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SCALAR CURVATURE LOWER BOUND UNDER INTEGRAL

CONVERGENCE

YIQI HUANG AND MAN-CHUN LEE

Abstract. In this work, we consider sequences of C2 metrics which con-
verges to a C2 metric in C0 sense. We show that if the scalar curvature of
the sequence is almost non-negative in the integral sense, then the limiting
metric has scalar curvature lower bound in point-wise sense.

1. Introduction

In view of compactness geometry, it is important to understand notions of
curvature lower bounds in spaces with low regularity. It is natural to ask if
C0 structure is sufficient to define the scalar curvature lower bound as op-
posed to the theory of Ricci curvature and sectional curvature. In [4], Gromov
considered the stability problems and proved

Theorem 1.1 (Gromov). Let M be a (possibly open) smooth manifold and κ
is a continuous function. Consider a sequence of C2 Riemannian metrics gi
on M that converges to a C2 Riemannian metric g0 in C0

loc. Assume that for
all i, the scalar curvature of gi satisfies R(gi) ≥ κ on M. Then R(g0) ≥ κ on
M .

In [2], Bamler gave an alternative proof of Gromov’s result using Ricci flow
and a uniqueness result of Koch and Lamm [7]. In [3], Burkhardt-Guim gener-
alized Bamler’s result to the case when g0 is only C0. In this case, She is able
to give an alternative definition (the β-weak sense) of lower bound on scalar
curvature of C0 metric on closed manifolds. The preservation of scalar curva-
ture’s lower bound had played a important role in this works. More recently
in [6], Jiang, Sheng and Zhang consider the scalar curvature lower bounds in
distributional sense for singular metrics in W 1,p for some n < p ≤ ∞. In
particular, they prove that the weak notion of scalar curvature lower bound is
preserved along Ricci flow.
Motivated by the above mentioned works, it is natural to ask if the point-

wise scalar curvature lower bound can be weakened further to integral forms
under C0 convergence in contrast with the work in [6]. To this end, in this
work we generalize the Theorem in two directions. We first consider the case

when the scalar curvature lower bound of gi is almost κ in L
n/2
loc sense. We
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2 Scalar curvature under integral convergence

show that if a sequence of C2 metrics gi converges in C0
loc to some C2 metric

g0, then g0 has scalar curvature bounded from below by κ.

Theorem 1.2. Let Mn, n ≥ 3 be a (possibly open) Riemannian manifold and
κ : M → R is a continuous function. Consider a sequence of C2 Riemannian
metrics gi,0 on M that converges to a C2 Riemannian metric g0 in the local
C0-sense on M as i → +∞. Assume that for any ball Bg0(x, r) with r ≤ 1,

(1.1)

ˆ

Bg0 (x,r)

(R(gi)− κ)
n
2 dµg0 → 0.

Then R(g0) ≥ κ everywhere on M .

Remark 1.1. In view of the case where the negative part of scalar curvature
drifts to infinity, the condition

´

M
(R(gi,0)− κ)

n
2 dµgi → 0 is stronger than our

assumption.

We note that thanks to the C0 convergence, it is flexible to interchange the
measurement of volume and distance with respect to gi,0 and g0. The Ln/2

condition is in certain sense scaling invariant.
If we weaken Ln/2 to Lp with p < n/2, it is in general not strong enough to

obtain estimates. To this end, we consider the case of some weighed L1. We
show that when M is compact, a similar result is true.

Theorem 1.3. Let Mn, n ≥ 3 be a compact Riemannian manifold with a C2

metric g0. Suppose there is a sequence of C2 Riemannian metrics gi,0 on M
that converges to g0 in the C0-sense on M . Suppose there is δ > 0, σ ∈ R such
that for any r ≤ diam(M, g0) and x ∈ M ,

(1.2) r(2−n−2δ)

ˆ

Bg0 (x,r)

(R(gi,0)− σ) dµg0 ≤ εi → 0.

Then R(g0) ≥ σ everywhere on M .

Remark 1.2. If the limit metric is only C0, with the estimates in our proof and
arguments in [3], the scalar curvature of limit metric is greater than σ in the
β-weak sense.

In particular, the curvature can be a-priori unbounded as r → 0. The
Theorem says that the C0 convergence of metrics is sufficient to rule out the
blow-up of scalar curvature if the rate is mild.

Acknowledgements. The authors would like to thank Professor Richard Bam-
ler for his interest in this note and helpful discussions. The authors would like
to thank the referee for useful comments.

