ERROR IN W T  - -  INPUT STRESS INOORRECI' 1 
WITE(6,5001) 

500lFORMAT(llX,32KTAUBTOOLARGEFORGAMCXYI'CAZX: 
STOP 
END IF 
w-AMJ*TAUB/(TAUB+M*PHIDT*F~) 

Ct*88**8*8**8*****88*****************************8***88***8*8*****8**8* 

C Subroutine SBETA determines the value of the plastic dilatancy 
C factor BETA. Pres e n t l y  set to zero. 
C********$Sf*****************************************8****8***8******** 

CALL SBmA (TAUB,PB,'IH,S,BETA) 
C********************************************************************** 

IF (PROPS(3) .GI'.ZERO) THEN 
CDNl-PROPS(3)*(TAUB-BETA*PB)/(RH)*C) 
ELSE 
CDN1-mo 
END IF 

C*t88****S***I****L**8*********$****$**888***888*********88***#8**888** 

C Subroutine SWl' determines the hardening rate H and the static 
C restoration rate NXYl'. 
C t * * * 8 8 * * * 8 8 * 8 8 8 8 8 f 8 * 8 8 8 8 * * * * * * * * * * * * * * * 8 ~ * * * * 8 * * * * * * * 8 * 8 * * * 8 * 8 8 8 * 8 * 8 8 *  

CAU SDOT(TAUB,PB,TH,S,GAMPB,W,PROPS,NPROPS,S~~~,F~,H,RD[T~) 
DR=RDOT*rnIME 

C8*******$**88******8***88*************8*******8**888**8*88*8**888 

G-m-(RATIOB*AKAPPA*BETA+R~TIOC*OONI+RATIOD*H) 
V-PHIIJT*PM*G 
VI-FI *IYTIME/ (ONE+V) 
V2-PHIm*PW (ONE+V) 

C 8 * 8 * 8 8 8 8 8 8 * 8 8 8 8 * 8 8 8 L * * , * t * 8 8 8 * * * $ * * * * * * * * * * ~ 8 * 8 8 8 * * * 8 * * * 8 * 8 8 8 8 8 * 8 8 8  

C Trac e  o f  strain increment - -  DVOL 
C * S 8 * 8 * 8 S t * 8 * 8 * * 8 * 8 * 8 8 8 * 8 * 8 * * * 8 * * * * * 8 * * $ * * * * * * * * * : 8 * 8 8 8 * ~ * * * 8 * * % 8 8 * 8 * 8 *  

m L - m o  
DO 10 K1-1,NDI 

to  m~-DVOL+DSTRAN(K~) 
C * 8 8 * 8 * * * 8 l * * * l * * * * 8 * 8 * * * 8 * * * * * * * * * * * * * * * * * * * * * * 8 * * * * 8 * * * 8 * 8 * 8 * * * 8 * 8 I * *  

C Convert etreee to deviatoric stress. 
C**.**************?******************************8********************* 

DO 20 K1-1,NDI 
20 S T R E S S ~ K ~ ~ ~ S T R E S S ~ K ~ ~ ~ P B  

C * * * * * 8 * * * * * * * * * * * 8 * * * $ * * * * * * * * * * * I * * * * * * * * * * * * * * * 8 * 8 8 8 8 * * 8 8 8 * 8 8 8 * * 8 8 8 8 8 8 8 8  

C Deviaeoric etreee times strain increment - -  SDSI 
C 8 S 8 8 * I 8 * * 8 8 8 I * * * * I * * 8 8 * * * * * * * * * 8 * * 8 * * * * * * * * * 8 * * * * 8 8 8 8 * * 8 * * * 8 8 8 * 8 * * * 8 8 *  

SIX I-ZERO 
1x1 30 K1-1,NTENS 

30 SDSI-SDSI+STRESS(KI )*DSTRAN(KI 
C * 8 8 8 * 8 8 * 8 * 8 * 8 * * 8 * * 8 8 1 L * * * * * $ * * * * * * * * * * * * * * * * * * * * 8 8 * * * 8 8 * * 8 8 * * * 8 * 8 * 8 * 8 * 8 * 8  

C Effective plastic shear strain increment. 
C**8888***88*8**88******88***8*888**~*****~8*****8888*8**888*88~8*88**8 

