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CHAPTER 1

INTRODUCTION

Single gimbal Control Moment Gyros (CMGs) are angular momentum storage
devices that can apply torque to a vehicle wi'thout expending consumables. Single gim-
bal CMGs have significant advantages over double gimbal CMGs in spacecraft attitude
control; i.e. mecﬁanical simplicity and ability to provide torque amplification. Despite
these advantages, single gimbal CMGs are plagued by singular states which preclude
torque generation in a certain direction, and thus lead to loss of three-axis control of
the vehicle. These conditions, if not properly addressed, severely limit the usable
momentum capability of the CMG system. Hardware limits on gimbal rates entail that
neighborhoods of singular states be considered in the control law design, since they
represent regions of limited torque capability, thus require high gimbal rates to gener-

ate the requisite torque.

Although the extra degrees of freedom provided by adopting redundant CMG sys-
tems can be used to avoid these singular states, the use of redundant CMG systems
does not elliminate the singularity problem. Since the specific arrangement of the gim-
bals affects the type and number of singularitics, one may reduce the possibility of
encountering singular states within the CMG momentum workspace through modifica-
tions and improvements in CMG design. Control laws designed to manage single gim-
bal systems, however, must nonetheless account for these singular states in order to

extract maximum performance.

A method for resolving this redundancy is required for the proper formulation and
design of spacecraft attitude control systems, which define a required output torque

from the single gimbal CMG system as a function of the state of the vehicle. These



methods are refered to as Steering laws because they address the kinematic relationship
between gimbal rates and total CMG output torque. Intelligent design of a Steering
law warrants carcful examination of the singular states mentioned above. These two

themes comprise the central thrust of this thesis.

The general objective of this thesis is to study the control of kinematically redin-
dant single gimbal CMGs. To this end there are two major objectives. The first goal
includes the detailed analysis of singﬁlar states and development of a method that Jis-
tinguishes between different types of singularities. The second goal is the development
of a general Steering law for 4-Pyramid mounted single gimbal CMGs. An overview of

the thesis is presented below:

In Chapter 2, single gimbal CMG fundamentals will be reviewed, and the mechan-
ical analog to the CMG system, the robotic manipulator, will be presented. A simple
method of generating an orthogonal null-space basis to the Jacobian matrix will also

be given.

In Chapter 3, the control architecture for spacecraft equipped with single gimbal
CMGs will be reviewed. The desirability to accomodate occasional errors in torque

delivered by the CMG system will be discussed.
In Chapter 4, the singular states of single gimbal CMGs will be classified, and a

test: for null motion near a singular configuration will be presented. Examples of differ-

ent types of singularities will be presented for both the CMG system and a planar
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manipulator, and the rclationship between the singularity measure and the null-space

of the Jacobian matrix will b= examined.

In Chapter 5, various torque-input Steering laws will be reviewed, and alternative
singularity avoidance methods will be proposed. Performance of these candidate meth-
ods will be examined and compared in computer simulations using the 4-CMG system.

In Chapter 6, a method of singularity avoidance based on the SR-inverse will be
proposed. This approach will be compared to the methods introduced in Chapter 3,

and simulation results will be presented to verify its performance.

Finally, in Chapter 7, concluding remarks and recommendations will be given.

11



CHAPTER 2

SINGLE GIMBAL (SG) CONTROL MOMENT GYRO (CMG) FUN-
DAMENTALS

2.1 CHARACTERISTICS OF SG SYTEMS

A single gimbal CMG consists of a flywheel spinning at a constant rate about an
axis that is gimballed to allow changes in the spin direction. An example of such a
device is shown in Figure 2-1. The CMG is a constant magnitude angular momentum
storage device since the flywheel rate is held constant. As can be seen from the figure,
the momentum vector is restricted to lie in the plane of rotation. The gimbal is rigidly
attached to the spacecraft and is able to rotate about the gimbal axis. A coordinate

system attached to each gimbal is defined by the orthonormal basis vectors:

AN A A
{ 6 by }
A

where 0, = Unit vector along gimbal axis

A

h; = Unit vector along angular momentum

_;',\- = Unit vector given by /0\,- x ;1\,

For each CMG, the gimbal angle 0, is measured with respect to the reference coordi-
nate frame with positive angular displacement defined by the gimbal axis direction.
The reference frame is defined by the initial orientation of the gimbal-fixed frame and is
denoted by {6,-, f/:\i°, j,\ "} . The expression for the unit vectors {;l\,, j,\ } in this refer-

ence frame is given by:

A A A
hl = CcoS 6,- hlo + Sin Biji 0 2 l
A . Ao No @D
Ji = —sin0; k" + cosb,j

12



This is shown in Figure 2-1.

For a sysiem of n single gimbal CMGs, the total system angular momentum is the

vector sum of the individual momenta, i.e.

n

HO) = ) h(6) (2-2)

where  h(0) = Total system angular momentum
#(0;) = Angular momentum of i"CMG

0,= i" gimbal angle

The expression for the angular momentum of the i* CMG with respect to the relerence

coordinate frame is given by:

A
hi = hih;

where h;= Magnitude of " CMG angular momentum

2.2 PRINCIPLE OF OPERATION

The principle governing the operation of a CMG system is that torque is the time
rate of change of angular momentum. Since the magnitude of the angular momentum
of a CMG is constant, torque is produced by rotation of the momentum vector. The
direction of the output torque is given by the right-hand rule, i.e. gimbal axis “crossed”
into momentum direction. This is shown in Figure 2-2. The CMG output torque is

given by:

13



Figure 2-1, Single Gimby] CMG (Part | of 2)
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As in the case of the angular momcatum, the output torque of a CMG lies in the
plane of rotation. It is also clear that the torque direction is perpendicular to the
momentum direction. This type of device can be thought of as a two-sided actuator
due to its ability to produce a torque in opposite directions, as opposed to an indiv'id-

ual jet which can provide a torque in orly one direction.

@)
I€

l=4

h

== <=»dh

Figure 2-2. CMG Output Torque

For spacecraft three-axis control, at least three single gimbal CMGs are required.
If the CMG system in question has rnore actuators (gimbals) than rotational degrees of
freedomy, it is termec redundant. The degree of redundancy is given by the difference

between the number of CMGs and the number of degrees of {-eedom to be controlled.
2.3 MECHANICAL ANALOG

In order to visualize motions of a CMG system, the concept of the momentum

15



linkage [1] is introduced and the analogy to a robotic manipulatcr is proposed. Con-
sider the CMG system as an open-luvop kinematic chain or linkage made up of equal
“length” momentum links, placed in arbitrary order, with one link attached to a
grounded pivot. The “length” of each link is given by the magnitude of each CMG
angular momentum, considered equal in this case. The individual links are constrained
to rotate in a fixed plane determined by the corresponding gimbal axes. The moti-
vation for this concept derives from the expression for the total angular momentum of
a CMG system as the vector sum of individual momenta. The summation operation in
this case is commutative. For a robotic manipulator, the end-effector position is the
vector sum of the individual link displacements. It is proposed that a correspondence
cxists between link displacements for a manipulator and individual momenta for a
CMG system. The first part of the analog then, is the correspondence between angular

momentum for a CMG system and displacement for a manipulator.

The momentum linkage can be defined as a commutative linkage with links made
up of individual momenta, A [1]. The total system momentum corresponds to the
position of ihe momentum linkage tip in momentum space which is a Euclidean
3-space E*. We can think of the momentum linkage as a manipulator whose end-effec-
tor position correspends to total angular momentum. The workspace of this manipula-
tor naturally corresponds to the momentum volume and the boundary of the
workspace is defined as the momentum envelope or locus of all points traced out by
the maximally stretched momentum linkage. An example of the momentum envelope
for 4-Pyramid mounted CMGs is shown in Figure 2-3, [1]1. The holes or funnels rep-

resent windows or: the envelope. These regions represent unattainable momentum

16



MOMENTUM ENVELOPE FOR 4-PYRAMID MOUNTED SG CMGs

=\~ CONSTANT MOMENTUM
LINES

S A %

oN=Zwill] =22,

N\ 2, d —
e/

4-PYRAMID MOUNTED SG CMGs
(SKEW ANGLE 8 = 54.73°)

Figure 2-3. Momentum Envelope For 4-Pyramid Mounted CMGs
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states, because the normal to the window is aligned with a gimbal axis. The funnel then

is part of the boundary to the momentum volume.

The momentum linkage concept was used in [1] to describe the total angular
momentum of a CMG system and to describé the boundary surface or momentum
envelope as the surface generated by the stretched momentum linkage. The linkage
concept was also used to describe null motion of a CMG system, which are discussed

in the next section.
2.4 TORQUE AND NON-TORQUE PRODUCING MOTIONS

The output torque for a system of n CMGs is given by the time rate of change of
the total system angular momentum relative to a frame of reference of interest, in this

case the spacecraft body-fixed cobrdinate frame, which is given by:

T = k(@) =J(@0)8 (2-3)

where J(0) = [ 71(64), .., Jn(B,) ], Instantaneous Jacobian matrix (3 X n)

Oh
Ji6) = -(%l;- = -(ﬁ. Jacobian columns

It is seen that the total output torque for a system of CMGs is given by the sum of
the individual gimbal torques. Extending the momentum linkage concept to this case,
the motion (rotation) of each link corresponds to the output torque for each CMG.
To draw the analogy to the robotic manipulator, it is noted that for the manipulator

the end-effector velocity is the vector sum of the individual link velocities. Just as the

18



individual link displacements correspond to angular momenta, link velocities corre-
spond to individual CMG output torques, thus the total output torque for a system of
CMGs corresponds to the velocity of the momentum linkage tip in E*. So far it has
been established that for the mechanical analog to a CMG system (the robotic manip-
ulator), link lengths correspond to magnitude of individual CMG angular momenta,
and end-effector position and velocity to total angular momentum and total output
torque for the CMG system. What remains to complete the analogy is t0 show an

equivalence in the singularity problem for a manipulator and the CMG system.

We nov. turn our attention to torque and non-torque producing link motions (or
gimbal rates). First, the linkage concept will be used to describe torque and non-torque
producing motions, and then an analytic description in terms of gimbal rates will be

presented.

Using the momentum linkage concept, it is seen that the total output torque of a
CMG system corresponds to the velocity of the linkage tip. If the linkage tip is station-
ary, no net torque is applied to the spacecraft. Torque producing motions are those
link motions for which the tip of the momentum linkage moves. On the other hand,
relative motions of the links that do not affect the location of the linkage tip do not
produce a net torque on the spacecraft, and are termed non-torque producing motions.
These motions can be visualized by treating the linkage tip as a virtual pivot, which
fixes the tip location, and moving the remaining links. The linkage can attain any
kinematically admissible configuration or “closure”, by relative link motions as long as
the linkage tip remains stationary. These relative motions are termed “admissible”. An

example of such a motion for the mechanical analog is shown in Figure 2-4. The cho-

19



sen analog is a 3-link planar manipulator that possesses one degree of redundancy,

since only two degrees of freedom are to be controlled.

NONSINGULAR CONFIGURATION

SINGULAR DIRECTION

. .
.~ SINGULAR CONFIGURATION

Figure 2-4. Example Of Null Motion For Mechanical Analog

To express torque producing and non-torque producing motions in terms of gimbaj
rates, we can see that torque producing motions consist of gimbal rates that result in
movement of the linkage tip, and gimbal rates that do not affect the location of the
linkage tip are called non-torque producing rates. This concept is naturally expressed
by the general solution to the non-homogeneous system of linear equations in (2-3).

The general solution can be represented as:

20



Q = QP+QH
where . 8p=Particular solution ( J(8) 8, = T)

84 = Homogeneous solution ( J() Q n=20 )

The particular solution expresses the torque producing gimbal rates, and the homoge-
neous solution the non-torque producing gimbal rates or “null motion”. The term "null
motion” arises from the fact that the solution to the homogeneous system consists of
gimbal rates that lie in the null-space of the Jacobian matrix, and therefore produce no
instantaneous torque (“instantaneous” because the-Jacobian matrix is evaluated using
the instantaneous values of the gimbal angles). These “null motions” are the variations
of “admissible” relative link motions. This property of null motion can be exploited to
reconfigure the linkage or momentum state of the CMG system without altering its
total momentum. Correspondingly, torque producing gimbal rates lie in the row space
or orthogonal complement of the null-space of the Jacobian. The solution-space to the
non-homogeneous problem can be regarded as 2-dimensional, with an orthogonal basis

consisting of the torque and non-torque producing solutions.

The system of linear equations (2-3) can be solved as long as the rank of the Jaco-
bian matrix is 3. If the rank is less than 3, the CMG system cannot produce a torque
along a]i three axes of the spacecraft, and three-axis controllability is lost. The CMG
system is termed singular when the rank of the Jacobian is less than 3, i.e. the matrix is
singular. This essentially defines the singularity problem for CMGs. In this situation
no output torque is available along an axis or direction. This information will now be
used to establish the equivalence of the singularity problem of a CMG system to that

of a corresponding manipulator.

