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Abstract
Optical imaging in biomedicine provides pathophysiological information with high
resolution, high speed, and minimal invasiveness. Endoscopy in particular has
revolutionized healthcare diagnosis and treatment as well as biological research by
offering visual access to otherwise unreachable remote tissues. However, existing
endoscopic modalities face fundamental limitations in their designs that prohibit
miniaturization to below a few millimeters in diameter, which would enable imaging
through any natural or artificial lumen and thus unprecedented opportunities. This
predicament and unmet medical needs such as deep-brain imaging, imaging-guided
needle biopsy, and imaging-guided micro-surgery for new and scalable endoscope
designs have motivated the concept of utilizing a single optical multimode fiber
(MMF) as a stand-alone image conduit. MMF is fascinating as an optical waveguide
attributed to its ultra-small footprint, high data throughput, low cost, and flexibility.
Nevertheless, the mode mixing and dispersion effects inherent to MMF are technical
barriers to its ability to relay clear images; optical propagation through a short length
of MMF scrambles an image completely. The focus of this dissertation research is
therefore to study waveguide physics of MMF and to innovate powerful computational
methods as compensatory strategies that enable high fidelity imaging and sensing
through the fiber: We developed numerical simulation toolboxes and experimental
measurement systems to characterize bi-directional light transport through MMF; By
modeling the light transmission through MMF and sample interaction with matrix
operations, we demonstrated three-dimensional (3D) label-free multi-modal imaging
based on computational reconstruction; To facilitate multi-spectral and broadband
operations with MMF, we established a parametric dispersion model for efficient fiber
calibration across a broad spectrum; The spatio-temporal modes within the MMF can
be conveniently leveraged for depth sensing, where we created a high-resolution and
long-range axial profiling system using MMF; Finally, we showed a proximal MMF
calibration method for implementing flexible MMF-based endoscopes by exploiting
the waveguide physics and numerical optimization.
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Abstract

Optical imaging in biomedicine provides pathophysiological information with high
resolution, high speed, and minimal invasiveness. Endoscopy in particular has revolutionized
healthcare diagnosis and treatment as well as biological research by offering visual access
to otherwise unreachable remote tissues. However, existing endoscopic modalities face
fundamental limitations in their designs that prohibit miniaturization to below a few
millimeters in diameter, which would enable imaging through any natural or artificial
lumen and thus unprecedented opportunities. This predicament and unmet medical
needs such as deep-brain imaging, imaging-guided needle biopsy, and imaging-guided
micro-surgery for new and scalable endoscope designs have motivated the concept of
utilizing a single optical multimode fiber (MMF) as a stand-alone image conduit. MMF
is fascinating as an optical waveguide attributed to its ultra-small footprint, high data
throughput, low cost, and flexibility. Nevertheless, the mode mixing and dispersion
effects inherent to MMF are technical barriers to its ability to relay clear images; optical
propagation through a short length of MMF scrambles an image completely. The focus of
this dissertation research is therefore to study waveguide physics of MMF and to innovate
powerful computational methods as compensatory strategies that enable high fidelity
imaging and sensing through the fiber: We developed numerical simulation toolboxes and
experimental measurement systems to characterize bi-directional light transport through
MMF; By modeling the light transmission through MMF and sample interaction with matrix
operations, we demonstrated three-dimensional (3D) label-free multi-modal imaging based
on computational reconstruction; To facilitate multi-spectral and broadband operations
with MMF, we established a parametric dispersion model for efficient fiber calibration
across a broad spectrum; The spatio-temporal modes within the MMF can be conveniently
leveraged for depth sensing, where we created a high-resolution and long-range axial
profiling system using MMF; Finally, we showed a proximal MMF calibration method
for implementing flexible MMF-based endoscopes by exploiting the waveguide physics
and numerical optimization.
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Indeed, we often mark our progress in science by
improvements in imaging.

— Martin Chalfie

1
Introduction

Contents
1.1 Optical Endoscopy in Biomedicine . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Applications and Trends . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Unmet Medical Needs and Technical Limitations . . . . . . . . 3

1.2 Imaging through Optical Multimode Fiber (MMF) . . . . . . . . . . . . 5
1.2.1 Potential of MMF in Endoscopy . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Optical endoscopes were first developed in 1806 and first used in a successful operation

in the mid 19th century [1, 2]. Since then, optical endoscopy has enabled numerous

applications in various fields such as aeronautical engineering, nuclear engineering, and,

importantly, biomedicine. While smaller optical imaging probes allow visual access to

otherwise unreachable anatomy, existing endoscopic modalities face fundamental limitations

in scale miniaturization. Imaging through optical multimode fiber (MMF) may circumvent

these limitations and stimulate the development of ultra-thin endoscopes to help advance

our knowledge of fundamental biology and clinical medicine.

1



2 1.1. Optical Endoscopy in Biomedicine

1.1 Optical Endoscopy in Biomedicine

Optical imaging is eminently useful in biomedicine by providing fast and minimally

invasive visualization of biological structures and functions from histological to cellular levels.

Among different imaging modalities such as tomography and microscopy, optical endoscopy

allows confined "light conduction" between an observer (the proximal side) and remote tissue

(the distal side), and facilitates the acquisition of anatomical or physiological information in

natural biological environments. Since its invention and deployment, optical endoscopy has

revolutionized the way healthcare providers conduct diagnosis and treatment of a wide range

of diseases, and biologists interrogate organisms at multiple levels using animal models.

1.1.1 Applications and Trends

As shown in Fig. 1.1.1, different-sized endoscopes are designed according to their use.

Clinical white light endoscopes for gastrointestinal and urological imaging are often several

millimeters to more than a centimeter in size and have hundreds of micrometers tissue-level

resolution. To access deeper anatomical locations through tortuous pathways, optical

endoscopes with reduced footprint have been developed. For example, integration of a

camera [3], microelectromechanical system (MEMS) mirrors [4], piezo-actuated vibrator [5],

or mechanical torque-driven scanner [6] into the distal tip of probes for sample scanning leads

to millimeter sizes that allow imaging within lumen structures such as nose, mouth, lung,

heart, esophagus, stomach, colon, bladder, ureter, and cervix [7, 8]; Alternatively, scanning

could be done proximally at the operator side, including optical fiber bundle [9, 10], multi-

core optical fiber [11], and gradient index (GRIN) rod lens image relay [12], which reduce

the probe diameter to less than a millimeter. This provides visual access to small airways,

coronary arteries, pancreatic parenchyma, biliary ducts, and cortical neurons [7, 10, 13].
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Figure 1.1.1: Clinical white light endoscopes allow examination of upper or lower gastrointestinal
tracts on tissue level (Images from [14–16]) MEMS-based or integrated-scanner endoscopes can
thread through small lumens in pulmonary or biliary systems for sampling lesions (Images from
[17–19]) Moving forward, using single hair-thin optical fiber as stand-alone endoscopes has potential
applications in image-guided needle biopsy, deep brain imaging, and middle ear imaging (Images
from Pancreas FNA from Ed Uthman (licensed under CC BY-SA 2.0), Human Brain from
Injurymap (licensed under CC BY-SA 4.0), and Diagram showing the parts of the middle ear from
Cancer Research UK (licensed under CC BY-SA 4.0).) The scale bars signify the size variation of
different imaging probes.

1.1.2 Unmet Medical Needs and Technical Limitations

Nevertheless, there remains clear needs that are not addressable with current endoscopic

paradigms due to insufficiently small probe sizes: In neuroscience, a small enough probe

https://commons.wikimedia.org/wiki/File:Pancreas_FNA;_adenocarcinoma_vs._normal_ductal_epithelium_(400x)_(322383635).jpg
https://commons.wikimedia.org/wiki/File:Human_Brain.png
https://commons.wikimedia.org/wiki/File:Diagram_showing_the_parts_of_the_middle_ear_CRUK_330.svg
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that avoids much damage to brain tissue and allows in vivo observation of deep brain

neural activities with cellular resolution may provide valuable information; Middle or inner

ear surgery may be much easier with visual access to the tympanic cavity through the

eustachian tube while keeping the tympanic membrane minimally perturbed; Current needle

biopsy is the gold standard for early stage cancer diagnosis. With on-site inspection by

threading a small probe through the same needle channel, the sensitivity of biopsy may be

much improved, and the cost, healing time, complication rate, procedure time may be well

reduced. The hair-thin imaging probe may also open the opportunities of ovarian cancer

screening and lymphatic imaging; Furthermore, while the on-site inspection of lesion at

an early stage may be enabled, immediate image-guided therapy such as laser ablation,

drug delivery, or deep photo-dynamic therapy (PDT) may also be possible.

In current endoscopic technologies, the imaging performance depends heavily on hardware

specifications, resulting in fundamental limitations of probe miniaturization. For instance,

integrating optics and electro-mechanics into a distal end is associated with complicated and

high-cost fabrication processes, making it difficult to translate to the commercial market

[5]; A small probe could be implemented by rotating a fiber with proximal mechanical

torque, yet probe deformation may cause unbalanced torque and image distortion [7];

Imaging through fiber bundles or multicore fibers (MCFs) does not require integrated

optoelectronics, but the separation of spatial channels leads to pixelation in images and

poor resolution [20]; Using thin GRIN rod lens as image relay allows high-resolution in

vivo imaging, but the rigid and short rod lens may introduce additional tissue injury

during insertion [21], restricting the penetration depth. In light of the limitations, it

would be implausible to implement a satisfactory thin imaging probe with high imaging

performance and easy commercial availability.

Consequently, the unmet medical needs and technical limitations urge the development

of a completely new optical endoscopic imaging method that could realize a probe with

the following characteristics: Sub-millimeter footprint down to 10s of micrometers to
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assure minimal invasiveness, micron-scale resolution to afford histological or cellular

visualization, ideally real-time imaging speed to accommodate various clinical environments,

preserved flexibility to support probe advancements through tortuous trajectory, and

low fabrication cost as a disposable probe to omit sterilization and budget cost and

time in clinical applications.

1.2 Imaging through Optical Multimode Fiber (MMF)

MMF is a cylindrical and flexible optical waveguide with diameter below few hundreds

of micro-meters commonly used for communication over short distances, such as within

a building or on a campus. Similar to traditional single mode fiber (SMF), MMF also

has a single core, but in a larger size of tens to hundreds of micro-meters. Within the

single core, MMF supports a large number of degrees of freedom (DOFs), or guided modes,

propagating from input to output sides. Each mode has its corresponding pattern in

space and serves as a spatial channel for encoding data stream. A multitude of modes

can thus represent parallel data stream or multi-dimensional data, hence the high data-

throughput of MMF. Compared to fiber bundles and MCF at equal DOFs, MMF has an

overall smaller waveguide geometry attributed to its dense mode population (or number

of spatial channels per unit core area) over the single core. Figure 1.2.1 shows an image

of MMF, with core size in comparison to SMF. Using MMF for imaging applications may

overcome the limitations of current optical endoscopes [22].

1.2.1 Potential of MMF in Endoscopy

The guided modes within MMF have different propagation speed and hence different

arrival time at the output. In addition, the modes may exchange energy along the light

propagation due to physical fiber deformations. These mechanisms lead to modal dispersion

(different modes arrive at different time delays) and modal coupling (modes induce other

modes during propagation). Therefore, the propagation through MMF generally scrambles
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MMF SMF

core
cladding

200 µm

hair

MMF

Figure 1.2.1: Optical fiber guides light within the core part due to total reflection at the cladding
interface. MMF has a similar structure to SMF but a large core supporting a magnitude of modes.
The diameter of MMF is typically few hundreds of micrometers.

an input light field in space, frequency/time, and polarization, resulting in a visually

random speckle pattern at the output. As a result, MMF is typically considered as a

complex medium with chaotic light transport process [23]. Nevertheless, this process is

deterministic (the same input realization leads to the same output pattern) as long as the

MMF maintains a static shape, where we can calibrate the transmission through MMF by

measuring this output response. Based on the knowledge of transmission, controlling light

and concentrating the energy at a spatial channel through MMF has been demonstrated

[24, 25]. Details of MMF transmission will be discussed in Chapter 2.

Similar to data delivery with MMF in optical communications, the guided modes in

MMF can also be used to encode the spatial features of a remote sample, where each mode

carries partial information of the sample conformation. By harnessing the spatio-temporal

modes, researchers have shown various methods for focusing and imaging through MMF

without distal optics or distal scanning modules. For example, focusing through MMF

based on physics principal of time reversal has been demonstrated a decade ago [25–27]. By

configuring the input light to MMF, the generated focus through the MMF can be steered

across remote samples for point by point image formation [28, 29]. The focal plane of

imaging through MMF can be variable, and the light illumination coverage through MMF
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improves with the distance of remote sample from the MMF [30]. Based on the paradigm,

neural imaging with fluorescence labeling and muscle imaging with intrinsic contrast through

MMF have been shown in animal models [21, 31, 32]. Side-view imaging through MMF can

be simply achieved with engineered fiber termination [33]. Alternatively, imaging through

MMF has also been achieved by numerical post processing without configuring the input

light to MMF [20, 34]. These demonstrations reveal many advantages of imaging through

MMF over existing optical endoscopes: single MMF could be transformed into a standalone

probe with ultra-small footprint and variable working distance; the dense mode population

renders a high spatial resolution and large field of view (FOV); MMF is commercially

available at a low cost; imaging through MMF can support either forward- or side-viewing

applications; and MMF is physically flexible. As illustrated in Fig. 1.1.1, the size of MMF

could be orders of magnitude smaller than existing probes, making MMF-based endoscopes

potential solutions to unmet medical needs. However attractive, imaging through MMF

is technically challenging and still at the research and development phase.

1.3 Thesis Structure

To exploit MMF for endoscopic purposes, a deeper understanding of optical transmission

through MMF is needed and may stimulate innovative computational imaging and sensing

schemes. Toward this end, the thesis studies MMF characteristics and addresses major

technical challenges in the following outline:

1. In Chapter 2, to study the light transport properties of MMF, we develop numerical

simulations based on the theoretical model and setup experimental measurement systems

for real-world MMF calibration. We unveil hidden structure behind the seemingly

random fiber transmission. We also show a transpose symmetry of bi-directional fiber

transmission imposed by optical reciprocity. The acquired knowledge helps us develop

efficient MMF imaging and calibration methods.
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2. In Chapter 3, to avoid limitations of active wave control and fluorescent labeling pre-

dominantly used in imaging through MMF [21, 28, 31, 35], we establish a computational

imaging paradigm in a reflection mode, and demonstrate three-dimensional multi-modal

label-free imaging with variable working distance and flexible trade-off between spatial

resolution and FOV. The method streamlines the hardware system design and could

have a speed advantage over active-wave-control approaches, and the label-free imaging

will be desirable for clinical diagnostic applications.

3. in Chapter 4, to attain efficient multispectral calibration of MMF without repeated

measurements at varying wavelength over a broad spectrum, we develop a parametric

dispersion model that accounts for general dispersion beyond the first order model. We

show an ultra-wide spectral correlation of the transmission through MMF after numerical

dispersion compensation, which allows multispectral calibration with fewer measurements

by more than an order of magnitude. The method may also benefit research in multi-color

tissue imaging or wavelength multiplexing in optical communications.

4. In Chapter 5, to achieve depth imaging through MMF and observe stratified structures

without using optical or mechanical scanning, we leverage the spatio-temporal modes of

the MMF for encoding sample reflectivity at varying path length. We show a micrometer-

scale axial resolution over a centimeter-long sensing range, which would otherwise require

great hardware resources if a scanner were employed. The method also exemplifies a

new design of light detection and ranging system.

5. In Chapter 6, to facilitate the development of a flexible MMF-based imaging probe, we

demonstrate a MMF calibration method with proximal measurements. On-site MMF

calibration without open distal access is imperative because imaging through MMF has a

notorious intolerance to fiber perturbation, which is probably the most frequent criticism

towards using MMF for endoscopic purposes [36]. Regardless of several attempts [22,

37–40], so far a robust method that allows complete MMF calibration in a practical
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endoscopic setting is still lacking, and current MMF-based endoscopes require rigid

geometries. The method avoids the drawbacks of previous attempts and may be a

pragmatic solution to the enduring problem.

6. In Chapter 7, we briefly review each chapter and our contributions. Building on top

of our achievements in this thesis, we also propose future prospect of practical imaging

through MMF for endoscopic applications.
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The key point to keep in mind, however, is that
symmetry is one of the most important tools in
deciphering nature’s design.

— Mario Livio

2
Optical Transmission through MMF
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Furthermore, the coherent transmission matrix (TM) is a convenient method to characterize
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wave transmission through general media: The light propagation through MMF could be

modeled by an empirical linear complex TM that summarizes the relationship between the

input and output channels of spatial locations and polarization states, and a certain optical

input state could be expressed as a column vector with elements as defined indexed channels

[24]. In this way, light propagation through MMF is equivalent to the mathematical

multiplication of the vector by the representative TM. We can thus study the MMF

transmission physics through mathematical operations on the corresponding TM.

In addition to the waveguide theory, reciprocity is a fundamental principle of wave

physics and directly relates to the symmetry in the transmission through a system when

interchanging the input and output, regardless of transmission complexity. We demonstrate

the optical reciprocal nature of a looped 1m-long step-index optical MMF by exploring its

TM properties. These insights may inform the development of new imaging techniques

through complex media and coherent control of waves in photonic systems. These results

have been published and selected as Editor’s Pick in APL Photonics [41].

2.1 Theoretical Model of MMF

MMF is a cylindrical waveguide, where the radial refractive index profile of the core

part is a square wave function in step-index MMF (SI-MMF) or parabolic shape in graded-

index MMF (GI-MMF). The numerical aperture (NA) of MMF is directly related to its

acceptance angle of confined light due to the boundary condition between the core and

cladding parts, and we can calculate the fiber NA

NA =
√
n2
core − n2

clad, (2.1)

where ncore and nclad are the refractive indices of core and cladding parts, respectively. We

can solve the Maxwell Equation of confined light in MMF and derive a set of propagation

invariant modes (PIMs) with their profiles and propagation constants, β [42]. The PIMs

maintain the same profile throughout propagation. While there are exact analytical solutions

https://aip.scitation.org/doi/full/10.1063/5.0021285
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for a SI-MMF, the modes in a GI-MMF are only approximated [43]. The well known V

number (normalized frequency parameter) of a MMF is

V = 2π
λ
aNA, (2.2)

where λ is the operating wavelength, and a is the fiber core radius. The V number allows

us to estimate the total number of PIMs in a SI-MMF (∼V 2/2) or GI-MMF (∼V 2/4).

In the following, we will show simulated theoretical modes in straight SI- and GI- MMF

as well as their propagation constant distributions. In practice, when a MMF is bent,

mode mixing effects have to be considered, where modes exchange energy, and the process

can be simulated based on perturbation theory [30].

2.1.1 Modes and Modal Dispersion
Step-index MMF

We simulated 1m-long commercially available SI-MMF with 50 µm core size and 0.22

NA (e.g., FG050LGA, Thorlabs), operated at 1550 nm. There are 258 PIMs (close to 248

approximated based on the V number) with corresponding complex profile of Bessel functions

of different orders indexed in l (orbital angular momentum) and m (radial oscillations). The

exact PIMs have both azimuthal and radial polarization and can be grouped into EH and HE

modes, and the propagation constants have a uniform distribution with bounds determined

by the NA. The results are shown in Fig. 2.1.1, and the simulation code for this is available at

<https://www.mathworks.com/matlabcentral/fileexchange/75327-mmf-simulation> or here.

It is worth noting that while the Bessel functions are exact solutions, under weakly guiding

condition, where the refractive index difference between the core and cladding is small, the

PIMs can be approximated in linear horizontal (H) or vertical (V) polarization states, and

become Laguerre-Gaussian (LG) functions [44], which are perhaps more commonly seen in

literature. Essentially, the LG modes are the superposition of Bessel functions.

https://www.mathworks.com/matlabcentral/fileexchange/75327-mmf-simulation
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Figure 2.1.1: (a) Step refractive index profile of the 50 µm core size SI-MMF (b) Propagation
constants of PIMs ordered in increasing l and m indices (c) The Bessel-function like profile of
several theoretical PIMs. Polarization along the radial direction is plotted. The color map encodes
complex values.