DGAMPB-V~+V~*(AMJ*SDSI/TAUB-AKAPPA*RATIOB*DWL) 
C8*88**88*888*8888**8**~8**********8*~*~******8******8***8*888*88**8888 

C Incremente DS and MH. 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DS-H*DGAMPB-DR 
MHI(XXJl*IXiAMPB 

~ * * * ~ ~ * * * * * t ~ * * * * * ~ * * * * * * ~ * * * * * * * * * ~ * t * * * * ~ ~ * * * ~ * * * * * * ~ * * * * * * * * * * * * * a * *  

C Constants for Jacobian and stress increment. 
C8*8*88888*88888888**8*888*8*88888888~88*888**~*888*8**88888888888888** 



v3=m*AwB 
V11-AKAPPA-~*THIRD*AhKJB 
v4-v11 * r n L  
VS-AKAPPA*ALPHASDTH/THI RD 
V6-AKAPPA*BET'A*DGPMPB 
V7-V4-V5-V6 
V8=AhaJ*DGAMPB/TAUB- ( A M - W )  *SDS I /TAW* *2 
v9-AhaJB 
V12-(V2*AhaJ**2+AMJB-AhaJ)/TAUB*'2 
V13--V2*AKAF'PASRATIOB*W/TAUB 
V14-V2*AKAPPA*(AhaJ/TAUB)*(BETA+OONl*ALPWTHIRD) 
V15=-V~*AKAPPA**~*RATIOB*(BETA~~~N~*ALPWTHIRD) 
Vl6-Vll-V15 c** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C Calculate the Jacobian, which is nonsymnet.ric unless V13-V14. This 
C is generally true only if aMEGA-0, BETAIO, and PDB-0. Othcrwiee, 
C ABAQUS w i l l  use only the symnetric part of the Jacobian unleae a n  
C unayrrmetric Jacobian has been called for o n  the title card. 
C Note that STRESS used here is the deviatoric streaa. 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * & * *  
C The Jacobian has been made symnetric in thin version. 
C * * * * ~ 8 * * S ~ * * ~ S * ~ ~ * L * * * * * * * * * * * * * * * * * * * * * ~ * * ~ ~ ~ ~ ~ 8 ~ ~ ~ ~ ~ 8 ~ ~ S 8 ~ ~ * ~ ~ 8 ~ ~ ~ ~ ~  

V13=HALF*(V13+V14) 
V14-V13 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
DO 40 K1-1,NTENS 
DO 40 K2-1,NTENS 

40 IXSDDE(K~,K~)--V~~*STRESS(K~)*STRESS(K~) 
DO 50 K1-1,NDI 
DO 50 K2-1,NTENS 
DDsDDE(K1 ,K2)-DDSDDE(K1 ,K2) -V14*STRESS(K2) 

50 DDsDDE(K2 ,K1 )-mEDE(K2 ,K1) -V13*STRESS(K2) 
DO 60 K1-1,NDI 
DDSDDE(K1,Kl)-DDSDDE(Kl,Kl)+V3 
DO 60 K2-1,NDI 

60 DDSmd(Kl,K2)-I3DSDDE(Kl,K2)+V16 
IF (NSHR.GT.O) ?HEN 
DO 70 K1-NDIP1,NlTNS 

70 DDSDDE(KI ,KI 1-DDSDDE(KI ,KI )+v9 
. END IF 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C Calculate complete STRESS at the end of the increment using the 
C deviatoric atreas at the beginning of the increment. 
~********************************************************************a* 

DO 80 K1-1.NDI 
80 ~STRESS(K~)-(ONE-V~)*STRESS(K~)+V~*DSTRAN(K~)+V~-PB 

IF (NSHR.GT.O) THEN 
DO 90 K1-NDIP1,NTENS 

90 STRESS(Kl)-(ONE-V8)*STRESS(Kl)+V9*DSTRAN(Kl) 
END IF 

C * * * * * * * * * * $ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
C Update the state variables. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CALL SINV ~STRESS,SINVl ,SINV2) 
TAUB=SINV2/SQART3 
TAUBNEWLTAUB 
PB--SINVl 
'rH-m+InH 
S-S+DS 
CALL GAMXX" (IERROR,TAUB,PB,lH,S,PROPS,NPROPS,SQART3, 
1 F2,PM,RATIOB,RATIOC,RATIOD) 
IF(IER~R.E~. 1 > m  
C m l A X - m ' m L  



