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ABSTRACT

An outstanding problem in mechanics is the modeling of the phenomenon of initia-
tion and development of localized shear bands in materials whose inelastic deformation
behavior is inherently rate-dependent. Clifton (1980) and Bai (1982) have presented a
one-dimensional linear perturbation stability analysis for the initiation of shear bands
in viscoplastic solids deforming in simple shear. Although this one-dimensional anal-
ysis provides much insight into the phenomenon of shear localization, the results are
not directly applicable to the practically more interesting problems in two and three
dimensions. Accordingly, here, a three-dimensional generalization of this linear pertur-
bation stability analysis is presented for a J; flow theory of plasticity which exhibits
isotropic strain hardening or softening, strain rate hardening, and thermal softening.
The results are then specialized to the simpler case of plane motions and the limiting
cases of quasi-static isothermal deformations and dynamic adiabatic deformations are
thoroughly analyzed.

An inherent limitation of this linear perturbation analyses is that it provides only
(a) the necessary conditions for the initiation of shear bands, and (b) the orientations
and the sncipient rate of growth of the emergent shear bands. It does not provide
any information regarding the more interesting stages of localization when the strain,
strain rate, and temperature in the shear bands becomes much larger than elsewhere.
To predict the beginning stages of significant flow localization a new criterion has been
developed for adsabatic flow localization. A history dependent dimensionless parameter
A which represents the integral in time of the ratio of the rate of flow softening to the
rate of strain-rate hardening is identified as a possible flow localization parameter, and
the attainment of a critically large value A. of A is suggested as a simple criterion for
monitoring the beginning of severe adiabatic flow localization. Fully two dimensional
large deformation finite element simulations of plane strain compression, tension and
U-notch bending tests on a class of thermo-elasto-viscoplastic materials under adiabatic
conditions have been performed and the initiation and growth of naturally appearing
band-like regions of localization is followed from slow early growth to severe localiza-
tion. By simultaneously monitoring level contours of A it is demonstrated that the
time when there appears a zone of noticeable size in which A > A, within the specimen
correlates very well with the beginning of significant shear localization.
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Chapter 1

Introduction

Localization of plastic flow into shear bands is a widely observed phenomenon. Once
such bands are formed, they persist and the strains inside the bands can become very
large. In situations where the attendant principal stresses are positive and large, the
formation of shear bands is an important precursor to imminent ductile fracture. How-
ever, in compressive stress fields, some materials can sustain considerable subsequent
inelastic deformation by continued shearing within the bands and by the formation
of additional shear bands. Of course, even in compressive stress fields ductile fracture
nuclei may be formed by local micro-tensile fracturing which may (if dominantly tensile
type of fracture can be suppressed by say the application of large hydrostatic pressure)
lead to sliding-off types of fracture along the shear bands.

Shear band formation is usually associated with a flow softening behavior of the
material with increasing deformation. Various softening mechanisms are possible. For
quasi-static deformation conditions a major reason for flow softening is internal dam-
age, for example that due to void nucleation and growth. Under high-rate plastic
deformation conditions, any softening due to internal damage is enhanced due to ther-
mal effects and the shear bands that form are called “adiabatic shear bands”. In either
case, the process of shear banding is an autocatalytic one : an increase in the strain in
a soft zone causes a further softening of the material which causes a local increase in
the strain and so on.

Since the pioneering observation of adiabatic shear bands formed in a steel plate dur-

ing punching by Zener and Hollomon [1944}, various experimental observations has been



made in different deformation processes such as machining (e.g., Recht [1964], Semiatin,
Lahoti and Oh [1982]), dynamic torsion of hollow tubes (e.g., Culver [1973], Costin,
Crisman, Hawley, and Duffy [1979]), ballistic impact (e.g., Backman and Finnegan
[1973], Rogers and Shastry [1981], Leech [1985]), explosive loading of thick walled
tubes (e.g., Thornton and Heiser [1971|, Staker [1981]), isothermal and non-isothermal
hot forging (e.g. Semiatin, Lahoti and Oh [1982]), sheet metal stretching (e.g., Bird
and Carlson [1986]) and plane strain tension and compression (e.g., Anand and Spitzig
(1980, 1982]). Along with the experimental observations, considerable theoretical at-
tention has been paid to this phenomenon with most studies confining their attention
to the initiation of such a flow localization. For materials which can be modeled as
rate-independent and considered to be deforming quasi-statically and isothermally, a
mathematical method is available for analyzing the onset of shear band formation (cf.
e.g., Rudnicki and Rice [1975], Rice [1977]). In this method, the onset of localiza-
tion is viewed as a material ir:stability, and critical conditions are sought at which the
rate-independent elastic-plastic constitutive relations first allow a bifurcation from a
homogenous deformation into a shear band mode. It is found that a necessary condition
for the existence of shear bands is that the velocity equations of continuing equilibrium
suffer a loss of ellipticity, and this occurs when the rate of strain hardening reaches a
critical value. Further, the boundaries of the emergent shear bands correspond to the
associated characteristic lines.

For rate-dependent plastic flow, shear localization of plastic deformation is believed
to be controlled by the interaction between softening and hardening features of the
material behavior which include thermal softening, strain hardening and strain rate

hardening. In an effort to predict the formation of shear bands in dynamic deformation



processes, Recht [1964] suggested that “Catastrophic shear occurs when the local rate
of change of temperature has a negative effect on strength which is equal or greater
than the positive effect of strain hardening”. This is equivalent to saying that the
critical strain at which plastic instability takes place is that at which the slope of the
true stress - strain curve vanishes. For quasi-static, isothermal deformation processes,
this criterion requires that the rate of strain hardening should vanish or be negative
for the occurence of shear band formation. Because of its simplicity, this criterion has
been applied to shear localization problems in a wide variety of deformation processes
by different investigators (e.g., Culver [1973], Staker [1981], Rogers and Shastry [1981],
Semiatin, Staker and Jonas [1984]).

An alternative approach to the study of the criteria for the onset of shear local;zation
has been recently considered by Clifton [1980] and Bai [1982]. These authors also
treat shear localization as material instability, however, the method of mathematical
analysis differs from that of the bifurcation analysis for rate-independent materials and
the simple stress maximum criterion outlined above. In their approach, Clifton and
Bai seek critical conditions at which the rate-dependent constitutive relations, which
exhibit strain hardening or softening, strain-rate hardening and thermal softening first
allow the growth of infinitesimal periodic non-uniformities in an otherwise homogeneous
ssimple shearing motion. The effects of inertia and heat conduction are included in the
analysis.

It is interesting to note here that the linear perturbation stability analyses for adia-
batic simple shear deformation gives a necessary condition for shear localization which
is the same as the one for shear band formation given by maximum flow stress crite-

rion. Both types of analyses require that the strain hardening should be overcome by



thermal softening such that the slope of the adiabatic flow stress-strain curve vanishes
(e.g., compare equation (3) in Culver [1973] with equation (4.3) in Bai [1982]).

The history of linear perturbation stability analyses for viscoplastic solids can be
traced back to the paper by Rabotnov and Shesterikov [1958] on creep buckling of axi-
ally compressed columns and plates. They define stability against buckling of columns
and plates made from viscoplastic materials as follows: “If at a certain moment a de-
viation from straightness or plane form is given to the compressed column or plate
under creep, the deflection will increase of decrease during a subsequent short interval
of time. According to whether the deflection increases or decreases, the initial state is
considered unstable of stable”. As emphasized by Hoff [1958], an analysis based on such
a notion of stability “.... simply indicates stability or instability in the classical sense
immediately following the disturbance. It cannot predict the motion over an extended
period of time.”

In addition to the work of Clifton and Bai on one-dimensional shear localization,
and the papers of Rabotnov and Shesterikov and Hoff on creep buckling of axially
compressed columns, of pertinence to the present discussion is the recent paper by
Fressengeas and Molinari [1985] on the necking mode of localization during uniaxial
tensile testing of viscoplastic solids. These authors present a one-dimensional linear
perturbation analysis for this problem, and elucidate a the role played by inertia and
thermal effects on this localization phenomenon. Their analysis proceeds along lines
similar to those of Clifton and Bai and they too arrive at a characteristic stability
equation from which they determine the conditions for the onset of necking type of
instability. Fressengeas and Molinari also carry out a numerical study of their full non-

linear boundary value problem with an snstial non-uniformity in the cross-sectional area



of the bar, and a particular power-law type of viscoplastic constitutive equation. They
obtain numerical predictions for the evolution of the initial defect size, and calculate
the evolution of strains in cross-sections with and without the defect as a function of the
nominal strain. Also, for small geometric non-uniformity they linearize their problem
and obtain similar predictions, and then compare the predictions from their linearized
boundary value problem against those from their non-linear analysis. They find that
although the linearized theory qualitatively predicts the necking instability, it predicts
significant localization at nominal strains which are much smaller than those predicted
by the full non-linear analysis. Similar conclusions have been previously reached by
Hutchinson and Obrecht [1977] who have also studied problem of necking instabilities
in viscoplastic solids, but have not accounted for inertia and thermal effects in their
analysis.

For most engineering materials which have positive strain-rate hardening, the speeds
of the growth of perturbations are strongly controlled by the rate sensitivity. Unless the
value of strain-rate hardening is extremely small such that a material is almost rate
independent, the perturbations will growth with finite speeds and thus the stage of
significant flow localization with unbounded strains and strain rates inside the localiza-
tion zone will be postponed far after the onset of the growth of perturbations predicted
by linear perturbation stability analyses. This feature of the shear localization in vis-
coplastic solids can be observed in the fully nonlinear numerical simulations of simple
shear deformation processes with the introduction of small geometric or temperature
perturbations (e.g., Merzer [1982], Wright and Batra [1985], Shawki [1986]). Thus it
should be emphasized that although linear perturbations stability analyses predict the

instability qualitatively, they cannot predict the amount of “attainable strains” before



the strains inside the localization zone become unbounded. This type of analysis can
only predict the necessary conditions for the onset of flow localization. The same is
true for the maximum flow stress criterion which agrees with the perturbation stability
analyses upon the necessary condition for shear localization in adiabatic simple shear
deformation process.

In spite of these limitations of the linear perturbation analysis as compared to the
full non-linear analysis, the linear perturbation stability analysis does predict the neces-
sary conditions for the onset of formation of shear bands for a wide class of constitutive
equations whereas the non-linear analysis requires the assumption of a special form for
the viscoplastic constitutive equation and the use of numerical techniques.

The plan of this thesis is as follows. In chapter 2, a 3-dimensional linear pertur-
bation stability analysis for shear localization in viscoplastic solids will be presented.
This analysis is a generalization of the 1-dimensional analysis prevously performed by
Clifton and Bai. The constitutive equations considered here model isotropic, incom-
pressible, viscoplastic materials which exhibit strain hardening or softening, strain-rate
hardening, thermal softening and pressure sensitivity. Elastic effects are neglected.
After briefly discussing the field equations, the linear perturbation stability analysis
which helps determine the necessary conditions for the formation of shear bande will
be presented. Then attention will be paid to plane motions and the criteria for the onset
of shear localization and the directions of the emergent shear bands for the physically
important special cases of quasi-static isothermal deformations and dynamic adiabatic
deformations will be discussed. An important prediction of the perturbation analysis is
that shear bands can initiate in two directions even in simple shear. This is contrary to

the common perturbation analysis assumption (e.g., Clifton [1980], Bai [1982]) that in



simple shear, a shear band can initiate only in the direction parallel to the direction of
shear. This theoretical prediction is shown to be in agreement with some simple shear
experiments on the polymer polycarbonate. This and some other observations will be
made in this chapter.

In Chapter 3, a new approach to the problem of flow localization in viscoplastic
solids will be taken. To overcome the difficulty of the underestimation of critical strains
predicted by linear perturbation stability analyses, a new flow localization criterion for
adiabatic shear banding in viscoplastic solids will be developed. In contrast to the linear
perturbation stability analysis which predicts the onset of shear localization as when
the strain hardening is overcome by thermal softening, the new criterion predicts that
the beginning of significant flow localization is possible when the time history of the
ratio of the rate of flow softening to the rate of strain rate hardening attains a critically
large value.

In chapter 4, the results from the numerical simulations of a few adiabatic deforma-
tion processes: plane strain compression, plane strain tension, and plane strain bending
of a u-notched specimen, are presented. Fully non-linear solutions to these problems
are compared against the predictions of the linear perturbation analysis and the new lo-
calization criterion developed in chapter 3. Classical underestimation of critical strains
to significant shear localization is obtained by the linear perturbation analysis. On the
other hand, it is observed that the new criterion gives reasonable predictions for the
beginning of shear localization in plane strain deformations.

Finally in chapter 5, some conclusions regarding the performance of the linear per-
turbation stability analysis and the new localization criterion are presented, and some

aspects of the shear localization phenomennn which needs to be investigated further



are discussed.




Chapter 2

Linear Perturbation Stability Analysis for Shear Localization

Since the introduction of linear perturbation stability analysis for the prediction of
thermo-mechanical shear instability in simple shear deformation of viscoplastic solids
by Clifton [1982] and Bai [1982], linear perturbation stability analysis has received
considerable attention as an analytical tool for the prediction of the critical conditions
for the onset of shear localization. Various analyses (see e.g., Clifton, Duffy, Hartley
and Shawki [1984], Shawki [1986], Molinari and Clifton [1986] ) show that even in
simple shear, the shear localization is the result of a complex interplay between various
factors such as the strain hardening and softening features of a material, heat transfer,
inertial effects, initial field inhomogeneity and boundary conditions.

Although the results from 1-dimensional linear perturbation analysis of simple shear
provides much insight into the nature of shear localization phenomenon in viscoplas-
tic solids, these results are not directly applicable to the practically important 2-
dimensional or 3-dimensional deformation processes. In the following, a 3-dimensional
generalization of the 1-dimensional linear perturbation stability analysis of Clifton and

Bai will be presented.



2.1 Field Equations

In the following analysis, x denotes the position of a particle of a body in the
current configuration at time ¢. Also, v(x,t) denotes the spatial description of velocity.
L(x.t) = grad v the velocity gradient, D(x,t) = sym L the stretching, T(x,t) the
Cauchy stress, and 6(x,t) the absolute temperature.

It will be assumed that the effects of elasticity are negligible, and that the flow rule

is given by!

L = 4N (1)
Here, with
T'=T7T+p1 (2)

denoting the stress deviator,

p=—(1/3)trT (3)
the mean normal pressure, and

r=4/1/2T T (4)
the equivalent shear stress,

N = [T'/27] (5)
is the “direction” of plastic flow, and

}7=f(fvp’0"7) >0 (6)

1No yield condition and switching rules are assumed

’
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with
f(o‘)piaiﬁ) =0
is the equivalent plastic shear strain rate. In equation (6)
‘ -
2(t) = [ At ("

is the equivalent plastic shear strain.

It is assumed that the strain-rate function f in equation (6) is invertible such that

T= g(%‘l’-riotp)‘ (8)

For later use, the rates of strain-rate hardening, strain hardening, thermal softening,

and pressure ha.rden'mg are defined by

R = 99/87, | )

S = 8g/ 7,

T = —-3g/ 98, r (9)
and

P = 8g/3p, )
respectively.

The constitutive equations (1) - (7) may be alternatively witten as
T = —pl + 2#D, (10)
where the scalar function

p=71/4=p(7,p,0,7)

11



by analogy to the constitutive equation for a Newtonian fluid, is called the viscosity
of the viscoplastic solid. However, unlike a Newtonian fluid, this viscosity is not a
constant but given by the constitutive equation (10b).