21



We have seen that velocity for a manipulator is analogous to torque for a CMG
system. The Jacobian matrix for a manipulator transforms joint rates to end-effector
velocity whereas for a CMG system the Jacobian transforms gimbal rates to torque.
When the manipulator Jacobian loses rank (becomes singular), motion in a particular
direction is not possible. An example of a singular configuration for a planar manipula-
tor 1s shown in Figure 2-4. The singularity analog is established by noting that for a
manipulaior no motion is possible in a certain direction, whereas for a CMG system no
torque is possible in a certain direction. The singularity problem for both systems is
similar. Of course the elements of the manipulator Jacobian will not be the same as
those for a CMG, although the general structure is the same. A summary of the anal-
ogy between a manipulator and a CMG system is given in Table 2-1. The conclusion
from the above discussion is that manipulators and CMG system have similar singular-

ity problems and results from one area may be applicable to the other.
2.5 EXAMPLES OF SG CMG SYSTEM AND PLANAR MANIPULATOR

In order to clarify some of the concepts presented in the previous sections, specific
examples of a CMG system and a planar manipulator will be presented in this section.
We will consider a 4-Pyramid mounted SG CMG system and a planar 3-link manipula-
tor. These particular examples will be used throughout, to illustrate concepts and appli-

cations.

2.5.1 4-Pyramid Mounted SG CMG System

The 4-Pyramid type CMG- system consists of 4 single gimbal CMGs each posi-

tioned on one face of a 4-sided pyramid such that the momentum vector lies in this

22



Table 2-1. Analogy Of Manipulator To SG CMG System

MANIPULATOR <> 8G CMG SYSTEM
Position x = x(q) Momentum h = h(4)
Velocity x = Jdlg) g Torque  h =J(g) 6

Acceleration X = J(g) §+J(q)q  Torque h = J(9) Q’+.i(§)é

Singularity
No motion possible in a certain No torque possible in a certain
direction direction

23



plane. An example of this mounting configuration in the spacecraft body fixed coordi-
nate frame { X,Y,Z} is shown in Figure 2-5. If the skew angle f§ equals 54.73 degrees,

the gimbal axes lic along the main diagonals of a cube.

We will express the angular momentum of each CMG with respect to the space-

craft coordinate system. These are given by:

[ — ¢p sin6, [ —cos 0,
h = h cos 0, h, = h| —cf sinb,
sf sin @, sf sin0,
cf sin 6, [ cos#,
hy = h| —cosb, hy, = h| cp sinf,
sf sin 0, sp sin6,

where sf = sinf

cf = cosf
h = Angular momentum magnitude

The total angular momentum of this system is:
_}1=_’_'|+L'2+ﬁ3+ﬁ4 (2‘4)

The output torque of the CMG system is obtained by differentiating (2-4) in the space-

craft frame of reference:

h="h +h + h +h = JB)E (2-5)

The Jacobian matrix has the form:

24



—¢f cos @, sinf, ¢f cos0, — sin 0,
JO) = h —sinf, —cff cosé, sin@; ¢f cos0, (2-6)
sp cos 8, sp cos@, sf cosB, sf cosb,

A method for constructing the null-vector(s) of the Jacobian matrix using the concept
of the generalized cross-product in n-dimensions is presented in the next section. It
will be shown that much insight about the properties of the null-space can be gained

through this construction method.

2.5.2 Null-Space Of Jacobian Matrix And The Generalized Cross-Product

It has been shown that the null-space of the Jacobian contributes the homogene-
ous or non-torque producing solution to (2-3). The null-space basis vectors are essen-
tial, because the homogeneou§ solution can be written as a linear combination of these
vectors, as well as providing more inSight into the kinematics of the CMG system. The

dimension of the null-space or nullity [2] is:
n(J) = n — rJ)) (2-6)

where n(J) = Nullity of Jacobian
r(J) = Rank of Jacobian
n = Dimension of Jacobian domain space

For this CMG configuration, n = 4. When the Jacobian is non-singular, its nullity is
1, and when it is singular its nullity is 2 (due to non-coplanar gimbal mounting). The
null-space basis vectors can be determined by row-echelon reduction of the Jacobian to

produce its dependent columns, which then can be used to span the null-space. This is
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Figure 2.

3. 4-Pyramid Mounted Single Gimba] CMG System
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a numerical method and docs not provide a closed form expression for the basis vec-
tors. A closed form expression can be generated by use of the generalized vector cross-
product in n-dimensions [1] . This method generates an orthogonal basis by forming
n — rank(J) vectors that are orthogonal to the linearly independent row vectors of tﬁe
Jacobian and to each other. This approach is preferred over the row-echelon method;
not only because a closed form solution is obtained, but also for the general insight

that it provides about null motion.

To motivate this approach, it is noted that the rank of a matrix is given by either
the column rank or the row rank, since the column rank equals the row rank [2]. Let
v denote an n-dimensional null-vector of J(8) . This vector must satisfy J(@)v = 0.
For the case when J(@) is nonsingular, it has three linearly independent row and col-
umn vectors, and rank(J) = 3. Therefore, the nullity is 1, and ¥ must be orthogonal
to the row vectors of J(8). To carry out the cross-product in n-dimensions, it is noted
that the cross product of two vectors in 3-dimensions can be written in terms of their
components as a 3 X 3 determinant. These components are the 2 X 2 minors of this
3 x 3 matrix. Let us illustrate this by an example. Consider two 3-dimensional vectors

AAA

a, b expressed in a rectangular coordinate system with unit vectors {i WJok } . Then

we can write:

A
a=ai + aj + ak

A A
b=bii + bj + bk

The cross-product of g and b is given by:

27



N N A
axb = (ab, — ab,)i + (ab, — ab,)j + (ab, — ab, )k

This result can be written as the determinant

AN A
i J ok ADNOA
axb=1|a a a, | = i J k
G € €
& Ly &2

b, b, b,

We can see that the cross-product can be written in terms of the 2 X 2 minors of the

determinant matrix:

A A A

where M, = | & & | Sirst minor
M, = | ¢ ¢, | second minor
M; = | & | third minor

The null-vector for the case of nonsingular J(f) can now be computed using this

method. Let the 4-dimensional gimbal angle space 8 be defined by the unit vectors
ANAA

{0,, ,,6,0, } The cross-product in 4-dimensions operates on the 3 linearly independ-

ent row vectors of J(8). The determinant matrix is given by:

A A A A
6, 6, 6, 0, (2-8)
b h h s

In terms of the Jacobian minors, the null-vector becomes:
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A A A A
Yy = 1‘146| - M302 + M203 - All 04
or
M
4 (2-9)
y = M2
- M,
where M, = | ji j, js |
My= 1|4 jds |
My=|ji jsjal
My=|h js s |

This method can also be used when the Jacobian is singular. In that case, J(8) will only
have two linearly independent row vectors, thus in order to apply this method, these
row vectors must first be determined. The next step would be to take the 3-dimensional
cross-product using only the first three elements of the row vectors in order to generate
a vector in 3-space that is orthogonal to the truncated row vectors. Then, a 4-dimen-
sional cruss-product is taken using the two linearly independent row vectors and the
vecior just generated with a zero fourth element. In this way, the two orthogonal null-
space basis vectors are generated. We can apply this approach in a similar fashion to

systems with more than 4 CMGs.

Considerable insight can be gleaned from the form cf the null-vector and the Jaco-
bian minors. In general, this expression (2-9) for the null vector is valid when J(8) is
nonsingular, and it is a function of the gimbal angles. The minors of the Jacobian
matrix have a very interesting physical meaning. A minor is zero when the columns of

the minor matrix or 3 x 3 Jacobian sub-matrix are dependent. Tnis means the sub-ma-
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trix is singular, and its columns do not span E*. Thle rank of this submatrix has
dropped from 3 to 2. Physically, it means that the 3 CMGs corresponding to this sub-
matrix can no longer produce torque along all threc spacecraft axes, hence three-axis
controllability is lost for this CMG sub-system. We can thus think of the minors as
controllability tests for sub-systems of 3 CMGs taken together according to the col-
umns in the corresponding minor. For example, sub-system 1 corresponding to M,
would be comprised of CMGs 1, 2, and 3. It is clear that when all 4 sub-systems lose
three-axis controllability, the spacecraft is not controllable by the CMG system. An
alternaie statment is that the rank of a matrix is the order of the largest nonsingular
square sub-matrix formed from this matrix [2]. Thus the Jacobian is singular when all
3 x 3 minors are 0, i.e. there is no nonsingular sub-matrix of order 3. It is also evident
that when one of the minors is zero, one of the elements of the null-vector is zero,

which implies that no null motion is available from the corresponding CMG.

2.5.3 Planar 3-Link Manipulator

A planar 3-link manipulator with 1 degree of redundancy is shown in Figure 2-6.
The choice for generalized coordinaies in this case are the absolute joint angles. This
choice of coordinates is made to keep the analogy to the CMG system transparent.
The link length choice is dictated by the requirement that the manipulator possess the
same number of equivalent types of singularities. We could have chosen equal length
links for the manipulator to match the choice of equal magnitude angular momenta,
but this would have resulted in a manipulator that would not possess all types of sin-

gularities encountered in the CMG system. Specifically, internal Elliptic type singulari-
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ties would not be encountered for this manipulator (the various types of singularitics

will be defined in Chapter 4).

> <

Figure 2-6. Planar 3-Link Manipulator

The motion of the manipulator is described by the generalized coordinates
{ 9+ 92 9, } relative to a fixed coordinate frame { X,Y}. The displacement of the end-
effector is denoted x, while the individual link displacements are defined by x, . The

link displacements are:
cos q; cos q, oS ¢,
a=uGn] w=n] == [ Sa]
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where | = Link length
The end-effector position is given by:
x=x +x+x (2-10)

The end-cfTector velocity thus becomes:

=5 +5H+ %5 =J94 (2-11)

The Jacobian matrix for the manipulator is:

—2sing, —sing, —sinq3] (2-12)

2 cos q, cos q, COs g3

Jg) = I[

Comparing the manipulator resﬁlts to the 4-CMG system, we can easily see an analo-
gy. Observe that the manipulator Jacobian has a similar form to the CMG Jacobian
with this choice of generalized coordinateg. Specifically, the manipulator columns are
the partial derivatives with respect to the generalized coordinates of the individual joint
displacements, as was analogously true for the CMG system. It is also noted that if
the Jacobian is differentiated again, with respect to the generalized coordinates, its col-
- umns will be the negative of the link displacements. This is due to the cyclic nature of
the trigonometric functions, governing the generalized coordinates, hence is also true
for the CMG Jacobian. Finally, it is emphasized that the planar manipuiator of
Figure 2-6 is not the exact analog to the 4-CMG system because its Elliptic type inter-
nal singularity is actually a degenerate Hyperbolic singularity. This will become clear in

Chapter 4. The exact analog can be obtained by projecting the gimbal motions in the
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3 orthogonal planes formed by the spacecraft ccordinate system. A manipuletor with
varying link lengths can then be defined such taat its motion recovers the motion of
the gimbals in each plane. A simple example would be to project the motion of gimbal
#1 in the X — Y plane. The path of the gimbal in this plane is elliptic because the pro-
jection varies. A link with varying length can be used to duplicate this motion in the

plane.

The null-vector for the manipulator Jacobian can also be constructed using the
generalized cross-product approach. Let the 3-dimensional joint angle space be defined
by the unit-vectors {f]\,, 91, 9,} The cross-product in 3-dimensions operates on the 2

lincarly independent rows of J(g). The determinant matrix is:

A A A
9 9 9 (2_]3)
VIR R
In terms of the manipulator Jacobian minors, the null-vector becomes:
A A A
y=Myq — Myq + Mg,
or
M, (2-14)
yv=|—M,
M,
where M, = |4| Jr |
My = | jijs |
M; = | 2 J3 |
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Equivalent comments apply to the manipulator null-vecior as for the CMG null-
vector. The physical meaning of the minors in this case represents relative folding of
the links. When a minor has 0 value, the columns of the corresponding sub-matrix of
order 2 are not linearly independent; the sub-matrix has rank 1. This implies that the
velocity capability of these two links is restricted to a line rather than a plane whenever
the minor is nonzero, therefore the links are colinear or folded. The value of each
minor thus represents the degree of folding of the corresponding pair of links. In this
case there are 3 distinct combinations of pairs of links; when all three combinations are
singular, the Jacobian is also singular, thus motion is restricted to a line. The general
concepts of controllability, capability for null motion, etc. naturally carry over from the

previous discussion about the CMG Jacobian null-space and will not be repeated here.
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CHAPTER 3

SPACECRAFT CONTROL ARCHITECTURE

3.1 SPACECRAFT ATTITUDE MANEUVERS

Spacecraft attitude control may be realized through angular momentum exchange
between the spacecraft and momentum storage devices such as single gimbal CMGs,
which can be used to provide control torques for attitude control of space vehicles. A
most common example is the rcoricntation of a spacecraft. The most general pre-
scription for an attitude maneuver is to specify the desired final state (attitude and rate)
given the initial state of the spacecraft. The controller must then be able to satisfy this

request using CMGs as actuators.

An attitude maneuver can .be accomplished in various ways. The methods to
accomplish these maheuvers can be classified as kinematic or dynamic, depending on
the criteria used. An example of a kinematic approach is an eigenaxis or single-axis
rotation, because this results in the smallest rotation angle required for the maneuver.
A single-axis feedback controller based on this approach is used on the Space Shuttle
[3]. On the other hand, the ORA controller [4] is an example of a dynamic approach.
It uses a feedforward-feedback model-following controller structure for fuel-optimal
maneuvers, which are not constrained to rotations about a single axis. This approach
reduces fuel consumption, hence it is superior to the kinematic method. For the case
of spacecraft with CMGs, a model following controller (dynamic method) could also be
used, as long as the model or desired trajectory is constructed in a way that reflects the

unique properties of CMG actuated spacecraft.
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One method of gencrating a desired trajectory that is globally “optimal” in a cer-
tain sense, using the calculus of variations, is described in [5]. The optimization prob-
lem requires the design of an optimal terminal controller, with only some of the statces
specified at a fixed terminal time. These specified states are chosen to be the spacecraft
initial and teminal attitude and rate. The assumption of no external torques implies
that the terminal CMG state is not constrained, since that would violate conservation

of angular momentum for the combined system.

