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ABSTRACT

The design of a computer-based aid to assist operators in the diagno-
sis of process failures is investigated. The objectives of this thesis are
to develop suitable representations to characterize the physical process
and the knowledge necessary for diagnosis, and to develop a general strat-
egy for evaluating the representations. The focus is on qualitative models
and model-based diagnostic reasoning.

The process representation used is the causal directed graph
(digraph), in which nodes represent process variables and parameters, and
arcs represent the causal interactions between them. Although several
authors have used causal models for fault diagnosis, none have adequately
characterized the causal interactions or described how to develop causal
models. In this work, I show how to derive the causal digraph for a set of
design equations, present guidelines for developing causal digraphs for
fault diagnosis, and develop context-independent causal models for standard
system components.

The diagnostic strategy incorporates multiple knowledge representa-
tions and problem-solving approaches. Graph search, simulation, qualita-
tive constraints, and heuristics are used within a hypothesis generation
and test framework. During candidate generation, nodes causally upstream
from abnormal measurements are identified from which fault propagation
would cause the observed deviations. Nodes that are locally plausible
(i.e., have consistent causal paths to all abnormal measurements) but not
consistent with other known information are eliminated during candidate
testing. A list of faults is generated from a table that relates the
deviations of digraph nodes to specific faults.

Examples from a diagnostic system prototype are presented and imple-
mentation issues are discussed.

Thesis Supervisor: Dr. Mark A. Kramer
Assistant Professor of Chemical Engineering
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OVERVIEW

This thesis addresses the design of a computer-based diagnostic aid
for real-time process plant fault diagnosis. Specifically, the research
investigates model-based diagnostic reasoning. The thesis objectives are
(1) to develop suitable representations to characterize the process and the
knowledge necessary for diagnosis, and (2) to develop a general strategy
for evaluating the representations.

Three themes, which parallel human diagnostic reasoning, underlie

these two objectives.

General versus Context-Specific Knowledge

The research focuses on those elements of the diagnostic aid that are
general, or independent of the particular context. The context-independent
elements, termed the core knowledge, include general strategies for fault
diagnosis, models characterizing the behavior of general classes of process
equipment, general rules that relate specific failures to process variable
deviations, and general knowledge representation formats for the storage of
process data and equipment design specifications. Because the behavior of
general types of process equipment is identical across plant sites, models
of system components are used to form the base of the process represen-
tation.

The separation of diagnostic knowledge into core and plant-specific
sections adds modularity to the diagnostic aid. Because the core knowledge
is transportable between plant sites, implementation involves adding only

the context-specific information.

Qualitative Reasoning

The research focuses on developing knowledge representations and a
diagnostic procedure that are qualitative. Qualitative reasoning, which
involves qualitative component models and qualitative values assigned to
the model's parameters and state variables, is sufficient for diagnosing a
majority of process failures. Qualitative reasoning overcomes the inherent

limitations of quantitative representations.
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Multiple Problem-Solving Strategies

The research focuses on incorporating multiple problem-solving strate-
gies into a general solution procedure. Graph search, simulation, heuris-
tics, and qualitative constraints are used within a hypothesis generation
and test framework. The use of several strategies improves diagnostic
resolution because the additional strategies add knowledge which eliminates

infeasible fault candidates.

In summary, the goal of this research is to develop the core knowledge
necessary for model-based process plant fault diagnosis. The major con-
stituents of the core knowledge are the plant-independent, qualitative,
component-based models for chemical processes and process equipment, and
the general solution procedure for evaluating the qualitative models. The

research is summarized along these two principal elements.

Knowledge Representation—The Causal Digraph

Description

The causal directed graph (digraph) is a network which represents the
cause-and-effect interactions between the parameters and state variables of
a physical system. Nodes in the causal digraph represent process vari-
ables, parameters, and combinations of these terms. Digraph arcs represent
the causal interactions between them. More specifically, a causal arc
represents a physical process or mechanism by which a change in one param-
eter, represented by the node at the arc's tail, is transmitted to, and
causes a change in, the parameter represented by the node at the arc's
head. The graph is directed because each causal interaction is directed—a
cause produces, or is the reason for, the effect. Causal interactions are
local interactions, i.e., they exist between parameters and process vari-
ables that are in some sense adjacent on a given level of model detail.
Reasoning about two nonadjacent nodes is done by constructing a path of
digraph arcs between them. The directed path represents how a change in
the initial node is propagated to the terminal node. Changes are repre-

sented by assigning qualitative values to the digraph nodes.
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The design values of process variables, the values of process parame-
ters, and the values of real-time process measurements may be necessary to
specify the existence of an arc and the values of its attributes. For a
causal arc to accurately characterize a causal influence, the set of

conditions associated with the arc must be satisfied.

Summary of Results

Research contributions in developing qualitative representations to

characterize chemical processes and process equipment are summarized.

o Distinction Between the Causal Model and How the Causal Representation
is Evaluated

For a given physical context, the causal interactions are independent
of how the qualitative representation is evaluated. This differs from
other research in causal modeling because the causal relationships gener-
ated by other authors are a function of how a set of equations that model
the system is solved. de Kleer and Brown [1984] [1986] solve a set of
constraint equations, called confluences. Causal relationships are identi-
fied by propagating the effects of a disturbance through the ietwork of
constraints. The causal interactions generated depend on the sequence in
which the confluences are solved. Similarly, the causal ordering of
Iwasaki and Simon [1986a] [1986b] depends on identifying self-contained
subsystems in the system of structural equations. Establishing a causal
ordering involves finding subsets of variables whose values can be computed
independently of the remaining variables. The values of the variables in
the subset are used to reduce the system to a smaller set of equations.
Specifying different exogenous variables will yield different causal
relationships. In both methods, causality becomes identical to the pro-
gression of substitutions into the system of equations.

The causal relationships developed here do not depend on the manner in
which the causal representation 1is evaluated. Rather, each physical
mechanism generates a specific set of causal arcs. This set is completely

independent of any other mechanisms that may exist within the physical
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system, and how the values of system parameters are determined. This
differs from Iwasaki and Simon, who explicitly state that the knowledge of
a single mechanism in isolation does not imply a directed causal interac-
tion between two variables ([1986a], p. 13).

By interpreting the causal digr.ph as a static representation of the
underlying physical mechanisms, there is a clear distinction between the
causal digraph as a data structure and the method for assigning values to
the nodes to characterize a specific system state. The causal arcs in the
digraph are fixed for a given physical contert. As long as the context is
unchanged, the digraph remains valid. On the other hand, the qualitative
values assigned to the nodes, which represent the current state of the
system, can vary. Events (deviations in the physical system represented by
the qualitative values '+' and '-' assigned to the nodes) are distinguished
from the processes by which these events propagate through the system

(represented by the digraph arcs).
o0 Definition of a Qualitative Value

Reasoning using the causal digraph is accomplished by assigning
qualitative values to the digraph nodes. For each continuous variable and
parameter, a reference value or range is selected, which represents the
expected value or range that characterizes the process variable or parame-
ter under normal operating conditions. The endpoints of the normal range
break the value continuum into three regions. In this work, the three
qualitative values low '-', normal '0O', and high '+' represent the devia-
tion of the numerical value away from the reference. Mathematically, the
qualitative value of x, denoted [x], defined as the deviation from a
context-specific reference point x,, is given as [x] = sgn(x - x,). When

the reference is a range, the qualitative value of x is defined as

[x]
[x]
[x]

'-' when x < x,
'0' when x; S x S X
'+' when x4 < x,

where x; and x; are the lower and upper range endpoints, respectively.

Other authors (e.g., de Kleer [1984], p. 211; Forbus [1984]), pp. 95-96;
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Williams [1984], pp. 289-290) define [x] = sgn(x). The definition used
here is advantageous for two reasons. First, a qualitative valiue does not
represent an absolute quantity. Rather, it depends cn the expected operat-
ing point. A ‘high' temperature in one context may be 'low' in another.
The definition as a deviation from a reference captures this
context-specific nature. Second, the expected value of a process variable
is generally not fixed, but fluctuates within a normal band. The introduc-
tion of a normal range, instead of a single reference point, captures this
variability.

The reference value or range is stationary or, for a process moving
between states, changing with time.

Discrete variables are not modeled explicitly as digraph nodes. A
different causal digraph is necessary to model a change in the value of a

discrete variable.
o Att-ibutes of a Causal Interaction

Causal arcs have a set of attributes that characterize the causal
interaction. The attributes sign, magnitude, and time are used in this
work. The sign attribute characterizes the direction of deviation of the
process variables at the arc's initial and terminal nodes. The qualitative
sign '+' indicates that the variables deviate in the same direction; the
sign '-' indicates that they vary in opposite directions. The magnitude
attribute specifies the strength of the causal interaction. The qualita-
tive value 'l' is assigned if any deviation of the causally upstream
variable within its entire range of variation can cause the causally
downstream variable to deviate outside of its normal range. The magnitude
attribute '0' is assigned if all disturbances of the causally upstream
variable cannot cause the causally downstream variable to deviate. The
time attribute specifies the propagation time for the effect to be trans-
mitted from the initial node to the terminal node along the causal arc.
The qualitative value '0' is defined as zero delay (instantaneous transmis-

sion); the value 'l' indicates positive delay time.
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o Procedure to Specify Causal Arcs and Arc Attributes

The mathematical relationships and equations used to quantitatively
model a physical process do not contain the information needed to specify
the relationships between the process variables for causal modeling.
Neither do qualitative relationships that do not explicitly represent the
directionality of the causal interaction. Mathematical equations specify
equality relationships between sets and combinations of parameters, but
they contain no information on how changes in an individual process vari-
able or parameter directly affect other system variables. Causal inter-
actions can only be specified from an understanding of the fundamental
physical principles and mechanisms that the equations represent.

Causal digraphs were developed from quantitative design equations by
jdentifying and interpreting the underlying physical mechanisms behind each
equation. Digraph construction was simplified because, for the example
processes investigated, the design equations could be classified into four
categories: driving force equations, balance equations, functional rela-
tionships, and algebraic equalities. For each category, a standard set of

procedures specify the causal arcs and their sign attribute.

o Limitations of the Causal Digraph

The causal digraph representation is limited in its ability to fully

characterize a system. Among these limitations are:

1. The causal digraph is not unique. Therefore, several different causal
digraphs can be developed L. represent the same physical system. The
differences between them arise from the parameters chosen to be included in

the model.

2. The causal digraph does not contain information about discontinuities
that may arise in the physical system. Thus, they cannot explicitly handle
discrete changes when they occur. Discontinuities require a different set
of quantitative equations, and hence, a different digraph, to accurately

model the system.
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3. Ambiguities may arise when determining the qualitative values of model
parameters. On a given level of detail, an arc and its "sign attribute
serve as a constraint on the behavior between its initial and terminal
nodes. At an increased level of detail, these adjacent digraph nodes may
become nonadjacent, and multiple paths with opposite net sign may exist
between them. When a causal arc at a lower level of detail is a global
constraint at a greater level of detail, the constraint is lost on the
level of greater detail because the digraph only represents local interac-
tions. Without the constraint, ambiguities arise because the digraph
contains no information to specify which path is dominant. When several
plausible interpretations for global behavior exist, the causal digraph is

not deterministic.

Retaining global knowledge, if it is known, can aid in reducing the
number of spurious interpretations. Two methods, a hierarchy of digraph

models and qualitative equalities, are suggested.
o0 Guidelines for Developing Digraphs for Fault Diagnosis

My purpose for developing causal digraphs is to construct diagnostic
systems. The digraph used, then, should be the one that is most suited for
diagnosis. A digraph is suitable for fault diagnosis if it (1) contains a
single node representing the primary effect of the fault for every fault
desired to be diagnosed, and (2) represents the physical system on the
level of detail that minimizes the number of incorrect faults and maximizes
the resolution between faults. These objectives suggest the following
guidelines for developing and modifying causal digraphs for fault

diagnosis.

1. Identify the faults to be diagnosed prior to developing the causal
digraph, so that every process variable or parameter that represents the
primary effect of a fault is included in the set of quantitative design

equations.
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2. Greater knowledge about the system improves fault resolution, decreases
the number of incorrect fault candidates identified, and retains the

fundamental causal relationships. Therefore,

f Set up quantitative equations for each physical mechanism, unit or

piece of equipment, rather than for larger sections of the process.

1 Do not eliminate process variables through the substitution of

equations.

3. Modify the causal digraph to handle faults that change the form of the
design equations. The digraph must contain the causal arcs that model the

behavior of the system when the fault is present.

o Context-Independent Component Models

As previously mentioned, the design values of process variables, the
values of process parameters, and the values of real-time process measure-
ments may be necessary to specify the existence of an arc and the values of
jts attributes. For a digraph arc to accurately characterize a causal
interaction, the set of conditions associated with the arc must be satis-
fied. The collection of causal interactions for a system component,
together with the rules that specify when the interactions exist, consti-
tute the context-independent component model. The causal digraph is the
output from the causal model for a given input set of context-specific
parameters.

In a component causal model, the rules for specifying all the causal
pathways in the component are grouped into the component rule base. Rule
antecedents explicitly state the assumptions and conditions necessary for
the existence of the directed arcs. The antecedents reference design
values and process measurements related to the specific unit. Rule conse-
quents are the individual causal paths and values of the attributes that
are valid for the given context.

Associated with each component rule base is a general component

database that stores the design specifications and relevant process
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measurements that are required by the rule antecedents. For the digraph to
accurately characterize its physical system, the assumptions used to
develop the digraph must match the actual physical context. By specifying
a set of context-specific numerical and discrete parameters, the rules
generate a specific causal digraph for the particular process unit.

Causal models allow the underlying physical behavior of a component to
be specified independently from the particular context in which the compo-
nent will function. A library of context-independent component models

facilitates diagnostic system installation.

Strategy for Fault Diagnosis Using the Causal Digraph

Terminology

A fault is any event that causes one or more process variables or para-
meters to deviate outside the range that represents their normal operation.
Therefore, a fault causes the qualitative values of those variables to

change from normal '0' to either high '+' or low '-'.

A valid node is a node in the causal digraph that has a measured or assumed
nonzero qualitative value. It represents a process variable or parameter
that has deviated outside of its range of normal operation. A valid node
is a set of two terms: the deviated process variable or parameter and its

nonzero qualitative value, e.g., (L, +).

A primary deviation is the deviated process variable or parameter that is
the direct result of a fault. Secondary deviations are all other process
variable deviations that arise from fault propagation. Both primary and

secondary deviations are valid nodes.

A consistent branch is a directed arc between two valid nodes where the

product of the values of its initial and terminal nodes equals the sign
attribute of the branch. A consistent branch represents a path that may
have been involved in the propagation of a failure. A consistent path is a

directed path of consistent branches.
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A valid tree is a subgraph of the causal digraph that consists of a valid
measurement and all the valid nodes causally upstream from the measurement.
All the branches in the valid tree are consistent. The valid tree describes
the path of fault propagation from any causally upstream, valid node to the

particular abnormal measurement.

Description of Diagnostic Strategy

The strategy for diagnosis, based on the use of causal models, is
separated into three major steps: candidate generation, candidate testing,
and identifying specific faults through a table mapping faults to primary
deviations. The candidate generation and testing steps are outlined in
detail below. The list of faults is pgenerated from the reduced set of
primary deviations through the use of a table mapping faults to primary
deviations. The table is created from an expert system using knowledge
about the process equipment specifications and the values of design and

operating variables.

Candidate Generation

The objective of candidate generation is to rapidly partition the
total set of fault origins into a feasible set (i.e., those primary devia-
tions that could cause the observed secondary deviations) and an infeasible
set. The criterion for including a nocde-sign pair in the set of possible
primary deviations during candidate generation is that a consistent path
must exist from the node to all abnormal measurements. The inputs to the
procedure are the causal digraph for the process and the sign attribute of
every arc, the controlled and manipulated variables and net sign of the
functioning control systems, and the qualitative values of every process
measurement.

Faults propagate along causal digraph arcs. Thus, the origin of the
failure causing an abnormal process measurement must lie causally upstream
from the measurement. Possible primary deviations are identified by

searching causally upstream from the abnormal sensor.
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The search is accomplished by constructing a valid tree for an indi-
vidual deviated measurement. The valid tree represents the paths of fault
propagation from every possible node in the causal digraph to the abnormal
measurement. Beginning with the given valid measurement, qualitative
values are assigned to unmeasured, adjacent, causally upstream nodes to
make the causal arcs consistent. The assignment of qualitative vealues is
continued until all possible primary deviations that could cause the
observed measurement deviation are identified. Thus, the search is
exhaustive.

Given the current node in the tree, adjacent nodes causally upstream

from the current node are added to the valid tree if

1. The causally upstream node is not already in the path from the current

node to the valid measurement, AND

2. If the process variable represented by the causally upstream node is
measured, then the measurement must be valid with the qualitative value
necessary to make the branch from the measured node to the current node

consistent.

Condition 1 eliminates any circuits in the causal digraph which would give
rise to cycling during the backward causal search. A node is added to the
valid tree only if it does not already appear in the path to the valid
measurement. Note that a node can appear more than once in the valid tree;
it is only restricted from appearing more than once along any directed
path. Condition 2 is used to bound the fault space. One of the assump-
tions for candidate generation is that if a disturbance is propagating
along a causal path and two process variables in the path are measured, the
causally upstream measurement will become valid before the downstream
measurement. If, during the backward search, a measured node is encoun-
tered whose value is normal or opposite of the sign necessary to make the
branch consistent, then the fault cannot lie causally above the measure-
ment. The search is discontinued along this arc.

Control systems require a modification to the causal search bounding

condition. Because control systems are designed to compensate for
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disturbances, the manipulated variable is adjusted to keep the controlled
variable at its desired set point. If a disturbance enters a functioning
control loop and the magnitude of the disturbance is insufficient to
saturate the control system, then the controlled variable remains normal
and the disturbance causes a change in the manipulated variable. In the
search procedure described above, the search space is bounded by normal
measurements. Because a fault can lie causally above a normal measurement
if the measurement is used in a control loop, the following modification is
necessary: if the manipulated variable is valid (either assumed valid
during the search or directly measured) and the controlled variable is
normal, then consider the controlled node and nodes causally upstream from
the controlled node as possible origins. The value of the manipulated
variable and the net sign of the control loop are used to infer the value
that the controlled variable would have if no control system were present.
The controlled variable is added to the valid tree and the search is
continued causally upstream from this node.

Because the probability of multiple, simultaneous, independent events
is low, the candidate generation procedure first attempts to explain all
the abnormal measurements by a single fault. Under the single fault
assumption, a digraph node-sign pair is a primary deviation if a consistent
path exists from the primary deviation to every abnormal sensor. A primary
deviation is the root of a directed tree of consistent branches, which
spans the set of valid measurements. Since consistent paths must exist
from the primary deviation to every deviated measurement, the converse,
that the actual primary deviation must be identified by the backward causal
search from every measurement deviation, must also be true. Therefore,
given multiple measurement deviations and the single fault assumption, the
intersection of the sets of primary deviations generated for each of the
valid measurements will identify those primary deviations with consistent
paths to every abnormal sensor.

If multiple faults have occurred, set intersection, in most cases,
will produce the empty set. A combinatorial intersection procedure is then
necessary to determine the minimal set cover, to explain the observed

measurement pattern with the fewest number of faults.
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Candidate Testing

The purpose of candidate testing is to apply other types of informa-
tion, beyond the knowledge of causal adjacency used in candidate genera-
tion, to eliminate implausible candidates from the set of primary devia-
tions. Nodes that are locally plausible are eliminated if they are not
consistent with all other known information. The knowledge considered here
is (1) global constraints, (2) fault simulation using time delays, and
(3) heuristic rules.

Global Constraints

Because the causal digraph is limited to local interactions, global
information may be necessary to constrain spurious interpretations. If
global knowledge is known, then it should be retained and incorporated for
diagnosis. The global constraints used are that a process variable cannot
simultaneously deviate in both directions, given a set of consistent causal
paths from a root node to valid measurements, and that global knowledge can
be used to specify the dominant causal path when multiple paths of opposite
net sign exist in the digraph.

Simulation Using Qualitative Time Delays

A disturbance is instantly propagated from the initial node to the
terminal node along an arc with zero time delay. This knowledge can be
used to eliminate primary deviations from the set of possible origins. For
each root node in the set of primary deviations, fault simulation is
performed from the root node along the arcs with zero time delay. Causally
downstream nodes are assigned values so that the branches in the simulation
tree are consistent. If any node in the tree is measured and the qualita-
tive value of the actual measurement is either normal, if the measured
variable is not a controlled variable, or opposite of the sign in the
simulation tree, then the root node should be eliminated from the set of
primary deviations. If there are no measurement nodes in the tree, or if
the actual measurements have the values that match the fault simulation,
then the node remains a candidate. A normal measurement causally down-

stream from the primary deviation is acceptable if it is a controlled
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variable, because the control system may compensate for the disturbance and

yield a normal value.

Heuristic Rules

Knowledge in the form of rules can be used to reduce the number of
primary deviations. Although the term heuristic is used, both experiential
and model-based knowledge can be represented in this format. Several

examples are presented:

Rule 1: If the controlled variable in a control system is normal, then the
control system is working. Therefore, remove any primary deviations
associated with the control system (from the controller through the control
valve) and the desired set point. [Note: This rule assumes that suffi-
cient time has elapsed for faults within the control system to cause the

deviation of the controlled variable.]

Rule 2: If a control system is working, a disturbance propagates into the
control system through the control valve, and the control system compen-
sates for the disturbance by closing the valve, then the propagation of the
failure is always halted and the controlled variable remains normal.
Therefore, any primary deviations causally upstream from the control valve

that cause the valve to close can be eliminated.

In addition to referencing qualitative data, rule antecedents can also
reference numerical data (e.g., measurement values, reference values, and
output from numerical calculations, including rates of change, simulations,

statistics, etc.) to reduce the number of primary deviations.

Rule 3: If the measured, numerical value of a concentration is negative,
then the sensor is miscalibrated or has failed. Therefore, eliminate all

other primary deviations.

Rule 4: If the normal process and measurement noise of a sensor disappears
(variance goes to zero), then the sensor has failed. Therefore, eliminate

all other primary deviations.
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Summary of Results

Research contributions in developing a procedure for evaluating the

causal digraph for fault diagnosis are summarized.
o Diagnostic Procedure Based on a Graphical Search Strategy

A diagnostic strategy has been presented by Iri and co-workers (Iri
et al. [1979] [1980]) that uses a graph representation to model the causal
interactions. Their approach uses an iterative procedure to assign '+,
'-', and '0' qualitative values to unmeasured and controlled digraph nodes.
For each assignment of a qualitative value, the consistent branches of the
graph are identified. The subgraph composed of consistent branches is then
examined to determine if the subgraph is rnoted. Because a single fault is
assumed, causal pathways must connect the fault origin to every measurement
deviation. If the subgraph becomes disconnected for a particular set of
qualitative values, then there cannot be a single fault. The authors used
the algorithm on a digraph of 21 nodes and 62 branches, of which six nodes
were observed and three nodes were controlled. A purely iterative method
requires " assignments, where n is the number of unmeasured and controlled
nodes in the causal digraph. Even with a heuristic to reduce the number of
subgraphs evaluated, they reported that the algorithm generated about
20,000 subgraphs that were examined for connectivity (Iri et al. [1980]).
They note that even with heuristics to reduce the number of graphs exam-
ined, the problem grows exponentially with the number of nodes.

Shiozaki et al. [1985] propose modifications to the iterative proce-
dure of Iri et al. to improve computational speed. Improvements to the
method are a systematic choice for selecting unmeasured nodes for assigning
qualitative values, criteria for terminating the assignment of qualitative
values, and the systematic revision of the assigned values on unmeasured
nodes.

The premise for this work, identical to the premise of earlier work,
is that for a single failure, consistent causal pathways must link the
fault origin to all abnormal measurements. But whereas previous authors

iteratively assigned and revised the qualitative values of unmeasured
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digraph nodes, the diagnostic procedure developed here is based on a
graphical search strategy. Because disturbances propagate along causal
paths, possible origins of the failure are located by searching causally
upstream from abnormal measurements. During candidate generation, a set of
fault origins is quickly identified solely on the basis of causal

adjacency.
o Model-Based Diagnostic Strategy

The diagnostic procedure outlined here is based on models of system
components. Model-based approaches rely on an understanding of the
system's underlying mechanisms or behavior. In contrast, experience-based
strategies relate the pattern of observed abnormal symptoms directly to the
fault.

Experience-based diagnostic methods have several limitations. They
can only diagnose faults that have been previously observed and coded into
the database. Second, the patterns of symptoms are plant-specific. Unless
two systems are identical, the knowledge in the database cannot be trans-
ferred and used for the diagnosis of the second system. A majority of the
diagnostic procedures presented in the literature are experience-based.
For example, the rules developed for rule-based expert systems for process
plant fault diagnosis are highly dependent on the specific context (Chester
et al. [1984], Kumamoto et al. [1984], Andow [1986]). Other
experience-based approaches (e.g., alarm trees, fault trees,
cause-consequence diagrams, decision tables) are equally plant-specific.

The strengths of model-based diagnostic strategies offset the limita-
tions of experience-based approaches. First, the knowledge of the underly-
ing mechanisms can assist in diagnosing unfamiliar faults. Second, models
of system components are plant-independent. Component models can be
developed once and used for a variety of processes. Third, the knowledge
contained in the models aids fault resolution. Although several database
patterns may match the observed symptoms, many patterns may not be consis-

tent with the system's underlying physical behavior.
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0 Multiple Problem-Solving Approaches

The diagnostic strategy incorporates multiple problem-solving
approaches into the solution strategy. Graph search, qualitative con-
straints, simulation, and heuristics are used within a hypothesis genera-
tion and test framework. The integration of techniques improves diagnostic
resolution because the additional approaches add knowledge which can
further eliminate infeasible fault candidates. If the diagnostic strategy
relied on a single problem-solving approach, the strategy would be limited
to a single knowledge representation and a single evaluation procedure.
For example, the causal digraph cannot represent global relationships or
heuristics. If the digraph was used alone, many primary deviations that

could be eliminated remain as possible fault origins.

o Context-Independent Rule Bases to Specify the Correct Mapping of Faults
to Primary Deviations

The relationship between faults and primary deviations depends on the
context in which the physical system functions. Information about the
context is necessary to specify whether a fault should be considered and
whether it should be mapped to the + or - deviation of a digraph node. For
example, to identify possible faults for low pressure in a vessel, knowl-
edge about the physical characteristics of the unit (e.g., number of
flanges, relief valves, rupture disks, drain valves) would be important in
identifying possible causes. These 'leakage" faults would then be mapped
to (P, -) only if the pressure of the vessel was greater than atmospheric
pressure. If the vessel pressure was less, then the fault would be associ-
ated with the primary deviation (P, +) because the pressure of the vessel
would increase as air or other fluid entered the system.

A table mapping faults to primary deviations is used to produce the
1ist of faults from the reduced set of root nodes after candidate testing.
Context-independent rules for generating the fault tables can be used to
correctly map faults to primary deviations for a given context. Like the
context-independent component models for generating the correct causal

digraph, these rules can be grouped by process component. Rule antecedents
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reference the unit's physical characteristics, design values, and possibly
the current process measurements. Rule consequents are the faults for the
primary deviations in the given component. Because the values in a specif-
ic component's database are used to generate the table mapping faults to
primary deviations, the table is only valid for a given set of

context-specific conditions and assumptions.
DIEX: A Model-Based Diagnostic System Prototype

DIEX (Diagnostic Expert) is a model-based diagnostic system prototype
that builds the causal digraph and executes the diagnostic strategy. DIEX
is coded in Franz Lisp, running under UNIX, on a DEC VAX 11-780.

Plant topography and the specific unit design information is entered
through an interactive design program. Numerical values of the process
parameters are necessary to specify the correct causal interactions from
the causal models. Structural information is used to match the ports of
interconnected units. The design program creates a data file which is used
by a second program to construct the causal digraph. Object-oriented
programming is used to specify the digraph. Node and arc flavors are used
for instantiating specific process variables and their causal interactions.

General component causal models have been developed for ten types of
process equipment and four elementary chemical reactions. The process
equipment models include pipe, tee, centrifugal pump, valve (2-port), tank,
heat exchanger, vaporizer, continuous stirred tank reactor (CSTR), sensor,
and single-input single-output (SISO) control system models.

During candidate generation, DIEX constructs a valid tree for each
abnormal measurement from the arcs in the causal digraph. The qualitative
values of the measurements can be input into the diagnostic system proto-
type one at a time or in groups. When more than one measurement is valid,
an active set of primary deviations from set intersection is maintained.
Thus, a single intersection is performed during each pass. Causal simula-
tion using time delays and heuristic rules were implemented for candidate
testing. Rules were incorporated into the prototype as Lisp functions

rather than through the use of a general rule interpreter. Global
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constraints were not implemented because they are relatively straight-
forward.

The mapping of faults to primary deviations was done for the particu-
lar contexts of the example processes studied. Context-specific rule bases
were developed for the process equipment listed above. Plant-independent
rule bases were not developed.

Three examples were studied in detail: a tank with a level control
system, which contained 21 nodes and 29 arcs; a vaporizer, which contained
45 nodes and 65 arcs; and a CSTR with an exothermic reaction and external
cooling, which contained 122 nodes and 173 arcs. For the CSTR example, a
dynamic simulator was developed to generate numerical values for the
process measurements. The qualitative values entered into DIEX were

determined from the simulation output for specific faults.

Plant Implementation

The conclusions generated by the diagnostic system are only valid when
the assumptions on which the candidate generation procedure is based, are
satisfied. Three of the assumptions, which are listed below, are concerned
with implementation issues. Because the second and third assumptions are
not always satisfied in practice, when these assumptions are violated, the
diagnostic strategy outlined is insufficient to diagnose the failure.
Additional knowledge can be incorporated into the diagnostic strategy to
handle these cases. Each of the assumptions is reviewed and the research

contributions are summarized.

o Assumption: The normal operating ranges for every measurement are
selected so that if a fault occurs, one or more measurements will

deviate outside of their normal range and become valid.

The limitations of mapping continuous variables into discrete states
are presented and the selection of the normal references, used to determine
when a node is valid, was investigated.

The mapping of continuous process variables and parameters into

discrete qualitative states has two principal drawbacks. First, all
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quantitative values that are mapped to a specific qualitative state have
the same qualitative value. The relationships X < Xy Xp = X9, and
Xy > X, between the parameters in the same qualitative state cannot be
determined. Second, the assignment of a qualitative value is sensitive to
small changes in a variable's numerical value when the numerical value is
near an endpoint of the qualitative range. A differential change in the
continuous value can result in a discrete change in the qualitative value.
When a measurement crosses an endpoint of the normal range, the diagnosis
can change abruptly, due to the discrete logical decision on whether to
bound the search space or to continue to search along the causal arc.

Assigning a qualitative value to a process variable depends on the
normal range chosen for its reference. If the normal range is too narrow,
small disturbances and transients will cause the node to be valid, and
activate the diagnostic system. If the range is too wide, a deviated
process variable caused by a fault may not be detected; the measurement
does not cross the alarm threshold and the node's qualitative value remains
'0'. Deviated process measurements that are misclassified as normal
because of poorly set normal operating bands adversely affect candidate
generation because the search space is bounded by these normal measure-
ments. Therefore, the expected values and bounds must be set correctly to
filter out normal process disturbances while being sensitive enough to
detect abnormal symptoms.

Alarm thresholds are set from experience and should be statistically
determined from historical process data. The range endpoints are chosen so
that if the process variable deviates outside the normal range, then a

fault has occurred.
o Assumption: Process variables can only deviate in a single direction.

This assumption restricts a process variable to a single direction of
deviation, and therefore, a single qualitative value assignment. But vari-
ables that return to normal and deviations that change direction (undergo
inverse response) do occur.