The equation of motion in the absence of body force is
pv =divT (11)
and the energy balance equation is
pcd =Kk A+ wT-D (12)

Here, p is the mass density, c is the specific heat, « is the thermal conductivity (here
assumed to be independent of position), Af is the Laplacian of § and w, a scalar in the

range 0.85 < w < 1, is the fraction of plastic work that is converted to heat.

12



2.2 Linear Perturbation Stability Analysis for 3-Dimensions

Let B, and B, denote configurations of a body at times ¢t and 7 > t, respectively.

The relative motion of the body is characterized by a function

Pe(x, 7) (13)

which gives the place occupied at time 7 by a material particle which at time ¢ occupied

the place x. The vector valued functions
u(x,7) = pe(x,7) — x

w(x,7) = %u.(x, 7), (14)

15)
w(x,7) = E—;u.(x, 7),

describe the relative displacement, the relative velocity, and the relative acceleration,
respectively.
Equation (11) for the balance of linear momentum (in the absence of body forces)

at time 7 may be expressed as
pug(x, 1) = divS;(x, 1) (15)

where S; is the relative first Piola Kirchhoff stress tensor which describes the actual
forces in the configuration B, per unit area of the configuration B,. It is defined by

the relation
Si(x,7) = (detF¢(x,7))T(pe(x,7),7)F; T (x,7), (16)

where F; = dp,/dx is the relative deformation gradient, (detF,) its determinant, F; T
the transpose of its inverse. Also, equation (12) for the balance of energy at time 7

may be expressed as

13



pcb(x, 1) = K A 0(x,7) + wSi(x,7) - Fe(x,7) (17)

For the perturbation stability analysis, the body is considered to be homogeneous
and homogeneously deformed in its current configuration B,. If the body is subjected to
boundary conditions which could give rise to continued homogeneous deformation, then
the field equations together with the appropriate boundary conditions determine the
homogeneous solution [4f, 8°,S;]. Next, we wish to determine that if this homogeneous
solution is perturbed so that the configuration B, of the body, with At = (r —t) — 0,
differs only by infinitesimal displacements of a shear band mode relative to B;, then
can this perturbation grow while the field variables still satisfy the field equations?

Let the normal to the shear band perturbation have an orientation n in B;. The
homogeneous solution [1f,6°,S] is assumed to be perturbed by a small fluctuation
which varies with (x — 0) - n, that is, with position across the band. Accordingly, we

assume that the relative velocity field can be written as
we(x,7) =a5(x,7) +ev, e<1, (18)

corresponding to which *

Fi(x,7) = F{(r) + egrad ¥ J

For the perturbation velocity field (18) to be of a form which may lead to shear band

formation, it is required that
gradv=a®n

where
a=a((x - 0)-n,At), (19)

is an amplitude vector, and




a-n=0
Further, we assume that the perturbations in the temperature and the stress are:
8(x,7) = 0°(r) + €b,

with ) (20)

8 = 8((x — 0) - n, At), )
and
S(x,7) = 82(r) + €T, . \

with . F (21)

T = T((x ~ 0) - n, At) ’

Substituting from (18)-(21) into (15) and (17) and retaining only the terms of first

order in ¢, we obtain the following differential equations for the perturbed quantities:
pv = divT, (22)
and
pcé =kA0 + w[T - F; + (grad¥) - S;] | | (23)

Since At = (r —t) — 0, Ff ~L°and S{ ~ T°. Using this, the symmetry of T°,

and the near symmetry of 'i‘, we obtain

[T - ¥¢ + (gradv) - 8] = [T-D° + D - T9.

15



Also, since T -D = 74, the term ['i‘ .D°+D- T°| can be replaced by 75" + 47°), where
7 and % are the perturbations in the equivalent shear stress and the equivalent shear
strain rate, respectively. With this, the energy balance equation (23) may be written

as
pcé = k20 +wfy + f‘y?°] (24)

In order to analyze the stability of the homogeneous solution, the following form of

eolutions for (22) and (24) is considered.
vV =opv,
w =exp{i€(x —0)-n +n At}
Vv, = constant, v,-n=0.
For this assumed form of the perturbation in the velocity
gradv =a®n,

with (25)

a=1¢{v, a-n=0,

and this satisfies the requirement (19). In parallel, for the perturbations in the tem-

perature and the stress, the following forms are considered.
6 = eb8,, 68, = constant

and

T = ¢T,, T,=constant. J

16



Here £ is the reciprocal of the wavelength of the periodic perturbation in the direction
normal to the shear band and is called the wave number. If a solution in the form of
equations (25) exists with » real and positive, then the perturbation may grow with
time and a shear band type instability is possible. However, if n is real and negative,
then the perturbed solution is likely to decay with increasing time and the homogeneous
solution is considered stable.

Since ;'12 = 2D - D, the perturbation ¥ can be written as

;’ = p%o’ )
where
;7. = ('f)g * Ve (26)

with

g = (2/4")D"n.

Also, since (1/n) has dimensions of time, the perturbation 4 in the equivalent shear

strain can be estimated by

5 =4/ =p(A./n). (27)

Further, from the constitutive equations, the perturbation 7 in the equivalent shear

stress is

(28)

-0
il

)

o

with

7. = (R + S§°/n)A., — T°0. + P°p.

17



where R°,S°,T° and P° are the values of the rates of strain-rate hardening, strain

hardening, thermal softening and pressure hardening, respectively, evaluated at the
homogeneous solution at time ¢. It is important to note that these are time varying
quantities. Also, in writing (28), it has been assumed that the perturbation in the
mean normal pressure p can be written as

P = pp.. (29)

Next, from the constitutive equations and equations (25)-(29), it follows that
T. = [{R* + §°/n}3.D° + (1°/7){(i€)(v. ®n +n @ v.) - 7,5°}]
-_-{T°I-)°}0. + {P°D° - 1}p., L (30)

where

D° = (2D°/%)

/

Finally, upon substituting (25) in (22) and (24), and upon further substitution from

(26), (28) and (30) for #,,7, and T., we obtain

[ {(R°+5°/meeg+ (/7)1 -g®8)} + pn;] v.

+ [(if)(T°é)l 6. +[(i€)(n - P°g)}p. =0 (31)
and |

[6&) {(B° + s5°/m)3" + 7°} g] - v.

+[~En+ Zg 4 15)| 0.+ [Po5] pu = 0 (32)

Equations (31) and (32), together with the kinematic constraint on the direction of

velocity perturbation vector

18



v,-n=0 (33)

constitute the basic equations of the current perturbation analysis.

Let

D° = iaaé.- ® &, (34)

i=1
denote a spectral representation of the homogeneous stretching. Here {&;} are the
eigenvectors and {o;} are the eigenvalues of D°. For the current constitutive model
{&} are also the principal directions of the stress T°. Next, let {v,;} denote the
components of v, relative to the basis {&}. Then the component form of system of

equations (31) - (33), with respect to the basis {&} may be written in the following

form
Ay =0 (35)
where the solution vector is

y= [vﬁlav'mv'm 0"p.]T’ (36)

and the entries of the coefficient matrix A are given in Appendix A. For non-trivial y,

equation (35) implies that
det A = 0. (37)

Equation (37) wil! yield a characteristic polynomial for 5. If for a given state and a
given wave number £ this characteristic polynomial has real positive roots for 5, then
the perturbation may grow and a shear band instability is possible. The direction of
the emergent shear band will be characterized by that n for which # has maximum real
positive root.

In the next section, attention will be focused on plane motions and two important

special cases of the resulting characteristic stability equation will be discussed.
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2.3 Initiation of Localized Shear Bands in Plane Motions

For plane motions, v3 = 0, and the homogeneous stretching tensor D° can be put

in the spectral form

D°=0aé; ®é + (—a)é; ®é;, a>0. (38)
Since 4° = v/2D° - D°, from (38), we obtain

7 = 2a. (39)

It will be assumed that the trace of the shear band lies in the plane of the motion, that

is,

ng=0 (40)
Then, for plane motion, equation (35) reduces to

Bz =0, (41)
where the solution vector is

2 = [vay, 02,00, 2], (42)

and the entries of the coefficient matrix B are given in Appendix B.

For non-trivial z, equation (41) implies that

detB =0. (43)
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Upon evaluating this determinant, the following cubic equation for 7 is obtained :

Con®*+Cin*+Can+Cs =0 v
where

Co = (p%e)(1 + x2P°)

Cr = plwT°4" + {(1+ Xx2P°)& + x1eR° + ¢(7°/7°) (1 = x1 + x2P°) }€']

Ca = [xaxR° + 5(7°/7°)(1 — x1 + x3P°)|€* + [x1p¢S° — wF°T°(2x1 — 1)] €%,

Cs = x185°¢4, (44)
with

X1 = sin?2x = 4nfn§

and

xg=c032xEn§—nf J

Here, x stands for the inclination of the trace of the shear band relative to the maximum
principal stretching (stress) axis é,.

Equation (44) is the central equation for the problem?. If for a given state, a wave
number ¢ and an orientation x, this cubic equation for n has real positive roots,.,then
the periodic perturbation may grow and a shear band instability is possible.

It is important to note that whether or not such an instability develops when n

is positive cannot be determined from this linear perturbation analysis because the

31t is noted nere that if pressure sensitivity is neglected, i.e. P = 0, and if we assume a priori that shear
bands form at angles x = +x/4 with respect to maximum principal stress direction, then equation
(44) reduces to equation (3.10) in Bai’s 1982 paper.
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value of 7 is time-dependent since it is a root of the polynomial equation (44) whose
coefficients Cy through Cs (which characterize the state of the material when the per-
turbation is introduced) are time-dependent. However, since these coefficients may be
considered to be approximately constant during a short interval of time, the positive
root n of this equation does give information about the incipient rate of growth of the
localized mode. The linear perturbation theory can give information about the time
for growth of the localized mode only under conditions in which it may be assumed
that the perturbation grows on a time scale that is short relative to the variation of the
coeflicients in the characteristic stability equation; however, as mentioned previously,
such an approach always underestimates the time for instability to develop (cf. e.g.,
Clifton et al. (1984), Fressengeas and Molinari (1985)).

In the following sub-sections, attention will be confined to the class of materials for

which
R>0, —-o00<S<o0, T>0, 0<P<I; (45)

that is , attention will be restricted to the materials which exhibit positive strain-rate
hardening, strain hardening or strain softening, thermal softening, and which are either

pressure insensitive or exhibit some pressure hardening.
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2.3.1 Quasi-Static, Isothermal Deformations

This limit is obtained by neglecting the inelrtia.l term on the left hand side of the
equation of motion (11), neglecting the energy balance equation (12), and assuming
that the partial derivative T defined in (9) (corresponding to thermal softening) is
zero-valued. With respect to the stability equation (44), this corresponds to neglecting
all coefficients containing the mass density p, and letting the thermal conductivity <

become infinite. In this case, the characteristic equation reduces to

X1R® + (7°/3°)(1 = x1 + x2P°)|n + x18° =0

from which, the only possible root for n is

——— —So
TR RGP ‘
where
uw=(/5)>0 s (46)

and

filx, P°) = {1 + P°sec(2x)} cot?(2x) J

It is noted here that this expression for n is independent of the wave number £ of the

perturbation.
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2.3.1a Pressure-Insensitive Materials(P =0)

Here, equation (46) reduces to

— _So
~ {R° + p°cot?(2x)}

n (47)

Since the denominator in (47) is always positive valued for x € (0,7/2), a growing

mode can exist only if
S° <0,

that is, if the material exhibits strain-softening. For a short period of time after S°
becomes negative, n is positive and it may then be thought to represent the incipient
rate of growth of the localized mode.

The angles x which give the largest incipient rate of growth are
Xer = £7/4, (48)
and this maximum rate
Mmaz = —S°[R° (49)

That is, the fastest growth rate is inversely proportional to the strain-rate sensitivity
and directly proportional to the extent to which the localization is past the onset of
instability. It is apparent from this expression that a weak strain rate sensitivity (i.e.,

small R°) promotes faster growth rates.
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2.3.1b Pressure-Sensitive Materials(0 < P < 1)

From (46), two conditions under which perturbations can grow are identified.

Case 1
If

B > —p°fi(x, P°) (50)

for a given (R°, P°,u°) and all possible orientations x € £(0,7/2), then for a growing

mode to exist, it is necessary that
S° <0 (51)

that is, for a shear band instability to be possibie the material must exhibit strain
softening.
In this case the most probable orientations of the shear bands are given by those x

for which {R°® + u°fi(x, P°)} has the least positive value. This occurs for

3

Xer = :t[(?l'/4) + (ﬂ/Z)] (52)

with (

g =sin”t [(1/P)(1 - V- )| )

For 0 < P° « 1, that is for only slightly pressure sensitive materials, (52) reduces to

Xer = £[(/4) + (P*/4)] (53)
and the corresponding maximum value of 7 is

Nmaz = [—Sol/ [Ro - [ #°(P°/2)2

= (P77 >4
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from which it is clear that for strain softening materials a slight pressure sensitivity

accelerates the growth rate.
Case 2
If

R° < —p°fi(x, P°) (55)

for a given (R°, P°, »4°) and some orientation x € +(0,x/2), then instability is possible

with S° > 0. Let

fz(x, P°) = sin®(2x) f1(x, P°) = cos(2x)[cos(2x) + P°). (56)

The behavior of the function f; with respect to x at a fixed P° is sketched in Fig.
1. Since attention has been confined to materials which exhibit a positive strain rate
sensitivity, i.e., R® > 0, it is seen that the instability condition can be satisfied for a
sufficiently large P° and some x € +((w/4),(7/4 + P°/2)). From Fig. 1, for a given

P°, the maximum negative value of f; is

= —(P°/2)? (57)

and it occurs at f

= £((r/4) + (P°/4) J
In this case
1= 15 |- {+ a2 ] ()

and the most probable orientations of the shear bands are given by those x for which

Ro 2(2 )fz(x,P )
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has the least negative value.
In the limit R° — 0, that is for nearly rate-independent materials, extremely fast

finite rates of incipient growth are attained in the directions

() = %((n/4) + 6] W
@ = 2((/4) + (P°/2) - 6] , (59)
with
6 <1.0

For R° finite, there are a pair of critical orientations which depend on the precise values
of (R°, P°,u°). In any event, these critical orientations are bound from below by (7/4),

and from above by [(1r/4) + (P°/2)).
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2.3.2 Dynamic, Adiabatic Deformations

This limiting case is obtained by setting the thermal conductivity x to zero in the
characteristic equation (44). In this limit, the characteristic equation for n reduces to

the following quadratic equation:
CJ()?]2 + lel +C, = 0, (60)
where

Co = pPe(1 + x2P°)

Ci = pwT°A° + pe€*[R°x1 + p°(1 — x1 + X2P°)] (61)
C,= H¢?

and
H(x) = peS°x1 — wi*T°(2x1 — 1) (62)

The roots of the quadratic equation (60) are:

C 4CoC;
e ey A I 63
me = Co[ LEy1- = (63)

In what follows, we limit our attention to strain-hardening materials, S° > 0, and treat

pressure-insensitive materials separately from pressure-sensitive materials.
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2.3.2a Pressure Insensitive Materials(? =0)

In this case, Co > 0 and C; > 0. Thus, for n to have a positive root, it is required
that C;, and hence the function H(x), must be negative. The behavior of the function
H(x) is sketched in Fig. 2a, from which it is clear that the necessary condition for

H(x) to be negative is that pcS° < w7°T°, and this condition for instability may be

written as

H;=(5°-0°) <0 (64)
where

0° = (w7 /pc)T° (65)

is an effective rate of thermal softening. The quantity H is interpreted as a measure of
the slope of the shear stress-strain curve at a constant shear strain rate under adiabatic
conditions. Its value depends on the interaction between strain hardening and thermal
softening.