2. Ricci-Deturck flow and Ricci flow

In this section, we will collect some useful information on Ricci-Deturck
flows. Let (M,h) be a complete Riemannian manifold. A C2 family of metrics
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3

ĝ(t) is said to be a Ricci-Deturck flow with background metric h if it satisfies

(2.1)







∂tgij = −2Rij +∇iWj +∇jWi;
W k = gpq

(

Γk
pq − Γk(h)pq

)

;
g(0) = g0.

In particular, the Ricci-Deturck flow is strictly parabolic. Moreover, it is
equivalent to the Ricci flow in the following sense. Let Φt be a diffeomorphism
given by

(2.2)

{

∂tΦt(x) = −W (Φt(x), t) ;
Φ0(x) = x.

Then ĝ(t) = Φ∗
t g(t) is a Ricci flow solution with ĝ(0) = g(0).

The following result concerns the existence and uniqueness of the Ricci-
Deturck flow on Euclidean spaces for metrics which are bilipschitz to Euclidean
metric on R

n. The following Lemma could be found in [2, Lemma 2], see also
[9, 7] for the origin of this works.

Lemma 2.1. There exist constants ǫ > 0, A > 0 such that the following is
true: Let g0 be a C2 metric on R

n that is (1 + ǫ)-bilipschitz to the standard
Euclidean metric gEucl. Then there exists a solution g(t), t ∈ [0, 1] to the
Ricci-DeTurck flow with g(0) = g0 such that following holds:

(i) g(t) is smooth for t > 0 and g(t) → g0 in C2
loc as t → 0;

(ii) For any t ≥ 0, the metric g(t) is (1.1)-bilipschitz to gEucl.
(iii) For any t > 0 and k ≤ 10, we have

|Dkg(t)| < A

t
k
2

where D denotes the Euclidean derivatives.
(iv) If gi(t) and g(t) satisfy the assumptions and if gi(0) converges to g(0)

uniformly in the C0-sense, then gi(t) converges to g(t) uniformly in the
C0-sense on R

n × [0, 1] and locally in the smooth sense on R
n × (0, 1).

In particular, (iv) implies that if the limit is a-priori C2, the limiting Ricci-
Deturck flow obtained from gi(t) will coincide with the Ricci flow starting
from g0. Hence, by studying the uniform properties of gi(t), it reveals the
information of g(t) and hence g0 by letting t → 0.

For the later purpose, we would also like to collect some useful information
of Green function. We start with its definition. Given a complete Ricci flow
ĝ(t) on M . For x, y ∈ M and 0 ≤ s < t ≤ T , we use G(x, t; y, s) to denote the
heat kernel corresponding to the backwards heat equation coupled with the
Ricci flow. Namely,

(2.3) (∂s +∆y,s)G(x, t; y, s) = 0, and lim
s→t−

G(x, t; y, s) = δx(y)

3            
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4 Scalar curvature under integral convergence

for any fixed (x, t) ∈ M × [0, T ]. And for all (y, s) ∈ M × [0, T ], we have

(2.4) (∂t −∆x,t − Rg(t))G(x, t; y, s) = 0, and lim
t→s+

G(x, t; y, s) = δy(x).

In a recent work of Bamler, Cabezas-Rivas and Wilking [1], it was found
that the Green function above with respect to the operator ∂t−∆t−Rt satisfies
an estimate under a scaling invariant condition.

Proposition 2.1 (Proposition 3.1 in [1]). For any n,A > 0, there is C(n,A)
such that the following holds: Let (M, ĝ(t)), t ∈ [0, T ] be a complete Ricci flow
satisfying

|Rm(x, t)| ≤ At−1, and Volĝ(t)

(

Bĝ(t)(x,
√
t)
)

≥ A−1tn/2

for all (x, t) ∈ M × (0, T ]. Then

G(x, t; y, s) ≤ C

tn/2
exp

(

−d2s(x, y)

Ct

)

.

In view of localization, it is sometimes slightly more convenient to use Ricci
flow although the Ricci Deturck flows and Ricci flows are diffeomorphic to each
other. We will interchange between them depending on the purpose.

3. Local Ln/2-Estimates

In this section, we will first prove a local persistence estimates of Ln/2 along
the Ricci flows. This will play an important role in the proof of Theorem 1.2.