These cases can be diagnosed correctly if a history of the qualitative

values assigned to each digraph node is maintained. Historical values of
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variables that return to normal or change qualitative sign allow the
causally downstream deviations to be explained by fault propagation through
those variables. When historical values are retained, the procedure for
constructing the valid tree during candidate generation becomes "a node
causally upstream from the current node is added to the valid tree if its
qualitative value is or ever was of the the correct sign to make the causal
arc consistent." The use of historical values and the digraph modification
for inverse response suggested by Oyeleye and Kramer [1987] can eliminate

the restriction to single qualitative state changes.

o Assumption: If a disturbance is propagating along a causal path and two
process variables in the path are measured, the causally upstream

measurement will become valid before the downstream measurement.

This assumption may be violated for faults with small disturbance
magnitudes, because the effect of the fault may be insufficient to cause
all the measurements along a causal path to be valid. If one or more
normal measurements lie in the path, then the causal search from the
farthest downstream valid measurement is bounded by a normal measurement
and the actual primary deviation is not included in the set of possible
fault origins.

Two approaches for diagnosing faults when the disturbance is on the
same order of magnitude as the normal process fluctuations are (1) reevalu-
ating the qualitative value assignments of measurements, and (2) bounding
the causal search using quantitative values of the maximum arc gains. In
the first approach, the qualitative values of the measurements are analyzed
by the diagnostic procedure. If the quality of the solution is poor (e.g.,
several independent failures), normal sensors that are close to the alarm
thresholds are reassigned '+' and '-' values. The diagnostic system is
rerun with the new valid nodes to see if the solution can be improved. The
second approach for addressing faults with with small disturbance magni-
tudes incorporates the quantitative values of the maximum arc gains. If
the quantitative values of the maximum arc gains are known, the gains and
the numerical values of the measurements can be used for terminating the

causal search during candidate generation. Given the causal arc X — Y,
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where both X and Y are measured, let x and y be the numerical values of the
measurement deviation away from the normal references x, and y,, respec-
tively, and G

XY
construction of the valid tree, if the current valid node is Y, node X is

be the maximum gain between the two nodes. During the

added to the valid tree only if the deviation at Y can be explained by the
observed deviation at node X. Mathematically, node X is added to the valid
tree if

sgn(x * GXY) = sgn(y), and

|x * Gyl 2 |y].

If the deviation at node Y is greater than can be explained by the devia-
tion at node X, the causal search is bounded along this arc. When unmea-
sured digraph nodes exist between two measurements, the overall path gain

is used.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

The purpose of process control systems is to maintain process vari-
ables within their desired ranges. While control systems compensate for
small disturbances, large disturbances and process malfunctions can cause
the control system to saturate, and operating conditions will vary outside
these design limits. When process variables deviate beyond their desired
ranges, not only is product quality in jeopardy, but these variations, if
left uncorrected, could result in a catastrophic event such as fire,
explosion, or the release of toxic chemicals.

In plants equipped with an information system, measurements of impor-
tant process variables are collected in a central control room. Abnormal
measurements trigger alarms which alert the process operator.

It is the process operator's responsibility to interpret the measure-
ments and take corrective action, either by restoring the plant to normal
operation or initiating shutdown procedures. With training and experience,
humans can perform the task of troubleshooting quite well. They incorpo-
rate multiple problem-solving strategies, can reason with incomplete and
inaccurate data, and can view the process from a global perspective.

On the other hand, the operator's ability to accurately diagnose
process upsets may be severely limited. The diagnostic process is creative
and demands significant cognitive energies. Errors and inaccuracies in
reasoning, including poor recall and an inadequate understanding of the
plant, will yield incorrect diagnoses. Interferences such as stress,
fatigue, and boredom also impair operator performance. Humans have diffi-
culty handling large amounts of data; they minimize or ignore much of the
information and focus on a small subset. Although operators are usually
well-trained in standard operating procedures, they may have difficulty
handling uncommon or unanticipated events. Diagnosis may require an
understanding of chemistry and physics, in which they are seldom trained.

Experts may not be available for consultation due to work shift, employee
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turnover, or vacations. Other factors affecting performance include the
operator's training and operating experience. Because time constraints are
critical, hesitation as well as inappropriate action could 1lead to
disaster.

The increased complexity of plants in the process industries has made
fault diagnosis more difficult. Integrated plant designs with several
material recycles, complex utilities distribution, and energy integration
increase the number of paths for disturbance propagation. Control and
backup systems, designed to compensate for disturbances, tend to obscure
the symptoms of faults.

The operator's effectiveness is crucial to the safe and economic
operation of the plant. Early failure detection and diagnosis can reduce
the number of plant shutdowns. Fewer shutdowns result in greater plant
availability and improved operating margins. The losses resulting from a
major accident can be staggering: liability for property damage, personal
injury and death, the loss of raw materials and equipment, a long period of
business interruption, the loss of company goodwill, and reduced employee
morale. The early and effective diagnosis of faults can lead to increased
safety and profitability.

Today, the process operator requires assistance in diagnosing the
cause of upsets. The reasons presented—human factors, plant complexity,
economics, and safety—illustrate the urgent need for a diagnostic system

to assist the operator in responding to process alarms.

1.2 Research Scope

The design of a computer-based aid to assist operators in the diagno-
sis of process failures is investigated. The diagnostic aid is intended
for the chemical and nuclear industries in which process measurements are
collected by fixed instrumentation and displayed in a central control room.
The diagnostic methodology described in this thesis is designed to assist
the process operator by interpreting the real-time process data and gener-
ating a list of possible fault candidates. When a fault occurs, the
diagnostic system appiies knowledge stored in the system to interpret and

diagnose the abnormal measurements. From the list of fault hypotheses
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generated, the operator in the control room can then direct field personnel
to confirm or reject the individual candidates. This is accomplished by
obtaining additional information not available in the control room, e.g.,
through visual inspection, equipment noise and vibration, etc., and by
gathering measurements from equipment-mounted sensors.

The thesis integrates and builds upon research in several disciplines
outside of chemical engineering, in particular, the areas of cognitive
science, artificial intelligence, and computer science. Research in
cognitive science is broadening our understanding of human reasoning and
problem solving. Advances in artificial intelligence, specifically in the
areas of qualitative modeling of physical systems and knowledge-based
expert systems, are fostering the development of computer-based qualitative
reasoning. Advances in computer hardware, including list processors and
increased data storage, and the continuing improvements in process monitor-
ing and control, will facilitate the development of a commercial quality
process diagnostic system.

The goal of this research is to improve operator performance in the
diagnosis of faults through the design of a computer-based diagnostic
system which will assist the operator during plant upsets. Through the
implementation of such a system, it is hoped that the number of faults
leading to production down time can be reduced and the number of industrial
accidents lessened. The rapid and accurate diagnosis of process failures
should lead to greater profitability and increased safe operation in the

process industries.
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Chapter 2

FAULT DIAGNOSIS

In this chapter, the task of fault diagnosis is investigated from
three perspectives. The process environment is first examined. The
characteristics of the domain place significant demands on the operator.
Second, previous approaches to process fault diagnosis are classified into
two general categories and the advantages and limitations of each are
summarized. Third, the characteristics of human diagnostic reasoning are
studied to identify those that are relevant to the design of a
computer-based diagnostic aid. From these viewpoints, a list of several
desired attributes of a diagnostic aid are presented and an overall system
architecture is proposed. From this investigation, the thesis objectives

are formulated.

2.1 Fault Diagnosis in the Process Environment

Diagnosis is the task of identifying the cause or origin of some
observed, abnormal behavior in a system. In the process environment,
abnormal behavior is identified by the deviations of process measurements
away from their normal, expected values. The cause of the abnormal behav-
ior, one of a large number of possible faults, is usually not directly
observed. The only information available to the operator in the control
room is a pattern of measured process variables that have deviated as a
result of fault propagation. Diagnosis, then, is reasoning from these
known symptoms to the unknown cause.

Reasoning from a pattern of abnormal measurements in the control room

is a difficult task. Diagnosis is demanding because:

o A large portion of the plant is monitored and controlled from a single

control room. Hundreds of process measurements are collected.
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Even with the large number of measurements, only a small fraction of the

total number of process variables are measured.

Coupled with the large plant size is complexity. Many paths of inter-
action exist between process variables through highly integrated process

units.

A large number of faults need to be recognized.

Fault propagation may be fast and affect several units simultaneously
(relative to the sampling rate). Because pressure and flow disturbances
propagate at the speed of sound, fault symptoms may appear almost

instantaneously far from the fault origin.

Control and backup systems may be complicated and embody multiple
objectives. The intent behind the control scheme design may not be
obvious to the operator. Thus, the operator may have difficulty under-
standing how and why the process responds as it does during a distur-
bance. Without a sufficient understanding of the control systems, the
active alarms may contribute nothing to his resolving the cause of the

upset.

Diagnosis involves synthesizing a large amount of information, including
mass and heat transfer, fluid statics and dynamics, thermodynamics,

reaction kinetics, physical properties, and process chemistry.

Measurement uncertainty, sensor degradation, and calibration errors

decrease belief in the fault hypotheses generated.

Severe consequences may result if the failure is not detected, diagnosed
and corrected early. The large potential for loss puts pressure on the

operator to respond.

Several diagnostic heuristics for locating faults in the process

domain are inadequate for a general solution procedure. Among them are
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Heuristic: Faults propagate in the direction of bulk fluid flow.

Disturbances that affect pressure and flow rate propagate both with and
against the direction of bulk fluid flow. Thus, measurements may deviate

physically upstream from the fault origin.

Heuristic: If one or more of the inputs to a process unit are abnormal,

then the fault is not located in the unit.

Material recycle loops and feedback control systems can cause process unit
inlets to be disturbed as the result of outlet disturbances. Therefore,
the fault may lie within the process unit or downstream of the abnormal

measurement.

In summary, locating the origin of failures in process plants is quite

complex and requires the integration of numerous types of knowledge.
2.2 Model-Based and Experience-Based Diagnostic Strategies

At a fundamental level, diagnosis can be considered the task of
matching an observed pattern of abnormal symptoms to a reference pattern.
Strategies for fault diagnosis can be differentiated on how the reference
pattern is obtained. If the reference patterns are obtained from compiled
observations of the system over time, such that a specific fault is
directly related to an individual pattern in the database, then the method
is an experience-based diagnostic strategy. The term "experience-based" or
"heuristic-based" is used because the known patterns of observations come
directly from experience. During diagnosis, abnormal symptoms from the
system are compared to the stored patterns to yield a set of possible
faults. The fault considered most probable is the one with the closest
match. On the other hand, if a model of the system is used, which repre-
sents a deeper understanding of the physical behavior of the system, then
the method is classified as a model-based diagnostic strategy. Here, a
model is loosely defined to include any representation that involves an

understanding of the system's underlying mechanisms or functioning;
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model-based strategies incorporate the knowledge of the relationships
between the system's parameters and state variables. To illustrate the use
of models in diagnosis, consider a model-based hypothesis generation and
test strategy. Given a fault hypothesis, the model is used for fault
simulation to generate the expected pattern of measurements. The simula-
tion results are compared with the actual known observations to yield
possible diagnoses. If the model can be "run in reverse," the model can
identify possible fault origins given the abnormal symptoms. Rasmussen and
Jensen [1974] and Rasmussen [1978] [1979] [1981] call these strategies
symptomatic and topographic, respectively. Note that models can be used to
prepare the list of abnormal patterns beforehand, through fault simulation,
to match symptoms directly to faults. The distinction between these two
basic strategies rests on the use of a system model.

Experience-based and the model-based strategies have advantages and
limitations. One drawback of experience-based strategies is that the
symptoms of every fault must be known prior to diagnosis. 1If a particular
fault has not been encountered and its pattern of symptoms are not stored
in the diagnostic system, then the fault cannot be diagnosed and no infor-
mation is generated by the system. This limitation is especially dangerous
because the faults that the operator will have the most difficulty in
identifying, i.e., those failures with a low rate of occurrence, generally
are not covered by experience. Second, the patterns stored in the database
depend on the particular context. Unless two systems are identical, the
knowledge in the database cannot be transferred and used for the diagnosis
of the second system. The database of patterns must be created from
scratch for every new system. Third, fault resolution is dependent upon
the extent of fault propagation. The fault must be significantly developed
before the set of fault candidates is reduced to a feasible number.

One advantage of model-based strategies over experience-based methods
is that the knowledge of the underlying mechanisms can assist in diagnosing
unfamiliar faults. Second, although models of an entire process plant are
specific to the plant, models of system components are plant-independent.
Models developed for components can be developed once and used for a
variety of processes. For example, the functioning of a valve is identical

across plant sites. Third, the knowledge contained in the model aids fault
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resolution. Although several database patterns may match the observed
symptoms, many patterns may not be consistent with the system's underlying
physical behavior.

A major limitation of model-based diagnostic strategies is that a
system model is required. Models may be difficult to formulate because it
involves gaining an understanding of the underlying physical principles of
the device. This is especially true in domains where human understanding
of the physical mechanisms is weak or nonexistent (e.g., pathology). The
model must also be able to characterize the system over the entire range of
operation. Second, solution procedures are necessary to evaluate or solve
the model. Third, model-based diagnosis is generally slower than
experience-based methods, because solving models entails more effort than
comparing observed systems to stored data. This is especially true for
common failures which require the repeated use of the model-based procedure
to diagnose each occurrence. In experience-based strategies, neither a
model nor a solution procedure is required. The strengths and limitations
of the two strategies are summarized in Figure 2-1.

Many of the diagnostic systems for the process environment reported in
the literature (e.g., fault trees, cause-consequence diagrams, decision
tables, rule-based expert systems)f use only a single diagnostic strategy.
The drawbacks of the individual strategies can be overcome if both
experience-based and model-based strategies are incorporated in the diag-
nostic system. Notice that the strengths of one method offset the limita-
tions of the other.

Quantitative equations have been the dominant method for modeling
physical systems. Dynamic models, involving systems of differential and
algebraic equations, are well developed and commercial computer programs
are available to solve them. Unfortunately, modeling and computational
difficulties in the quantitative approach severely restrict this represen-
tation for fault diagnosis. The major difficulties include specifying the
correct variables and form of the equations, fitting the model parameters,

and guaranteeing that the system of equations is valid over the entire

fResearch in fault diagnosis is reviewed in Chapter 7.
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range of operation. Also, a fully specified set of inputs is needed to
solve the system. The quantitative model, running in parallel with the
process, can detect deviations of the process away from the model predic-
tions. But the model cannot be directly used to identify the specific
fault after the abnormal measurements are identified. Numerical equations
do not explicitly contain causal directionality; therefore, they cannot
describe the path of fault propagation through the system. Faults can only
be identified indirectly through fault simulation. This requires repeated
simulations and that the effects of all possible faults be mathematically
characterized. These limitations of quantitative representations provide

an impetus for the development of qualitative models for fault diagnosis.

2.3 Characteristics of Human Reasoning During Problem Solving

The ability of man to reason is unparalleled. Even when humans face
problems that are not well understood, with data that are inaccurate and
incomplete, they still perform exceptionally well. This suggests that the
design and development of a diagnostic aid for human problem solving should
start with an understanding of the way humans perform diagnostic reasoning.
The aim of this section is to study human performance to identify the
reasons why man is proficient at problem-solving tasks. This study will
serve as a guide for building computer-based reasoning systems. Note that
the objective of the diagnostic aid is not to imitate human performance
(because human reasoning has its shortcomings). Rather, the goals of the
computer-based aid are to capture human knowledge and general reasoning
strategies, so that the computer can interact with the human operator and
generate understandable explanations, and to allow the computer to enhance
human diagnostic ability by compensating for the limitations of human
reasoning.

In a review of research in cognitive science, I have identified three
characteristics of human problem solving that are relevant to the design of
a diagnostic aid: the use of multiple problem-solving strategies, qualita-
tive reasoning, and the application of both general and context-specific

knowledge. These characteristics are investigated.
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2.3.1 Multiple Problem-Solving Strategies

Human reasoning is characterized by the use of multiple problem
solving strategies. These strategies include pattern recognition, the use
of simple models (both qualitative and quantitative), hypothesis generation
and testing, simulation, cause and effect reasoning, heuristic expertise,
procedures and algorithms, trial and error, and reasoning by analogy.

Empirical evidence indicates that people solve problems using both of
the general diagnostic strategies discussed in Section 2.2, at different
times during problem solving. If given a choice between experience-based
and model-based approaches, humans would prefer to act as context-specific
pattern recognizers rather than attempting a more analytical approach. If
the situation is familiar and experiential knowledge is known, the
experience-based strategy is used first. Failure to solve the problem in
this mode causes the diagnostician to employ the model-based strategy,
which considers the functional topography of the system. Using this
strategy, the human must go beyond the surface features of the problem and
consider the underlying system structure. Rouse [1983] proposed a model of
human problem solving whose architecture is based on the assumption that
humans have a clear preference for proceeding on the basis of
state-oriented pattern recognition, rather than on the basis of
structurally-oriented information. The model first attempts to choose an
appropriate action based on the observed symptoms of the malfunction. If
the model should fail to recognize a familiar pattern of abnormal state
variables, then it selects an action based on the functional structure of

the malfunctioning system.
2.3.2 Qualitative Reasoning

Qualitative reasoning is the ability to reason about and solve prob-
lems using a qualitative description of the system and qualitative changes
in the system's parameters. Humans, when performing diagnostic tasks, do
not solve a system of differential and algebraic equations. Rather, they
reason by assigning qualitative values to the parameters of a qualitative

model. 'Low' and 'high' in "low pressure" and '"high temperature' are
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examples of qualitative values. Numerical values of system parameters are
not required for reasoning.

In many domains, qualitative reasoning is superior to formulating and
solving a system of quantitative equations because reasoning based on
qualitative models and data is sufficient for performing the desired task
and requires less computation. For example, a process operator diagnosing
faults in a chemical plant does not need to know the exact, dynamic behav-
ior of a set of process variables; a qualitative description of how the
variables change is often satisfactory.

A wide variety of models can be used to represent any given physical
system. Model selection depends on the characteristics of the domain, the
kind of reasoning to be performed, and the nature of the solution desired.
The example below illustrates the wide range of models describing the
heating of a plate.

A plate of thickness L, shown in Figure 2-2, is initially at ambient
temperature T_. The bottom of the plate is then subjected to the uniform
heat flux q. Assume that the thickness of the plate is small compared with
its other dimensions so that heat loss from the sides may be neglected.

The thermal conductivity k is constant.

h T

—

Figure 2-2
Heating a Plate
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Model 1: A partial differential equation is required to exactly specify
the temperature within the plate over time with respect to the spatial

variable x.

Pep 3¢ = k 37

The initial and boundary conditions in x measured upward from the bottom of
the plate are

T(x,0) = T

- 2T(0,t)
ax

aT(L,t)

“k 9x

h[T(L,t) - T_].

Model 2: The problem can be simplified if the plate temperature is lumped.
An ordinary differential equation results. The initial condition is
T(0) = T..

dT
pch & - a-hT-T)

Model 3: The problem can be further simplified with a qualitative model.

q T

In this formulation, the arrow denotes 'causes' and the '+' sign indicates
that the values of the two terms at the arrow's head and tail change in the
same direction. In this representation, the values of q and T are qualita-
tive and can assume the values 'increases' and 'decreases.' The qualita-
tive model is interpreted as "increasing the heat flux increases the
Plate's temperature." Note that the qualitative model eliminates the
rigorous mathematical formulation while retaining the important qualitative
features of conductive heating.

Humans, when performing diagnostic tasks, do not mentally solve a
system of differential and algebraic equations. Rather, they reason

qualitatively about the deviations in the values of process variables and
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parameters. In most cases, the operator diagnosing faults in the process
environment does not need to know the exact, dynamic behavior of every
changing parameter. Rather, he reasons from a qualitative description of
the plant and the qualitative changes in the magnitudes of the process

measurements. Model 3 most closely captures this description.
2.3.3 General and Context-Specific Knowledge

Human reasoning is characterized by the use of both general and
context-specific knowledge. 1In the process environment, troubleshooters
who lack process-specific knowledge can do a credible job of diagnosis by
relying on general diagnostic strategies and process models which capture
the underlying physical laws and mechanisms. Local plant experts also do
well because they employ specific process knowledge. Thus, the information
used in problem solving includes both general strategies for reasoning and
general information about the domain, as well as data specific to the
current problem.

This dichotomy of diagnostic knowledge is represented in Figure 2-3.
The ellipse labeled Plant A represents the total knowledge required to
diagnose failures in Plant A. The intersection of this knowledge with the
knowledge required to diagnose Plants B and C, represented by the shaded
region, is that knowledge which is common among all three plants. This
core knowledge characterizes procedural and declarative knowledge that is
common among processes. Core knowledge includes general strategies for
fault diagnosis, models characterizing the behavior of general classes of
process equipment, equipment failure modes, and general knowledge represen-
tation formats for the storage of process data. Core knowledge is common
among plants, and therefore transportable between processes. This knowl-
edge does not have to be relearned or redeveloped at new plant sites. On
the other hand, plant-specific knowledge is valid only within a given
context. Plant-specific knowledge includes the plant topography (intercon-
nections between the individual pProcess units), equipment design specifica-
tions, context-dependent patterns of abnormal measurements, normal operat-

ing ranges for process variables, plant operating procedures, and current
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Plant A

Plant C
CORE KNOWLEDGE PLANT-SPECIFIC KNOWLEDGE
» General diagnostic strategies e Plant topography
* Models of general categories of o Equipment design specifications

process equipment

e Patterns of abnormal measurements
e Equipment failure modes (for experience-based diagnosis)

* Knowledge representation » Normal operating ranges
formats for design data

e Operating procedures

e Current values of process
measurements

Figure 2-3

Knowledge Required for Diagnosis:
Core Knowledge and Plant-Specific Knowledge
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values of process measurements. Both categories of knowledge are necessary

for effective diagnosis.

2.4 Desired Attributes of a Diagnostic System

Several desired characteristics of a diagnostic system are presented
below. The list is not exhaustive. Rather, its purpose is to provide an
initial direction for system design, as well as serve as criteria for

evaluating diagnostic systems.

1. The primary objective of a diagnostic aid is accuracy. The system
should produce a list of possible faults that includes the actual fault
origin or origins. If the actual fault is not included in the set, the
operator will focus his attention on the wrong set of candidates. This

may be more harmful than having no diagnostic system at all.

2. The second major objective is to minimize the number of spurious faults
that are included in the list. A small set of fault candidates will
narrow the operator's focus. Although the number of process measure-
ments will ultimately determine fault resolution, the method should
incorporate as much knowledge as possible to eliminate implausible

failures.

3. The system should diagnose a wide range of failures and have the maximum
resolution between them. It should not be limited to certain classes of

faults (for example, only sensor failures).

4, The system should not be brittle at its boundaries. If a specific fault
is not identified, the system should at least present the location of
the failure in terms of one or more process units, or at a higher level
of abstraction, process subsystems, rather than yield no information at
all.
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5. Because the diagnostic aid must operate on dynamic, real-time processes,
the diagnoses must be generated faster than the process so that correc-

tive action can be taken.

6. The system should be easily modified and updated. Changes in the
process due to piping and equipment changes should not require extensive
reprogramming or data gathering. (Extensive effort includes, for
example, constructing a new fault dictionary, building new quantitative
models and estimating parameters and coefficients, and rewriting rules

in the knowledge base.)

7. The computer code should be flexible and easily portable to a variety of
process environments. The diagnostic system should not be designed anew
at different plant sites. For example, the diagnosis procedure should
be general, and therefore applicable to a wide variety of processes. A

modular system design reduces the costs of development and installation.

8. The aid should be able to use the installed instrumentation, without
requiring new sensors. This is not to say that additional measurements
cannot be added to improve the system's speed and fault resolution, but
that it should be able to perform fault diagnosis without specific

requirements for the number of sensors and sensor locations.

Implicit in this list is the assumption that multiple types of know-
ledge and multiple solution strategies will be incorporated if they can
improve the system's ability to identify the origin of the failure.

2.5 Overall Diagnostic Architecture

The process of troubleshooting involves three consecutive tasks:
detection, diagnosis, and correction. The overall architecture for the
diagnostic aid, illustrated in Figure 2-4, follows this sequence. First,
measurements of process variables are compared against their normal refer-
ence values. Error bounds or thresholds are established for every measured

variable so that if any measurement deviates outside its normal range, then
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a process failure has occurred. Once a deviation is detected, one or more
diagnostic strategies can be employed to reason from the abnormal symptoms
to specific fault candidates. Following the hierarchy of Rouse, the
diagnostic system first attempts to identify the process upset by matching
the sensor deviations against the stored measurement patterns in its
database. This initial screening of disturbances is used to identify
common failures (i.e., those that have been previously diagnosed and
stored). If the process deviations do not match the stored patterns, the
system then applies a model-based diagnostic strategy. Once the operator
determines the actual fault from the list of possible candidates, correc-
tive measures can be taken. This third step involves fault simulation, to
analyze the effect of disturbance propagation on the process, and the
implementation of remedial action guided by the standard operating, safety,

and shutdown procedures found in the plant operating manuals.
2.6 Thesis Objectives

This thesis addresses the design of a computer-based diagnostic aid
for real-time process plant fault diagnosis. Specifically, the research
investigates model-based diagnostic reasoning. The thesis objectives are
(1) to develop suitable representations to characterize the process and the
knowledge necessary for diagnosis, and (2) to develop a general strategy
for evaluating the representations.

Three themes, which parallel human diagnost_ . reasoning, underlie

these two objectives.

General versus Countext-Specific Knowledge

The research focuses on those elements of the diagnostic aid that are
general, or independent of the particular context. The context-independent
elements, termed the core knowledge, include general strategies for fault
diagnosis, models characterizing the behavior of general classes of process
equipment, general rules that relate specific failures to process variable
deviations, and general knowledge representation formats for the storage of
process data and equipment design specifications. Because the behavior of

general types of process equipment is identical across plant sites, models
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of system components are used to form the base of the process represen-
tation.

The separation of diagnostic knowledge into core and plant-specific
sections adds modularity to the diagnostic aid. Because the core knowledge
is transportable between plant sites, implementation involves adding only

the context-specific information.

Qualitative Reasoning

The research focuses on developing knowledge representations and a
diagnostic procedure that are qualitative. Qualitative reasoning, which
involves qualitative component models and qualitative values assigned to
the model's parameters and state variables, is sufficient for diagnosing a
majority of process failures. Qualitative reasoning overcomes the inherent

limitations of quantitative representations.

Multiple Problem-Solving Strategies

The research focuses on incorporating multiple problem-solving strate-
gies into a general solution procedure. Graph search, simulation, heuris-
tics, and qualitative constraints are used within a hypothesis generation
and test framework. The use of several strategies improves diagnostic
resolution because the additional strategies add knowledge which eliminates

infeasible fault candidates.

In summary, the goal of this research is to develop the core knowledge
necessary for model-based process plant fault diagnosis. The two major
constituents of the core knowledge are the general, qualitative,
component-based models for chemical processes and process equipment, and

the general solution procedure for evaluating the qualitative models.



53

Chapter 3

CAUSAL MODELS FOR FAULT DIAGNOSIS

Causal models are qualitative models based on the cause and effect
relationships between a system's parameters and state variables. Although
several authors have used causal models for diagnostic reasoning, none have
adequately characterized the causal interactions or described how to
develop causal models. Because causality is a powerful technique for
reasoning about physical systems and the causal digraph is a suitable
format for representing causal interactions, a more thorough understanding
of causal relationships and a procedure for developing the causal digraph
are desired.

In this chapter, I show how to derive the causal digraph for a set of
design equations, outline the limitations of qualitative representations,
present guidelines for developing causal digraphs for fault diagnosis, and

develop general causal models for standard system components.

3.1 Qualitative Models Based on Causality

In this section, a knowledge representation format for specifying the
causal relationships between process variables is developed. My focus is
on how changes in system parameters, or changes in the system itself,
affect other process variables. I use this representation for reasoning
about the behavior of a system. Note that the goal is to state or specify
the causal interactions, and not to explain or support why the causal
interactions exist (e.g., why heat is transferred or why processes approach
thermodynamic equilibrium).

Because qualitative reasoning requires qualitative descriptions of
system parameters, the values of parameters and attributes in the represen-

tation are symbolic, rather than numeric.
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3.1.1 Causal Digraph+

Causality is the relationship between a cause and an effect such that
the cause produces, or is the reason for, the effect. Within a system,
causal relationships exist between the system's parameters and state
variables. Causal interactions are local interactions because they exist
only between parameters and process variables that are in some sense
adjacent on a given level of model detail. This differs from quantitative
equations which can express relationships between any set of process
variables. Reasoning based on causality attempts to explain the behavior
of a system by the cause and effect relationships that exist between the
system's parameters and state variables.

The causal relationships are represented in a network structure termed
the causal directed graph (digraph). Nodes in the digraph represent
process variables (e.g., flow rate, pressure, temperature, species concen-
tration) and process parameters (e.g., resistance to flow, reaction rate
constant). Arcs represent the causal interaction between these terms. The
graph is directed because each causal influence is unidirectional: the
initial node at the arc's tail represents the cause and the terminal node

at the arc's head represents the effect.

3.1.1.1 Causal Digraph Arcs

The arcs in the causal digraph represent the causal interactions
between the system's variables and parameters. Each arc has a set of
attributes that characterize the causal interaction. A set of three

attributes is used here: sign, magnitude, and time.

Sign
The sign attribute represents the change in the causally downstream
variable due to the deviation in the causally upstream term. The qualita-

tive values '4+' and '-' are used to indicate that the process variables

TGraph theory terminology is summarized in Appendix A.
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represented by the initial and terminal nodes vary in the same direction

and in opposite directions, respectively.

Magnitude

This attribute specifies the strengtn of the causal interaction. The
magnitude, or gain, of the causal interaction is the degree of deviation of
the causally downstream variable resulting from a change in the upstream
variable. The qualitative value 'l' indicates that the magnitude of the
arc is large enough so that a deviation in the upstream node will cause the
downstream node to deviate. The value '0' indicates that the magnitude of
the effect is not large enough to cause a deviation at the terminal node.

The magnitude attribute is used to differentiate between the existence
of an arc and an arc with a small transmittance. Although a causal arc may
exist and be represented in the causal digraph, the effect on the terminal
node of the propagation of an influence along the arc may be insignificant.
(See Section 3.2.4.2).

Time

The time attribute specifies the delay between a cause and its effect.
The delay time is a measure of the propagation time for a deviation in the
causally upstream variable to reach the downstream variable along the
causal path. The qualitative value '0' for this attribute is defined as
zero delay (instantaneous transmission); a value of 'l' means that the time

delay is positive.

Since both magnitude and time attributes are actually continuous
variables, the classification of these values into discrete qualitative
states depends on the measurement and time scales chosen by the observer.
For example, the ability to detect changes in length will vary depending on
whether the measurement scale is in meters or millimeters. The definition
of an instantaneous transmission will vary for a system observed once a
minute versus once an hour. Thus, the detection of a deviation depends on
the granularity of the measurement scale chosen; instantaneous transmission
or a positive time delay depends on the granularity of the time scale
chosen. The qualitative values of the attributes of a causal arc are

summarized in Table 3-1.
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Table 3-1
Qualitative Values of the Attributes of a Causal Arc

Attribute Value
Sign + A positive deviation at the initial node causes a

positive deviation at the terminal node.

- Deviations at the initial and terminal nodes have
opposite sign.

Magnitude 1 Magnitude of the causal influence is large enough
to cause the deviation in the causally downstream
variable.

0 Magnitude is not large enough to cause the
deviation.

Time 0 Negligible time delay for the transmission of the

causal influence.

1 Positive time delay.

Numerical values of process parameters and design (expected) values of
process variables may be required to specify the existence of an arc and
the values of its attributes. Therefore, associated with each arc are a
set of conditions that must be satisfied before a causal arc can accurately
model a causal influence. Conditionals for the existence of causal arcs

and arc attribute values are discussed in Section 3.5.2.

3.1.1.2 Causal Digraph Nodes

Nodes in the causal digraph represent process variables, parameters,
and combinations of these terms. A node has no attributes that specify
causality.

Reasoning using the causal digraph is done by assigning qualitative
values to the nodes. Like the magnitude and time delay attributes of
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causal arcs, the actual values of state variables and system parameters are
continuous. Continuous values are mapped into discrete qualitative states
for qualitative reasoning. For each continuous variable and parameter, a
range is selected that represents normal operation of the system. The
endpoints of this range break the value continuum into three regions, and
are chosen so that the intervals represent qualitatively uniform behavior.
All quantitative values that lie within a region are assigned the qualita-
tive value of that region. In this work, the three symbolic terms low '-',
normal '0', and high '+' are used. Qualitative transitions, for example
from normal to high, occur at the boundary endpoints.