Performance criteria of interest include minimization of gimbal rates, minimization
of final spacecraft state error from the desired value, and maintaining CMG 3-axis
controllability over the entire trajectory. Redundancy resolution can be accomplished
in a global sense by parametrizing CMG 3-axis controllability over the whole space-
craft trajectory. Solution of this problem, however, is very difficult because some of the
Lagrange multipliers have no bo.undary conditions at either end (i.e. initial and termi-
nal conditions), since we have specified the values of the corresponding states at both

ends. An intial control history is required to solve this optimization problem.

To represent the attitude of a spacecraft, Euler parameters {7, £} or quaternions
will be used. Let the underscore represent a vector expressed in the spacecraft fixed

frame. The rate of change of the Euler parameters is given by [6]:

T

e

, 1
N= —=¢

* (3-1)
[ +1n1]e

o=

Let g represent the quaternion,
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then we can rewrite (3-1) as:

§=EgQaw (3-2)

The equations of motion for the combined spacecraft-CMG system are obtained from
the total angular momentum expression. Let the superscript I denote a quantity
expressed in an inertial frame. The total angular momentum expressed in an inertial

frame is given by:

Hy=H + 1 (3-3)

where ﬂ' = Spacecraft angular momentum ( ﬁ’ = lg’)

Lz' = Total CMG angular momentum

Expressing the time rate of change of the absolute total angular momentum of the

combined system in the spacecraft fixed body axes, we obtain:

H+ oxH+h+oxh=T (3-9)
where T = External torques on spacecraft

Rewriting (3-4) with h=1J Q , and including (3-2) we obtain the dynamical equations

governing this system:
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Eg)w
= —1""[ex(le+H)]-1""JO8+17'T

Q.
[

(3-5)

Ie-
I

3.2 CONTROL ARCHITECTURE

Attitude maneuvers of spacecraft equipped wita CMGs are usually accomplished
using a dual-level control architecture. This is because we can consider the attitude
maneuver as consisting of two parts; first, the necessary torque required from the
CMG actuators to accomplish the maneuver must be determined, and second, this tor-
que must be generated by the redundant system of CMGs. These two levels of the

controller are defined as:

a) Outer Control Loop

b) Inner Control Loop

The general objectives of the control system for the combined spacecra{t-CMG system

can be stated as:

a) Spacecraft reorientation accomplished using SG CMGs.
b) CMG system must supply a commanded torque while avoiding singular config-
urations.

c) Spacecraft controllability must be maintained at all times.

38



It has been shown that single gimbal CMG systems are plagued by singular states.
For this reason, the Inner Control Loop must be capable of generating the required
torque while simultancously avoiding singular configurations. This is not an casy task.
This problem might be made more tractable if the Outer Control Loop design takes
this adverse feature of single gimbal CMGs into account; specifically, the design of the
Outer controller must tolerate occasional errors in torque delivered by the CMG sys-
tem, or limit the CMG torque command to avoid approaching vicinities of singular
CMG orientations. The capability of accomodating errors in the torque request. is
required due to reduced effectiveness of the CMG system near singular configurations.
The Outer controller should also not constrain the CMG system to produce a given
torque if this can lead to a singularity which the Steering law is not capable of avoid-
ing. In addition, the non-spherical nature of the SG CMG momentum envelope must
specifically be taken into account for maneuvers which move the CMG system near

saturation.

All currently proposed SG CMG Steering laws (including those presented in this
thesis) are unable to guarantee continuously flawless singularity avoidance, although
various techniques (discussed in Chapters 5 and 6) do aid in reducing singular encount-
ers. Because of this, any Outer controller must be prepared to occasionally deal with
singularity related phenomena as discussed above. For reorientation maneuvers, the
vehicle trajectory may be as general as possible, since the only ‘constraints are the two
boundary conditions; the initial and final states of the spacecraft. The choice of inter-
mediate points is arbitrary, and thus may be chosen, if required, to aid in avoiding sin-

gular CMG configurations.
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3.3 OUTER CONTROL LOOP

The function of the Outer Control Loop is to generate torque commands that
accomplish the spacecraft attitude maneuver. Two possibilites for this controller were
mentioned in the previous section. The model following controller can be implemented
in different ways; two examples are the Sliding Mode Controller {SMC) and optimal
tracking method. An example of the Sliding Mode approach applied to spacecraft
using CMGs can be found in [7], where the control input 7 is defined as the output

torque of the CMG system:

T = 1(0)9

The advantages of this approach are real-time implementation and a globally stable
controlier based on Lyapunov stability analysis, despite the presence of model impre-

cision and disturbance torques.

A derivation of the optimal tracking method for spacecraft using CMGs can be
found in [5]. The solution to the tracking problem leads to a full-state feedback control
law where the optimal control has.a feedforward-feedback structure. The major advan-
tage of this approach is that performance criteria of interest can be included in the
objective function. This approach is not considered real-time implementable however,
since it requires numerical solution (an initial control history is required to start the

numerical process).
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3.4 INNER CONTROL LOOP

The function of the Inner Control Loop is to generate gimbal angle rate com-
mands that cause the CMG system to produce the desired torque requested by the
Outer Control Loop. It must also resolve the redundancy present in the CMG system.
In the literature, this is usually referred to as a Steering law. This is not the only
approach available. The Steering law may also be formulated to generate gimbal angle
commands in response to angular momentum requests [8]. The Steering law thus
exploits the kinematic relationship between CMG gimbal rates and the rate of change
of total CMG angular momentum in the rotating frame of reference (spacecraft body

fixed frame).
The requirements that a successful Steering law must meet are:

a) Generate the required torque.
b) Steer the gimbal angle trajectories away from undesirable configurations.
c) Meet any constraints placed on the CMG system, such as maximum gimbal

rates, gimbal stops etc.

An undesirable configuration is one for which the CMG system is unable to produce
any torque along a particular direction in E* . This is equivalent to loss of spacecraft
three-axis controllability, thus conditions a) and b) are not independent in the sense
that the ability to produce a required torque implies that the CMG system is not in an

undesirable configuration.
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To produce a desired torque requires the solution of the underdetermined system of

sinultaneous linear equations given by:

J@)8 =t - (3-6)

The general solution to a non-homogencous system of linear equations such as (3-6),
can be formed from the solution to the homogeneous system, and any particular sol-
ution, as was discussed in Chapter 2. When the rank of the Jacobian matrix is 3, infi-
nitely many solutions to (3-6) exist. In this case, the particular solution is almost

always obtained using the Moore-Penrose pseudoinverse [2] , which is given by:

0, = JT(IIN "2 (3-7)

To illustrate the properties of (3-7), a derivation based on orthogonal projections is
presented in the next section. To motivate this derivation the properties of the the

Moore-Penrose pseudoinverse are presented below:

a) Q,, is orthogonal to _9_,,. Therefore, < Q,, Q,, > = 0.
b) The particular solution is the minimum norm solution to (3-6), as can be seen

from the Pythagorean theorem:

1817 = |8 ]" + | 8’

Since the particular and homogeneous solutions are orthogonal to each other,
the norm of the solution wiil be smallest when the homogeneous solution is

Zero.

42



3.4.1 Derivation Of The Moore-Penrose Pseudoinverse Using Orthogonal Projections

From the fundamental theorem of linear algebra [9], the row space of any matrix
is perpendicular to jts nullspace. Since the torque producing solution lies in the row

space of J, we can write the general solution to (3-6) in the form:

Q = QR =+ QN
where QR = Torque producing solution (J QR =1)
QN = Homogeneous solution (J QN = 0)

The torque producing solution can now be written as a linear combination of the row-
space basis vectors. Since the Jacobian matrix is nonsingular, it has 3 linearly inde-
pendent row vectors. The row space is spanned by these vectors (which become the

columns of J7), thus we can write the torque producing solution as:

3
by = D wR = (3-8)
=1

T
where R,

= i" Jacobian row vector
Substituting (3-8) in (3-6) we obtain
JITg = 1

from which we can solve for a:

a=(JJ") ' (3-9)
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To obtain the final result for Q, we substitute (3-9) into (3-8) to get:

0, =J"(JJ") 'z (3-10)

This is the desired final result. By picking the particular solution as (3-10), the proper-
ties of the Moore-Penrose pseudoinverse are satisfied. Since the pseudoinverse provides
the minimum 2-norm solution, an alternative derivation can be obtained using

Lagrange multipliers to solve the following problem:

subject to J Q =T

with  Hamilionian H =

This minimization will yield = 0., as defined in (3-10).

The homogeneous solution can be written as a linear combination of the Jacobian

null space basis vectors.

_ n—r{)
b= ), Mov (3-11)

i=1

where A(1) = Time varying scalar weighting factor

Y, = n — dimensional Jacobian null space basis vector
r(J) = Rank of Jacobian

The computation of the null space basis vectors is carried out using the generalized

cross-product approach as presented in Chapter 2. The scalar weighting factor deter-
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mines the magnitude and sign of the contribution of each null space basis vector to the
homogeneous solution. These are the free design parameters, to be selected in a man-

ner that the performance criteria for the Steering law are accomplished.

Because 8, is orthogonal to 8, , any general solution to (3-6) can be written in
terms of the Moore-Penrose pseudoinverse and any homogeneous solution. An alter-
native approach for a Stecring law utilizing linear programming is discussed in the next

section.
3.5 REDUNDANCY RESOLUTION VIA LINEAR PROGRAMMING

Another way of addressing the singularity avoidance and steering problem is to
assign gimbal rates via linear programming, as described in [10]. The instantancous
torque output of each gimbal is ﬁsed to form a set of activity vectors that are used to
satisfy spacecraft rate-change requests by solving for approximate gimbal displace-
ments, or torque requests by solving for instantaneous gimbal rates. The linear pro-
gram intrinsically incorporates upper bounds on the CMG sclection that limit allowed
gimbal displacements' and rates while optimizing an objective function to encourage
avoidance of singular configurations and gimbal stops. Unfortunately, this method like
all available methods, cannot avoid all internal singularities due to the use of a gra-
dient-based objective (to be discussed in Chapter 5). Linear programming has been

applied to double gimbal CMGs, however, with considerable success.

This approach can also account for hybrid control of Spacecra{ft using both jets

and CMGs. It is highly adaptable to hardware failures, variations in CMG system defi-
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nition, and changes in vehicle mass properties. A major advantage of this approach is
that performance criteria can be explicitly and dynamically taken into account merely

by altering the linear objective functions and imposed upper bounds.
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CHAPTER 4

SINGULAR CONTROL MOMENT GYRO (CMG) CONFIGURA-
TIONS

4.1 DEFINITION OF SINGULARITY

Spacecraft attitude control systems utilizing single gimbal CMGs must effectively
address the singularity conditions inherent with this type of actuators. These conditions
prevail when the CMG system is in a configuration that precludes torque generation in
a certain direction, i.e. spacecraft three-axis controllability is lost. These conditions, if
not properly addressed, severely limit the usable momentum capability 6[’ the CMG
system. Not only must the singularities themselves be avoided; neighborhoods of sin-
gular states represent regions of limited torque capability, thus require high gimbal
rates to generate the requisite torque. Hardware limits on gimbal rates therefore entail

that these neighborhoods also be considered in the control law design.

The requirement of spacecraft three-axis controllability is expressed by the rank of
the CMG system Jacobian matrix. If the rank of the Jacobian is less than 3, the CMG
system is unable to produce torque along a direction u, referred to as the singular

direction in E®. This is summarized below:

Singular State: A singular state can be defined as a set of gimbal angles for which the
CMG system is unable to produce torque along the singular direction u. This occurs

whenever rank(J) < 3, the number of controlled axes.

For 3-axis control the maximal rank of the Jacobian is 3 and the minimal rank is 2,

A
because the gimbal axes, 6, are not mounted coplanar. For example, if rank(J) = 2,
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the resultant otput torque lies in a plane which is spanned by the columns of the Jaco-
bian matrix. The singular direction u is then perpendicular to this plane. This condi-

tion can be stated as:

MO eu=0 (i=12,.) @1

The gimbal angles corresponding to a singular configuration can be computed
using (4-1) and the expression for the Jacobian columns with respect to the reference

gimbal coordinate frame (2;1). The i* column of the Jacobian matrix is:
. No . afo
Combining (4-1) with (4-2) we obtain

A A
jicu = cos0,(j;%eu) —sin@,(h°eu) =0 (4-3)

the solutions of which are the singular gimbal angles. These angles are obtained from:

where 0,5 = Singular gimbal angle ( 2 solutions )

8,= il

The two solutions obtained from (4-4) correspond to the two extreme projections of
the i angular momentum vector on the singular direction. These are the maximum

positive and maximum negative projections, therefore there corresponds two solutions
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for each singularity and momentum vector associated with maximum positive (+ ) and
maximum negative (-) projections along the singular direction. Examples of the vari-
ous sign patterns can be found in [i1] . The singularity prob!em can thus be summa-
rized for a n-CMG system: There exist 2" combinations of gimbal angles for which the

CMG system cannot produce torque about any given direction in space [1] .

All singular states can be classified according to their location in the total CMG

angular momentum envelope:

a) Surface or Saturation Singularities
b) Internal Singularities

1) Elliptic or Unescapable

ii) Hyperbolic

4.2 SATURATION SINGULARITY

As the name suggests, a Saturation singularity corresponds to a configuration for
which the CMG system has projected its maximum momentum capability along a cer-
tain direction. A Saturation singularity can be defined as the set of gimbal angles for
which the total momentum of the CMG system lies on the momentum envelope
(implying that the momentum linkage tip has reached the momentum envelope). The

mechanical analog to this type of a singularity is a completely stretched manipulator.