Proposition 3.1. Suppose (Mn, g(t)), n ≥ 3 is a complete Ricci flow satisfying

|Rm(x, t)| ≤ At−1, and Volg(t)
(

Bg(t)(x, 1)
)

≤ A

for some A > 0 on M×(0, T ]. For any σ ∈ R, there is C(n,A, σ), S(n,A, σ) >
0 such that for all t < min{S, T}, we have
ˆ

Bg(t)(x0,
1
4)
(Rg(t) − σ)

n
2 dµt ≤ eC6

√
t ·
ˆ

Bg0 (x0,1)

(Rg0 − σ)
n
2 dµ0 + C7

√
t.

Proof. In the following, we will use Ci to denote constants depending only on
n,A, σ. We will assume S ≤ 1 so that we always assume working with t ≤ 1.
Since |Rm(g(t))| ≤ At−1 for some A > 0 on M × (0, 1], we apply [8, Lemma

8.3] to deduce that the evolving distance function dt(x, x0) satisfies

(3.1)

(

∂

∂t
−∆g(t)

)

dt(x, x0) ≥ −C0t
−1/2

in the sense of barrier whenever dt(x, x0) ≥
√
t.

Let φ : [0,∞) → [0, 1] be a smooth non-increasing function so that φ ≡ 1
on [0, 1

2
], vanishes outside [0, 1] and satisfies φ′′ ≥ −104φ, |φ′| ≤ 104. Then we

define

(3.2) Φ(x, t) = e−104mtφm
(

dt(x, x0) + 2C0

√
t
)

4            
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where m is a large integer to be chosen later. In this way, direct computation
show that function Φ is a cutoff function satisfying

(3.3)

(

∂

∂t
−∆g(t)

)

Φ ≤ 0

in the sense of barrier and hence in the distribution sense, see [5, Appendix
A]. Moreover, we have

(3.4) |∇Φ| ≤ 104mΦ1− 1
m .

We will use Φ to localize the estimate with suitable choice of m.

Recall that the scalar curvature R satisfies

(3.5)

(

∂

∂t
−∆g(t)

)

R = 2|Ric|2 ≥ 2

n
R2.

Hence for σ ∈ R, whenever R < σ, the function ϕ = (R− σ) satisfies
(

∂

∂t
−∆g(t)

)

ϕ =

(

∂

∂t
−∆g(t)

)

(−R)

≤ −2

n
R2

≤ 2

n
(R + σ)ϕ.

(3.6)

In particular,
(

∂

∂t
−∆g(t)

)

ϕn/2 ≤ (R + σ)ϕn/2 −
(n

2

)(n

2
− 1

)

ϕn/2−2|∇ϕ|2(3.7)

in the sense of barrier whenever ϕ > 0. Therefore, the inequality holds in the
distribution sense by [5, Appendix A].
With this in hand, we consider the energy E(t) =

´

M
ϕn/2Φ dµg(t). By

differentiating E(t) with respect to t, we obtain from (3.7) and (3.3) that

d

dt
E(t) =

ˆ

M

(

∂

∂t
−∆g(t)

)

(

ϕn/2 · Φ
)

− R · ϕn/2Φ dµt

≤
ˆ

M

−
(n

2

)(n

2
− 1

)

ϕn/2−2|∇ϕ|2Φ dµt

+

ˆ

M

σϕn/2Φ + nϕ
n
2
−1|∇ϕ||∇Φ| dµt.

(3.8)

Since n ≥ 3, we apply Cauchy inequality to obtain

nϕ
n
2
−1|∇ϕ||∇Φ| ≤

(n

2

)

(

n− 2

2

)

ϕ
n
2
−2|∇ϕ|2Φ + Cnϕ

n
2
|∇Φ|2
Φ

5            
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6 Scalar curvature under integral convergence

and therefore

d

dt
E(t) ≤ σE(t) + C1

ˆ

M

ϕn/2 |∇Φ|2
Φ

dµt

≤ σE(t) + 108C1m
2

ˆ

M

ϕn/2Φ1− 2
m dµt.

(3.9)

where we have used (3.4) on the last inequality. From now on, we fix m = 2n.
Recall that |Rm| ≤ At−1 and hence ϕ ≤ C2t

−1. Therefore,

d

dt
E(t) ≤ σE(t) + C3 sup |ϕ|1/2 ·

ˆ

M

ϕ
n−1
2 Φ1− 1

n dµt

≤ σE(t) +
C4√
t
E(t)1−

1
n

≤ C5√
t
(E(t) + 1) .