F2-F1 
END IF 
STATEV( 1 1-S 
STATEV( 2 1-TH 
STATEV( 3 1-F2 
STATEv(4)-STATEV(4)+DGAMPB 
OON3=PROFS(3)*TAUB/(RH3*C) 
aXJ4=STATEV( 5 ) 
STATEV(S)-PDA*(-l.*H*RATIOD-OON3*MTIOC) 
STATEV(6)-STATEV(~)+(OON~+STATEW( 5 )  ) *IYI'I?vlE/2 
IF(STATEV(5).GE.O.O) THEN 
STATEV(8) - STATEV(3) 
GO TO 100 
END IF 
STATEV(~)-STATEV(~>-(OON~+STATEV(~))*M'IME/~ 

C 8 8 8 8 8 8 8 8 8 8 8 8 ~ 8 8 8 8 8 I 8 8 8 8 * 8 8 8 8 * * * 8 8 8 8 8 8 8 8 8 * 8 8 8 8 * 8 8 8 8 8 8 8 ~ ' 8 8 8 8 8 8 * 8 8 8 8 8 8 8 ~ 8  

C Camparison of the plastic strain rates before and after the time 
C increment. T o  be used by the automatic integration @-?;ems of W S .  
C Note that the factor SQART3 is used to convert shear strain to 
C tensile strain. 

C Check magnitude of plastic strain increment against a reference level. 
C This allows the automatic timestep control in ABAQUS to limit the size 
C of the plastic strain increment using the variable CFM4X. 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

P L S W - P R O P S  ( 1 ) SQART3 
IF (PLSLM~.GT.;SWO) WEN 
P L S ~ - K = ( ~ A M P B / P L S I M ~ ) * ~ L  
~ - I M A X l ~ ~ ,  PLSa-K) 
END IF 
REIURN 
EM) 

C S 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 * 8 8 8 8 8 8 8 * 8 ~ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 * 8 8 8 * 8 8 8 * 8 8 * 8 8 8 8 * 8 8 * ~ ~ 8 8  

C S 8 8 * 8 8 8 8 * * ~ * * 8 8 8 8 8 8 * 8 8 8 8 8 8 8 8 8 8 8 8 ~ 8 8 8 8 8 8 8 8 8 8 ~ 8 8 8 8 8 8 8 8 8 8 * 8 * 8 * ~ 8 * * 8 8 8 8 * ~ *  

SUBROVTINE W R O P  (A~~J,AKAPPA,ALPHA,W,C,TH,PROPS,NPROPS) 
C 8 8 8 8 8 8 8 8 * 8 8 8 8 ~ 8 8 8 * 8 * 8 8 8 8 8 8 8 * 8 8 * 8 8 8 8 8 8 8 * * ~ 8 8 8 8 8 8 8 8 8 * 8 8 8 8 8 8 8 8 * 8 8 8 8 8 8 8 8 8 8  

C Determine the following constants for the material: c - - - -  shear modulus (suggested units: N/m2) 
C AKAPPA - bulk modulus (suggested units: N/rn2) 
C ALPHA - -  thermal expansion coefficient (suggested units: 1 1 ~ e g . ~ )  
c - - - -  mass density (suggested units: kg/m3) 
c c - - - - - -  apecif ic heat (suggested units: Joules/kg/Deg.K) 
C In general, these properties are functions of temperature, but in 
C the present case they are input directly, assuming no temperature 
C dependence. Additional entries in PROPS could be used to define them 
C aa functions of temperature. 
c~********~********************r~*s********v*********************;******  

IMPLICIT REAL* 8(A-H,O-2) 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

DIMENSION PROPS(NPROPS) 
C 8 8 8 8 * 8 * 8 8 * 8 * 8 8 l 8 * 8 8 ~ 8 8 8 8 8 8 ~ 8 8 * 8 8 8 8 8 8 8 * 8 8 8 * 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 * * * * * * 8 * * * * 8 8  

AW-PROPS ( 6 ) 
-PA-PROPS(7) 
ALPH4-PROPS ( 8 ) 
RIKbPROPS ( 9 ) 
GPROPS( 10) 

C * 8 8 $ 8 * 8 8 8 S * 8 8 * 8 * * 8 * * 8 8 8 $ * l l * * 8 8 8 8 8 8 8 8 8 8 ~ 8 8 8 * ~ 8 8 8 * 8 8 8 8 8 * 8 * * 8 * * 8 * 8 8 8 8 8 8 8 8 8 8 *  

RETURN 
END 



L - - - - - - . - - - - - -  . - . . . - - -  . . . . . . . . . . . . . . . . . . . . . . . .  . . 