Graded-index MMF

We also simulated 1m-long commercially available GI-MMF with 62.5 µm core size

and 0.275 NA (e.g., GIF625, Thorlabs) commonly used in optical communications (OM1),

operated at 1550 nm. There are 306 PIMs (close to 303 approximated based on the

V number) with 17 group indices and propagation constants having a discrete step-

like distribution with bounds determined by NA. Each mode has a complex profile of

Hermite-Gaussian (HG) functions of individual orders indexed in p (horizontal nodes) and
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q (vertical nodes). The results are shown in Fig. 2.1.2. Since the modes in H and V

polarization are identical, we only show the modes in H polarization. The simulation code

for this is available at <https://www.mathworks.com/matlabcentral/fileexchange/78610-

grin-mmf-simulation> or here.
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Figure 2.1.2: (a) Parabolic refractive index profile of the 62.5 µm core size GI-MMF (b)
Propagation constants of PIMs ordered in increasing p and q indices (c) the Hermite-Gaussian-
function like profile of several theoretical PIMs. H polarization is plotted.

2.1.2 Mode Mixing

The theoretical PIMs assume perfectly straight MMF with ideal refractive index profile.

However, in practice, real-world MMF has distributed bending curvature, twisting, and

https://www.mathworks.com/matlabcentral/fileexchange/78610-grin-mmf-simulation
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non-ideal refractive index due to fabrication imperfection. These physical deformations give

rise to mode mixing effects of theoretical PIMs along the optical transmission through the

MMF, where modes of similar propagation constants exchange energy during propagation.

The local waveguide deformation provides necessary spatial frequency momentum that

bridges the momentum difference between the wave-vector of different modes for momentum

conservation. To simulate cross-coupling between any two PIMs, we followed the seminal

work by Plöschner et al. [22, 45], and computed the amount of exchanged energy based

on perturbation theory. Basically, the method calculates a spatial overlapping integral

between any two PIMs across the MMF core. Since the theoretical PIMs are orthogonal

to each other, the evaluated integral has a zero value when the MMF is straight. On

the other hand, when the MMF is bent, a coordinate change is induced and leads to a

non-zero value of the overlapping integral, and any two PIMs may couple to each other.

The method is suitable for modeling loosely bent MMF, where the mode mixing effect

is small, and there is mostly single coupling of light from one mode to another, which

is often called a weakly coupling regime [46]. The method ignores birefringence effects

induced by the fiber bending. Utilizing the method, we can simulate general MMF with

arbitrary shape and bending curvature, and numerically study the transmission through

MMF. An example is shown in Fig. 2.1.3, where the 1m-long SI-MMF is randomly bent

in several locations, and we observe the outputs per different input realization. When

the fiber is straight, the input PIM only experiences a phase delay, but the focus spot

is scrambled due to modal dispersion; When the fiber is bent, the input PIM couples to

different PIMs due to mode mixing, changing the output pattern.
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(a) input (b) no bending (c) bending

MMF

Figure 2.1.3: The output response of 1m-long, 50µm core, 0.22 NA SI-MMF to (a) PIM or focal
spot input (b) before and (c) after bending of 30± 5 cm radius of curvature at 10 locations in
random orientation along the fiber.

2.2 Transmission Matrix

While we can simulate transmission through MMF given the fiber geometry, it is almost

impossible to acquire the exact shape of a real-world MMF and predict the corresponding

complicated mode mixing effect in a microscopic scale. Fortunately, the optical transmission

through a general medium from an input surface to an output surface can be expressed

by a transmission matrix (TM), which is similar to a ray transfer matrix in geometrical

optics but focuses only on the channel positions. This is illustrated in Fig. 2.2.1, where

each element is a complex coefficient specifying the amplitude and phase evolution of

the transmitted monochromatic field between the corresponding pair of input and output

spatial channels. The spatial channels correspond to the sampling locations on the input

and output surfaces, respectively, and are assumed to be sufficiently dense to correctly

sample the electromagnetic fields. We can then express forward light transmission, Tfw,
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from the proximal to distal end as

~t = Tfw~s, (2.3)

where ~t and ~s are the vectorized representations of the distal output field and proximal

input field, respectively. If ~t and ~s are ordered first by the spatial modes, and then by

polarization, Tfw can be partitioned into four blocks,

Tfw =
[
TXH TXV
TYH TYV

]
, (2.4)

where the subscripts X, Y and H, V denote two orthogonal polarization states on the

distal and proximal side, respectively.

2.2.1 Measuring the Forward Transmission Matrix

To measure the experimental monochromatic Tfw of 1m-long MMF randomly coiled

with a minimum radius of curvature of 23 mm, we set up a calibration system as shown in

Fig. 2.2.2. A laser beam (λ = 1550 nm and linewidth < 100 kHz) was linearly polarized in

a vertical (V) polarization state, reflected on a phase-only spatial light modulator (SLM,

Model P1920-850-1650-HDMI, Meadowlark Optics) in the same polarization state, and

then focused by using an objective lens (Mitutoyo Plan Apo NIR Infinity Corrected) with

a numerical aperture (NA) of 0.4 into a 2.5 µm full-width at half maximum (FWHM)

spot. An offset phase ramp was applied to the SLM to block unmodulated light. To

uniformly probe all MMF guided modes, we first created on the proximal side a dense grid

of 695 equally spaced illuminating foci sequentially generated by phase gradients on the

SLM. We recorded the focus positions by placing a reflective surface on the focal plane

and capturing the image of each focus with an InGaAs camera (OW1.7-VS-CL-LP-640,

Raptor Photonics). An integrated focus grid image at each position is shown in the inset.

From the image, we extracted the center of focus and created a proximal position map,

where each position is an input spatial channel.
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Figure 2.2.1: Schematic of forward TM characterizing transmission from the proximal (P) to
distal (D) ends of a linear optical system. The vectors ~s and ~t represent complex fields with
constituent spatial channels indexed by i and j on the proximal and distal ends, respectively. Each
element aji of the forward TM describes the complex contribution of proximal input channel i to
distal output channel j. The red arrows link a pair of spatial channels in the forward transmission.

Next, we coupled the focal spot through proximal input channels into the step-index MMF

with 105 µm core diameter and a NA of 0.22 (FG105LCA, Thorlabs), which theoretically

supports ∼550 guided modes per linear polarization [42]. The angular spectrum of the spot

exceeded the NA of the MMF to ensure efficient population of high-order modes. On the

MMF distal side, we imaged the speckle pattern exiting from output spatial channels with

another identical objective and a tube lens (f = 30 cm) onto the camera with a vertically

oriented, linear polarizer (LP) placed in front of it. A tilted plane reference wave, polarized

by the same polarizer, interfered with the speckle pattern to record the complex image

of the speckle pattern field through off-axis holography in the V polarization state. If we
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consider the V polarizers at the proximal and distal sides as part of the system whose

TM we are measuring, then TYV = TVV and Tfw becomes

Tfw =
[
0 0
0 TVV

]
. (2.5)

To release digital storage burden, we down-sampled the complex image at a defined grid

of 2637 positions. This procedure was repeated in an oversampling fashion for the dense

focus grid. Rearranging column by column the ensemble of vectorized complex output

images recorded over all input spatial channels constructed Tfw representing the linear

transformation of light traveling from the proximal facet to the distal facet. The TM was

recorded in spot basis on both input and output channels. Due to the difference in the

number of input and output sampling positions, Tfw is a tall rectangular matrix.

2.2.2 Number of Modes

We quantified the number of guided modes within the MMF by performing singular

value decomposition (SVD) on measured TMs, counting the singular values (SVs) above a

threshold defined as 5% of the largest SV. As shown in Fig. 2.2.3, there are ∼500 populated

modes in Tfw, but mode-dependent transmission loss is apparent. While the numbers are

consistent with a theoretical maximum of 550, when inspecting the left singular vectors

associated with decaying SVs, we find that the loss of guided power increases as a mode

carries higher radial frequencies. We attribute the losses to coupling and detection of a

single polarization state and to oversampling and interpolation of TM measurements.

2.2.3 Matrix Inversion

When a TM is unitary, we can apply Hermitian transpose as its true inverse, T-1 =

T†. However, because experimental Tfw is non-square, corrupted by noise, and close to

singular, we approximated matrix inversion with Tikhonov regularization, T-1(tik), with

the regularization parameter, γ, chosen as 10% of the greatest SV. This is justified based
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Figure 2.2.2: Measurement of the MMF forward TM, Tfw. The fiber, although drawn as if it
were straight, was in fact coiled in experiments. P: proximal, D: distal, LP: linear polarizer, Ref.:
reference wave, Cam.: camera, M: gold-coated mirror, and BS: beam splitter. A focus was scanned
by using the SLM across 695 positions distributed over the proximal focal plane. The reflection
image of foci grid provides the position map of input channels. On the distal side, the output
light field interfered with a reference wave on the camera and created a modulated image, which
could be processed through Hilbert transformation into the complex amplitude of the output
speckle. The image was down-sampled, as exemplified in the magnified inset, and rearranged
into a column vector of Tfw, with rows and columns indexed by the output and input channel
positions, respectively. Only a subset of Tfw is shown.

on the L-curve method [47]. The product of Tfw with its regularized inverse is identical

to the multiplication of a modified TM with its Hermitian transpose. The modification

consists of rescaling each SV, σ, of the TM by 1/
√
σ2 + γ2 and is shown in dashed curves

(labeled as “regularized”) in Fig. 2.2.3.

2.2.4 Numerical Correction

To correct the physical misalignment between the MMF facet and the focal plane of the

imaging system at the input/output sides, we developed an automated misalignment

correction function that parameterizes and compensates the aberration based on an

optimization approach following Plöschner et al [22]. We parameterized the physical
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Figure 2.2.3: Singular values (SVs) of the measured TM in single-pass Tfw. The black arrows
indicate the number of modes with an SV above 5% of the TM’s largest SV. The solid and dashed
curves correspond to raw and regularized SVs, while black and red lines show linear and log
scales, respectively. Three examples of singular modes are visualized for each configuration by
reshaping singular vectors to 2D images and numerically interpolating the images for better visual
appearance. The averaged normalized radial frequency (0.5 cycles/radius) of the power spectral
density of each mode is indicated in the lower-right corner. High-order modes are associated with
higher radial frequency and are subject to increased loss.

misalignment of the input/output considering 8 variables: To address the phase mismatch,

we applied a two-dimensional (2D) phase term constituted by Zernike polynomials in

the recording space of the spatial channels, as shown in Fig. 2.2.4. This corresponds

to a diagonal phase-only matrix left-multiplied to the TM to be corrected. The Zernike

orders correspond to 2D tilts, defocus, and 2D astigmatisms (5 variables); To register

the positional shifts, we applied another phase term with 2D tilts and defocus in the
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Fourier space of the spatial channels of the TM (3 variables), as this is the same as the

lateral and axial translation of the observation coordinates. The correction is equivalent

to convolving the spatial channels with a complex and offset point spread function. In

the matrix formalism, the correction to the input/output channels is a further right-/left-

multiplication of the TM with a Toeplitz matrix. To optimize for the 8 variables, we

defined a scalar metric quantifying the matrix energy close to the main diagonal when

representing experimental TMs in theoretical PIM basis.
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Figure 2.2.4: First 5 Zernike modes for numerical correction to aberration.

2.3 Sparsity in MMF Transmission

The TMs of MMF in the experimental recording basis is typically dense and chaotic.

However, a TM can also be linearly transformed into a different space spanned by an

arbitrary set of orthogonal spatial functions. For instance, we could project the TM into a

modal representation with theoretical PIMs of the MMF as the spatial functions. Since

a loosely bent MMF is in a weak coupling regime, coupling may be confined between

PIMs of similar propagation constants, thereby providing an advantageous sparsity in the

transformed TM that we can utilize to develop efficient imaging paradigms and calibration

methods. In the following, we measured forward TMs of a 1m-long SI-MMF and a 1m-long

GI-MMF in the spot basis and transformed the TMs into PIM representations.
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2.3.1 Modal Projection

To transform the basis for TM representation, we first calculated the set of theoretical

PIMs according to the MMF’s specifications and at the experimental spatial sampling

rate. We ordered the PIMs in an increasing in-plane momentum (thus a decreasing

propagation constant) and grouped the vectorized PIMs in a complex matrix E. Since the

spatial sampling rate is different in the MMF input and output space, we repeated the

processes and acquired Ein and Eout, respectively. Theoretically, to represent the input

and output of the TM in the PIM set, Tmode, we should calculate E†outTEin. However,

due to the physical misalignment between the focal plane of the imaging system and the

fiber facet, direct basis transformation results in random interference of the PIMs and bury

the hidden TM structure. Appropriate correction matrices, Cin and Cout, compensating

the misalignment on both input and output sides are necessary to complete the modal

projection [22, 48]. Using the developed numerical correction technique, we can generate

the correction matrices by parameterizing the misalignment. Since a PIM exchanges

energy with others with similar propagation constants under the weak coupling regime,

we expected the TM in modal representation to have energy concentrated in the diagonal.

Therefore, we aimed to optimize for correction to misalignment by maximizing on-diagonal

energy of TM in modal representation

Cin,Cout = arg max
Cin,Cout

||diag.(E†outCoutTCinEin)||F
||E†outCoutTCinEin||F

, (2.6)

where F is the Frobenius norm, and the overline denotes optimal quantities. After the

optimization process, we have the TM in modal representation Tmode = E†outCoutTCinEin.

2.3.2 Step-index MMF

We measured the forward TM of a randomly coiled 1m-long SI-MMF with 50 µm core

and NA 0.22 at 1550 nm fixed on optic table in the spot basis, as shown in Fig. 2.3.1.

The TM in the original basis is completely random and one can hardly see any structure.
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Nevertheless, after the modal projection, we can see that the mode mixing effect due

to MMF deformation is confined to modes of similar propagation constants to preserve

the momentum. Also, more energy is populated in the low order modes, which may be

attributed to the more efficient light coupling into low order modes on the input side

and higher propagation loss in the high order modes.
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Figure 2.3.1: (a) Experimental TM in spot basis representation. (b) in PIM basis representation.

2.3.3 Graded-index MMF

We measured the forward TM of a randomly coiled 1m-long GI-MMF with 62.5 µm

core and NA 0.275 at 1550 nm fixed on optic table in the spot basis, as shown in Fig. 2.3.2.

Similar to the SI-MMF, the TM in the original basis is completely random. Nevertheless,

after the modal projection, we can see that the mode mixing effect due to MMF deformation

is confined to modes in the same mode group of the same propagation constants. The

momentum gap between modes in different groups is large enough to prevent inter-group
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coupling, leading to block diagonal matrix structure of the TM. This highlights the main

difference in the transmission between a GI-MMF and SI-MMF: The dispersion can be

minimized for pulse delivery in GI-MMF when launched in a certain group, where energy

will remain in the same group of identical propagation speed; On the other hand, SI-MMF

may have a strong modal dispersion effect, and energy can be continuously diffuse to modes

of various propagation speed during transmission through the fiber.
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Figure 2.3.2: (a) Experimental TM in spot basis representation. (b) in PIM basis representation.

2.4 Optical Reciprocity in MMF Transmission

The bi-directional transmission through photonic systems is governed by the universal

Lorentz reciprocity (or the Helmholtz reciprocity), which states that light propagating

along a reversed path experiences the exact same transmission coefficient as in the forward

direction, independent of the path complexity [49, 50] or the presence of loss [51–53]. In the

linear regime, this suggests a definite relation, or symmetry, between the forward and the
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backward transmission when interchanging the source and detector. This symmetry not only

underlies the behavior of common optical components, such as polarizers, beam splitters,

and wave-plates, but also engenders surprising physical phenomena in complex systems

such as coherent backscattering (or weak localization) and Anderson localization [54, 55].

Optical phase conjugation is a well-known consequence of this symmetry in loss-free systems,

whereby an original light distribution is replicated by reversing the propagation direction

of the detected field while conjugating its wave-front. Digital optical phase conjugation

(DOPC) has been well established for focusing and imaging through complex or disordered

media, including MMFs [25, 56–58]. However, the more general underlying transmission

symmetry of bi-directional light transmission through complex systems and its implications

have not been explicitly demonstrated and discussed.

Here, we investigate MMF transmission properties using a monochromatic coherent TM

formalism [24, 59] and experimentally demonstrate the transpose symmetry between the

forward and backward TMs in this complex medium imposed by general optical reciprocity.

The TM description is a subpart of the common scattering matrix formalism [24, 60], and

offers a simpler framework that decouples the input and output channels. The gained insights

are readily applicable to general electromagnetic transport in complex and disordered media.

In section 2.2, we described the forward TM of a MMF. As illustrated in Fig. 2.4.1, the

backward light transmission from the distal to proximal end can be written as

~u = Tbw~t, (2.7)

where ~u and ~t are the proximal output field and distal input field, respectively. According

to the reciprocity theorem, light propagating along the reversed path between the input

and output will experience the same transmission coefficient as in the forward direction.

In the context of Jones matrices, which describe the relation between the polarization

states of the input and the output field propagating through an optical system, de Hoop’s

notion of reciprocity manifests as a transpose relationship between the Jones matrices
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describing forward and reverse transmissions. By analogy with the Jones matrix formalism,

when interchanging the input and output spatial channels of the medium, reciprocity

instructs that Tbw is the transpose of Tfw,

Tbw = TT
fw =

[
TT

XH TT
YH

TT
XV TT

YV

]
, (2.8)

where the superscript T indicates the regular matrix transpose. In addition, since sequential

light transmission is modeled as TM multiplication, the round-trip transmission through

the same medium, T2X (light transmits to and is reflected from the distal side; then, it

travels back to the proximal side), equals the product of Tbw and Tfw,

T2X = TbwTfw = TT
fwTfw, (2.9)

making T2X a transpose symmetric matrix,

T2X =
[
TT

XHTXH + TT
YHTYH TT

XHTXV + TT
YHTYV

TT
XVTXH + TT

YVTYH TT
XVTXV + TT

YVTYV

]
= TT

2X (2.10)

Of note, the two on-diagonal blocks are self-transpose-symmetric and the two off-diagonal

blocks are instead the transpose of each other.

2.4.1 Measuring the Round-trip Transmission Matrix

To experimentally verify Eqs. 2.8 and 2.9, we measured the round-trip TM, T2X, of

the MMF, using the setup shown in Fig. 2.4.2. We again sequentially coupled light into

the MMF from the proximal end through the same set of input spatial channels. On the

distal side, we replaced the camera used for measuring in the forward transmission with a

gold-coated mirror to reflect the light back into the MMF. The same V linear polarizer,

previously in front of the camera and now in front of the gold-coated mirror, was necessary

to maintain the identical Tfw and avoid polarization crosstalk. In general, the spatial and

polarization DOFs are coupled through mode mixing during light propagation in the MMF,

and the MMF output polarization states are different from the input polarization state
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Figure 2.4.1: Schematic of forward and backward TMs characterizing transmission between the
proximal (P) and distal (D) ends of a linear optical system. The round-trip transmission from
and to the proximal end is unfolded to reveal the hidden transpose symmetry when flipping the
direction of an optical path (gray arrows) linking a pair of spatial channels. The red arrows link a
pair of spatial channels in the forward and backward transmission. Owing to reciprocity, both
directions feature the same transmission coefficient, yet they correspond to transposed elements
in the corresponding TMs, with interchanged row and column indices.