(3.10)

The last inequality follows from Young’s inequality, the fact that {x : Φ 6=
0} ⊂ Bg(t)(x0, 1), the volume estimate together with the Jensen inequality.
By integrating over t ∈ [0, T ], we obtain

E(t) ≤ eC6

√
tE(0) +

(

eC6

√
t − 1

)

.(3.11)

Since from the construction, we have

(3.12) Bg(t)

(

x0,
1

4

)

⊂ {x ∈ M : Φ ≡ 1}.

Hence, by shrinking S we conclude that

(3.13)

ˆ

Bg(t)(x0,
1
4)
(Rg(t) − σ)

n
2 dµt ≤ eC6

√
t ·
ˆ

Bg0 (x0,1)

(Rg0 − σ)
n
2 dµ0 + C7

√
t.

This completes the proof. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We will follow the same spirit as in the work of Bamler
[2] but replacing the estimates by our new localization.
Suppose on the contrary, there is x0 ∈ M such that Rg0(x0) < κ(x0).
By scaling, we will assume Φ : U ⊂ M → R

n to be a chart centred at x0 so
that

(a) The metric Φ∗g is (1+ǫ)-bilipschitz to gEucl where the constant ǫ is
obtained from Lemma 2.1.

(b) Φ(Bg0(x0,
1
2
)) ⊂ Beuc(0, 1) ⊂ Φ(Bg0(x0, 2)) ⊂ Beuc(0, 3) ⊂ Φ(U).

6            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

7

For notational convenience, we will simply treat Φ to be identity locally.

We let σ > 0 be such that Rg0(x0) ≤ κ(x0)− 2σ. By the continuity of κ, for
0 < ε << σ, there exists r0 > 0 so that for κ0 = κ(x0),

(3.14) Rg0(x) ≤ κ0 − σ < κ0 − ε < κ(z) ≤ κ0 + ε

for all x, z ∈ Beuc(0, r0). We may assume r0 to be smaller than 1
4
.

We choose a cutoff function φ on R
n which is identically 1 on Beuc(0, 3) and

supported in U . Then the metric g̃0 := φ · g0 + (1− φ)gEucl satisfies:

(i) The metric g̃0 is C2 and is (1 + ǫ)-bilipschitz to gEucl.
(ii) g̃0 coincides with g0 on Beuc(0, 3).

We also construct the perturbed approximating sequence

g̃i,0 = φgi + (1− φ)geuc

on R
n so that g̃i,0 → g̃0 in C0(Rn). By Lemma 2.1, for each i ∈ N there is a

Ricci-Deturck flow g̃i(t), t ∈ [0, 1] with g̃i(0) = g̃i,0 and

(3.15) |Dg̃i(t)|2 + |D2g̃i(t)| ≤ At−1

for some A independent of i.
Moreover, there is a Ricci-Deturck flow g̃(t) starting from g̃0 so that g̃(t) is

C2 up to t = 0 and g̃i(t) → g̃(t) as i → +∞ in C∞
loc for t > 0 after passing

to subsequence. Thanks to the uniqueness, it suffices to control the scalar
curvature of g̃i(t) uniformly.

For notational convenience, we will omit the index i for the moment. Recall
that from the discussion in Section 2, ĝ(t) = Φ∗

t g̃(t) is a solution to the Ricci
flow with ĝ(0) = g̃(0) where

(3.16)

{

∂tΦt(x) = −W (Φt(x), t) ;
Φ0(x) = x.

Moreover, since the Ricci-Deturck flow g̃(t) satisfies |Dg̃(t)|2 + |D2g̃(t)| ≤
At−1 by passing (3.15) to limit, we see that |Rm(g̃(t))| ≤ CnAt

−1 by comparing
g̃(t) with the Euclidean flat metric. It also stays uniform equivalent to the
Euclidean space. Since the Ricci flow is diffeomorphic to the Ricci-Deturck
flow, ĝ(t) satisfies the assumptions in Proposition 3.1.
Noted that since g̃(0) is C2, the Ricci flow solution is also C2 up to t = 0.