SUBROVTINE SBETA (TAUB,PB,TH,S,BETA) 
C***************************t****************************************** 
C Subroutine SBET'A determines the plastic dilatancy factor. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IMPLICIT REAL* 8(A-H.0-Z) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

BETA-0. om0 
C * * * $ * L * * 1 1 * * * * 8 $ 8 * * $ 1 * * ~ * * * * * ~ * * * * * * * * * * * * * * * 8 * 8 * * * * * * * * 8 * * * * * * * * 8 * * * * * *  

REIURN 
END 

c**************************************************a******************* 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
SUBROCrrINE (1ERROR,TAUB,PB,TH,S,PROPS,NPROPS,SQART3, 
1 F, PM,RATIOB ,RATIOC,RATIOD) 

C S ~ ~ S t t t ~ S ~ 8 * * * * 8 S * * * * * * 8 * * * ~ * * * * * * * * * * ~ * * ~ ~ * ~ * * * * ~ ~ 8 * 8 * 8 * * * * * * ~ * * * ~ * * ~  

C Subroutine GAMlYF determinee the equivalent plastic shear strain rate 
C and its derivativee PM,PDB,PDC,PDDwith respect to TAUB,PB,TH,and S, 
C respectively. Note that the following derivative terms are returned: 
C RATIOB - PDB/PW 
C RATIOC - PDC/PDA 
C RATIOD - PDD/PQQ c**************a******************************************************* 

IMPLICIT REAL*8(A-H,O-Z) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ClMvON/aONSTS/PI ,SIN60,03S60,KCROS2(3) ,KCROS3(3) ,ZERO,LZERO,WNE, 
1 ONE,~,HAW,ABIG,AsM4LL,BCBIG,~HR(2,3),~I~,P~CIS,B~ 

C********************************************************************** 
DIMENSION PROPS(NPR0PS) 

C S I * ~ ~ ~ * * * ~ ~ * * ~ * ~ * * * I * * * * * * * * * $ * * * * * * * * ~ * * ~ * * * * * * * * ~ ~ * * ~ * * ~ ~ ~ *  

CMaterial parametere defining the equivalent plastic shear strain rate 
C PROPS ( 1 1 ) -0 REFERENCE STRAIN RATE 
C PROPS(12)dt4 RATE ONSTANT 
C PROPS(13)-B - -  STREWlH COEFFICIENT 
C PROPS(14)-N - -  STRAIN HARDENING EXPONENT 
C PROPS(l5)=1M - -  MELTING TEMPERATURE 
C********************************************************************** 

IF(TAUB.LT.1.E-20) TAUB-1.E-20 
'IHFAG((PROPS(15)-?H)/(PROPS(15)-PROPS(5)))**2 
SEFF-S * W A C -  
IF(SEFP.L.E.O.OD~)~ 
PRINT*,' SEFF.LE.0' 
CALL XIT 
END IF 
W(XI-MIX~IO(I~ABS(TAUB-SEFF)) 
~CX2-DLIXilO(SEFF*PROPS(12))+40.DO 
IF(CHECK1 .GI'.C)IECK2~THEN 
I ERROR- 1 
REIURN 
END IF 
XPIONE/PROPS ( 12 ) 
FAG((TA~/SEFF)-ONE)*XP 
~ ~ ~ ~ C - M ~ ~ ~ O ( P R O P S ( ~ ~ ) ) + ( F A C / ~ . ~ O ~ ~ D O )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IF (CHECIC.GT.~O.DO) THEN 
I ERROR- 1 
ELSE IF (m(X.GT.-40.DO)?HEN 
F-PROPS( 11 ) *DEXP(FAC) 
PIM-F8XP/SEFF 
RATIOB-ZERO 



RATIOG~.DO*TAUB/(PROPS(~~)-?H) 
RATIW-TAUB/S 
ELSE 
F-ZERO 
P M - m o  
RAT1 OB-ZERO 
RAT I O G m o  
RAT I m Z E R 0  
END IF 