[61]. With the distal and proximal V linear polarizers, we measure the transmission from

a V linear input polarization state into a V linear output polarization state, both for the

forward and the double-pass TMs. T2X of Eq. 2.10 simplifies in this case to

T2X =
[
0 0
0 TT

VVTVV

]
. (2.11)

On the proximal side, we recorded the round-trip transmission by decoupling its path from

the illumination with a non-polarizing beam splitter. To preserve the symmetry between

the illumination and the detection configurations and to obtain a square matrix T2X, we

sampled the recorded output fields at the 695 positions defined by the input focus positions
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(the foci map). Furthermore, to mitigate specular reflections at both the distal and proximal

facets, wedge prism mounting shims (SM1W1122, Thorlabs) filled with index-matching

gel (G608N3, Thorlabs) were used to cover both facets for measurements of forward and

double-pass TMs. Intriguingly, the round-trip measurements through individual proximal

spatial channels allow us to observe the coherent backscattering effect, which guarantees

constructive interference in pairs of time-reversed optical paths, and thus, light is statistically

twice as likely to exit through the same spatial channel that it used to couple into the fiber

than through any other output channel [62]. In the TM formalism, this corresponds to a

ratio of two between the mean intensities of the main diagonal and off-diagonal elements in

T2X, as plotted in Fig. 2.4.2. Mathematically, if we assume that the elements in Tfw feature

independent real and imaginary parts following identical normal distributions, then Eq. 2.9

states that T2X is the same as a pseudo-covariance matrix (or relation matrix) of proper

complex random vectors [63, 64], resulting in the factor of two due to Gaussian statistics.

In our experiments, we used a single polarization for illumination and detection to avoid

the experimental complexity of measuring polarization-resolved TMs [22]. Furthermore, the

X and Y polarization states at the distal side were identical to the H and V polarizations

at the proximal side. Measuring the round-trip TM without the distal V polarizer would

still result in a transpose symmetric matrix T2X, but the coupling between the polarization

states would create a second term TT
HVTHV. Hence, the distal V polarizer was required

when measuring the round-trip TM to be able to relate T2X to the measured TVV of Tfw.

The polarization DOF simply extends the DOFs of the spatial modes, and in analogy to

the partition of the TM into the four polarization blocks of Eq. 2.9, we could also partition

TVV into any two subsets of input and output spatial modes. Thus, TVV can likewise

be defined as being composed of four blocks, which express the transmissions from the

two input subsets to the two output subsets. The measured round-trip matrix TT
VVTVV

contains two on-diagonal blocks that are self-transpose-symmetric and two off-diagonal

blocks that are the transpose of each other. By extension, the experimental verification of



2. Optical Transmission through MMF 31

the symmetry relation for a single polarization state holds for any combination of spatial

channels and polarization states and holds without loss of generality.
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Figure 2.4.2: For round-trip T2X measurements, the camera at the distal side was replaced by
a mirror, and the returning light was directed by using a non-polarizing beam splitter to the
same camera for holographic recording. The complex image of the round-trip output speckle was
down-sampled at the 695 positions of the input foci grid (inset), resulting in a square matrix. A
subset of T2X is shown, the vertical dashed line indicates the vector arranged as an image of the
facet, and the yellow inset shows sampling locations as white markers. The color maps encode
complex values, and the scale bars in the insets are 50 µm. The plotted trace is the average
intensity of matrix elements with varying offset from the diagonal, and the ratio of two between
the main diagonal and the off-diagonal reveals the coherent backscattering in the MMF.

2.4.2 Symmetry in Round-trip Measurement

We set out to verify the anticipated transpose symmetry within the round-trip TM

T2X, as stated in Eq. 2.10. This property should be self-sustained and independent

of Tfw. Physical misalignment between the defined input surface to the MMF and the

image recording plane at the proximal end introduces a phase mismatch and relative

shifts that need to be compensated to reveal the underlying transpose symmetry. This is

similar to misalignment issues in common DOPC systems [65]. The Zernike coeffcients
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parameterizing the physical misalignment were determined by minimizing the error |T′T
2X −

T′

2X|2 , where T′

2X is the corrected T2X and | · |2 is the squared Frobenius matrix norm.

Without correction, the initial error, normalized by |T2X|2, was 200%. With correction,

the normalized error was reduced to 23%. For comparison, we found a 15% residual error

when computing the normalized squared Frobenius norm of the difference between two

sequentially measured round-trip TMs of the identical MMF transmission. To investigate

transpose symmetry, we verified the diagonal localization in the product of the matrix by

its inverse transpose. The product of the uncorrected T2X with its Tikhonov regularized

transpose matrix inversion T−T(tik)2X is a chaotic matrix due to the disordered interference

between populated modes caused by the physical misalignment (Fig. 2.4.3). However, after

applying the correction, the product of T′

2X with T
′−T(tik)
2X became close to the identity

matrix, with the integrated on-diagonal energy over the total matrix energy improving

from 0.24% to 43.5%. As benchmark, the same metric applied to a perfectly symmetric

TM, (T′T
2X + T′

2X)/2, resulted in 59.2% on-diagonal energy, limited by the regularized

matrix inversion. These results show that the phase-corrected round-trip TM matches

its transpose, thus demonstrating its transpose symmetry.

2.4.3 Reciprocity in Bi-directional Transmission

With the corrected T2X, we proceeded to verify the transpose relationship between the

forward and backward TMs, as stated in Eq. 2.8. For experimental convenience, instead

of directly comparing Tbw and Tfw, we assumed that Tbw = TT
fw and worked with TT

fwTfw

and T′

2X, avoiding the complexity of directly measuring Tbw. Similar to correcting the

round-trip measurements, we had to compensate the physical misalignment between the

recording plane on the distal side for measuring Tfw and the gold-coated mirror used in

measuring T2X. In a similar way to how we corrected T2X, we applied phase terms to

the recording and Fourier spaces of the output spatial channels of Tfw. However, in this

case, we aimed to minimize the error |T′

2X − T′T
fwT

′

fw|2 , where T′

fw is the corrected Tfw.
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in the recording and Fourier space, respectively, and the amplitude of each mode is iteratively
updated to minimize the difference between T′

2X and T′T
2X. Higher order Zernike polynomials are
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phase correction is selected, converted back into 2D coordinates, and smoothed by interpolation
to illustrate constructive interference at the corresponding proximal spatial channel when using
corrected TMs. The offset diagonals on both sides of the main diagonal are due to oversampling
during TM measurement, as visualized by indicating the proximal sampling positions.

Figure 2.4.4 shows that the misalignment, characterized by the amplitude of the Zernike

polynomials, was quite different from that encountered in T2X. Without correction to Tfw,

the initial error, normalized by |T′

2X|2, was 101% and the product of T′

2X and (TT
fwTfw)−1(tik)

appeared far from a diagonal matrix, implying low resemblance between T′

2X and TT
fwTfw.

Clearly, the random background denotes that the physical misalignment caused undesired

interference over all spatial channels. Crucially, the normalized error reduced to 27.7% after

correction, which is again close to the experimental benchmark of 15%. Additionally, the

resultant product closely resembled the identity matrix, with its integrated on-diagonal

energy over the total matrix energy improving from 0.27% to 36.6%. The product of T′

2X

with its regularized inverse reached 56.8% on-diagonal energy. Therefore, we conclude
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that T′

2X and T′T
fwT

′

fw, at least as measured in a single polarization state, are identical

to each other, as stated in Eq. 2.9, which implies that the backward transmission Tbw

is the same as TT
fw, as described in Eq. 2.8. This provides evidence of general optical

reciprocity and the ensuing transpose symmetry for transmission through a MMF, which

serves as a convenient model for general complex media.
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Figure 2.4.4: Visualization of optical reciprocity within the MMF after correcting Tfw for
misalignment. During optimization, the amplitude of each Zernike polynomial is iteratively
updated to minimize the difference between experimental and synthesized round-trip transmission.
The Newtonian-based optimizer was again used to find the optimal correction. The on-diagonal
energy ratio improved from 0.27% to 36.6% after the phase mismatch and positional shift
corrections, each within tens of iterations.

2.5 Conclusion

In this chapter, we investigated the waveguide physics of MMF based on theory and

numerical simulation, and calibrated real-world fiber by measuring its TM. We conveniently

analyzed the transmission through MMF by matrix operations, and verified the optical

reciprocity hidden in the chaotic transmission. These insights will assist the development

of new techniques in the following chapters.
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This chapter focuses on a computational imaging strategy through optical multimode

fibers (MMFs), which has the potential to enable hair-thin endoscopes that reduce the

invasiveness of imaging deep inside tissues and organs. Current approaches predominantly

require active wavefront shaping and fluorescent labeling, which limits their use to preclinical

applications and frustrates imaging speed. On the other hand, imaging through MMF

without active wave-control has been demonstrated [20, 34, 66], but the methods lead

to limited image contrast or assume simple sample structure, and optical sectioning

mechanism is lacking. Here we present a computational approach to reconstruct depth-

gated confocal images using a raster-scanned, focused input illumination. We demonstrate

the compatibility of this approach with quantitative phase, dark-field, and polarimetric

imaging. Computational imaging through MMF opens a new pathway for minimally

invasive imaging in medical diagnosis and biological investigations. These results have

been published in Optica.

3.1 Overview

In this chapter, we express forward light transmission through a MMF as matrix T, as

illustrated in Fig. 3.1.1(a). The measurement of T, by determining the amplitude and

phase of the output speckle pattern arising from focal illumination at each independent

transverse location on the input fiber facet, calibrates the transmission from the proximal

end (P) to a distal calibration plane (at z = 0). The MMF output speckle pattern on the

calibration plane per each proximal input realization constitutes a column vector of T. In

imaging mode with a sample at the fiber distal end, we illuminate and detect light from

the fiber proximal end. This corresponds to a bi-directional light transport consisting of

forward transmission through the MMF, free-space propagation to an observation plane

https://www.osapublishing.org/optica/abstract.cfm?doi=10.1364/OPTICA.446178
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(OP) modeled by Fresnel diffraction (H), speckle illumination on and backscattering from

the sample, coupling back into the same MMF, and backward transmission to the proximal

facet. The TM representing backward transmission TT is the transpose transformation of

the forward TM T due to underlying reciprocity [41], and the overall round-trip reflection

matrix M, describing optical transmission from and to the proximal side can be expressed as

M = TT
(∑

i

H (zi)TR (zi)H (zi)
)
T, (3.1)

similar to [40, 67]. R (zi) quantifies the backscattering process of the light-sample interaction

in the spot basis on the distal OP at distance zi from the calibration plane, with i

indexing all sample layers. Multiplication with H (zi) corresponds to convolution with

the impulse-response function of free-space propagation by zi. R has intrinsic transpose

symmetry, R = RT. Each column of M is a proximally recorded speckle pattern per

input realization and contains contributions from all present sample layers. The transpose

symmetry of M that follows from Eq. 3.1 is experimentally attained as elaborated in

the Experimental Setup section.

The computational reconstruction is conceptually illustrated in Fig. 3.1.1(b). With a

previously measured T, we can digitally compensate the light scrambling during round trip

MMF propagation and isolate the scattering signal of the various sample layers, including

propagation from and to the fiber facet. This is similar to modeling conventional confocal

microscopy, with the fiber facet taking the place of the principal output plane of the objective

lens. The H matrix is independent of fiber shape and can be numerically generated for

any desired OP position zi. Right- and left- multiplying M with the inverse and transpose

inverse of H (zi)T, respectively, extracts the in-focus signal from layer at zi. The signal

from adjacent layers zj 6= zi is suppressed with increasing layer separation owing to the

confocal gating effect, which arises from the defocusing H (zj)H−1 (zi) acting independently

both on the illumination and detection side. For simplicity, we drop the subscript of zi
and use z to specify the OP position from here on.
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In practice, we used Tikhonov regularization to approximate the inversion and transpose

inversion of the fiber transmission, T–1(tik) and T–T(tik), with the regularization parameter

set to 10% of the largest singular value as justified by the L-curve method [68]. The

approximated sample signal R (z), R̃ (z) thus can be derived as

R̃ (z) = H–T (z)T–T(tik)MT–1(tik)H–1 (z) ≈ R (z) , (3.2)

where matrices are defined regardless of basis representation. When the input and output of

R̃ are both in the spot basis, an adequate high-contrast image reconstruction of the en face

scattering on the OP can be obtained by reshaping the intensity on the diagonal of R̃ into its

corresponding 2D xy-layout. The graphical expression of the computational reconstruction

by using Eq. 3.2 is shown in Fig. 3.1.2. Physically, the diagonal elements of R̃ correspond

to synthetic focused illumination and detection occurring through identical channels on the

OP, creating a spatial confocal gating effect with a depth of focus determined by the effective

numerical aperture (NA) available at each location on the OP. By varying the propagation

distance of H (z), we can numerically shift the OP along the optical axis to different

distances and reconstruct the full addressable 3D image volume from a single measured M.
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Figure 3.1.1: Overview of computational confocal imaging through MMF. (a) We calibrate the
MMF by measuring T. In the imaging phase, we measure the coherent round-trip M through the
same set of proximal channels as used for calibrating T, but now in the presence of a distal object.
The H matrix accounts for free-space propagation from the calibration plane to an OP. The
sample is illuminated by different speckle realizations due to the proximal 2D scan, and R denotes
light-sample interaction. The measured M and T are used for computational reconstruction. (b)
By modeling the round-trip light transmission with matrix multiplications, we can compensate
the MMF scrambling using the measured T and modeled H to isolate the reflection matrix R̃ at a
certain depth. The image of the sample is reconstructed from the diagonal of |R̃|2, corresponding
to confocal illumination (red) and detection (gray) through all available channels. Note that the
illumination and detection spots are overlapping on the sample. With numerical refocusing, we
can generate a complete 3D scan from a single measured M. The color map encodes complex
values. amp.: amplitude. (c) γ curves show the intensity reflection signal summed in the lateral
directions as a function of physical distance d from the fiber facet for the schematically depicted
sample. Only the full fiber NA = 0.22 can correctly resolve the three reflective interfaces. The en
face images show confocal images of buccal epithelial cells deposited on the front and back surface
of the coverslip, reconstructed with the full fiber NA. The scale bar is 50 µm.
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Figure 3.1.2: The graphical expression of computational reconstruction. The complex patterns
visualize the light field evolution of one MMF input realization at each location throughout the
MMF imaging arrangement. CP: calibration plane, which defines the output plane of T. The
speckle pattern on CP corresponds to one column of the T matrix, and the speckle pattern on
the proximal side of returning light corresponds to one column of the M matrix. The R̃ matrix,
which is extracted from measurement M with calibration T and free-space propagation model H,
allows a confocal image reconstruction of the distal object at OP by reshaping the main diagonal
to 2D coordinates.
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3.2 Experimental Setup

3.2.1 MMF Calibration

All experiments in this chapter used a 1-m-long step-index MMF with 105 µm core

diameter and a NA of 0.22 (FG105LCA, Thorlabs) that theoretically supports ∼ 550 guided

modes per polarization. The fiber was coiled with a minimum radius of curvature of ∼ 50

mm. The monochromatic calibration matrix T was measured similar to the previous chapter,

however, with some modifications. As depicted in Fig. 3.2.1(a), each input and output

channel now included two orthogonal polarization states: horizontal (H) and vertical (V).

To alternate the illumination polarization between H and V, a laser beam (λ = 1550 nm and

linewidth < 100 kHz) was linearly polarized and passed through a fiber-based electro-optical

phase retarder (PR, Boston Applied Technologies). Instead of using the SLM, the laser

was steered by a two-axis galvanometer scanning stage (GM, GVSM002-US, Thorlabs),

and then focused by an objective lens (Plan Apo NIR Infinity Corrected, Mitutoyo) with

a NA of 0.4 into a 2.5 µm full-width at half maximum (FWHM) spot on the proximal

facet of the MMF. The focal spot position on the proximal input side was indexed by

u and the speckle pattern exiting on the distal side was imaged with another identical

objective lens and a tube lens (f = 30cm) onto an InGaAs camera (OW1.7-VS-CL-LP-640,

Raptor Photonics) with exposure time of 20 µs at 120 frames per second. The distal

channel in real-space was indexed by ν. The object plane of the distal imaging system

determined the calibration plane, which was approximately 100 µm away from the distal

facet. We define d as the distance of the OP away from the MMF distal facet (at d = 0).

A beam displacer (BD40, Thorlabs) was used in front of the camera to spatially separate

the output into H and V polarization states. An angled plane reference wave polarized at

45◦ independently interfered with the two speckle patterns on the camera to record the

speckle field amplitude and phase through off-axis holography in both detection polarization

states simultaneously. Images of the two polarization states were demodulated, spatially
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registered, and flattened into a column vector of T directly in the Fourier domain, with

output channels at (kx, ky) indexed by νF . Transmission was recorded for an oversampled

grid of input spot positions u within the core region, typically ∼700 points for each input

polarization state, sequentially generated by driving the GM and PR. The total acquisition

time was 20 seconds. The input and output spatial channels of T have been ordered

first by spatial coordinate, then by polarization.

3.2.2 Measuring Sample Reflection

In imaging experiments, as illustrated in Fig. 3.2.1(b), a sample was placed in front of

the MMF distal tip (b-1) and the round-trip M was measured from the proximal side (b-2).

We again sequentially coupled light into the MMF through the same set of proximal input

states. Light with a power of ∼0.5 mW exited the distal facet and propagated towards the

sample, where part of the light backscattered and coupled back into the same MMF. On the

proximal side, we recorded the round-trip light transmission by decoupling its path from

the illumination with a non-polarizing beam splitter and directing it to the same off-axis

holography setup. The exposure time was set in the range 200− 1000 µs depending on the

sample. A complete round-trip sample measurement was acquired in 20 s. To preserve

the symmetry between the illumination and the detection configurations and to obtain a

square matrix M, we sampled the recorded complex output fields at the ordered positions

identical to the set of input states. The matrix M was then constructed with the same

procedure that was used to find T. Similar to the round-trip TM correction in Chapter 2,

we compensated the physical misalignment in M to accurately match the input channels

and recovered the underlying transpose symmetry. Using the sample measurement M, the

pre-measured T, and H(z), we then computed R̃ following Eq. 3.2.
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Figure 3.2.1: Measurements of the MMF TMs. The fiber, although drawn as if it were straight,
was in fact coiled in experiments. The red arrows correspond to light pathways, and the dashed
ones indicate reflected light traveling from the sample through the MMF in the reverse direction
to the proximal detection. BD: beam displacer, BS: non-polarization beam splitter, Ref.:reference
wave, Cam.: camera, S: sample. A focused spot was scanned with the GM across positions
indexed by u distributed over the MMF proximal input facet and alternating between H and V
polarizations by means of the PR. The output field was split into two orthogonal polarization
states by the BD, and interfered with matching reference waves for simultaneous recording. (a) In
the calibration phase, the camera records the transmitted speckle pattern interfering with the
reference wave in spatial coordinates (x, y) (rightmost insets). In the Fourier domain, we isolated
the demodulated complex-valued signals in momentum coordinates (kx, ky) confined to a frequency
band imposed by the fiber NA and rearranged them into a column vector of T, as indicated by
the solid vertical line, color-coded in magenta and cyan for the H and V polarizations, respectively.
The forward transmission T has rows and columns indexed by νF and u, respectively, and was
ordered first by the spatial modes, and then by polarization states. Only a subset of T is shown
here. The color map encodes complex values. (b-1) In the imaging phase, light backscattered
from distal OPs at varying d from the fiber facet. Free-space propagation, modeled by H, is
a diagonal matrix in νF where it defines a quadratic phase in the Fourier domain. (b-2) The
detected images were demodulated into complex-valued images of the proximal output speckle in
spatial coordinates (x, y), then down-sampled at the positions of the input foci (shown as white
markers in the dashed magenta and cyan boxes) following the same ordering as for illumination,
and flattened into column vectors of the square matrix M. M thus has rows and columns indexed
both by u. Only a subset of M is shown here. The scale bars in the insets are 20 µm.
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3.2.3 Numerical Refocusing

For a sample with volumetric structures, under weakly scattering regime and the Born

approximation, we can express the total light reflection counting from the calibration

plane (z = 0) as a summation of backscattering fields contributed from individual OPs

at varying axial positions. In Eq. 3.1, H is a unitary TM modeling the loss-less free-

space propagation from the calibration plane to the OP, as shown in Fig. 3.2.1(b-1).