Numerical values cannot be mapped directly to qualitative values
because qualitative values are meaningless without a specified reference
value or normal range. For example, a 'high' temperature in one context
may be '"low" in another. The qualitative value ‘'high' has meaning only
when a reference temperature is specified. Therefore, qualitative values
do not represent absolute quantities. Rather, they represent the deviation
of a numerical value away from a specific reference. Mathematically, the
qualitative value of x, denoted [x], defined as the deviation from a
context-specific reference point x,, is given as [x] = sgn(x - x,). When

the reference is a range, the qualitative value of x is defined as

[x]
[x]
[x]

'-' when x < x,
'0' when x5 S x S X3
'+' when x; < x,

where x; and x, are the lower and upper range endpoints, respectively.

The reference value is the expected value or range that characterizes
the process variable or parameter under normal operating conditions.
Within the process envi.onment, the expected value could be stationary
(e.g., steady state processes), or be moving with time (e.g., batch or
semi-batch processes, changing set points, optimization). Reference values
can be obtained from historical data, controller set points, and quantita-
tive process models. For a process moving between states, the reference
values should be calculated from dynamic models. Deviations are identified
by comparing process data with the predictions of the dynamic models.
Because the reference state depends on the given set of process conditions,

the reference is context-dependent.
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Discrete variables (e.g., a valve is open or closed) change the
structure of the causal digraph and are not modeled explicitly as digraph
nodes. Discrete variables are used for digraph construction, as will be

discussed in Section 3.5.2.
3.1.1.3 Modeling System Behavior

The example presented below shows how system behavior is represented
by the causal digraph. The process schematic for a tank with a level
control system is presented in Figure 3-1. A causal digraph for this
system is illustrated in Figure 3-2. Arcs and nodes related to bulk fluid
flow are shown. The + or - sign on each arc represents the sign attribute
specifying the direction of influence.

The digraph is a suitable representation format for causality because,
in the examples studied by the author, there is usually only a small number
of process parameters and variables that directly influence a given process
variable. Thus, each factor can be suitably represented nnd each causal

influence can be made explicit.

3

TANK-1
\_/
2 3 4 5
PIPE-A V-1 PIPE-B
Figure 3-1

Process Schematic of a Tank with a Level Control System
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Figure 3-2

Causal Digraph for a Tank with a Level Control System

There is a clear distinction between the causal digraph as a data
structure and the values assigned to the nodes to characterize a specific
system state. The digraph, which represents the causal interactions
between the process variables, is fixed as long as the assumptions and
initial conditions used to build the digraph remain valid. On the other
hand, the qualitative values assigned to the nodes, which represent the
current state of the system, can change. Events (deviations in the physi-
cal system represented by the qualitative values '+' and '-' assigned to
the nodes) are distinguished from the processes by which these events

propagate through the system (represented by the digraph arcs).
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3.1.2 Reasoning Using the Causal Digraph

Qualitative reasoning about the behavior of a physical system can be
constructed from the causal digraph and the qualitative values assigned to
the digraph nodes. A perturbation in one node will affect another node if
a directed path from the given initial node to the terminal node exists.
The qualitative value of the terminal node can be explained by the devia-
tions that occur causally upstream in the path. Qualitative simulation is
accomplished by building a directed tree from a specified root node and
assigning consistent qualitative values to the nodes along each path.

To illustrate the explanatory power of the digraph representation,
consider the question "Why does the flow rate measurement Fsensor increase
when F1 increases?" with the schematic in Fig. 3-1. The answer can be
developed directly from the digraph in Fig. 3-2. Two paths are identified

from F1 to F The process variable and its qualitative value are

sensor’
enclosed in parentheses.

1. An increase in inlet flow rate (Fl’ +) increases the fluid volume in
the tank (V, +), which increases the liquid level (L, +). Static
pressure at the tank bottom increases (Pb’ +), which tends to increase
the flow rate (FZ’ +) and pressure (PZ’ +) at the tank's outlet. The
pressures and flow rates increase in PIPE-A, CV-1, and PIPE-B. The

increased flow rate (FAS' +) in PIPE-B causes the flow rate measure-

+).

ment to increase (F .
sensor

2. An increase in inlet flow rate (Fl’ +) increases the fluid volume in
the tank (V, +), which increases the 1liquid level (L, +). The
increased fluid level is measured by the level sensor and causes the

level measurement to increase (L +). This causes the control-

sensor”’

ler error to increase (L +), which causes the control valve to

error’
open (vl, +), which decreases the flow resistance (R34, -) in CV-1.

Flow rate increases in the control valve (F34, +), PIPE-A, and PIPE-B.
The increased flow rate (F45, +) in PIPE-B causes the flow rate

+).

measurement to increase (F ,
sensor
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Although the causal sequence of high and low qualitative values along
a path reads as if it is temporally ordered, the values of a set of nodes
may change virtually simultaneously. Temporal ordering depends on the
delay time attribute of each arc and the time scale chosen to increment the
model predictions.

The clarity of the causal explanation is a function of the terms and
concepts included in the digraph—the more rigorous the model, the greater
its explanatory power. The causal digraph should include all terms (as
nodes) that are important for reasoning in a given context. Because causal
explanations are constructed from a path of adjacent nodes, if important
interjacent nodes are not included, then the causal explanations provided
by the digraph are less explicit.

The local nature of the digraph makes causal arguments computationally
simple to construct. One limitation of the digraph is that ambiguous
qualitative values arise when multiple paths of opposite sign converge at a

digraph node. This difficulty will be discussed in Section 3.3.3.

3.2 Developing Causal Models for Engineered Systems

Modeling a physical system by a set of quantitative equations is the
traditional approach for describing a system's behavior. Quantitative
formulations, though, pose several difficulties. These difficulties
include generating the set of equations, identifying the numerical values
for system parameters, specifying boundary and initial conditions, and
having a solution technique that can solve the quantitative system. One
major drawback of quantitative models is that the system cannot be solved
(and thus, cannot provide any information) unless it is fully specified.

If an application does not require a rigorous solution, it may be
advantageous to develop an alternate representation that does not require
the formulation and solution of the system of design equations. Fault
diagnosis is one application that falls in this category. A qualitative
description of the process and of the changes in the values of the process
variables is sufficient for many of the diagnostic subtasks. Causal models
overcome the requirement of a fully specified system because the models
explicitly show the causal relationships between the process parameters and

variables.
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My objective is to construct models that will facilitate qualitative
reasoning. This section describes how to derive the causal digraph for
physical systems that can be characterized by a set of mathematical equa-
tions. Knowledge of the underlying physics is necessary to identify the
causal relationships because the equations alone do not contain this

knowledge.

3.2.1 Engineered Systems

The purpose for developing causal models is to qualitatively describe
the behavior of engineered systems. Engineered systems are physical
systems in which a thorough understanding of the fundamental principles and
mechanisms exist, and which can be fully specified or described by a set of
differential and algebraic equations. In the chemical engineering environ-
ment, a large fraction of the underlying physical principles are known, and
standard quantitative models of heat, mass and momentum transfer, thermody-
namics, kinetics, and process chemistry are widely used. Engineered
systems differ from other domains like medicine, where a heuristic or
rule-based approach is the standard format for knowledge representation.
For example, in medical diagnosis, the underlying physical mechanisms are
usually unknown, and diagnoses are generated directly from observed

patterns of symptoms.

3.2.2 Knowledge of the Underlying Physics

The mathematical relationships and equations used to quantitatively
model a physical process do not contain the causal information needed to
specify the relationships between the process variables for causal
modeling. For example, given the equation that describes the volumetric
flow of fluid through a valve, will changing the upstream pressure change
the flow rate or increase the valve coefficient? To make this point more
clear, consider Equation 1. How do changes in a affect the other terms in

the equation?

a-b=cd (1)
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The answer cannot be determined because the information necessary to
specify how changes in one term affect the other terms is not contained in
the equation. Therefore, causality cannot be specified solely from Eq. 1.
Mathematical equations specify equality relationships between sets and
combinations of parameters, but the equations contain no information on how
changes in an individual process variable or parameter directly affect
other system variables.

Knowledge of the physical principles and mechanisms behind each
equation is necessary to specify causality. To illustrate, let Eq. l

describe the flow of electricity in a conductor, given by Equation 2.

E1 - E2 = iR (2)
Causal influences can be specified from an understanding of the physical
system and the fundamental physical principles that the equation repre-
sents. The electromotive force is the driving force for current, i.e.,
current results from a difference in electric potentials. Resistivity,
related to the resistance R, is a physical characteristic of the material
and is independent of AE or i. From this physical understanding, the
causal digraph is developed and presented in Figure 3-3. The causal

digraph shows that an increase in emf (an increase in El’ a decrease in E2’

D

Figure 3-3
Causal Digraph for the Flow of Electricity in a Conductor
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or both) increases the current. An increase in resistance decreases

current, which has a tendency to increase E., and decrease E2 relative to

1
their nominal values. Because a causal path does not exist from E1 to R, a
change in E, cannot affect R. This knowledge (a does not affect d) is not
contained in Eq. 1. The causal relationships are evident only with an

understanding of the physical system.
3.2.3 Developing the Causal Digraph

For an engineered system, considerable expertise has usually been
invested to develop a set of design equations. The system of design
equations is useful for building causal models because they show the
parameters and variables that are important (i.e., those that should be
included in the causal digraph), but as discussed above, the equations
alone provide no information about the causal interactions between the
terms.

I have been successful at building causal digraphs by classifying the
individual design equations into categories. These categories aid the
construction of the digraph because they group together general types of
design equations. For each class, a standard set of procedures specify the
causal arcs and their sign attribute. The four categories of design
equations used to construct the causal digraphs for the examples presented
in this thesis are driving force equations, balance equations, functional

relationships, and algebraic equalities.
3.2.3.1 Driving Force Equations

Driving force equations describe the steady-state rate of transport of
material, momentum, and energy between two locations. These transport
processes arise from gradients in pressure, temperature, and concentration,
and are governed by the laws of fluid mechanics and by the generalized
diffusion equation. Driving force equations include bulk mass flow due to
a pressure difference, heat transfer by conduction, and species transfer by

diffusion.



Figure 3-4a: Heat Flow Due To Temperature Gradient (T1 > TZ)

Quantitative Equation

_1
Q = UA(TI - Tz)l R =

UA
Causal Digraph Arcs R
Q= I(Tll 'Tzo -R)
T, = 1(-Q)
T, = £(Q) Q
‘;457§$§
1} Té

Figure 3-4b: Mass Flow Due To Pressure Gradient (P1 > P2)

Quantitative Equation

F = clzf(P1 - PZ)’ R =

12
Causal Digraph Arcs R
F = f(Pl, -P2, -R) _
P, = £(-F)
P, = #(F) F
2 X\
<?/’/if YE\\\\\
p # P
1 2
+
T, > T,
Ci . > C
1 2
Figure 3-4

Causal Arcs for Driving Force Equations
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The general causal model for driving force equations has four terms:
upper and lower potentials for the driving force, flow, and resistance.
From physics, flow rate increases when the driving force increases,
increased resistance decreases the flow rate, and flow tends to reduce the
driving force. This knowledge defines the causal arcs for this class of
equations. Heat and bulk mass flow examples, presented in Figure 3-4,
illustrate the general digraph model. In both examples, the potential at
state 1 is greater than the potential at state 2. If state variables and
physical properties characterize the flow, then causal arcs are necessary
to show their transport. In Fig. 3-4b, causal arcs for temperature and
species concentration represent the transport of these quantities in the
direction of bulk mass flow. If measurement is on the order of seconds,
the time attribute for the arcs characterizing the driving force, flow, and
flow resistance 1is zero. Arcs characterizing the transport of state

variables and physical properties usually have positive delay time.
3.2.3.2 Balance Equations

Balance equations describe the conservation of mass, energy, and
species within process units. Causal paths are obtained from the unsteady-
state form of the balance equation. Arcs exist from the right-hand-side
parameters and process variables to the dependent term in the derivative.

dx,

Expressed mathematically, given a—l = fi(g). a causal arc exists from xj to

t

dx
X, if Eg— (EEiJ 20, 1i=j. The sign attribute of the arc is the sign of
J
the partial derivative evaluated at expected (normal) conditions. In

Figure 3-5, mass and energy balances around a tank illustrate the deriva-
tion of causal arcs for balance equations.

When simplifying and solving balance equations, driving force equa-
tions and functional relationships are normally substituted into the
balance equation. For example, the substitution of Q = UA(T - Tr) and
r = kCA2 eliminates Q and r, respectively, from the equation. Note that
the substitution also eliminates these variables from the digraph. The

causal digraph should be developed without these substitutions because, as
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Figure 3-5a: Mass Conservation Around Tank With Two Inlets (Subscripts 1
and 2) and One Outlet (Subscript 3)

Assumptions: 1. Constant density of fluid (p)

2. Fl’ F2, F3 >0

Quantitative Equation

av _ )
g = F tF - F

Causal Digraph Arcs V= f(Fl. F,» -F3)

F
3

Figure 3-5b: Energy Conservation Around Tank With An Exothermic
Chemical Reaction

Assumptions: 3. Well-mixed tank (uniform bulk properties, e.g., T, = T)
4. Constant heat capacity of fluid (C_)
S. Constant heat of reaction (AHr) P

6. T> Tl’ T > T2

Quantitative Equation

dH _

dH _ . d(VI)
dt

pCp dt

= pCp(FlT1 + F2T2 - F3T) + AHrrV

dT

avm) _ o [4T , ga¥] o ¢ [ar i
= pCp[th + T ] pCp[V + F.T + F,T F3T]

pcp dt

dt dt 1 2

Figure 3-5
Causal Arcs for Balance Equations
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ar _ P%
pcp -V [Fl(T1 -T) + F2(T2 - '1‘)] + 8H x
F F AH
aT _ _ 1 (p . -2 (7 - _r
=" v @I -y (T-T)+ oC r

Causal Digraph Arcs T = f(-Fl, Tl' -F,, Tz. Vv, r)

\/

1—> T «—F,

7\

Figure 3-5 (cont.)
Causal Arcs for Balance Equations

will be shown in Section 3.4.2, this elimination of variables may cause

spurious interpretations of the digraph.
3.2.3.3 Functional Relationships

Functional relationships explicitly show how one or more independent
variables influence a given dependent variable. Examples of functional
relationships in physical systems include process measurements, control
system outputs, kinetic rate expressions and other empirical relationships.
Arcs exist from the independent variables to the dependent variable. Given

ax
= fi(g). a causal arc exists from x, to x, if — # 0, i # j. The sign

j 1 g

attribute of the arc is the sign of the partial derivative evaluated at

X5

expected (normal) conditions. Generally, the time attribute for all arcs
derived from functional relationships is '0', except when the function is a

time integral.
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3.2.3.4 Algebraic Equalities

Because the terms in an equality relationship can be rearranged to
solve for any of the parameters or variables in the equation, knowledge of
the underlying physics is necessary to specify the correct causal relation-
ships. Causal arcs are identified by evaluating how deviations in each of
the terms affect the other terms in the equality. For example, consider
density, defined as p = m/V. Given the values of any two of the terms, the
third can be calculated. But to specify the causal interactions, the
effects of changes in p, m, and V on the other terms in the equation must
be understood. Changes in density are caused by changes in mass or volume,
yielding an arc with positive sign from m to p and an arc with negative
sign from V to p. Changes in mass cannot be caused by changing p or V, and
thus, arcs do not exist from these terms to m. A second example is the
volume of fluid in a tank, given by V = AL. The volume of fluid can be
changed only by changing the flow of mass into or out of the tank, and not
by changing the cross-sectional area or liquid level. Level can change by
changing the apparent volume of fluid (e.g., by adding more mass or drop-
ping a more dense object into the tank), or by changing the cross-sectional
area. Therefore, this equation generates two causal arcs, one with
positive sign from V to L, and the second with negative sign from A to L.

In the two examples considered, only a single arc connected any two
terms. Algebraic equalities can also yield two causal arcs of opposite
direction between two variables. Consider Pascal's law: the magnitude of
the pressure at any point in a fluid at static equilibrium is equal in all
directions. Given two pressures in a static fluid, neither pressure is
independent of the other. Because they must change together, two opposite
causal arcs, each with a positive arc sign, connect the pressures. A
second example is a constant volume tank with both liquid and vapor phases.
The tank is described by the equation V = Vv + Vz. Neither liquid volume
nor vapor volume is independent; if one changes, then so must the other.
Therefore, both volumes are connected by causal arcs of negative sign.

The rule for specifying the sign attribute of causal arcs derived from
algebraic equalities is similar to the rule for functional relationships:

the sign attribute is the sign of the partial derivative evaluated at
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expected (normal) conditions. The time attribute for algebraic equalities,

assuming a time scale of order seconds, is usually '0'.
3.2.4 Removal of Digraph Arcs and Nodes

Modifications of the causal digraph are necessary to accurately model
a specific physical system. Context-specific assumptions and values may

remove digraph arcs and nodes.
3.2.4.1 Parameters and Process Variables at Fixed Values

If the value of a digraph node is fixed or assumed constant, then the
digraph node and the causal arcs terminating on and leaving the node can be
removed. Several examples of fixed digraph node values are constant
physical properties (e.g., p» Cp’ Aﬂr’ A), P, V, and T in isobaric, isomet-
ric, and isothermal systems, respectively, and physical constants (e.g., B,
R). In Fig. 3-5b, density, heat capacity, and heat of reaction were
assumed constant. These nodes were removed from the digraph as well as the
arcs from these nodes to T.

Faults can change the value of an assumed constant node. Two examples
of faults affecting assumed fixed values are catalyst degradation changing
the reaction rate constant, and blockage by a foreign object changing the
flow resistance in a pipe. Given a node with a fixed value, if it is
desired to diagnose faults that can change the node's value, then that node

must remain in the digraph. (See Section 3.4.2.1).
3.2.4.2 Arcs With Small Magnitudes

A causal arc is removed from the digraph if the magnitude of the
resultant effect is not observable at the terminal node. For example,
consider the assumption of an incompressible fluid. If a given liquid is
assumed to be incompressible, then changes in pressure have a negligible
effect on the volume of the liquid. Although the causal arc from pressure
to volume exists, the magnitude of the causal effect is infinitesimal.
Note that the volume of the liquid is not fixed—Iliquid volume can change
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by adding or removing fluid. The emphasis is on the magnitude of the
causal effect. A second example is atmospheric pressure. -Increasing the
liquid level in a tank open to the atmosphere will not measurably increase
atmospheric pressure.

When the magnitude of transmittance of the causal arc is small, the
arc can be directly removed from the causal digraph, or the arc's magnitude
attribute can be assigned the value 'O'. The assignment of zero is pre-
ferred when it is important to show that theoretically, the arc exists, but
that the propagation of a disturbance along the arc could not cause a

deviation at the terminal node.
3.2.5 Examples of Causal Digraph Construction

Two examples are presented that illustrate the construction of causal
digraphs from a set of design equations. In each example, the causal arcs
generated for each quantitative equation are presented on the right. Arcs
exist from the terms in the functional description to the dependent term.
The sign of each functional term is the sign attribute of the causal arc.
Note that only arcs with sufficient magnitudes are shown in the figures,
and that the removal of digraph nodes and arcs depends on the specific
context, determined by the stated assumptions. The rationale for selecting
the variables and parameters to include in the digraph, such as reaction

rate and space time, will be explained in Section 3.4.2.

Example 1: Isothermal Tank

Construct the causal digraph for an isothermal tank of constant volume,
with two inlet ports (subscripts 1 and 2} and one outlet port (subscript
3). Fluid exists in the tank in both liquid and vapor phases. The tank is
closed to the atmosphere. Inlet ports are above liquid level. Arecs and

nodes related to bulk fluid flow are developed.
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Assumptions: 1. Liquid is incompressible
2. Constant physical properties of fluid (p)
3. Constant tank cross-sectional area (A) and total volume (V)

4. F F2' F, >0

1’ 3

The schematic is shown in Figure 3-6.

<

W

Figure 3-6
Process Schematic of an Isothermal Tank

Quantitative Equations Causal Digraph Arcs

1. Mass flow rate across each port

_1 = -

F = 2 f(aP) F, = 1(p,, P, -R))
P1 = f(-Fl)
F2 = f(Pz, Pv’ -Rz)
P2 = f(-Fz)
F3 = f(Pb, -P3. -R3)
P, = f(-F3)

2. Conservation of mass in tank
de
F = Fl + Fz - F3 Vl = f(Fl’ an 'F3)
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Pb lz

Figure 3-7
Causal Digraph for an Isothermal Tank
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3. Static pressure head
P, = pgl + P, P = s(L, Pv)

4. Tank level

vl
5. Level sensor Lsensor = f(L)
6. Total tank volume
V= Vv + Vz Vg = f(-Vv)
7. Equation of state for vapor Pv = f(-Vv)

The arcs form the causal digraph in Figure 3-7.

Explanation generated from the causal digraph for a blockage in the tank
outlet: '"Blockage in the tank outlet (R3, +) tends to decrease outlet flow
rate (F3, -) and tends to cause the loss of pressure downstream (P3, -). A
decrease in outlet flow rate causes the liquid volume to increase (Vz, +),
which increases the level (L, +), the level sensor (Lsensor’ +), and the
pressure at the tank bottom (Pb, +). Increasing the 1liquid volume
decreases the vapor volume (Vv, -) and tends to increase the pressure of
the vapor (Pv’ +). The inlet flow rates tend to decrease (Fl, -) (FZ’ -)

and the upstream pressures tend to increase (Pl’ +) (P2, +)."

Example 2: Liquid-Phase Reaction in a CSTR

Construct the causal digraph for the liquid-phase decomposition reaction
A — B+ C in a CSTR. The reaction is exothermic and first order in A.
The reactor has one inlet (subscript 1) for reactant entry and one outlet
(subscript 2) for product removal. The reaction occurs at atmospheric

pressure. Arcs and nodes related to chemical reaction are developed.



75

Assumptions: 1. Well-mixed CSTR (uniform bulk properties)
2. Constant physical properties of fluid (p and Cp)
3. Constant heat of reaction (AHr)
4, Fl’ Fz >0

5. T1 <T

The schematic is shown in Figure 3-8.

Figure 3-8
Process Schematic of a Liquid-Phase Reaction in a CSTR

Quantitative Equations Causal Digraph Arcs

1. Conservation of mass

av _ _ - -

2. Reactor space time

o = }’_ 6 = £(V, -F,)
1
3. Conservation of species
dNA
at - FiCa " FpCy - TV

1



i Wy U Iy W (7 -7, + VR
at at Adt T 'ac ALk ) at
dc,
VEE— = FI(CAI - CA) -rV
dc
A1 ) i e
1oL FcC o+ v for i = B, C
at 2% ,
dN, dc,
ac - Ci(Fy - Fp) + Vg
dc,
VEE— = - Flci + rV
a,
a:_=-§('_‘,i-§-r CB'—'f(e:r)
CC = f(es r)

g{=-%(r-fr1)+§g—:r T = £(8, T,, )
5. Reaction rate

r = kC, r = f(k, C,)
6. Reaction rate constant

k = ke~ E/ET k = £(T)

The arcs form the causal digraph in Figure 3-9,

-r)
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Figure 3-9
Causal Digraph for a Liquid-Phase Reaction in a CSTR

Explanation generated from the causal digraph for catalyst degradation:
""Catalyst degradation (k, -) decreases the reaction rate (r, -), and tends
to increase the concentration of reactant (CA’ +) and decrease the concen-

trations of the products (CB, -) (CC, -). The reactor temperature

decreases (T, -) as reaction rate falls."

Explanation generated from the causal digraph for increased reactor
throughput: "An increase in reactor throughput (Fl’ +) (F2’ +) decreases
the reactor space time (6, -), causing the reactant concentration to
increase (CA’ +) and the product concentrations to decrease (CB’ -)
(CC’ -). An increase in reactant concentration has a tendency to increase

the reaction rate (r, +), the product concentrations (CB’ +) (CC, +), the
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reactor temperature (T, +), and the rate constant (k, +). A decrease in
the space time will tend to decrease the reactor temperature (T, -),

causing a decrease in the rate constant (k, -) and the reaction rate

(rp -)-"

Note that without quantitative information to determine the dominant causal

path, the qualitative changes in r, T, k, CB’ and CC are unknown.
3.3 Limitations of the Causal Digraph

The limitations of the causal digraph are (1) the causal digraph is
not unique, (2) the causal digraph cannot explicitly handle discontinuities
that occur in the physical system, and (3) the causal digraph introduces
ambiguities when determining qualitative parameter states because con-
straints on system behavior are lost on finer levels of detail. The use of

global information is investigated as a means of eliminating ambiguity.
3.3.1 Causal Digraph Uniqueness

The causal digraph is not unique. Several different causal models
can be developed to represent the same physical system; the differences
between them arise from the parameters chosen to be included in the model.
If the quantitative equations selected to model the system are more
detailed, then the resulting causal digraph will be more detailed.

Nodes in a given causal model can be removed and causal paths can be
combined to obtain less detailed models. This procedure is analogous to
combining quantitative equations to eliminate variables. An example
illustrating how the causal model is dependent upon the characterization of
the physical system by quantitative equations is presented in Figure 3-10.
Two models for the chemical reaction rate and reaction rate constant are
developed from equations. If the two equations r = kCA and k = koe- E/BT
are used to develop the digraph, then the rate constant k is a digraph node
(Fig. 3-10a). If the expression for k is substisyted into the rate expres-

- E/RT

sion to yield the single equation r = CAkoe , then k is eliminated

from the digraph and a causal arc exists directly from T to r (Fig. 3-10b).
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Figure 3-10
Causal Digraphs for a First-Order Reaction and Reaction Rate Constant

Since the different models characterize the same process, they both
must generate qualitative behaviors that match the actual physical system,
i.e., for all possible combinations of inputs, they both must produce the
outputs actually realized by the physical process. The actual behavior may
be one of a set of behaviors predicted by the causal model (see Section
3.3.3).

Both models presented in the example are equally valid representa-
tions. Usually, several ways exist to model a system, and, as in quanti-
tative modeling, engineering judgment is required for building the most
appropriate model. The parameters chosen to be included in the model
depend upon their importance to the objective of the modeling task. The
selection of a specific model depends upon the requirements of the

individual application.
3.3.2 Discontinuities

The causal digraph cannot handle discontinuities that arise in the
physical system. Arecs in the digraph represent the causal influences
between the important process variables and parameters, but they do not
contain any information about abrupt changes in the physical system. For
example, if a liquid is subjected to an influx of heat, the temperature of
the liquid will increase. But the causal arc from Q to T contains no

information about if or when the liquid will boil.
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Discontinuities are discrete changes in the physical system that
require a different set of quantitative equations to accurately model the
physical system. Thus, when the system changes at a discontinuity, a
different digraph is necessary. When vaporization begins, adding heat does
not increase the temperature. Rather, when two phases exist, the addition
of heat increases the amount of vapor and decreases the amount of liquid.
In regions of different qualitative behavior, different causal digraphs are
required. If the discrete changes in the physical system are known, then

they can serve as preconditions to the existence of causal arcs.

3.3.3 Ambiguous Qualitative Parameter States

Qualitative modeling can be interpreted as the problem of constructing
the actual global behavior of a system from the local behavior of its
components. A qualitative description contains less information than a
quantitative description about the magnitudes of process parameters, and
therefore, the causal digraph may not be deterministic. The causal digraph
introduces ambiguities when determining qualitative parameter states
because constraints on system behavior are lost on finer levels of detail.

Thus, there may be several plausible candidates for global behavior.

Ambiguity in Causal Models

Ambiguities arise in causal models when influences of opposite signs
act simultaneously on a given process parameter. Because the causal
digraph is a qualitative description of behavior, numerical,

context-specific information on the magnitudes of causal influences is

A » C

Figure 3-11
Ambiguity in Causal Models
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absent. Multiple interpretations for process variable deviations are
obtained. Figure 3-11 illustrates this ambiguity. In the figure, there
are two causal paths from node A that terminate on node C: one direct path
of positive sign, and one indirect path through node B with a resultant
negative sign. For a deviation at node A, the resultant deviation at C
cannot be determined without the numerical values for the magnitudes of the
deviations along each arc. Ambiguity arises from the loss of quantitative
information necessary to resolve the summation of multiple pathways of

opposite sign.

Level of Detail

An increased level of detail in the causal digraph may eliminate
information that constrains qualitative parameter states and adds spurious
interpretations to the digraph. As described in Section 3.1.1, causal
influences are local interactions, represented by adjacent nodes in the
causal digraph. Local interactions are dependent upon the level of detail
chosen to model the system. In a coarse level of detail, two nodes may be
adjacent, whereas in a model of greater detail, the same two nodes may be
separated by intervening nodes. Thus, the level of detail chosen to
represent the physical system defines what information is local and what
information is global. Local information at one level of detail is global
information on a finer level of detail.

Because the digraph represents only local causal interactions, global
constraints on the system's behavior, including mass and energy balances
over several units, are not included in the digraph. It is this lack of
global information that results in ambiguous qualitative parameter values.

An example of how ambiguities arise from finer levels of detail is
presented in Figure 3-12. On a coarse level of detail (Fig. 3-12a), a
system component is modeled as a black box. Its behavior is represented by
a single causal arc w — z between its inlet and outlet ports. On a level
of greater detail (Fig. 3-12b), the single arc is actually the dominant
path w — x — z of positive sign. On a coarse level of detail, the
deviations in w and z are constrained to vary in the same direction. On a
greater level of detail, w and z can assume opposite signs. Different

qualitative values at node z are consistent with the causal digraph of
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Figure 3-12b because the quantitative information necessary to specify a
positive resultant magnitude between the inlet and outlet ports is unavail-
able. Because the predicted model behavior of opposite signs for w and 2z
is not exhibited by the actual physical system, these interpretations of

the causal digraph are spurious.

Figure 3-12a: Coarse Detail

Zz

| > =
_»

Figure 3-12b: Fine Detail

Figure 3-12
Ambiguities Introduced Through Finer Levels of Detail

In summary, greater detail may increase the number of digraph inter-
pretations because local constraints on behavior become global constraints
on finer levels of detail. These global constraints are not represented in
the digraph. When trying to construct overall system behavior from indi-
vidual component models, ambiguities may arise when determining qualitative
parameter values because global constraints are unknown. Local models may
not contain enough information to specify a unique, dominant causal path-

way. Global knowledge, then, is necessary to specify the correct behavior.



83

3.3.4 Representation of Global Information

Because the causal digraph is limited to local interactions, global
information may be necessary to constrain spurious interpretations. If
global knowledge is known, then it should be retained and incorporated for
qualitative reasoning. Two approaches for incorporating global information
are (1) a hierarchy of digraph models, and (2) qualitative equalities.

A hierarchy of digraph models can be used to eliminate spurious
interpretations. Given a set of digraphs that characterize the same
system, if the predictions of a particular model are not consistent with
all the other system models, then the predictions generated from that
particular model must be spurious, because all the models characterize the
same physical system. Although the two digraphs in Fig. 3-12 characterize
the same system, several of the interpretations generated in Fig. 3-12b are
not consistent with the digraph in Fig. 3-12a. The digraph of less detail
can be used as a filter to eliminate the ambiguities introduced by the
digraph of greater detail. Interpretations that are not consistent with
all the models are discarded.

A second approach for representing global information is the use of
qualitative equalities. A causal arc on a coarse level of detail can be
considered a constraint on the behavior of a digraph on a finer level of
detail. The arc w — z in Figure 3-12a places a restriction on the possi-
ble qualitative values of z: the deviation in 2z must be in the same direc-
tion as the deviation in w. This constraint can be expressed by the

qualitative equality

[w) = [z]. (3)

This local equality (local in the context of the digraph in Figure 3-12a)
can be used to constrain the behavior in more detailed digraphs (where the
equality becomes a global constraint). The equality of Eq. 3 and the
digraph of Figure 3-12b yield the same behaviors as the digraph in
Figure 3-12a, while providing greater understanding of the causal interac-

tions in the component.
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Qualitative equalities are valid only when a deviation causally
propagates through the component. If, for example, a fault occurs within
the component (the fault affects a node between the parameters of the
equality), then the equality is not valid. In Figure 3-12b, if a fault
caused y to deviate, and z deviated due to fault propagation along the
causal arc from y, then the equality of Eq. 3, which constrains the
behavior of w and z, does not apply.