Deeper insight about the Saturation singularity can’ be gained by examining the

behaviour of the momentum linkage. The momentum envelope, which is generated by
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motion of the maximally stretched linkage, is the set of radius vectors from zero
momentum to the saturation surface. The direction of the maximal stretch is termed
the “saturation direction”, and the singular direction is given by the outward normal to
the momentum envelope at the point of contact of the linkage tip. These directions are
illustrated in Figure 4-1, which depicts the projection of the momentum envelope on
the Z — X plane [12]. Since the linkage tip is restrained to move either on the envel-
ope or inside, no motion is possible beyond the envelope in the outward normal dircc-
tion. Motion along the inward normal is also instantaneously not possible, since the
Jacobian is still singular. To be more precise, the singular direction is an axis along
which instantaneous CMG output torque capability is entirely lost. Torque can only
be gencrated along the tangent plane to the envelope, which has as its normal vector
the singular direction at the point of the linkage tip cohtact. In this case, the CMG
system is termed saturated with reference to the direction u , since the system has pro-
jected its maximum available momentum in this direction. We can summérize the crite-

ria for a Saturation singularity as:

a) Rank(J) < 3
b) All heu >0 (i=1,..,n)

An example of this type of singularity for the Pyramid mounted 4-CMG system
and the 3-link planar manipulator is shown in Figuré 4-2. From the ﬁgure, we can see
that all the gimbals have projected their maximum momentum capability along the sin-
gular direction. From the manipulator example, it is intuitively clear that there can be

no relative motion of the links which does not affect the end-effector location. There is
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MOMENTUM PROJECTIONS ON X-Z PLANE

Figure 4-1. Saturation Singularity Projections For 4-SG CMG System

no null motion possible for this type of singularity. A degenerate case where null
motion would be possible can be imagined if the ground pivot allowed rotation about
the singular direction, but this is excluded for this type of manipulator. The same com-
ments apply to the CMG system'; For a maximally projected CMG linkage, no null

motion is possible (no degenerate case exists for the CMG system).

From the above discussion, it can be seen that a Saturation singularity corresponds
to the physical capabilities of the CMG system. Thus, the term “desaturation” refers to
the process by which the resultant momentum vector is removed or retracted from the
envelope or surface without net momentum transfer to the spacecraft. To accomplish
this task, an external torque (such as jet firings or gravity gradient/aerodynamic tor-
ques) is required to cancel the torque exerted on the spacecraft while desaturating the

CMG system. Saturation states cannot be avoided by the Steering law alone; A

51



momentum management procedure such as [13], [14] must be used to command the

spacecraft attitude such that the CMGs remain unsaturated.

CMG SYSTEM

X SINGULAR DIRECTION

=
N gr = [ -90°,180°,%°,0°]
e z[eﬁ‘uﬁ'ﬂ] Q>0 [+ + h+]
MECHANICAL ANALOG
Y
4
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Q= 0.5[ 13 ] Q>0

Figure 4-2. Example Of Saturation Singularity
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4.3 INTERNAL SINGULARITIES

Any singular state for which the total angular momentum vector (or linkage) is not
completely stretched is defined by default to be an Internal singularity. These states
can be generated from the Saturation singularity by reversing one or more angular
momentum vectors so that they point opposite to the singular direction. For a
4-CMG system, these singularities can be grouped into two categories. One category
consists of an even number of positive and negative projections, and the other category
is made up of an odd number of positive and negative projections. The mechanical
analog to this situation is a manipulator with folded links. Some singularities can offer
the possibility of escape through null motion, therefore it is useful to investigate the
conditions under which singular configurations can be removed by null motion alone,
and thus classify Internal singularities according to whether a null motion escape is

possible.

The term “escape” used in this context nceds'to be defined carefully. The term

escape will be defined in the following manner:

Escape By Null Metion: A singular CMG system can be reconfigured by null motion

into a non-singular configuration, if one exists for the same total angular momentum.
The implications of this statement are twofold.

a) A non-singular configuration is reachable by null motion from the singular-co-

nfiguration; i.e. the CMG system can be reconfigured in a continuous manner
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using null motion only. To state it succinctly, the two solution sets are not dis-
joint with respect to null motion.

b) The rank of the Jacobian can be affected (increased) by these null motion. The
singularity measure (to be introduced later) is increased also (can be made non-

zero).

An immediate consequence of these statements is that Saturation singularities are not
escapable. This will be established rigorously in the next section, when a test for the
possibility of null motion near a singularity is presented. It should also be emphasized
that the mere possibility of null motion at a singularity does not automatically imply
that the singularity is cscapable. An example of this was given in the degenerate Satu-

ration singularity discussion for the manipulator.

4.3.1 Test For Possibility Of Null Motion Near A Singularity

Valuable insight can be gained by investigating the conditions under which null
motion is possible near a singularity. A method to examinine the behaviour of a CMG
system using null motion near a singular state can be found in [1]. A similar approach
based on this method will now be presented. Let A5(85) denoie a singular CMG config-
uration. Expanding the total CMG angular momentum about about this singular con-

figuration, 6 , we obtain:

& oh o*h
h(@) — H@O®) = il ose + L22| 562 + HoOT 45
© ();[aelefizaefef, (4-5)
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The first partial on the right hand side of (4-5) is just the i* cclumn vector of the Jaco-

bian. The expression for the second partial is given by:

/A . . A
.[i=a_blei=0ielx._’i= — 0,y iy
62_}_1‘. dj; A
=——=—Qh h
60‘2 80’ (RA =

If we now take the inner product of (4-5) with the singular direction, u, the first term
on the right hand side drops out because the singular direction is orthogonal to the

Jacobian columns, i.e. j(65) «u = 0. The resulting expression is:

n
bS5 ==L N 5., 502 ]
ulh-p"]= Zz u 66; (4-6)
Recognizing that the right hand side of (4-6) is a quadratic form, it can be written as:
ue[h-4"]=—-807P58 (4-7)

where = diag(h,sol_l) da=1.2,..n

The diagonal matrix P will be refered to as the projection matrix, since its elements
represent the projections of the singular angular momentum vectors onto the singular

direction.

The governing equation for the null motion test is expressed by (4-7). In order to

examine the behaviour of (4-7) for null motion near a singularity, the variations in gim-
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bal angles 60, are defined to be null motion. For null motion, £ = A5 by definition,
since null motion do not affect the total angular momentum of the system. Therefore,

(4-7) becomes (neglecting the constant):
560" P&0 = 0 . (4-8)

The null motion can be expressed as a linear combination of the null-space basis vec-

tors as in [15]. The gimbal angle variations can then be expressed in this basis as:

n—rJ) .
0= > ky=NA (4-9)

i=1

On

where A, = Scalar weighting factor
¥; = Null space basis vector ( n — dimensional )

. ¥(j) = Rank of Jacobian matrix

Substituting (4-9) in (4-8) , we obtain the desired final result:

1T0A =0
404 r (4-10)
“where Q=N'PN '

This quadratic form can now be used to test the possibility of null motion near a

singularity. Two possibilities exist:

a) Definite Q
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b) Indefinite or Semi-Definite Q

4.3.1.1 Definite

If Q is definite, the quadratic form is definite, and in order to satisfy (4-10) we
must have 2 = 0. This implies that no null motion is possible at this singular config-
uration, therefore no escape is possible from this singularity by null motion. Near a
singularity of this type, the CMG syétem cannot be reconfigured by null motion into a
non-singular configuration; the two configurations are disjoint solutions to the total

system mormentum. This result can be used to identify unescapable singularities.

When P is definite, Q is also definite. This corresponds to the case of a Saturation
singularity, for which all angular momenta have maximum positive projections on the
singular direction. All the clements of the diagonal projection matrix are positive.
This type of singularity was defined in [1] as Elliptic, because the quadratic in (4-7) has
the form of an elliptic conic section, an ellipsoid. Using this notation for the case of
definite Q, the singularity will be defined as Elliptic or unescapable. For Q to be defi-
nite, it is not nec'cessary that all momenta have positive projections on the singular
directions; i.e. P can be indefinite. Odd numbers of positive and negative projections
usually result in a definite quadratic form. A case for an even number of projections
has not been found for which the quadratic form is definite.

4.3.1.2 Indefinite Or Semi-Definite Q
The other possibility for (4-10) is to be ecither indefinite or semi-definite. It is

indefinite when the eigenvalues of Q are both positive and negative, and is positive

(negative) semidefinite if Q has non-negative (non-positive) eigenvalues, i.e. has at least
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one zero eigenvalue [2] . In this casé. 2 # 0 satisfies (4-10). This implies that null
motion is possible at this singularity, therefore null motion may provide a possibility of
escape. In order to definitely state that escape is possible, degenerate solutions must
be excluded. Degenerate solutions are those for which rigid body rotation is possible
which does not affect the total system momentum. The term rigid body is used to indi-
cate the fact that the the singular configuration remains undisturbed during these null
motion. An example of this was given in “4.2 Saturation Singularity” for a manipula-
tor. In that case, the rigid body is the stretched linkage which can rotate about the
stretch axis. Similarly, it may be possible that thec momentum linkage could possess

configurations for which rigid body rotations are possible.

This type of singularity was defined in [1] as Hyperbolic because the quadratic in
(4-7) has the form of a hyperbolic conic section, a hyperboloid. Using this notation, a
singularity for which Q is either'semi-deﬁnite or indefinite will be defined as Hyperbol-

ic.

Applying the above conclusions, the results of the null motion test can be used to

classify the two possibilities which exist for an Internal singularity:

a) Elliptic or Unescapable Singularity ( Q Definite )
b) Hyperbolic Singularity ( Q Indefinite or Semi-Definite )

It is evident that Hyperbolic singularities offer the possibility of escape through null

motion. These cases must be examined for degenerate solutions to determine the possi-

bility of escape. Examples of the various singularities are presented in the next section.
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4.4 EXAMPLES OF INTERNAL SINGULARITIES

In this section, examples of the two different types of Internal singularitites are
presented for the 4-Pyramid CMG system and the planar 3-link manipulator intro-
duced in Chapter 2. All the relevant computations for the null motion test are pre-
sented in each case. The choice of singular direction, for both systems is the spacecraft

A
X-axis, i.e. u = X. For simplicity, h = [ = 1.

4.4.1 Example Of Elliptic Or Unescapable Internal Singularity

A particular example of an Internal Elliptic singularity is shown in Figure 4-3. The
4-Pyramid CMG system will be discussed first. The configuration for this singularity is
defined by the gimbal angles: 85 = [ —90°,0°,90°,0° ]J7. It is seen that there are an
odd number of equal sign momentum projections along the singular direction u = ),L\ .

The sign pattern cf these projectionsis [ +,—, +,+ ] for this singularity.

The row-echelon form of the Jacobian matrix evaluated at these gimbal angles is:

2cf

1
0

<
Il

© O -

S -0

© O -

The linearly independent (but non-orthogonal) null-space basis vectors can be obtained
from the row-echelon form. These two null-vectors can be constructed from the

dependent columns of the Jacobian:
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-1 —2cf -1 =2
w=| O m=| M| ew=| 0 -
0 1 0 1

To obtain the projection matrix, the inner product of each CMG angular momen-
tum with the singular direction is evaluated at these gimbal angles. The projection

matrix for this case becomes:

cf 0 o
_| o-1 00
P‘OOcﬁo

o 0 o 1

Carrying out the matrix multiplications in (4-10), the expression for the symmetric Q

matrix is:

c c2
Q=2[cﬂﬁ2 2022] cf >0

For Q to be definite, all of its pivots must be non-zero and of the same sign. The

_ cp cp’
Q—2l o c[P]

Both pivots, cf, cf8%, are positive, thus O > 0, i.e. is positive definite. This singularity is

upper-triargular form of Q is:

then of Elliptic type, hence unescapable by null motion.



CMG SYSTEM

SINGULAR DIRECTION

=

X

Q - 2[ ‘ﬂ “I ] Q >0 E, - [ _”0.00.”0‘0. ],.

c +'—'+l+ ]

MECHANICAL ANALOG

Y
SINGULAR DIRECTION
<= L L2
v ‘ —p X
7.
1 & = [0°,180°,180° I
Q= [ 00 Qs0

Figure 4-3. Example Of Elliptic Internal Singularity
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An example of an unescapable singularity for the manipulator is shown in

Figure 4-2. The singularity is defined by the joint angles: g5 = [ 0°,180°,180° ] .
A
The sign pattern of the projections in the singular direction ¥ = X becomes

[ —.,+.,+ 1

The row-echelon form of the Jacobian and the null-space basis are given by:
| —05 —05 0.5 0.5
J = 0 0 0 N = 1 O
: 0 1
The projection and Q rﬁatrices are:
2 0 O -1 1
P=]10-1 O Q=0.5[ l—l]
0 —1 —1
The upper-triangular form is:
| -1
Q= [ 00 ]
The pivots are -1, 0. Thus the quadratic form is negative semi-definite, 0 < 0, which
suggests that this singularity is Hyperbolic and null motion is possible. This is a degen-
erate singularity however, because rigid body motion is possible by null motion, since
the manipulator can be rotated as a rigid body about the grounded pivot without

affecting the location of the tip. As a consequence, escape from this singularity is not

possible by null motion.
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4.4.2 Example Of Hyperbolic Internal Singularity

An example of an Internal Hyperbolic singularity is shown in Figure 4-4. The sin-
gular configuration for the CMG system is defined by the gimbal angles:
0s = [ 90°,180°,—90°,0°] . The sign pattern of the projections for this singularity

is[ —,+,—,+ 1.