Due to the unitary matrix properties,

H–1 = H† and H–T = H?, (3.3)

where the superscript –1, –T, †, and ? indicate true inverse, true inverse of transpose,

Hermitian transpose, and conjugate, respectively. Note that H simply reduces to an identity

matrix when z = 0. According to Fresnel diffraction theory under paraxial approximation,

the transfer function of a free-space propagation is a convolution kernel in real space, or a

multiplicative quadratic phase term in the Fourier domain. Depending on the distance, z, of

a selected OP, we can compute the Fourier phase term accounting for the propagation process

F (kx, ky, z) = exp(
−iz(k2

x + k2
y)

kn
), (3.4)

where kn is the wavenumber in the given medium and kx and ky are the coordinates in

the in-plane momentum domain. The matrix H(z) in Fourier domain is then a diagonal

matrix and incorporating it into T through left-multiplication extends the output of T

to the OP at z. Note that z/kn = zn/k0, where k0 is the wavenumber in n = 1, encodes

the optical path length, which is the physical thickness of the medium multiplied with its

refractive index n, and H is parameterized only by z and independent of fiber shape and

T. Plugging Eq. 3.1 into Eq. 3.2 and setting z = zj, Eq. 3.2 becomes

R̃(zj) ≈ R(zj) +
N∑
i 6=j

H–T(zj)HT(zi)R(zi)H(zi)H–1(zj), (3.5)

where we isolate the in-focus from the out-of-focus matrices. By varying z, we can digitally

shift to the jth OP at z = zj without repeated measurements
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3.3 Confocal Gating

3.3.1 Confocal Image Reconstruction

In Eq. 3.5, assuming the out-of-focus reflective planes are separated from the in-focus

plane by much more than a depth of focus, and the total background energy is uniformly

distributed over all spatial channels, we can approximate the summation of out-of-focus terms

as a complex matrix with random phases but a constant amplitude. In real-space coordinates,

collecting the on-diagonal elements of R̃(zj) hence leads to signal predominance by the en

face reflectivity at z = zj and suppression of out-of-focus signals, or background rejection.

Based on this, in experiment, after obtaining R, its input and output bases were converted

from the Fourier domain to real-space indexed distal channel ν by multiplication with a

pre-computed inverse discrete Fourier transform matrix. A 2D confocal intensity image I of

sample reflectance at the OP was then reconstructed by reshaping the diagonal of R̃ as

I(x, y) = |R̃[ν(x, y), ν(x, y)]|2, (3.6)

where the point (x, y) is mapped from the distal channel ν to real-space coordinates, and

[·] indicates matrix entries, arranged in rows and columns. For polarization-preserving

samples, reconstructed images of co-polarized illumination and detection channels are

identical and were incoherently summed to increase signal. This computation was repeated

for multiple values of z to generate 3D images from a single reflectance measurement M

with depth expressed in d (referenced to distal facet). Intensity images were converted to

base-10 logarithmic scale for display. To investigate the effect of reduced fiber NA as in Fig.

3.1.1(c), we optionally truncated the spatial frequencies of the measured T. Owing to the

Tikhonov-regularized inversion this has the same effect as limiting the spatial frequencies

in the sample measurement M and emulates the use of MMF with a lower NA.
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3.3.2 Wide-field Image Reconstruction

From the same measured M, we can also obtain wide-field imaging that is equivalent to

the turbid lens imaging algorithm [69]. We compensated for the reverse MMF transmission of

reflectance from the sample under the variety of speckle illuminations, and then incoherently

averaged the reflectance to statistically compose a uniform illumination. In terms of matrix

operations, we left-multiply Eq. 3.1 with H–TT–T(tik)

R̃HT = H–TT–T(tik)M, (3.7)

where each column of the matrix product is the sample reflection resulting from a distinct

speckle illumination. Wide-field images were reconstructed by integrating the absolute

square of R̃HT along the input dimension into a single column vector

∑
u

|R̃HT(:, u)|2, (3.8)

and reshaping the vector back to 2D coordinates. T(:,u) means uth column vector of T. To

simplify computation, the matrix product HT in Eq. 3.7 was assumed to be unitary, so

that by Parseval’s theorem the integrated row intensity of R̃HT is identical to that of R̃.

Confocal and wide-field images from the same R̃ can be thereafter fairly compared.

3.3.3 High Contrast Confocal Imaging

Following the concepts in Sections 3.2.3 and 3.3.1, to demonstrate the depth gating

effect of our computational reconstruction, we imaged a 3D sample through the MMF, as

shown in Fig. 3.1.1(c). The sample is a coverslip in air with buccal epithelial cells deposited

on both surfaces. We computed the confocal image for each OP at varying distance d from

the MMF distal facet (d = 0) and calculated the corresponding integrated reflectivity (γ)

by summing the intensity over the entire en face image. The γ versus depth profile reveals

three separated peaks (blue curve), which inform on the position of the reflective MMF facet

and coverslip surfaces, with their axial positions at d = 0, 120, and 320 µm considering the
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medium’s refractive index. To evidence the confocal gating mechanism at play, we computed

the γ profiles corresponding to a reduced fiber NA (0.14, 0.1, and 0.05) by truncating

the spatial frequency of T. The axial signal peaks blur with reduced fiber NA and fail to

resolve the individual sample interfaces, confirming the expected strong dependence of axial

rejection power on the NA. The green and brown insets show high-contrast images of cells

on the front (d = 120 µm) and back (d = 320 µm) surfaces of the coverslip, respectively,

using the full fiber NA. Our matrix approach, which achieves confocal gating with numerical

refocusing, thus enables 3D imaging from a single measured M without WFS. For more

details and additional results of this experiment, please see Section 3.5.4.

To further evaluate the confocal gating effect, we imaged a USAF resolution chart

(R1D21P, Thorlabs) in air or intralipid and distances d through the MMF, as sketched

in Fig. 3.3.1(a). In each medium, a sample reflectance matrix R̃ was computed from a

single measured M for each OP at varying depth, and processed to reconstruct confocal

and wide-field images for direct comparison, as shown in Fig. 3.3.1(b). In each imaging

condition and modality, we calculated the corresponding γ profile, which is normalized

by the highest value along the axial OP positions. The γ profile allows us to find the

in-focus position. Since the chart has a binary reflectance pattern across its surface, we

can quantify the intensity image contrast as

ς = Ip − Ig
Ip + Ig

, (3.9)

where Ip and Ig are the intensities of the chrome pattern and the glass substrate, respectively.

In experiments, Ip and Ig are averaged within selected regions of interest on in-focus images

for the chrome and glass substrate areas, respectively.

We first demonstrated optical sectioning by imaging the chart placed at d = 120 µm

in air. In Fig. 3.3.1(c), the confocal method renders the chart patterns with a high

contrast of 0.9 due to the rejection of background signals from reflection at the MMF

facet. The value is close to the expectation ∼0.92, assuming full reflection from the chrome
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pattern and 4% reflection at the air-glass interface. In Fig. 3.3.1(e), the profile reveals

two prominent and separated peaks at d = 0 and d = 120 µm, corresponding to the

MMF facet and the resolution chart, respectively.

To test the capacity of computational confocal gating in the presence of additional

sample scattering, we imaged the chart placed at d = 400 µm in agarose gel mixed with

2 wt.% intralipid, which corresponds to ∼0.36 mean free paths. In Fig. 3.3.1(d), the reduced

confocal image quality may be due to: intralipid scattering that distorted the wavefront and

the reconstructed images, and degraded spatial resolution upon beam divergence at large d

(elaborated in the following section). Despite the scattering medium and lower signal to

background ratio when the chart is far from the facet, the confocal image maintained a high

contrast of 0.96, compared to a theoretical value of ∼0.99 (assuming 0.4% reflection at the

gel-glass interface). In Fig. 3.3.1(f), the peak in the γ profile at d = 400 µm corresponds to

the chart, and, although weak, precisely informs on its physical location when assuming

the medium’s refractive index to be 1.4. These results evidence the effective suppression

of out-of-focus scattering and reflection signal without active WFS.

To theoretically compare the confocal method to the wide-field processing explained in

Section 3.3.2, one can juxtapose Eqs. 3.7 and 3.2 to find that the matrix multiplication also

on the right side of M pre-compensates the light scrambling effect of the MMF forward

transmission, and synthesizes sharp foci through the MMF on a selected OP. In contrast,

the wide-field processing of R̃ corresponds to speckle illumination, as illustrated in Fig.

3.3.1(b). When imaging in air as in Fig. 3.3.1(c), while the pattern with wide-field imaging

stands out from the background on the OP at d = 120 µm, the strong background reflection

from the facet results in a low contrast of 0.48, and the corresponding γ profile in Fig.

3.3.1(e) remains constant throughout the entire observation range. When imaging through

intralipid, the wide-field image in Fig. 3.3.1(d) can barely distinguish the pattern from the

background, resulting in poor contrast of 0.11. The uniform γ plot of wide-field imaging

in Fig. 3.3.1(f) again exposes the lack of optical sectioning.
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Figure 3.3.1: Depth gating of computational confocal imaging. (a) Imaging geometry: a
resolution chart was imaged a distance d in front of the distal MMF facet. (b) From the computed
sample reflectivity matrix R̃, pixels of a confocal image were obtained by taking the intensity of
diagonal elements, and of a wide-field image by taking the energy of row vectors for all available
distal channels, visualized by the yellow circle and the brown rectangular box, respectively, for
a single channel. Images at multiple depths were computed from the same measured M with
numerical refocusing. The image diagrams show the fundamental difference in illumination (red)
and detection (gray) patterns of computational image formation. c: confocal; wf: wide-field.
(c)-(d) Confocal images showed high, axially localized contrast compared to wide-field images,
both in (c) air (at d = 120 µm) and in (d) intralipid media (at d = 400 µm). Images show
logarithm of normalized intensity. The solid line (or dashed line) boxes indicate chrome pattern
(or glass substrate) areas for image contrast quantification. (e)-(f) The normalized integrated
reflectivity plots of confocal (blue) and wide-field (orange) images in (e) air and in (f) intralipid
media. The scale bars are 50 µm.



50 3.4. Flexible Reconstruction

3.4 Flexible Reconstruction

Imaging through a MMF using WFS typically scans a focus along a pre-defined scanning

trace and records a single image point from each focus location. In contrast, our method

illuminates the sample with a sequence of MMF-induced speckle patterns and utilizes the

camera for parallel sampling of all addressable locations in the imaging volume. This

allows arbitrary definition of sampling grid and working distance in post processing of a

single measurement of M. As light diverges upon exiting the MMF distal end governed by

the fiber NA, computational reconstruction can adapt to a growing field of view (FOV)

with increasing OP distance from the fiber facet. Here, we demonstrate this flexible

reconstruction in MMF reflectance imaging and evaluate the resulting FOV and 3D spatial

resolution as a function of distance from the tip of the fiber.

3.4.1 Digital Resampling of Image Dimensions

The light transport through a MMF and interaction with a distal sample can be well

modeled with measured TMs, which contain full complex propagation information of

wave-vectors within the NA of the MMF. While the experimental T has output channels

stored in Fourier domain, with an one-time measured M in the imaging phase, arbitrary

resampling of 2D image dimensions and also digital adjustment of image size on any

selected OPs can be readily configured based on Fourier relations. This offers flexible

trade-off between image processing speed and accuracy in a pragmatic circumstance: a

lower resampling rate or smaller physical dimension reduces the computational burden,

which is suitable for a faster image preview, whereas a higher resampling rate produces

a detailed and smooth image at the expense of longer processing duration. Here, we

quantify the trade-off by timing the image processing on a personal computer with a 3.4

GHz Intel Core i7 CPU and 16 GB RAM using MATLAB.

For an arbitrary setting of image physical and digital dimensions, we upsampled the

output spatial channels of T in the Fourier domain by interpolation, and pre-computed
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an inverse discrete Fourier Transform (iDFT) matrix for converting the distal channels

to resampled real-space coordinates during the 2D real-space image reconstruction. We

focus on the upsampling that corresponds to a valid augmentation to the initial pupil size

on the calibration plane (∼105 µm in diameter). Note that the interpolation of T output

channels and the calculation of iDFT matrices are performed prior to actual image formation

processes. The necessary computation of images on an OP involves application of phase

terms to T outputs for intended numerical refocusing, distal spatial channels conversion

into real-space coordinates with the prepared iDFT matrix, left and right multiplication of

M with regularized inversion of extended backward and forward TMs following Eq. 3.2

to retrieve R̃, and reshaping back to a 2D image using Eq. 3.6.

In the experiment, the initial T had output channels accounting for 247× 247 square

area of camera recording pixels conjugating a physical size of 123 × 123 µm2, and the

resolution chart as sample was placed on an OP at d = 10, 600, 1200 µm away from the

facet. For each imaging setting, we timed only the necessary computation. As shown in

Fig. 3.4.1, the computation for co-polarization 2D confocal images at d = 10 µm with

original dimensions and size takes ∼58.2 sec. To reduce computation complexity and

complete image formation in a shorter time, we can down-sample the image dimensions

to 32 × 32 in the same physical extent, resulting in pixelated images on OPs at d = 10

µm calculated within ∼5.2 sec. For images on an OP at d = 1200 µm from the distal

MMF facet, illuminating light diverges, and a larger configured image physical dimension is

needed to avoid image clipping. For instance, the computation time of 32× 32 confocal

intensity images covering 247× 247 µm2 on the OP at d = 1200 µm is ∼ 11.2 sec. Table

3.1 summarizes the computation time of individual settings.

3.4.2 Imaging Performance Characterization

To mimic endoscopic imaging with a variable working distance, a resolution chart was

mounted on a translation stage and positioned at different distances d = 10, 600, or 1200 µm.
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Figure 3.4.1: Computation time and quality of confocal images as a function of physical and
digital image size. We only show intensity images in a single polarization state since the sample is
binary and isotropic. The time in second is color coded.

computation time (sec)
physical size (µm)\digital dimension 32 64 123 247

123 5.2 7.9 17.5 58.2
184 7.4 13.7 28.5 114.81
247 11.2 20.3 39.9

Table 3.1: Computation time of confocal images considering different image configuration
settings.

For each d, a round-trip M was measured and computational reconstruction with numerical

refocusing was utilized to locate the axial position of the resolution chart. Figure 3.4.2(a)-(c)

show the in-focus confocal images of different chart areas (color boxes in (d)) with physical
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dimensions of 123, 184, and 247 µm, when d = 10, 600, and 1200 µm, respectively. The

illumination power on the chart was kept at ∼0.5 mW. Due to the beam divergence and

limited laser power, camera exposure time was increased from 200 µs up to 1 ms for larger d

to compensate for the declining photon collection. We filled the space between the fiber and

the chart with index-matching gel (G608N3, Thorlabs) to mitigate the specular reflection

from the MMF distal facet. In Fig. 3.4.2(a)-(c), imaging from farther away captures a

more complete picture, as the FOV expands with increasing d. However, this comes at the

expense of spatial resolution and collected reflectance power, as the patterns are severely

blurred at d = 1200 µm, and background speckle becomes apparent. The finest detail of

the chart, element 6 in group 7, can be resolved when the MMF is in close proximity of the

facet, d = 10 µm, where the FOV is determined on a lower bound by the fiber core size.

To quantify the spatial resolution at varying d, we inferred the lateral resolution, δx,

from the smallest resolvable pattern on the chart, as shown by example dashed blue line and

its linear intensity profile plot in Fig. 3.4.2(e). Also, since the chart serves as a sharp edge

in the axial direction, we utilized the FWHM of the γ profile around the reflectance peak

to measure the axial resolution δz. The FOV of each computed image was characterized by

its diameter ∅, set as twice the radius where the radially averaged image intensity dropped

below 1% of the center. We tested several imaging realizations and computed corresponding

axial profiles and radial mean intensities for statistical analysis, as plotted in red and black

curves in 3.4.2(e), respectively, for d = 10 µm. For comparison, the theoretically expected

spatial resolution was derived considering the effective on-axis NA defined by the minimum

between the fiber NA and the solid angle subtended by the fiber core at the corresponding

distance from the facet. The overall quantification results are shown in Fig. 3.4.2(f). While

the experimental spatial resolution is consistent with diffraction-limited theoretical values,

the experimentally determined FOVs are up to 50% smaller than expected at increasing

distance. This may be due to the low light collection efficiency of reflectance from distant

planar objects. Nevertheless, the agreement in scaling properties of experimental and
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Figure 3.4.2: Characterization of FOV and resolution of computational MMF imaging. (a)-(c)
In-focus confocal intensity images of a USAF target at a distance (a) d = 10 (b) d = 600 (c)
d = 1200 µm away from fiber facet. The green, brown, and purple boxes correspond to the ones
in (d) that highlight the areas of the target. At d = 1200 µm, the speckle background reduces
the image quality, and the dynamic range of the image was increased to reveal weak signals. (e)
Analysis of imaging performance at d = 10 µm distance. The blue plot shows the normalized
intensity profile in linear scale along the dashed line in the image in (a); the red plot indicates γ
at varying d, and its FWHM estimates the axial resolution, with the shadowed areas indicating
the standard deviations around the mean value of several independent realizations; the black
curve shows the radial mean intensity in logarithmic scale, with 1% cut-off at dashed line roughly
equal to the fiber radius. (f) Experimental 3D resolution and FOV at various d and corresponding
theoretical values. The scale bars are 100 µm.

theoretical values corroborates the flexibility in addressable spatial dimensions given by the

degrees of freedom guided through the MMF. These results demonstrate the convenience of

reconstructing the entire sample volume without a pre-defined scan pattern in a practical

setting where the sample distance is unknown.
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3.4.3 Image Reconstruction from Partial TM Measurement

The flexibility of the matrix approach allows confocal image reconstruction from partial

measurements of M with illumination through only a subset of proximal spatial channels.

While the measurement of a full M by sequentially coupling light into all MMF proximal

channels delivers maximal information of the distal sample bounded by the MMF throughput,

intermediate confocal images for preview can also be reconstructed from a round-trip

measurement with partial set of input realizations, M̈, which is a subset of M containing

constituent column vectors, leading to a rectangular matrix. As illustrated in Figure

3.4.3(a), with M̈, we can reconstruct a speckled image on an OP from a computed reflection

matrix, R̈, by respectively left and right multiplying M̈ with full T-T(tik) and T̈-1(tik),

which is the regularized inverse of a subset of T with constituent column vectors at input

channels corresponding to M̈. Physically speaking, the image derived from the partial

measurement corresponds to the distal sample under statistically non-uniform illumination.

Using confocal intensity images I for demonstration here, we define the completeness of

an intermediate image as the normalized intensity correlation, C, with the final image

reconstructed from full M measurement,

C =
∑
x,y Ii(x, y)If (x, y)∑

x,y Ii(x, y)∑x,y If (x, y) , (3.10)

where Ii and If are intermediate and final images, respectively. The completeness arrives

at C = 1 when Ii = If . Figure 3.4.3(b) shows examples of intermediate images with

their quantified completeness. Here, the sample is a resolution chart, and the full M is

a 1354-by-1354 square matrix. We assume that the 1354 proximal input spots uniformly

couple to the 1100 MMF guided modes and define the compression ratio as 1−m/1354,

where m is the number of input realizations. We tested two input channel sampling orders:

the original proximal scanning spot basis order (blue curve) and a random sampling order

(orange curve). From the plot, we can see that the completeness quickly improves with the

number of input realizations and achieves 0.9 with ∼200 and ∼80 input realizations, which
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are only ∼15% and ∼5.9% of the total number of realizations (85.2% and 94.1%compression

ratio) in the two ordering conditions, respectively. The random sampling order has a

steeper completeness compared to the original since any input channel is less correlated

with the next. The intermediate images start from speckled pattern and evolve to clean

and high-contrast final confocal intensity image. As a result, while reconstruction from

partial measurements compromises background suppression, it accelerates the volume rate,

which may be critical for real-time applications.
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Figure 3.4.3: Confocal intensity image reconstruction with partial measurement (a) Illustration
of computational image reconstruction with the MMF forward TM, T, and a partially measured
round-trip reflection matrix, M̈ (b) Reconstruction results and image correlation with increasing
round-trip measurement completeness in the ordered (blue curve) or a random (orange curve)
proximal input channel order. The scale bar is 20 µm.