Note that in the qualitative equality, all information about causality
(e.g., direction, magnitude, time delay, etc.) is absent. Also, qualita-
tive equalities hold only after the causal effect has reached the terminal

node.

3.4 Causal Digraphs for Fault Diagnosis

The procedures for developing causal digraphs, presented in Section
3.2, are general. They can be used to develop digraphs for any system that
can be characterized by a set of mathematical equations.

The selection of an appropriate model for a problem depends on the
kinds of reasoning to be done and the characteristics of the domain. 1In
Section 3.3.1, it was mentioned that several different digraphs could be
constructed to model a given system. Since the purpose for developing
causal models is to construct diagnostic systems, the digraph used, then,
should be the one that is most suited for diagnosis. In this section, .
present guidelines for developing and modifying causal digraphs for fault
diagnosis. A digraph is suitable for fault diagnosis if it contains a
single node representing the primary effect of the fault for every fault
desired to be diagnosed, and it contains the most information about the
system to minimize the number of incorrect faults identified and maximize

the resolution between faults. These guidelines are explained.

3.4.1 A Digraph Node For Every Fault

The faults desired to be diagnosed must be identified before the

digraph is constructed. The faults chosen indicate which process variables
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must be included in the quantitative equations so that the nodes corre-
sponding to primary deviations are included in the causal digraph. A
primary deviation is defined as the process variable or parameter whose
deviation is the primary effect of the fault on the system. Because fault
candidates are generated by identifying possible primary deviations (the
procedure is described in Chapter 4), if the node associated with the
actual fault is not in the digraph, the fault cannot be identified. For
example, if faults about species concentration are important, but nodes
representing concentration are not included in the digraph, concentration

faults cannot be identified.
3.4.2 Greater Knowledge About the Physical System

Greater knowledge about a physical system is represented by a causal
digraph with a greater number of digraph nodes. More information about the
system can add resolution between individual faults, minimize the number of
incorrect fault candidates generated by decreasing the number of spurious

digraph interpretations, and retain the concept of causality.

o Add resolution between individual faults

Fault resolution depends on the number of faults mapped to a primary
deviation. If ten faults can cause a deviation at a particular node, then
the best resolution that can be obtained when that node is identified as a
primary deviation is ten faults. If there are ten nodes, each associated
with a single fault, then the identification of a single primary deviation
identifies one fault. For a given set of measurements, the best possible
resolution is obtained if no two faults are associated with a gi' an primary

deviation.
o0 Decrease the number of spurious digraph interpretations

Additional digraph nodes may reduce the number of spurious digraph inter-

pretations, and hence, reduce the number of incorrect fault candidates.
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Two examples of reducing spurious interpretations through greater knowledge
are presented in Figure 3-13. Assume that the digraphs illustrated in
Figs. 3-13a and 3-13c are used to represent two systems whose actual causal
interactions can be represented by Figs. 3-13b and 3-13d, respectively.
The addition of node E in Fig. 3-13a and node D in Fig. 3-13c to match the
real system eliminate spurious interpretations. The qualitative values
(C, +) and (D, -) are consistent with two interpretations of the digraph in
Fig. 3-13a: (A, +) and (B, +), and (A, -) and (B, -). Neither of these
interpretations are consistent with the actual digraph in Fig. 3-13b
because node E would have to assume both '+' and '-' qualitative values.
Hence, these interpretations are spurious. In Fig. 3-13c, the set (B, +),
(A, -), and (C, -) is consistent with the digraph, but these values are
inconsistent with the actual physical system represented by Fig. 3-13d.
For this set to be valid, node D would have to take both '+4' and '-!'
values. Greater knowledge about the system, represented by more digraph

nodes, reduces the number of spurious digraph interpretations.

e
.,

A * —» C

AN
_ >

B » D

Fig. 3-13a: Digraph Representation Fig. 3-13b: Actual Causal Interactions
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Fig. 3-13c: Digraph Representation Fig. 3-13d: Actual Causal Interactions
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Figure 3-13
Adding Nodes to Decrease the Number of Spurious Interpretations
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Increasing model detail (adding digraph nodes) was shown to add spurious
interpretations in Section 3.3.3. If the addition of nodes to the digraph
results in paths of opposite sign from any one node to another, then
spurious interpretations arise. Note though, that global information is
generated during the addition which can be used to prune the spurious path.
Here, the digraphs in Figs. 3-13a and 3-13c are approximations of the
actual physical system. The addition of the digraph node represents
greater knowledge about the system because an underlying process variable
is made explicit. Spurious interpretations are eliminated because the

qualitative value of the node is constrained to a single deviation.
o Retain the concept of causality

The removal of digraph nodes, resulting from the removal of process vari-
ables through equation substitution, blurs the concept of causality. For
example, in Fig. 3-2, if the nodes along the causal path between F1 and v
were removed through substitution, then these nodes would be adjacent and a
causal arc would exist directly f£from F1 to vy This arc would be
interpreted as 'increasing inlet flow rate increases the value stem

position." The actual, underlying causal relationships are hidden.

In summary, greater knowledge about the physical system, represented
by a greater number of digraph nodes, can improve the resolution of indi-
vidual faults, decrease the number of spurious interpretations, and improve

the explanatory power of the causal digraph.
3.4.3 Structural Faults

The causal digraph for a process unit must be able to (1) describe the
process variable deviations due to the propagation of a disturbance through
the unit, and (2) describe the deviations due to a fault occurring within
the unit. Because a disturbance is a change in the magnitude of one or
more process variables, the digraph developed from the equations that
describe normal operation can always characterize the behavior of fault
propagation through the wunit. But the digraph developed for normal

operation cannot always satisfy the second requirement.
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Faults can be grouped into two categories: faults that change the
magnitude of a process variable or parameter, and faults that change the
form of the system of equations which characterizes normal behavior.
Faults in the first category can be diagnosed from the digraph developed
for normal operation. The effect of a fault in this class is to change the
qualitative value at one of the digraph nodes, while leaving the causal
digraph of the unit unchanged. Faults in the second category, called
structural faults, change the system of differential and algebraic equa-
tions that represent normal operation. Structural faults change the system
of equations by changing the form of one or more of the existing equations,
or by adding additional equations to the system which are necessary to
model the specific fault., If a structural fault occurs within a unit and
the fault has not been incorporated into the digraph, then the digraph no
longer accurately represents the actual physical behavior, and the digraph
predictions of deviations will be incorrect.

Structural faults cannot be diagnosed from the digraph constructed for
normal operation because a single primary deviation does not exist. The
effect of a structural fault on the digraph characterizing normal operation
is to cause two nodes that are not causally connected to simultaneously
deviate. Because the fault makes these nodes causally related, the digraph
no longer represents the actual system behavior. New nodes and arcs must
be added to the normal digraph model to characterize the behavior of the

system with the fault.

Hot

cold
3

Figure 3-14
Process Schematic of a Heat Exchanger
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An example of a fault that requires modifications to the causal
digraph is a leak between the hot and cold streams in a heat exchanger.
Consider the heat exchanger shown in the schematic in Figure 3-14. The
causal digraph, developed from design equations, 1is presented in
Figure 3-15a. Note that the only expected causal interaction between the
two streams is through heat transfer. A leak between the shell and tube
sides in the heat exchanger results in bulk fluid flow from higher to lower
pressure. If P1 and P2 are greater than P3 and PA’ then a leak tends to
decrease P1 and increase P3. For this fault to be identified, the causal
arcs that represent the leak (bulk flow between the hot and cold streams)
must be included in the digraph. These arcs are shown in the digraph in
Fig. 3-15b. Under normal operation, the expected value of the resistance
is infinite, so the value of F13 is zero. A leak is a decrease in R13,

R
13
which causes F13 to increase, P1 to decrease and P3 to increase.

The guidelines for developing causal digraphs are summarized below.

Guidelines for Developing Causal Digraphs for Fault Diagnosis

1. Identify the faults to be diagnosed prior to developing the causal
digraph, so that every process variable or parameter that represents the
primary effect of a fault is included in the set of quantitative design
equations.

2. Greater knowledge about the system improves fault resolution, decreases
the number of incorrect fault candidates identified, and retains the
fundamental causal relationships. Therefore,

1 Set up quantitative equations for each physical mechanism, unit, or
plece of equipment, rather than for larger sections of the process.

f Do not eliminate process variables through the substitution of
equations.

3. Modify the causal digraph to handle structural faults. The digraph must
contain the causal arcs necessary to model the behavior of the system when
the fault is present.
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3.5 Desigin of Diagnostic Systems

In this section, the focus shifts to the design of diagnostic systems.
For any diagnostic framework to be viable for practical use, the issues of
portability and the ease of installation and modification need to be

addressed. Therefore, I investigate the following design objectives:

o The diagnostic system should be flexible and easily portable to a
variety of process environments to reduce the costs of development and

installation.

0 The process representation should be easily modified and updated.
Changes in piping and equipment should not require extensive

reprogramming.

o The process representation should easily characterize the plant under

changing operating conditions.

Specifically, the following issues are addressed: (1) The equations
used for deriving the causal digraph in Section 3.2 could be written for a
single process unit or over several units. I propose causal models at the
process equipment level. (2) The digraph for a process unit depends on the
context in which the unit functions. I introduce conditionals into the
qualitative models to separate the underlying physical principles from the
supporting context. General context-free component models permit the
construction of the causal digraph for a unit in any context. In addition,
the conditionals permit real-time changes in the directed arcs and arc
attributes due to changes in operating conditions and process equipment.
My objective is a set of component-based, context-independent causal models

for the purpose of fault diagnosis.

3.5.1 Generic Causal Models

We have chosen to model the behavior of the overall system by modeling

the behavior of the individual components that make up the system. General
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models for system components are advantageous because the qualitative
behavior of an individual process unit is identical across plant sites.
Differences in behavior emerge at greater levels of aggregation. For
example, the operation of a centrifugal pump is similar in different
processing environments, whereas the behavior of a fractionation train, of
which the pump is a part, differs between plants (because of different
column configurations, different control strategies, etc.). Standard or
generic causal models of process equipment add modularity and increase
portability of a diagnostic system by reducing the development and instal-
lation costs.

Modeling system behavior as the aggregate behavior of its components
requires two distinct descriptions. A structural description describes how
the process units are physically connected to one another. The behavioral
description describes the behaviors of the individual components. Similar
divisions of knowledge have been proposed in describing circuits (Davis et
al. [1982), Genesereth [1984]) and in medicine (Patil et al. [1981],
Kuipers and Kassirer [1984]). Andow and Lees [1975] [1978] present general

qualitative models for individual process equipment.
3.5.1.1 Structural Description

The structural description specifies the topology of the process
units. Structural knowledge is required (1) to specify the physical
interconnections between the individual process units, and (2) to describe
the physical orientation of the components to identify spatial adjacency.
Process piping and instrumentation diagrams show equipment connections, and
the plot plan or diagrams of the plant layout show physical adjacency.

The primitive elements of the structural description are the component
models, which represent the physical components that make up the system:
tanks, pipes, valves, etc. The internal structure of each process unit
(trays, impeller, etc.) is not modeled and the component model is consid-
ered a black box at this level of detail. Each physical component has one
or more ports through which mass, energy, and information flow.

Process units interact with one another if they are in some sense

adjacent. Normal (design) interaction occurs between two pieces of process
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equipment if their ports are connected. Components that are not adjacent
do not directly interact, although they may interact indirectly through a
series of adjacent units. Causal interaction may also occur if the units
are not physically connected, but spatially adjacent. For example, a fire
or explosion in one unit can affect other units that are not directly
connected.

The fluid in the system is not treated as an explicit object. Rather,
the properties of the fluid (temperature, pressure, species concentration,
etc.) are considered attributes of the piece of equipment in which the
fluid exists. The properties of a fluid passing through a port are thought
of as attributes of the port.

The vector of attributes that characterizes the fluid at a port
represents a set of digraph nodes. Connecting two components by a common
port equates the values of the attribute vectors. The individual qualita-

tive values of process variables across the port are identical.

3.5.1.2 Behavioral Description

Causal pathways are the primitive elements of the behavioral descrip-
tion. Each piece of process equipment is represented by a set of causal
arcs between its process variables and parameters. The equations that
characterize the behavior of the component are used to derive the causal
relationships as described in Section 3.2.

Note that causal interactions exist only within a component. Causal

paths do not exist across ports.

3.5.1.3 Deriving System Behavior

The causal digraph for the overall system is constructed from the
structural description and the general behavioral descriptions of the
individual components. The important process components are selected from
the process schematic and a block diagram showing the component topology is
constructed. For each block, an instance of the component digraph is
created. The digraph nodes associated with a port connect the causal arcs

between adjacent units. The overall behavior of the process is represented
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by the resulting system digraph. As noted in Section 3.3.3, one of the
limitations of deriving global behavior from the local interactions of
system components is that ambiguities may arise and result in spurious
digraph interpretations. In the system digraph, multiple paths of opposite
sign are common. If global information is known, it should be included to
reduce the number of incorrect interpretations.

The selection of components to include in the structural description
is dependent on the purpose of the causal model. For example, in fault
diagnosis, conduits (pipes for fluid transport, wires for electrical
transport, etc.) should be represented as specific process units if faults
associated with the conduit are important in the given context. If conduit
faults are insignificant or can be neglected, then the component model for
the conduit may be omitted. The process units at the conduit's ports are

then considered adjacent.

3.5.2 Context-Independent Causal Models

In the previous sections, causal models have been presented as a set
of causal pathways. Actually, the causal digraph is the output from a
causal model for a given input set of context-specific parameters.

The causal model is a set of rules that specify the appropriate causal
paths and several of the attributes of the paths for a component in a given
context. As discussed in Section 3.1.1.1, the assumptions and conditions
necessary for the existence of an arc are associated with the arc. For the
causal arc to exist in the digraph, these conditions must be satisfied.

In a component causal model, the rules for specifying all the causal
pathways in the component are grouped into the component rule base. Rule
antecedents contain the conditions necessary for the existence of the
directed arc. The antecedents reference design values and process measure-
ments related to the specific unit. Rule consequents are the individual
causal paths and values of the attributes that are valid for the given
context.

Associated with each component rule base is a general component
database that stores the design specifications and relevant process mea-

surements that are required by the rule antecedents. For the digraph to
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accurately characterize its physical system, the assumptions used to
develop the digraph must match the actual physical context.- By specifying
a set of context-specific numerical and discrete parameters, the rules
generate a specific causal digraph for the particular process unit.

Two examples are presented that show how digraph arcs and arc
attributes are dependent on context-specific information. In Example 2,

arcs are grouped according to the different operating modes of the unit.
Example 1: Numerical Parameters

This example jllustrates how numerical parameters may be necessary for
specifying causal arcs and their attributes. Consider a well-mixed tank
with a single inlet (subscript 1) and single outlet (subscript 2). Heat
can be added or removed from the tank to maintain the relative temperatures
T > T1 or T < Tl’

temperature is investigated.

respectively. The causal arc from space time to bulk

From an enthalpy balance around the tank,

dH = -

G = PC(F)Ty - FyD) 4 Q

aT _ _ leqp . Q

ak = "t - TP A pC, (4)

From Eq. 4, three different cases can be identified for the existence of an

arc from 6 to T and the value of its sign attribute

8 (dT) _ 1 .. _
Case 1: If T - T1 > 0, then 38 (EE) = ET(T Tl) >0

An arc from 8 to T exists and its sign is +.
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9 (dT)\ _
Case 2: If T - T1 = 0, then 39 (EE) =0

An arc from 6 to T does not exist.

3 (dT\ _ 1 .. _
Case 3: If T - T1 < 0, then T (EE) = ay(T Tl) <0

An arc from 6 to T exists and its sign is -.

These cases generate two rules that are included in the component rule

base.

Rule: If 1. F1 >0

2. T1 >T

Then 6§ —— T.

Rule: If 1. F1 >0

2. T1 <T

Then 8 — T.

Example 2: Numerical and Discrete Parameters

The causal model for a two-port valve is developed. The subscript 1
denotes the valve's inlet; subscript 2 denotes the valve's outlet. Both
numerical, continuous parameters (port pressures) and discrete parameters
(valve open or closed) are necessary to specify the digraph. Four cases

exist:



97

Case 1. If the valve is open and P1 > PZ' then bulk fluid flow exists

from P1 to P2. Valve position changes the flow resistance.

Causal Digraph Arcs: F = I(Pl, ~Py, -R)
Pl = f(-F)
P, = f(F)
R = £(-v)
TZ = f(Tl)
c12 = f(Cil)

Case 2: If the valve is open and P1 = PZ’ then bulk flow does not exist

but Pascal's law is valid.

Causal Digraph Arcs: P1 = f(Pz)

Case 3: If the valve is closed and P, > P then there are no causal

1 2’
interactions between the variables at the valve's inlet and
outlet ports.

Case 4: If the valve is closed and P1 = P2, then there are no causal
interactions between the variables at the valve's inlet and

outlet ports.

The process for generating a particular causal digraph from a general
component model is summarized in Figure 3-16. Given an engineered system
that can be modeled by the interactions of its components, the design
equations and a knowledge of underlying physics for each component allow
the creation of general, context-free component models. These models are a
set of rules that explicitly state the assumptions and conditions necessary
for each of the causal paths to be valid and specify the values of several

of the path's attributes. Associated with each causal model is a database
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Causal Digraph Generation from General Component Models
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that holds or references the values needed by the rule antecedents. Both
the component model and the component database are context-independent.

When the causal digraph for a particular process unit is desired, an
instance of the general component database is created. The database holds
design values of parameters and process variables for the particular unit,
or for real-time processing, it may reference measurements or equations for
calculating the values required by the rules. The rule base is run on
these data and a causal digraph is generated for the specific piece of
process equipment. The digraph represents the specific behavior of the
unit for the given set of conditions. Information from the structural
description is wused to assign the connections between the ports of
different components.

If the system changes (e.g., a flow is rerouted, set points are
changed, a tank is emptied, etc.), the values in one or more databases may
change. By reevaluating the rule bases associated with each of the units
affected by the change, updated component digraphs are produced that
accurately model the changed system.

Causal models allow the qualitative behavior of a component to be
specified independently from the particular context in which the component
will function. A library of general models aids diagnostic system develop-

ment and installation.
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Chapter 4

FAULT DIAGNOSIS BASED ON CAUSAL MODELS

A candidate generation and test strategy for diagnosing faults in
process plants is presented. During candidate generation, qualitative
values of unmeasured nodes causally upstream from abnormal measurements are
assigned so that fault propagation from the upstream nodes would cause the
observed deviation. When more than one measurement is abnormal and a
single fault is assumed, the intersection of candidate sets generated for
each abnormal measurement yields those nodes with consistent causal paths
to every deviated measurement. Candidate testing reduces the set of
possible fault origins by applying global constraints, knowledge of process
dynamics, and heuristic rules. A list of faults is generated from a table
that relates the digraph nodes in the reduced candidate set to specific
faults.

4.1 Terminology

A fault is any event that causes one or more process variables or parame-
ters to deviate outside the range that represents their normal operation.
Therefore, a fault causes the qualitative values of those variables to

change from normal '0' to either high '+' or low '-'.

A valid node is a node in the causal digraph that has a nonzero qualitative
value. It represents a process variable or parameter that has deviated
outside of its range of normal operation. A valid node is a set of two
terms: the deviated process variable or parameter and its nonzero qualita-

tive value, e.g., (L, +).

A primary deviation is the deviated process variable or parameter that is

the direct result of a fault. Secondary deviations are all other process

variable deviations that arise from fault propagation. Both primary and

secondary deviations are valid nodes.
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A consistent branch is a directed arc between two valid nodes that is a

member of the set in Figure 4-1. The arc's sign attribute is listed above
the arc, and the qualitative values of the initial and terminal nodes,
enclosed in circles, are listed below the nodes. A consistent branch can
also be defined as a branch where the product of the signs of its initial
and terminal nodes equals the sign of the branch. A consistent branch
represents a path that may have been involved in the propagation of a

failure. A consistent path is a directed path of consistent branches.

A —' & B A —— » B

@ @ @ S)

A —' » B A —_ » B

S) S) S ®
Figure 4-1

Consistent Branches

A valid tree is a subgraph of the causal digraph that consists of a valid
measurement and all the valid nodes causally upstream from the measurement.
All the branches in the valid tree are consistent. The valid tree describes
the path of fault propagation from any causally upstream, valid node to the

particular abnormal measurement.

Under the assumption of a single fault, a primary deviation is a root node

because a consistent path exists from the root to every valid measurement.
4.2 Overview of Diagnosis Methodology

The strategy for diagnosis, based on the use of causal models, is

illustrated in Figure 4-2. The major steps are candidate generation,
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Abnormal Sensor

l
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Candidate Generation
Set Intersection

l

Set of Primary Deviations

l

Global Constraints

Candidate Testing Simulation

Heuristic Rules

l

Reduced Set of Primary Deviations

l

Table Mapping Faults To
Primary Deviations

'

List of Faults

Figure 4-2
Fault Diagnosis Strategy Based on Causal Models
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candidate testing, and identifying specific faults through a table mapping
faults to primary deviations. When a measurement is deemed abnormal
(becomes valid), a failure is assumed to have occurred in the process. The
objective of the candidate generation step is to rapidly identify a set of
possible primary deviations. A backward search through the causal digraph
from the abnormal sensor identifies primary deviations causally upstream
from the sensor. The primary deviations are possible fault origins because
a consistent path exists from each primary deviation to the deviated
measurement. When more than one measurement is valid and a single fault is
assumed, set intersection identifies those primary deviations with
consistent paths to all abnormal measurements.

In candidate generation, a process variable is a plausible candidate
if a path of local interactions exists from the variable to the deviated
sensor. Candidate generation is rapid becanse primary deviations are
identified solely on the basis of node adjacency in the digraph and knowl-
edge about control systems. During the candidate testing step, other
information about the relationships between digraph nodes is used to reduce
the set of candidates. Nodes that are locally plausible are eliminated if
they are not consistent with all other known information. Global
constraints, simulation using the time delay attribute of the causal arcs,
and heuristic rules are used to filter the set of primary deviations.

The list of faults is generated from the reduced set of primary devia-
tions through the use of a table mapping faults to primary deviations. The
table is created from an expert system using knowledge about the process
equipment specifications and the values of design and operating variables.

Each of these major sections is described in detail.

4.3 Candidate Generation

In this section, the candidate generation procedure is presented.
First, several search strategies are described for identifying failure
origins in a simple network. Some of the strategies cannot be used for
locating faults in the causal digraph because important differences exist
between the simple network and the digraph. The search strategy chosen

identifies failure origins by tracing backward through the digraph along
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the causal arcs from abnormal measurements. When a single fault is
assumed, set intersection of the primary deviations generated from the
causal search from each deviated measurement yields those primary devia-
tions with consistent paths to all abnormal measurements. The candidate

generation procedure is illustrated with an example.

4.3.1 Rouse Network

Rouse [1978] [1981] used a network to investigate human problem

solving performance in fault diagnosis tasks. The focus of his research

Figure 4-3
Rouse Network
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was to use the netwcrk to study human performance as a basis for developing
training methods. One of the networks he used is presented- in Figure 4-3.
The problem presented to the test subjects was to locate the fault in the
network. A fault is defined as a node whose inputs are all normal (have
the value 'l') and whose outputs are all abnormal (have the value '0').
Each node behaves like an AND gate, and thus, can produce the outputs zero
and one. A node will have the value 'l' if (1) all inputs to the node are
'1', and (2) the fault is not located at the node; otherwise the node will
produce a '0O'. All outputs emanating from a node carry the value of the
node. Because a node with a zero input transmits a zero to all its
outputs, the effect of the fault is propagated throughout the network. The
human test subjects were told that a single fault had been introduced into
the network and were given the values of the nodes in the far
right-hand-side column. The subject's task was to identify the location of
the fault by obtaining from the proctor the values of any desired connec-
tions between the nodes. A smaller number of queries for information
implied that the test subject used a better reasoning strategy and/or more
fully utilized the information in the network.

This network problem is examined here to investigate a variety of
search strategies. From these strategies and the differences between the
simple network and the causal digraph, a procedure for fault diagnosis
using the digraph is developed. My objective differs from Rouse because in
his study, additional information is obtained from the proctor to locate
the single faulty node. Here, I narrow the search space from the given
information only. In a control room setting, obtaining additional informa-
tion from the plant, beyond that gathered through an automatic data acqui-
sition system, is both time-intensive and requires the attention of several
plant personnel. As a first step in diagnosis, the objective is to reduce
the set of fault candidates as much as possible without operator interven-
tion or additional process measurements.

One possible solution strategy for the Rouse network is presented

below. Given the right-hand-side column of outputs,

Step 1: Eliminate infeasible candidates causally upstream from the known,

normal nodes. For each node with the wvalue '1' 1in the



106

(43) o

N

‘Z“f, 15

@ ./ @“ 6
AV 4

o

Nodes eliminated in Step 1

Figure 4-4
Set of Fault Candidates After Step 1



107

right-hand-side column, work causally upstream (from right to
left) along the arcs to eliminate nodes. These nodes can be
discarded because if any of these nodes were the location of the
fault, the propagation of the fault would cause the observed node
to have the value '0'. Since the known node has the value 'l‘',

those nodes causally upstream cannot be faulty.

Step 2: Eliminate infeasible candidates through disturbance simulation.
For each remaining node, assume that the fault has occurred at the
node and propagate the effect of the fault in the direction of the
arcs. If fault propagation from the node cannot explain all the
observed deviations, it cannot be a fault candidate because for a
single fault, directed paths must connect the fault to all

observed deviations.

If we start at the right-hand side by performing the simulation at
the known observations, we can minimize the number of simulation
tests by realizing that once a node is found such that the propa-
gation of zeros from the node can explain all the known devia-
tions, then all nodes causally upstream from that node can also
cause all the known deviations because paths from the causally

upstream nodes pass through the node.

This strategy is illustrated with an example. Given the set of values
for the nodes in the right-hand-side column in Figure 4-4, Step 1 would
eliminate the nodes shaded in grey. In Step 2, disturbance simulation
begins with node 43. If node 43 is assumed to be faulty, disturbance
propagation from the node cannot explain the deviations observed at nodes
44, 46, and 47; thus, it is eliminated. Once nodes 29, 30, and 31 are
tested, no further simulation is necessary because (1) deviations at each
of these nodes can explain all the observed deviations, and (2) paths from
all other nodes to the observed deviations pass through these nodes. The
final set of fault candidates is presented in Figure 4-5.

Note that disturbance simulation involves more effort to eliminate a

node from the set of possible candidates than does the causal upstream
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% Nodes eliminated in Step 2

Figure 4-5
Set of Fault Candidates After Step 2
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search from the normal nodes. Only the knowledge of adjacency is required
in Step 1, whereas both adjacency and the simulation of the disturbance
through the network is required in Step 2.

A less computationally-intensive procedure for disturbance simulation
in Step 2 is based on the knowledge that, for a single fault, causal paths
must exist from the faulty node to all the observed deviations. For each
right-hand-side node with the value 2zero, a causally upstream search
identifies all possible nodes whose deviation could cause the deviation at
that node. The set of fault candidates that can explain all the observed
deviations is the intersection of the sets generated for each observed
deviation. For the same example, the set of fault origins generated from a
backward causal search from node 44 includes nodes 36 and 44 as possible
candidates. The set for node 46 includes nodes 37 and 46. The intersec-
tion of these two sets eliminates all four of these nodes because they are
not contained in the other set.

The search strategy presented may not have the fewest number of
processing operations for a graph with a large number of nodes and a small
number of observed deviations. Instead of eliminating candidates causally
upstream from normal nodes, a procedure that relies on a causal upstream
search from any abnormal node and simulation may be more efficient. For
example, consider the network in Figure 4-6 in which only two deviations
are observed. Starting with node 45, fault simulations from node 45, and
then from causally upstream node 39, eliminate these nodes as possible
candidates because the deviated node 48 is not reached. Simulation from
node 40 provides a candidate. Simulations from nodes 33 and 34, causally
upstr2am from node 40, terminate on normal nodes. Node 35 becomes a second
candidate. Simulation from node 28 fails. Two candidates are obtained.
This procedure, based on a combination of causally searching upstream from
deviated nodes and simulation, is more efficient when the number of obser-
vations is small because it does not search the entire graph to eliminate

normal nodes.
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4.3.2 Differences Between the Rouse Network and the Causal Digraph

The differences between the Rouse network and the causal digraph are

summarized below.

Rouse Network

1. Two discrete values ('0' and 'l') representing faulty and normal states,
respectively

2. Arcs have no attributes
3. No circuits
4. Fully propagated fault

5. No attenuation of fault disturbance

Causal Digraph

1. Three discrete values ('-', '0', '+') representing negative, zero, and
positive deviations, respectively, from a specified reference state

2, Arcs have attributes, including sign, magnitude, and time
3. Circuits (both process circuits and feedback loops)
4. Dynamic fault propagation

5. Possible attenuation and compensation of fault disturbance.

The characteristics of the causal digraph eliminate some of the search
strategies that were used with the Rouse network. Specifically, because
fault diagnosis is wusually performed before the disturbance is fully
propagated, measurements causally downstream from the failure may be
normal. Downstream measurements may also be normal because the magnitude
of the disturbance is attenuated or control systems have halted the distur-
bance propagation. Thus, fault candidates causally upstream from normal
measurements cannot be eliminated. Similarly, without knowledge about
dynamics and attenuation, qualitative disturbance simulation, accomplished

by propagating deviations causally forward through the digraph, cannot be
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performed because the disturbance may not have reached the downstream
sensors or be too weak to cause measurement deviations.

Therefore, candidate generation must be accomplished by searching
causally upstream from abnormal measurements. For a single fault, set
intersection can also be used because consistent causal paths must exist
from the faulty node to all the observed deviations. The other differences
between the simple network and the causal digraph will necessitate modifi-
cations to the search strategy (e.g., the use of consistent branches and

testing for circuits). These will be examined.

4.3.3 Assumptions for Candidate Generation

The foliowing assumptions are necessary to guarantee that the actual

fault origin is included in the set of fault candidates:

1. ™e digraph represents the actual causal interactions between the

process variables.

If a given pathway is omitted from the causal digraph, the actual fault
origin may not be included in the set of primary deviations. If extra-
neous paths are included, then the causal search generates spurious
candidates. The operator may lose confidence in the diagnostic system
if it displays many inconsistent fault hypotheses or if ‘logical fault

candidates are omitted.

2. The normal operating ranges for every measurement are selected so that
if any of the faults desired to be diagnosed occur, one or more measure-

ments will cross their normal threshold and become valid.

If the range representing normal operation is too narrow, non-failure
disturbances may initiate the diagnostic system. If the range is too
wide, failures that cause disturbances with small magnitudes may not be
detected because the measured process variable deviation may not cross
the alarm threshcld. The ranges are selected so that if any digraph
node is valid, then the system is in failure.
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If a disturbance is propagating along a causal path and two process
variables in the path are measured, the causally upstream measurement

will alarm before the downstream measurement.

This result is used to bound the fault space during candidate
generation. When a measured process variable deviates, a causal search
upstream from the deviated measurement attempts to identify possible
fault candidates. If the value of a measured process variable causally
upstream is normal, the fault cannot lie causally above this normal
measurement. If the fault was located above this normal measurement and
the actual path for fault propagation included this measured variable,
then this measurement would have deviated before the downstream
measurement. Therefore, the location of the failure lies within the

digraph bounded by the normal measurements.

Process variables can only deviate in a single direction. Controlled

variables can also return to normal.