The row-echelon form of the Jacobian and the non-orthogonal null-space basis are

given by:
10 1 —2B " 2B
J=1010 _ N=| | (')
0 0 O 0 0
The projection and Q matrices become:
—cf 0 0 o
o1 09 N BT A
P= Q=2
0 0—ch 0 B 1= 2
0o O o !

The upper triangular form of Q is:

- o ]
sz[ o l—cﬂ3]

The pivots are —cff, 1 — ¢f*. Since 0 < ¢f < 1, then 1 — ¢f* > 0, and the

quadratic form is indefinite. For this case null motion is possible, and the singularity
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can also be escaped. Currently, ‘the degeneracy of the Hyperbolic singularity is

resolved by simulation. This will be discussed in Chapter $.

For the manipulator the singular configuration is defined by the joint angles:

¢ = [0°180°,0°] .

The row-echelon form of the Jacobian matrix and the null-space basis are:

1 —05 0.5 0.5 —0.5
s=| 4700 N=| 1 o
0 1

The projection and Q matrices become:

2 00 L
P=[g—(1)(l)] Q=0.5[_: ;]

The upper-triangular form is:

Q=0.5[ ‘(‘) _}‘]

The pivots are -1, 4, therefore the quadratic form is indefinite. In this case null motion

is possible as well as escape from the singularity.
4.5 EXAMPLE OF SATURATION SINGULARITY

In this section a similar analysis is carried out for the Saturation singularity exam-
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Figure 4-4. Example Of Hyperbolic Internal Singularity
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ple used in Figure 4-2. The singular configuration for the CMG system is defined by

the gimbal angles: §5 = [ —90°, 180°,90°,0° ] .

The row-echelon form of the Jacobian and its corresponding null-space basis is

given by:
10 1 2P ‘(‘) ~2ch
J=101 0 _ N = , (‘)
0 0O 0 0 "

The Q matrix and its upper-triangular form are:

_ B P L S
Q—z[cﬂzzcﬂ’+l] €= [Ocﬂ3+l]

The pivots are ¢f and cf* + 1. Both are positive, thus Q > 0, i.e. is positive definite.
This suggests that the singularity is of Elliptic type and is unescapable by null motion.
Ne null motion whatsoever is possible for this case, as earlier observed to be a proper-

ty of the Saturation singularity.

In the case of the manipulator, the singularity is defined by tiie joint angles:
g =[0°0°0°] . The row-echelon form of the Jacobian and its null-space basis

are:

1 0.5 0.5 —05 —05
J = 0o o o N = 1 0
0 1
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The Q matrix and its upper-triangular form are:

o-os[11] e=us[} ]

The pivots are 3, 8/3. Both pivots are positive, and @ > 0. The singularity is thercfore

Elliptic, and no null motion is possible.
4.6 MEASURE OF SINGULARITY

We have seen that the rank of the Jacobian matrix is an indicator of the singulari-
ty df the CMG system. This information can be used to define an index, the singularity
measure m, which shows how close the CMG system is to being singular. In the litera-
ture, m? is also refered to as the CMG “gain” [15]. The derivation of the singularity
measure presented here employs the Singular Value Decomposition (SVD) of the Jaco-

bian matrix, which is given by:

Jo) = Uz v’ (4-11)

where Usa?3 X 3 orthonormal matrix
V is an X n orthonormal matrix

o, 0 0
E=[ 002 0 [0]]
0 0 03

6,% 0 singular values

For a matrix to be nonsingular, all of its singular values must be greater than zero

[2], therefore the product of the singular values can be used as a singularity measure.

This is given by:
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3
m = dee JJT =[], | (4-12)

=1

Equation (4-12) is easily verified by substituting the SVD definition (4-11) for the Jaco-

bian:

m = Jae[ (USVTYVETUT)]
= Jde( UZETUT)
= Vdet U det £ det U™

- I+

Since, m is a measure of spacecraft 3-axis controllability, the CMG system approaches .
a singular state as m — 0. The parameter m? has been used as an objective function for
a singularity-avoidance Steering law using single-gimbal CMGs [15], and m has been
used for double-gimbal CMG Steering laws [16]. For redundant manipulators, this
measure was called manipulability [17]. In the next section, a convenient formula is

presented to evaluate the singularity measure.
4.6.1 Formula For The Singularity Measure
The numerical computation of the singularity measure can become difficult, even

for a CMG system with only one degree of redundancy. The computational burden

may be reduced by using the Binet-Cauchy formula [8] : '
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NN =N -2)

T , N>3 (4-13)

where M, = ( g\’ ) distinct Jacobian minors of order 3

For the Pyramid mounted 4-CMG system, the measure can be written as:

m= M+ M+ M+ M (4-14)

The evaluation of the singularity measure is much simpler by this formula, since
the order 3 minors of the Jacobian matrix are dimensioned smaller as well as having
simple entries than the square matrix formed from (JJ7). Since this formula expresses
the measure in terms of all distinct minors of order 3 which are extractable from the
Jacobian, we can see from (4-14) that individual minors can be zero, (implying loss of
three-axis controllability for the corresponding sub-system of 3 CMGs) while the sys-

tem as a whole remains non-singular.

A new measure of distance from singular points was recently proposed for redun-
dant manipulators [18]. This new measure is defined in terms of the product of non-
singular Jacobian minors. Since the minors represent the relative folding of all
sub-groups of links, this measure reflects the number of .relativcly unfolded (non-coli-
near) groups of links remaining in the manipulator system. This approach can analo-
gously be used in CMG Steering laws. However, since keeping the product of minors
non-zero precludes the switching of solutions (or linkage configuration) it is felt that

this approach is not appropriate for CMG Steering laws.
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This switching of solutions is determined by the singular minors, that is gimbal
angles for which M, = 0, define the boundary between one form of joint configuration
and another form. In nonredundant systems, this boundary is defined by det(J) = 0.
This fact can be most easily ﬁnderstood by refering to the planar 3-link manipulator
(introduced in Chapter 2) in Figure 4-5, which shows the transition from one joint
configuration or closure (A) to another closure (C) through the switch configuration
(B) while the total system is nonsingular through the switch. It is seen that the switch
boundary occurs when links #2 and #3 are colinear, which implies that
M, = |} ji| = 0 at the boundary, while the other two minors are nonzero. This
switching is undesirable in manipulators because it leads to repeatability problems. On

the other hand, in CMG systems this switching is desirable for singularity avoidance.

Figure 4-5. Transition Between Two Joint Closures Via Singular Minor
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4.6.2 Singularity Measure And Null-Space Of Jacobian

We have seen that the singularity measure of the Jacobian can be expressed in
terms of its minors. It has also been shown that the Jacobian null-space can likewise be
expressed in terms of the minors. What then, is the relationship between the twe, if
any? In order to examine the relationship, we will use the 4-CMG system as an exam-
ple (what follows is actually valid for any system with one degree of redundancy). The

definition below provides some illumination:

Definition: For any non-singular real matrix J of dimension m X (m + 1)

de(JJT) = |y |?

where v = Jacobian null — vecior

Proof: Using the notation of Chapter 2 and the Jacobian matrix of the 4-CMG sys-

tem, we can write:
det(JJT) = M} + MZ + M} + M.

M,
— M3
M,
—_ M|

(v =y"ey=[M, —M, M, —M] = M+ M2+ M2+ M
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Armed with this definition, the null-vector of the Jacobian can be better under-
stood; this understanding will be vital in the design of the Steering law. The fundamen-
tal attributes of the null-vector, its magnitude and direction, fc- non-singular systems

of single-degree redundancy can be summarized as follows:

Magnitude Of Null-Vector: The magnitude of the null-space basis vector is identical to

the singularity measure, m, thus is directly related to the nearness of a singularity.

Direction Of Null-Vector: The direction of null motion is defined by the non-zero dis-
tinct minors of order 3 extractable from the Jacobian matrix. The availability of null

motion from cach CMG is also determined by these non-zero minors.

The above statements dictate that the amount of null motion available from each gim-
bal is governed by both the singularity measure and its corresponding minor. On the
other hand, the possibility of extracting null motion from each CMG is determined

only by the value of the corresponding minor.
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CHAPTER 5

KINEMATIC REDUNDANCY RESOLUTION METHODS

5.1 GENERAL SOLUTION METHODS

In this chapter, various torque-input Steering laws will be reviewed, and their per-
formance evaluated. Alternative methods of singularity avoidance will also be pro-
posed, and their behaviour likewise examined. The results of Chapter 4 will be used
extensively to evaluate and understand the performance of the different Steering laws.
It will be shown that existing singularity avoidance methods do not avoid Elliptic type

internal singularitics.

Kinematic methods of redundancy resolution require the solution of an underdeter-
mined system of linear simultaneous equations (the torque equatiori) involving the

instantaneous Jacobian matrix of the CMG system.

JO)o =z (5-1)

These methods are refered to as local, because they yield gimbal rate solutions to the
instantaneous torque request. Redundancy is also resolved instantaneously, based on
some criteria that hopefully steer the gimbal angles away from internal singular config-
urations while simultaneously satisfying the torque request, . Local methods have the

advantage that real-time implementation is readily feasible.

The general solution to (3-6) was shown in Chapter 3 to be formed from the
Moore-Penrose pseudoinverse and any homogeneous solution. This form can be fur-

ther classified into the following three categories:
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a) Pseudoinverse ( Moore-Penrose ) Method
=700 "
b) Weighted Pseudoinverse
=wUTuw uH "1

c) Pseudoinverse With Null Motion

1) Projection Matrix

8 =70 e+ y[1-WIHTI]d
ii) Null Vector

_ n—nJ)
O=J00I"z+ Y Ay

=1

(5-2)

(5-3)

(5-4)

(5-3)

To illustrate the properties of the various methods, computer simulations using the

Pyramid mounted 4-CMG system will be used.

5.1.1 Simulation Parameters To Exercise Steering Laws

To illustrate the singularity avoidance properties of the various solution methods, a

A
constant torque request along the spacecraft X-axis will be used. This direction is cho-

sen because it will force the CMG system through the Elliptic internal singularity
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which was analyzed in Chapter 4. Since the Elliptic singularity represents the worst
type of singular configuration, it can be used as a measure of the singularity avoidance
capability of the particular method used in the Steering law. Also, the torque request
1s aligned with the singular direction, which represents the worst possible combination.
It should be noted that non-degenerate Hyperbolic internal singularities can be avoided

by any of the above methods; this will be shown by computer simulation.

During the course of the computer simulations, it was found that the method used
to calculate the pscudoinverse could aflect the gimbal angle trajectories. The first meth-
od which was used, numerically evaluated the pseudoinverse using symbolic expressions
for the adjoint of the square matrix (/J7) and its determinant. This square matrix is
ideally symmetric, however, during computation it was observed that there were slight
discrepancies between the off-diagonal terms due to truncation errors. For this reason,
the dyadic form of (J J7) was uséd instea& (as in [1]) to obtain a closed form solution

for the torque producing gimbal rates. This solution is given by:

0 =L {Mlphzl+Mlpjhzl+Mljpc])
m

07 = L {-Mlipzl—Mljjzl+Mljicl}
m

0 = LM ljhzl ~Mljjaz] — Mljpjatl}
m

4——2{M2,J1421I+M3'._’l-!31|+M4|-!2‘!31'}

where M; = Jacobian minors of order 3

(},T = Torque producing gimbal rates

This approach was found to yield more accurate results than the symbolic inverse.
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The CMG dynamics were integrated at a simulation interval of 0.01 sec, unless
otherwise stated. The gimbal rates were integrated using the routine DVERK from the
IMSL library, which performs a fifth-sixth order Runge-Kutta numeric integration. A
tolerance value of 0.0001 was used. Programs were written in double precision Fortran
77. The torque request and angular momentum magnitudes were set equal t> unity (i.e.
h =1, || = 1), and no rate limits were enforced. The applied torque request vec-

tor was:

The initial gimbal angles for all simulations were each set to 0.
5.2 PSEUDOINVERSE ( MOORE-PENROSE ) METHOD

The properties of this method were discussed in detail in Chapter 3, thus will not
be repeated here. It has been shown [19] that this method can generate gimbal angle
trajectories that pass arbitrarily close to singular points in gimbal angle space, therefore

this method cannot be used by itself to avoid singular states.

From: the simulation results given in Figure 5-1 this fact can be easily seen. The
singularity measure m ( SQRT( DET(JJT)) ) nears zero as the X component angular
momentum ( HX') approaches 1.15, indicating that the CMG system is singular. The
singularity measure is non-zero as H, passes 0.85, indicating that the Hyperbolic singu-
larity analyzed in Chpater 4 is avoided. This is the method by which the degeneracy of

the Hyperbolic singularity is currently determined. The inner product of the torque
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solution ( i.c. 8, ) with the gradient of the singularity measure (GRAD.TORK_SOL ) is
also shown. Because the projection becomes negative, it is seen that the torque solution
decreases the singularity measure as the singularity is approached. From the gimbal
angle plots it is seen that gimbals #2 and #4 hardly move (the gimbal positions are
shown with respect to the mounting configuration at H, = 0, and H, = 1.15 for casy
visualization in Figure 5-2). It is seen from this figure that gimbal #2 always has mini-
mum projection in the torque direction, while the other gimbals eventually reach maxi-
mum projection in this direction. In essence gimbal #2 is “hung-up” in an anti-parallel
orientation; it has no brojcction along the requested torque direction, hence is not
used. This serves to illustrate the general property of the pseudoinverse which tends
not to move inefficiently oriented gimbals, and lecave the system in a singular configura-
tion well below the total momentum capacity (H, will reach saturation at approximate-

ly 3.2 units).