It is important to note that the critical condition (64) is independent of the wave
number £ of the initial inhomogeneity and the strain rate sensitivity R of the material.

Although the critical condition (64) for instability is independent of £ and R, the
incipient rate of growth of the inhomogeneity depends on these quantities®. An in-
dication of the form of this dependence can be obtained by observing that for small
negative values of C3, that is for conditions slightly beyond the onset of instability, the

eigenvalue n, = —C,/C, is given by

n = —H(x)
{pwT°5°[ €3} + pe[R°x1 + p°(1 — x1)]

3Recall that the incipient rate of growth of the inhomogeneities in the case of quasi-static, isothermal
deformations did not depend on the wave number.

(66)
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Since n, increases with increasing wave number, the perturbation with the largest wave

number is predicted to grow at the highest rate. Thus, as £ — oo,

. —H(x)
"7 pelBexa + (1= xa)] (67)

n

The orientation dependent function in the denominator of (67) is sketched in Fig.
2b. Examining Figs. 2a and 2b, it is concluded that n, has its maximum value for an

orientation x* in the ranges (xa, xs) and (—xa, —xs) where

1.,/ B \'?
Xa =38 (ZB—A)

n

2

Xb = 7 — Xa (68)
with
?
A = pcS°
and
B = w?°T? )

Further, if u® > R°, then n, has an absolute maximum

—H°
N+ lmaz = TR , (69)

for

w
Xer = iz

The considerations of this section clearly show the interplay between the stabiliz-

ing effect of strain hardening and the destabilizing effect of thermal softening. High

30



strength metallic materials generally exhibit relatively low strain hardening so the re-
sistance to adiabatic shear localization in these materials is low. Note from (65) that
the effective rate of thermal softening © increases with increasing flow stress 7 and
decreasing density p. Also, the flow stress 7 increases, the specific heat decreases, and
the thermal softening T is enhanced as the temperature decreases. Thus high strength
materials which exhibit a low rate of strain and strain-rate hardening are very suscep-

tible to adiabatic shear localization at low temperatures.
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2.3.2b Pressure Sensitive Materials(0 < P < 1)

From (60) - (63), two conditions under which perturbations can grow are identified:
Case 1
If Cy > 0, i.e., if (with f, defined in equation (56))

wT°’
c&?

+ R°€ > —p’fa(x, P°), (70)

for a given state and all possible orientations x € +(0,7/2), then, for a growing mode
to exist, it is again necessary to satisfy the instability condition (64). The direction
of the fastest growing modes are still in the ranges (xa,xs) and (—xa, —Xs) and are
determined by requiring that n,(P° # 0) attain the maximum positive value.

Case 2

If C, <0, ie., if

wT°3’
cé?

+ R°€ < —p°f2(x, P°) (71)

for a given P° and some x € +(0,7/2), then a growing mode exists even if HS > 0.
Clearly, as R° — 0 smaller amounts of pressure sensitivity are necessary to satisfy
(71). The orientation of the fastest growing mode is the one that gives the maximum 5,

for given values of (R°,S°,T°, P°,u°,4,€). This orientation is not necessarily tw/4.
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2.4 Discussion

In previous analyses of the onset of shear localization in viscoplastic materials, the
problem of localization in simple shear has been the prototypical problem that has
been considered(e.g., Clifton (1980), Bai (1982)). A common starting point for these
analyses is the assumption that the deformation can localize only in one narrow band
which is parallel to the direction of shear. However, simple shearing is a special plane
motion and the current analysis for the onset of shear instability predicts that even in
simple shear, shear bands can initiate in two directions. This will be briefly discussed
in what follows and some experimental evidence in support of the current theoretical
predictions will be presented.

In simple shearing motion the velocity v is given by
v =2a(e; ® e;)(x — 0),

where a is a positive constant and e; and e; are orthogonal unit vectors. The stretching

tensor corresponding to this velocity is
D= a(él-® & +é;®8é),

where
& = (1/v2)(es + )

and
& = (1/v2)(e1 - e3)

are the principal directions of stretching. According our analysis for quasi-static,

isothermal deformations, shear bands are expected to form at angles
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x = x[(r/4) + (8/2)),
with

B =sin* [(1/P°)(1 - V1= P°)|
For P° « 1, B = P°/2 and as P° approaches zero, so does the angle 8. Thus, for
pressure insensitive materials, the traces of the shear Lands are expected to coincide
with the shear direction e;, and the direction e; which is perpendicular to the shearing
planes. For pressure sensitive materials, they are predicted to form at angles larger
than +(r/4) from the &, - direction, see Fig. 3. In Fig. 4, a micrograph of shear bands
observed in a simple shear test conducted on the polymer polycarbonate at a shear
strain rate of 1073 /sec is shown. The shear bands were found to initiate just before the
peak in the shear stress-strain curve. Note that, as predicted by the analysis, there are
two sets of shear bands. Further, since plastic deformation in polycarbonate is pressure
sensitive, the shear bands form at orientations which are qualitatively similar to those
sketched in Fig. 3. Thus, the analysis clearly indicates, and the experiments show
that shear bands can initiate in two directions even in simple shear. This is contrary
to the common perturbation analysis assumption that in simple shear a shear band is
initiated only in the direction of shear.

In summary, for materials whose rate-dependent plastic deformation behavior can
be modeled by the simple phenomenological constitutive model of section 2, a linear
perturbation stability analysis for the onset of formation of shear bands has been pre-
sented. The predictions of this analysis have been explored for the important limiting
cases of (1) plane quasi-static, isothermal deformations and (2) plane dynamic, adia-
batic deformations. The predictions of (a) the critical conditions for the formation of

shear bands, (b) the direction of emergent shear bands, and (c) the incipient rate of
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growth of these bands for these cases are qualitatively correct and intuitively satisfying.
For the more general problems of localization of dynamic deformations in which heat
conduction effects cannot be neglected, the predictions of the stability equations (44)

and (37) remains to be explored.
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Chapter 3
Integral Criterion for Adiabatic Flow Localization

3.1 Background

For the present discussion we note that an analysis of the stability of two-dimensional
plane homogeneous deformations has been presented in chapter 2. In the previous
analysis we assumed isotropy, neglected elasticity and used a flow rule for the (plastic)
stretching in which the direction of viscoplastic flow is in the direction of the deviator T’
of the Cauchy stress T, while the magnitude of plastic flow is proportional to an equiv-
alent plastic strain rate 4° which is constitutively defined by a function 4* = (7,4, 0)
with the neglect of pressure sensitivity. Here 7 = W TV is the equivalent shear
stress; 47, the time integral of 4”, is the equivalent plastic shear strain; and 8 is the
absolute temperature. It has been assumed that the strain rate function f is invertible

such that one can write

7 = g(5%,%",9). (72)

Corresponding to (72), the partial derivatives

S = a8g/87, (73)
R = 08g/8%, (74)
T = -dg/d9, (75)

denote the rates of strain hardening, strain-rate hardening and thermal softening, re-
spectively. Further, for adiabatic deformations we take the energy balance equation to

be

b~ (w/pc) 4, (76)
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where p, ¢, and w(= 0.9) are the mass density, specific heat, and the fraction of plastic
work converted to heat. Confining attention to materials for which S > 0, R > 0 and
T > 0, we have found that for dynamic (i.e., inclusion of inertial effects), adiabatic

(i.e., neglect of heat conduction) deformations:

1. The necessary condition for the tnitiation of shear bands is

[s _ (‘:—:) T] <o. (77)

2. The maximum incipient rate of growth is for shear band perturbations at angles
X =xm/4 (78)

relative to the maximum principal stress direction. Accordingly, the emergent

shear bands are expected to form at orientations given by (78).

3. The incipient rate of growth of the emergent shear bands is given by (-P), where

p= [S—(w;/pC)T]_ (79)

These results clearly bring out the interactions of various material characteristics on
adiabatic shear localization. They show the important interplay between the stabiliz-
ing effect of strain hardening and the destabilizing effect of thermal softening. High
strength metallic materials generally exhibit relatively low strain hardening so that
the resistance to adiabatic shear localization in these materials is low. Note that the
effects of thermal softening increase with increasing flow stress 7 and decreasing den-
sity p. Also, the flow stress 7 increases, the specific heat ¢ decreases, and the thermal
softening T is enhanced as the temperature decreases. Thus, high strength materials

which exhibit a low rate of strain hardening are very susceptible to adiabatic shear
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localization at low temperatures. Note also that the incipient rate of growth of the
shear band is inversely proportional to the rate of strain-rate hardening R. Thus a
weak strain rate sensitivity, that is a small value of R, promotes faster growth rates.
An inherent limitation of this (and all other) linear perturbation analyses is that
it provides only (a) the necessary conditions for the snitiation of shear bands, and (b)
the orientations and the sncipient rate of growth of the emergent shear bands. It does
not provide any information regarding the more interesting stages of localization when
the strain, strain rate, and temperature in the shear bands becomes much larger than
elsewhere. To predict the beginning stage of significant flow localization with any rea-
sonable accuracy, except perhaps for materials with a very low strain-rate sensitivity,
it seems necessary to devise a new criterion. To this end, in what follows we attempt to
formulate a simple new criterion for significant adiabatic flow localization in viscoplas-

tic solids.
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3.2 Localization Criterion

Here we do not neglect elasticity and thermal expansion effects, and we take the

rate constitutive equation for the stress to be given by
TV = L[D — D?] — 14

where with W denoting the spin tensor,
TV=T-WT+TW,

is the Jaumann derivative of the Cauchy stress; with u and « the elastic shear and bulk

moduli and I and I the fourth and second order identity tensors,
L=2pl+(c—(2/3)p)1®1
is the fourth order isotropic elasticity tensor; with a the coefficient of thermal expan-
sion,
II = 3kal

is the second order isotropic stress-temperature tensor; D is the streching tensor, and

the flow rule is taken as
D* = ¥°(T'/27),

where T' is the deviatoric part of Cauchy stress tensor T , 7 is the equivalent shear

stress, and
=P __ F AP 0
7= f (T‘)q ] )
is the equivalent plastic shear strain-rate. As before, it is assumed that the strain-rate

function f can be inverted to give 7 in terms of 4?, 5° and 8; see equation (72).

Differentiation of (72) with respect to time gives
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%=S'§’+R%("7P)—Tf9, (80)

where S, R and T are the rates of strain hardening, strain-rate hardening and thermal
softening defined in equations (73)-(75). For adiabatic deformations the energy balance
equation is given by (76). Substituting for 0 from (76) into {80) and rearranging, one

obtains
d P iy
d—t(7)+P’7 =Q, (81)

where P is defined in (79) and Q = (7/R). This equation was first derived by Shawki
[1986] who points out that it may be viewed “locally” as a nonlinear ordinary differential

equation for 4°. This equation has the (implicit) “solution”:

¥ =4 exe() [1+ ()™ [ @exp(-2et], (82)

where 7} is the value of 47 at some initial time ¢;, and

A= /( —P)dt = /[ { (“”/”c)T}]dt. (83)

Note that equations (82) and (83) hold for arbitrary three-dimensional adiabatic de-

formations of bodies obeying the generic form of the constitutive equations assumed
here.

For S >0, R >0, T > 0, the linear perturbation stability analysis gave the result
that in homogeneous plane adiabatic motions shear band instability becomes possible
when the parameter P becomes negative. Semiatin et al. [1984] have previously de-
duced a “flow localization parameter” a (see their equation (15) in ref. 16) which is
proportional to the flow softening rate and inversely proportional to the strain rate sen-

sitivity. From their numerous studies they have concluded that notsceable localization
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usually does not occur until @ ~ 5. If we interpret* their « as (—P/4"), then a possible
criterion for noticeable flow localization is that P should be “sufficiently negative”.
Such a criterion has also been suggested by Shawki [1986] who uses G (see his equation
(2.172)) to denote the parameter that we have here called P.

Semiatin and Jonas [1984, p. 75] remark, “the a parameter provides an insight
into the tendency to form shear bands as well as the likely degree of localization or
severity of shear banding. Although the a = 5 criterion is principally a rule of thumb,
process modeling using finite element methods has confirmed the usefulness of this
parameter.” A few pages later (p. 84) they remark, “Another feature illustrated by
the process simulation results is the fact that flow localization is a process not an
event. Strain and strain-rate concentrations do not occur instantaneously. For this
reason, flow localization cannot be expected to appear fully developed when a reaches
some critical value (such as 5) at some point in the flow field.”

Based on these remarks, and as is clearly suggested by equations (82) and (83), we
note that the occurrence of a large value of the equivalent plastic shear strain-rate at
a material point depends not only on the instantaneous sign of P or an instantaneous
negative value of P, but on the sign and value of the integrated history A of —P.
Inspection of equation (82) reveals that in general there is a complicated interaction
between the term exp(A) and the term in the square brackets. However, it can be
argued that the term in the square bracket of the equation (82) is bounded between
the numbers one and zero such that the dominant term which contributes to the high
value of the equivalent plastic shear strain-rate is exp(\) (See Appendix C). Thus a

simple criterion (“rule of thumb”) for the localization of plastic deformation is

4The considerations of Semiatin, Jonas and co-workers are tied very closely to a particular power-law
type constitutive equation for the shear stress.
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A> . (84)

The satisfaction of this criterion at a material point should stndicate that the equivalent
plastic shear strasn-rate at that point ss very high.

To make this criterion specific we need to specify the lower limit of integration ¢; in
equations (82) and (83), and specify the value of A, in (84). Two possible choices for

t; are:
1. t; =0.
2. t; = the time when P first changes sign from positive to negative.

Recall that as long as P is positive the linear perturbation analysis predicts that
the material is stable and the necessary condition for the formation of shear bands
is not satisfied. Thus for materials which exhibit some strain hardening, if choice 1
is made then ) is accumulating a negative contribution® until such time as P turns
negative. Since, as graphically commented by R. J. Clifton® “You can’t put stability
in the bank!”, this choice for the lower limit of integration is not attractive, and the
choice for t; to be preferred is the time when P first changes sign from positive to
negative. In this case A is always positive, and A, has to be “sufficiently positive”.
As with the a-criterion of Semiatin, Jonas and co-workers, there does not appear to
be a rigorous way to precisely specify the value of A\.. However, it should be possible
to “calibrate” the value of A; by performing full non-linear finite-element analyses of
representative numerical experiments such as plane-strain tension and compression,

and axi-symmetric tension and compression for different constitutive functions.

5For materials which show no strain hardening ) is always positive.

8Private communication with Anand.
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Localization of deformation into a region (band-like or otherwise) is an initiation
and growth phenomenon in which the strain, strain-rate and temperature in the region
becomes much larger than elsewhere. In what follows we report on a numerical ex-
periment which demonstrates a procedure for obtaining a calibration of the critically
positive value of A by performing simulations of the plane strain tension and compres-
sion tests. We show that by monitoring the nucleation and growth of regions of A,
we can follow the initiation and development of regions of intense plastic deformation
in the body. The appearance of a significant sized region of “significantly positive” A
in the body correlates very well with the beginning of significant flow localization as
judged from the distortion of the finite-element mesh, the contours of the equivalent
plastic shear strain, shear strain-rate and temperature, and also with the rapid drop in
the load carrying capacity of the specimen. In the plane strain tension and compression
test simulations the shape of the region of localized plastic low which evolves naturally

is a band-like region.
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Chapter 4

Numerical Examples

For the class of large deformation rate constitutive equations for isotropic thermo-
elasto-viscoplasticity described in the previous section, Anand et al. [1985] have devel-
oped special semi-implicit time-integration procedure, and they have incorporated this
time-integration procedure into the general-purpose, non-linear finite element computer
program ABAQUS [1984]. The numerical simulation reported here was performed by
using this computer code.