Inverse response occurs when a variable's initial deviation is opposite
from its long-term deviation. When the direction of deviation of a
variable changes, its qualitative value also changes, and the graph of
valid nodes and consistent branches can become disconnected. If the
graph becomes disconnected, a consistent causal path does not exist from
the primary deviation to deviated measurements causally downstream from
the process variable exhibiting inverse response. When a process
variable lies within a circuit with a net negative sign, the restriction
of a single change in sig.- can be stated in terms of a negative feedback
heuristic: a feedback effect along a causal circuit can never dominate

its cause.

Controlled variables can deviate outside their normal range and return

to normal.
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5. Each failure is represented by the deviation of a single node in the
causal digraph.

The digraph must be constructed so that every failure causes the devia-
tion of a single digraph node. Since the candidate generation procedure
involves a search for primary deviations, i.e., single digraph nodes
that can explain all other secondary deviations by fault propagation, if
a single origin for the failure is not in the digraph, the fault cannot
be identified.

Under these assumptions, the method guarantees that the actual fault

origin is included in the candidate set.

4,3.4 Candidate Generation Procedure

The objective of candidate generation is to rapidly partition the
total set of fault origins into a feasible set (i.e., those primary devia-
tions that could cause the observed secondary deviations) and an infeasible
set. The criterion for including a node-sign pair in the set of possible
primary deviations is that a consistent path must exist from the node to
all abnormal measurements. The inputs to the procedure are the causal
digraph for the process and the sign attribute of every arc, the controlled
and manipulated variables and net sign of the functioning control systems,
and the qualitative values of every process measurement. Quantitative
plant data are compared with the expected, normal references so that every
measurement has a '+', '0', or '-' qualitative value.

Faults propagate along causal digraph arcs. Thus, the origin of the
failure causing an abnormal process measurement must lie causally upstream
from the measurement. Possible primary deviations are identified by
searching causally upstream from the abnormal sensor.

The search is accomplished by constructing a valid tree for an indi-
vidual deviated measurement. The valid tree represents the paths of fault
propagation from every possible node in the causal digraph to the abnormal
measurement. Beginning with the given valid measurement, qualitative

values are assigned to unmeasured, causally upstream nodes to make the
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causal arcs consistent. The assignment of qualitative values to adjacent,
causally upstream nodes is continued until all possible primary deviations
that could cause the observed measurement deviation are identified. Thus,
the search is exhaustive.

Given the current node in the tree, adjacent nodes causally upstream

from the current node are added to the valid tree if

1. The causally upstream node is not already in the path from the current

node to the valid measurement, AND

2. If the process variable represented by the causally upstream node is
measured, then the measurement must be valid with the qualitative value
necessary to make the branch from the measured node to the current node

consistent.

Condition 1 eliminates any circuits in the causal digraph which would give
rise to cycling during the backward causal search. A node is added to the
valid tree only if it does not already appear in the path to the valid
measurement. Note that a node can appear more than once in the valid tree;
it is only restricted from appearing more than once along any directed
path. Condition 2 is used to bound the fault space. If, during the
backward search, a measured node is encountered whose value is normal or
opposite of the sign necessary to make the branch consistent, the search is

discontinued along this arc.

4.3.4,1 Control Systems

Control systems are different from other process equipment because
they are designed to compensate for disturbances: the manipulated variable
is adjusted to keep the controlled variable at its desired value. If a
disturbance enters a functioning control loop and the magnitude of the
disturbance is insufficient to saturate the control system, then the
controlled variable remains at its set point and the disturbance causes a
change in the manipulated variable. In terms of the digraph, the failure

propagates through a normal, measured node, and a consistent path does not
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exist between the fault origin and the abnormal measurements causally
downstream of the controlled variable. In the search procedure described
above, the search space is bounded by normal measurements. Because a fault
can lie causally above a normal measurement if the measurement is used in a
control loop, the following modifications to the causal search strategy are

necessary. (The controlled variable is assumed to be directly measured.)

Manipulated Variables

If the origin of the failure is causally upstream from a control
system and the controlled variable was normal, a search from causally below
the control system will encounter the normal measurement within the loop
and bound the fault space. Thus, the fault origin would not be included in
the set of possible primary deviations. Therefore, during the backward
causal search, if the manipulated variable is valid (either assumed valid
during the search or directly measured) and the controlled variable is
normal, then consider the controlled node and nodes causally upstream from
the controlled node as possible origins. The value of the manipulated
variable and the net sign of the control loop are used to infer the value
that the controlled variable would have if no control system were present.

The search is continued causally upstream from the controlled variable.

Measurements

A measurement can only be encountered in the backward search if it is
within a control system. When a measurement is encountered, the measure-
ment node is added to the valid tree only if the actual measurement is
abnormal and of the correct qualitative sign to make the branch between the

measurement and the control system error consistent.

Controlled Variables

If a controlled variable is encountered during the backward scarch and
the measurement of the controlled variable is valid, then the controlled
variable is added to the valid tree regardless of whether the assumed sign
necessary to make the causal arc valid matches the measurement. When the
assumed direction of deviation of the controlled variable is not the same

as the actual measurement, including the node for the controlled variable
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is necessary to identify sensor failures within the control loop. For
example, in a negative feedback loop, if the sensor fails high and the
control loop is operational, then the actual value of the controlled

variable would be low.
4.3.4.2 Eliminating Arcs With Small Magnitudes

When the causal digraph is used for fault diagnosis, the digraph arc
is interpreted as a possible path of fault propagation. A consistent path
from a primary deviation to an abnormal measurement represents the actual
path of fault propagation. Implicit in the causal search is the assumption
that the magnitude of the causal interaction along each arc is large enough
so that the terminal node becomes valid when the initial node is valid.

Primary deviations may not be capable of causing the observed measure-
ment pattern if the magnitude of one or more arcs along any path to a valid
measurement is insufficient to transmit the disturbance. Therefore,
information about an arc's magnitude attribute can be used to bound the
fault space during candidate generation and reduce the number of possible
fault origins. If the magnitude attribute of an arc is small (has a
qualitative value of '0'), the arc is not included during the construction

of the valid tree.
4.3.5 Intersection of Root Node Sets

The construction of the valid tree identifies the possible primary
deviations for each individual abnormal measurement. No assumptions were
made during the causal search procedure about the actual number of faults
that have occurred in the process.

Because the probability of multiple, simultaneous, independent events
is low, the candidate generation procedure first attempts to explain all
the abnormal measurements by a single fault. Under the single fault
assumption, a digraph node-sign pair is a primary deviation if a consistent
path exists from the primary deviation to every abnormal sensor. A primary
deviation is the root of a directed tree of consistent branches, which

spans the set of valid measurements.
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The intersection of the sets of primary deviations generated for each
valid measurement yields those primary deviations from which consistent
paths exist to all the valid measurements. Since consistent paths must
exist from the primary deviation to every deviated measurement, the
converse, that the actual primary deviation must be identified by the
backward causal search from every measurement deviation, must also be true.
Therefore, given multiple measurement deviations and the single fault
assumption, the intersection of the sets of primary deviations generated
for each of the valid measurements will identify those primary deviations
with consistent paths to every abnormal sensor.

Under the assumptions presented in Section 4.3.3, the root node set
will contain the actual fault origin. In practice, set intersection will
usually reduce the number of primary deviations generated for a single
valid measurement. If there is no reduction in the size of the root node
set, then an existing valid measured variable is a node on the fault
propagation path from the oot to the new valid measurement.

When new measurements become valid, set intersection should be
performed with the sets of primary deviations generated for each abnormal
measurement rather than the reduced root node set from candidate testing.
The primary deviations generated for each abnormal measurement are used
because possible fault origins that are eliminated during candidate testing
may later need to be considered. For example, the validity of the rule
antecedents in the heuristic rules, evaluated during candidate testing, may
change when new measurements become valid. If the rules eliminate primary
deviations and this reduced set is used during set intersection when a new
sensor becomes valid, the intersection may not contain all the possible
origins.

If multiple faults have occurred, set intersection, in most cases,
will produce the empty set. A combinatorial intersection procedure is then
necessary to explain the observed measurement pattern with the fewest
number of faults. For example, consider the three sets of primary devia-
tions A, B, and C, produced from the causal search for three valid measure-
ments. If the intersection of A and C yields common origins, while the
intersections of sets A and B and sets B and C are null, then the measure-

ment pattern can be explained by two independent faults. If multiple
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faults have occurred and the faults lie along a consistent path, then the

faults can be explained by a single primary deviation.

4.3.6 Example

The candidate generation procedure is illustrated using the causal
digraph for a tank with a level control system shown in Fig. 3-2. Given

the valid measurement (F +), the valid tree in Figure 4-7 is con-

’
structed from the arcs iinigia causal digraph. The signs of unmeasured
nodes causally upstream from the flow sensor are assigned so that consis-
tent branches exist from the nodes to the valid measurement. The dotted
arrow represents the causal path through the normal controlled variable L
to its manipulated variable vy The valid tree ends at nodes RZ’ R23, R45,
and Ls because there are no causal arcs that terminate at these nodes, at
nodes Fl and P5 because they are at the boundary of the process, at Pb
because L, its causally upstream node, is measured and normal, and at P3 in
the right-half branch because F34, its causally upstream node, is already
in the path from (P3, +) to (Fsensor’ +).

Notice that several process variables appear in the tree more than
unce, with both the same and opposite signs, but no node is found more than
once along any path to the abnormal measurement. Nodes with opposite signs
are found in the valid tree when the information contained in the causal
digraph and the qualitative values of the measurements is not adequate to
constrain the node to a single value. For example, consider the paths from
from (FZ’ +) and (Fz, -) to (F

follows:

sensor’ +). The paths are interpreted as

Path from (FZ’ +) to (F » +)
sensor
Increasing the flow rate from the tank outlet increases the flow rates
F23, F34, and F45 in PIPE-A, control valve CV-1, and PIPE-B, respec-
tively, causing the flow measurement F to increase.
sensor

Path from (FZ’ -) to (Fsensor’ +)

Decreasing the flow rate from the tank outlet increases the fluid

volume and level in the tank. The level control system opens the
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control valve CV-1, increasing the flow rates F34 and F45, causing the

flow measurement Fsensor to increase.

Although the second argument is not globally consistent because the
conservation of mass between the tank outlet and PIPE-B is not satisfied,
both arguments are consistent with local, causal interactions. In
Section 4.4, candidate testing will be used to eliminate primary deviations
that are inconsistent with global knowledge.

Twenty five primary deviations are identified in the valid tree. A
table relating faults to primary deviations, which will be discussed in
Section 4.5, 1is used to generate the 1list of faults. Nine faults,
presented in Table 4-1, are identified.

Table 4-1

List of Primary Deviations and Possible Faults for
F-SENSOR High after Candidate Generation

Measurements:
F-SENSOR high

List of Primary Deviations: ((L-SP -) (L-ERROR +) (F23 -) (R23 +) (PB -)
(R2 +) (F1 +) (F2 -) (V +) (L +) (V1 +) (PB +) (R2 -) (F2 +) (P2 +)
(R23 -) (F23 +) (P3 +) (R34 -) (F34 +) (P4 +) (P5 -) (R45 -).(F45 +)
(F-SENSOR +))

Possible Faults:
1> The set point of LEVEL_CONTROL_SYSTEM set low.
2> Control system LEVEL_CONTROL_SYSTEM failed high.
3> Blockage in pipe PIPE-A.
4> Outlet blockage in tank TANK-1.
5> Control valve CV-1 failed open.
6> Leak in pipe PIPE-B.
7> Sensor F-SENSOR failed high.
8> High flow rate Fl entering tank TANK-1.
9> Low pressure downstream of pipe PIPE-B.

When a second measurement becomes abnormal, a valid tree 1is

sensor’ +) and

-) are shown in Figures 4-8 and 4-9, respectively. The search

constructed for the new measurement. The valid trees for (L

(L

sensor’



122

senso
T
L®
T
ve
/ "\
F, @ F,O
N
X2 P,® R,®
T
I:2.':19
P /" ‘\
s © R, @
T
fas ©
/' ‘\
Ry ® s ©
vT@
1
T
error ©
T
Lsp®
Figure 4-8

Valid Tree for (L +)

sensor’



123

L sensor ©
LTG
VTe
\
b ® PJ@ R,©
anTe
\
"3 6/' R2©
e
\
R34e/' Pe ©
4
V1*9 ':45T @
\
4
Lep©
Figure 4-9
Valid Tree for (L, -)



124

ends at P4 in Fig. 4-8 because F4

assignment of the qualitative value '-' to make the branch consistent. The

5 causally upstream from P4, requires the

negative value is inconsistent with the actual positive deviation at

Fsensor'

If a single failure is assumed, the intersection of the sets of
primary deviations identified for each measurement yields those primary
deviations from which consistent paths exist to all the valid measurements.
The intersection of the set of primary deviations identified for the
abnormal measurement (F , +) with the sets for (L , +) and

sensor sensor
(Lsensor, -) are shown in Tables 4-2 and 4-3, respectively. The number of
primary deviations and the number of associated faults are reduced as the

pattern of symptoms develops.

Table 4-2

List of Primary Deviations and Possible Faults for
F-SENSOR High and L-SEMSOR High after Candidate Generation

Measurements:
F-SENSOR high
L-SENSOR high

List of primary deviations: ((F23 -) (R23 +) (PB -) (R2 +) (F1 +) (F2 -)
(V+) (L+4) (P2 +4) (P3 +) (P4 +))

Possible Faults:
1> Blockage in pipe PIPE-A.
2> Outlet blockage in tank TANK-1.
3> High flow rate Fl entering tank TANK-1.
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Table 4-3

List of Primary Deviations and Possible Faults for
F-SENSOR High and L-SENSOR Low after Candidate Generation

Measurements:
F~SENSOR high
L-SENSOR low

List of primary deviations: (fL-SP -) (L-ERROR +) (V1 +) (PB +) (R2 -)
(F2 +) (R23 -) (F23 +) (R34 -) (F34 +) (P5 -) (R45 -) (F45 +))

Possible Faults:
1> The set point of LEVEL_CONTROL_SYSTEM set low.
2> Co.itrol system LEVEL_CONTROL_SYSTEM failed high.
3> Control valve CV-1 failed open.
4> Leak in pipe PIPE-B.
5> Low pressure downstream of pipe PIPE-B.

4.3.7 Sequence of Alarms

A smaller set of primary deviations is identified when the causal
search is performed on each valid measurement in the order in which it
occurs, rather than when the fault is more fully developed, because
building a valid tree with fewer abnormal measurements tends to reduce the
size of the search space. Consider the valid tree constructed for the
first abnormal measurement. The tree is bounded causally upstream by
normal measurements, If the valid tree is constructed for the same
abnormal measurement when several sensors are abnormal, the causal search
may encounter valid measurements causally upstream that are consistent with
the current search path. The causal search along these paths is not
bounded and the construction of the valid tree is continued. The sections
of the valid tree above consistent, measured nodes add additional fault
origins to the set of primary deviations. The following example 1illus-
trates how evaluating the alarms in sequence reduces the number of primary
deviations. Consider the causal digraph in Figure 4-10, in which nodes C
and F are measured and valid. If the deviation (C, +) is known to have

occurred first, candidate generation from node C would identify the four
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Valid Trees for (C, +) and (F, +)
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primary deviations shown in Figure 4-1la, because the valid tree is bounded
at (G, -) when node F is normal. When the deviation (F, +) occurs,
candidate generation would produce the valid tree in Fig. 4-11b. Set
intersection of the nodes in Figs. 4-lla and 4-11b identifies three primary
deviations: ((A, +) (B, -) (C, +)). If no information about the order of
the alarms was available and both nodes C and F were valid, then the search
from (C, +) would not be bounded at (G, -). The valid tree in Fig. 4-llc
would be generated for (C, +), rather than the tree in Fig. 4-1la. Inter-
section of the nodes in Figs. 4-11b and 4-1lc yield six primary deviations:
((a, +) (B, -) (c, +) (D, +) (E, -) (F, +)). By evaluating each measure-
ment in the order in which it becomes valid, the set of primary deviations
identified for each measurement tends to be smaller because the search

space is bounded by normal measurements,

4.4 Candidate Testing

The purpose of candidate testing is to apply other types of informa-
tion, beyond the knowledge of causal adjacency used in candidate genera-
tion, to eliminate implausible candidates from the set of primary devia-
tions. Because this information is more complex, candidate generation is
first performed to identify a small set of possible origins. Computation
time is minimized, and hence, the speed of the diagnosis is increased,
because candidate testing is performed on this smaller set.

Because we have been investigating qualitative reasoning, the knowl-
edge employed during the candidate testing step is qualitative. The
knowledge considered here is (1) global constraints, (2) fault simulation
using time delays, and (3) heuristic rules.

It is important to note that the primary deviations eliminated during
candidate testing are not permanently removed from further consideration;
they are only removed for the current pattern of abnormal sensors. After a
new measurement deviation, the set of primary deviations from candidate
generation is reexamined because the new valid measurement may change the
simulation results and/or the validity of the antecedents in the heuristic
rules. Primary deviations removed during one pass of candidate testing may

not be eliminated during another.



128

4.4.1 Global Constraints

Because the causal digraph is limited to local interactions, global
information may be necessary to constrain spurious interpretations. If
global knowledge is known, then it should be retained and incorporated for
diagnosis. The global constraints considered here are that a process
variable cannot simultaneously deviate in both directions, given a set of
consistent causal paths from a root node to valid measurements, and that
global knowledge can be used to specify the dominant causal path when

multiple paths of opposite net sign exist in the digraph.
4.4.1.1 Eliminating Roots That Yield Nodes With Multiple Values

During candidate generation, the intersection of the sets of primary
deviations generated for each valid measurement was done to explain the
observed measurement pattern with the fewest number of faults. If two or
more faults have occurred, it may be possible to identify single fault
origins that can explain the observed measurement pattern. When ambiguity
exists in the digraph+, set intersection alone is not sufficient to
guarantee that the primary deviations obtained are plausible fault origins.

It is possible to eliminate some of the spurious candidates by ana-
lyzing the paths from each root to every deviated sensor. During the
causal search, the process variables along a path were examined. After set
intersection, the group of consistent paths from each root to every
deviated sensor should also be examined. A root is eliminated from the set
of primary deviations if any digraph node is assigned both '+' and '-'
qualitative values along different paths from the root to abnormal
measurements. The assignment of multiple values corresponds to a process

variable simultaneously having both positive and negative deviations.

TMultiple paths of opposite net sign can be identified from the set of
primary deviations identified from the valid tree. If a node appears twice
in the set of primary deviations with both '+' and '-' qualitative values,
then ambiguity in the digraph exists because both directions of deviation
can explain the same valid measurement.
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Figure 4-12
Causal Digraph With Ambiguity

The removal of primary deviations because nodes in the consistent
paths were assigned multiple values is demonstrated with the causal digraph
in Figure 4-12. Nodes D and E are measured and valid. The valid trees for
the measurement deviations (D, -) and (E, +) are presented in Figures 4-13a
and 4-13b, respectively. A single fault is assumed because set
intersection is not empty: the primary deviations (A, +) and (A, -) are
identified. An analysis of the paths from each root to the abnormal
measurements shows that neither of these node-sign pairs can be the actual
location of the fault because both fault candidates require that node C
simultaneously hold '+' and '-' wvalues. When these candidates are

eliminated, the set of primary deviations is empty and the conclusion
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Figure 4-13
Valid Trees for (D, -) and (E, +)
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reached is that multiple faults have occurred. In summary, the
intersection of candidate sets identifies those root nodes that have a
consistent path to every deviated measurement. Analysis of the causal

paths is required to show that each process variable has a single value.

4.4.1.2 Dominant Causal Paths

If the behavior of nonadjacent process variables is known, it can be
used to eliminate spurious primary deviations. The use of qualitative
equalities is one approach for representing these constraints on system
behavior. A qualitative equality represents the dominant causal pathway
when paths of both positive and negative net sign exist between two digraph
nodes. For example, in Fig. 4-12, multiple paths of opposite sign exist
between nodes A and C. If the qualitative equality {[A] = [C] is known and
the fault propagates from A to C, the deviation at C is known to be in the
same direction as the deviation at A. The positive path AC is dominant
over the negative path ABC.

Qualitative equalities can be incorporated while checking the consis-
tent paths for digraph nodes with multiple value assignments, as discussed
in Section 4.4.,1.1. The equality must hold when the consistent path
between the origin and the deviated sensor contains both the nodes in the
equality. Qualitative equalities can also be incorporated into the candi-
date generation procedure. The equalities are used to bound the valid tree
during the causal search. The valid tree constructed for (E, +), when the
constraint is known, is shown in Fig. 4-13c. The valid tree terminates at
(B, -) because the qualitative equality between nodes A and C would be
violated if the consistent node (A, -) was added. Therefore, with the
global constraint, (A, -) is not identified as a primary deviation. Note
that the equality bounds the search space only when the fault propagates
through both nodes of the equality.

4.4,2 Simulation Using Qualitative Time Delays

Qualitative information characterizing process dynamics can be used to

reduce the set of primary deviations.
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4.4.2.1 Qualitative Modeling of Dynamics

Information about a system's dynamic behavior is implicit in the
equations chosen to model the system. If a differential equation is chosen
to model the relationship between a group of process variables, then the
dynamics between the terms of the equation are important, i.e., they are on
the same order of magnitude as the dynamics of the overall system and/or
the scanning frequency of the measurements. If an algebraic equation is
selected, the time lag between the change in one variable and the change in
another is negligible; the process variables in the model are assumed to
change together. To illustrate this idea further, consider a differential
mass balance equation around a process unit containing an incompressible
fluid. If the mass of the fluid remains constant over time, as in a pipe,

then the system model becomes F, = F Changes in inlet flow rate are

in out”’
instantly propagated to the outlet because the time constant for this
equality relationship is assumed to be zero. If the volume of the fluid in
the unit can change with time, as in a tank, and Fout is a function of the

fluid volume, then changes in FOu due to changes in Fin are delayed by a

positive time constant. -

The qualitative approximations of numerical time constants used in
this paper are the two qualitative values '0O' and 'l', representing zero
delay between a cause and its effect, and positive delay, respectively. As
a first approximation in assigning qualitative values, causal arcs
developed from balance equations in which the derivative is not constant,
functional relationships with integral action, and arcs characterizing
transportation lag have positive time delay. Driving force equations,
non-integral functional relationships, and equalities yield arcs which have

zero time delay.
4.4.2.2 Using Qualitative Time Delays to Eliminate Primary Deviations

If there were multiple paths of oppnsite sign between a primary
deviation and a sensor, the initial deviation of the sensor could be
predicted solely on the basis of the delay time: the deviation would be in
the direction that would make the path with the shortest delay time
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consistent. Without the numerical values for positive time delays, the
time when a measurement will alarm cannot be specified. But for paths with
zero time delay, the disturbance is instantly propagated from the initial
node to the terminal node in the path. This knowledge can be used to
eliminate primary deviations from the set of possible origins.

For each root node in the set of primary deviations, fault simulation
is performed from the root node along the arcs with zero time delay.
Causally downstream nodes are assigned values so that the branches in the
simulation tree are consistent. If any node in the tree is measured and
the qualitative value of the actual measurement is either normal, if the
measured variable is not a controlled variable, or opposite of the sign in
the simulation tree, then the root node should be eliminated from the set
of primary deviations. If there are no measurement nodes in the tree, or
if the actual measurements have the values that match the fault simulation,
then the node remains a candidate. A normal measurement causally down-
stream from the primary deviation is acceptable if it is a controlled
variable, because the control system may compensate for the disturbance and
yield a normal value.

Returning to the tank example, three arcs in the causal digraph illus-
trated in Fig. 3-2 have positive time delay: F1 —V, F2 — V, and
Lerror — Vi assuming an integral control mode. All other arcs have the
value '0'. Two faults, "Blockage in pipe PIPE-A" and '"Outlet blockage in
tank TANK-1," identified during candidate generation and. presented in
Table 4-1, are eliminated when delay times are considered. Simulation
trees from the primary deviations (R23, +) and (Rz, +) reach the flow
sensor. The paths from these nodes to the sensor represent the instan-
taneous pressure/flow rate propagation along the piping length. The two
faults are eliminated because the qualitative value '-' is required at the
flow sensor to make the paths from each root consistent. The actual value

of the measurement is '+'.
4.4,.3 Heuristic Rules

Knowledge in the form of rules can be used to reduce the number of

primary deviations. Although the term heuristic is used, both experiential
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and model-based knowledge can be represented in this format. Several
illustrative examples are presented. These rules were derived from ana-

lyzing case studies.

Rule 1: If the controlled variable in a control system is normal, then the
control system is working. Therefore, remove any primary deviations
associated with the control system (from the controller through the control
valve) and the desired set point. [Note: This rule assumes that
sufficient time has elapsed for faults within the control system to cause

the deviation of the controlled variable.]

Rule 2: If a control system is working, a disturbance propagates into the
control system through the control wvalve, and the control system
compensates for the disturbance by closing the valve, then the propagation
of the failure is always halted and the controlled variable remains normal.
Therefore, any primary deviations causally upstream from the control valve

that cause the valve to close can be eliminated.

In addition to referencing qualitative data, rule antecedents can also
reference numerical data (e.g., measurement values, reference values, and
output from numerical calculations, including rates of change, simulations,

statistics, etc.) to reduce the number of primary deviations.

Rule 3: If the measured, numerical value of a pressure sensor is negative,
then the sensor has failed. Therefore, eliminate all other primary devia-

tions.

Rule 4: If the normal process and measurement noise of a sensor disappears
(variance goes to zero), then the sensor has failed. Therefore, eliminate

all other primary deviations.

4.4.4 Tank Example Revisited

Candidate testing is demonstrated on the tank example investigated in
Section 4.3.6. Several of the faults presented in Tables 4-1, 4-2, and 4-3
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are not consistent with higher-level knowledge, although they are
consistent with the local knowledge used during candidate generation.

Table 4-4 1lists the primary deviations and possible faults for
"F-SENSOR High" after candidate generation and testing. Global constraints
were not specified for the problem, and hence, no primary deviations were
eliminated due to constraints. Fault simulation using time delays removes
five primary deviations: ((F23, -) (R23, +) (PB, -) (R2, +) (F2, -)).
Heuristic Rule 1 eliminates three primary deviations: ((L-SP, -)
(L-ERROR, +) (V1, +)), and heuristic Rule 2 removes one primary deviation:
((P5, -)). The nine faults in Table 4-1 are reduced to two.

Table 4-4

List of Primary Deviations and Possible Faults for
F-SENSOR High after Candidate Generation and Testing

Measurements:
F-SENSOR high

List of Primary Deviations: ((F1 +) (V +) (L +) (PB +) (R2 -) (F2 +) (P2 +)
(R23 -) (F23 +) (P3 +) (R34 -) (F34 +) (P4 +) (R45 -) (F45 +)
(F-SENSOR +))

Possible Faults:
1> Sensor F-SENSOR failed high.
2> High flow rate Fl entering tank TANK-1.

Table 4-5 1lists the primary deviations and possible faults for
F-SENSOR high and L-SENSOR high after candidate generation and testing.
Fault simulation using time delays removes five primary deviations:
((F23, -) (R23, +) (PB, -) (R2, +) (F2, -)). The three faults in Table 4-2

are reduced to a single fault.
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Table 4-5
List of Primary Deviations and Possible Faults for
F-SENSOR High and L-SENSOR High after Candidate Generation and Testing

Measurements:
F-SENSOR high
L-SENSOR high

List of primary deviations: ((F1 +) (V +) (L +) (P2 +) (P3 +) (P4 +))

Possible Faults:
1> High flow rate Fl entering tank TANK-1.

Table 4-6 1lists the primary deviations and possible faults for
F-SENSOR high and L-SENSOR 1low after candidate generation and testing.
Heuristic Rule 2 removes one primary deviation: ((P5, -)). The five faults

in Table 4-3 are reduced to three.

Table 4-6

List of Primary Deviations and Possible Faults for
F-SENSOR High and L-SENSOR Low after Candidate Generation and Testing

Measurements:
F-SENSOR high
L-SENSOR 1low

List of primary deviations: ((L-SP -) (L-ERROR +) (V1 +) (PB +) (R2 -)
(F2 +) (R23 -) (F23 +) (R34 -) (F34 +) (R45 -) (F45 +))

Possible Faults:
1> The set point of LEVEL_CONTROL_SYSTEM set low.
2> Control system LEVEL_CONTROL_SYSTEM failed high.
3> Control valve CV-1 failed open.
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4.5 Mapping Faults to Primary Deviaticns

A table mapping faults to primary deviations is used to produce the
list of faults from the reduced set of root nodes after candidate testing.
To keep the diagnostic system modular, tables are constructed for system
components. Therefore, given a primary deviation and the class of process
equipment, the fault is identified. An example of the mapping of faults to
primary deviations for a centrifugal pump is presented in Table 4-7. Given
the primary deviation (R, +) and the component class "centrifugal pump",
the faults "impeller suction or discharge opening partially plugged" and
"suction strainers clogged" are identified. Note that not all primary
deviations have faults associated to them; for example, there are no faults
whose primary deviations are (F, +), (R, -), and (CA’ +), even though these
nodes could be identified as possible origins.

The relationship between faults and primary deviations depends on the
context in which the physical system functions. Information about the
context is necessary to specify whether a fault should be considered and
whether it should be mapped to the + or - deviation of a digraph node. For
example, to identify possible faults for 1low pressure in a vessel,
knowledge about the physical characteristics of the unit (e.g., number of
flanges, relief valves, rupture disks, drain valves) would be important in
identifying possible causes. These 'leakage' faults would then be mapped
to (P, -) only if the pressure of the vessel was greater than atmospheric
pressure. If the vessel pressure was less, then the fault would be associ-
ated with the primary deviation (P, +) because the pressure of the vessel
would increase as air entered the system.

Context-independent rules for generating the fault tables can be used
to correctly map faults to primary deviations for a given context. Like
the context-independent component models for generating the correct causal
digraph, these rules can be grouped by process component. Rule antecedents
reference the unit's physical characteristics, design values, and possibly
the current process measurements. Rule consequents are the faults for the
primary deviations in the given component. Plant-specific faults can be

added to the table.



137

Table 4-7

Mapping of Faults to Primary Deviations For a Centrifugal Pump'r

(Subscript 1 denotes inlet, subscript 2 denotes outlet)

Assumptions: 1. Newtonian liquid 4. Electric motor
2. Strainers 5. Insulation
3. Pl’ P2 > Patm 6. Tl’ T2 > Tatm
Primary Deviation Possible Faults
(PZ’ -) Leakage of fluid to external environment
(F, -) Entrained vapor in fluid

a. air leak in suction line
b. stuffing box packing worn or liquid seal plugged,
allowing leakage of air into pump casing

Change in liquid physical properties (increased density,
increased viscosity, decreased vapor pressure)

Temperature increase causing cavitation of hot or
volatile liquid

(R, +) Impeller suction or discharge opening partially plugged

Suction strainers clogged

(T, +) External fire
(T, -) Insulation removed
(wy, =) Broken impeller shaft; broken coupling

Impeller damaged
Impeller key missing
(i, -) Loss of power to electric motor

(i, +) Power too high to electric motor

Traults obtained from Centrifugal Pumps (Newtonian Liquids), AIChE

Equipment Testing Procedure, 1984.
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When the causal digraph for a particular process unit is desired, an
instance of the general component. database is created. The database holds
design values of parameters and process variables for the particular unit,
or for real-time processing, it may reference measurements or equations for
calculating the values required by the rules. The values in this component
database are used to generate the table mapping faults to primary devia-
tions. The table relates faults to their primary deviations for a given
set of conditions and assumptions about the operating state and equipment
design specifications.

If the system changes (e.g., a flow is rerouted, set points are
changed, a tank is emptied, etc.), the values in one or more databases may
change. By reevaluating the rule bases associated with each of the units
affected by the change, the appropriate faults and the correct direction of
deviation are maintained in the table.

The actual mapping of faults to primary deviations comes from experi-
ence and expertise with a particular component's operation. For example,
only someone intimately familiar with the mechanical design and operation
of a centrifugal pump knows that air can enter through worn packing,
causing a loss in flow rate. The assignment of a fault to a primary
deviation can be checked by fault simulation. The causal digraph predic-
tions, generated by fault propagation from the primary deviation, must
match the actual physical system when the fault is present. All faults
desired to be diagnosed by the diagnostic system must be included in the
fault table.