It may still be possible, however, to pass through the singularity by switching to
the rank 2 Moore-Penrose pseudoinverse algorithm described in [1] to maintain 2-axis
control while the system is singular. As long as the singular direction does not lic
along the desired torque direction, it is intuitively clear that the torque component in
the plane spanned by the singular columns of the Jacobian can be generated. Unfortu-
nately, this approach breaks down when the singular direction is colinear with the tor-

que direction. This is easily seen from the formulation of the rank 2 pseudoinverse:
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where 0[ = Torque producing gimbal rates
u = Singular direction ( normal to plane spanned by 4,5 )

Ji = Singular Jacobian column vectors

It is seen that if » and T are colinear, the second determinant in the numerator is zero,
thus no torque is possible in the requested direction. For the Elliptic singularity at
H, = 1.15, this is exactly the case; the singular direction and the torque divection are
identical, therefore’ this approach can not always be used to produce torque in the

desired direction.
5.3 WEIGHTED PSEUDOINVERSE

The pseudoinverse may also be weighted to provide additional mechanisms by
which desired performance characteristics are achieved. This is accomplished by solv-
ing:

min

1 ATy,
?Q wo

subjectto J Q =1
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The weighting matrix W must be positive definite. It is seen that the Moore-Penrose

(M-P) method is obtained by setting the weighting equal to the identity matrix 1.

The properties of this method are essentially the same as those of the M-P method
as long as W = k1 For this case, the particular solution Q,, is orthogonal to the
homogeneous solution Q,,. Otherwise, this property is not preserved, and this new sol-
ution can be expressed as a combination of the M-P inverse and a homogeneous term.
Assigning different values to the diagonal elements of W causes the participation of a
particular gimbal with lower weighting to be favored more heavily in the solution; une-
qual weighting of gimbal rates thus enforces high-authority/ low-authority partitioning
of gimbal activity. This mcthod may be used to reflect the energetics of a system
(thereby minimizing energy), which would make it a_dynamic rather than a kinematic
method. An example of this would be using the inertia matrix of a manipulator as the
weighting matrix in order to mihimize systern kinetic energy. This approach has been

used in robotic applications, however it did not offer any improvement over the M-P

inverse as far as singularity avoidance is concerned [20].

From the previous pseudoinverse simulation results, it was noted that gimbal #2
was essentially not moved. To encourage the motion of gimbal #2, a time varying
diagonal weighting matrix \.Jvas attempted. The intent was to reduce the penalty of inef-
ficiently placed gimbals, thereby hopefully encouraging their movement. Correspond-
ingly, any maximally projected gimbals were weighted with a higher cost to attenuate

their participation. The diagonal entries of the weighting matrix thus become:

w; = wy + Co{l.’_':T'II +b4r-1} i=1,..,4
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where wy = Initial weighting
Co = Multiplier

The results of this approach are shown in Figure 5-3. The parameters that were used
are w, = 1, G, = 2. The effect of the weighting matrix on the determinant of the
square matrix J W—'J7 (SQJ DET), is seen not to prevent it from becoming singular.
It is seen that the singularity at H, = 1.15 was still not avoided. From the weighting
plots it is seen (as expected) that gimbal #2 always has the smallest cost, while the cost
on gimbals #1 and #3 continuously increased as they approached maximum projection
on the torque direcﬁon. Comparing the gimbal angle plots of this approach with thoée
of the M-P inverse, it seen that they are essentially identical. Although this method
may hold promise in re-partitioning the use of different gimbals if ofl-diagonal terms
were used in the weighting matrix, it has been shown to be ineﬂ’ecti\"e in avoiding sin-
gular states. Since this solution can be written in terms of the M-P inverse and an

appropriately chosen homogeneous solution, it will not be pursued further.
5.4 PSEUDOINVERSE WITH NULL MOTICN

We have seen that the pseudoinverse solution by itself does not provide any singu-
larity avoidance for Elliptic singularities. Since the homogeneous solution has no pro-
jection on the row space of (3-6), i.e. produces no torque, it can be used to shape the
complete solution and hopefully provide a means of singularity avoidance. The steer-
ing problem then reduces to picking a vector in the null-space of the Jacobian such
that all internal singularities are avoided. The addition of null motion thus is to steer

the gimbal angle trajectory to an alternative non-singular configuration corresponding
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to the singular momentum state. In Chapter 4, it was shown that not all neighbor-
hoods of internal singularities can be escaped using null motion to reconfligure the
momentum linkage; this method is effective only as long as the gimbal angle trajectory
does not approach neighborhoods of Elliptic or degenerate Hyperbolic singularities. It
will be demonstrated that the addition of any class of null motion does not completely

address the singularity avoidance problem.

5.4.1 Projection Matrix

Onc way of obtaining a vector in the null-space of the Jacobian is by using an
opcrator that projects an arbitrary n-vector into its null-space. One such operator, the

Projection matrix, is given by:

P=1-JgsH s

For a singularity avoidance control law, all that remains is to pick the projection
vector yd as in (5-4). In [19], it is shown that arbitrary gimbal angle trajectories
~which do not pass through a singular configuration may be generated using this meth-
od by an appropriate choice of y 4 . This result requires that one choose a priori a sin-
gularity free gimbal angle trajectory, and also select a projection vector that can
recover or generate this trajectory. Normally, such a trajectory is not known before-

hand; the generation of such a trajectory becomes the design objective.

The usual approach to singularity avoidance is to choose this projection vector

such that a scalar performance index (such as the singularity measure), is “optimized”.
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Onc way of accomplishing this is to maximize a scalar performance criterion p (@) by

choosing d as in [16]:

dp (9)

dl = £ =0 5.6
d a0 (5-6)
These types of procedures are usually refered to as gradient methods. Since, p = 47 Q,

we use (5-4) to obtain:
p=dIUIN e+ yd [L-JUINTI]d (5-7)

The second term in the right-hand side is non-negative because the projection matrix is
positive semidefinite [2], and contributes to an increase in the value of p. One way of
choosing the scalar y 1s to maximize p (4 = 0) subject to upper bounds on gimbal rates
[16]. The singularity measure, m was chosen as the performance index. It should be
noted, however, that the singularity measure is not a monotonic function of the gimbal
angles, thus instantancously maximizing ihis function can lead to local extrema of the
measure. It is shown in [15] that this method does not avoid singular states because
the system is controlled to stay at the local maximum, and there exist trajectories of
local maxima which nearly extend to singular points. Another way of expressing this is
that the right hand side of (§-7) can be negative and may dominate p, thus resulting in
a net decrease in the value of p. This phenomenon will be examined further in the next

section.

It is also mentioned in [11] (without any particular references) that gradient meth-

ods using a performance index



|
P=—7
m

have been tried unsuccessfully by several authors. It was suggested that the recason for
thi$’ was that the determinant was not sufficiently sensitive to allow appropriate null
motion be added in time to avoid close encounters with internal singularities.

5.4.1.1 Indirect Avoidance Control Law

Another way of choosing the projection vector can also be found in [11]. This
mcthod, called the indirect avoidance law, relies on the observation that internal singu-
larities can be avoided in most cases by merely steering towards the Saturation singu-
larity associated with the instantancous torque request. This method was successfull in
avoiding internal singularities for a 6-Pyramid CMG system. Since we have scen in our
simulations that gimbal #2 was persistently “hanging-up” antiparallel to the torque
request for the M-P inverse, this method seems to provide a means of encouraging this

gimbal to move. The projection vector for this approach is defined as:

4=A0=01‘01_Q

RA



. ;\ o.n
where 0" = tan” ' /l\
hIO.l/l\
i o= unit( 1)
2 = uni(PAB)
3 = unit(A9)
%= unii( QP)
P = Projection matrix

The indirect avoidance law was implemented in simulations of the 4-CMG system with-
out limiting the amount of null motion. The projection matrix was numerically calcu-
lated using the symbolic adjoint of (J/J7). The simulation interval was 0.005 scc., with
a final time of 1.18 sec. The results of the simulation are shown in Figure 5-4. It is
seen that the Elliptic singularity is again not avoided since m still approaches zero at
H, = 1.15. The projection of the null vectoi, ., on the gradient is seen to go to zero
near the singularity, thereby rendering any nuil motion ineffective in avoiding it. From
the gimbal angle plots, it is observed that both gimbals #2 and #4 move slightly, but

not sufficiently to “un-lock” gimbal #2.

5.4.2 Null Vector

The Jacobian null-space basis vectors can also be used to form the null-vector.
With this approach, only the scalar weighting factors remain to be determined. It
should be noted that as the redundancy of the system incrcases, the dimension of the
null-space also increases, which complicates the choice of these factors. For the case of
four CMGs and a nonsingular Jacobian matrix, the null-space dimension is one, thus

null motion is restricted to a line. All that remains in this case is to choose the magni-
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tude and direction in which null motion is applied by using a single scale factor. The

homogeneous solution can then be written as:

|-
X
]
~
[R5

Onc method of choosing the scale factor for a 4-Pyramid CMG system is given in
[15]. This approach, called the maximum gain method, involves steering the null
motion towards the point of maximum gain, m?. This approach is global in the sen: :
that the direction of null motion is oriented towards the point of global maximum gain
in gimbal angle space, as obtained from a look-up table which is generated by off-line
calculation and reduced to a small size by taking advantage of the symmetry of this
particular configuration. This method also requires ...e location of all Elliptic type
internal singularities to be determined in order that gimbal angle trajectories always
avoid the neighborhoods of these singularities. This is accomplished by modifyiﬁg the

gimbal rates.
The null vector strategy was applied in two different singularity avoidance laws.

Both of thesec methods exploit the relationship derived in Chapter 4 between the null-

space of the Jacobian and the singularity measure (or gain). These methods are:

a) Gradient Method
b) Inverse Gain Method
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5.4.2.1

Gradient Method

The singularity mecasure m, was chosen as the performance index to be maximized.

Using (5-5), the time rate of change of the performance index becomes:

p=VgmeJ"JIN "2+ AVgmey (5-8)

The sign of / is determined from the second term of (5-8). The gradicent of the singular-

ity measure was computed symbolically using MACSYMA (Macsyma Manual).

To complete the céntrol law design, an appropriate weighting factor 2 must be

chosen. To do this, we must define the relevant parameters that may be advantageous

to use in computing 2 . Some useful parameters are:

%. We know /Z has to be at least proportional to % to cancel the magnitude
of the null-vector. Otherwise, the effectiveness of A will be reduced as the sys-
tem approaches a singularity.

Power of singularity measure. The amount of null motion is related to distance
from singularity. For example, we could set 4 = 712- This is the usual
approach in other gradient methods.

Vogme _9_,, . The amount of null motion is made proportional to the projection of
the torque solution on the gradient of the performance index. It was observed
earlier that this term can become negative, and thus reduce the value of p. By

making the amount of null motion proportional to this term, this effect can

potentially be taken into account and cancelled; for example, 4 could be made

9N



proportional to this term whenever it is negative. This scaling has not been uti-
lized in other gradient methods.

. VQ m ey . The amount of null motion is made proportional to the projcction of
the null-vector on the gradient of the performance index. This term expresses
the possibility of affecting the index through null motion; if this term is small,

the effectiveness of null motion is reduced, regardless of how it is determined.

Taking into account all of the above criteria, the gradient method is formulated

using a weighting factor that includes a a contribution from each paramecter:

Vomey | VgmeJT I 'z
b= —= — (5-9)
m

This approach is somewhat unique; of the gradient methods published in the literature

[11], [15], all lack at least one of the four criteria mentioned above.

Simulation results for this method are shown in Figure 5-5. It is seen that the
Elliptic singularity is still not avoided. The reason becomes evident if we look at the
plots of the null-constant A (NULL CONSTNT) , and the gradient projection on the
null-vector (GRAD.NULL_VEC). It is seen that the null-constant remains essentially
zero up to the singularity. This is because the null-vector has very small or no rrojec-
tion on the gradient at this period, thus no null motion was added. This simulation
then is identical to using the M-P inverse by itself. Looking at the gimbal angle plots,

we see that gimbal #2 does not move, just as in the M-P inverse method.
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The Moore-Penrose pscudoinverse is actually scen in this case tc directly gencrate
a gimbal angle trajectory of locally extreme m when commanding momentum tn
incrcase from zero along the X-axis (as shown in this example). This illustrates a gener-
al defect of locally-optimal procedures which 'was mentioned previously; they tend to
lock into trajectorics of locally maximum gain which can actually lead into singular

configurations.

To overcome this shortcoming, another form of the gradient was tried, where the

null-on-gradient projection was replaced by its sign. This is given by:

sign(Vomev Y| VomeJT (1IN 11
A= (Vgr-2)| Q2 (5-10)
m

Simulation results for this approach are shown in Figure 5-6. It is seen that the singu-
larity is still not avoided. At the end of the simulation, the system is actually trapped in
a near-singular configuration about the Elliptic singularity; it does not attain the exact
singular configuration, as seen from the very small (but still finite) value of m. The
null-constant in this casc is almost always non-zero and the null projection onto the
gradient also becomes substantially non-zero, indicating that a different gimbal angle
trajectory was generated here than the previous gradient method. In this case, the null
motion (with magnitude now governed by the torque projection and singularity meas-
ure) is added increasingly to the solution as the torque request pushes the system
toward the singular state. Looking at the gimbal angle trajectories, it is seen that gim-
bal #2 moves about 15° during the period when the null-projection is non-zero; howev-
er this is not suflicient to avoid the singular state, and it is pulled back again again by

the torque request. The gimbal angle plots for this example also illustrate how gimbal

Q1



#4 has to correspondingly move in order to balance off-axis torques and “unlock” gim-
bal #2.