P.S8..S.88.S*8..*888&88888888~***8**8*#**88*888~**888888888888888888888 

RFNRN 
END 

~*****************************************************************8**** 

C This subroutine determines the hardening rate H. 
C 8 8 8 * 8 ~ 8 8 8 8 8 8 8 8 8 8 8 * 8 * 5 . . 1 * * * 8 8 * . * * $ * 8 $ 8 8 8 8 * ~ 8 ~ 8 8 8 8 8 8 8 8 8 8 * 8 8 8 * 8 ~ 8 8 8 ~ 8 8  

IMPLICIT REAL* 8(A-H,O-Z) 
C8888888888~88***8**888*888***************~***********************~**8* 

ClMON/OONSTS/PI ,SIN60,03S60,KCROS2(3) ,KCROS3(3) ,ZWO,LZWO,LME, 
1 ~ , W , H A W , A B I ~ , ~ , B C B I G , ~ H R ( ~ , ~ )  ,'IHIRD,PRECIS,BIANK 

C 8 8 8 8 8 8 8 t 8 8 8 * 8 8 8 8 8 8 8 8 ~ 8 8 8 8 $ 8 8 8 ~ * * ~ ~ ~ ~ ~ ~ 8 8 8 ~ * * ~ 8 8 8 ~ 8 8 8 * * * ~ * * * 8 * * * * * * * * * *  

DIMENS ION PROPS (NPROPS 
C 8 8 8 8 S * 8 S U 8 8 ~ 8 8 8 8 8 ~ 1 * * l * $ ~ 8 8 8 8 8 L * * 8 8 8 8 8 ~ ~ 8 8 * 8 8 8 * 8 * 8 8 * * * * * * * * 8 * 8 8 8  

C Material parameters determining the rate of hardening: 
C PROPS(13)=B - -  STRENGIH OOEFFICIENT IN STRAIN HARDENING WPRESSION 
C PROPS(14)-N - -  STRAIN'HARDENING EXPRESSION 
C * 8 8 * * * 8 ~ 8 8 8 * 8 8 8 8 8 8 8 8 8 * * 8 l t * $ , * 8 * 8 8 8 8 8 * * * * * * 8 * * * * * * 8 8 8 ~ * 8 8 * * 8 * * ~ * 8 8 8 8 8 8 8 * * 8 *  

C Calculate H. 

B- PROPS(13) 
AN - PROPS(14) 
IF (GAMPB.LE.O.OO~) THEN 
W B - 0 . 0 0 1  
END IF 
H- AN*B*GAMPB**(AN-ONE) 
m - m o  
R E , m  
END 



SUBROVTINE DISP (u,KsTEP,KINC,TIME,NODE, JmF) 
IMPLICIT REAL*~(A-H.0-Z) 

END 
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Fig. 1 Schematic behavior of the function f2 = 'cos(2~)[cos(2~) + Po] with respect to x at 
a fixed Po. The maximum negative value of j2 is f; = -(P0/2)2, and it occurs at 
orientations X' = f [(x/4) + (P0/4)]. 

Fig. 2a Schematic behavior of the function H(x) = [pcSOX1 - w~0T0(2Xl  - I)], where x1 = 
sin2 2% with respect to orientation X .  

Fig. 2b Schematic behavior of the function ROxI + pO( l  - xI) as a function of orbntation X .  

Fig. 3 Schematic of shear band orientations with respect to the maximum stretching direction 
Il in a simple shearing motion for which the velocity is given by v = 2a(el @e2) (x - 0) .  

Fig. 4 Shear bands in polycarbonate. Thin polished sectiom from a region near point A 
in the skectch above were viewed in transmission (dark-field) through a polarizing 
microscope. Note that two sets of shear bands are formed. 

Fig. 5 Finite element mesh for the simulation of plane strain teats on AMS 6418 steel and 
aluminum 2024-T351. The 320 element mesh represents one quarter of the specimen. 

Fig. 6 Deformed mesh and the contour plots of the parameters =yP, 8, Y, P and A at  time t 1  
when P changes its sign from positive to negative throughout the specimen. Adiabatic 
plane strain compression of AMS 6418 steel. 

Fig. 7 Deformed mesh and the contour plots of the parameters q p ,  9, $', P and X at time 
t z  when there necleates a zone of noticeable size where X > 10 in the specimen. Note 
that the total load is at  its maximum and contours show definite signs of localization. 
Adiabatic plane strain compression of AMS 6418 steel. 