By applying Proposition 3.1 with scaling, there is S so that for t ∈ [0, Sr20],
ˆ

Bĝ(t)(0,
r0
4 )
(Rĝ(t) − κ0)

n
2 dµ̂t

≤ eC6r
−1
0

√
t ·
ˆ

Beuc(0,2r0)

(Rg0 − κ0)
n
2 dµeuc + C7r

−1
0

√
t

(3.17)

7            
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8 Scalar curvature under integral convergence

where we have used the fact that ĝ(0) = g̃0 and the Ricci-Detruck flows are
bi-lipschitz equivalent with Euclidean metric.
Since the Ricci flow ĝ(t) is diffeomorphic to the Ricci-Deturck flow g̃(t) via

Φt, we might rewrite
ˆ

Bĝ(t)(0,
r0
4 )
(Rĝ(t) − κ0)

n
2 dµ̂t =

ˆ

Φt(Bĝ(t)(0,
r0
4 ))

(Rg̃(t) − κ0)
n
2 dµ̃t.(3.18)

We now compare the integrating domain with geodesic balls.

Claim 3.1. There exists S > 0 independent of i such that for all t ∈ [0, Sr20],
Bg̃0

(

0, r0
8

)

⊂ Bg̃(t)

(

Φt(0),
r0
4

)

= Φt

(

Bĝ(t)

(

0, r0
4

))

Proof of Claim. Since g̃(t) is 1.1-biLipschitz to geuc, it is 1.2-biLipschitz to g̃0.
Thus, if dg̃0(x, 0) <

r0
8
,

dg̃(t)(Φt(0), x) ≤ dg̃(t)(Φt(0), x0) + dg̃(t)(0, x)

≤ (1.1) · deuc(Φt(0), 0) + (1.2) · dg̃0(0, x)

≤ Cn

√
t +

3

20
r0

(3.19)

where we have used the |∂tΦ| = |W | ≤ At−1/2 from Lemma 2.1. This proved
the claim by shrinking S if necessary. �

Using the claim, (3.17) and Lemma 2.1, for all i → +∞, we have for all
t ∈ (0, S],

ˆ

Bg̃i,0(0,
r0
8 )
(Rg̃i(t) − κ0)

n
2 dµ̃t

≤ eC6r
−1
0

√
t ·
ˆ

Beuc(0,2r0)

(Rg̃i,0 − κ0)
n
2 dµeuc + C7r

−1
0

√
t.

(3.20)

On the other hand, using the assumption and (3.14), we have for i sufficiently
large,

[
ˆ

Beuc(0,2r0)

(Rg̃i,0 − κ0)
n
2 dµeuc

]2/n

≤
[
ˆ

Beuc(0,2r0)

(Rg̃i,0 − κ)
n
2 dµeuc

]2/n

+

[
ˆ

Beuc(0,2r0)

|κ− κ0|
n
2 dµeuc

]2/n

< Cnεr
2
0.

(3.21)

By letting i → +∞ on (3.20) and followed by letting t → 0, we conclude
that

(3.22)

ˆ

Bg̃0(0,
r0
8 )

(Rg̃0 − κ0)
n
2 dµ̃0 < Cnε

n/2 · rn0 .

8            
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Since g̃0 coincides with g0 on Bg̃0

(

0, r0
8

)

, the left hand side can be estimated
using (3.14) to obtain

(3.23)

ˆ

Bg̃0(0,
r0
8 )
(Rg̃0 − κ0)

n
2 dµ̃0 ≥ C−1

n σn/2rn0

which is impossible if ε is chosen to be small relative to σ. This completes the
proof. �

4. L1-Estimate

In this section, we will consider the case when the scalar curvature’s lower
bound converges to some function in some weighed L1

loc sense.
We will start with the curvature estimate under Ricci flows.

Proposition 4.1. Suppose (M, g(t)), t ∈ [0, S] is a compact Ricci flow such
that

|Rm(x, t)| ≤ At−1, and Volg(t)

(

Bg(t)(x,
√
t)
)

≥ A−1tn/2

for all (x, t) ∈ M × [0, S]. If there are σ ∈ R, δ > 0, ε ∈ (0, 1) so that

sup
r∈(0,D]
x∈M

r(2−n−2δ)

ˆ

Bg0 (x,r)

(R(g0)− σ) dµg0 < ǫ,

where D = diam(M, g0), then there is Ŝ(n,A, σ, δ), L(n,A, σ, δ) > 0 such that
for all t ∈ (0, S] ∩ (0, S̃],

(R(g(t))− σ) ≤ Lεt−1+δ.