5.4.2.2 Inverse Gain Method

The previous examples indicated that dynamically ‘manipulating the dircction of
null motion to instantaneously maximize controllability has been ineffective in avoiding
singularities. This is due to the tendency of tangent-based methods to lock onto locally
optimal gimbal angle trajectories that can lead toward singularities, as stated earlier.
Based on this observation, a non-directional approach to singularity avoidance was
tried, where the direction of added null motion was not speciﬁcd. null motion was
introduced in whatever direction the positive null.vector pointed; no sign factor was
imposed. This was accomplished by choosing the weighting factor to include only a

contribution inversely proportional to the sixth power of the singularity measure:

The recason for this choice is detailed in the following argument. It was shown in
Chapter 4 that the null-vector, v can be written as:

A

yv=myv
where V is the unit vector in the direction of the null-vector. As discussed for the gradi-
ent method, the magnitude of the null vector is cancelled by dividing it with m . null
motion is thus added in the positive null direction, and the amount is proportional to
1

— Although this approach has the advantage that it does not constrain null motion

to always increase the singularity measure (this can avoid local optimum lockup, as

QN
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encountered in the gradient method), this approach has two potential shortcemings.

These are:

a)

b)

null mntion is added without regard to whether the performance index can be

instantancously aflected by riull motion. The indicator for this situation is:
Ve mey =0

Even though null motion may not instantancously increase the singularity mea-
surc (as dictated by the above situation), null rates of arbitrary magnitude may
still be calculated and added to the solution.

Since the direction of null motion is not prescribed, it may actually decrease the
magnitude of the singularity measure; thus inadvertantly stecring towards a sin-

gularity.

IFrom simulations using different exponents on m, it was noticed that increasing the

cxponent in the control law tended to increase the minimum value of m encountered

during the simulation, thus reducing peak torque producing gimbal rates. This can be

explained by the fact that increasing the exponent “flattens out” the m trajectory when

m < 1. The effcct is 1o anticipate the singularity earlier than with the control laws

using smaller exponents; the net amount of null motion is thus also greater and begins

to be introduced at an earlier time.

Simulation results applying the inverse gain methnd are shown in Figures 5-7

through 5-9. The magnitude of the null-constant was limited to 15. Looking at the

plots of Hy and m in Figure 5-7, this method is evidently seen to avoid the singularity.
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The measure m is seen to dip somewhat as the singularity is approached, but definitely
remains non-zero; H, is seen to continuously increase until the end of the simulation.
The reason for singularity avoidance may indeed be that this method does not con-
strain null motion to always increase the singularity measure, thereby allowing the gim-
bal angle trajectory to depart from local m-extrema, as seen from the non-zero values
of the null projection encountered during the simulation. The effect of the torque and
null projeciions on the singularity measure is clearly seen in the corresponding plots;
for 1t < 0.6 sec. , the torque solution increases the system-gain, whereas the null projec-
tion decreases it. This is clearly evident in the slight dip in the plot of singularity meas-
ure over this time period. It is also seen that the null projection is very small near the
singularity, and actually remains at zero near the end of the run (after about 2.4 sec.),
when m has reached its maximum. A physical interpretation_of this maximum m, in

terms of the mechanical analog, suggests that the linkage may not be instantaneously
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reconfigured by null motion to a locally larger value of m; this determines the local
extrema of the singularity measure (in the absence of a torque request), hence yields a
zero gradient projection on the null-vector From the gimbal angle plots, it is seen that
gimbal #2 is eventually rotated completely towards the the torque direction. Gimbal #4
also moves to compensate for the off-axis torque errors introduced by the motion of
gimbal #2 while it is being reconfigured from the “hung-up” negative projection orien-

tationp.

In Figure 5-8, both the torque and non-torque producing gimbal rates arc shown.
Large spikes are evident in both rates near the singularity. The largest magnitude of the
applied null motion occurs at these spikes, where the null-projection is very small, thus
rendering these motions incflective in aflecting the singularity measure. These large
null-rates arc duc to the correspondingly iarge value of the null consiant and small (but
non-zero) valued minors ihat generate these motions. FFrom the minor plots presented
in Figure 5-9, it is clearly seen that the singularity is avoided, since only minors #2 and
#4 approach zero near 1 = 1.15 sec. Due to the large gimbal rates, this method cannot

be considered a viable candidate for a Steering law.

Because of the substantial null motion projection onto the m-gradient scen in Fig-
ure 5-7, it is seen that the gimbal angle trajectory generated by this approach is not
locally m-extreme. In addition, as noted above, this method added most of the null
motion when the system was already nearly singular. In order to properly avoid the
singular state, it would have probably becn desirable to add null motion earlier in the
trajectory, when m > 1 and the system was far-removed [rom problematic orien-

tations. A sccond form of the inverse gain was thus formulated to accomplish this
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strategy. The weighting factor is now chosen to also provide substantial null motion at

high-m configurations:

m ifm>1

m

Simulation results using this “sccond inverse gain method” are shown in Figures
5-10 through 5-12. The magnitude of the null-constant was limited to A_,, = 3. From
Figurc 5-10, it is scen thac this method is able to avoid the singularity. Comparing
Figurc 3-10 to Figure 5-7 , it is scen that the singularity measure has a larger magni-
tudc throughout the simulation for this updated method, implving a wider margin of
singularity avoidance, hence smaller torque producing gimbal rates. The null projection
appcars very different for this method, which indicates that a diflerent gimbal trajectory
was gencrated. This is evident by looking at the corresponding gimbal angle plots,
where it is obvious that gimbals #1 and #3 followed hmrkedly different trajectories than
encountercd in the previous test (Figure 5-7). Because the singularity was better

avoided, gimbal #2 is seccn to have a much smoother trajectory.

Both the torque and non-torque producing gimbal rates are shown in Figure 5-11.
Comparing thesc plots with those in Figure 5-8, it is clearly evident that the gimbal
rates generated by the second form are much smaller than those from the first form.
Most importantly, no spikes are apparent in the gimbal rates calculated using the sec-
ond method. Looking at the null rates, it is scen that they no longer peak at large val-
ucs ncar the singularity. These rates are less than half as large as the corresponding

null rates calculated by the first form. From the minor plots presented in Figure 5-12,
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it seen that only minor #2 is zero at 1 = 1.15 sec. Comparing this figure to Figure 5-9,
the differences in the two plots are clearly seen. It is readily noted that two minors
were zero near the sigularity for the first form, whereas only one minor was zero for

the second form, again implying a much wider avoidance of the singularity.

5.4.3 Non-Constant Torque Request With Second Inverse Gain Method

To illustrate the adverse property of the inverse gain method (i.e. the arbitrary
direction of null motion may actually steer the system toward a cingularity), a non-con-
stant torque request was used. The torque trajectory was defined such that the
momentum trajectory shown in Figure 5-13 was followed with unit torque magnitude.
In terms of the mechanical analog, the end effector moved along the prescribed path

with unit velocity.
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To simulate this maneuver, the torque request was defined in the following man-

ner:

[ 0.7071
=1 07071 Jor t < 0.83 sec.
0
—0.7071
T = L 0.7071 for 0.83 sec. < t < 1.626 sec.
0

Simulation results for this maneuver are shown in Figures 5-14 through 5-16. The
magnitude of the null-constant was limited to 3. From Figure 5-14, it is clearly seen
that the system becomes singular just before the torque direction is switched (at ¢ =
0.83 sec.). From this figure, it is observed that the null projection remained negative

until the switch time was reached, thus the effect of adding null motion was to reduce

the singularity measure. From the torque projection plot, we see that torque produc-
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ing gimbal motion docs not contribute appreciably to the singularity measure. A large
spike at the switch time is also observed in the torque projection plot, indicating a loss
of control along the commanded torque direction. The reduction in m now is almost

entirely due to the addition of of null motion.

Gimbal angles are given in Figure 5-14, and both torque and non-torque produc-
ing gimbal rates arc shown in Figure 5-15. Large spikes are cvident in the torque pro-
ducing rates at the switch time, as would be expected, since the system is nearly
singular in the direction commanded after the switch. From the null motion plots, it is
seen that the magnitude of the null motion is zero at the switch point, since all Jacobi-

an minors are singular. This is clearly scen in Figure 5-16.

5.5 CONCLUSION

We have shown that the inverse gain method is able to avoid the Elliptic singulari-
ty. It has also been shown that the performance results of the second form of this
method (which applies substantial null motion at high m states) are superior to the first
form (which applies most null motion when the magnitude of m drops significantly).
The calculated null-rates, however, are still high for the second form. This fcature,
when combined with the property that the non-directional applied null motion may
actually steer the system to a singularity (as was demonstrated in the non-constant
requested torque simulation), make this approach inappropriate for application as a

generic Steering law.
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CHAPTER 6

REDUNDANCY RESOLUTION VIA THE SINGULARITY ROBUST
INVERSE (SR-INVERSE)

6.1 INTRODUCTION TO THE SR-INVERSE

The results of Chapter 5 indicated that real-time avoidance of internal Elliptic type
singularitics cannot be adequately accomplished using any of the available Steering
laws or any of the proposed methods. It was seen that the torque solution produced by
the Moore-Penrose pscudoinverse eventually drives or restricts the system to a singular
configuration. Since solving the torque equation exactly was demonstrated to drive the
system directly to a singularity, onc might surmize that il small torque errors arc
allowed, it may become possible to avoid these types of singularities. This strategy
presumes that the Outer controller (see Chapter 3) is structured to accomodate crrors
in requested torque during attitude mancuvers. These crrors can be considered to be

disturbance torques, and compensated through appropriate feedback.

Onc mcthod of accomplishing this is provided by the Singularity Robust inverse
(SR-inverse), proposed for manipulators in [21] as an alternative to the Moore-Penrose
pscudoinverse. Using this method, an approximate output torque close to the desired
torque can be generated, even when the Jacobian matrix is singular. Accuracy of solv-
ing the torque cquation is traded with feasibility of the solution (i.c. gimbal rates
remain finite and bounded in exchange for the build up of torque error necar a singular

configuration).

The SR-inverse is obtained by solving the following minimization problem:
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[« — J§
where e = z "]

W=

Setting 11", equal to the identity matrix, (W, = 1), and ¥, = Kk 1, the SR-inverse is

obtained:

J =0T + k1) (6-1)

The parFicular solution can be written in terms of the SR-inverse as:
6 =7 (T + k1) 'z (6-2)
6.2 PROPERTIES OF SR-INVERSE
The particular solution obtained using this method is still orthogonal to the homo-

gencous solution. This is easily shown by evaluating the inner product of the two sol-

utions:

The above relation holds, since Jy = 0 by definition of the null-vector. The robust-

ness property of this method generates feasible solutions to the torque equation cven at
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or in the neighborhood of singular points. At singular points, the pscudoinverse
becomes singular, (i.e. results in infinite rate solution), whereas the SR-inverse still
returns a finite rate sofution. It is seen that the pseudoinverse is identical to the SR-in-
verse with k = 0. The scalar weighting factor k expresses the tradeofl between exact-
ness and feasibility of solution. For small values of k, a small error is introduccd in the
torque solution. Small values of k also yield large rate magnitudes in the neighborhood
of singular states. As k grows, however, the torque error calculated ncar a singular

state increases and the calculated gimbal rates decline.

Ti. SR-inverse approach, however, is not without shortcomings. The most crucial
problem is that if the system does become singular using this method, and a torque is
requested along the singular direction, the SR-inverse is unable to generate non-zcro
torque producing gimbal rates. The system could then be trapped in the singular state.
This property is shown by the Singular Value Decomomposition of the SR-inverse,

which for the 4-CMG system is:

Jt=vziuT (6-2)
[ 0, 0 0 ]
a? + Kk %2 0
where X7 = 0 o1+ 93
0 0 o +kK
0 0 o |

U = Marrix (3 % 3) of left singular vectors ( spar range space of J )
V = Mairix (4 x 4) of right singular vectors ( span domain space of J)

Using (6-3), the particular solution (6-2) can be written as:
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b= VZ'UTz (6-4)

If the torque request 7 lics along one of the column vectors of U, the gimbal rates
computed by the SR-inverse are given by:
0y

bp = ———y (6-5)
o; + K

From (6-5), it is seen that if one of the singular values, o, is zero (i.c. system is singu-
lar) and the torque request is along the left singular vector, y, , corresponding to this
singular value, the output becomes zero. In this casc, the gimbals will not move, thus
trapping the system in the singular configuration. Unless this singularity allows escape
by null motion (as discussed in Chapter 4), there is no possibility of removing the sys-

tem [rom the singular configuration.

6.3 DETERMINATION OF WEIGHTING FACTOR

To overcome the problem of conflicting requirements on the value of the weighting
factor, it is made to vary with the nearness to singularities. In this way, k will have a
large value near singularities, and small or zero value away (rom singularities. The

weighting factor is thus chosen in the following manner:
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Ir m>mep THEN

K=20
ELSE
i 5 ok THEN
m max .
K
K = "—‘:
ELSE
K = Kmax

where mcgp = Critical value of m
Ko

Kmax = Maximum value of weighting factor

Constant

In this fashion, the weighting factor is adjusted according to distance from singularity
by inversely scaling with the singularity measure. The reason for the applicd maximum
value is to prevent the determinant of the square Jacobian matrix (JJ7 + k1) from
becoming too large; in this case, the torque producing rates would correspondingly
grow very small, which would require an extended period of time for the gimbal angles
to change. By imposing an upper limit, the response of the system is essentially speed-

ed-up.