Fig. 8 Deformed mesh and the contour plots of the parameters qP, 9, +', P and X at  time 
' 

t3  when shear localization is fully developed. Note that the total load is rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
compression 'of AMS 6418 steel. 

Fig. 9 Deformed mesh and the contour plots of the parameters qp, 9, +', P and X at  time tl  
when P changea its sign from positive to negative throughout the specimen. Adiabatic 
plane strain compression of aluminum 2024-T351. 

Fig. 10 Deformed mesh and the contour plots of the parameters qp, 0 ,  +', P and X at time 
t z  when there necleates a zone of noticeable size where X > 10 in the specimen. Note 
that the total load is at  its maximum and contours show definite signs of localization. 
Adiabatic plane strain compression of aluminum 2024-T351. 



Fig. 11 Deformed mesh and the contour plots of the parameters qP, 0, +', P and X at time 
t3  when shear localization is fully developed. Note that the total load ia rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
compression of aluminum 2024-T351. 

Fig. 12 Finite element mesh for the simulation of a plane strain tension test on AMS 6418 
steel. The 456 element mesh represents one quarter of the specimen. All subsequent 
figures show only the region A and the associated level contours of various quantities. 

Fig. 13 Deformed mesh and the contour plots of the parameters =yP, 8, +', P and X a t  time 
t l  when there first forms a region of negative P across the neck of the specimen. 
Adiabatic plane strain tension of AMS 6418 steel. 

Fig. 14 Deformed mesh and the contour plots of the parameters qP, 8, i P ,  P and X a t  time 
t 2  when there necleatea a zone of noticeable size where X > 10 in the at  the central 
region of the neck. Note that the total load at  the beginning of the secondary slope 
and the level contours show definite signs of shear localization. Adiabatic plane strain 
tension of AMS 6418 steel. 

Fig. 15 Deformed mesh and the contour plots of the parameters qP, 8 ,  P and X a t  time 
t3  when shear localization is fully developed. Note that the total load is rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
tension of AMS 6418 steel. 

Fig. 16 Finite element mesh for the simulation of a plane strain tension test on aluminum 2024- 
T351. The 520 element mesh represents one quarter of the specimen. All subsequent 
figures show only the region A and the associated level contours of various quantities. 

Fig. 17 Deformed mesh and the contour plots of the parameters qP, 8, +', P and X at  time 
tl when there first forms a region of negative P across the neck of the specimen. 
Adiabatic plane strain tension of aluminum 2024-T351. 

Fig. 18 Deformed mesh and the contour plots of the parameters ij.P, 8, +', P and X at  time 
t z  when there necleates a zone of noticeable size where X > 10 in the a t  the central 
region of th; neck. Note that the total load at the beginning of t h l  secondary slope 
and the level contours show definite signs of shear localization. Adiabatic plane strain 
tension of aluminum 2024-T351. 

Fig. 19 Deformed mesh and the contour plots of the parameters qP, 0, +', P and X at time 
t s  when shear localization is fully developed. Note that the total load is rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
tension of aluminum 2024-T351. 

Fig. 20 Finite element mesh for the simulation of adiabatic plane strain bending of a U-notched 
AMS 6418 steel specimen. The 542 element mesh represents one half of the specimen. 



All subsequent figures show only the region A and the associated level contours of 
various quantities. 

Fig. 21 Deformed mesh and the contour plots of the parameters qP, 0 ,  +', P and X at time t l  
when there first forms two regiom of negative P in the deforming regions under the 
notch and under the back surface of the notch. The deformation field is extremely 
inhomogenous but there are no signs of shear localization. Adiabatic plane strain 
bending of a U-notched AMS 6418 steel specimen. 

Fig. 22 Deformed mesh and the contour plots of the parameters Y, 9, +', P and A at time t2  
when there forms two zones of noticeable size where A > 10 in both of the deforming 
regiom under the notch and under the back surface of the notch. Deformed mesh 
begim to show signa of shear localization at this stage. Adiabatic plane strain bending 
of a U-notched AMS 6418 steel specimen. 

Fig. 23 Deformed mesh and the contour plots of the parameters q P ,  9, +', P and X at time 
tt when shear localization is fully developed. Mesh ia heavily distorted along the 
shear bands in two regions above and below the neutral plane. Adiabatic plane strain 
bending of a U-notched AMS 6418 steel specimen. 