The particular constitutive function for the equivalent tensile stress 7 used in the
numerical analysis is an equation proposed by Lindholm and Johnson [1983]. These
authors have reported dynamic torsion test data obtained from short gage-length, thin-
walled tubular specimens made from several metals, and they have proposed a consti-
tutive equation for the shear stress which accounts for strain hardening, strain-rate
hardening and thermal softening. For small elastic strains and under the assumption
of isotropy the constitutive equation proposed by these authors may be interpreted to

have the following form:

7=(A+B(3)") 1+ C (3 /40))7(9), (85)
where
F(8) = {(6m — 6)/(0m — 60)]*, (86)

and A, B, C, n, 9o and a are material constants, 8, is a reference temperature and
0 is the melting temperature. In their experiments Lindholm and Johnson found

the steel AMS 6418 to be very vulnerable to shear localization. Another material
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alumimum 2024-T351 has also been selected for the numerical analysis. This material
has rate sensitivity and strain hardening capability much higher than those of AMS
6418 steel and is expected to have much higher resistance to shear localization. Thus
it is interesting to investigate whether A, in our integral criterion can be calibrated
to the same value for these significantly different materials. For these two materials
Lindholm and Johnson report the values of the material constants in equation (85) and
(86) as shown in Table 1. Further, the selected values for the fraction of plastic work
converted to heat, mass density, specific heat and elastic bulk and shear moduli for

these two materials are also listed in Table 1.

Table 1. Material constants for AMS 6418 steel and aluminum 2024-T351.

material AMS 6418 | Aluminum
constants steel | 2024-T351
A (MPa) 896 152
B (MPa) 200 202
n 0.18 0.34
C 0.01 0.015
Yo (sec™?) 1.0 1.0
0m (°K) 1763 775
w 0.90 0.90
p (kg/m?) 7,750 2,770
c (J/kg°K) 477 875
x (MPa) 160,000 68,000
u (MPa) 82,000 26,000

Lindholm and Johnson have proposed the value a = 1 in equation (86), however to
accelerate the localization process in our numerical simulation, we have used the value
a=2.

The numerical examples considered here are the simulations of (1) plane strain com-

pression, (2) plane strain tension and (3) bending of a u-notched specimen under plane
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strain conditions. Plane strain compression and tension problems have been chosen to
investigate whether the value of A, in our integral criterion can be calibrated to the
same value for those two different deformation processes both known to be vulnera-
ble to shear localization. It has been found that A, ~ 10 serves well to predict the
beginning of significant shear localization in all the different combinations of deforma-
tion processes and material properties described above. The problem of plane strain
bending of a U-notched specimen has been chosen to investigate the applicability of
the A > A, criterion for shear localization in an extremely inhomogenous deformation
processes.

Each mesh consists of ABAQUS continuum plane strain 4-node isoparametric quadri-
lateral (CPE4) elements. The mesh for numerical simulation has been refined in the
region where deformation localization is expected. Finite element analyses of shear
bands based on fine meshes of quadrilateral elements built up from four crossed tri-
angles have been previously used (e.g., LeMonds and Needleman [1986] and Becker
and Needleman [1986]) to numerically capture sharply localized shear bands. In the
problems of adiabatic plane strain compression and tension, shear bands form across
the specimen and thus it is possible to refine the mesh with a proper pre-orientation to
capture the sharpest shear bands for given element size. Proper pre-orientation of the
mesh with crossed-triangular elements has been obtained by a trial and error effort. In
these regions two of the nodes of a typical quadrilateral element have been collapsed
to produce a triangular element, and such triangular elements are arranged to build
quadrilaterals made from four crossed triangles. In the problem of the bending of a
U-notched specimen, there nucleates a deformation localization zone on the free surface

of the notch after a certain amount of deformation and then it subsequently propagates
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into the deforming zone under the notch. There is no shear band which encompasses
the entire deformation field within the specimen. In this sense, flow localization in this
problem is highly local when compared against the cases of plane strain compression
and tension. Moreover, as the deformation field is extremely inhomogeneous, it is dif-
ficult to monitor the nucleation and development of shear localization until there is a
global mesh distortion. Thus even though the mesh has been refined in the deformation
zone under the notch using the four node quadrilateral elements, further trial and error
effort to refine the mesh with the optimum pre-orientation of the triangular elements
has not been made for this problem.

The boundary conditions on plane strain compression and tension specimen have
been chosen such that nominal plastic shear strain rate of ~1000sec™? is obtained in
the prospective localization zone of each specimen. In the numerical analysis the ef-
Jects of snertia are neglected and using the static procedures of the finite element code
ABAQUS the full non-linear solution to the problem has been obtained. Values of the
equivalent plastic shear strain 4?, equivalent plastic shear strain rate 4%, absolute tem-
perature 6§, the parameter P and the parameter A were calculated at every integration
point at the end of every displacement increment, and level contours of these variables
were obtained at numerous representative increments. A plot of the overall load versus

displacement curve was also obtained.
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4.1 Plane Strain Compression

A 320 element mesh shown in Fig. 5 has been used to approximate the plane
strain compression of AMS 6418 steel and aluminum 2024-T351 between two friction-
less platens. Triangular elements obtained by collapsing an edge of 4 node continuum
elements have been used to capture the sharp shear band at later stages of compres-
sion. The top boundary of the mesh respresenting one quadrant of the specimen with
initial temperature of 300°K has been compressed down at a constant speed without
any constraint on the horizontal degrees of freedom. Specimen geometry allows homo-
geneous deformation under frictionless compression. Hence it is necessary to introduce
a small perturbation which can trigger flow localization. An initial temperature per-
turbation of 1°C has been introduced into an element at the lower left corner of the
mesh (element A in Fig. 5). Shapes of the deformed mesh and the values of equivalent
plastic shear strain 4, temperature 8, equivalent plastic shear strain rate 4", parame-
ters P = (S — (w7/pc)T)/R and A = [, —Pdt together with the value of the total load
have been monitored throughout the deformation process.

Special attention has been given to three specific moments:

1. Time ¢, at which the value of the parameter P changes its sign throughout the

specimen from positive to negative.

2. Time t, at which the load carrying capacity of the specimen reaches its maximum

value and when there develops a mild flow localization of shear band mode.

3. Time t3 at which the load carrying capacity of the specimen is decreasing rapidly

and most of the deformation is concentrated onto a narrow shear band.
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The deformed mesh and the field variable contours together with the total load - time
curve are shown for these three time moments in Fig. 6 - Fig. 8 for AMS 6418 steel
and in Fig. 9 - Fig. 11 for aluminum 2024-T351.

Before time t; the strain hardening has been overcoming the thermal softening even
though there is an adiabatic temperature rise. Thus even with the introduction of
a finite temperature perturbation at the lower left corner of the mesh, deformation
localization has been supressed up to time ¢,. At time ¢; as shown in Fig. 6 and
Fig. 9, deformation field is essentially homogeneous throughout the specimen. Due to
geometric hardening, load is on the increasing slope of its time curve. According to
the linear perturbation stability analysis, a necessary condition for the onset of shear
localization in plane strain deformation is P = (S — (w7/pc)T)/R < O (cf. chapter
2.3.2). Thus time t, is the moment when the growth of field inhomogeneities into a
shear band becomes possible. However, no significant localization process has been
observed just after time ¢,.

At time 2, as shown in Fig. 7 and Fig. 10, the total load is at its peak value and
there has formed a milcily developed shear band. At this time there appears a zone of
noticeable region within each specimen where A > 5. Subsequent deformation continues
to concentrate within this zone which develops into a band-like region shortly. Thus
time t; can be considered to be a beginning of catastrophic shear localization. All five
contour plots agree on the location and shape of the localization zone in the form of a
band.

After time ¢;, the deformation localization develops significantly. A severely de-
formed mesh now clearly shows the shear band. The load carrying capacity is decreas-

ing rapidly and the shear localization at this stage is essentially catastrophic. Time tg
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has been chosen to show a fully developed stage of the shear localization with moderate

distortion of the elements inside the band (Figs. 8 and 11). At this time the value of
A in the band is A = 30. After this stage mesh rezoning is necessary to continue the

analysis with any accuracy. Due to the finite size of the elements used for the analysis,

there exists a finite lower bound to the numerically obtained band thickness.
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4.2 Plane Strain Tension

As AMS 6418 steel and aluminum 2024-T351 can sustain different amounts of strains
before the development of adiabatic shear bands, slightly different meshes have been
used for the numerical simulations. For AMS 6418 steel a 456 element mesh shown in
Fig. 12 and for aluminum 2024-T351 a 520 element mesh shown in Fig. 16 have been
chosen to approximate the specimen geometry used by Clausing [1970] To capture the
sharp shear bands in the catastrophic stages of the shear localization in each material
mesh had to be refined with proper pre-orientation of the quadrilaterals with cross
triangles in the central regions of the specimen. By a trial and error approach, the
mesh has been refined in the central region of the specimen where most of deformation
localization is expected. The top boundary of the one quarter of the specimen shown
in Fig. 12 and Fig.16 has been pulled upward at a constant speed which gives a

! in the central gage section with the

nominal plastic shear strain rate of ~ 10%sec™
initial temperature of 300°K, Due to the geometry of the specimen, deformation is
not homogeneous right from the beginning and thus there is no need to introduce a
perturbation into the model to trigger the shear localization expected at later stages of
deformation. As will be shown later, there is a gradual diffuse necking process observed
in the central region of the specimen. As the necking progresses, eventually there appear
shear localization zones in the form of bands inside the neck. Subsequently, most of
deformation is severely localized onto those bands and the total load decreases rapidly.

As in the previous example, the field variables used to monitor the deformation

process are equivalent plastic shear strain 4P, temperature @, equivalent plastic shear

strain rate 4° and the parameters P and A together with the deformed mesh and the
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total load.

Special attention has been given to three specific moments:

1. Time ¢, at which the value of the parameter P changes its sign at the center of

the specimen from positive to negative.

2. Time t; at which the total load begins to drop more rapidly, and there develops

a significant amount of flow localization.
3. Time t3 at which shear localization is in its fully developed catastrophic stage.

At time ¢,, as shown in Fig. 13 and Fig. 17, the total load is past its maximum and
there is a region of negative P developed at the center of the specimen. Inhomogeneity
of the deformation field is very mild throughout the central region of the specimen.
According to the linear perturbation stability analysis, with a negative value of P such
that S < (w7/pc)T, it is now the time for the growth of field inhomogeneities to form
shear bands. However, due to the stabilizing effect of positive strain rate hardening,
the speeds of the growth of field inhomogeneities are not high enough to develop any
significant flow localization immediately after time ¢;. Up to time t; the localization
process is very gradual.

At time t2, a zone of noticeable size where A > 5 ~ 10 nucleates at the center of
the neck and shortly, it propagates from the center of the neck to the free surface of
the specimen to form a band-like region. Localization as evidenced by the five field
variable contours has intensified, the load is beginning to drop more rapidly, and the
mesh begins to deform heavily; see Fig. 14 and Fig. 18.

At time tg, the deformation localization is so severe that even without the aid of

contour plots, shear bands are readily visible as shown in Fig. 15 and Fig. 19. The
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load carrying capacity is dropping rapidly. At this time the value of A in the band is
A ~ 30 for AMS 6418 steel and ~ 18 for aluminum 2024-T351. After time t3 some
elements begin to deform severely, and the subsequent finite element analysis requires

mesh rezoning for its accuracy.
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4.3 Plane Strain Bending of a U-notched Specimen

A 542 element mesh and accompanying boundary conditions shown in Fig. 20 has
been chosen to approximate the specimen geometry and experimental scheme used by
Zuber (1985) for this problem. A number of quasi-static, sisothermal four point bending
experiments have been performed by Zuber on polycarbonate, aluminum and a marag-
ing steel specimens. In each material, intense chear localization followed by ductile
fracture has been observed. Even though the mechanism of shear localization in adia-
batic deformation processes is different from that of quasi-static isothermal processes,
the problem of adiabatic plane strain bending of a u-notched specimen has been chosen
for the numerical simulation. The deformation field is extremely inhomogenous and
unlike the previous cases of plane strain compression and tension where localization
began inside the deforming body, shear localization in this case is expected to initiate
at the free surface of the notch and then propagate into the material. Due to the inho-
mogenous nature of the q‘eformation field, the beginning of significant shear localization
is less clear when compared with the previous examples. However, it will be demon-
strated that the linear perturbation stability analysis still underestimates the time to
significant shear localization and this can be greatly improved by the new integral cri-
terion. Again, the field variables 57, 0, A*, P and ) together with the deformed mesh
and the total load have been monitored throughout the deformation process. Special

attention has been given to three specific moments:

1. Time ¢, at which the parameter P has negative values in the deforming regions

under the notch and under the back surface of the rotch.

2. Time t; at which the parameter A has values greater than 10 in both of the
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deforming regions.

3. Time t3 at which there are fully developed shear localization zones in both of the

deforming regions.

In the beginning of the deformation, strain hardening overcomes the thermal soft-
ening such that P > 0 throughout the deformation field. After an elapse of a certain
amount of time, a small negative P zone nucleates under the root of the notch and this
negative P zone propagates into the material quickly. This propagation of negative
P zone is stopped by the relatively non-deforming region in the neutral plane of the
specimen. After P changes its sign from positive to negative in the deforming region
under the notch, there appears another negative P zone in the deforming region under
the back surface of the notch. By the time t;, there are two well developed negative P
zones in the two deforming regions separated by a neutral plane as shown in Fig. 21. At
this time the total load is past its maximum value on its time trajectory. Even though
the deformation field is inhomogenous, there is no significant shear mode localization
observed at this stage of deformation. The value of A is less than its critical value of
10 over the deforming regions except in the vicinity of a small zone on the free surface
away from the center of the notch as seen in Fig. 21.

After time ¢;, the A > 10 zone propagates from its nucleation site into the deforming
region under the notch. This propagation of A > 10 zone is again stopped by the neutral
plane. Highest strain rate is observed at this nucleation site on the free surface off the
center of the notch. Then there nucleates another A > 10 zone on the back surface of
the notch. This A > 10 zone also propagates into the deforming region under the back
surface of the notch and get stopped by the neutral plane. Thus by the time t;, there

are two A > 10 zones developed in the deforming regions under the notch and under
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the back surface of the notch as shown in Fig. 22. Deformed mesh and contour plots
indicate that there is a localization process centered around the point where A > 10
region has first nucleated at time t,. At this stage, mesh distortion reveals moderate
shear localization in the deforming region under the notch.

After time t; the shear localization in the deforming region under the notch becomes
more developed and mesh distortion becomes more prominent. Along with the shear
localization in this region, there develops another shear mode flow localization in the
deforming region under the back surface of the notch. Fig. 23 shows a fully developed
stage of shear localization at time t3. At this stage, shear bands are readily observable
even without the aid of contour plots due to the heavy distortion of the finite element
mesh. The numerical results at this stage is probably inaccurate and mesh rezoning

will be necessary to continue the analysis.
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Chapter 5

Discussion and Conclusions

In chapter 2, a linear perturbation stability analysis for shear localization in 3 di-
mensional flow of viscoplastic solids has been performed. Shear localization is regarded
as a material instability and a general framework for obtaining a characteristic equa-
tion for the shear localization in 3 dimensional flow has been presented from which
conditions for the onset of shear localization can be deduced. For the special cases of 2
dimensional plane deformation, conditions for the onset of shear localization have been
obtained in terms of the material parameters such as strain hardening, effective ther-
mal softening, strain-rate hardening and pressure sensitivity. It has been demonstrated

that linear perturbation stability analysis predicts:
e The necessary conditions for the initiation of shear bands.
¢ The incipient orientations of the shear bands.
e The incipient rate of growth of the emergent shear bands.