If the number of fault candidates is large, the faults can be ranked
based on failure rate data. Then, only the most probable faults would be
initially presented to the operator. This reduction allows the operator to
focus his attention on the subset of fault candidates with the greatest
likelihood. If these faults are investigated and none are found to be the
actual cause, the operator can then review candidates with lower probabili-
ties. For example, the median failure rate for a pump is 3 x 10_5
faults/hr (with upper and lower bounds 3 x 10-6 to 3 x 10-4), whereas the
median failure rate for a rupture in a pipe with an inner diameter less
than three inches is 1 x 10-9 faults/hr (with upper and lower bounds
3x 107 to 3 x 10-8) (AEC [1974]). If both of these faults appeared in
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the list of possible candidates, the operator, without any additional
knowledge about the failure, should investigate the pump failure first,
because its failure rate is four orders of magnitude greater than that of a
pipe rupture.

If the standard operating, safety, and shutdown procedures are stored
as data in the computer, then the operator can input the ({rue cause of the

upset into cvhe system and generate the appropriate corrective action.
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Chapter 5

DIEX: A MODEL-BASED DIAGNOSTIC SYSTEM PROTOTYPE

The causal digraph and the diagnostic strategy, developed in Chapters
3 and 4, were implemented in a computer program. In this chapter, DIEX
(Diagnostic Expert), a model-based diagnostic system prototype, is
described and tested on three example processes of increasing complexity.
For each example, the system digraph is developed from general component
models for a specific set of context-specific assumptions. The performance
of the prototype is then demonstrated on each of the processes. For each
example, several faults are selected and the qualitative measurement
deviations for each fault are entered into DIEX. The 1list of faults
identified by the diagnostic system is checked so that (1) the actual fault
is contained in the 1list, and (2) all faults that are inconsistent with

other available information are eliminated.

5.1 Description

DIEX (Diagnostic Expert) is a model-based diagnostic system prototype.
DIEX has been implemented in Franz Lisp running under UNIX on a DEC VAX
11-780. Major portions of the computer code are listed in Appendix B. The
description of the prototype is separated into two sections: knowledge
representation and diagnostic strategy.

Although the implementation effort focused on flexibility rather than
on efficient code, the diagnostic system performed quickly. For the
largest example studied (a continuous stirred tank reactor with an exother-
mic reaction and external cooling, which contained 122 nodes and 173 arcs),
the maximum system response time for candidate generation and compiling the
list of faults from the set of primary deviations was under 5 seconds per

valid measurement.
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5.1.1 Knowledge Representation

Plant topography and the specific unit design information is entered
through an interactive design program. In many cases, numerical values of
the process parameters are necessary to specify the correct causal inter-
actions from the causal models. Structural information is used to match
the ports of interconnected units. The design program creates a data file
which is used by a second program to construct the causal digraph.
Object-oriented programming is used to specify the digraph. Node and arc
flavors are used for instantiating specific process variables and their
causal interactions. The flavor definitions are presented in Appendix B.

General component causal models have been developed for ten types of
process equipment and four elementary chemical reactions. The process
equipment models include pipe, tee, centrifugal pump, valve (2-port), tank,
heat exchanger, vaporizer, continuous stirred tank reactor (CSTR), sensor,
and single-input single-output (SISO) control system models. Rules in the
models are similar to those presented in Example 2 in Section 3.5.2.

Data structures for storing global information (Section 3.3.4) and for
representing the physical adjacency of process units (Section 3.5.1.1) were

not implemented.
5.1.2 Diagnostic Strategy

During candidate generation, the system constructs a valid tree for
each abnormal measurement from the arcs in the causal digraph, as discussed
in Section 4.3.4, The qualitative values of the measurements can be input
into the diagnostic system prototype one at a time or in groups. When more
than one measurement is valid, an active set of primary deviations from set
intersection is maintained. Thus, a single intersection is performed
during each pass. Causal simulation using time delays and heuristic rules
were implemented for candidate testing. Rules are incorporated into the
prototype as Lisp functions rather than through the use of a general rule
interpreter. Global constraints were not implemented because they are
relatively straightforward. Computer code for the major sections of the

prototype is presented in Appendix B.
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The mapping of faults to primary deviations was done for the
particular contexts of the example processes studied. Context-specific
rule bases were developed for the following process equipment: pipe, tee,
centrifugal pump, valve (2-port), tank, heat exchanger, vaporizer, CSTR,
sensor, and SISO control system. These are also included in Appendix B.

Plant-independent rule bases were not developed.

5.2 Examples

Three examples are presented to illustrate the construction of the
causal digraph from the component models and the performance of the DIEX
system prototype. The digraphs are based on the methodology and guidelines
presented in Chapter 3. In each example, context-specific design data and
the interconnections of system components were necessary to obtain the
overall process digraph. The system digraphs developed for each example
are presented in Appendix C. In the schematics, the perpendicular 1lines
across major flow streams denote equipment ports. The number at each port
denotes the subscript used for the process variables associated with the

port.

5.2.1 Tank With a Level Control System

The schematic for a tank with a level control system, illustrated in
Fig. 3-1, is repeated in Figure 5-1. A liquid feed enters the tank, which
is at atmospheric pressure. A SISO control system maintains the tank level
at the desired set point. The outlet flow rate is also measured. Arcs
related to bulk fluid flow are considered.

The schematic was decomposed into general process components for
digraph construction. The schematic contains the following components:
one tank with one inlet port and one outlet port, one control valve, two

sensors, one SISO control system, and two pipes.
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]

TANK-1
LRC

PIPE-A PIPE-B
Cv-1
Figure 5-1
Process Schematic of a Tank with a Level Control System

The system digraph was constructed from the general component causal
models and process design data. The context-specific knowledge used to
build the digraph is

1. The valve is open

2. All flow rates are positive and in the directions assumed

3. Liquid inlet in the tank is above liquid level

4. Tank is at atmospheric pressure.

The system digraph, presented in Appendix C-1, contains 21 nodes and 29
arcs.

Actual system output after candidate generation and testing was

presented in Section 4.4.4. Table 4-4 presents the possible fault candi-

dates for (Fsensor’ +), Table 4-5 lists possible origins for (Fsensor’ +)

and (L » +), and Table 4-6 lists fault candidates for (F , +) and
sensor sensor

(L -).

sensor’
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5.2.2 Vaporizer

The schematic of a vaporizer is illustrated in Figure 5-2. The
pure-component, liquid feed is vaporized by heat transferred from the
heating medium through the coiled tubes in the vaporizer. Two SISO control
systems maintain the vaporizer liquid level and pressure at their desired
set points. 1Inlet flow rate is also measured.

The schematic was decomposed into general process components for
digraph construction. The schematic contains the following components:
one vaporizer, two control valves, three sensors, two SISO control systems,

and two pipes.

PIPE-B

VAPORIZER -1

Figure 5-2

Process Schematic of a Vaporizer
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The system digraph was constructed from the general component causal
models and process design data. The context-specific knowledge used to
build the digraph is

1. All valves are open

2. All flow rates are positive and in the directions assumed

3. T3 <TK T5

4, Constant fluid properties (p, Cp’ A)

5. Liquid inlet in the vaporizer is above liquid level

6. No structural faults in the vaporizer.

The system digraph, presented in Appendix C-2, contains 45 nodes and 65
arcs. The assumptions for constructing the table mapping faults to primary
deviations are P > P

fluid are insulated.

atm’ T > Tatm’ and the system components that handle

Four failures (level control system failed low, low temperature
heating fluid, vapor leak from the vaporizer, and fire around the vapor-
izer) are examined. For each pattern of abnormal measurements, the reduced
set of primary deviations and the list of possible fault origins generated

by DIEX are presented.
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5.2.2.1 Level Control System Failed Low

Candidate generation for the valid measurement (Fsensor’ +) yielded 25

faults (45 primary deviations). Candidate generation for (Lsensor’ +) and

set intersection reduced the number of faults to four (ten primary devia-
tions). Heuristic Rule 2 eliminated the primary deviation (Pl' +) during
candidate testing. The third valid sensor (P , =) added no additional

sensor
information. The final set of faults is presented in Table 5-1.

Table 5-1

Faults Identified for Level Control System Failed Low

Measurements:
F-SENSOR high
L-SENSOR high
P-SENSOR low

List of primary deviations: ((L-SP +) (L-ERROR -) (V1 +) (R3T -) (F3T +)
(R23 -) (F23 +) (R12 -) (F12 +))

Possible Faults:
1> The set point of LEVEL_CONTROL_SYSTEM set high.
2> Control system LEVEL_CONTROL_SYSTEM failed low.
3> Control valve CV-1 failed open.
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5.2.2.2 Low Temperature Heating Fluid

Candidate generation for the valid measurement (p -) identified

sensor’
24 faults (38 primary deviations). Candidate generation for (F y =)

sensor
and set intersection reduced the number of possible fault candidates to 20
(32 primary deviations). Fault simulation during candidate testing elimi-
nated eight primary deviations ((PB’ =) (R78' -) (F78’ +) (P7, -) (RT7’ -)
(FT7’ +) (VAPOR_RATE, -) (PT’ -)) and four faults. The remaining sixteen

faults are presented in Table 5-2.

Table 5-2

Faults Identified for Low Temperature Heating Fluid

Measurements:
P-SENSOR low
F-SENSOR low

List of primary deviations: ((P2 +) (P3 +) (R3T -) (P-SP -) (P-ERROR +)
(v2 =) (P4 -) (R45 +) (F45 -) (PS5 =) (P6 +) (R56 +) (T4 -) (T5 -) (F56 =)
(T6 -) (RH +) (T1 -) (T2 -) (T3 -) (Q -) (F3T +) (T -) (P-SENSOR -))

Possible Faults:
1> The set point of PRESSURE_CONTROL_SYSTEM set low.
2> Control system PRESSURE_CONTROL_SYSTEM failed high.
3> Control valve CV-2 failed closed.
4> Blockage in control valve CV-2.
5> Leak in control valve CV-2.
6> Blockage in heating coils in vaporizer VAPORIZER-1.
7> Insulation removed on control valve CV-2.
8> Severe fouling in heating coils in vaporizer VAPORIZER-1.
9> Insulation removed on pipe PIPE-A,
10> Insulation removed on control valve CV-1,
11> Insulation removed on vaporizer VAPORIZER-1.
12> Sensor P-SENSOR failed 1low.
13> Low pressure upstream of control valve CV-2.
14> High pressure downstream of P6 in vaporizer VAPORIZER-1.
15> Low temperature fluid entering control valve CV-2.
16> Low temperature fluid entering pipe PIPE-A.
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5.2.2.3 Vapor Leak From Vaporizer

As in the previous example, candidate generation for the valid mea-

surement (P -) generated 38 primary deviations and 24 faults. The

sensor’

valid measurement (F +) eliminated two primary deviations and no

sensor’
faults. Twenty four faults (36 primary deviations) remain after candidate
generation and set intersection for the two valid measurements. Heuristic
Rule 1 eliminated three primary deviations ((Lsp, +) (Lerror’ -) (Vl, +))
during candidate testing. The final set of fault candidates is presented

in Table 5-3.
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Table 5-3

Faults Identified for Vapor Leak From Vaporizer

Measurements:

P-S
F-S

List of primary deviations: ((L -) (R23 -) (F23 +) (R3T -) (P-SP -)
(P-ERROR +) (V2 -) (P4 -) (R4S +) (F45 -) (P5 -) (P6 +) (R56 +) (T4 -)
(T5 -) (F56 -) (T6 -) (RH +) (T1 -) (T2 -) (T3 -) (Q -) (F3T +) (T -)
(P8 -) (R78 -) (F78 +) (P7 -) (RT7 -) (FT7 +) (VAPOR_RATE =) (PT -)

(pP-S

Possi
1»
2>
»
4>
5>
6>
7>
8>
9>
10>
11>
12>
13>
14>
15>
16>
17>
18>
19>
20>
21>

ENSOR 1low
ENSOR high

ENSOR -))

ble Faults:
Liquid leak from vaporizer VAPORIZER-1.
The set point of PRESSURE_CONTROL_SYSTEM set low.
Control system PRESSURE_CONTROL_SYSTEM failed high.
Control valve CV-2 failed closed.
Blockage in control valve CV-2.
Leak in control valve CV-2.
Blockage in heating coils in vaporizer VAPORIZER-1.
Insulation removed on control valve CV-2.
Severe fouling in heating coils in vaporizer VAPORIZER-1.
Insulation removed on pipe PIPE-A.
Insulation removed on control valve CV-1.
Insulation removed on vaporizer VAPORIZER-1.
Leak in pipe PIPE-B.
Leak at outlet [P7] in vaporizer VAPORIZER-1.
Vapor leak from vaporizer VAPORIZER-1.
Sensor P-SENSOR failed low.
Low pressure upstream of control valve CV-2.
High pressure downstream of P6 in vaporizer VAPORIZER-1.
Low temperature fluid entering control valve CV-2.
Low temperature fluid entering pipe PIPE-A.
Low pressure downstream of pipe PIPE-B.
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5.2.2.4 Fire at Vaporizer

The valid measurements (P +) were entered

, +) and (F ,
sensor sensor
concurrently. Candidate generation identified 19 faults (32 primary
deviations). The valid level sensor eliminated the single deviation
(Psensor’ +) and the fault "Sensor P-SENSOR failed high." Heuristic Rule 2
eliminated five faults (11 primary deviations) and simulation removed an
additional six faults (13 primary deviations) through candidate testing.

Seven faults and seven primary deviations, presented in Table 5-4, remain.

Table 5-4

Faults Identified for Fire at Vaporizer

Measurements:
P-SENSOR high
F-SENSOR high
L-SENSOR 1low

List of primary deviations: ((P-SP +) (P-ERROR -) (V2 +) (T1 +) (T2 +)
(T3 +) (T +))

Possible Faults:
1> The set point of PRESSURE_CONTROL_SYSTEM set high.
2> Control system PRESSURE_CONTROL_SYSTEM failed low.
3> Control valve CV-2 failed open.
4> Fire at pipe PIPE-A.
5> Fire at conirol valve CV-1.
6> Fire at vaporizer VAPORIZER-1.
7> High temperature fluid entering pipe PIPE-A.
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5.2.3 Continuous Stirred Tank Reactor

The schematic for a continuous flow stirred tank reactor (CSTR) with
an external heat exchanger is illustrated in Figure 5-3. Reactant A is fed
into the CSTR and reacts to form product B in the first-order, elementary
reaction A — B. Both product and reactant are in the liquid phase. The
reaction is exothermic, and the inlet temperature of the reactant is less
than the bulk temperature of the reactor. The reactor is well-mixed so
that the state variables and physical properties of the fluid in the
reactor are assumed to be uniform. The reactant mixture is recycled
through a water-cooled heat exchanger to remove heat. Three SISO control
systems maintain the reactor liquid level, the reactor temperature, and the
recycle flow rate at their respective set points. Additional measurements
include the reactor pressure, recycle temperature, cooling water flow rate,
product flow rate, and product concentration.

The schematic was decomposed into general process components for
digraph construction. The schematic contains the following components:
one CSTR with two inlet ports and one outlet port, one heat exchanger, one
centrifugal pump, three control valves, nine sensors (the concentration
sensor measures both CA and CB)’ three SISO control systems, five pipes,
and one tee.

The system digraph was constructed from the general component causal
models and process design data. The context-specific knowledge used to
build the digraph is

. All valves are open
. All flow rates are positive and in the directions assumed
.T,, T., <T

2’ 712 R

. T6 > T14

1

2

3

4

5. P6 > P14 (for heat exchanger structural fault)
6. Constant fluid properties (p, Cp)

7. Exothermic reaction

8. Constant heat of reaction (AHr)

9. Recycle concentrations CA and CB are identical to the reactor

concentrations.
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The system digraph, presented in Appendix C-3, contains 122 nodes and 173

arcs, The assumptions for constructing the table mapping faults to primary

» T>T ’
atm atm
motor drive, and the system components that handle fluid are insulated.

deviations are P > P a centrifugal pump with an electric

Five failures (control valve failed closed, blockage in pump,
temperature sensor fails high, low inlet concentration of reactant, and
catalyst fouling) are examined. For each pattern of abnormal measurements,
the reduced set of primary deviations and the list of possible fault
origins generated by DIEX are presented.

For this example, a quantitative, dynamic model was developed to
generate the deviations away from steady state. Faults were introduced
into the model and the system's dynamic response was simulated. Qualita-
tive values were assigned to the observed measurement deviations. These

values were entered into the diagnostic system prototype.
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5.2.3.1 Control Valve CV-2 Failed Closed

Candidate generation for the valid measurements (F1 , =) and
sensor

+) identified 27 faults (64 primary deviations). Candidate

+
sensor’ )s

(Peansor® T)» and (T1__ _ -, +), entered together, and set intersection

reduced the number of possible fault candidates to 14 (30 primary devia-

(Fzsensor’
generation for the three additional valid measurements (F3

tions). Fault simulation during candidate testing eliminated the following
19 primary deviations: ((CURRENT +) (P4 -) (R34 -) (OMEGA +) (F34 +) (PB +)
(P3 -) (RR3 -) (FR3 +) (VL -) (THETA-1 -) (P4 +) (Pl -) (R12 +) (F12 -)
(P2 -) (R2R +) (F2R -) (THETA-1 +)). Seven faults (11 pcimary deviations),
listed in Table 5-5, are identified by DIEX.

Table 5-5

Faults Identified for Control Valve CV-2 Failed Closed

Measurements:
F1-SENSOR low
F2-SENSOR high
F3-SENSOR high
P-SENSOR high
T1-SENSOR high

List of primary deviations: ((F-SP -) (F-ERROR +) (V2 -) (R12R +) (F12R -)
(R1112 +) (F1112 -) (R1011 +) (F1011 -) (R610 +) (F610 -))

Possible Faults:
1> The set point of FLOW_CONTROL_SYSTEM set low.
2> Control system FLOW_CONTROL_SYSTEM failed high.
3> Control valve CV-2 failed closed.
4> Inlet blockage [R'2R] in reactor CSTR-1.
5> Blockage in control valve CV-2,
6> Blockage in pipe PIPE-D.
7> Blockage in hot stream in heat exchanger HX-1.
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5.2.3.2 Blockage in Pump

Candidate generation for the valid measurements (F1 , -) and
sensor

(Fzsensor’ -) identified 41 faults (75 primary deviations). Candidate

generation for (Lsensor’ +) and set intersection reduced the number of
possible fault candidates to 38 (70 primary deviations). The two valid

measurements (Tl , +) and (P +) eliminated seven additional

sensor sensor’
faults and 10 primary deviations. Thus, after candidate generation and set
intersection of the five measurements, 31 faults (60 primary deviations)
remained. Fault simulation during candidate testing eliminated 24 faults
(51 primary deviations). The remaining seven faults are presented in

Table 5-6.

Table 5-6

Faults Identified for Blockage in Pump

Measurements:
F1-SENSOR low
F2-SENSOR low
L-SENSOR high
T1-SENSOR high
P-SENSOR high

List of primary deviations: ((R45 +) (CURRENT -) (R34 +) (OMEGA -) (F34 -)
(RR3 +) (FR3 -) (F1-SENSOR -) (F45 -))

Possible Faults:
1> Blockage in pipe PIPE-B.
2> Loss of power to electric motor on pump PUMP-1.
3> Blockage of section or discharge in pump PUMP-1.
4> Broken shaft or coupling in pump PUMP-1.
5> Entrained vapor or change of physical properties in pump PUMP-1.
6> Outlet blockage [RR3] in reactor CSTR-1.
7> Sensor F1-SENSOR failed low.
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5.2.3.3 Temperature Sensor T. Failed High

1

Candidate generation for the valid measurement (Tlsensor’ +) identi-
fied 59 faults (129 primary deviations). Fault simulation during candidate
testing eliminated 128 primary deviations, because a causal path of zero
time delay exists from the measured variable TR to the pressure sensor.
Therefore, any fault whose causal path contains TR must also cause the
pressure measurement to be valid.

All subsequent measurement deviations, caused by the temperature
control system, can be traced back to the temperature sensor failure. Only

the single fault, presented in Table 5-7, is identified.

Table 5-7

Faults Identified for Temperature Sensor T1 Failed High

Measurements:
T1-SENSOR high
F3-SENSOR high
T2-SENSOR high
P-SENSOR 1low
CA-SENSOR high
CB-SENSOR 1low

List of primary deviations: ((T1-SENSOR +))

Possible Faults:
1> Sensor T1-SENSOR failed high.
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5.2.3.4 Low Inlet Concentration CA

Candidate generation for the valid measurement (F3sensor’ -) and
<Tzsensor’ +) identified 51 faults (102 primary deviations). Candidate
generation for (CAsensor’ -) and (CBsensor’ -), and set intersection

reduced the number of possible fault candidates to 40 (71 primary devia-
tions). Fault simulation during candidate testing eliminated all but two

faults (three primary deviations). They are presented in Table 5-8.

Table 5-8

Faults Identified for Low Inlet Concentration C A

Measurements:
F3-SENSOR low
T2-SENSOR high
CA-SENSOR low
CB-SENSOR low

List of primary deviations: ((CAl -) (CA2 -) (CAR -))
Possible Faults:

1> Side reaction occurring in reactor CSTR-1, depleting reactant.
2> Low concentration of species A entering pipe PIPE-A.




158

5.2.3.5 CSTR Catalyst Fouling

Candidate generation for the valid measurements (Psensor’ -) and
(Tlsensor’ -) identified 62 faults (131 primary deviations). Candidate
generation for the two additional valid measurements (CAsensor’ +) and

(CBsensor’ -), and set intersection reduced the number of possible fault
candidates to 60 (127 primary deviations). Fault simulation during candi-
date testing eliminated all but a single fault (two primary deviations).

The fault and Primary deviations are presented in Table 5-9,

Table 5-9

Faults Identified for Catalyst Fouling

Measurements:
T1-SENSOR low
P-SENSOR 1low
CA-SENSOR high
CB-SENSOR 1low

List of primary deviations: ((K -) (REACTION RATE -))

Possible Faults:
1> Catalyst fouling in reactor CSTR-1.
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5.2.4 Discussion of Examples

Two desired attributes of a diagnostic system, presented .n Section
2.4, are (1) the actual fault origin is included in the list of fault
candidates, and (2) that the number of spurious fault candidates included
in the list is minimized. For the examples investigated, DIEX exhibited
both of these attributes: for every fault considered, the actual origin was
included in the set of fault candidates, and the maximum resolution between
the candidates was achieved for the given number and position of the
measurements. No further resolution between the fault candidates can be
obtained without additional information.

The largest number of fault candidates is found in Tables 5-2 and 5-3.
The relatively large number of candidates arises from ambiguity in the
causal digraph and a small number of measurements. Two paths of opposite

net sign exist between the vaporizer temperature T and F The paths

sensor’
are interpreted for (T, -):

Path from (T, -) to (F12’ +)
Decreasing the vaporizer temperature (T, -) causes a decrease in the

rate of vaporization (VAPOR_RATE, -), which decreases the vaporizer

pressure (PT, -). Decreasing the vaporizer pressure increases the
inlet flow rate (F3T’ +), the flow rate through the control valve CV-1
(F23, +), and the flow rate in pipe PIPE-A (F12’ +).

Path from (T, -) to (Flz, -)

Decreasing the vaporizer temperature (T, -) causes a decrease in the
rate of vaporization (VAPOR_RATE, -), which increases the liquid level
in the vaporizer (L, -). The level control system closes the control
valve (Vl, -), which decreases the flow rate through the valve
(F23, -) and the flow rate in pipe PIPE-A (F12’ -).

Because two paths of opposite net sign exist, the measurement of the

inlet flow rate F1

possible fault candidates that lie causally above the vaporizer tempera-

2 provides no information for discriminating between

ture. The 16 faults in Table 5-2 are associated with primary deviations
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at, and causally above, the digraph node representing the vaporizer temper-
ature. The ambiguity in the digraph is the reason why all 16 faults in
Table 5-2 are also found in Table 5-3, even though the deviation at Fsensor
is in the opposite direction.

If the knowledge that the dominant causal path was the net positive
path, from T to Fsensor through the control system, then for a high flow
rate measurement, those faults that have the valid node (T, -) on the
causal path to the measurement are eliminated. For a low inlet flow rate,
faults with (T, +) on the causal path are removed. If this additional
knowledge was applied as a global constraint, one fault candidate (Pressure
sensor failed low) would be eliminated from Table 5-2, and fifteen fault
candidates would be eliminated from Table 5-3. The 21 faults in Table 5-3

are reduced to six:

1> Liquid leak from vaporizer VAPORIZER-1.

2> Leak in pipe PIPE-B.

3> Leak at outlet [P7] in vaporizer VAPORIZER-1.
4> Vapor leak from vaporizer VAPORIZER-1.

5> Sensor P-SENSOR failed low.

6> Low pressure downstream of pipe PIPE-B.

Additional measurements can be added to discriminate between the
possible origins. For example, consider the addition of a temperature
sensor on the inlet of the heating fluid to the vaporizer after the control
valve CV-2. The valid temperature measurement (T, -) would reduce the 16
faults in Table 5-2 to only two faults: insulation removed on control valve
CV-2 and low temperature fluid entering control valve CV-2. The additional
measurements reduce the number of fault candidates because they add knowl-
edge about the current state of the physical system. Additional measure-
ments tend to bound the valid tree sooner during candidate generation and
eliminate more candidates through simulation and heuristic rules during
candidate testing.

Quantitative information about the process can also be coded in a
plant-specific rule base and used to eliminate primary deviations. For
example, in Table 5-2, if it was known that the loss of insulation could
not cause a sizable heat loss, then the four faults (nos. 7, 9, 10, and 11)

concerning loss of insulation could be eliminated from the list.
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Excellent resolution was obtained in Tables 5-8 and 5-9 because the
majority of primary deviations were eliminated during candidate testing.
Because F. and F2 sensors were normal, all faults that caused pressure and

1
flow disturbances were eliminated.

5.2.5 Comparisons Between the Example Processes

Five factors affect the number of fault candidates identified: (1) the
number of possible faults (size), (2) the number of digraph arcs (degree of
causal interaction), (3) digraph ambiguity, (4) the number of measurements,

and (5) the position of measurements within the digraph.

Number of Possible Failures

The number of possible failures was 32 for the tank with the level
control system (28 process failures and four disturbances through the
system boundary), 56 for the vaporizer (44 process failures and 12 distur-
bances through the system boundary), and 110 for the CSTR (96 process
failures and 14 through the system boundary). Given two primary deviations
per digraph node, the ratio of failures to primary deviations is 0.76,
0.62, and 0.45, respectively, for the three examples.

Digraph Size and Degree of Interconnection

The sizes of the causal digraphs examined were 21 nodes and 29 arcs,
45 nodes and 65 arcs, and 122 nodes and 173 arcs, respectively, for the
three examples. The ratio of arcs to nodes was 1.38, 1.44, and 1.42,
respectively. The degree of interconnection is similar because the overall

digraphs were constructed from many of the same general component models.

Number of Measurements

The number of measurements used was two for the tank example, three
for the vaporizer example, and nine for the CSTR example. The ratio of the
number of digraph nodes to the number of measurements was 10.5, 15, and

13.6, respectively, for the three examples.
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Diagnostic resolution improves with a decreased number of possible
faults candidates, a decreased number of causal arcs, decreased digraph
ambiguity, an increased number of measurements, and improved strategic
positioning of sensors. Because the physical process is given (e.g., the
physical mechanisms represented by the digraph are fixed), the first three
factors usually cannot be varied. Additional information about the system,
such as qualitative constraints and additional measurements, can improve

resolution. Optimal sensor placement is investigated in Chapter 6.
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Chapter 6

PLANT IMPLEMENTATION

The focus of this chapter is on putting the causal models and diagnos-
tic strategy into practice, i.e., connecting the diagnostic system to the
physical process. The most important implementation issues are interpret-
ing the process measurements and satisfying the assumptions on which
candidate generation is based. Five assumptions, which were presented in
Section 4.3.3, are necessary for the causal digraph search. Several
examples presented in this chapter show how some of these assumptions may
be violated. Modifications to the diagnostic search strategy are suggested
that employ additional knowledge to handle these cases. The added informa-
tion includes the history of each node's qualitative value assignments, and
the quantitative values of process measurements and causal arc gains. The
placement of sensors for maximum fault resolution is also discussed and the

knowledge required for diagnosis is summarized.

6.1 Setting the Normal Operating Range

A valid node represents a process variable or parameter that has
deviated outside its range of normal operation. If any measured variable
crosses its normal range endpoints, then a fault has occurred.

Assigning a qualitative value to a process variable depends on the
normal range chosen for its reference. If the normal range is too narrow,
small disturbances and transients will cause the node to be valid, and
activate the diagnostic system. If the range is too wide, then a deviated
process variable caused by a fault may not be detected. Because the
measured value of the variable may not cross the alarm threshold, the
node's qualitative value remains '0O'. Deviated process measurements that
are misclassified as normal because of poorly set normal operating bands
also adversely affect candidate generation because the search space is

bounded by these normal measurements. Therefore, the expected values and
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bounds must be set correctly to filter out normal process disturbances
while being sensitive enough to detect abnormal symptoms.

Alarm thresholds are set from experience and should be statistically
determined from historical process data. The range endpoints are chosen so
that if the process variable deviates outside the normal range, then a
fault has occurred. The endpoints are determined by analyzing prior
measurement deviations when faults were known to have been present.

Note that for a measurement to yield information, its normal operating
range must be specified. Without a reference, the measurement is not
useful because its qualitative value cannot be determined. As mentioned in

Section 3.1.1.2, the range can be stationary or be moving with time.
6.2 Problems With Discrete States

The mapping of continuous process variables and parameters into a
discrete set of qualitative states is an important issue. As Long [1983]
points out, the qualitative classification of states simplifies the reason-
ing problem, but places more burden on the interpretation of measurements.

The use of qualitative states has two principal drawbacks. First, all
quantitative values that are mapped to a specific qualitative state have
the same qualitative value. If two temperatures, T1 = 200°C and
T2 = 350°C, lie above a high temperature reference Ty, then they both are
assigned the qualitative value '+'. This is a limitation because, given
only that T. = '+' and T, = '+', the relationship between the two tempera-

1 2
tures (i.e., T1 <T,, T, = TZ’ or T1 > T2) and their relationships with

other temperatures ﬁxa :he same qualitative state cannot be determined.
Qualitative values only specify that both temperatures are greater than the
reference T;. Assigning qualitative values loses information because both
temperatures are mapped to the same qualitative state.

The second drawback of qualitative states is that the assignment of a
qualitative value is sensitive to small changes in a variable's numerical
value when the numerical value is near an endpoint of the qualitative
range. A differential change in the continuous value can result in a
discrete change in the qualitative value. For example, if the high temper-

ature reference was T; = 80°C, then the value 79.999°C is considered
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normal, and 80.001°C is considered high. When a measurement crosses an
endpoint of the normal range, the diagnosis can change abruptly, due to the
discrete logical decision on whether to bound the search space or to
continue to search along the causal arc. Andow [1981] concludes that this
problem does not become more tractable if additional qualitative states are
added.

6.3 Review of the Assumptions for Candidate Generation

The conclusions generated by the diagnostic system are valid only when
the assumptions outlined in Section 4.3.3 are satisfied. These assumptions
guarantee that, for a single failure, the causal search from each valid
measurement will include the actual fault origin in its set of primary
deviations. But the assumptions are not always satisfied in practice.

In this section, the assumptions concerning a single change of state
and failure propagation along a causal path are investigated. Several
examples show that these assumptions can be violated. When the assumptions
are not satisfied, the diagnostic strategy presented in Chapter 4 is
insufficient to diagnose the failure. Additional knowledge must be incor-
porated into the diagnostic strategy.

6.3.1 Changing Qualitative Values

In Assumption 4, process variables were restricted to a single direc-
tion of deviation, and therefore, a single qualitative value assignment.
But variables that return to normal and deviations that change direction
(undergo inverse response) do occur. Two examples illustrate how this

assumption is violated.

o Parallel paths of opposite net sign between digraph nodes when the
dominant path has a larger time delay.