Proof. In what follows, we will use Ci to denote constants depending only on
n, σ, δ, A. We may assume Ŝ ≤ 1 so that we always work with t ≤ 1.
Recall that the function ϕ = (R− σ)− satisfies

(

∂

∂t
−∆g(t)

)

ϕ ≤ 2

n
(R + σ)ϕ

= Rϕ+

(

2− n

n
R+

2

n
σ

)

ϕ.

(4.1)

Let Λ > 0 and α ∈ (0, 1) be two numbers to be chosen. We let T ∈ [0, S]
be the maximal time such that for all t ∈ (0, T ), we have

(4.2) ϕ < Λt−α

and ϕ(x0, T ) = ΛT−α for some x0 ∈ M .
Since M is compact and the Ricci flow is smooth, we must have T > 0. Our

goal is to estimate T from below if we choose Λ, α suitably. Since ϕ ≤ Λt−α
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on M × (0, T ], we deduce that

2− n

n
R +

2

n
σ =

2− n

n
(R− σ) +

4− n

n
σ

≤ ϕ+
4− n

n
σ

≤ Λt−α + |σ|.

(4.3)

Together with (4.1), we obtain
(

∂

∂t
−∆g(t)

)

ϕ̃ ≤ Rϕ̃(4.4)

in the sense of barrier where ϕ̃ = e−|σ|t− Λ
1−α

t1−α

ϕ.
Hence, maximum principle implies

(4.5) ϕ̃(x, t) ≤
ˆ

M

G(x, t; y, 0) · ϕ̃(y, 0) dµ0

where G(x, t; y, s) is the Green function of ∂t − ∆g(t) − R associated to the
Ricci flow g(t), see Section 2.
Therefore at (x0, T ), we compute using Proposition 2.1 to yield

ΛT−α ·
(

e−|σ|T− Λ
1−α

T 1−α
)

= ϕ̃(x0, T )

≤
ˆ

M

G(x0, T ; y, 0) · ϕ̃(y, 0) dµ0

≤ C1

T n/2

∞
∑

k=0

ˆ

Bg0 (x0,(k+1)
√
T )\Bg0 (x0,k

√
T )

ϕ(y, 0)exp(−d20(x0, y)

C1T
)dµ0

≤ C1

T n/2

∞
∑

k=0

e
− k2

C1

ˆ

Bg0 (x0,(k+1)
√
T )

ϕ(y, 0) dµ0

≤ C1ε

T 1−δ

∞
∑

k=0

e
− k2

C1 (k + 1)n−2+2δ

≤ C2ε

T 1−δ
.

(4.6)

By choosing α = 1− δ and Λ = e · C2ε, we see that

1 ≤ |σ|T +
eC2ε

1− α
T 1−α ≤ C3T

1−α

since we have assumed T ≤ 1 and 0 < ε < 1. In particular, 1 ≥ T ≥ C−1
4 for

some C4 > 0. In other word, we have shown that for all t ∈ [0, C−1
4 ] ∩ [0, S],

(4.7) (R(g(t))− σ)− ≤ C5εt
δ−1.

This completes the proof. �
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Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The proof is a slight modification of the proof of Theo-
rem 1.2 but we will use a recent result of Burkhardt-Guim [3] to simplify some
argument. By the main result of Simon [9], we can construct a Ricci Deturck
flow g(t), t ∈ [0, S] with g(0) = g0 by defining g(t) = limi→+∞ gi(t) where
gi(t) is a Ricci-Deturck flow with initial metric gi(t) = gi,0 using some fixed
background metric h. The convergence is C0(M × [0, S]) ∩ C∞

loc(M × (0, S)).
Moreover, both gi(t) and g(t) is bi-Lipschitz to some fixed metric on M and
satisfy |Rm| ≤ At−1 for some A > 0.
Since gi(t) is diffeomorphic to the Ricci flow and is uniformly bi-Lipschitz,

we can apply Proposition 4.1 to the Ricci flow to deduce that (after pulling

back) for all t ∈ (0, S] ∩ (0, S̃],

(4.8) (R(gi(t))− σ) ≤ Lt−1+δ · εi
By letting i → +∞ on (0, S] ∩ (0, S̃], we conclude that the limiting Ricci-

Deturck flow satisfies R(g(t)) ≥ σ on (0, S]∩ (0, S̃]. By [3, Theorem 5.4] (more
precisely its proof), g(t) is diffeomorphic to the C2 Ricci flow h(t) starting
from g0. Hence, R(g0) ≥ σ on M by letting t → 0 on h(t). �
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