Fig. 24 Qualitative time trajectories of the field variables related to the term [ l+( ;gP)-I  J:, Q exp(--X)dt] 
in equation (82). 



Fig. 1 Schematic behavior of the function f t  = cos(2~)[cos(2~)  + Po] with respect to x at 
a h e d  Po. The maximum negative value of f2 ia f; = -(P0/2)', and it occurs at 
orientatiom X* = f [ ( ~ / 4 )  + (P0/4)]. 



Fig. 2a Schematic behavior of the function H(x)  = [pcS0x1 - w ~ ' T ~ ( 2 x ~  - I)], where x1 = 
sin2 2x with respect to orientation X .  

2b Scheaatic behavior of the function ROxl + pO(l - x1) as a function of orientation X. 



She 
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Fig. 3 Schematic of shear band orientations with respect to the maximum stretching direction 
iil in a simple shearing motion for which the velocity is given by v = 2a(el@e2)(x-0). 
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F I X E D  END \ GAUGE SECTION FOR 

Tho micrograph below was taken from a region near point A which 
i s  sufficient l y removed from end effects. 

Fig. 4 Shear bands in polycarbonate. Thin polished sections from a region near point A 
in the akectch above were viewed in transmission (dark-field) through a polarizing 
microscope. Note that two sets of shear bands are formed. 



Fig. 5 Finite element mesh for the simulation of plane strain tests on AMS 6418 ateel and 
aluminum 202CT351. The 320 element mesh represents one quarter of the specimen. 
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0 values (" K) 
11324 
2)324 

'-yP values 
1)0.098 
2)0.098 

Fig. 6 Deformed mesh and the contour plots of the parameters qp, 9,  lip, P and X at time t l  
when P changea its sign from positive to negative throughout the specimen. Adiabatic 
plane strain compression of AMS 6418 steel. 



T P  values 
1)0.45 
2)0.50 
3)0.55 
4)o.m 
5)0.65 

X values 
1) 10.0 
2)11.0 
3) 12.0 
4)13.0 

- 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 time lO-'s~ 

Fig. 7 Deformed mesh and the contour plots of the panmeters v, 8 ,  ip, P and A at time 
t z  when there necleata a zone of noticeable size where A > 10 in the specimen. Note 
that the total load is at it8 maximum and contours show definite signs of localization. 
Adiabatic plane strain compression of AMS 6418 steel. 



l,tl , 

I 

! t a  t s 
0.0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 time l 0 - ' 8 ~  

Fig. 8 Deformed mesh and the contour plots of the parameters 7P, 8 ,  +P, P and X at time 
t s  when shear localization is fully developed. Note that the total load ia rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane atrain - 

compression of AMS 6418 steel. 
n 



7'' valuea 
1)0.37 

iP valuea (aec-') 
1)0.768 x l@ 
2)0.769 x lo" 

n X valuea 
1)o.o 

time 10'' sec 

Fig. 9 Deformed mesh and the contour plots of the parameters Tp, 8, +$', P and A at time t l  
when P changes its sign from positive to negative throughout the specimen. Adiabatic 
plane atrain compression of aluminum 202CT351. 
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TP values 
1)0.88 
210.92 
3)1.16 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
time 10'' aec 

Fig. 10 Deformed meah and the contour plots of the parametem y, 8, ips P and 1 at time 
tr when there necleatea a zone of noticeable size where A > 10 in the specimen. Note - 
that the totd load ia at its maximum and contounr ahow definite 8igm of localization. 
Adiabatic plane atrain comprcsaion of aluminum 202CT351. 



qP values 
1)o.e 
2)l.O 
3)1.4 

X values 
1) 3.0 
2) 12.0 
3321.0 

time 10" sec 

Fig. 11 Deformed mesh and the contour plots of the ~arameters T p ,  8 ,  $P, P and X at time 
tl when shear localization is fully developed. Note that the total load is rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
comprwaion of aluminum 2024-T351. 



region A 

Fig. 12 Finite element m b h  for the simulation of a plane strain tension test on AMS 6418 
steel. The 458 element mesh represents one quarter of the specimen. All subsequent 
figures show only the region A and the associated level contours of various quantities. 
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X values 
1)o.o 
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40.0 1 Load maximum 

6 
3 
0 - 

time l0"sec 
0.0 1.0 2.0 3.0 4,O 

Fig. 13 Deformed mesh and the contour plots of the parameters q P ,  8, 4', P and A at time 
t l  when there first' forms a region of negative P across the neck of the specimen., 
Adiabatic plane strain tension of AMS 6418 steel. 