6.4 SINGULARITY AVOIDANCE PROPERTIES OF SR-INVERSE

In order to examine the singularity avoidance properties of the SR-inverse, simu-
lations similar to those in Chapter § have been carried out. The SR-inverse is com-
puted numerically, using the symbolic inverse of the square Jacobian matrix. Results

from four different simulations are presented in this section; these are:
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a) SR-Inverse

b) SR-Inverse With First Gradient Method

¢) SR-Inverse With Second Gradient Method

d) SR-Inverse With Second Inverse Gain Method

All simulations used the same parameters as given in Chpater 5. The critical value of
the singularity measurc was chosen as m., = 1.0 , with constant xk, = 0.1. The plot-
ted percent torque error is determined from the difference between requested input and

CMG output torque, i.c.:

% Torque Error = 100(z — .19,,)

where Q,, is determined from (6-2).

6.4.1 SR-Inverse

The results of this simulation are shown in Figure 6-2. The maximum allowed
value of the weighting constant was k,,, = 0.2. The plots clearly show that the Ellip-
tic singularity is not avoided. It is evident that even though m — 0, the determinant of
the square Jacobian matrix (SQJ DET) remains nonzero. This illustrates a fundamen-
tal property of the SR-inverse; gimbal rates can still be computed when the Jacobian
matrix is singular. The value of k (SR_INV GAIN) is noted to increase as the singu-
larity is approached in order to allow the square Jacobian matrix to be inverted (sce
(6-2)). From the gimbal angle plots, it is seen that gimbals #2 and #4 remain station-
ary, as was also the case for the Moore-Penrose pseudoinverse method. This result

indicates that the SR-inverse similarly cannot avoid Elliptic type singularities without
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assistance, essentially because the primary difference between the SR and the M-P
inverse is in the magnitude of the particular solution. The “direction” is still the same
(i.e. orthogonal to null-space), as illustrated in Figure 6-1, for a one-dimensional row

and null space.

‘/:/_Jl_ MOORE-PENROSE PSEUDOINVERSE
1 > B, = JTII) s
: SR-INVERSE — :

. - |

8, = JT(JIT + k1) 'z N [

Figure 6-1. Solution Space Visualization

—> 0

R

The complete torque equation solution is spanned by the row and null space. The
SR-inverse as well as the M-P inverse solutions lie in the row space. From Figure 6-1,
it is seen that the only difference between the two is the length (or magnitude) of the
torque producing gimbal rates. Because the SR-inverse tends to produce smaller gimbal
rates near singular regions, it allows more time for the application of null motion, thus
introduction of null motion may prove more effective, as will be demonstrated below.

Since the primary effect of the SR-inverse is along the direction of commanded torque,
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the SR-inverse applied without null motion is indeed expected to have analogous singu-

larity avoidance properties to the M-P inverse, as was demonstrated in Iigure 6-2.

6.4.2 SR-Inverse With First Gradient Method

The simulation results for this method are shown in Figurc 6-3. The weighting
constant was limited at «,,,, = 0.2 . From Figure 6-3, it is seen that the singularity is
again not avoided. The rcason for this is the same as that given in Chapter 5 for the
M-P inverse with this gradient mcthod; essentially no null motion was added because
the gimbal angle trajectory remained at a local m-extremum. From Figure 6-3 it is secen
that gimbals #2 and #4 do not move, allowing the system to become singular at

H, = 1.15.

6.4.3 SR-Inverse With Second Gradient Method

Simulation results for this approach are shown in Figures 6-4 through 6-6 . The
weighting factor was limited at Kms = 3, although this limit was not neccessary in this
case, since k remained under 0.28, as can be seen from Figure 6-4. Since the singularity
measure remains well above zero in this test, the singularity has been avoided. From
the momentum component plots (HX, HY, HZ), it is seen that the momentum trajcc-
tory is diverted about the singularity, causing about 70% torque error in the X-direc-
tion, and considerably smallcr errors about the ¥ and Z axes. The efTect of null motion
was to alter the Jacobian matrix, thus enabling the SR-inverse to generate finite ofl-
axis torque errors that aided in skirting the singularity. Singularity avoidance is accom-

plished by not forcing the system to go directly through the singular momentum state.
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A complimentary reason for the avoidance is clear if we compare the X-momentum
plots of this approach with those of the inverse gain method in Chapter 5
(Figure 5-10), where one can see that the SR-inverse solution lags the inverse gain sol-
ution. At 1 = 3 sec., the difference in momentum between the two methods is approxi-
mately 0.6 units. This illustrates the cxplanation given earlier; i.e. the response is
slowed down sufficiently to allow more time for null motion to act. Given enough time
for reconfiguration by null motion at each simulation interval, the singularity measure
could approach its global maximum. In this way, the gimbal angles are free to follow a
globally maximum singularity mecasure trajectory, as opposed to a locally maximum
trajectory that is generated by gradient methods. Following a globally maximum trajec-

tory provides a superior means of accomplishing singularity avoidance.

From Figure 6-3, it is scen that both gimbals #2 and #4 arc moved in this case,
allowing gimbal #2 to be “unlocked” from its anti-parallel orientation. From the minor
plots, it is scen that only one minor (Af;) becomes singular at 1 = 1.15 sec. Looking at
Figure 6-6, it is seen that both torque and non-torque producing rates have reasonable
magnitudes (not exceeding 1.8 rad/sec); by avoiding the singu]anty,' the requirement for

small gimbal rates is implicitly met.

6.4.4 SR-Inverse With Second Inverse Gain Method

Simulation results for this method are shown in Figures 6-7 through 6-9 . The null-
constant ( NULL CONSTANT ) was limited to 2, = 3, in order to limit the magni-
tude of null-gimbal rates. The maximum allowed SR weighting factor was k,,, = 1.
Enforcing this maximum value was again not necessary in this case, as can be seen

from the SR-inverse gain plot in Figure 6-7. The singularity measure plot, also on this
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page, indicates that the singularity is again avoided. The maximum torque error intro-
duced via the SR-inverse is approximately 25% in the X-direction, when the system is
ncar the singularity. Comparing results obtained in Chapter 5 with the second inverse
gain method using the M-P inverse (Figure 5-10), it is observed that both the null-con-
stant and torque solution projection are smaller for the SR-inverse approach. Because
of the torque errors introduced by the SR-inverse in the singular region, however, a lag
of 0.2 units ic evident in the X-momentum plot for the SR-inverse. The gimbal angles
and minors are shown in Figure 6-8. Near the singular momentum state (

H, = 1.15, 1 = 1.15sec.), it is scen that none of the minors are singular, i.e. are zero.

Comparing the gimbal rates from this approach, shown in Figure 6-9, to those
analogously obtained from the M-P inverse, the peak torque producing gimbal rates
calculated by the SR method are scen to be approximately 0.4 rad;sec smaller. The null

rates, however, are essentially the same.

6.5 NON CONSTANT TORQUE REQUEST SIMULATION

In this simulation, the same non-constant torque request used in Chapter 5 for the
M-P inversc with the sccond inverse gain method is applied to the SR-inverse equipped
with the same null algorithm. Simulation results are shown in Figures 6-10 through
6-12 . The maximum allowed SR weighting factor was k,,, = 0.2, while the maximum
value of the null-constant was /., = 3. From Figure 6-10, it is seen that the system
is driven to a singular state, even though the SR-inverse is used. It is also obscrved
that at the singularity any null motion is ineffective since the null projection there is

zero. The reason for this is that the null vector is identically zero at this singularity,
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sincc all Jacobian minors are zero (see Figure 6-11). The momentum trajectory and
torque errors are shown in Figure 6-10, from which it is seen that substantial torque
errors are gencrated by the SR approach. Comparing Figures 6-10 and 5-14, we
observe that the system remains singular for a longer period using the SR method,
whereas the torque projection spike in Figure 5-14 is at least an order magnitude larger
than the corresponding spike for the SR method, creating proportionally larger torque
producing gimbal rates. The diflference in momentum trajectory followed by both meth-

ods is clearly evident from this comparison.

From Figure 6-11, we observe that all minors are simultaneously zero for a sub-
stantial period of time. Comparing the minor plots in this figure to those in
Figure 5-16, it is seen that the minor trajectories for both methods are essentially the
samc up to the switch time (0.83 sec.), and very diflerent afterwards. A similar effect is

seen when comparing gimbal angle trajectories in Figures 6-11, 5-14.

The superior performance of the SR approach is evident from the results in
Figure 6-12. From this figure, it is seen that the peak torque producing gimbal rates do
not exceed 1.4 rad/sec, as compared to 7.4 rad/sec for the M-P based method in
Figure 5-15. In addition, the SR-inverse is not seen to generate large spikes in gimbal
rates that were noted in the M-P results. The null-rates for the SR method are signif-
icantly smaller, as also seen in these plots. This is due to the different gimbal angle tra-
jectory that the M-P method followed after the switch time, which resulted in a higher
singularity measure state, as well as higher values for the minors. In conclusion, the
superior performance of the SR based method over the corresponding M-P based

approach is clearly evident from this simulation. As discussed before, however, if the
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requested torque dircction at the switch time was along the singular direction corre-
sponding to the singular momentum state, the SR approach would not have been able
to extract the system from the singular configuration, since zero toique producing rates

arc generated.

6.6 CONCLUSION

It has been shown that the SR-inverse is able to avoid the Elliptic singularity at
H, = 1.15 only when equipped with an appropriate null motion algorithm. The supe-
rior performance of this method has also been shown for a case requiring a non-con-
stant torque. The general singularity avoidance property of the SR-inverse has also
been discussed, and it has been shown that the prime mechanism by which this method
avoids singularities is by slowing the system response to an input torque request in the
ncighborhood of a singularity, allowing more time for null motion to be applied. In
terms of the mechanical analog, the end-effector velocity is reduced before reaching the
singularity, allowing a longer interval over which null motion can be performed. The
SR-inverse can also introduce finite torque errors orthogonal to the requested torque
dircction; although these errors aid in skirting the singular region, the slow-down along

the commanded axis, coupled with null motion, provides the most significant eflect.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the problem of spacccraft attitude control using redundant single
gimbal CMGs has been investigated. Specifically, the singularity problems associated
with a 4-CMG system has been examined, in addition to the formulation of a gencral
torque based Stecring law for redundancy resolution. A Steering law using ithe SR-in-
verse with appropriate null motion has been shown to provide a promising approach to
singularity avoidance; by not restricting the system to produce the exact torgque

request, singular CMG configurations are avoided.

In Chapter 2, single gimbal CMG fundamentals were reviewed, and the mechanical
_analog to the CMG system, the robotic manipulator, was proposed. It was shown that
both systems possess similar difficulties with singular configurations, and that results
from one area may be applicable to the other. A simple method of generating an

orthogonal null-space basis to the Jacobian matrix was also presented.

In Chapter 3, the control architecture for spacecraft equipped with single gimbal
CMGs was reviewed. A dual-level control structure using an Outer and Inner Control
loop was discussed, as well as the desirability of the Outer control loop to accomodate

occasional errors in torque delivered by the CMG system.

In Chapter 4, the singular states of single gimbal CMGs were classified, and a test
for null .notion near a singularity was presented. Examples of the different types of sin-
gularities were presented for both the CMG system and a planar manipulator. The

singularity measure and its relationship to the null-space of the Jacobian was exam-
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incd. It was shown that the magnitude of the non-singular Jacobian null-space vector

is identical to the singularity measure.

In Chapter §, various torque-input Steering laws were reviewed, and alternative
singularity avoidance mcthods based on the Moorc-Penrose pscudoinverse were pre-
sented. It was shown that existing singularity avoidance methods do not avoid EHip-
tic-type internal singularities. Although the inverse gain method was shown to
generally avoid this type of singularity, it may nonetheless still drive the system toward
a singular configuration due to its nondircctional nature, as was demonstrated. The
results of this chapter indicated that reliable real-time avoidance of internal Elliptic-
type singularitics cannot be accomplished using any of the available Steering laws or

any of the proposed methods.

In Chapter 6, the SR-inverse was introduced as an alternative to the Moore-Pen-
rose pseudoinverse. It was shown that this inverse can avoid Elliptic-type internal sin-
gularities when equipped with an appropriate null motion algorithm. The superior
performance of this method was demonstrated for a non-constant torque request; its
singularity avoidance chara.cteristics surpassed those presented in Chapter 5, and gim-
bal rates calculated using this method were generally smaller. It was noted, however,
that if the system was driven to a singular state using this approach, and a torque is
requested along the singular direction, the SR-inverse can only generate zero torque
producing gimbal rates, thus trapping the system in ihe singular state unless the singu-

larity is escapable by null motion.
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For a complectely general SR-inverse based Steering law, the form of the null-algor-
ithm needs to be investigated further, since the performance of this approach is directly
rclated to the specific form of null-algorithm used in conjunction with the SR-inverse.
To overcome the problem of being trapped in a singular state when a torque along the
singular direction is requested, momentary torque errors could be introduced such that
the SR-inverse is able to drive the system out of the singular state. The projection of
the null-vector onto the gradient of the singularity measure may prove uscful in resolv-
g the nature (i.e. escapable'non-degenerate or unescapable/degenerate) of Hyperbolic

singularitics.
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