3.5 Complex Sample Imaging

To improve specificity in confocal MMF imaging without WFS for visualizing unlabeled

biological specimens in reflection mode, we leveraged the matrix approach to generate

diverse contrasts from a measured round-trip M by applying different post-processing, and

synthesized multiple imaging modalities to create signal specificity. Different strategies for
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image formation are described and illustrated in the following figures.

3.5.1 Quantitative Phase Imaging

In confocal imaging as described in Section 3.3.1, due to the complex nature of R̃,

quantitative phase imaging can be accomplished by taking the complex values of the

diagonal elements of a computed R̃ to form a complex 2D image (X),

X(x, y) = R̃[ν(x, y), ν(x, y)], (3.11)

where the amplitude encodes the absolute reflectivity, and the phase quantifies changes

in the wavefront of light propagating through the specimen and back.

3.5.2 Dark-field Imaging

Off-diagonal elements of R̃ also contain abundant information of sample optical proper-

ties, which can be extracted through manipulations on R̃. For instance, each column of R̃

represents the scattering at OP in response to an illumination focused on a single channel

q. Instead of collecting the intensity at the corresponding location on the matrix diagonal,

the intensity of surrounding output channels ν was summed with weights L(ν, q) given

by their Euclidean distance from the input channel on the xy-plane up to an empirical

cutoff of ∼2.83 Airy disk radius (12 µm on the fiber facet). The on-diagonal confocal

signal thus has a zero weight and minimal contribution. This sum was furthermore

normalized by the overall intensity

S(x, y) =
∑
ν L(ν(ζ, ξ), q(x, y))× |R̃[ν(ζ, ξ), q(x, y)]|2∑

ν |R̃[ν(ζ, ξ), q(x, y)]|2
,

L(ν(ζ, ξ), q(x, y)) ≡
√

(ζ − x)2 + (ξ − y)2 (3.12)

where the Cartesian point (ζ, ξ) maps to the distal channel indexed at ν. L(ν, q) favors

multiply scattered light emerging from channels adjacent to the illumination spot, while the

cutoff suppresses signal with excessive scattering paths, arising, e.g., from out-of-focus OPs.
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We named this metric scattering contrast (S). Since R̃ is transpose-symmetric, interchanging

the illumination and detection renders identically reconstructed images. For each location

in the image plane, the scattering contrast S is essentially the combination of focused illumi-

nation and ring-shaped detection mode, which captures positive signals from the boundaries

of sample heterogeneity and is analogous to a dark-field confocal imaging scheme [70].

3.5.3 Computational Multi-Modal Imaging of Unstained Sam-
ples

Figure 3.5.1 (a) shows a typical reflection matrix R̃. The sample arrangement for these

experiments, shown in Figure 3.5.1 (b), allowed imaging of a sample on a microscope glass

slide in a reflection mode through the MMF, and also in transmission mode (t) with the

distal imaging system and bright-field illumination through the MMF as ground truth

images. Figure 3.5.1 (c) shows the images of a monolayer of 3 µm polystyrene beads spread

on the surface of a microscope slide and imaged in air at d = 100 µm. Since the reflectivity

of the beads is orders of magnitude lower than that of the air-glass interface, the obtained

round-trip R̃ at in-focus OP has diagonal elements dominated by the specular reflection

from the glass slide, resulting in beads silhouetted against the glass signal in the confocal

intensity image (I) and featuring negative contrast, similar to other reports of reflectance

imaging through optical fibers [29, 69, 71]. With the full knowledge of R̃ and following Eq.

3.12, we are able to extract scattering signal specifically from the beads and create a dark-

field-like image (S) through numerical engineering of the system point spread function (PSF).

Physically, forward scattering by the beads followed by reflection at the glass interface

created a multiply scattered signal that partially cross-coupled to neighboring spatial

channels. Intriguingly, the cross-coupling signals that delineate the beads provided a slightly

higher resolving power than the confocal intensity image, as verified by comparing the line

profiles of clustered particles. This exemplifies the benefit of computational reconstruction,
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whereas physical implementation of dark-field imaging would traditionally require an annular

filter, axicon lens, or customized pinhole, and increase the system complexity [70, 72, 73].

To demonstrate multimodal MMF imaging including phase and dark-field imaging from

the same measurement of an unlabeled biological specimen, human buccal epithelial cells

were smeared on microscope glass slide and placed at d = 120 µm in air. The sample

was laterally translated to image several overlapping areas, and at each lateral location

a round-trip M was measured to reconstruct the corresponding image. Multiple images

were then stitched together to make a composite image with a wider FOV. Fig. 3.5.1 (d)

shows phase contrast (left, X), revealing the contour of cellular membranes and nuclei in

its amplitude (coded in brightness), likely because they deflect the focused illumination,

which attenuates the reflected signals, thereby resulting in negative contrast. Furthermore,

as shown by its color-coded phase, the variation in sample thickness or refractive index

inhomogeneity provides an intrinsic phase contrast of the unlabeled sample likely caused

by sub-cellular structures, revealing information not contained in the intensity image

alone. The scattering contrast image (right, S) delivers complementary information, likely

arising from multiple scattering by the sample and coverslip, and positively outlines the

cellular membrane morphology along with some cytoplasmic organelles that can be roughly

correlated with the transmission image.

3.5.4 Multi-Modal 3D Imaging

To demonstrate 3D imaging of biological samples through the MMF based on numerical

refocusing, a sample with multiple layers was prepared following similar volumetric

reconstruction experiments performed by others [11, 74, 75]. A proximal reflectance

measurement of M through the MMF included reflectance from multiple layers of a sample,

shown in Fig. 3.5.2(top), including buccal epithelial cells deposited on both surfaces of a

glass coverslip with thickness of ∼200 µm, placed at d = 120 µm in air. From this single M,

3D volumetric imaging was computed by numerical refocusing and image reconstruction.
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Figure 3.5.1: Multi-modal MMF imaging of unlabeled samples including confocal intensity,
quantitative phase, and dark-field scattering imaging. (a) The diagonal elements of R̃ and
correspond to pixels in confocal intensity (I) and complex (X) images, respectively. PSF engineering
by an appropriate weighting function applied using Eq. 3.12, generates scattering contrast (S). (b)
Sample arrangement at the MMF distal end. Transmission images (t) served as ground truth for
verification. (c) Confocal intensity and scattering contrast images of 3 µm polystyrene beads. The
ring-shaped detection PSF is shown in the inset. Imaging based on scattering contrast features
slightly better resolving power, judging from the plotted line profiles across a cluster of beads. (d)
Stitched images of buccal epithelial cells with phase and dark-field contrasts. (left) Phase contrast
depicts nuclei and intracellular morphology. (right) Dark-field scattering contrast reveals positive
signals at cell boundaries and membrane roughness. The scale bars are 50 µm.

The depth-dependent γ plot was consistent with the physical location of each reflective

interface, considering the refractive indices of each layer (1.44 in glass). High-resolution

confocal images with intensity, phase, and scattering contrasts were computed at the two

individual coverslip surfaces (d = 120 and 320 µm). Both planes exhibited contrast from

cell samples in all images, consistent with the transmission ground truth, and with high

contrast, indicating the confocal gating efficacy. Note that in complex samples, because

optical phase accumulates as light is reflected from further into the sample, the phase

of shallower cells is overlaid on deeper-lying cells.
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Figure 3.5.2: Label-free 3D computational imaging through the MMF with multiple contrasts.
The sample included two layers of buccal epithelial cells deposited on both surfaces of a glass
coverslip in air. The d position indicates physical distance and is in the unit of µm. The scale
bars are 50 µm.

3.6 Polarimetric Imaging

So far, computation of images from R̃ only considered co-polarized illumination and

detection, where each distal spatial channel ν degenerates into νH and νV , and entries

corresponding to input and output channels were used with the same polarization state.

For birefringent samples such as collagen, illumination through a channel in a certain

polarization state may induce cross-polarized backscattering.

3.6.1 Polarization Contrast

In R̃, the diagonals of the two off-diagonal matrix quadrants represent cross-polarized

detection, and the sample birefringence at individual image positions (x, y) can be resolved
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and characterized by assembling 2-by-2 Jones matrices,

J(x, y) =
[
J11 J12
J21 J22

]
=
[
R̃[νH , νH ] R̃[νH , νV ]
R̃[νV , νH ] R̃[νV , νV ]

]
, (3.13)

in the basis of orthogonal linear polarization states. From the Jones matrix at each channel, a

retardation matrix was isolated using polar decomposition. Owing to the intrinsic transpose

symmetry, the resulting matrix describes a linear retarder that can be characterized by its

amount of retardance (ret) δ and optic axis (OA) φ orientation. Endogenous contrast within

birefringent samples can thus be retrieved from this polarization-diverse measurement.

3.6.2 Imaging of Birefringent Samples

To demonstrate polarization sensitive (PS) computational imaging through MMF based

on our matrix approach and Eqs. 3.13, as illustrated in Fig. 3.6.1(a), we obtained reflection

matrices of anisotropic materials including quarter-wave plate (QWP) and cholesterol

crystals through the MMF. To validate quantitative retardation and OA measurements, a

QWP (WPQ501, Thorlabs) was placed on a microscope slide and its proximal reflection

was measured. As show in Fig. 3.6.1(b), the edge of the wave plate was imaged in different

orientations to verify the OA orientation retrieved from polarization analysis. One M was

measured in each orientation. Due to the round-trip light propagation, the QWP has an

effective half-wave retardance, which leads to full attenuation in the co-polarized detection

for confocal intensity images when the slow axis is 45° to the H or V polarizations, and

partial attenuation in between. Consistently, the corresponding retardance images reveal a

constant π rad retardance of the wave plate regardless of the orientation. On the other

hand, the color-coded OA images (combined with brightness-coded ret images) show a

rotating OA of the QWP with orientation exactly the same as the slow axis angle. Note

that the OA colormap has a periodicity of π instead of 2π used in phase colormaps. Figure

3.6.1(c) shows another example with home-made plate-like cholesterol crystals (S25677,

Fisher Science Education) on a microscope slide, which has a much weaker retardance due
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to its small thickness (tens of µm) yet uniform optic axis orientation. Judging from the

values of retardation, the crystal may be thicker towards the bottom of the image. Since

the crystal thickness is much smaller than the confocal gate, interference between the front

and back surfaces results in en face fringes. A tighter confocal gate may be achieved by

switching to MMFs with higher NA or choosing a shorter operating wavelength.
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Figure 3.6.1: Birefringence imaging of anisotropic samples through the MMF by utilizing
reflection matrices. (a) Illustration of processing the matrix for computational polarization
sensitivity. The full reflection matrix R̃ on an OP provides both co- and cross-polarization entries
for assembling a Jones matrix at each spatial channel, which informs on retardation and OA
orientation. (b) Accuracy evaluation of anisotropy reconstruction using a QWP with slow axis
(white arrows) oriented at 45°, 90°, and 135° with respect to the x axis. While the confocal
intensity images only show the sharp edge of the plate, the retardation and OA images unveil its
intrinsic optical properties. (c) Birefringence imaging through the MMF of cholesterol crystal
precipitated on a microscope slide. The visible fringes are attributed to thin film interference of
the crystal and glass surfaces. The scale bars are 50 µm.

3.7 Discussion

Computational confocal imaging through MMF is a novel matrix-based method to obtain

depth-gated images using a proximal scanning spot basis for reflectance measurement without

WFS, yielding multimodal 3D reflectance of unlabeled samples including confocal intensity,
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quantitative phase, dark-field, retardance, and optic axis orientation contrast modalities.

Pushing the frontier of MMF imaging techniques, this is the first report of numerical PSF

engineering, phase, and polarization-resolved imaging through MMF in a reflection geometry.

High-contrast imaging through MMF frequently relies on fluorescent labeling or is

operated in a transmission regime [21, 30, 31, 35, 66], which may be incompatible with

practical endoscopic applications. Fluorescence scanning microendoscopy furthermore

has potential photobleaching issue [8, 76]. Our computational imaging approach instead

efficiently extracts weak elastic scattering signals from unstained samples and operates in a

reflection regime, making it favorable for practical endoscopic applications. The matrix

approach moreover offers an elegant way of achieving full polarization management and

leverages polarization as additional contrast mechanism. In comparison, WFS for physical

focusing through MMF typically addresses only a single polarization state [21, 29], to avoid

complicated hardware setup required for full polarization-control [30]. While inspired by the

arbitrary PSF engineering through complex media in a transmission regime [77], our method

here does not need SLM/DMD and optimization. More broadly speaking, illumination and

detection with any respective PSF and in any polarization state can be readily engineered by

weighting the entries of R̃ accordingly. Access to the reflection matrix may offer the ability

to optimize image contrast for a given sample through post-processing, to synthetically

adjust the confocal pinhole size, or to correct for sample-induced aberrations.

The matrix approach employs a simple proximal spot basis for illumination, which

relaxes hardware requirements by accepting any 2D scanning module without using WFS.

The limiting factor in imaging speed of this work is the InGaAs-camera frame rate of

120 Hz, which may be directly improved by an order of magnitude by replacing it with

a faster one or by shifting the operation wavelength towards visible wavelengths with

more and even faster camera options. Recently, MMF calibration covering 256 degrees of

freedom within only 34 ms has been demonstrated by using a field programmable gate array

(FPGA) to address the general latency issue in hardware interfacing and communication
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[78]. This work exemplifies the potential of software system optimization and is readily

applicable to speed up our implementation. Our approach also allows image formation from

a partial round-trip measurement with as few as 200 input realizations, offering an attractive

trade-off between image quality and measurement time. Because the reconstruction of

individual spatial channels is independent from other channels, this offers high potential

for parallelization of the processing using GPU acceleration. With careful engineering of

the data acquisition and processing pipeline, fast video-rate imaging should be achievable.

Fundamentally, imaging speed of our MMF imaging method is limited by computational

complexity, and no longer by hardware as for WFS methods.

MMF imaging has a notorious intolerance to small fiber perturbations such as bending

or looping. In Eq. 3.1, while H and R are independent of fiber shape, the round-trip matrix

M changes with fiber transmission T. Even small fiber alterations result in distinctive T and

typically require MMF re-calibration. In our experiments, the calibrated 1-m-long MMF

was looped and fixed on the optical table and remained stable for several hours without

perceivable TM change such that the same measured TM could be used for imaging different

samples through the MMF. In a practical setting, a segment of MMF could be mechanically

shielded inside a rigid needle or hypodermic tubing to enable high-quality imaging through

MMF without re-calibration. Furthermore, several promising strategies are being pursued

to address the need for TM calibration without physical access to the distal fiber end: the

installation of carefully designed passive optics or a guide star at the MMF distal tip [37, 40,

67], compressive sampling of TM with sparsity constraint [79], or the use of graded-index

MMF which has increased robustness of light transport to bending deformations [80].

The disclosed method offers 3D confocal imaging through MMF with high signal

specificity, yet is less hardware-demanding than common WFS methods. Even with the

present limitation that the MMF must be mechanically stable, our approach may expedite

or create applications of minimally invasive MMF-based endoscopy in biomedicine, where

probe size and cost are critical factors. For instance, deep brain imaging in neurosurgery,
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in situ inspection in needle biopsy, collagen imaging in arthroscopy, and tympanic cavity

imaging in middle and inner ear surgery are potential uses of MMF endoscopy. The same

methodology may also be extended to optical imaging through other complex or turbid

media, or other imaging technologies such as ultrasound tomography.

3.8 Conclusion

In this chapter, we reconstructed high-contrast MMF-relayed images of remote samples

from the measurements of elastic optical scattering in a reflection regime based on accurate

knowledge of light propagation through MMF. The demonstrated computational imaging

through MMF based on round-trip measurements in a proximal spot-basis may prove to be

broadly applicable and clinically viable since it avoids the requirement for WFS and the

use of fluorescent labeling. The computational contrast rendering further creates signal

specificity of label-free samples. Thus, our approach may streamline the system design by

circumventing hardware limitations and providing flexibility in image formation.
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70 4.1. Efficient dispersion modeling in MMF with exponential mapping

Dispersion in complex optical scattering media is an enduring problem to many

multispectral imaging or sensing techniques. Here we report a novel parametric dispersion

model of the chaotic transmission through optical multimode fiber (MMF) that extends the

spatiospectral domain of principal modes. We validate the model in MMF across a broad

bandwidth more than two orders of magnitude beyond the uncorrected spectral coherence

length. The model enables highly efficient reconstruction of multispectral transmission

through MMF over direct measurement. Final manuscript in preparation.

4.1 Efficient dispersion modeling in MMF with ex-
ponential mapping

We can express spectral-variant light transmission through MMF as

~t(ω) = M(ω)~s, (4.1)

where ~t and ~s are the vectorized representations of the output and input fields, respectively,

and M(ω) is the complex TM at an optical frequency ω. The instantaneous dispersion

at ω can be computed as a differential matrix

m(ω) = ∂M(ω)
∂ω

M−1(ω). (4.2)

Note that while the group-delay operator is more commonly defined as −jM−1(ω)∂M(ω)
∂ω

with eigenvectors as input PMs [81], Eq. 4.2 is equivalent to the convention since the

input and output can be converted to each other with Eq. 4.1. In general, the frequency

dependent m is not commutative, i.e., [m(ω),m(ω′)] = m(ω)m(ω′)−m(ω′)m(ω) 6= 0, ω 6=

ω′, and M cannot be expressed by m in a closed form. Nevertheless, we can develop
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the expression of M as a fundamental matrix with initial value at ωo by means of the

exponential map of matrix Lie algebra X

M(ω = ωo + ∆ω) = eX(ω,ωo)M(ωo)

≡ D(∆ω)M(ωo), (4.3)

where D(∆ω) is coined as dispersion matrix, modeling the transition of M due to spectral

perturbation ∆ω. Similar to [82], X can be subsequently constructed as a series expansion

X(ω, ωo) =
∞∑
k=1

Xk∆ωk, (4.4)

where the complex constant matrix Xk records the kth order dispersion. When the series

is truncated to k = 1, Eq. 4.3 reduces to the integral of Eq. 4.4, corresponding to classic

PM theory considering only the linear dispersion,

M(ω) = eX1∆ωM(ωo). (4.5)

This assumes that the instantaneous dispersion is frequency-independent, m = X1, whose

eigenvectors correspond to PMs at the output, and the M variation due to dispersion can

be accounted for by simply scaling with the eigenvalues of X1, which correspond to the time

delays of the PMs. However, random fiber bending or twisting induces higher orders of Xk

and thus spectral variance in m(ω), limiting the PMs bandwidth. Crucially, the exponential

map in Eq. 4.3 linearizes the dispersion matrix and decouples different orders of dispersion

into Xk series, allowing elegant parameterization of dispersion in a polynomial of ∆ω.

As illustrated in Fig. 4.1.1(a), to derive the matrix series Xk and create the dispersion

model of MMF following Eq. 4.3, we measured a multispectral TM (msTM) of the MMF

at discrete frequencies and solved for Xk up to K orders that fit the msTM in optimization

formalism. Since there is no apparent relative loss or gain between M(ω) at different

frequencies, D is configured as a unitary matrix. This leads to manifold optimization

associated with Riemannian gradient [83, 84], which also emerges as a fruitful area of
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Figure 4.1.1: Overview of the parametric dispersion modeling. (a) We calibrated the MMF
transmission at several discrete optical frequencies and created the corresponding dispersion
model with matrix series Xk. We then predicted the TM at varying ω, M(ω), by computing a
dispersion matrix D(∆ω) referenced at ωo, and reconstructed full spatio-spectral channels of the
MMF transmission. (b) To synthesize a focus through the MMF, we digitally propagated the
required wavefront from the predicted TM using M(ωo) (top row) or M(ω) (bottom row) through
a separately measured M(ω). The circular support outlines the fiber core, and the scale bar is
20µm.

research in the fields of deep or recurrent neural networks as it improves training stability

and enhances model robustness [85].