H region A 

X values 
1) 5.0 
2) 10.0 
3) 15.0 

I I 

0.0 
it1 . , p 2 ,  

time 10'' sec 
0.0 1.0 2.0 3.0 4.0 

Fig. 14 Deformed mesh and the contour plots of the parametera q p ,  8,  y, P and X at  time 
t2  when there ncleates a zone of noticeable size where A > 10 in the at the central 
region of the neck. Note that the total load at the beginning of the secondary slope 
and the level contours show definite signa of shear localization. Adiabatic plane strain 
tension of AMS 6418 steel. 



region A 
(see Fig. 12) 
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21500 
3) 620 

time 10'' sec 

Fig. 15 Deformed meah and the contour plots of the parameters q P ,  8 ,  jp, P and A at time 
ts  when aheu localization is fully developed. Note that the total load is rapidly 
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain 
tension of AMS 6418 ateel. 



region A 

'L ' 

Fig. 16 Finite element mesh for the simulation of a plane strain tension test on aluminum 2024- 
T351. The 520 element mesh represents one quarter of the specimen. All subsequent 
figurea show only the region A and the associated level contours of various quantities. 
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+" ~ d u e a ( s e c - ~ )  
1)0.8 xld 
2)2.0 xld 
3)3.2 XI@ 

time LO-' aec 

Fig. 17 Deformed mesh and the contour plots of the parameters qp, 9 ,  4', P and A at time 
t l  when there b a t  form. a region of negative P across the neck of the specimen. 
Adiabatic plane strain ternion of aluminum 202CT35 1. 



region A 
(eee Fig. 

q p  values 
1)o.m 
2)o.m 
3)o.m 

time 10" aec 
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Fig. 18 Deformed mesh and the contour plots of the parameters q P ,  8,  +', P and X at time 
t2  when there necleates a zone of noticeable size where X > 10 in the at the central 
region of 'the neck. Note that the total load at the beginning of the eecondary slope 
and the level contours ahow definite aigm of shear localization. Adiabatic plane strain 
tension of aluminum 2024T351. 
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Fig. 19 Deformed mesh and the contour plot' of the pumeters qp, I ) ,  4'' P at time 

t s  when sheas localization ia fulli developed. Note that the total Load is rapidly 
decreasing and mrah ia heavily distorted along the shew bad. ~diabatic plme strain 
tension of aluminum 2024-T351. 108 



Fig. 20 Finite element mesh for the simulation of adiabatic plane strain bending of a U-notched 
AMS 6418 ateel specimen. The 542 element mesh representa one half of the specimen. 

All aubsequent figures show only the region A and the associated level contours of 
various quantities. 
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two regiom of n e e e  P in the deforming redoion. under the 

F i g  21 Defamed meah a,nd the contour plot3 of the ~ s a ~ ~ ~ ~  *( 't 7 
when there first €0- 

under the back surfse of the notch- 
The deformation field ia extremely 

inhomogenow but there Ye aig- of shew locahation Adiabatic ~1-e strain 
bending of U-notched U S  6418 atel  spaimen- 
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Fig. 22 Deformed mesh and the contour plots of the parameters q p ,  8, +', P and X at time t 2  
when there forms two zona of noticeable size where X > 10 in both of the deforming 
regiona under the notch and under the back surface of the notch. Deformed mesh 
begins to show signa of shear localization at this stage. Adiabatic plane strain bending 
of a U-notched AMS 6418 steel specimen. 
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Fig. 23 Deformed mesh and the contour plots of the parameters q p ,  9 ,  +', P and X at time 
tt when shear lpcalization is fully developed. Mesh is heavily distorted along the 
shear b&da in two regions above and below the neutral plane. Adiabatic plane atrain 
bending of a U-notched AMS 0418 steel specimen. 
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Fig. 24 Qualitative time trqjectories of the field variables related to the term 
[l + (Y)-' $ N . e x p ( - ~ ) d t ]  in equation (82). 
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