However, it has been widely known from the study of the shear localization in
one dimensional simple shear deformation that linear perturbation stability analysis
significantly underpredicts the amount of attainable strain prior to the significant de-
velopment of shear localization. Fully nonlinear numerical simulations of simple shear
deformation of viscoplastic solids reveal that there is no noticeable development of shear
bands at the moment of shear band initiation predicted from the linear perturbation
stability analysis. Significant development of shear localization is usually postponed

until much later stages of deformation.
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Motivated by these observations, another approach to the problem of shear local-
ization in rate sensitive materials has been considered in chapter 3. For the purpose
of the argument, attention has been focused upon the adiabatic shear localization.
Again, the phenomenon of shear localization is regarded as a material instability and
an attempt is made to devise a criterion for significant shear localization in terms of
the material parameters for a class of viscoplastic materials. The development of the
new criterion is based upon the fact that due to the autocatalytic nature of adiabatic
shear localization, strain rates can be very large within the localization zone once the
shear band formation is taking place. A nonlinear first order differential equation for
the equivalent plastic shear strain rate 4° has been obtained for a class of viscoplastic
materials undergoing adiabatic deformation. An implicit solution to this equation has
been obtained. The form of this solution suggests that unbounded growth of the equiv-
alent plastic shear strain rate 4° at a material point is possible when a dimensionless,

history dependent parameter

a=[(-Pa=[ [-S - (“’;/"")T] d

reaches a certain value. Here, the lower limit of the integration ¢; has been chosen as

the time when P defined in equation (79) changes its sign from positive to negative.
This is the time of the initiation of shear localization predicted by linear perturbation

stability analysis for plane deformation. Thus a simple criterion for the localization of

plastic deformation has been suggested as
A> A

where ), is a positive number which can be calibrated for a class of constitutive equa-

tions and deformation processes. Attainment of the condition above in the deformation
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localization zones will take a finite amount of time from the time ¢; and thus the new
criterion is supposed to improve the underprediction of the critical strain to signifi-
cant shear localization from linear perturbation stability analysis. Another feature of
the new criterion is that in contrast to the linear perturbation stability analysis which
characterizes the initiation of shear localization in terms of the instantaneous values
of the material parameters such as P, the new criterion suggests that the catastrophic
stage of shear localization is characterized by the time history of P.

Finite element simulations of adiabatic plane strain compression, tension and bend-
ing of materials described by a set of viscoplastic constitutive equations have been
successfully performed. Elasticity, thermal expansion and large geometry changes are
accounted for, but inertial effects have been neglected. The numerical simulations of
plane strain compression and tension tests have been used to follow the initiation and
growth of a band-like region of localization through slow early growth to severe lo-
calization. It is shown, as expected, that the significant stage of severe localization,
i.e. when the load starts to drop rapidly, is poorly correlated with the instant when
{P=(S-(w?/pc)T)/R} turns negative. However, the beginning of severe localiza-
tion correlates fairly well with the time when there first develops a band-like region of
A= j," Pdt > A, =~ 10 across the specimen.

In order to follow the localization process in an arbitrary deformation history it
appears attractive to monitor the parameter A and its contours in addition to the
parameters (57,4’ ,0) and their contours. It is important to note that like 47 and
6, the parameter A depends upon the entire deformation history experienced by each
material point. Because of the point-wise nature of the parameter A, the attainment of

a sufficiently positive value of A does not by itself predict localization which is usually
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understood. to occur when the strain, strain-rate and temperature in a region (band-like
ar otlierwise) becomes much larger than the regions which surround it. However, by
monitoring the nucleation and growth of of a region where A is positive we wouid have
automstically monitored the region where the strain, strain-rate and temperature are
sreater than in the regions which surround it. To determine the shape of the region or
localized deformation in a given boundary vaiue problem, the fuil non-linear solution
to the problem has to be carried out. [n the plane strain compression and tension
rest simulations thie shape of the region of localized low which evolves naturally is a
hand-like region. for plane strain bending of a u-notched specimen, due to the severe
inhomogeneity of the deformation tield the shape of the A > A\, zone was not so simple
as in the cases of plane strain compression and tension. However, the formation of
significant sized A > A, zone within the deforming regions of the specimen correiated
fairty well with the beginning of the siginficant shear localization in these regions.

For the derivation of the parameter \, no specific assumption as to the mode of
deformation has been made even though the main purpose of the derivation was for
the shear mode of !ocalization. Thus it is interesting to see if the same parameter A
can be applied to a different mode of flow localization such as necking in axisymmetric
tension.

Apart from the interest in monitoring regions of A during numerical studies con-
ducted to understand the physical phenomenon of flow localization, the monitoring of
this parameter may be useful for determining the stage in a finite element analysis
when it may become necessary to start worrying about significant mesh distortion and
the need for a re-zoning operation.

There is an another issue in relation to the applicability of the localization criterion
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A > ). to interrupted deformation histories. In situations such as forging, the flow
field can be extremely inhomogenous and the boundary conditions can be continuously
changing with time due to the change of the workpiece geometry. Thus it is possible that
for certain stages of the deformation process shear localization is promoted within the
deforming body out later on further development of the shear localization is suppressed
by the new loading conditions. In these cases, it is possible that the strain rates in
the interrupted shear localization zone are no longer allowed to grow with time but
eventually will be forced to return to zero values. On the other hand, there is no upper
limit provided for the time integration for the parameter A defined in equation (83). For
the parameter A to be applicable for such cases of interrupted deformation histories, it
should be shown that A will decrease or at least stop increasing when the values of the
strain rates return to zero. For a class of viscoplasic materials for which the flow stress

7 is a function of the equivalent plastic shear strain rate 4° such that

T= g('_yp’;yp10) = u(xfp:g:o)

with ¢ = In4, the strain rate hardening R defined in equation (74) will be inversely

proportional to the equivalent plastic shear strain rate 4° such as
1
R =0g/07 = —0u/d¢
9

As the parameter P defined in equation (79) is inversely proportional to the strain-rate
hardening R, it can be said that for a class of viscoplastic materials (except the linear

viscous limit) that
P« #°

Thus for viscoplastic materials the value of the parameter P will return to zero and

the value of the localization parameter A will be frozen to its previous value whenever
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the strain rates are forced to zero values.

In spite of the efforts made in this thesis, the understanding of the shear localization
phenomenon is far from being complete. There are a number of issues upon which our
future effort should be concentrated. First of all, the complete feature of the three
dimensional generalization of Clifton and Bai’s linear perturbation stability analysis has
not been fully examined primarily because of the complexity of the coefficient matrix
A shown in Apperndix A. Even though linear perturbation stability analysis cannot
give the critical strains to shear loczlization in rate-dependent materials, the result is
supposed to provide the further nnderstanding of the roles of various features of the
three dimensional deformation field. For the simplicity of the mathematical operations,
relatively simple constitutive assumptions has been used for the analysis. Obviously, the
analysis can be improved by incorporating the effects of elasticity, dilatancy together
with pressure sensitivity and more complex features constitutive behavior of anisotropic
materials.

The new criterion which employs a dimensionless parameter A\ has been developed
to overcome the underprediction of the critical strains to shear localizaiton by linear
perturbation stability analysis. It has been asserted that due to the autocatalytic
nature of the adiabatic shear localization, the critical stage can be determined as when
the values of strain, strain rate and temperature in the localization zone become very
large compared to their values elsewhere. This approach cannot be applied to quasi-
static deformation processes and the study of failure criterion becomes necessary. The
study of shear localization cannot be complete without the understanding of failure
mechanism by which the shear localization process is terminated in many cases. It

might be possible to modify the new criterion such as A > A4 for the catastrophic
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stage of shear localization. Of course it is now an open question how Ajgiir. should be
determined.

Another aspect of the new criterion which should be studied further is that the
derivation of A has not been based upon the spatial gradients of the plastic strain rate.
The phenomenon of shear localization is best evidenced by the intense spatial gradients
of the field variables such as strains, strain rates and temperature in case of adiabatic
deformation rather than their absolute values at each material point. Characterization
of the phenomenon in terms of the spatial gradients of the field variables might lead to
an improved criterion for shear localization.

To determine the range of the values for A., numerical solution procedures had to be
used together with a set of specific constitutive equations. This procedure will be better
substantiated with an analysis of the sensitivity of the value of A, to the constitutive
model.

In all of the numerical examples presented in this thesis, it has been observed that
the finite element analysis results become inaccurate when there appears a significant
distortion of the mesh due to the shear localization. For the continuation of the analysis
without losing its accuracy, it is obvious that mesh rezoning is essential. This capability
which is not available at present should be developed into the finite element program
in future.

Only numerical simulations have been performed and presented in this thesis. Ac-
curate modeling methodology for the constitutive behavior of viscoplastic materials
which incorporates all the important features relevant to the shear localization, criteria
for shear mode localization and subsequent failure in their maximum generality, and

automatic mesh rezoning capability for finite element analyses should provide the tools
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for the quantitative comparison between experiments and model prediction when they

are fully developed and integrated.
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Appendix A. The entries of the matrix A

The entries of the coefficient matrix A in (35) are:

Se =0 2 2 =0
Ay = ¢ ({Ro +— - (;)} (j) aini + ;5 + pn
I n v v v
[ So =0 2 2
App = € {R° + = - (%)} (j) ey 0anng
i n v v
[ s° (7 2\?
Ay = fz {R° + — - (j)} (j) a)agn)ng
| n \¥/))\3

A = (i6)T° (,,3) s

o =0 2
e (5)) 3 o]
[ o =0 2 =0
el (F)) 3 e ()] o
L
F o =0 2
e (5)) 1) ]

Au = (1f)T° (';2—0) QN2
v

Ags = (i€) {1 _pe (;13) a,} ny

[ 2
S° 7° 2
Ay = ¢ {R° +— - (;8)} (j) Q) 03n)ng
I n v y
[ Se =0 2 2 ]
Ag = € {R° +— - ('1_-—0)} (-_-a) azagnang
i n N v ]
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Ags = £*

o5 ) 5]

A34 = (1f)T° (._2_0) Qgng
v

Ass = (i€) {1 _pe (73) a,} ns

. . SY.o (2
A41 = (16) (R + —) '7 + T (F) a)1ny
n 3

(e+5)5}
et )47} ()
(=+5)s}

}

-.zi-l 3]
-] (-]

Ag = (35)

S°\ .o 2
(R° + —) N +7° (ja) agng
n g

Ag = P°¥
Asy = n,
As2 = ng
Ass = ng
Ay =0
Ags =0
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Appendix B. The entries of the matrix B

The entries of the coefficient matrix B in (41) are
By, = ¢ [{R°+S—— (f—:)}"fﬁ' (
n g
el (o]
n gl
Bls = (i{)T°n1
BM = (35)(1 - P°)n1
Bz1 = Bz
SO 0 0
By =¢" [{R° +—- (;‘)}"g + (;)] +pn
n v v

Bas = —(1§)T°n,

o

Bz = ($€)(1 + P°)n,
. o S° ~0 —0
Bs, = (#€) {(R + —n—)’y +7 }n1
. o S° ~0 =0
Bsz=—(1f){(R +7)’7 +7 }nz
e (s )
Bsy = P°¥
Ba =ny
By = n,

Bys =By =0
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Appendix C. Time behavior of the term
1+ (3") 7 s Qexp(—A)dt

We assume that material has strain hardening, thermal softening and strain-rate
hardening capabilities which are all positive. When such a material is subjected adia-
batic deformation, the flow stress 7 will increase initially due to strain hardening but
the effect of temperature rise will ultimately overcome the effect of strain hardening
and thus the flow stress will begin to decrease with time. At material points located
in a adiabatic flow localization zone this process will continue due to its autocatalytic
nature. Thus at such material points the time histories of flow stress 7 and the term Q
defined in relation to equation (81) can be represented by the time trajectories such as
shown in Fig. 24(a) and Fig. 24(b). We also note that from equations (76) and (80)

we have
i=R|2G) + P
dt

where P has been defined in equation (79). For most engineering materials the con-
tribution from the strain rate hardening to the total value of the flow stress 7 is small
when compared to the contributions from the strain hardening or thermal softening

(eg., ref. Table 1). For such materials the following approximation can be made:
7 ~ RP4’

Hence for a given deformation history at a materal point within a flow localization
zone, the time when the flow stress 7 reaches its maximum value will be approximately
equal to the time ¢; when P changes its sign from positive to negative such as sketched

in Fig. 24(c). From the given time history of P sketched in Fig. 24(c), the time
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trajectory of the parameter A defined in equation (83) and hence the time trajectory of
the term Q exp(—A) has been sketched in Fig. 24(d) and Fig. 24(e). From Fig. 24(e)
it is obvious that the term 1 + (5°)~! f,‘i Qexp(—A)dt will have a value of 1 at time
t; and will subsequently continue to decrease monotonically. In view of the fact that
the equivalent plastic shear strain rate 4° cannot have negative values and from the
equation (82) it is also clear that the term 1 + (5°)~? f". Q exp(--A)dt also cannot have
negative values. Thus as sketched in Fig. 24(f), the term 1 + (5°)~! J Qexp(—A)dt
will continue to decrease from its value of 1 at time ¢; to a positive finite value or zero
value asymptotically. Thus we can conclude that within a adiabatic flow localization

zone

. 14
0<1+ (ﬁ")*/ Qexp(—A)dt <1 for t > ¢,
¢
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Appendix D. ABAQUS Input Files

For each of the numerical simulations presented in chapter 4, three input files have

been provided. Following is the description of these files.

¢ Input Data File
This file defines the model in terms of mesh geometry, boundary conditions,
material properties, numerical solution procedure, and the format of the solution
output to be recorded. For the three types (compression, tension and bending)
of the problems the Input Data Files are essentially similar to each other. An
input data file for the problem of plane strain tension of 2024-T351 Aluminum is

shown here.

e User-Defined Material Subroutine UMAT
This file contains the information regarding the specific set of constitutive equa-
tions and the associated numerical integration procedure. This subroutine is

called at each integration point during the ABAQUS solution procedure.

e User-Defined Displacement Boundary Condition Subroutine DISP
This file is used to prescribe the kinematic boundary conditions for the model
defined by the Input Date File. This subroutine is called at each increment of

the solution process.
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*HEADING
520 ELEMENT MODEL FOR 1100 ALUMINWM, PLANE STRAIN TENSION.