To verify the created dispersion model at a test frequency ω, we compensated the

dispersion D(∆ω) referenced at ωo, predicted M(ω) = D(∆ω)M(ωo) (the overline denotes

expected quantity), and compared to the separately measured ground truth. We visualized

the results by synthesizing focusing through the MMF at varying frequency, as we

can computationally image through MMF without physical focusing in Chapter 3 and

[86]. As shown in Fig. 4.1.1(b), the focal spot remains sharp and clean across the

entire observation spectrum (bottom), compared to speckle pattern without dispersion

compensation (top). This evidences a hidden spectral correlation if the dispersion is properly

addressed. Importantly, while fitted at discrete frequencies, the model allows TM prediction

over a continuous spectrum not confined to grids of a defined spectral step size.
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4.2 Multispectral Transmission Matrix

4.2.1 Experimental Setup

To measure the msTM of a MMF, we set up an automated system as shown in Fig. 4.2.1.

A 1-MHz-line-width laser (TSL-510, Santec) and an objective lens (Mitutoyo Plan Apo NIR

Infinity Corrected) with a numerical aperture (NA) of 0.4 were used to generate a 2.5 µm

FWHM focus spot on the input facet of a randomly looped MMF (FG050LGA, Thorlabs).

The focal spot was sequentially coupled into ∼250 individual input spatial channels with

a two-dimensional (2D) galvanometer mirror scanner (GVSM002, Thorlabs). For every

input spatial channel, the laser was switched between the two horizontal and vertical linear

polarization states by a fiber-based electro-optical phase retarder (PRT1010, Boston Applied

Technologies Inc.). We used a InGaAs camera (OW1.7-VS-CL-LP-640, Raptor Photonics)

with exposure time of 20 µs and a maximal frame rate of 120 Hz, and employed off-axis digital

holography to record the complex light emitted from all output spatial channels subject to

each MMF input realization, and the two polarization states of the complex output were

spatially separated with a beam displacer (BD40, Thorlabs) for simultaneous acquisition.

We then recorded the captured output images in the Fourier domain, flattened output

images into column vectors, and constructed a monochromatic full TM at the operating

optical frequency. The overall acquisition time of one monochromatic TM was about 7

seconds. Repeating the TM measurement from a starting frequency, ωs, over a spectral

span, Ω, at defined optical frequency steps, δω, produced a three-dimensional (3D) msTM,

where TM at ascending frequencies were discretized in N sampling points and indexed by n

Mn = M(ω = ωs + nδω) , n = 0, 1, 2..., N−1. (4.6)

4.2.2 Correction to Spatial Channel Misalignment

In the off-axis holographic imager setup, the modulation frequency of fringed images

is dependent on the effective in-plane momentum component and thus on the operation
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Figure 4.2.1: Measurements of the multipsectral transmission through a MMF. The fiber, though
drawn as if it were straight, was in fact randomly coiled in experiments. TL: tunable laser. PR:
phase retarder. GM: galvanometer scanning mirrors. BD: beam displacer. Ref.: reference wave.
Cam.: camera. The focal spot is alternated between H and V by PR and scanned across the MMF
input facet by GM, and the output facet is relayed onto the camera, where the two LP states
are spatially separated by BD. Although the complex output mode is displayed in real space for
better visual appearance, it is stored and analyzed in the Fourier domain. A subset of each TM is
shown, where the colored solid vertical lines indicate the vector arranged as an output mode. The
color map encodes the complex values, and the scale bar is 20 µm.

wavelength [87]. Since we recorded TMs at fixed pixels in the Fourier domain, the spatial

channels were misaligned at different wavelengths. To measure a msTM through identical

channels, we need to gauge the drifting modulation frequency and co-register the pixels.

As shown in Fig. 4.2.2(a), we obtained multiple modulated MMF images corresponding

to different input realizations at each wavelength, averaged the intensity of the images
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in the Fourier domain, and isolated the corresponding interference lobes. We repeated

the process at decreasing wavelength and tracked the center of the lobes across the laser

spectrum. As shown in Fig. 4.2.2(b), we then fitted the center trajectory with linear

regression, which informs required pixel shift in the Fourier domain for a given frequency.

For each TM measured at a frequency ω, we imposed corresponding spatial channel

registration, and the center position at varying frequency after the correction is shown

in Fig. 4.2.2(c). While only correction to H polarized channels is shown, we conducted

individual corrections to both polarization detections.
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Figure 4.2.2: Correction to the drifting modulation frequency in multispectral off-axis holography.
(a) The intensity of MMF outputs in the Fourier domain in logarithmic scale averaged over several
input realizations at ωo = 191 THz. We extracted the interference lobe (inset) and tracked the
lobe center (black cross) in terms of digitized (kx, ky) at varying frequency. (b) Before correction,
the center shifts linearly in both kx and ky, where we can linearly fit the drifting. (c) After
correction, the center position only fluctuates due to measurement noise.

4.2.3 Number of Modes and Matrix Correlation

The number of guided modes within the MMF can be quantified by performing singular

value decomposition (SVD) on each measured TM, counting the singular values (SVs)
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above a threshold defined as 5% of the largest SV. As shown in Fig. 4.2.3(a), there

are ∼200 DOFs, or populated modes, in each monochromatic TM of ω within the laser

tunable range, consistent with the theoretical values from a typical SI-MMF model, and

the number of DOFs gradually increases with ω.

To quantify the spectral correlation between TMs at different frequencies and the full

width half maximum (FWHM) bandwidth as spectral coherence length, δν, we defined the

correlation between two matrices, A and B, as the absolute value of the normalized

Frobenius inner product

C(A,B) =

∣∣∣∣∣∣
∑
ij a
∗
ijbij√∑

ij |aij|2|bij|2

∣∣∣∣∣∣ , (4.7)

where i and j are the matrix row and column indices, and aij and bij are the entries of A

and B, respectively. We then calculated the spectral correlation upon a ∆ω spectral shift,

C(∆ω = ω − ωo) = C(M(ω),M(ωo)), of TMs at varying frequencies, ω, against the TM at

the reference wavelength, ωo. As plotted in the solid curves in Fig. 4.2.3(b), the original

spectral correlation referenced at ωo = 191 THz manifests a fast decay with a FWHM of

δν =∼ 30.43 GHz (∼0.26 nm), consistent with previously reported results with MMF in

a similar geometry [46]. As a benchmark, we found a 98.7 ± 0.14% correlation between

two repeatedly measured TMs at identical optical frequency. At first glance, the MMF

has an independent transmission at spectral shift beyond δν and hence low resemblance

between different outputs upon even just sub-nanometer spectral perturbation.
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Figure 4.2.3: Characteristics of the 1m-long 50-µm-core SI-MMF (a) The number of the modes
are ∼ 200, determined by singular values of TMs and increases with decreasing wavelengths. (b)
The spectral correlation of TMs referened at ωo = 191 THz. The original δν = 0.26 nm.

4.3 Constructing Dispersion Model

4.3.1 Linear Dispersion Estimation

To create a dispersion model, we first estimated first order dispersion at the reference

frequency with a measured msTM at spectral sampling step size of δω < δν
2 in two steps:

First, we aligned the phase offset of each complex TM in the msTM such that every

consecutive pair of TMs have the same phase offset; Second, following Eq. 4.3, we computed

D(δω) by solving a least squares optimization problem

arg min
D

N−1∑
n=1
||Mn+1 −DMn||2F , (4.8)

where ||·||F is matrix Frobenius norm (or L2-norm). The optimizedD can be analytically de-

rived

D = (
N−1∑
n=1

Mn+1M†
n)(

N−1∑
n=1

MnM†
n), (4.9)

and forced to be unitary by making all singular values one. The overall process is illustrated

in Fig. 4.3.1. With D(δω), we can compute X1 est. = logm(D)/δω, which serves as the

initial guess for the optimization of higher order dispersion model. Alternatively, D can

be used for fast construction of the linear dispersion model.
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Figure 4.3.1: Data processing pipeline for linear dispersion estimation. We used a msTM with
equidistant spectral step size to estimate D of linear dispersion.

4.3.2 Phase Wrapping Issue in Linear Model

In experiments, we measured TMs at discrete optical frequencies. To construct a

dispersion model in Eq. 4 over continuous bandwidth, we need D(ω, ωo) with correct

eigenvalues without 2π phase wrapping ambiguity. With a measured msTM of small

enough step size δω such that the maximal phase difference of eigenvalues of D(δω)

does not exceed 2π, we can derive the correct changing rate of individual eigenvalues

(equivalent to the group delays of PMs).

To show the phase wrapping issue, we constructed two linear dispersion models of

the same 1m-long 50-µm-core SI-MMF geometry with two sets of msTM measurements,

respectively. The first set has two msTMs of (ωs, δω,Ω) = (190.9612, 0.0122, 0.1216)

and (192.3077, 0.3033, 3.033) THz, and the second set has two msTMs of (ωs, δω,Ω) =

(190.4762, 0.0607, 0.6066) and (192.3077, 0.3033, 3.033) THz. Note that the two sets of

measurements only have difference in the spectral sampling rate of the first msTM, where

the sampling rate is either above or below the Nyquist criterion. Fig. 4.3.2(a) shows the

eigenvalues of D(δω) of the first msTM of each set on the complex plane: When above

Nyquist sampling rate (top), the angular distribution of the meaningful eigenvalues does

not cover the entire plane, and we can retrieve the relative phase offsets of the eigenvalues;
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However, when below the Nyquist sampling rate (bottom), the eigenvalues spread all over

the plane, and we cannot determine the phase offsets due to the 2π ambiguity. We then

tested the two models with separately measured TMs at uncalibrated frequencies, which

is associated with fractional matrix power of D(δω) by linearly scaling the eigenvalue

phases by an real value. Fig. 4.3.2(b) shows the computational spectral correlation after

dispersion compensation to the first order. When below the Nyquist sampling rate (bottom),

the TM prediction at a frequency off the grid of δω is inaccurate due to the incorrect

phases of eigenvalues. Mathematically, if we develop the fractional matrix power in closed

form by diagonalization, since we can add any integer of 2π to the phases of complex

eigenvalues without changing the values, finding numerical roots based on commonly used

De Moivre’s Theorem may lead to a false solution if the condition is not satisfied. Generally

speaking, the Nyquist rate increases with MMF length and NA, where a narrower spectral

resolution of the laser source is required.

4.3.3 Fast Construction of Linear Dispersion Model

In Eq. 4.5, considering only linear dispersion, the spectral shift ∆ω affects the eigenvalues

of D by scaling their phases. Therefore, we can address linear dispersion in the eigenspace

of D by finding correct phases for the corresponding eigenvalues. In practice, to create

an accurate linear dispersion model with few TM measurements and without iterative

optimization, we estimated individual Ds from two msTMs (ωs = 190.9 THz) of different

spectral sampling rates, δωlarge and δωsmall, respectively, and merged the two Ds in three

procedures: First, we found the eigenspace of D by taking the eigenvectors of empirical

D(δωlarge = 60.6GHz) from the msTM with larger spectral step, which offers a higher

measurement accuracy in the eigenvectors due to finite laser linewidth and system stability;

Then, using these eigenvectors, we diagonalized the empirical D(δωsmall = 2.44GHz) from

the other msTM with smaller spectral step; Third, we extracted the phases of diagonal

entries, corrected residual errors such that the phases when scaled by δωlarge

δωsmall
matched the
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Figure 4.3.2: Evaluation of linear dispersion model with spectral sampling rate above (top) or
below (bottom) the Nyquist criterion. (a) The eigenvalues of D(δω = 0.0122 THz) distribute
across three fourth of the complex plane, and the eigenvalues of D(δω = 0.0607 THz) distribute
across the entire complex plane. (b) The spectral correlation is continuous over ∼30 nm, while
the spectral correlation is poor in the sub-Nyquist sampling condition due to inaccurate phase
estimation.

eigenvalues of D(δωlarge), and divided the values by δωsmall. The eigenvectors and their

phase changes per spectral shift determine the linear dispersion model. To compensate for

linear dispersion due to a spectral shift ∆ω and predict M(ω), we calculated individual

phase changes of the eigenvectors, assembled D(∆ω) in the Fourier basis, and applied it

to M(ωo). The overall process is illustrated in Fig. 4.3.3.

4.3.4 Optimization of High-order Dispersion Model

To improve the estimated dispersion model and consider higher order dispersion, we

retrieved Xk in Eq. 4.4 up to K orders using additional msTM with large spectral step and

span. While it may be intuitive to use the optimization in Eq. 4.8 again, the unknown phase
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Figure 4.3.3: Data processing pipeline for fast construction of linear dispersion model. By using
two msTMs of different step sizes, we can construct linear dispersion model with high accuracy
and time efficiency.

offset imposed on each measured TM becomes difficult to align beyond the linear dispersion

regime, jeopardizing the optimization in converging to the correct solution. Therefore,

we used instead the complementary correlation, 1− C2, between each pair of M(ω) and

eX(ω,ωo)M(ωo)(≡ D(∆ω)M(ωo)) as the metric and optimize for matrices Xk

arg min
Xk ∈ g

N∑
n=1

(1− |tr(M†
ne
∑K

k=1 Xk∆ωk
nM(ωo))|2), (4.10)

where g is the group of skew-Hermitian matrices, Mn is indexed M(ω) with ω = ωo + ∆ωn

and is normalized by its own Frobenius norm, tr indicates the trace of TM products, and

we summed over all N pairs of TMs. Note that the skew-Hermitian constraint on Xk is

equivalent to unitary D, |tr(·)| is the same as C, and the unknown phase offsets of TMs

do not matter here anymore since the absolute norm ignores them. The constraint makes

Eq. 4.10 a manifold optimization problem. We used the estimated first order dispersion

X1 est. for X initialization, and simultaneously optimized for all Xk. To achieve efficient

computation, we employed approximated Reimannian gradient descent with an analytical

gradient [84] to perform the optimization. The overall process is illustrated in Fig. 4.3.4.
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Figure 4.3.4: Data processing pipeline for optimization of high-order dispersion model. We
computed X1 from estimated D and initialized the optimization process for finding higher-order
dispersion, Xk, with a msTM across large spectrum. With fitted Xk series, we can predict the
TM at an arbitrary optical frequency.

4.3.5 Phase Wrapping Issue in Nonlinear Model

For high order dispersion optimization, we need spectral sampling over a large spectrum

to measure dispersion nonlinearity. However, similar to the linear dispersion, a too small

sampling rate may also result in incorrect Xk, k ≥ 2 convergence. To show this, we

first compensated the linear dispersion of M(ω) and computed the eigenvalues of D(δω)

with δω = 0.933 or 1.86 THz, as shown in Fig. 4.3.5(a), where the former spread only

half of the complex plane, and the latter almost cover the entire plane. We then used

msTMs of N = 5 at the two sampling rates for optimizing second order dispersion and

tested the dispersion models. As plotted in Fig. 4.3.5(b), the spectral correlation with

dispersion compensation to the second order is smooth over ∼72 nm when using the

msTM at δω = 0.933 THz. However, the spectral correlation is oscillating when using

the msTM at δω = 1.86 Thz due to incorrect X2.
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Figure 4.3.5: Evaluation of high order dispersion model with spectral sampling rate above (top)
or below (bottom) the sampling criterion. (a) The eigenvalues of D(δω = 0.933 THz) distribute
across half of the complex plane, and the eigenvalues of D(δω = 1.86 THz) distribute across
the entire complex plane. (b) Accuracy of the constructed model using msTM of sampling step
0.933 (top) or 1.86 THz (bottom) for fitting the second order dispersion. The color dots label the
spectral sampling points.

4.4 Ultra-wide Spectral Correlation

To create a dispersion model, we acquired two msTMs referenced at ωo = 191 THz

with (ωs, δω,Ω) = (190.9, 0.01, 0.2) THz (N = 21) and (ωs, δω,Ω) = (184, 0.467, 14) THz

(N = 31), respectively, for estimating the first order dispersion X1, and optimizing the

higher order dispersion Xk (see mathematical details in Methods 4.3.1 and 4.3.4). To

avoid the phase wrapping issue as explained in Section 4.3.2 and achieve a continuous

model bandwidth, δω of the first msTM was set to be smaller than the original spectral

coherence length δν = 30.43 GHz. Nevertheless, the overall spectral measurements are

sparse compared to the hundreds of TM measurements across 14 THz laser spectrum in the
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step size of δν. We optimized Xk up to K = 2 orders, where the improvement on msTM

fitting considering even higher order dispersion was found to be negligible after additional

trials, and X1 has a matrix Frobenius norm 489.8 times larger than X2.

To validate the parametric model and evaluate the accuracy of predicted M(ω),

we calculated its matrix correlation with separately measured M(ω) as ground truth,

C(M(ω),M(ω)). To verify the spectral continuity, the frequencies of the ground truth TMs

for testing are different from the fitting ones and off the grid of δω referenced at ωo by up

to half of δω. Figure 4.4.1(a) plots the spectral correlation C(M(ω),M(ω)) considering

Xk to different K orders. We define the extended coherence length, δνe, as the FWHM

bandwidth of TM correlation after dispersion compensation. The coherence length is

greatly improved to 33 nm considering the first order dispersion X1 (the orange and yellow

curves are for estimation using Method 4.3.1 and thereafter optimization using Method

4.3.4 with K = 1, respectively), which is ∼127 times broader than the original δν. The

initial estimation captures the linear dispersion and is quite accurate. After optimization

with K = 2, despite the small matrix norm of X2, the correlation is significantly enhanced

and covers the entire 115 nm (the purple curve), which is ∼442 times of the original δν.

We also repeated the same experiment with different MMF of various types, lengths, coil

radius, or from a different measurement system and observed the similar efficacy, which

shows the generalization of our dispersion model (see Section 4.6).

To visually assess the dispersion model, we synthesized focusing through the MMF

at test frequencies. The focus is clearly visible within 33 nm with K = 1 (the orange

and yellow boxes), and, with K = 2, the entire 115 nm spectrum (the purple box). As

a comparison, the original poor spectral correlation (the black curve) results in speckle

patterns (the black box) when using M(ωo) to create focus at other wavelengths. We

define the focus contrast (η) as the peak intensity over the average intensity of all available

spatial channels, as illustrated in Figure 4.4.1 (b), and the dispersion model with K = 2

renders η at an example spatial channel ranging in 75–172 across the entire spectrum. We
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also evaluated the correlation bandwidth of individual spatial channels by calculating the

FWHM of smoothed η curve per each channel, which renders the spatial uniformity map of

the model shown in Figure 4.4.1 (c). The correlation has the highest bandwidth 85 nm

at the central core region and symmetrically degrades towards the cladding part ∼25 due

to the more lossy transmission at the core periphery. As a result, the correlation after

dispersion compensation covers all available spatial/polarization channels.
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Figure 4.4.1: Ultra-wide hidden spectral correlation after dispersion compensation. (a) The
black, orange, yellow, and purple plotted curves correspond to the spectral correlation of original
TMs, considering dispersion with first-order estimation, first-order optimization, and second-order
optimization, where the coherence lengths are 0.26, 33, 33 and 115 nm, respectively. The insets
also show corresponding synthetic focusing through the MMF at varying wavelengths (color-coded
boxes), where the second order enables excellent focus contrast across the entire spectrum (purple
box). (b) The focus contrast η at a spatial channel at varying wavelength with dispersion model
with K = 2. The fiber facet is masked from the background (gray dashed circular support). (c)
The spatial uniformity map of reconstructed channels at fiber core in H and V polarization. The
scale bars are 20 µm.
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4.5 Spectral-variant PMs

The PM theory is designed to tackle only linear dispersion, with the assumption of

constantm matrix in Eq. 4.2. In Eq. 4.4, whenXk commutes to each other, i.e., [Xk,Xk′ ] =

0, k 6= k′, they share the same eigenvectors, and the PMs will maintain their profiles over

the entire spectrum. However, in general, the Xk series are not commutative, leading to

frequency-dependent m and high order dispersion on PMs. The evaluation of the dispersion

influence on PMs is experimentally challenging due to the need for measuring MMF response

to PM input coupling at all frequencies over continuous spectrum [88]. Fortunately, with

the accurate dispersion model as presented in the previous section, we can numerically

characterize MMF dispersion and conveniently compute for all spectral-variant PMs.