In Figure 6-1, parallel paths of opposite net sign exist between nodes A
and D. The path through node C is dominant and has a larger time delay.
The qualitative dynamic response for a positive deviation at node A is
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time

Figure 6-1
Inverse Response From Parallel Paths of Cpposite Net Sign

shown in the table. The valid trees constructed from node F for the last
two patterns in the table are bounded at nodes D and E, respectively,
because these nodes have normal qualitative values. Because the valid
tr~aes are bounded at these nodes, node A, the failure origin, is not

identified as a primary deviation.

o A control system with a slow compensating response.

Figure 6-2 illustrates a negative feedback control loop. The compensating

response of the control system is slower than the disturbance propagation,



167

so that deviations causally downstream from the loop occur before the
controlled variable (node B) is returned to normal. A valid tree con-
structed from node D for the last pattern in the table is bounded by the
normal measurement at node C. Again, because the valid tree is bounded,

the actual origin at node A is not identified.

A—»p—Fpc—+D

N

FEEDBACK

pand
3
o
+
+
[+]
o

Figure 6-2
Inverse Response From Slow Control Systems

In each example, the intersection of the sets of primary deviations is
empty for the abnormal measurement patterns analyzed. The diagnosis

"multiple faults'" is generated.
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6.3.2. History of a Node's Qualitative Value Assignments

The two examples can be diagnosed correctly if a history of the
qualitative values assigned to each digraph node is maintained. The boxed
values in Figs. 6-1 and 6-2 represent the historical values saved and used
during fault diagnosis. The procedure for constructing the valid tree
during candidate generation is modified to include historical values: a
node causally upstream from the current node is added to the valid tree if
its qualitative value is or ever was of the the correct sign to make the
causal arc consistent. For example, consider building a valid tree from
node F for the last pattern in the table in Fig. 6-1. Without historical
values, the valid tree from F is bounded at node E. When historical
information is used, node D maintains both the values '+' and '-', and node
E maintains the value '+', even though the current values of the nodes are
'-' and '0', respectively. The valid tree from node F now includes the
valid nodes (E, +), (D, +), (B, +), and (A, +).

When inverse response occurs in a digraph without separate parallel
paths, the causal digraph can only predict the initial direction of devia-
tion. The digraph cannot explain a measurement pattern when the long-term
qualitative state of a node is opposite from its initial state. Consider
the digraph in Figure 6-3a, in which node B exhibits inverse response. For
a positive deviation at node A, the final steady-state set of valid nodes
is (A, +), (B, -), (C, +), and (D, -). This set cannot be explained by the
digraph. Oyeleye and Kramer [1987] suggest a modification to the digraph
to handle this type of inverse respcnse. The modification, shown in
Fig. 6-3b, is the addition of a causal arc from A to C. This arc, which
represents the positive path ABC, makes explicit two parallel paths of
opposite net sign between nodes A and B. With this modification and the
use of historical values, all the measurement patterns in the table can be
explained.

Note that the qualitative values in the historical file need to be
discarded after fault correction returns the plant to normal operation.

In summary, the use of historical values and the modification for
inverse response can eliminate the restriction of multiple changes of

qualitative values imposed by Assumption 4 (Section 4.3.3). Historical
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Figure 6-3
Digraph Correction To Handle Inverse Response

values of variables that return to normal or change qualitative sign allow
the causally downstream deviations to be explained by fault propagation

through those variables.
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6.3.3 Fault Propagation Along a Causal Path

Assumption 3 stated that if a disturbance is propagating along a
causal path and two process variables in the path are measured, the caus-
ally upstream measurement will alarm before the downstream measurement.
The following example illustrates that this assumption may be violated for

faults with small disturbance magnitudes.
0 Faults with small disturbance magnitudes.

In Figure 6-4, the measurement deviations for the process variables A, B,

and C are presented. The points represent the deviation of the sensor

1.3
1.0

Figure 6-4
Fault Propagation for Small Disturbances
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values away from their expected reference, and the bands around zero for
each measurement represent the ranges of normal operation. A fault has
occurred at node A and the disturbance has propagated to nodes B and C.
Since the deviations of A and C fall above their normal ranges, they are
assigned the qualitative value '+'. Node B is assigned the value 'O'
because its measurement deviation (1.0) is below the upper normal range
threshold (1.3). The magnitude of the disturbance from node A is insuffi-
cient to cause the value of B to deviate outside its normal range, although
the fault has propagated through B to cause the observed deviation at node
C.

During candidate generation, the valid tree constructed from node C is
bounded at B because the value of B is normal. Because node A is also
valid, an empty set is obtained during set intersection. The criterion for
bounding the search space during the construction of the valid tree is
based on the assumption that the causally upstream alarm will be valid if
the fault lies causally above the alarm. Misdiagnosis may occur when the
effect of the fault is small, so that the measurement deviation due to the
fault is on the same order of magnitude as the normal process fluctuations.
When the effect is small, measured nodes along the propagation path may not
be valid.

6.3.4 Incorporating the Quantitative Values of Measurements and Arc Gains

Two approaches for addressing the problem of diagnosing faults with
small disturbance magnitudes are investigated. The methods presented are
(1) reevaluating the qualitative value assignments of measurements, and
(2) bounding the causal search using quantitative values of the maximum arc

gains.

6.3.4.1 Reevaluating the Qualitative Value Assignments

When a fault's disturbance is on the same order of magnitude as the

normal process fluctuations, process variables that should be valid may lie
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within the normal range. When one or more of these measured variables are
normal, no single fault can explain the abnormal measurement pattern.

Reevaluating the qualitative value assignments of process measurements
is one approach for diagnosing faults with small disturbance magnitudes.
The qualitative values of the measurements are first analyzed, as usual, by
the diagnostic procedure. Then, the quality of the solution is evaluated
to determine if the solution is poor (e.g., several independent failures).
One possible rationale for the poor solution is that a fault with a small
disturbance magnitude has occurred. Normal sensors are reassigned '+' and
'-' values and the diagnostic system is rerun with the new valid nodes to
see if the solution can be improved.

One method for determining which sensor values to change is to calcu-
late the deviation index for normal measurements. The deviation index (DI)
is a normalized measure of a process variable's deviation away from its
steady-state reference x,. For a measured variable x above its reference,

the deviation index is given by

where x; is the upper range endpoint. For deviations below x,, the upper
range endpoint is replaced by the lower range endpoint x,. For normal
operation, the values of the DI range from -1.0 to 1.0. For the example in
Fig. 6-4, the DI for node B is 1.0/i.3 = 0.77. If this value is judged
sufficiently close to 1.0, the qualitative value is changed to '+' and the
diagnosis is repeated. In the example, when B is '+', a consistent causal
path exists from node A to node C; a single failure at node A can explain

the observed measurement deviations.

6.3.4.2 Bounding the Causal Search Using Arc Gains

A second approach for addressing faults with small disturbance magni-
tudes incorporates the quantitative values of the maximum arc gains. In
the procedure for candidate generation developed in Chapter 4, the valid

tree is bounded at measured nodes with normal qualitative values. If the
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quantitative values of the maximum arc gains are known, the gains and the
numerical values of the measurements can be used for terminating the causal
search.

To illustrate this approach, consider the causal arc X — Y, where
both X and Y are measured. Let x and y be the numerical values of the
measurement deviation away from the normal references x, and y,, respec-
tively, and G

XY
as the maximum value of the process transfer function between the parame-

be the maximum gain between the two nodes. GXY is defined

ters X and Y. For a step change at X and overdamped response, GXY is the
steady-state pgain. For underdamped response, GXY is evaluated at the
maximum overshoot.

The procedure for candidate generation is modified to incorporate the
numerical values of process gains. During the construction of the valid
tree, if the current valid node is Y, node X is added to the valid tree
only if the deviation at Y can be explained by the observed deviation at
node X. Expressed mathematically, the initial node of a causal arc is

added to the valid tree if

sgn(x * GXY) = sgn(y), and (5a)

[x * Gyl 2 [y (5b)

If the deviation at node Y is greater than can be explained by the devia-
tion at node X, the causal search is bounded along this arc and node X is
not added to the valid tree. Returning to Fig. 6-4, let GAB = 1.0 and

GBC = 0.8. Node B is added to the valid tree from node C because

sgn(1.0 * 0.8) = sgn(0.7)

|1.0 * 0.8] 2 |0.7].
Similarly, node A is added because

sgn(1.2 * 1.0) = sgn(1.0)

|1.2 % 1.0] z |1.0].
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Therefore, a consistent. causal path exists from node A to node C. When
unmeasured digraph nodes exist between two measurements, the maximum gain
used is the overall maximum path gain.

The device topography may bz required for determining the quantitative
values of the maximum gains. For example, given two parallel paths, the
disturbance propagation along each path may be insufficient to explain the
observation. But the overall gain, representing the sum of the effects
from the node where the individual paths branched, may be able to explain
the observed deviation. A second example is a control system, where fre-
qu2ncy response is necessary to determine the overall maximum gain for the
loop.

Assumption 3 (Section 4.3.3) required that for the propagation of a
fault along a path in which two process variables are measured, the caus-
ally upstream measurement will become valid before the downstream measure-
ment. If all the arc gains are known, this assumption is not necessary,
because the bounding rule during candidate generation can be based solely
on satisfying Eqs. 5a and 5b. Note that normal ranges are still necessary
for initiating the diagnostic procedure (i.e., for detecting that a failure

has occurred).

6.4 Sensor Placement for Optimal Resolution

Process control objectives dictate a set of process variables to be
measured during the design of a process plant. In addition to the vari-
ables chosen as inputs to control systems, other measurements are selected
to provide further information to the process operator. The causal digraph
can be used to guide the placement of additional sensors. Thus, the
digraph, in addition to real-time fault diagnosis, can also serve as a tool
to improve plant diagnosability.

The following analysis assumes that all faults are equally important
and that every node is a primary deviation for at least one fault.

The objectives for sensor placement for fault diagnosis are first, to
detect all possible faults, and second, to discriminate between a set of
fault candidates. For the first objective, the sensor should be positioned

at the downstream ends of causal paths. The disturbance from any fault in
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the path will propagate along the causal path and be detected at the
causally downstream sensor. After the minimum number 6f sensors are
positioned for fault detection, the second objective is to discriminate
between fault candidates. A divide-and-conquer strategy is employed to
position each additional sensor, to minimize the maximum number or indis-
tinguishable faults.

Two examples illustrate the placement of sensors. In Figure 6-5, the
first sensor is positioned at node F. This one sensor is able to detect

all possible faults. Note that if the sensor was placed at any other node,

A—» B —» C—» D—» E —» F

Figure 6-5
Sensor Placement: Example 1

faults occurring at any node causally downstream from the sensor are not
detectable. The position of the second sensor is determined by minimizing
the maximum number of indistinguishable faults. The three tables below
show the primary deviations identified for individual valid sensors, when

the placement of the second sensor is at nodes B, C, and D, respectively.

Sensors Primary Sensors Primary Sensors Primary

F B Deviations F C Deviations F D Deviations
+ 0 CDEF + 0 DEF + 0 EF

0 + AB 0 + ABC 0 + ABCD

Node C is chosen as the location of the second sensor because the maximum
number of indistinguishable faults is minimized at three. Sensor placement
at nodes B or D would result in four indistinguishable faults.

In the example above, a fault was assumed to be associated with every

node. Sensors should be positioned with respect to faults, rather than
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digraph nodes. For example, if there were no faults associated with nodes
D and F, the first sensor would be placed at node E, to eliminate the time
delay of fault propagation along the arc from E to F, The second sensor
would be placed at node B to divide the remaining faults into two sets of
two faults: nodes A and B, and nodes C and E.

In Figure 6-6, again assuming faults at every node and faults of equal

importance, the first and second sensors are assigned to nodes C and H.

Figure 6-6
Sensor Placement: Example 2

Seven primary deviations are identified for an abnormal measurement at H.

Sensors | Primary

C H Deviations

+ 0 ABCDE

0o + ABDEFGH

The next sensor should add resolution between the seven primary deviations.

Sensor placement at nodes B, E, and F is presented.

Sensors | Primary Sensors | Primary Sensors | Primary
CHB Deviations CHE Deviations CHF Deviation:
+00 c +00 ABC +00 ABCDE
0+0 DEFGH 0+0 FGH 0+0 GH
00+ ABDE 00+ ABDE 00 + ABDETF
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The next measurement should be located at node E.
When the consequences of one fault are more severe, more measurements
should be positioned at or around the primary deviation to detect the

presence of the fault.
6.5 Summary of Knowledge Requirements for Fault Diagnosis

The knowledge requirements for model-based fault diagnosis are‘

summarized.

Constructing the Overall Process Causal Digraph

1. General component causal models

2. Context-specific design information, for specifying causal arcs and arc
attributes

3. Plant topography, for specifying the interconnections between process

units

Specifying Qualitative Values

1. Values of process measurements
2. Context-specific normal references (expected value and normal range of

operation) for every measurement

Candidate Generation

1. Causal digraph

2. Qualitative values of process measurements

3. Information about control systems (measurement, manipulated variable,
and net sign of control loop)

4. Previous values of process measurements, for handling inverse response
and variables that return to normal

5. Numeric arc gains and the numeric values of measurement deviations, for

bounding the fault space for faults with small disturbances
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Candidate Testing
. Causal digraph

. Qualitative values of process measurements
Global constraints (dominant causal paths)

. Heuristic rules for eliminating primary deviations

(S, I I S

. Context-specific design information for specifying which global con-
straints and heuristics to apply

Fault Generation

1. General rules relating equipment failure modes to primary deviations
2. Context-specific design information, for building the table mapping
faults to primary deviations and for specifying specific faults
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Chapter 7

RESEARCH IN QUALITATIVE MODELING AND DIAGNOSIS

Key research in the following three areas is summarized: (1) causal
reasoning about physical systems, (2) diagnosis using the directed graph
process representation, and (3) a rule-based approach to fault diagnosis.
The reader interested in a broader review of the fault detection and
diagnosis literature should consult Lees [1983], O'Shima [1983], Isermann
{1984], Pau [1981] and Himmelblau [1978]. Rouse [1983] reviews models of

human problem solving.

7.1 Causal Reasoning About Physical Systems

de Kleer and Brown [1984] [1986] base their notion of causality on the
way a disturbance is propagated through a network of constraint equations.
Constraint equations, called confluences, are based on the definition of a
component, and are written in terms of the qualitative derivatives of
variables. Because the causal relationships are identified by propagating
the effects of a disturbance through the network of constraints, the causal
interactions generated depend on the sequence in which the confluences are
solved.

Iwasaki and Simon [1986a] [1986b] establish a causal ordering by
analyzing the structure of the system of equations that models the physical
system. Causal ordering is determined by finding subsets of variables
whose values can be computed independently of the remaining variables. The
values of the variables of the subset are used to reduce the structure to a
smaller set of equations containing only the remaining variables. Causal
paths are dependent upon which variables are chosen as exogenous.

The result of both de Kleer & Brown and Iwasaki & Simon is that the
causal relationships generated are a function of how a set of equations
that model the system is solved. Causality becomes identical to the pro-

gression of substitutions into the system of equations.
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Forbus [1984] attempts to reason about physical changes by character-
izing the process through which change occurs. In qualitative process
theory, processes are characterized by (1) the individuals to which the
process applies, (2) a set of preconditions about the individuals and their
relationships, (3) a set of quantity conditions (e.g., the relative values
of two temperatures to determine if heat transfer occurs), (4) a set of
relations (functional relationships), and (5) a set of influences, which
specify what can cause a quantity to change. Causal changes are direct
changes caused by processes, or the propagation of the effects of direct
changes through functional dependencies.

Bobrow [1985] compiled eight papers on qualitative reasoning that
appeared in the Artificial Intelligence Journal.

7.2 Diagnosis Using the Directed Graph Process Representation

A model-based diagnostic strategy has been presented by Iri and
co-workers (Iri et al. [1979] [1980]) that uses a graph representation to
model the causal interactions. Their approach uses an iterative procedure
to assign '+', '-', and '0' qualitative values to unmeasured and controlled
digraph nodes. For each assignment of a qualitative value, the consistent
branches of the graph are identified. The subgraph composed of consistent
branches is then examined to determine if the subgraph is rooted. Because
a single fault is assumed, causal pathways must connect the fault origin to
every measurement deviation. If the subgraph becomes disconnected for a
particular set of qualitative values, then there cannot be a single fault.
The authors used the algorithm on a digraph of 21 nodes and 62 branches, of
which six nodes were observed and three nodes were controlled. A purely
iterative method requires 3" assignments, where n is the number of unmea-
sured and controlled nodes in the causal digraph. Even with a heuristic to
reduce the number of subgraphs evaluated, they reported that the algorithm
generated about 20,000 subgraphs that were examined for connectivity (Iri
et al. [1980]). They note that even with heuristics to reduce the number
of graphs examined, the problem grows exponentially with the number of

nodes.
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Shiozaki et _al. [1985] proposed modifications to the iterative proce-
dure of Iri et al. to improve computational speed. Improvements to the
method are a systematic choice for selecting unmeasured nodes for assigning
qualitative values, criteria for terminating the assignment of qualitative
values, and the systematic revision of the assigned values on unmeasured
nodes.

Instead of changing the signs on nodes with time, Umeda et al. ([1980]
introduced the staged causal digraph. The continuous system of equations
is discretized and repeated at a frequency of the smallest process lag.
The iterative method of Iri et al. is used to identify consistent branches.
At each stage, a single failure source is not identified. Rather, all the
consistent branches from the previous stage to the current stage are
determined.

The advantage of this method is that it can handle multiple state
changes (e.g., inverse response and measurements returning to zero). The
major drawback is that if the cycle time for updating process measurements
is not short enough, the sequence of state changes cannot be identified.
Implementation difficulties include a large amount of data and a heavy
computation load.

Tsuge et al. [1985] introduced process delay information to obtain a
multi-staged signed directed graph with delay. These authors argue that
information on delay time is able to further reduce the set of candidates
generated from the digraph.

Kokawa (Kokawa and Shingai [1982]), Kokawa et al. [1983]) proposed a
fault location method in which digraph nodes represent process units rather
than system variables. The purpose of their method is to aid operators in
blocking off failure propagation paths and for preventative maintenance
design. They assume that failure propagation occurs solely in the direc-
tion of bulk fluid flow. Thus, the plant topology represents the failure
propagation network. Under this assumption, the method cannot accommodate
flow and pressure disturbance propagation against bulk flow, recycle flows
and control systems.

Andow and Lees [1975] [1978] used a network of process variables to

construct a process alarm network. The purpose of the alarm network is to
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analyze the sequence of alarm firings and explain downstream alarms in
terms of fault propagation.

Finch and Kramer [1986] use a directed graph to represent the inter-
actions between process subsystems. They decompose the physical system by
function, defined as groups of systems components that perform a single
system objective, and assign the functions to the digraph nodes.

Kramer and Palowitch [1986] present a method to translate the paths of
fault propagation in the causal digraph into a set of logic statements,

which can be used within an expert system environment.
7.3 Rule-Based Approach to Process Diagnosis

Several researchers are developing rule-based expert systems for
real-time fault diagnosis of process plants. The FALCON (Fault Analysis
Consultant) expert system is a joint research project between du Pont de
Nemours Co., Foxboro Co., and the University of Delaware for exploring the
application of expert systems technology for diagnosing chemical plant
malfunctions (Chester, et al. [1984], Lamb, et al. [1985], Shirley [1985],
Rowan [1986]). Both qualitative and quantitative information are incorpo-
rated in the system in a plant-specific production rule format.

Shum et al. [1986]) present an expert system architecture based on a
hierarchy of malfunction hypotheses. The hierarchical structure allows the
fault classification task to proceed using a top-down strategy, from
generality to detail. Kumamoto et al. [1984] use the classification
methodology to diagnose an engine cooling system.

A prototype expert system presented by Andow [1985] is based on the
search of fault trees and cause-consequence diagrams. In [1986], Andow
presents context-dependent production rules for the diagnosi: of a utility
cooling water system. The rules relate patterns of observed symptoms to
specific faults.

Rule-based systems are receiving significant attention in the nuclear
power industry. Cain et al. [1985] reviews artificial intelligence
research at the Electric Power Research Institute (EPRI) for nuclear power

applications. Nelson [1984] describes six diagnostic expert systems for
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nuclear reactor operations. Knowledge representation 1in the systems
described include networks, logic trees, and rules.

LISP Machines Inc. has introduced PICON, an expert system development
environment intended for real-time process monitoring and control (Moore
et al. (1985]).
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Chapter 8

CONCLUSIONS

This thesis demonstrates the feasibility of using causal models for
fault diagnosis. In the first part of the thesis, the causal digraph was
developed to characterize the cause-and-effect interactions between process
variables and parameters. Causal digraphs were derived for sets of design
equations, guidelines were presented for creating causal digraphs for fault
diagnosis, and context-independent causal models for standard system
components were developed. In the second part of the thesis, the diagnos-
tic strategy presented incorporates the causal models with other knowledge
representations and multiple problem-solving approaches. Graph search,
simulation, qualitative constraints, and heuristics were used within a
hypothesis generation and test framework. The strategy, which was imple-
mented in a computer program, achieved excellent performance on the example
processes examined. The prototype demonstrates that a computer can inter-
pret the sensor values and generate a list of fault candidates to assist
the process operator during plant upsets.

The diagnostic strategy developed in this thesis satisfies the crite-

ria for evaluating diagnostic systems presented in Section 2.4.

o The system produces a list of possible faults that includes the actual
fault origin or origins. The causal search during candidate generation

is exhaustive, so all possible primary deviations are identified.

0 The system minimizes the number of spurious faults that are included in
the set of possible candidates by incorporating multiple types of
knowledge.

o The system is able to diagnose a wide range of failures, as demonstrated

by the examples in Chapter 5.
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o The system generates diagnoses faster than the dynamics of real-time

chemical and nuclear processes.

0 The diagnostic system is portable to a variety of process environments.
The knowledge representation formats and diagnostic strategy are gener-
al, so that system implementation is not done from scratch at each new
plant site. The modular component architecture adds flexibility and

reduces the costs of development and installation.

o The system is easily modified and updated. Changes in the process due
to piping and equipment changes does not require extensive reprogramming
or data collection. An updated causal digraph is generated by changing

the context-specific inputs into general component models.

o The system is able to use the installed instrumentation, without speci-

fic requirements for the number of sensors and sensor locations.

This research provides a foundation for qualitative, model-based fault
diagnosis. It forms one part of a comprehensive diagnostic system for
process operations. The other major components are fault detection,
experienced-based fault diagnosis, failure correction, and the design of an

operator interface.
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cross-sectional area

concentration

flow coefficient

specific heat at constant pressure

electromotive force
activation energy

volumetric flow rate
acceleration due to gravity
enthalpy

heat of reaction

current

first order reaction rate constant
fluid level

mass

moles

pressure

heat flow rate

resistance to volumetric flow
resistance to heat flow
resistance to current flow
Universal gas constant

reaction rate

temperature

time

overall heat transfer coefficient
volume

valve stem position

heat of vaporization

density

reactor space time

angular velocity

finite difference in quantity
function

Subscripts

A, B,
b
error
L
r
R
sensor
sp
A\

C species
bottom
controller error
liquid
reference
reactor
sensor
set point
vapor
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Appendix A
Graph Theory Terminology

Graphs

A graph G is a set (V(G), E(G)), where V(G) is a non-empty set of
elements called vertices (nodes, points) and E(G) is a set of unordered
pairs of distinct elements of V(G) called edges (lines, curves). V(G) is
called the vertex set and E(G) is called the edge set of G. If both V and
E are finite sets, then G is called a finite graph.

Two vertices of G are said to be adjacent if there is an edge that
joins them. The two adjacent vertices are said to be incident to the edge.
The vertices incident with an edge are called its end points, and are said
to be joined by the edge.

Two distinct edges of G are adjacent if they have at least one common
vertex. The degree of a vertex is the number of edges incident to it (i.e.
the number of edges which have that vertex as an end point).

A loop is an edge that joins a vertex to itself. A simple graph is a
graph that contains no loops or multiple edges (edges with the same two end
points).

A subgraph of a graph G is a graph whose vertices belong to V(G) and
whose edges belong to E(G).

An edge sequence is a finite sequence of adjacent edges. An edge
sequence in which all the edges are distinct is called a trail (chain). If
the vertices are also distinct (except, possibly the initial and final
vertices of the chain), then the trail is called a path. A path is closed
if the initial vertex and final vertex of the path are identical; open
otherwise. A closed path containing at least one edge is called a circuit.

A graph is connected if every pair of vertices is joined by at least
one chain. A connected graph cannot be expressed as the union of two
graphs.

A tree is a connected graph which has no circuits. Thus, a graph is a
tree if and only if every pair of distinct vertices are joined by exactly
one path. A tree with n vertices is a simple graph with precisely n-1
edges. A spanning tree is a subgraph of a connected graph G which is a
tree and which includes all vertices of G.

Directed Graphs

A directed graph D, also called a digraph, is a graph where every edge
is oriented (given a direction). An arc is directed edge.
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The digraph D is a simple digraph if the arcs of D are all distinct
and D contains no loops. The arcs of a simple digraph can be represented
without ambiguity by ordered pairs of vertices, since at most one arc joins
a given pair of vertices in a specified direction.

The outdegree od(v) of a vertex v is the number of arcs in D whose
initial vertex is v; the indegree id(v) is the number of arcs whose termi-
nal vertex is v.

An arc sequence is a finite sequence of adjacent, similarly-oriented
arcs. An arc sequence in which all the arcs are distinct is called a
ditrail (directed trail). If the vertices are also distinct (except,
possibly the initial and final vertices of the ditrail), then the ditrail
is called a dipath (directed path). A dipath is closed if the initial
vertex and final vertex of the path are identical. A closed directed path
is also called a cycle. A directed graph D is said to be cyclic if it
contains at least one cycle; acyclic otherwise.

A digraph is strongly connected if, for every pair of vertices v and
w, there exists a dipath from v to w as well as one from w to v (i.e. every
two points are mutually reachable). A digraph is weakly connected if it
cannot be expressed as the union of two disjoint digraphs.

A rooted directed tree is a directed graph which (1) is a tree in the
undirected sense, and (2) has a vertex v such that there exists a directed
path from v to every other vertex. The tree is said to be rooted at the
vertex v.
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Appendix B
DIEX Computer Code

The computer code for major sections of the DIEX system prototype is
presented. The files, along with a short description of the functions
contained in each file, are listed below.

defns.1
Flavor definitions for arc, node, valid_node, and control_system;

simple functions.

diex.1
Top level function for entering DIEX. Prompts for inputs; calls

lower-level functions.

generate_candidate_set.l
Identifies primary deviations by constructing a valid tree for a given
deviated measurement,

node_test.1
Checks that the current node is not already in the path to the valid
measurement, before it is added to the set of primary deviations
during candidate generation.

simulate.l
Simulation using qualitative time delays.

identify_faults.l
Generates a list of faults for a set of primary deviations; formats

and prints output.

generic_rulebase.l
Rule bases relating faults to primary deviations.

vapor_boundary.1l
Defines the function roots_at_boundaries.
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Fefore DIEX can be run,

1.

the causal digraph must be created;

2. the function roots_at_boundaries must be defined;

(This function, specific for a given digraph, defines the possi-
ble disturbances that could affect the process through the system

boundaries.)

3. a control system object must be instantiated for every control

system;

4. the variables controller_list, measurement_list, and boundary_list

must be set.

For the tank example, the last three items are accomplished by the follow-
ing Lisp code.

(defun roots_at_boundaries (node-sign)
(setq fault_description nil)
(setq boundary_node (member (car node-sign) boundary_list))
(cond (boundary_node

(setq node (car node-sign))
(setq sign (cadr node-sign))
(caseq node
(F1 (cond ((eq sign '+) (setq fault_description
''High flow rate Fl entering tank TANK-1. [))
((eq sign '-) (setq fault_description
''Low flow rate Fl entering tank TANK-1. }))))
(P5 (cond ((eq sign '+) (setq fault_description
''High pressure downstream of pipe PIPE-B. [))
((eq sign '-) (setq fault_description
'!'Low pressure downstream of pipe PIPE-B. |)))))

)))

’
»
(setq level_control (make-instance 'control_system
:meacurement 'L-SENSOR
:manip 'Vl
:setpoint 'L-SP
tdescription '+))

»

(setq controller_list '(level_control))
(setq measurement_list '(L-SENSOR F-SENSOR))
(setq boundary list '(Fl1 P5))
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H
]
'
i Flavor definitions for arc, node, control_system, and valid_node; simple
(

declare (lambda validate forward_nodes backward_nodes forward_valid_nodes

backward_valid_nodes intersection)
(special current_element))

1
’
+ Description of flavor: arc
: initial_node initial node of the arc
H terminal_node terminal node of the arc
i sign +/-
H magnitude magnitude of the interaction
: time fault propagation time
»
(defflavor arc (initial_node
terminal_node
sign
magni tude
time)

0
tgettable-instance-variables
:settable-instance-variables
:inittable~instance-variables)

Description of flavor: node

control_system name of the control system/nil

’

L}

H variable_type generic process variable class
H equip_name name of equipment instance

H equip_type generic equipment class

H arcs_to a list of arcs terminating at the node
; arcs_from a list of arcs leaving the node
: controlled yes/nil

H manip yes/nil

$ measured name of measurement/nil

; setpoint yes/nil

»

(defflavor node (variable_type
equip_name
equip_type
arcs_to
arcs_from
controlled
manip
measured
setpoint
control_system)
0
:gettable-instance-variables
:settable-instance-variables
tinittable-instance~variables)
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Description of flavor: control_system

measurement name of measurement

manip name of the manipulated variable

setpoint name of the setpoint

description +/- (net direction of the manipulated variable, given

a positive deviation in the measurement)

(defflavor control_system (measurement
manip
setpoint ,
description)
0
:gettable-instance-variables
:settable-instance-variables
tinittable~instance-variables)

Description of flavor: valid_node

node_name print name of the valid node

sign valid node sign

forward_nodes 1ist of adjacent nodes causally downstream from the valid
node

path the consistent path between the node and the valid
measurement

o\ Pe We o we wo wme we we we we

defflavor valid_node (node_name
sign
forward_nodes
path)
()
:gettable-instance-variables
:settable-instance-variables
tinittable-instance-variables)
(defun validate (signl sign2)
(cond ((and (eq signl ‘+) (eq sign2 ‘+)) '+)
((and (eq signl '+) (eq sign2 ’=)) '-)
((and (eq signl ’-) (eq sign2 ’+)) '-)
((and (eq signl ’'-) (eq sign2 ’=)) ‘+)))

(defun forward_nodes (current_node)
(mapcar #’(lambda (arc) (symeval-in-instance (symeval arc) ‘terminal_node))
(symeval-in-instance (symeval current_node) ‘arcs_from)))

(defun backward_nodes (current_node)
(mapcar #’(lambda (arc) (symeval-in-instance (symeval arc) ’initial_node))
(symeval-in-instance (symeval current_node) ‘arcs_to)))
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(defun forward_valid_nodes (node-sign)
(mapcar #’(lambda (arc)
(list (symeval-in-instance (symeval arc) ‘terminal_node)
(validate (cadr node-sign)
(symeval-in-instance (symeval arc) ‘sign))))
(symeval-in-instance (symeval (car node-sign)) ‘arcs_from)))

(defun backward_valid_nodes (node-sign)
(mapcar #’(lambda (arc)
(list (symeval-in-instance (symeval arc) ’‘initial_node)
(validate (cadr node-sign)
(symeval-in-instance (symeval arc) ‘sign))))
(symeval-in-instance (symeval (car node-sign)) ‘arcs_to)))

Function intersection finds the intersection of two lists. |f an element
appears in either input list several times, it only appears in the oputput
list once.