*NODE

NOOOANWN R WN -

331

.0000E+00
.4000E+01
.8000E+01
.1200E+02
.1600E+02
.0000E+00
.4000E+01
. 8000E+01
.1200E+02
.1600E+02
.0000E+00
.4000E+01
.8000E+01
.1200E+02
.1600E+02
.0000E+00
.4000E+01
. 8000E+01
.1200E+02
.1600E+02
.0000E+00
.4000E+01
.8000E+01
.1200E+02
.1600E+02
.0000E+00
.4000E+01
.8000E+01
.1200E+02
.1600E+02

.1600E+02
.1000E+01
.0000E+00
.2000E+01
.3000E+01
.5000E+01
.4000E+01
.7000E+01
.6000E+01
.9000E+01
. 8000E+01
.1100E+02
.1000E+02
.1300E+02
.1200E+02
.1500E+02
.1400E+02
.1600E+02
.1000E+01
.2000E+01
.3000E+01
.5000E+01
.7000E+01
.6000E+01

.1200E+02
.1200E+02
.1200E+02
.1200E+02
.1200E+02
.1400E+02
.1400E+02
.1400E+02
.1400E+02
.1400E+02
.1600E+02
.1600E+02
.1600E+02
.1600E+02
.1600E+02

.1900E+02
.1900E+02

.1900E+02
.1900E+02

.1900E+02
.2200E+02
.2200E+02

.2200E+02
.2200E+02
.2200E+02
.2500E+02
.2500E+02
.2500E+02
.2500E+02
.2500E+02

.1000E+02
.1050E+02
.1100E+02
.1100E+02
.1050E+02
.1050E+02
.1100E+02
.1050E+02
.1100E+02
.1050E+02
.1100E+02
.1050E+02
.1100E+02
.1050E+02
.1100E+02
.1050E+02
.1100E+02
.1100E+02
.1150E+02
.1200E+02
.1150E+02
.1150E+02
.1150E+02
.1200E+02

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
. 7000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
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Pt
N= OV NEWN -

.9000E+01
.1100E+02
.1000E+02
.1300E+02
.1500E+02
.1400E+02 .
*ELEMENT, TYPE=CPE4

119
118
120
119
113
116
113
112
107
106
107
110
104

99
100

99
121
118
116
115
112
115
137
121
118
118
109
110
106
109

117
114
117
114
111
111
108
108
105
102
102
105
101
101

96

96
117
117
114
111
111
114
134
136
134
136
10S
108
105
108

.1150E+02
.1150E+02
.1200E+02
.1150E+02
.1150E+02

1200E+02

118
119
119
116
112
113
110
113
106
107
104
107

99
100

99

98
120
121
115
116
115
118
118
118
115
137
110
109
109
112

118
119
119
116
112
113
110
113
106
107
104
107

99
100

99

98
120
121
115
116
115
118
118
118
115
137
110
109
109
112

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

7
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509 64 66 67 65
510 66 68 69 67
511 68 70 71 69
512 65 671 11 16
513 76 17 85 84
514 84 85 93 92
515 67 69 18 17
516 69 71 19 18
517 77 18 86 85
518 85 86 94 93
519 78 719 87 86
520 86 87 95 94
*NSET,NSET=E1
98,99,104,107,110,113,116,119,120
sNSET,NSET=E2 , GENERATE
123, 310,17
*NSET,NSET=E2 ,GENERATE
1,51,5
*NSET,NSET=E2 ,GENERATE
88,92,1
*NSET,NSET=E2
97,98
*NSET,NSET=E3
92,93,94,95
*ELSET, ELSET=C
44,75,107,139,171,203,235,331
*ELSET, ELSET=C
16,13,11,7
*EQUATION
2

93,2,1.,92,2,-1.
2
94,2,1.,92,2,-1.
2

95,2,1.,92,2,-1.

*MPC

1,327,1,2

1,331,2,3

1,334,3,4

1,337,4,5

*PLOT

520 ELEMENT MESH

10,10,2.5,2.5

*DETAIL

0.0,0.0,0.0,17.0,18.5,0.0

*DRAW

*BOUNDARY , OP=NEW

E1,2,,0.

E2,1,,0.

E3,2,,0.

*MATERIAL

*USER MATERIAL,CONSTANTS=15
0.02,0.75,0.9,152.0,300.0,26000.0,68000.0,6.7D-6,
2.77,0.875,1.0,0.015,202.,0.34,775.0
*DEPVAR

8

*RESTART ,WRITE , FREQUENCY=10

*STEP, INC=200,CYCLE=6 , NLGEQM, AMP=RAMP
*VI1SQ0,PTOL=10.0,CETOL=2.E-3
4.0E-8,6.0000E-4,1.0E-10
*BOUNDARY , OP=MOD

E3,2,,0.

*EL FILE,ELSET=C,DEPVAR, FREQ=1



k-

NT,DEPVAR, ELSET=C, FREQ=500

i A B N N S

1
NODE FILE,NSET=E3,FREQ=1
2,1,1,1,1,2
*NODE PRINT,NSET=E3, FREQ=500
2,1,1,1,1,2
*PLOT, FREQ=10
DEFORMED MESH
*DETAIL
0.0,0.0,0.0,17.0,32.0,0.0
*DI SPLACED
1,1.,1
*PLOT, FREQ=10
EQUIVALENT PLASTIC STRAIN
*DETAIL
0.0,0.0,0.0,17.0,32.0,0.0
*CONTOUR

84

*PLOT, FREQ=10

EQUIVALENT PLASTIC SHEAR STRAIN RATE
*DETAIL

0.0,0.0,0.0,17.0,32.0,0.0

P

*DETAIL
0.0,0.0,0.0,17.0,32.0,0.0
*CONTOUR -

*PLOT, FREQ=10
LAMBDA_1

*DETAIL
0.0,0.0,0.0,17.0,32.0,0.0

LAMBDA_2
*DETAIL
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SUBROUTINE WMAT(STRESS, STATEV,DDSDDE, SSE, SPD, SCD, STRAN,DSTRAN,

1 TIME,DTIME, TEMP,DTEMP, PREDEF ,DPRED ,MATERL ,NDI ,NSHR ,NTENS,

2 NSTATV,PROPS,NPROPS ,COORDS )
C!l‘tllllttt!tlt“‘!tll‘ltlttlt!lt!l*llttl!!ltlltl‘tllt‘t‘l“.“#l*“‘*
C Isotropic Thermo-Elasto-Viscoplasticity with pressure sensitive
C plastic flow and plastic dilatancy.
Cttttiltttttt!ttttt!ltlllll‘t#ll#l#l!*ttt*lt!l!tltt##ti*l#!ltl‘lll‘lttl
C This UMAT version interfaces with the *VISCOO procedure in ABAQUS.

C Automatic timestep control is done using the CEMAX parameter. The

C timestep is decreased if CEMAX exceeds CETOL.
Clt!tttttt’tltltlltt!t*tt‘lttltt#l#I#**ittlittt*l!!tttt‘lttlttttttllltl
C This UMAT version is not for use in plane stress or any other cases
C where more strain terms than stress terms are used.
Ctttlllt!tltlttlltttl#l*‘t‘tlttl*lllttt*t!t!“lttltt‘l‘llllt‘l!tt'ttttt

C State Variables:

C STATEV(1) = S (plastic flow resistance,tensile,suggested
C units are N/m2)
C STATEV(2) = (temperature,suggested units are Deg.K)

C Five more are for debufgmg and plotting purposes.

STATEV(3) = BDOT(plastic shear strain rate)
STATEV(4) = GAMPB (plastic shear strain)
STATEV(S) = P :(SS-(QMEGA*TAUB/RHO*C)*T)/R

STATEV(6) = LAMBDA 1 = INTEGRAL OF P SINCE t_{0}.
VWHERE

SS=dTAUB/dGAMPB ; STRAIN HARDENING
R=dTAUB/dGAMPBDOT ; STRAIN RATE HARDENING
T=-dTAUB/dTH ; THERMAL SOFTENING
STATEV(7) = LAMBDA 2 = INTEGRAL OF (-P) SINCE P (HANGES NEGATIVE.
STATEV(8) = THE VALUE OF GAMDOT WHEN P (HANGES NEGATIVE.
AFRIL 13, 1987 KWON HEE KIM

C“!‘..ttt‘t‘lt“‘llt‘ll‘tttt!tlt#tltt*lttllt!ttl#tttk**lttt.tttttt‘ltl
C Contents of PROPS vector in this version:

aaaaaaaaaaan

CJ PROPS(J)

C ~~~~~~~~~~~~~

Ci1 PLSIMI' -- limit on equiv. plastic tensile strain increment
C2 PHI -- degree of implicitness (ranges from 0 to 1)

C3 OMEGA -- fraction of plastic work going into adiabatic heating
C4 SO -- initial value for internal variable S

CS5 TO -- initial value for temperature

C6 AMJ -- shear modulus

C 7 AKAPPA -- bulk modulus

C 8 ALPHA -- thermal expansion coefficient

C9 RHO -- density

C 10 C -- specific heat

C 11 GAMDOTO -- REFERENCE STRAIN RATE

C 12 M -- RATE CONSTANT

C 13 B -- STRENGTH QOEFFICIENT

C 14 N -- STRAIN HARDENINNG EXPONENT

C 15 ™ -- MELTING TEMPERATURE

Ct‘l‘t‘tt“‘l'tl!‘lU#t.tltlt‘!llltl“ltttlt#lll#tlll-tt!l!““.“!l‘lll

C See subroutines UMPROP, GAMDOT, and SDOT for suggested units for

C the above properties.
C“#ltt‘t‘t“l‘tll“‘ll‘l‘*#‘l*lltltllt!#3!!lltl“t#‘ttl““‘ttltttttt‘
C The parameter PHI controls the degree of implicitness of the

C integration procedure.

C PHI=0.0 ---- explicit

C PHI=1.0 ---- fully implicit

C Suggested value of FHI: equal to or greater than 0.50
C“tt‘#lt‘ttl#tltl‘ttt*ltl*tt‘tll#t!lltllttttltt!‘tt!!‘t*t‘l“l‘t.tttll
C The parameter OMEGA controls whether the problem is isothermal or

C adiabatic.

C OMEGA=0.0 ---- isothermal

C OMEGA=1.0 ---- adiabatic



81

C Suggested value for fast deformations is 0.9
C.l‘t't‘tll‘tl‘.lllttll!uttl‘ll!t!tt‘#‘*‘*‘l!#lt“l‘l#‘tt*l!ltll“l““

IMPLICIT REAL*8(A-H,0-Z)
C!tlttl‘lllt‘t.t‘lttlltt.lt‘ttlt.t*t‘t!!t*‘ll‘l“‘!tlltl“t‘l‘l“ttlltl
C Common blocks CERROR and OONSTS appear here exactly as they exist in
C ABAQUS version 4-5-159. They will generally be different for other
C ABAQUS versions.
Ctlt'tt‘tttt!#!!ttt!!l"lttt'tll##ttll‘l‘tlttlllltl“tlﬂlt‘l“.llltlt“

OOMMON/CERROR/RESMAX(30) , INREMX(30) ,ERRMAX(2) ,CETOL,CSLIM,

CEMAX, PCTOL, TLIMIT, PSUBIN,RESMIN,DUMAX (30) , INDUMX(30) ,ERRPRE,
UDELSS, PTOL ,AMIOL ,DMKET ,IMRETL , SIGTOL , DS IGMX , UTOL , UMAX , U4MAX ,
WAX, VAMAX , AMAX , A4dMAX , TMAX , EPPMAX , RMAX , R4MAX , NGOPEN, NGCLOS ,
ROTTOL ,ROTFAC, JRIKND, NINCCS ,RIKUB, RIKUMX , RIKMU,RIKLAM,RIKDILA,
RIKRO,RIKOLD, RIKIMX ,QMAX , DUMAXP , STRRAT , PCUT ,RIKDLO
Cttt.ltlltttttt!ltt'l!tl!t!tt#tl!ttttllllt!tttttlt‘ttll‘l‘l“l!t‘l“l"

COMMON/CONSTS/P1,SIN60,00S60 ,KCROS2(3) ,KCROS3(3),ZERO,LZERO,LONE,

1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2,3),THIRD, PRECIS, BLANK
Cl.l“t!llllll“lltl‘tﬂll“l‘lll*!‘l3!ttt"‘l.““"‘l“'.t“.“""“‘

DIMENSION STRESS(NTENS), STATEV(NSTATV) ,DDSUDE(NTENS,NTENS),

1 STRAN(NTENS) ,DSTRAN(NTENS),PREDEF(1),DPRED(1),PROPS(NPROPS),

2 (OOORDS(3)
C‘lll!l‘t'3"'3.""“‘!33!!l‘t‘lt‘ttltt“ttl‘ltl!llltl‘.“‘lttt‘l“ll.

SQART 3=TWO*SIN60

NDIP1=NDI+1

PHIDT=PROPS (2 ) *DTIME

C‘lllt‘l"!ll‘l.l“‘“I“tlﬂlltl!lt“‘!#ttllt‘tllttl!‘l‘l.“l.‘ttll.!ll

C Initialize the state variables, if necessary.
Ctl!tlltllt“‘ltttltt#‘.ttt‘ltlltttttl!‘tltllll“‘l‘l.l‘t‘ltlt‘.ltttt‘l

IF (STATEV(1).LE.ZERO) THEN

STATEV(1)=PROPS(4)

STATEV(2)=PROPS(5)

STATEV( 4 )=ZERO

STATEV( 6 )=ZERO

STATEV(7)=ZERO

END IF

Ctlt..#ttltl‘ll"“llt“.lll!t‘“33llllttt‘l.ll‘llttll‘l“‘..‘ll‘!ll‘!l

C Set the state variables.
Ctlt‘l‘lt‘!lt“tlllt““tll‘tlllllt‘t!ttl‘tll#t““‘t!.l“tlt‘ltt‘tll‘l

S=STATEV(1)

TH=STATEV(2)

GAMPB=STATEV(4)
Ctt!ltlt‘tttlt!tl‘!!lllllllllltltlttllttltlttt!ll“tlt“‘l.“‘ttt.t‘ltl
C Subroutine UMPROP determines AMUJ,AKAPPA ,ALPHA,RHD,and C based. upon
C the temperature TH, using data supplied in PROPS. For the present
C case, the properties are assumed constant and input directly in PROPS.
C In other cases, additional data constants defining functions of TH for
C each property may be input.
Ct!‘!tittltt!tl‘l!ttt!ll‘!ltlttlt*ltllltl!!‘#t“t‘t“ttl‘tttt.ttl‘tl‘t!