To obtain local PMs at ω, we first computed

D(δω) = M(ω + δω)M(ω)−1, (4.11)

whose eigenvectors are the output PMs, and eigenvalues are associated with the group

delays. To compensate for the relative optical path-length difference between the H and V

polarization channels due to the use of the optical beam displacer on the detection pathway

(similar to [88]), we numerically corrected the D(δω) by applying a defocusing operator

to the V polarization channel. We then collected the first 200 eigenvectors of D(δω) and

their eigenvalues. We repeated the process for varying frequencies ω and calculated the

spectral correlation of each PM as the normalized complex vector inner product with itself

at ωo = 191 THz. The group delay, τpm, of an output PM at ω is calculated by taking

the phase of its corresponding eigenvalue, and dividing the value by δω. The fundamental

mode is visually identified from its spatial profile, and the arrival time is offset to 0 ps.

The PMs with spurious delays due to noisy eigenvalues are discarded.

The normalized commutativity betweenX1 andX2 is |[X1,X2]|F/(|X1|F |X2|F ) = 0.0033.

We first computed m(ω) following Eq. 4.2 and plotted the normalized commutativity
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referenced at ωo = 191 THz in Fig. 4.5.1(a), where the lever-up indicates the non-

commutative m. We then studied individual PMs and defined the permanence of a PM,

C, as the averaged spectral correlation across the entire 115 nm spectrum referenced at

ωo. As plotted in Fig. 4.5.1(b), the permanence of the 200 PMs ranges within 0.99–0.39,

where the PMs are sorted accordingly. The decreasing permanence clearly reflects the

non-commutative m and hence the limited PM bandwidth. Figure 4.5.1(c) shows several

output PMs of different permanence in both H (cyan) and V (magenta) polarization at

varying wavelengths, where the stronger polarization is plotted in the large inset. Visually,

the profiles resemble theoretical Laguerre-Gaussian modes in SI-MMF, and the major

effect of spectral perturbation on PMs is mode mixing due to degenerate propagation

speed. In Fig. 4.5.1(d), we illustrate the higher order PMs dispersion by plotting the

spectral-variant group delays of individual output PMs from the corresponding eigenvalues

of the group-delay operator, and time is offset by the delay of the fundamental mode. The

span of the group delays is ∼52 ps, consistent with the waveguide theory. Interestingly,

besides the different nonlinear delays, the PMs exhibit both positive and negative dispersion.

In addition, we observed degeneracy effects (dashed circles) between PMs due to unstable

eigen-solution, similar to the previous study [88]. As a result, the dispersion model enables

the numerical analysis of spectral-variant PMs featuring distinctive behaviors. The PM

analysis for different MMF can be found in Section 4.6.
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4.6 Generalization of Spectral Memory Effect

We verified the generalizability of our parametric dispersion model by testing it on

different SI- and GI- MMF, as specified in Table 4.1. For each MMF, we constructed the

corresponding dispersion model by using msTMs centered at 191 THz (1570 nm). We

truncated the model to the kth order dispersion if no improvement was observed to the

k + 1th order. We then evaluated the dispersion model with separately measured msTMs,

and calculated the spectral correlation before and after dispersion compensation. The

best attainable FWHM spectral bandwidth, δνe, is recorded in Table 4.1. Therefore, we

concluded that the model is valid for the various MMF regardless of different refractive

index profile, geometry, and length.
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index MMF spec refractive
index

core size
(um) NA length

(m) mode # radius of
curvature (cm)

correlation
BW (nm)

a FG025LJA SI 25 0.1 1 6 11 115
b FG025LJA SI 25 0.1 2 6 13 115
c FG025LJA SI 25 0.1 3 6 11 115
d FG050LGA SI 50 0.22 1 200 14 115
e FG050LGA SI 50 0.22 1 200 2.5 58
f FG050LGA SI 50 0.22 2 200 14 40
g FG050LGA SI 50 0.22 3 200 14 1.5
h GIF625 (OM1) GI 62.5 0.275 1 300 11 110
i GIF625 (OM1) GI 62.5 0.275 3 300 11 8
j GIF50E (OM4) GI 50 0.2 10 200 14 0

Table 4.1: Specifications and correlation bandwidths of various MMFs

4.6.1 Spectral Memory in Few-mode Fiber

With the corresponding constructed dispersion model of different MMF, we computed

and studied the characteristics of their spectral-variant PMs. Here we show two represen-

tative results of the 1m-long few-mode fiber (FMF, indexed as "a" in Table 4.1) and the

1m-long GI-MMF (indexed as "h"). For the FMF, as shown in Fig. 4.6.1(a), we achieved

a correlation above 0.8 over the full 115 nm spectrum after the dispersion compensation

to the third order, whereas the original correlation has multiple lobes and a coherence

length of δν = ∼0.06 THz. We identified 6 PMs in the FMF, with the corresponding

permanence and mode profile shown in Fig. 4.6.1(b) and (c), and the PMs degenerate

into H and V polarization. The group delays have a range of ∼1.4 ps.

4.6.2 Spectral Memory in Graded-index Fiber

For the GI-MMF, as shown in Fig. 4.6.2(a), the correlation with estimated linear

dispersion (orange curve) has a pyramid shape, different to that in SI-MMFs. This is

observed in other GI-MMFs and may be due to the parabolic refractive index profile and

propagation properties. Nevertheless, we achieved 110 nm correlation bandwidth after
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Figure 4.6.1: Computational spectral correlation in the 1m-long few-mode MMF ("a" in Table
4.1). (a) The spectral correlation before and after dispersion compensation to different orders:
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the dispersion compensation to the third order. The permanence of each PM is shown in

Fig. 4.6.2(b), where the average permanence is much reduced compared to the 1m-long

200-mode SI-MMF (indexed as "d") due to strong mode mixing and degeneracy within each

mode group. We visualized the PM profiles in Fig. 4.6.2(c), which are scrambled speckle

patterns instead of theoretical Hermite-Gaussian modes. The group delays are plotted in
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Fig. 4.6.2(d) and span across ∼5 ps. The results are consistent with theory and literature

[45, 88], but the computational methods here avoid extensive experimental measurements.
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4.7 Efficient Reconstruction of Spatio-spectral Chan-
nels

So far, we derived the dispersion model, revealed an underlying spectral correlation

beyond the PM bandwidth, and studied spectral-variant PMs. However, the data acquisition

time scales with the number of measurements, and TM measurements are prone to

perturbation on MMF such as bending or temperature change [89, 90]. Efficient msTM

reconstruction with fewer measurements may thus be important for practical applications.

Here, we investigate the trade-off between the number of calibrations, h, and the TM

reconstruction fidelity in two conditions to develop speed- or bandwidth-efficient calibration

scheme. All results are tested using other independently measured msTMs as ground truth.

4.7.1 Speed-driven

The iterative optimization for solving high order dispersion may take tens of minutes to

reach convergence. In applications where speed overweighs the bandwidth, fast construction

of linear dispersion from a minimal number of measurements will be desirable. We therefore

developed an analytical framework for reconstructing TMs considering the first order

dispersion by using two msTMs, each having N spectral steps but different δω (see Methods

4.3.3). The number of total TM measurements was h = 2N − 1 (subtracted by 1 because

of a duplicated TM at ωs), and the post processing only took few seconds to complete.

As plotted in Fig. 4.7.1(a), the spectral correlation using h = 21 measurements (green

curve) is smooth and has a δνe = 34 nm. On the contrary, the spectral correlation using

only h = 3 measurements (blue curve) achieves a δνe = 10 nm, which greatly reduces

the measurement effort. We selected (h, δνe) = (5, 30) to strike a balance (orange curve),

which has the best efficiency (δνe/h = 6 nm) and relaxes the effort by a factor of 23

compared to the brute force approach: msTM measurement with original coherence length

δω as spectral step (efficiency δν/1 = 0.26 nm). The insets visualize the reconstruction

accuracy corresponding to different h with synthesized focusing through the MMF (blue,
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Figure 4.7.1: Efficient TM reconstruction with dispersion model to the first order. (a) The
spectral correlation of MMF transmission and focusing through MMF using h = 3, 5, 21 number
of TM measurements. With h = 5, we computed (b) the focus contrast η at each spatial channel
at varying wavelength, and (c) the spatial uniformity map of reconstructed channels in H and V
polarization. The scale bars are 20 µm.

orange, and green boxes). With h = 5, we computed the focus contrast at individual

channels, as exemplified in Fig. 4.7.1(b), and plotted the spatial uniformity map in Fig.

4.7.1(c). The model covers all available channels with bandwidth varying from 24 − 28

nm at the center of fiber core to ∼20 nm at the periphery.

4.7.2 Bandwidth-driven

In applications where speed is less prioritized, we consider high order dispersion to

attain broader bandwidth coverage. In a separated experiment, we first constructed linear

dispersion model using 5 TMs following the aforementioned speed driven approach, and

then selected subsets (N = 4, 8, or 12) from the msTM of (ωs, δω,Ω) = (184, 0.933, 7)

THz to optimize dispersion to the second order. As a result, we have h = 5 + N . The

spectral sampling rate δω here is determined to avoid phase wrapping issue in high order
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Xk (see Section 4.3.5). Figure 4.7.2(a) plots the spectral correlation and extended coherence

length with varying h and the corresponding spectral points for optimization. We chose

h = 13 (δνe/h = 8.53 nm), which gives the best bandwidth efficiency and is 32.8 times

more efficient than the brute force measurement approach. Similar to Fig. 4.7.1, the insets

visualize the reconstruction accuracy corresponding to different h. The focus contrast

using h = 13 is exemplified in Fig. 4.7.2(b), and the spatial uniformity map is plotted in

Fig. 4.7.2(c). The model bandwidth varies from 70 − 110 nm at the center of MMF

core to ∼23 nm at the periphery.
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Figure 4.7.2: Efficient TM reconstruction with dispersion model to the second order. (a) The
spectral correlation of MMF transmission and focusing through MMF using h number of TM
measurements. The colored dots are the selected frequencies for optimization corresponding to h.
With h = 13, we computed (b) the focus contrast η at each spatial channel at varying wavelength,
and (c) the spatial uniformity map of reconstructed channels in H and V polarization. The scale
bars are 20 µm.

4.8 Discussion

We established an architecture modeling the dispersion in MMF transmission based

on exponential mapping, which recaptures local dispersion structure. The model not only
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accommodates PM theory under linear dispersion, but also enables efficient parameterization

of high order dispersion beyond the PM regime. The discovery of the surprisingly wide

spectral correlation after dispersion compensation may shed new light on the traditional

concepts of transmission through complex media, prompting the need for re-definition of

spectral DOFs in MMF based on, e.g., statistical analysis on the matrix X.

While the results are promising, the optimal spectral sampling rates and number of

TM measurements subject to different noise levels still need in-depth explorations. For

example, high spectral sampling rate is needed to estimate first order dispersion of longer

MMF, which relies on narrower laser linewidth. Wavelength accuracy, repeatability, and

system stability will also directly influence the fidelity of msTM measurement. On the

other hand, when finding high order dispersion, non-convex optimization may lead to local

minimum and be a potential limitation in constructing a dispersion model. While the

convexity of Eq. 4.10 can be verified with definiteness of the corresponding Hessian matrix,

such calculation is challenging, and the result may also depend on the data structure.

Furthermore, similar to other optimization problems in machine learning tasks, overfitting

may be another issue and impact the model accuracy. Therefore, existing techniques such as

stochastic gradient descent, momentum, re-initialization, early stopping, and regularization

could be helpful in optimizing high order dispersion.

Temporal focusing through MMF with arbitrary delays has been demonstrated by

exploiting measured msTMs [91], where the MMF of the same geometry as here was

fully characterized over a similar spectrum with more than a thousand TM measurements.

Recently, a rapid multispectral transmission characterization system based on hyperspectral

imaging has been introduced [92], which accelerated the data acquisition by nearly 2 orders

of magnitude. Beneficially, our computational dispersion-model-based calibration method

may relax hardware complexity and bring extra flexibility in system design by avoiding

complicated optics such as microlens array and grating, and reduce data storage, e.g.,

by using only tens of measured TMs to calibrate the MMF transmission over 115 nm
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spectrum. Combined with a compressive sensing technique for TM measurement [93],

real-time reconstruction of chromatic transmission through MMF may be possible. The

computational method can be readily replicated and facilitate calibration for MMF-based

spectroscopy and nonlinear endoscopy [35, 94]. In addition to MMF-based applications,

efficient multispectral calibration has great potential for multiphoton or multicolor bio-

imaging, where the calibration time is critical for delivering ultrashort pulses into scattering

tissues in vivo, and also holds promise for both fundamental and applied studies of the

light transport in complex media such as in mesoscopic physics.

In free space propagation, the Fresnel diffraction theory corresponds to a diagonal D

matrix in the Fourier basis modeling the dispersion, with quadratic defocus phase term on

the matrix main diagonal. Interestingly, in transmission through the 1-m-long SI-MMF,

reshaping the main diagonal of D to 2D spatial coordinates in the Fourier domain leads

to a pattern similar to a quadratic phase front. This indicates that the MMF dispersion

is associated with a defocusing effect, another observation of the chromato-axial ME.

Nevertheless, the D matrix of the MMF has non-negligible off-diagonal elements, signifying

the complicated cross-coupling between spatial channels upon spectral perturbation. While

the chromato-axial ME is valid across only few nanometers in straight MMF of several

centimeters long [95], our method compensates for additional waveguide dispersion and

achieves orders of magnitude broader coherence bandwidth in full channels of meter-

long MMF with random coiling.

In optical communication systems, MMF features throughput and cost advantages

over single mode fiber (SMF), and space-division and wavelength-division multiplexing

(SDM and WDM) with MMF have recently been proposed to surpass the Shannon capacity

limit of data delivery in single optical fiber [96–98]. The created model can resolve

dispersion in the transmission through MMF and may benefit SDM and WDM in the

following ways: Combined with wavefront-shaping techniques on the transmitter side, the

efficient fiber calibration may facilitate physical generation of arbitrary state at multiple
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wavelengths in parallel, or temporal pulse shaping for delivering signals that is favorable to

detection; Alternatively, to economize resources on the transmitter side, the efficient TM

reconstruction can be applied on the receiver side and expedite multispectral digital signal

processing (DSP). As shown in Supplementary Materials, we have also achieved broad

spectral correlation bandwidth in different GI-MMFs, which have even higher number of

guided modes than the SI-MMF here. Therefore, we expect the computational method

to be suitable for GI-MMF in current SDM applications.

4.9 Conclusion

In this chapter, we created a parametric dispersion model of transmission through MMF,

which may bring new insights to the design of multispectral imaging and sensing techniques

with complex media, where the independent spectral DOFs are previously overvalued and

may need re-evaluation. Furthermore, the demonstrated computational spectral correlation

dramatically reduced measurement redundancy by an order of magnitude and led to

bandwidth- or speed-driven calibration approach, which may streamline multispectral

characterization of photonic systems in many applications.
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Randomness is the true foundation of mathematics.

— Gregory Chaitin
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Computational imaging with random encoding patterns obtained by scattering of light

in complex media has enabled simple imaging systems with compelling performance. Here,

we extend this concept to axial reflectivity profiling using spatio-temporal coupling of

broadband light in a MMF to generate the encoding functions. Interference of light
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transmitted through the MMF with a sample beam results in path-length-specific patterns

that enable computational reconstruction of the axial sample reflectivity profile from a single

camera snapshot. Leveraging the versatile nature of MMFs, we demonstrate depth profiling

with bandwidth-limited axial resolution of 13.4 µm over a scalable sensing range reaching

well beyond one centimeter. These results have been published in Optics Express [99].

5.1 Random Encoding with Complex Media

Integration of computational reconstruction into the process of image formation can

offer increased measurement flexibility compared to conventional imaging systems whose

performance generally depends on well-engineered optics [100, 101]. Shifting accurate

design requirements from the optical and mechanical domains to the entire imaging process

including computational reconstruction may drastically mitigate physical measurement

limitations and stimulate the advent of simpler or more efficient imaging systems [100, 102].

Complex or disordered media that generate random patterns to serve as encoding functions

for computational reconstruction have been shown to enable imaging with improved lateral

resolution [103–105], extended field of view [103, 106], increased depth of focus [107], of

3D objects [108, 109], at multiple wavelengths [110], with higher frame-rate [111], or at

X-ray wavelength [112], which otherwise cannot be achieved without substantially more

sophisticated hardware. In a similar fashion, random temporal fluctuations have been

exploited for temporal ghost imaging [113–116]. Despite these advances, strategies for

encoding the axial dimension are scarce.

Here we demonstrate a new strategy for axial reflectivity profiling by computational

coherence gating with micron-scale resolution and centimeter-long sensing depth. Using

broadband light, the closely spaced yet distinct propagation constants of the MMF’s

various spatio-temporal modes yield a set of spatially distributed encoding functions, which

can be reshaped into a random encoding matrix (REM) and serve for depth referencing.

Interference with a sample signal that is delayed by reflection at a specific sample depth only

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-2-1124&id=425680


5. Depth Ranging by Random Encoding with MMF 101

occurs for the path-length-matched encoding function, creating a distinct speckle pattern

unique to this exact depth position. A general one-dimensional (1D) sample reflectivity

profile produces the linear superposition of the associated speckle patterns. By calibrating

the random encoding functions, the 1D sample depth profile can be computationally

reconstructed from a single recording of the interference pattern without the need for any

mechanical or optical scanning. We demonstrate proof-of-concept axial profiling with a

sensing depth range scaling from several millimeters to well beyond one centimeter by

varying the physical length of the MMF, relaxing the challenging hardware requirements of

achieving similar performance with conventional spectrometer-based coherence gating.

5.2 MMF Generated Random Encoding Matrix

5.2.1 Experimental Setup

To create a broadband light source with sufficient power, we cascaded two semiconductor

optical amplifiers (SOAs) and obtained a broad bandwidth (65 nm FWHM) centered at

1290 nm with 10 mW. Light from the short-temporal-coherence broadband source is split

into a sample and a reference arm, as shown in Fig. 5.2.1. In the sample arm, light is

guided through single mode fiber (SMF) and a circulator to a sample, with an average

power of 3.8 mW after collimation. The same fiber receives the backscattered light that

is coupled back into the same single spatial mode. In the reference arm, light is guided

through SMF and a circulator to reflect off a gold-coated mirror. The light coupled back

into the same single spatial mode is then delivered to a segment of step-index MMF (core

dia. = 105 µm, 0.22 NA, Thorlabs). Light emerging from the SMF in the sample arm

and the MMF in the reference arm interferes in an off-axis configuration for holographic

recording, where the reference light is offset by a chromatic phase tilt with respect to the

sample light by means of a plane ruled reflective blazed grating (60 lines/mm, Richardson

Gratings). Only the first diffracted order of the reference light is intercepted to interfere
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with the sample light. Each wavelength in the reference arm receives from the grating

the same offset in transverse momentum, thereby resulting in a modulated interference

pattern with a constant modulation frequency independent of wavelength. The modulated

interference pattern is recorded with an InGaAs camera (OW1.7-VS-CL-LP-640, Raptor

Photonics) with an integration time of 2 ms after passing through a linear polarizer. Digital

processing of each captured frame isolates one of the two complex-valued interference terms

directly in the in-plane momentum domain within a circular aperture of radius kr and offset

from the zero frequency by k0. Whereas kr is imposed by the NA of the MMF, k0 comes

from the grating-induced phase tilt. The single detected polarization state corresponds to

∼790 theoretically available modes in the MMF. In our experiments, MMF segments of

206 cm, 54 cm, or 54 + 152 cm in length have been used in the reference arm.