(defun intersection (listl list2 temp)
(cond ((null listl) (reverse temp))
(t (setq current_element (car listl))
(cond ((and (member current_element 1ist2)
(not (member current_element temp)))
(setq temp (cons current_element temp))))
(intersection (cdr listl) list2 temp))))
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(include
(include
(include
(include
(include
’
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file diex.|

Top level routine for DIEX (Diagnostic Expert), a model-based diagnostic

based on causal models of chemical processes and process equipment.

the system, the directed graph of causal interactions must exist.
definitions can be found in the file defns.l.

root node set for the current measurement.

current_rns root node set generated by the intersection of the rns for

every valid measurement.

reduced_rns root node set after rules and simulation. This set is used

to identify the fault candidates.

setq valid_hash (make-hash-table :size 250 :test #’equal))

generate_candidate_set.o)
node_test.o)
ident.ify_faults.o)
generic_rulebase.o)
simulate.l)

(defun diex ()
(setq current_rns nil)
(setq valid_meas_list nil)
(exec clear)

(patom
(patom
(patom

’

DIEX -- Fault Diagnosis Expert System|) (terpri)
’|Fault diagnosis based on causal models of chemical process |)
‘|equipment.|) (terpri) (terpri) (terpri)

(do ((num nil))
((equal num ’‘stop) (patom ‘|List of primary deviations: |) current_rns)
(patom
‘|Enter the number of new valid measurements, or ‘stop’ to quit. => |)
(setq num (read)) (terpri)
(cond ((and (fixp num) (plusp num))

(get_new_measurements num)
(do ((i O (+ i 1)))
((equal i num))
(setq rns (generate_candidate_set (nth i valid_meas_list)))
(cond ((null current_rns) (setq current_rns rns))
(t (setq current_rns
(intersection current_rns rns ())))))
(setq reduced_rns current_rns)
(setq reduced_rns (heuristic_rules reduced_rns))
(setq reduced_rns (simulate reduced_rns))
(cond ((null reduced_rns) (patom
’|Measurement pattern cannot be explained by a single origin.l)
(terpri) (return nil))
(t (identify_faults valid_meas_list reduced_rns)

(terpri)))))))
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zdefun get_new_measurements (num)
(do ((i 0 (+i 1))
((eq i num))

(do

(do

((flag t))
((hull flag))
(patom ‘|Enter valid measurement name => 1)
(setq mname (read))
(cond ((member mname measurement_list) (setq flag nil))
(t (patom mname)
(patom ‘| is NOT a measurement!|) (terpri) (terpri))))
((flag t))
((hutl flag))
(patom ’|Enter measurement sign (+ or =) = |)
(setqg msign (read))
(cond ((member msign ’'(+ -)) (setq flag nil))
(t (patom msign)
(patom ‘| is NOT a ‘+’ or ’-'l|) (terpri) (terpri))))

(setq valid_meas_list (cons (list mname msign) valid_meas_list))
(terpri)))
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file generate_candidate_set.|

Function generate_candidate_set identifies all nodes causally upstream from
a given deviated sensor that could be the origin of the fault. The search

space is bounded by normal measurements causally upstream from the abnormal
measurement.

When the node being tested is a manipulated variable in a control system,

and the controlled variable is normal, then the disturbance may be passing
through the control system. The controlled node is added to the valid

tree and the search continues causally upstream from the controlled variable.

This function returns a list of candidate root nodes for the given valid
measurement.

declare (lambda generate_candidate_set backward_valid_nodes node_test)
(localf next_node make_valid_node_instance
node_is_measurement node_is_measured node_is_manipulated)
(special valid_hash meas stack rns current_term nodes_to_test
already_instance init_node_measurement init_node_measured
measurement_list init_node_manipulated fault_path cs_name
measurement_node controlled_node controlled_sign
valid_meas_list init_node-sign))

defun generate_candidate_set (meas_node-sign)

(clrhash valid_hash)

(setq meas (car meas_node-sign))

(setg stack (list meas_node-sign))

(setq rns (list meas_node-sign))

(addhash meas_node-sign valid_hash (gensym °’N))

(set (gethash meas_node-sign valid_hash) (make-instance ‘valid_node
:node_name meas
:sign (cadr meas_node-sign)))

(do ()

((hull stack) rns)

(setq current_term (pop stack))
(setq nodes_to_test (backward_valid_nodes current_term))
(cond (nodes_to_test (mapcar ‘next_node nodes_to_test)))))
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'
(defun next_node (init_node-sign)
(setqg already_instance (gethash init_node-sign valid_hash))
(setq init_node_measurement (member (car init_node-sign) measurement_list))
(setq init_node_measured
(symeval-in-instance (symeval (car init_node-sign)) ‘measured))
(setq init_node_manipulated
(symeval-in-instance (symeval (car init_node-sign)) ’‘manip))
(cond ((eq (car init_node~-sign) meas))
(already_instance
(cond ((node_test init_node-sign current_term)
(set-in-instance (symeval already_instance) ’‘forward_nodes
(cons current_term (symeval-in-instance
(symeval already_instance) ‘forward_nodes))))))
(t (cond (init_node_measurement (node_is_measurement))
(init_node_measured (node_is_measured init_node_measured))
(t (make_valid_node_instance init_node-sign current_term)))
(cond (init_node_manipulated (node_is_manipulated))))))

'
’
i Function make_valid_node_instance makes a new flavor instance for a valid
i hode.
(

defun make_valid_node_instance (init_node-sign term_node-sign)
(setq fault_path (node_test init_node-sign term_node-sign))
(cond (fault_path
(push init_node-sign stack)
(setq rns (cons init_node-sign rns))
(addhash init_node-sign valid_hash (gensym °‘N))
(set (gethash init_node-sign valid_hash) (make-instance ‘valid_node
:node_name (car init_node-sign)
:sign (cadr init_node-sign)
:forward_nodes (list term_node-sign)
:path fault_path)))))

(defun node_is_measurement ()
(cond ((member init_node-sign valid_meas_list)
(make_valid_node_instance init_node-sign current_term))))

’
(defun node_is_measured (measurement_node)
(cond ((and (not (member (list measurement_node ‘+) valid_meas_list))
(not (member (1ist measurement_node ‘-) valid_meas_list))))
((symeval-in-instance (symeval measurement_node) ‘control_system)
(make_valid_node_instance init_node-sign current_term))
((member (1ist measurement_node (cadr init_node-sign)) valid_meas_list)
(make_valid_node_instance init_node-sign current_term))))
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Function node_is_manipulated is used to validate nodes causally upstream
from a controlled variable. This function is called when the manipulated
variable is valid and the controlled variable is normal. The control
system ic assumed working and not saturated.

defun node_is_manipulated ()
(setq cs_name (symeval-in-instance (symeval (car init_node-sign))
‘control_system))
(setq measurement_node (symeval-in-instance (symeval cs_name)
‘measurement))
(cond ((and (not (member (1ist measurement_node ‘+) valid_meas_list))
(not (member (list measurement_node ‘-) valid_meas_list)))
(setq controlled_node (car (backward_nodes measurement_node)))
(setq controlled_sign (validate (symeval-in-instance
(symeval cs_name) ‘description) (cadr init_node-sign)))
(make_valid_node_instance (list controlled_node controlled_sign)
init_node-sign))))
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file node_test.]

Function node_test checks the consistent path from the given node to the
valid measurement to guarantee that the given node does not already lie on
the path.

"meas'" is a global variable and must be set before this function is called.
Its value is the print name of the valid measurement.

Function popit returns
nil if the stack is empty;
the print name of the variable on the top of the stack.

(declare (lambda node_test)
(localf popit node_not_in_path)
(special new_name new_nodes meas path stack7 last_node valid_hash))

(defun popit ()

(setq last_node (pop stack7))

(setq path (cdr path))

(cond ((null stack?7) nil)

(t (setq new_nodes (cdr (member last_node (symeval-in-instance
(symeval (gethash (car stack7) valid_hash)) ‘forward_nodes))))
(cond ((null new_nodes) (popit))
(t (setq new_name (car new_nodes)))))))

Function node_not_in_path returns
t if the current node is not already in the path;
nil if the the current node is in the path, or if the stack is empty

(defun node_not_in_path ()
(cond ((member (car new_name) path)

(setq new_nodes (cdr new_nodes))

(cond ((null new_nodes)
(cond ((popit) (node_not_in_path))))

(t (setq new_name (car new_nodes))
(node_not_in_path))))
(t)))
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Function node_test returns
nil if a consistent path is not found;
the list of nodes in the path if a consistent path exists.

ws we we we we we

(defun node_test (init_node-sign term_node-sign)
(setq path (1ist (car term_node-sign) (car init_node-sign)))
(setq stack7? (list term_node-sign))
(do ()
((null stack?) nil)
(cond ((member meas path)
(return (cons init_node-sign (reverse stack7)))))
(setq new_nodes (symeval-in-instance (symeval
(gethash (car stack7) valid_hash)) ’‘forward_nodes))
(setq new_name (car new_nodes))
(cond ((node_not_in_path)
(push new_name stack7)
(setq path (cons (car new_name) path))))))
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file simulate. |

Function simulate remcves root nodes from reduced_rns. Fault simulation
from each root node is done on arcs with zero time delay.

A node is removed if
1. A path exists with 2ero delay lag to normal measurements,
2. A non-consistent path exists to a valid sensor with zero delay lag.

(declare (lambda simulate)

(localf tsimul)
(special node_list nodestack arcstack terminal_node node-sign

measurement valid_meas_list reduced_rns current_node-sign
current_arc terminal_sign))

’
’
(defun simulate (reduced_rns)

(mapcar ‘tsimu! reduced_rns)
reduced_rns)

(defun tsimul (node-sign)

(setq node_list (list (car node-sign)))
(setq nodestack (list node-sign))
(do () ((null nodestack) t)
(setq current_node-sign (pop nodestack))
(setq arcstack (symeval-in-instance (symeval (car current_node-sign))
‘arcs_from))
(do () ((null arcstack) t)
(cond ((equal (symeval-in-instance (symeval (car arcstack)) ‘time) ‘0.0)

(setq current_arc (pop arcstack))
(setq terminal_node (symeval-in-instance
(symeval current_arc) ‘terminal_node))
(setq terminal_sign (validate (cadr current_node-sign)
(symeval-in-instance (symeval current_arc) ’‘sign)))
(setq measurement (symeval-in-instance (symeval terminal_node)
‘measured))
(cond ((member terminal_node node_list))
(measurement
(cond ((member (1ist measurement terminal_sign)
valid_meas_list) (push
(list terminal_node terminal_sign) nodestack)
(push terminal_node node_list))
(t (setq reduced_rns
(delete node-sign reduced_rns))
(setq nodestack nil)
(return))))
(t (push (list terminal_node terminal_sign) nodestack)
(push terminal_node node_list))))
(t (pop arcstack))))))
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identify_faults.!

set of functions accepts a list of node-sign pairs and returns, for
node, those faults that would cause the node to be a primary deviation.
function must be called after the node attributes have been set in the
instances.

declare (lambda identify_faults roots_at_boundaries

control_system_rulebase

control-valve_rulebase

¢str_rulebase

heat-exchanger_rulebase

pipe_rulebase

pump_rulebase

sensor_rulebase

t-junction_rulebase

tank_rulebase

vaporizer_rulebase)
(localf print_output_header print_the_fault get_fault_description)
(special valid_meas_list deviation counter fault_description

node sign name variable_type equip_name equip_type))

[]

(defun print_output_header ()
(terpri)

(patom '"Measurements:'") (terpri)
(mapcar #’(1ambda (node-sign)

(cond ((eq (cadr node-sign) ‘+) (setq deviation ‘high))
(t (setq deviation ’‘low)))

(patom ' ") (patom (car node-sign))
(patom " ") (patom deviation)
(terpri))
(reverse valid_meas_list))
(terpri)
(patom '"Possible Faults:'")
(terpri))

(defun identify_faults (valid_meas_list reduced_rns)
(print_output_header)

(setq counter 0)

(mapcar #'’(lambda (node-sign)

(setq fault_description nil)
(get_fault_description node-sign)

(cond (fault_description (print_the_fault)))
t)

reduced_rns)

(mapcar #’(lambda (node-sign)

(setq fault_description nil)
(roots_at_boundaries node-sign)
(cond (fault_description (print_the_fault)))
1)

reduced_rns)

(terpri) (terpri))
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(defun get_fault_description (node-sign)

(setq
(setq
(setq
(setq
(setq
(setq

node (car node-sign))

sign (cadr node-sign))

name (symeval node))

variable_type (symeval-in-instance name ‘variable_type))
equip_name (symeval-in-instance name ’‘equip_name))
equip_type (symeval-in-instance name ‘equip_type))

(caseq equip_type
(CONTROL_SYSTEM (control_system_rulebase))
(CONTROL~VALVE (control-valve_rulebase))

(CSTR (cstr_rulebase))
(HEAT-EXCHANGER (heat-exchanger_rulebase))
(PIPE (pipe_rulebase))

(PUMP (pump_rulebase))

(SENSOR (sensor_rulebase))
(T-JUNCTION (t-junction_rulebase))
(TANK (tank_rulebase))

(VAPORI ZER (vaporizer_rulebase))

))

’
’
(defun print_the_fault ()

(setq

counter (add! counter))

(patom " ") (print counter) (patom "> ') (patom fault_description)
(terpri))
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i file generic_rulebase.l

i
'
H
i This file contains component rule bases that relate faults to primary

; deviations for the stated assumptions. The variables variable_type and
i equip_name must be set before a component rule base is called.

(

declare (lambda control_syst m_rulebase
control-valve_rulebase
cstr_rulebase
heat-exchanger_rulebase
pipe_rulebase
pump_rulebase
sensor_rulebase
t-junction_rulebase
tank_rulebase
vaporizer_rulebase)

(special node sign name variable_type equip_name equip_type

fault_description))

’
(defun pipe_rulebase ()
; Assumptions: P > P atm; T > T atm

(caseq variable_type
(PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak in pipe ! equip_name ‘|. |)))))
(FLOW_RESIST
(cond ((eq sign ‘+) (setq fault_description (concat
‘|Blockage in pipe | equip_name ’‘|. [)))))
(TEMPERATURE
(cond ((eq sign ’'+) (setq fault_description (concat
‘|Fire at pipe | equip_name ’'|. |)))
((eq sign ’-) (setq fault_description (concat
‘|Insulation removed on pipe | equip_name ’‘|. |)))))

))

(defun t-junction_rulebase ()

Assumptions: P > P atm; T > T atm

(caseq variable_type
(PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak in t-junction | equip_name ‘|. |)))))
(FLOW_RESIST
(cond ((eq sign ‘+) (setq fault_description (concat
‘|Blockage in t-junction | equip_name ‘|. [)))))
(TEMPERATURE
(cond ((eq sign ’'+) (setq fault_description (concat
‘|Fire at t-junction | equip_name ‘|. |)))
((eq sign ’-) (setq fault_description (concat
‘|Insulation removed on t-junction | equip_name ‘|. [)))))

))
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defun control-valve_rulebase ()
Assumptions: P > P atm; T > T atm

(caseq variable_type

(PRESSURE
(cond ((eq sign ’'-) (setq fault_description (concat
‘|Leak in control-valve | equip_name ‘|. |)))))
(FLOW_RESIST
(cond ((eq sign ’'+) (setq fault_description (concat
‘|Blockage in control-valve | equip_name ’|. P
(TEMPERATURE
(cond ((eq sign '+) (setq fault_description (concat
'|fire at control-valve | equip_name ’|. [)))
((eq sign ’'-) (setq fault_description (concat
‘|Insulation removed on control-valve | equip_name ‘|. 7))))
(VALVE-STEM
(cond ((eq sign ’+) (setq fault_description (concat
‘|Control-valve | equip_name ’| failed open. P))
((eq sign ’'-) (setq fault_description (concat
‘|Control-valve | equip_name ’| failed closed. 7))

))

(defun pump_rulebase ()

+ Assumptions: Centrifugal pump; electric motor; Newtonian liquid;

))

P inlet, P outlet > P atm; T > T atm

(caseq variable_type

(PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak in pump | equip_name ‘I. [)))))
(FLOWRATE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Entrained vapor or change of physical properties in pump |
equip_name ’|. |)))))
(FLOW_RESTST
(cond ((eq sign ’'+) (setq fault_description (concat
( ’|Blockage of section or discharge in pump | equip_name ‘|. |)))))
RPM
(cond ((eq sign ’'-) (setq fault_description (concat
’|Broken shaft or coupling in pump | equip_name ’|. |)))))
(CURRENT
(cond ((eq sign ‘+) (setq fault_description (concat
’|Power too high to electric motor on pump | equip_name ’'|. |)))
((eq sign ’‘-) (setq fault_description (concat
’‘|Loss of power to electric motor on pump | equip_name ‘|. |)))))
(TEMPERATLRE
(cond ((eq sign ’'+) (setq fault_description (concat
‘|Fire at pump | equip_name ‘[. |)))
((eq sign ’'-) (setq fault_description (concat
‘|tnsulation removed on pump | equip_name ’‘|. |)))))



’

'

(defun sensor_rulebase ()

(cond ((eq sign ’-) (setq fault_description (concat

))

'|Sensor

((eq
'|Sensor

| node ‘| failed low. |])))
sign '+) (setq fault_description (concat
| node ‘| failed high. |)))))

(defun control_system_rulebase ()
(caseq variable_type

))

(ERROR

(cond ((eq sign '+) (setq fault_description (concat

‘|Control system | equip_name ‘| failed high. |[)))
((eq sign ’-) (setq fault_description (concat

‘|Control system | equip_name ‘| failed low.

(SETPOINT

1))

(cond ((eq sign '+) (setq fault_description (concat

’|The setpoint of | equip_name ‘| set high.

D))

((eq sign ’-) (setq fault_description (concat

(defun tank_rulebase ()

‘|The setpoint of | equip_name ’| set low. |)))))
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i Assumptions: Liquid inlet ports above liquid level; tank at atmospheric

pressure (P = P atm); T > T atm

(caseq variable_type

)

(VOLUME

(cond ((eq sign ’-) (setq fault_description (concat
‘|Liquid leak from tank | equip_name ‘|. ])))))

(TANK-PRESSURE

(cond ((eq sign ’-) (setq fault_description (concat
‘|Vapor leak from tank | equip_name ’‘|. |)))))

(iNLET-FLOW_RESIST

(cond ((eq sign ‘+) (setq fault_description (concat

‘|'nlet blockage in tank | equip_name ’‘|. ])))))
(OUTLET-PRESSURE
(cond ((eq sign ’‘-) (setq fault_description (concat
‘|Leak at outlet in tank | equip_name ‘|. |)))))
(OUTLET-FLOW_RESIST
(cond ((eq sign ’+) (setq fault_description (concat
‘|Outlet blockage in tank | equip_name ‘|. |)))))
(TEMPERATURE
(cond ((eq sign ’+) (setq fault_description (concat

‘|Fire at tank | equip_name n
((eq sign ’'-) (setq fault
‘|'nsulation removed on tank

- )
T equip_name

)

|
.

description (concat

D))))
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’
(defun cstr_rulebase ()
i Assumptions: P vapor > P atm; T reactor > T atm
(caseq variable_type
(VOLUME
(cond ((eq sign ’-) (setq fault_description (concat
‘|Liquid leak from reactor | equip_name 1+ PN))
(REACTOR-PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
"|Vapor leak from reactor | equip_name 1. |)))))
(INLET-FLOW_RESIST
(cond ((eq sign ’+) (setq fault_description (concat
‘|'nlet blockage [| node '|] in reactor | equip_name ‘|- |)))))
(OUTLET-PRESSURE
(cond ((eq sign ’'-) (setq fault_description (concat
’‘|Leak at outlet [| node ’‘|] in reactor | equip_name ‘|. ])))))
(OUTLET-FLOW_RESIST
(cond ((eq sign ’+) (setq fault_description (concat
‘|Outlet blockage [| node ’|] in reactor | equip_name 1« IN)
(TEMPERATURE
(cond ((eq sign ‘+) (setq fault_description (concat
‘|Fire at reactor | equip_name ’|. |)))
((eq sign ’-) (setq fault_description (concat
‘|Insulation removed on tank | equip_name ’‘|. |)))))
(CONC-A
(cond ((eq sign ’-) (setq fault_description (concat
‘|Side reaction occuring in reactor | equip_name
‘| depleting reactant. "))))
(RX_RATE_CONSTANT
(cond ((eq sign ’-) (setq fault_description (concat
‘|Catalyst fouling in reactor | equip_name - P

))



212

(defun heat-exchanger_rulebase ()

Assumptions: P hot > P cold > P atm; T hot > T cold

(caseq variable_type
(HOT-PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak in hot stream in heat exchanger | equip_name ‘|. ])))))
(HOT-FLOW_RESIST
(cond ((eq sign ’+) (setq fault_description (concat
‘|Blockage in hot stream in heat exchanger | equip_name ’‘|. |)))))
(HOT-TEMPERATURE
(cond ((eq sign ‘+) (setq fault_description (concat
‘|Fire at heat exchanger | equip_name ‘|. |)))))
(COLD-PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak in cold stream in heat exchanger | equip_name ’'|. |[)))))
(COLD-FLOW_RESIST
(cond ((eq sign ‘4) (setq fault_description (concat
‘|Blockage in cold stream in heat exchanger | equip_name ’|. |)))))
(HX_RATE_CONSTANT
(cond ((eq sign ’-) (setq fault_description (concat
’|Severe fouling in heat exchanger | equip_name ‘|. [)))))
(SHELL-TUBE-FLOW-RESIST
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak between shell and tube sides in heat exchanger |
. equip_name ‘[. |)))))



(

defun vaporizer_rulebase ()
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Assumptions: P > P atm; T > T atm; leak of hot fluid from heating coils
into vaporizer not included in the list of faults.

(caseq variable_type

))

(LEVEL
(cond ((eq sign ’'-) (setq fault_description (concat
‘|Liquid leak from vaporizer | equip_name ‘|. |)))))
(VAPOR I ZER-PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
'|Vapor leak from vaporizer | ‘equip_name ’|. ])))))
(INLET-FLOW_RESIST
(cond ((eq sign ’+) (setq fault_description (concat
‘IInlet blockage [| node ’‘|] in vaporizer | equip_name ’|.
(OUTLET-PRESSURE
(cond ((eq sign ’-) (setq fault_description (concat
‘|Leak at outlet [| node ’|] in vaporizer | equip_name ’‘|.
(OUTLET-FLOW_RESIST
(cond ((eq sign ‘+) (setq fault_description (concat

’|Outlet blockage [| node I} in vaporizer | equip_name ‘|.

(TEMPERATURE
(cond ((eq sign ’'+) (setq fault_description (concat
‘|Fire at vaporizer | equip_name ’|. )
((eq sign ’'~) (setq fault_description (concat
‘|Insulation removed on vaporizer | equip_name ’|. |)))))
(HOT-FLOW_RESIST
(cond ((eq sign ‘+) (setq fault_description (concat
’|Blockage in heating coils in vaporizer | equip_name ’‘|.
(HOT-PRESSURE
(cond ((eq sign ‘-) (setq fault_description (concat

D))
D))

1))))

D)

’|Hot stream leak at exit of vaporizer | equip_name ‘[. |)))))

(HX_RATE_CONSTANT
(cond ((eq sign ’+) (setq fault_description (concat

’|Severe fouling in heating coils in vaporizer | equip_name ’‘|. "))
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file vapor_boundary.|

This function, specific to the vaporizer example, contains the possible
faults for primary deviations at the process boundaries. The function
takes a root node and checks to see if it is on the boundary. |If it is,
it assigns fault_description.

declare (lambda roots_at_boundaries)
(special fault_description boundary_list))

defun roots_at_boundaries (node-sign)
(setq fault_description nil)
(setq boundary_node (member {car node-sign) boundary_list))
(cond (boundary_node
(setq node (car node-sign))
(setq sign (cadr node-sign))
(caseq node
(P1 (cond ((eq sign ’+) (setq fault_description
‘|High pressure upstream of pipe PIPE-A. |))
((eq sign ’-) (setq fault_description
‘|Low pressure upstream of pipe PIPE~A. |))))
(T1 (cond ((eq sign ’‘+) (setq fault_description
‘|High temperature fluid entering pipe PIPE-A. |))
((eq sign ’-) (setq fault_description
‘|Low temperature fluid entering pipe PIPE-A. |))))
(Py (cond ((eq sign ’'+) (setq fault_description
‘|High pressure upstream of control-valve CV-2. |))
((eq sign ’-) (setq fault_description
‘|Low pressure upstream of control-valve CV-2. |))))
(Th (cond ((eq sign ‘+) (setq fault_description
‘|High temperature fluid entering control-valve CV-2. |))
((eq sign ’-) (setq fault_description
‘|Low temperature fluid entering control-valve CV-2. |[))))
(P6 (cond ((eq sign '+) (setq fault_description
‘|High pressure downstream of P6 in vaporizer VAPORIZER-1. )
((eq sign ’'-) (setq fault_description
‘|Low pressure downstream of P6 in vaporizer VAPORIZER-1. |))))
(P8 (cond ((eq sign ’+) (setq fault_description
‘|High pressure downstream of pipe PIPE-B. |))
((eq sign ’'-) (setq fault_description
‘|Low pressure downstream of pipe PIPE-B. P))))
)))



Appendix C-1

Component Digraphs for the Process Schematic in Figure 5-1:
Tank With a Level Control System
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Arcs exist from the terms in the functional description to the dependent

term.

Context-Specific Assumptions:

1. The valve is open

2. All flow rates are positive and in the directions assumed
3. Liquid inlet in the tank is above liquid level

4, Tank is at atmospheric pressure

TANK-1

Cv-1

PIPE-A

PIPE-B

V= f(Fl’ _Fz)

L = 5f(V)

P = f(L)

F, = f(P., -P,, -R,)
P, = (F,)

Fy, = f(P3, -B,, -Ry,)
Py = f(-Fy,)

P, = f(F34)

Rq, = f(-vl)

Fpy = 7(Py, -P5, -Ryq)
P, = 7(-Fy3)

Py = 1(F),)

Fu5 = 7(P,, ~Ps, R, o)
P, = f(-F,5)

Py = 5(F5)

The sign attribute of the arc is the sign of the independent term.
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Measurement
Lsensor = 7(L)
Fsensor = f(F45)

Level Control System
= f(L -L_)

error sensor’ sp

v1 = f(Lerror)
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Appendix C-2
Component Digraphs for the Process Schematic in Figure 5-2: Vaporizer

Arcs exist from the terms in the functional description to the dependent

term. The sign attribute of the arc is the sign of the independent term.

Context-Specific Assumptions:
1. All valves are open
2. All flow rates are positive and in the directions assumed
3. T3 <TK Ts

4, Constant fluid properties (p, Cp’ A)

5. Liquid inlet in the vaporizer is above liquid level

6

. No structural faults in the vaporizer

VAPORIZER F,p = f(P;, -Pp, -Ryn)
Py = f(-Fy)
L = f(Fyp, -VAPOR_RATE)
Fpg = #(Bg -Bgs -Rpy)
Py = f(-Fp,, VAPOR_RATE)
P, = £(Fp,)

VAPOR_RATE = f(-PT. T)

Fgg = 7(Pg, -Pg, “Rg)

o
|

= F(-Fg¢)

Pg = f(Fgq)
T6 = f(TS: F56’ -Q)

= #(Ty, -Fyp, Q, -VAPOR_RATE)

=3
!

f(T6l -T, -R-h)

—sH O
]

Cv-1 F,. = f(P
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By = £(-Fpq)
Py = £(Fy,)
Ryz = 1(v)
T, = £(T,)
Cv-2 F,5 = f(P,, -Ps, “R,5)

P, = f(-F,5)
Pg = f(F,5)
Ry5 = 1(-v,
Tg = £(T,)

PIPE-A Fi, = f(Pl, -P,, -Rlz)

Py = f(-F},)
P, = £(F},)
T, = f(Tl)

PIPE-B F,g = f(P7. -Pg, -R78)

P, = f(-Fu0)

Py = f(F,q)

Tg = £(T,)
Measurement

Fsensor - f(FIZ)

Lsensor = £(L)

Psensor - I(PT)

Level Control System

Lerror = f(Lsensor’ -Lsp)

v1 = f(Lerror)

Perror = f(Psensor’ -Psp)

v2 = f(Perror)
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Appendix C-3

Component Digraphs for the Process Schematic in Figure 5-3:

Continuous Stirred Tank Reactor

Arcs exist from the terms in the functional description to the dependent

term.

The sign attribute of the arc is the sign of the independent term.

Context-Specific Assumptions:
1.

CSTR-1

O 00 NN O 1B WLN

All valves are open

All flow rates are positive and in the directicns assumed
. T2, T12 < TR
. T6 > Tla
. P6 > P14 (for heat exchanger structural fault)
. Constant fluid properties (p, Cp)
. Exothermic reaction
Constant heat of reaction (AHr)
Recycle concentrations CA and CB are identical to the reactor
concentrations.
FZR = f(Pzt P » -RZR)
F12R = f(Plz, Pv’ RlZR)
Byy = F(-Fpp)
Fpy = #(Bys ~P3s “Rpq)
By = f(F;)
Vo = f(Fyps Fiops “Fpa)
Vv = f(-Vi)
Pv = f(-Vv, TR)
L=75(V)
Pb = f(L, Pv)

8y = #(Vys -Fpp)



HX-1

PUMP-1

R 2
r = f(kn C )
Ag

k = .f(TR)

c, = f(c, )

Aq Ag

c. = f(c, )

B, B
T3 = .f(TR)

Fero = F(Pg» “Prg» “Rgpq)
Pg = f(-Fg10)

Pio = f(F610)
T10 f(T6’ F610’ -Q)

C = f(c, )

Ao Ag
C = f(C, )

B0 By

Fias = f(Byyr “Pyse R
Py = FCFrus)

Pis = #(Fyuns)
Tys = f(Ty4 "Frys O
Q= f(Typ "Tyss “Ry)
Fery = F(Bgs “Prun “Rgy )
Pg = f(-Fg,)

P4 f(F614)

Fy, = #(By, -P,, “Ry,, w)
By = f(-Fy,)
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P4 = f(F34)
T, = £(T,)
c, = f(c, )
A, A,
c, = £(C, )
B, B,
w= f(1)
TJ-1 Feg = I(Ps. “Pg» -R56)
Py = f(-Fgg, ~Fgy)
P = f(F56)
T, = £(T)
c, = 5(C, )
Ag Ag
c, = f(c, )
By Bg
Fg; = f(Pg, -P;, -Rgy)
B, = £(Fgy)
T, = f(Ts)
c, =7(c, )
A As
c. = £(C. )
B, Bg
PIPE-A Fi, = f(Pl. -P,, -Rlz)
P, = f(-Flz)
By = f(F,)
T, = #(1,)
c, = £(c, )
A, A
PIPE-B  F,, = f(P,, -Pg, -R,q)
B, = f(-F.5)
Py = £(F,5)
Tg = f(T4)



PIPE-C

PIPE-D

PIPE-E

Cv-1

c, =7£(c, )

A A,

c. = f(c, )

B, B,

Fgg = f(Pgs ~Bgs -Rgg)
By = £(Fgg)
T9 = .f(T8)

c, =71(c, )

Ag Ag

c, = f(C, )

By By

Floir = (o0 “Pyp» Rigyy)
Pro = 7CFrony)

Py = 7(Fygyy)
Ty = 7(Tyg)
C = f(C, )

Ay Ao
C = f(C, )

B B0

Fisi6 = (P50 "Prg» "Risie)
s = F(-F5y6)

Pig = F(Fis16)
Tye = 7(Ty5)

F,g = f(Py, -Pg, -Rug)
P7 = f(-F78)

Pg = f(Fug)
Ryg = f(-vy
Ty = £(T,)
C, = f(CA )
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c. = £(C. )
Bg B,

cv-2 Fli2 = f(Pll, “P,s -Rlllz)

@}
|
w,
~
(@]

Cv-3 F -R

1314 P “Rygpg)
13 ~
14 ~

1314

Measurements

£(p)
f£(L)

P
sensor

L
sensor
C

A f(CA )
sensor 9
" £(C5 )
sensor 9
#(Tp)

c

Tl
sensor
T
sensor
F = f(F
sensor
F
sensor
F3 = f(F
sensor

f(Tll)

1011)

f(F89)

1516)

Level Control System

= f(L -L_)

L
error sensor’ sp



v1 = f(Lerror)

Recycle Control System

Ferror - f(Fl ’ -Fsp)
sensor

V2 = f(-Ferror)

Temperature Control System

sensor
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