CALL UMPROP (AMU,AKAPPA,ALPHA,RHO,C,TH, PROPS,NPROPS)

C‘!‘ll!“lllt!!.'!!“ltll!t!ttt‘tlt"t#t‘llt.“l“‘t‘tl‘lt‘ttl..“..“‘

C I'ressure PB and equivalent shear stress TAUB
Ctl!‘lt‘tll!ttll!tttltl‘tllttltll!l‘t‘#lltitt“!“l‘l‘ltt‘!l.“!““llt

CALL SINV (STRESS,SINV1,SINV2)

TAUB=S INV2/SQART3

TAUBOLD=TAUB

PB=-SINV1
Ctt!t‘tt“lt‘tt‘t!ti‘!l!ttttttt#ttlttlt!‘tttt‘t“‘t!!t‘!ttlttt‘t‘t‘t.‘t
C Subroutine GAMDOT determines the equivalent plastic shear strain rate
CF and its derivatives PDA,PDB,PDC,PDD with respect to TAUB,PB,TH,and
C S, respectively. To make the subsequent calculations more convenient,
C PDB,PDC, and FDD are returned as:
C RATIOB = PDB/PDA
C RATIOC = PDC/PDA

NdE W=
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C RATIOD = PDD/PDA
Cttl'tltltltttt‘tt!‘tttltltlla‘ttttttlttttt*tlltl‘ltltl!tttttlllttlt‘tl
CALL GAMDOT (I1ERROR,TAUB,PB,TH,S,PROPS,NPROPS, SQART3,
1 F1,PDA,RATIOB,RATIOC,RATIOD)
IF(1ERROR .EQ. 1 )THEN
WRITE(6,5000)
5000 FORMAT(1H1,10X,43H**ERROR IN UMAT -- INPUT STRESS INCORRECT )
WRITE(6,5001) ‘
5001 FORMAT(11X,32HTAUB TOO LARGE FOR GAMDOT CALC )
STOP
END IF
AMUB=AMU*TAUB/ (TAUB+AMU*PHIDT*F1)
Cttllttt!tlttlttttttttt‘tl!lttt#tl##t#ttIttttt!ttltllltl#t‘tttllttltltt
C Subroutine SBETA determines the value of the plastic dilatancy
C factor BETA. Presently set to zero.
Cltt!lltllltlltltt‘tl#tltttttt*ltt**tl##lttttt‘ttt!ttlttll!‘tlll!tltlll

CALL SBETA (TAUB,PB,TH,S,BETA)
Cllllll‘#3"lll'lttll‘tlll*t#tltttt‘tllttl‘#lttllt‘tt“l‘tltt“.l‘"ll‘

IF (PROPS(3).GT.ZERO) THEN

CON1=PROPS (3) * (TAUB-BETA*PB)/ (RHO*C)

ELSE

(QON1=ZERO

END IF
Cltlll.tl“‘ll‘t“‘ll‘!’l#tttt*tl**l*l##l*‘lllt#lt‘!l‘l‘ll‘Il‘llt!“&"
C Subroutine SDOT determines the hardening rate H and the static
C restoration rate RDOT.
C't“t“l‘t‘t#tt!l“t‘.t“lttl##tttl‘#‘l##ltl*t‘l*‘.tltt!lt!tlll‘ll!l‘l

CALL SDOT(TAUB,PB,TH,S,GAMPB,AMU, PROPS ,NPROPS, SQAKT3,F1,H,RDOT')

DR=RDOT*DT IME
Cltl'lt!t!tttll!l!#t!tltt‘#t‘*lt‘ttt*lttlt!tll!ltltttttllttt!l‘lttt.ttt

G=AMU- (RAT10B*AKAPPA *BETA+RATIOC*CON1+RATIOD*H)

V=PHIDT*PDA*G

V1=F1*DTIME/ (ONE+V)

V2=PHIDT*PDA/ (ONE+V)

Ci!.l!‘t‘l‘lltt‘t‘l‘!l!ittlltlll'#l"!Q!tﬂt‘lttllttll#ll‘tt“‘l“‘tttl‘

C Trace of strain increment -- DVOL
Ctlll“t‘tttttttlttt!ttt“tl‘#ttt*t***lttl#t!t‘tt*ttltttttttt‘l$ttl‘ttl
DVOL=ZERO '
DO 10 Ki1=1,NDI
10 DVOL=DVOL+DSTRAN(K1)

C“ttllllll‘ll"t“!l“l‘!ttt#!lt‘*l!t#l!!!.!#!lll‘ﬂ‘tttl*ltlt“ttt‘l.l

C Convert stress to deviatoric stress.
Ct‘t‘.ttt!t!t‘tt.‘?!tt“t‘!ttttl‘#lttt##Itl!tlt#ll!*lt‘l!tll‘llflt‘llll
DO 20 Ki=1,NDI
20 STRESS(K1)=STRESS(K1)+PB

Ct“‘#lt'l‘tl“.!'tlt“‘tll!t*l##tttl#tl#“‘ttttt!‘l#‘lt.tllll#‘tl"tt!

C Deviatoric stress times strain increment -- SDSI
Ctlttltl‘.ltl‘i‘l!ll!!ltltll*lt*!tl*tt#t‘ttl!‘t!‘tlt#lt!tl“l!l!l.l‘tl.
SDS [=ZERO

DO 30 K1=1,NTENS
30 SDSI-SDSI+STRESS(K1 )*DSTRAN(K1)

C‘!!‘.‘..ltll“‘t‘!'lllltt**tl!l#llﬂI*#l*#lll‘tl‘#tltltltl“l!““lll!l

C Effective plastic shear strain increment.
Cttltlll‘.‘tt“‘ltll.tttlllll!lt*#!t#t!lt#ltl‘ttltl‘l‘.%‘tt‘ttll‘tl't‘t

DGAMPB=V1+V2*(AMU*SDS 1 /TAUB -AKAPPA*RATIOB*DVOL)

CI““"“‘!!!“!lllt‘l"*“lll“llll‘!llt!!‘!tlt‘l'tlt"““l!.l‘t‘tll

C Increments DS and DTH.
Ct‘“‘tItl‘tlt".tltltltlttl‘*tttt#l#lttlt*llt‘!tltl"‘lt‘l‘l“ll‘l“t‘
DS=H*DGAMPB-DR
DTH=CON1 *DGAMPB

Cllt‘l‘..l‘l‘3!.3‘l.!lll.ltt#*l##ll!#t.llltlltltllllt“lll‘.‘l..t‘l“l‘

C Constants for Jacobian and stress increment.
C‘tl‘l“lt'll!‘.lt.t‘.t.ll‘tllttl.i!‘#t‘#.“til‘.ll"“t‘l""“l"l'.t
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V3=TWO*AMUB

V11=AKAPPA-TWO*THIRD*AMUB

V4=V11*DVOL

V5=AKAPPA*ALPHA*DTH/THIRD

V6=AKAPPA*BETA *DGAMPB

V7=V4-V5-V6

V8=AMU*DGAMPB/TAUB - (AMU-AMUB ) *SDS1/TAUB* *2

V9=AMUB

V12=(V2*AMU**2+AMUB-AMU) /TAUB* *2

V13=-V2*AKAPPA*RATIOB*AMU/TAUB

V14=V2*AKAPPA* (AMU/TAUB) * (BETA+CON1*ALPHA/THIRD)

V15=-V2*AKAPPA**2*RATIOB* (BETA+CON1*ALPHA/THIRD)

V16=V11-V15 )
C‘t!“‘!#tttlttl!tt‘itt!tt##tt‘llt*#ltll*t#tlltt8!'*‘*33!‘!“'.38*““‘
C Calculate the Jacobian, which is nonsymmetric unless V13=V14. This
C is generally true only if OMEGA=0, BETA=0, and PDB=0. Otherwise,

C ABAQUS will use only the symmetric part of the Jacobian unless an

C unsymmetric Jacobian has been called for on the title card.

C Note that STRESS used here is the deviatoric stress.
C#llttt“ltlt‘.‘t‘t‘tt!"t#!ttltll.tttltl‘lt‘tt.tt‘tll‘l!ll.“‘t‘ttll3.

C The Jacobian has been made symmetric in this version.
Ct!t‘l!t!ttttt‘lttlltttttt!t!tlttttttttt#tttttttltttttttlt't‘t‘tltttllt
V13=HALF*(V13+V14)
V14=V13
Ct'lttttttttt‘tttttttttttltttlt!t#*tttt*#l.t*ltltttttt*tltl‘ltltltttttl
DO 40 K1=1,NTENS
DO 40 K2=1,NTENS
40 DDSDDE(K1,K2)=-V12*STRESS(K1)*STRESS(K2)
DO 50 Ki=1,NDI
DO 50 K2=1,NTENS
DDSDDE (K1 ,K2)=DDSDDE(K1,K2)-V14*STRESS(K2)
50 DDSDDE(K2,K1)=DDSDDE(K2,K1)-V13*STRESS(K2)
DO 60 Ki1=1,NDI
DDSDDE(K1 ,K1)=DDSDDE(K1,K1)+V3
DO 60 K2=1,NDI
60 DDSDDE(K1,K2)=DDSDDE(K1,K2)+V16
IF (NSHR.GT.0) THEN
DO 70 K1=NDIP1,NTENS
70 DDSDDE(K1,K1)=DDSDDE(K1,K1)+V9
Cttttl§§?l£§ttllttttllatt!tlal*tlltltlttt#lltlltttttttttttttt'tt!tllttt
C Calculate complete STRESS at the end of the increment using the
C deviatoric stress at the beginning of the increment.
Ctltltltltt‘tttlttttttt“!#tltttt#tt#tttlttttt#ttttttttt*#ltt!t!tltlttt
DO 80 Kiw=1,NDI
80 -STRESS(K1)=(ONE-V8)*STRESS (K1 )+V3*DSTRAN(K1)+V7-PB
IF (NSHR.GT.0) THEN
DO 90 K1=NDIP1,NTENS
90 STRESS(K1)=(ONE-V8)*STRESS(K1)+V9*DSTRAN(K1)
END IF

(ot R 22222 2 R RS R R R 2 2 2 2 2 R 2 R s R R S R R R R R R 2R 2 R 2 R R R R R R R R 2 2 2

C Update the state variables.
C#‘t‘.l‘t‘!lttt"‘!l‘ttll#“ttttt*l**t“**‘tl$$ltl‘l"“t“ttl“l““‘*

CALL SINV (STRESS,SINV1,SINV2)

TAUB=S INV2/SQART3

TAUBNEW=TAUB

PB=-SINV1

TH=TH+DTH

S=S+DS

CALL GAMDOT (IERROR TAUB, PB,TH, S, PROPS ,NPROPS, SQART3,
1 F2,PDA, RATIOB RATIOC RATIOD)

IF(IERROR.EQ.1 )THEN
CEMAX=TWO*CETOL
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F2=F1

END IF

STATEV(1)=S

STATEV(2)=TH

STATEV(3)=F2

STATEV(4)=STATEV(4)+DGAMPB

CON3=PROFS(3) *TAUB/ (RHO*C)

OON4=STATEV(S)

STATEV(S)=PDA*( -1.*H*RATIOD-CON3*RATIOC)

STATEV(6 )=STATEV(6)+(CON4+STATEV(5) ) *DTIME/2

IF(STATEV(S).GE.0.0) THEN

STATEV(8) = STATEV(3)

GO TO 100

END IF

STATEV(7)=STATEV(7) - (CON4+STATEV(S) ) *DTIME/2
Ctttttttt!t!it!t“tt‘t!tttttitt*l!**ttttt#ttttt‘!t#tt#?!i‘ti‘t!t‘!#tl‘t
C Comparison of the plastic strain rates before and aftar the time
C increment. To be used by the automatic integration s .eme of ABAQUS.
C Note that the factor SQART3 is used to convert shear strain to
C tensile strain.
Ctt.tttttitttttttttit‘tlt‘t‘tttltllttt*ltttt‘ttttltlltt“t*.ll!'ttttltt
100 DIFF=DTIME*DABS(F1-F2)/SQART3

CEMAX=IMAX 1 (CEMAX ,DIFF)
Cl!tltttttttttl!tt‘tltlttltt*tltttl#tt#tttt!‘*t‘ttttltlttttttttlttltttt
C Check magnitude of plastic strain increment against a reference level.
C This allows the automatic timestep control in ABAQUS to limit the size
C of the plastic strain increment using the variable CEMAX.
Cttilttttttttttltttttttt*ltti‘#t!t!lt***#ttt!tttttttt"tt!t“tttt‘tt“t

PLSIMI'=PROPS(1)*SQART3

IF (PLSIMT.GT.ZERO) THEN

PLSCHK=(DGAMPB/PLSIMT') *CETOL

CEMAX=-IMAX1 (CEMAX , PLSCHK )

END IF

RETURN

END

(il 22 i 2 2 2 22 2 R 222 R 2 2 R 2 2 2 2 R R R R s 2 2 2 R 22222 2 R R R R 2222 R 2 2

CrESEEXSERRRAERRERARAREEARAEXEXRXRRRX B RXRXEXRXIEAELE XS XS AR XN XA R B KA XA K

SUBROUTINE UMPROP (AMU,AKAPPA,ALPHA,RHO,C,TH, PROPS,NPROPS )
Cttttit.tl‘l‘l’!lt‘t!tttt't‘tt#tt#!t!ll!tlt!tlttt‘t‘tlttll.ttllll“!tt'
C Determine the following constants for the material:

C AMJ ---- shear modulus (suggested units: N/m2)

C AKAPPA - bulk modulus (suggested units: N/m2) .

C ALPHA -- thermal expansion coefficient (suggested units: 1/Deg.K)

C RHO ---- mass density (suggested units: kg/m3)

CC ------ specific heat (suggested units: Joules/kg/Deg.K)

C In general, these properties are functions of temperature, but in

C the present case they are input directly, assuming no temperature

C dependence. Additional entries in PROPS could be used to define them
C as functions of temperature.
C*!‘ltt‘lt‘tllt‘tt‘tt#lt!‘t*‘ttﬂt*#!!*!tl!lt.ll‘ttt‘tltttt*lttttltl‘l‘l

IMPLICIT REAL*8(A-H,0-Z)

(ol A A2 LR RS R 2 2 2 A2 R R A R R R R R L R R R S S RS R R R R R R g

DIMENSION PROPS(NPROPS)
Ctttattltltl‘tttt‘tttltltt!‘lttt!tt*ttltttttlltlttttl!lttttlt‘tttltllt!

AMU=PROPS(6)

AKAPPA=PROPS(7)

ALPHA=PROPS(8)

RHO=PROPS(9)

C=PROPS(10)
Ct‘!ttt!tlllt‘!lttt!ttttttt#!t!tttttttttttttttttt:lttl‘lt‘tt‘!tlltttttt

RETURN

END



Ctt.tttttttttt!tlltllttti*‘t#ltlt*’t*!!#tlt*t“t*.“ttll“#‘l“t#l““‘

Cl‘t‘lt‘!‘tl“ﬂtl.‘t‘..“tlttltltllt*!l*tttt‘ttt“‘#'t‘ll!tt!‘l!‘!ltlll

SUBROUTINE SBETA (TAUB,PB,TH,S,BETA)

C‘.'t“‘l‘l"‘.“tl‘tttt‘l#ltt"#l#‘*l!#t!tt‘#tt“t“tttltl#“tttt‘#.tt

C Subroutine SBETA determines the plastic dilatancy factor.
Clt‘ttttttttttll!tl‘tt‘i*‘i#!‘!l‘ltltt“tt!tttltt"*‘l#"‘t!‘llll#t‘tlt

IMPLICIT REAL*8(A-H,0-Z)

C#‘Ottt"lltltt"Otttltlttt*llllt!#*##3l#'!llt“*“l“‘i“‘.tt!ll’!ll*‘

BETA=0.0D+0

Cor R AR RS A A A A A AR AN A AR AR AR AR AR AR A AR R R E RS LR R RS RN R R RN N KRR RN
RETURN
END

Ctll“"‘!tl‘t#‘ttll‘lll“lit#ttt*#t#*l‘*‘ttl‘#tt‘tt““‘t"'ltl‘.‘lll‘

CESESEEXIERNEXRAARERRXLREEAXIXRARXXN AR AR NREER RN A EE XN XL A AR ERXEEEXXNEEERE

SUBROUTINE GAMDOT (IERROR,TAUB,PB,TH,S,PROPS,NPROPS, SQART3,

1 F,PDA,RATIOB,RATIOC,RATIOD)
Cttt‘ttttttttlt‘l.lttltl!tt#ttt*#ltttt*tl#lt“ttlt“lt‘tt‘lltttl‘lt‘t‘!
C Subroutine GAMDOT determines the equivalent plastic shear strain rate
C and its derivatives PDA,PDB,PDC,PDD with respect to TAUB,PB,TH,and S,
C respectively. Note that the following derivative terms are returned:

RATIOB = PDB/PDA
C RATIOC = PDC/PDA
C RATIOD = PDD/PDA

Cttttttttlt"ltl‘ttttttltltllt#ltt*#l***lttl#lt"t“ttt"““"l“‘.t!.

IMPLICIT REAL*8(A-H,0-Z)
Ctttttttttttttttttttttlttttltlt##tltttlt*tttltttttttttlttttlt#tt!ttttlt
OOMMON/CONSTS/P1, SIN60,00S60 ,KCROS2(3) ,KCROS3(3) ,ZERO,LZERO, LONE,
1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2,3),THIRD, PRECIS , BLANK

(il 22 RS R R R 2 R 2 2 2 R R 2 R R R R R 22 R R R R R R R R RS R R R R R R R R 2 3

DIMENSION PROPS(NPROPS)
C!ttttttttt!lttt!lttllttlttttltlttl#tt**ttttlttttt‘ttltttltlltttttltt“
C Material parameters defining the equivalent plastic shear strain rate
C PROPS(11)=GAMDOTO REFERENCE STRAIN RATE
C PROPS(12)=CM RATE CONSTANT
C PROPS(13)=B -- STRENGTH COEFFICIENT
C PROPS(14)=N -- STRAIN HARDENING EXPONENT
C PROPS(15)=~TM -- MELTING TEMPERATURE .
Cttttttttttllttttttt!.ttl#t#ttltt*lt*l#tttttttttttllttltlttlltlltllltlt

IF(TAUB.LT.1.E-20) TAUB=1.E-20

THFAC=( (PROPS(15)-TH)/(PROPS(15)-PROPS(5)))**2

SEFF=S*THFAC-

IF(SEFF.LE.0.0DO)THEN

PRINT*,’® SEFF.LE.O’

CALL XIT

END IF

CHECK1=DLOG10(DABS (TAUB-SEFF) )

CHECX2=DLOG10(SEFF*PROPS(12))+40.D0

IF(CHECX1 .GT.CHECX2 ) THEN

IERROR=1

RETURN

END IF

XP=ONE/PROPS(12)

FAC=( (TAUB/SEFF) -ONE ) *XP

CHECX=DLOG10(PROPS(11) )+(FAC/2.3026D0)
Cttttttttlltttlltttltttttltttttttt#ttttttttttltttttttt‘ttllttttttlttatt

IF ((HECX.GT.40.D0) THEN

IERROR=1

ELSE IF (CHECX.GT.-40.D0)THEN

F=PROPS(11)*DEXP(FAC)

PDA=F*XP/SEFF

RATIOB=ZERO



RATIOC=2 .DO*TAUB/ (PROPS(15)-TH)
RATIOD=-TAUB/S

ELSE

F=ZERO

PDA=ZERO

RATI0B=ZERO

RATI0C=ZERO

RATIOD=ZERO

END IF

C‘l!“.."'l“tt"tl‘#“‘ll“!#llll**‘#tl!ttlll"““lll‘l"“‘l.“t“.
C‘ttt.ttlllltt‘tl‘lt""‘il'!!lStt!it‘tlt!!Slllll“tl“"i"llttitl!‘l'

RETURN
END

CrEZEZIEXRARSRLZEBEXRSESEXLAXRAXEXARNRARERARAEARAEERREEEEERERRERARERERERER
Cresssss st R SR RS2 R AR RRBEARXAXRABERXEXREREE XA B AL EERLEXEERSERESRERS

SUBROUTINE SDOT (TAUB,PB .';H. S ,GAMPB , AMU, PROPS ,NPROPS , SQART3,
+ F,H,RDOT
CHPPEEEEARRREERREERRARANRRRRRRE AR RARRRREEERAANRRSERERAARRNISEEEERAASSRES

C This subroutine determines the hardening rate H.
Ct"“tttttl#t#“ttttt"t‘tlt#ltltt#t‘itl‘tttt#l"ttt‘t‘lt't"'!l'l“"

IMPLICIT REAL*8(A-H,0-Z)
CF s s s asEEE RN RS ANRE RN AR AN N RN RRRRASLRRNNNSRENNRNRRANNNRERRBRENND
OOaVMON/CONSTS/P1 ,SIN60,00S60,KCROS2(3) ,KCROS3(3) ,ZERO,LZERO,LONE,
1 ONE,TWO,HALF,ABIG,ASMALL,BCBIG,LOCSHR(2,3),THIRD, PRECIS, BLANK

(i b2 d 22 R RS 2 AR SR R R A R R R R R R A2 R R R 2R R R 2 222 R R R R R 2 2 2 2

DIMENSION PROPS(NPROPS)
Ct"ttt‘titl‘it‘tlttltllt‘t!ttttt‘#t*ttttttt‘t‘ttttll‘ttll‘#l“lllt‘ttl
C Material parameters determining the rate of hardening:

C PROPS(13)=B -- STRENGTH COEFFICIENT IN STRAIN HARDENING EXPRESSION

C PROPS(14)=N -- STRAIN HARDENING EXPRESSION
Ctl.'t‘t“tllt.t‘l‘ttllt!.‘#tttl‘tt*t‘tt‘itt‘!!#tlt*‘lt‘t.t!‘ttt‘tl‘lt‘
C Calculate H.

C CALCULATE RDOT
Clttltlllltt“t#ltttltt‘ltt!lt!ttlt#ltlt‘ttttll‘ttttttlt‘tll‘ttlttltltl

B= PROPS(13)

AN = PRO?S(14)

IF (GAMPB.LE.0.001) THEN

GAMPB=0.001

END IF

H= AN*B*GAMPB**(AN-ONE)

RDOT=ZERQO

RETURN

END



87

SUBROUTINE DISP (U,KSTEP,KINC,TIME,NODE, JDOF)
IMPLICIT REAL*8(A-H,0-Z)

D =21478.52286*TIME

U=20.0

IF (JDOF.EQ.2 .AND. NODE.EQ.92)U = D

RETURN

END
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Schematic behavior of the function f; = cos(2x)[cos(2x) + P°] with respect to x at
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Schematic behavior of the function R°x; + u°(1 — x1) as a function of orientation x.

Schematic of shear band orientations with respect to the maximum stretching direction
é, in a simple shearing motion for which the velocity is given by v = 2a(e; ®e;)(x—0).

Shear bands in polycarbonate. Thin polished sections from a region near point A
in the skectch above were viewed in transmission (dark-field) through a polarizing
microscope. Note that two sets of shear bands are formed.

Finite element mesh for the simulation of plane strain tests on AMS 6418 steel and
aluminum 2024-T351. The 320 element mesh represents one quarter of the specimen.

Deformed mesh and the contour plots of the parameters 47, 8, 4*, P and X at time ¢,
when P changes its sign from positive to negative throughout the specimen. Adiabatic
plane strain compression of AMS 6418 steel.

Deformed mesh and the contour plots of the parameters 4, 8, 4°, P and \ at time
t2 when there necleates a zone of noticeable size where A > 10 in the specimen. Note
that the total load is at its maximum and contours show definite signs of localization.
Adiabatic plane strain compression of AMS 6418 steel.

Deformed mesh and the contour plots of the parameters 5°, 0, 4°, P and X at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain
compression ‘of AMS 6418 steel.

Deformed mesh and the contour plots of the parameters 5, 8, 4°, P and A at time ¢,
when P changes its sign from positive to negative throughout the specimen. Adiabatic
plane strain compression of aluminum 2024-T351.

Deformed mesh and the contour plots of the parameters 4, 8, 4°, P and X at time
t2 when there necleates a zone of noticeable size where A > 10 in the specimen. Note
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Deformed mesh and the contour plots of the parameters 47, 8, 4°, P and A at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily dictorted along the shear band. Adiabatic plane strain
compression of aluminum 2024-T351.

Finite element mesh for the simulation of a plane strain tension test on AMS 6418
steel. The 456 element mesh represents one quarter of the specimen. All subsequent
figures show only the region A and the associated level contours of various quantities.

Deformed mesh and the contour plots of the parameters 57, 8, 4°, P and X at time
t; when there first forms a region of negative P across the neck of the specimen.
Adiabatic plane strain tension of AMS 6418 steel.

Deformed mesh and the contour plots of the parameters 4?, 8, 4°, P and X at time
t> when there necleates a zone of noticeable size where A > 10 in the at the central
region of the neck. Note that the total load at the beginning of the secondary slope
and the level contours show definite signs of shear localization. Adiabatic plane strain
tension of AMS 6418 steel.

Deformed mesh and the contour plots of the parameters 47, 8, 4°, P and X at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain
tension of AMS 6418 steel.

Finite element mesh for the simulation of a plane strain tension test on aluminum 2024-
T351. The 520 element mesh represents one quarter of the specimen. All subsequent
figures show only the region A and the associated level contours of various quantities.

Deformed mesh and the contour plots of the parameters 57, 8, 3°, P and ) at time
t; when there first forms a region of negative P across the neck of the specimen.
Adiabatic plane strain tension of aluminum 2024-T351.

Deformed mesh and the contour plots of the parameters 5°, 8, 4°, P and ) at time
t; when there necleates a zone of noticeable size where A > 10 in the at the central
region of the neck. Note that the total load at the beginning of the secondary slope
and the level contours show definite signs of shear localization. Adiabatic plane strain
tension of aluminum 2024-T351.

Deformed mesh and the contour plots of the parameters 47, 8, 4°, P and A at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain
tension of aluminum 2024-T351.

Finite element mesh for the simulation of adiabatic plane strain bending of a U-notched
AMS 6418 steel specimen. The 542 element mesh represents one half of the specimen.
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All subsequent figures show only the region A and the associated level contours of
various quantities.

Fig. 21 Deformed mesh and the contour plots of the parameters 4, 8, 5°, P and X at time ¢,
when there first forms two regions of negative P in the deforming regions under the
notch and under the back surface of the notch. The deformation field is extremely
inhomogenous but there are no signs of shear localization. Adiabatic plane strain
bending of a U-notched AMS 6418 steel specimen.

Fig. 22 Deformed mesh and the contour plots of the parameters 5, 8, 5°, P and ) at time ¢,
when there forms two zones of noticeable size where A > 10 in both of the deforming
regions under the notch and under the back surface of the notch. Deformed mesh
begins to show signs of shear localization at this stage. Adiabatic plane strain bending
of a U-notched AMS 6418 steel specimen.

Fig. 23 Deformed mesh and the contour plots of the parameters 4, 8, 4°, P and X at time
ts when shear localization is fully developed. Mesh is heavily distorted along the
shear bands in two regions above and below the neutral plane. Adiabatic plane strain
bending of a U-notched AMS 6418 steel specimen.

Fig. 24 Qualitative time trajectories of the field variables related to the term [1+(5") ! ff Q exp(--))d]
in equation (82).



Fig. 1 Schematic behavior of the function f; = cos(2x)(cos(2x) + P°| with respect to x at
a fixed P°. The maximum negative value of f; is f; = —(P°/2)?, and it occurs at
orientations x* = %((w/4) + (P°/4)].
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(b)

Fig. 2a Schematic behavior of the function H(x) = [pcS°x1 — wr°T°(2x; — 1)], where x; =
sin? 2x with respect to orientation X.

2b Schen.atic behavior of the function R°x; + u°(1 — x;) as a function of orientation Y.
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Shear
bands

Fig. 3 Schematic of shear band orientations with respect to the maximum stretching direction
é, in a simple shearing motion for which the velocity is given by v = 2a(e; ®e,)(x—0).
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SHEARING DIRECTION

— |
ot *A Y
/l
STTTT7777 777777777 ! i
FIXED END GAUGE SECTION FOR

SIMPLE SHEAR TEST

The micrograph below was taken from a region near point A which
is sufficiently removed from end effects.

-

Fig. 4 Shear bands in polycarbonate. Thin polished sections from a region near point A
in the skectch above were viewed in transmission (dark-field) through a polarizing
microscope. Note that two sets of shear bands are formed.
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Fig. 5 Finite element mesh for the simulation of plane strain tests on AMS 6418 steel and
aluminum 2024-T351. The 320 element mesh represents one quarter of the specimen.
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Fig. 6 Deformed mesh and the contour plots of the parameters 47, 8, 3°, P and X at time ¢,
when P changes its sign from positive to negative throughout the specimen. Adiabatic

plane strain compression of AMS 6418 steel.
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Fig. 7 Deformed mesh and the contour plots of the parameters 4°, 8, 4%, P and X at time
tz when there necleates a zone of noticeable size where A > 10 in the specimen. Note
that the total load is at its maximum and contours show definite signs of localization.
Adiabatic plane strain compression of AMS 6418 steel.
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Fig. 8 Deformed mesh and the contour plots of the parameters 47, 8, 4%, P and ) at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain

compression of AMS 6418 steel.
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Adiabatic plane strain compression of aluminum 2024-T351.
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compression of aluminum 2024-T351.
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Fig. 12 Finite element meésh for the simulation of a plane strain tension test on AMS 6418
steel. The 456 element mesh represents one quarter of the specimen. All subsequent
figures show only the region A and the associated level contours of various quantities.
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Fig. 13 Deformed mesh and the contour plots of the parameters 47, 9, 4°, P and A at time
t; when there first forms a region of negative P across the neck of the specimen.
Adiabatic plane strain tension of AMS 6418 steel.
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Fig. 14 Deformed mesh and the contour plots of the parameters 47, 8, 4°, P and ) at time
t2 when there necleates a zone of noticeable size where A > 10 in the at the central
region of the neck. Note that the total load at the beginning of the secondary slope
and the level contours show definite signs of shear localization. Adiabatic plane strain
tension of AMS 6418 steel.
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Fig. 15 Deformed mesh and the contour plots of the parameters 47, 8, 4*, P and A at time
ts when shear localization is fully developed. Note that the total load is rapidly
decreasing and mesh is heavily distorted along the shear band. Adiabatic plane strain
tension of AMS 6418 steel.
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Fig. 16 Finite element mesh for the simulation ofa plane strain tension test on aluminum 2024-
T351. The 520 element mesh represents one quarter of the specimen. All subsequent
figures show only the region A and the associated level contours of various quantities.
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t, when there first forms a region of negative P across the neck of the specimen.
Adiabatic plane strain tension of aluminum 2024-T351.
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Fig. 18 Deformed mesh and the contour plots of the parameters 47, 8, 4*, P and )\ at time
t2 when there necleates a zone of noticeable size where A > 10 in the at the central
region of the neck. Note that the total load at the beginning of the secondary slope
and the level contours show definite signs of shear localization. Adiabatic plane strain
tension of aluminum 2024-T351.
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Fig. 20 Finite element mesh for the simulation of adiabatic plane strain bending of a U-notched
AMS 6418 steel specimen. The 542 element mesh represents one half of the specimen.

All subsequent figures show only the region A and the associated level contours of
various quantities.
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Fig. 21 Deformed mesh and the contour plots of the parameters 5°, 4, A%, P and X at time ¢,
when there first forms two regions of negative P in the deforming regions under the
notch and under the back surface of the notch. The deformation field is extremely
inhomogenous but there are no signs of shear localization. Adiabatic plane strain
bending of a U-notched AMS 6418 steel specimen.
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Fig. 22 Deformed mesh and the contour plots of the parameters 5%, 8, 5°, P and X at time ¢,
when there forms two zones of noticeable size where A > 10 in both of the deforming
regions under the notch and under the back surface of the notch. Deformed mesh
begins to show signs of shear localization at this stage. Adiabatic plane strain bending
of a U-notched AMS 6418 steel specimen.
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Fig. 23 Deformed mesh and the contour plots of the parameters 4, 8, 4°, P and A at time
ts when shear lqcalization is fully developed. Mesh is heavily distorted along the
shear bands in two regions above and below the neutral plane. Adiabatic plane strain
bending of a U-notched AMS 6418 steel specimen.
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Fig. 24 Qualitative time trajectories of the field va.rié.bles related to the term
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