During an initial REM calibration procedure, interference patterns are recorded for

varying path length offsets between a gold-coated mirror in the sample arm and the

reference arm mirror, which is translated with a stepping stage (SGSP20-20, Sigma-Koki) at

a sampling step size dz. A neutral density filter, measured to provide 32.7 dB double-pass

attenuation, was inserted in the sample arm to avoid camera saturation. Each interference

pattern corresponds to an independent realization of a random speckle pattern if its path

length differs by more than the source coherence length from other path lengths. To

guarantee a continuous sensing range, dz was set below the coherence length. Rearranging

column by column the ensemble of vectorized random encoding functions recorded over

the translation range of the stepping stage provides a REM that represents the linear

transformation from the sample depth space to the encoding space.

The REM of MMF here has some similarities with the TM introduced and elaborated

in the previous chapters: they are both complex matrices with columns of vectorized

speckle pattern images, and DOFs confined by the number of modes supported by the

MMF. However, a REM is measured with a broadband light source and a single input

realization of the MMF. Each column of REM corresponds to light at a certain optical
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path length. On the other hand, a TM is measured with monochromatic laser light source

and complete input realizations of the MMF. Each column of TM is the interference of

light propagating through all possible optical paths from a certain input realization. In

Chapter 4, we introduced multispectral TM (msTM), which is a 3D matrix comprising

TMs at each spectral step. As an alternative to the direct measurement described here, if

we slice a msTM along the spectral dimension at an MMF input realization, and convert

the row basis from spectral to time domain (which can then be scaled to optical path

length), we can also acquire the corresponding REM to the input realization. Figure 5.2.2

illustrates the relationship between msTM, TM, and REM.

5.2.2 Imaging with Random Encoding Matrix

Due to the short-temporal-coherence source, the sample light from depth z only interferes

with the guided modes in the reference arm that have matching path length 2z. The

interference patterns, ~νs, can be modeled as

~νs(kx, ky) =
∫∫

A(k) dk dz ·
∑
n

φn(kx, ky, k)eiβn(k)Lf(z)e−2ikz, (5.1)

which describes the interaction between the reflectivity profile f(z) and the guided PIMs

φn as a function of coordinates in the in-plane momentum domain, kx, ky and wavenumber

k with corresponding propagation constants βn traveling along a MMF with physical length

L. A(k) is the source power spectrum. Eq. 5.1 assumes straight MMF for simplicity and

no modal cross-talk along the fiber. In this study, we measured the interference pattern

directly in the in-plane momentum domain and converted it into a column vector for

image reconstruction. An example of a REM obtained with a 54 cm long MMF in the

reference arm and dz = 10 µm as well as a few constituent random encoding functions

are shown in Figs. 5.2.3(a) and 5.2.3(b).
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Figure 5.2.1: Schematic view of the axial profiling system with MMF-generated random encoding
functions. Circ.: Circulator. M: Mirror. TS: Translational stage. ND: Neutral density filter
(only present in MMF calibration and characterization phases). S: Sample. All light coupled
from fiber to free space is collimated. The off-axis holographic imager comprises image relay
optics, a reflective grating, and a camera. The MMF facet is relayed onto the reflective grating
for chromatic phase offsetting, and the first-order diffracted light is relayed onto the camera. In
the other interferometer arm, the sample light is expanded before combination with the reference
light to match the image of the MMF facet for holographic recording. The inset panels show a
modulated interference pattern in pixels in the camera coordinates and in the in-plane momentum
domain, respectively. The scale bar in the inset is 50 µm. The off-axis configuration allows
isolating one of the two interference terms directly in the momentum domain to define a random
encoding function during the REM calibration phase (sample is a mirror) or to encode the sample
depth profile during imaging. The color map encodes complex values.

Mathematically, the 1D reflectivity depth profile of the sample ~νd is transformed by the

random encoding functions that constitute the REM into a column vector ~νs:

~νs = MREM ~νd, (5.2)

where ~νs is obtained by vectorizing the measured sample interference pattern in the

momentum domain acquired from a single camera snapshot. To analytically reconstruct an
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Figure 5.2.2: (a) A 3D msTM is assembled by stacking monochromatic 2D TMs at varying
wavelength along the spectral dimension. We can slice a 2D matrix from the msTM along the
spectral dimension at an input realization. By converting the spectral basis to temporal basis
based on Fourier Transformation and scaling to optical path length (OPL), we can derive a
corresponding (b) REM at the input realization.

estimate of the underlying sample reflectivity profile, ideally, we would need the inverse

of the REM. However, the true inverse of a matrix only exists when the matrix is non-

singular. Our measured REM, in general, is non-square and is further corrupted by noise.

As a result, we resorted to signal reconstruction by using approximated matrix inversion

such as Hermitian transpose or Tikhonov regularization. The Tikhonov regularization

parameter was chosen as 7% of the greatest singular value based on Picard plot, L-curve,

and generalized cross-validation methods [47].

5.2.3 Sensitivity Matrix

To see how the light coupled into the MMF in the reference arm populates different

guided modes, we computed the energy of individual random encoding functions, which

corresponds to the square of the Euclidean norm of the column vectors in the calibrated

REM. The energy trace visualizes the energy distribution among the random encoding

functions. We interpreted the axial range within 1% to 99% of the total axially integrated

energy as the axial sensing depth range. Moreover, SVD analysis of the calibrated REM

enables inspection of the available DOFs. The 7% cutoff from the Tikhonov regularization
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Figure 5.2.3: (a) An experimental random encoding matrix (REM) with rows indexed in the
vectorized momentum domain and columns indexed in the axial sample positions (dz = 10 µm).
The color map encodes complex values. (b) Three examples of random encoding functions. By
transforming the interference term from the momentum domain back to camera coordinates, we
can visualize the spatial profile of the corresponding random encoding function. The inset of
each function shows the interference term in the momentum domain, which is vectorized to form
a column of the calibrated REM. The leading function comprises low-order guided modes that
experience the shortest path length and encode shallow sample depth. In contrast, the trailing
function comprises high-order guided modes, which experience a longer path length and encode
deeper sample information. (c) Obtained by a single snapshot, an REM-encoded reflectivity profile
is represented by a column vector ν̃s, which is a vectorized interference pattern in the momentum
domain that equals the superposition of random encoding functions weighted by the reflectivity
profile, and tilde indicates the measured quantities. The corresponding complex field in camera
coordinates is also shown. Applying the approximated inversion of the calibrated REM, M̃REM ,
to the column vector ν̃s reconstructs the 1D reflectivity profile ν̃d.

determines the number of meaningful singular values, which is related to the number of

populated guided modes. We further defined as a sensitivity matrix (S Matrix) the product

of the approximated inverse of the REM with a second identically but independently
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calibrated REM. The columns of the sensitivity matrix reveal the axial position of the

calibration mirror for each recorded position, subject to both calibration and measurement

noise. Hence, the sensitivity matrix should be close to the identity matrix such that the

reconstructed sample depth profile corresponds to the ground truth. The properties of

the sensitivity matrix entirely define the performance of the depth profiling system. The

on-diagonal energy of the sensitivity matrix reveals the system’s signal roll-off, specifying

how fast the signal level drops with increasing depth owing to the larger propagation loss of

higher-order modes. On the other hand, the off-diagonal elements of the sensitivity matrix

define the background signal, composed of residual correlations and noise. For quantitative

evaluation, we averaged the energy of the matrix elements in the off-diagonal bands separated

2 to 8 coherence lengths from the matrix diagonal in row-wise direction. The ratio between

the on-diagonal and the off-diagonal energy of the sensitivity matrix at an axial position

expresses the SNR of the attenuated mirror reflection at that depth. Considering the

double-pass attenuation of the neutral density filter, 32.7 dB, offers a measure of system

sensitivity by comparing the noise level to the hypothetical signal of a perfect reflector.

5.3 Imaging Performance Characterization

To leverage the random encoding functions generated by a MMF for imaging axial

reflectivity profiles, it is crucial to understand how the spatio-temporal coupling and modal

delay in the fiber structure the REM. To investigate these characteristics, with the neutral

density filter and the gold-coated mirror placed in the sample arm, we examined the energy

distribution, the sensitivity matrix, and residual correlation among the encoding functions

while varying physical parameters such as coupling regime, mode mixing, and MMF length,

before performing proof-of-principle sample imaging of custom-made phantoms.
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5.3.1 Coupling Regime of the MMF

First, we employed a 206 cm long MMF in the reference arm with light coupled

concentrically, which we refer to as central coupling regime. In the energy trace in Fig.

5.3.1(a), the leading random encoding function from the fastest MMF-guided mode appears

as a dominant signal peak at the beginning of the energy trace. The energy trace decays

sharply afterwards, indicating that the fastest lower-order guided modes carry most of the

coupled optical energy. The sensing depth range was calculated as 6.4 mm. The SVD

analysis of the calibrated REM, which visualizes the amplitude of the singular values, found

only 297 populated modes, many fewer than the ∼790 available modes. This may be

due to the fact that most light is coupled into lower-order modes in the launch condition.

We then compared the sensitivity matrices obtained with the Hermitian transpose and

Tikhonov-regularized reconstruction, respectively, and averaged the SNR within the first 6

mm of the available depth range. While the Hermitian transpose led to a rapid signal roll-off

of −4.5 dB/mm and a low averaged SNR of 18.9 dB, Tikhonov-inversion offered a milder

signal roll-off, −1.9 dB/mm, and a better averaged SNR of 26.0 dB. This suggests that the

calibrated REMs are not even approximately unitary and numerically compensating for

part of the experienced loss improves the reconstruction. We only used Tikhonov inversion

for reconstruction of depth profiles and computation of the sensitivity matrix hereafter.

In the central coupling regime, the sensing depth range was confined due to the limited

number of populated modes. To promote the population of higher-order modes, we coupled

light into the MMF through two layers of Scotch tape, added into the fiber connector, to

weakly scatter the transmitted light and excite higher-order modes. We termed this launch

condition speckle coupling regime. Although this, indeed, resulted in increased coupling

to higher-order modes, the resulting energy trace was very uneven. To homogenize the

energy distribution between the guided modes, we further induced mode mixing along the

MMF with a fiber mode scrambler (FM-1, Newport). While mode scrambling with the

central coupling regime offered better energy distribution than without scrambling, we
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found the combination of both speckle coupling regime and scrambling to be the most

efficient for obtaining a smooth energy distribution. As shown in Fig. 5.3.1(b), with the

speckle coupling regime and mode mixing, the energy was more uniformly distributed

among the available random encoding functions, thereby extending the sensing depth range

to 11.1 mm. SVD analysis revealed 468 populated modes. Furthermore, we found a signal

roll-off of only −0.6 dB/mm within the first 6 mm depth range, much smaller than that

in the central coupling regime. Inspecting the sensitivity matrix, the averaged SNR was

slightly improved to 26.9 dB. In the following experiments, we used the speckle coupling

regime and applied mode scrambling to optimize the sensing depth range and SNR.

5.3.2 Bandwidth-limited Axial Resolution

The resolving power to differentiate axially offset reflections depends on how fast

the encoding functions decorrelate as a function of depth. We computed the function

correlation matrix (FCM) as the normalized correlation between the encoding functions,

E, at individual axial positions z1 and z2 as

C(z1, z2) ≡
∫
E(kx,y, z1) · E∗(kx,y, z2)dkx,y√∫

|E(kx,y, z1)|2dkx,y ·
√∫
|E(kx,y, z2)|2dkx,y

, (5.3)

where the superscript * indicates complex conjugation. We measured random encoding

functions at a sampling step size of 1 µm over a 200 µm axial range both for a 206 cm and

54 cm long MMF in the reference arm and calculated the resulting correlations. Because

of phase drift in the interferometer, there exist random phase offsets between the various

measured encoding functions. However, owing to the close correlation in these densely

sampled encoding functions, it is straightforward to estimate and correct for the phase offsets.

By analyzing correlation traces C(z1,∆z) of the FCM in terms of the axial offset

∆z = z1 − z2 we can assess the system resolving power. Figure 5.3.2 shows the average

real part of correlation traces across the evaluated axial range, exhibiting FWHMs of

19 µm and 16 µm, respectively, for (a) 206 cm and (b) 54 cm long MMF. The obtained
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Figure 5.3.1: Analysis of system performance under different operating regimes. (a) Under
the central coupling regime, a limited number of guided modes is populated, as also revealed by
the singular values of the measured REM (inset). If we use 7% as a cutoff value in the SVD,
there are 297 guided modes populated. The sensing depth range is 6.4 mm. The Tikhonov
inversion outperforms the Hermitian inversion by improving the averaged SNR over the first 6
mm from 18.9 dB to 26.0 dB. (b) Under the speckle coupling regime and mode mixing, 468 modes
are populated according to the SVD analysis. Also, the energy distribution among the random
encoding functions is more uniform compared to that in the central coupling regime, leading to
a sensing depth range of 11.1 mm . The signal level decays at a much slower rate. Finally, the
averaged SNR over the first 6 mm is 26.9 dB. The inset of sensitivity matrix (S Matrix) shows a
magnified central section. The sampling step size in both cases was 10 µm.

correlation traces exhibit a slight variation as a function of depth z1, more so for the longer

MMF. Nevertheless, they remain remarkably constant and can be approximated as the

autocorrelation of the axial PSF of the profiling system, given by the Fourier transformation
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of the source spectrum, i.e, its axial coherence function. The autocorrelation of the coherence

function indeed closely matches the central peak of the experimental FCM, suggesting

that the axial resolution is bandwidth-limited. Considering the close-to-Gaussian shape

of the employed spectrum, the FWHM of the correlation peak is
√

2 times the width of

the underlying PSF and we estimated the axial resolution to be 13.4 µm and 11.3 µm for

the 206 cm and 54 cm long MMF, respectively. In contrast to the coherence function,

the real part of the experimental correlation traces feature quite prominent side-lobes,

which are of negative sign, as disclosed in the phase maps shown in Fig. 5.3.2. This

may be attributed to spectral distortion in either arm of the interferometer that impacts

the originally close to ideal shape of the spectrum.

5.3.3 Scalable Sensing Depth Range

The available DOFs are determined by the number of populated modes, which can be

controlled by tailoring the input coupling regime and mode-mixing process. Meanwhile,

the axial resolution is determined by the decorrelation distance between random encoding

functions, which corresponds to the temporal coherence length of the source. Dividing the

sensing depth range by the decorrelation distance provides the number of resolvable depth

positions. To investigate the relation between the number of DOFs and resolvable depth

positions in more detail, we conducted experiments with a 54 cm MMF and a 152 cm MMF,

concatenated to the 54 cm fiber. In the first experiment, the 54 cm MMF was used alone,

while in the second experiment, the 54 cm MMF was concatenated with the 152 cm MMF

through a conventional FC/PC fiber connector (ADAFCB1, Thorlabs), resulting in a total

MMF length of 206 cm. To populate a multitude of guided modes and homogenize the

energy distribution among random encoding functions, we employed the speckle coupling

regime and induced mode mixing with the fiber mode scrambler in the common 54 cm

MMF in both experiments. The additional 152 cm MMF in the second experiment was

loosely looped and placed on the optical table to avoid additional strong modal interactions
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(a) 206 cm MMF

(b) 54 cm MMF

Figure 5.3.2: Experimental demonstration of bandwidth-limited axial resolution. Correlations
between the random encoding functions obtained with a (a) 206 cm and (b) 54 cm long MMF. Each
column of the FCM corresponds to a correlation trace at depth z1 and, hence, the auto-correlation
of the axial PSF. The Re{·} means the average real part of arguments, and the black curves
are the aligned correlation traces averaged over the evaluated axial range indicated by the black
double-sided arrows, and the shaded area indicates the standard deviation. The green curves are
the theoretical correlation traces generated by Fourier transforming the elemental-wise square of
the source spectrum. The inset shows the magnified central area of the FCM. The sampling step
size in both cases was 1 µm.

and energy exchange during light propagation. As shown in Fig. 5.3.3, the 54 cm and 206

cm MMF offered 3.25 mm and 13.4 mm sensing depth range, respectively, corresponding

to 288 and 1000 resolvable depth positions. In contrast, SVD analysis of the calibrated

REMs indicated 346 and 660 DOFs, respectively. The average SNR over the first 3 mm in

the sensitivity matrix is 45.6 dB for the 54 cm MMF, much higher than the 27.1 dB for

the 206 cm MMF. This suggests a trade-off between sensing depth range and average SNR.

Furthermore, inspecting the constructed FCMs, we find that the 206 cm MMF resulted



5. Depth Ranging by Random Encoding with MMF 113

in a higher residual correlation, 0.0792, defined as the averaged correlation of off-diagonal

elements within 2 to 30 coherence lengths away from the diagonal of the FCM. A higher

residual correlation indicates more off-target signals that contribute to the background

signal, which compromises the SNR. Consequently, increasing the number of resolvable

depth positions beyond the number of available degrees of freedom comes at the expense of

reducing system sensitivity. The experimental results are summarized in Table 5.1.
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Figure 5.3.3: Comparison of the sensing depth range, system SNR, and residual correlation
between a (a) 54 cm and (b) 206 cm long MMF. (a) The 54 cm MMF had a limited sensing depth
range of 3.25 mm. In the constructed sensitivity matrix, an increased noise floor in axial locations
with low energy coupling is noticeable. (b) 206 cm MMF length leads to an extended sensing
depth range of 13.4 mm yet a lower averaged SNR. Comparing the FCMs of the 206 cm MMF to
that of the 54 cm MMF, besides a higher residual correlation, correlation at large axial offsets is
also stronger. The sampling step size in both cases was 10 µm.
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Table 5.1: Trade-off between sensing depth range and SNR

L = 54 cm L = 206(= 54 + 152) cm
Sensing depth range 3.25 mm 13.4 mm
Number of resolvable depth positions 288 1000
Degrees of freedom 346 660
Signal-to-noise ratio (SNR)a 45.6 dB 27.1 dB
Residual correlation 0.0561 0.0792
a SNR of a mirror, attenuated by 32.7 dB.

5.4 Depth Profiling with a Random Encoding Matrix

Finally, we demonstrate 1D depth profiling and 2D cross-sectional imaging of custom-

made phantoms placed in the sample arm. The samples consisted of stacks of glass

slides, spaced by air gaps of different thickness. To optimize the efficiency of sample

light collection, the specular reflections from sample interfaces were aligned with the

illumination. We chose to fabricate these samples for profiling tests because the true

physical locations of air-glass reflective interfaces were readily measurable as the ground

truth for performance verification. Also, the air-glass interfaces acted as perfect Dirac

delta functions for testing the system axial resolution.

For 1D depth profiling, the 206 cm MMF was used. The testing sample was a stack

of two glass slides separated by a coverslip-thick air gap and with an overall physical

thickness of about 2.3 mm, as shown in Fig. 5.4.1(a). Each single camera snapshot can

be reconstructed into an entire depth profile, where the signal intensity indicates the

sample reflectivity. As shown in Fig. 5.4.1(b), four clear signal peaks precisely mark the

air-glass interface locations, as could be validated from the sample design. Furthermore, the

FWHM of the signal peaks just slightly exceeds the sampling step size, 12 µm, consistent

with the bandwidth-limited axial resolution.

To visually compare the imaging performance between use of short and long MMFs with

their corresponding sensing depth ranges, we conducted cross-sectional 2D imaging of a
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1D-structured sample with either the 54 cm or 206 cm MMF. In the experiment, an objective

lens (LSM02, Thorlabs) for light focusing was inserted into the sample arm and in front of

the sample, which comprised four glass slides separated by air gaps of different thickness and

had an overall physical thickness of about 11 mm. A dispersion compensator (LSM02DC,

Thorlabs) was inserted into the reference arm before the gold-coated mirror to compensate

the chromatic dispersion introduced by the objective lens. The sample was translated in the

lateral direction by a stepping stage (SGSP20-20, Sigma-Koki), and a camera snapshot to

construct the corresponding depth profile was acquired at each lateral location. The sample

and the scan range remained identical when switching between the two MMF lengths. As

shown in Fig. 5.4.1(c), although the 54 cm MMF offered a limited depth range unable to

cover the entire sample thickness, it provides superior SNR in the first 3 mm compared to

the 206 cm MMF. On the other hand, despite the inferior SNR, the 206 cm MMF provided

almost three-fold additional sensing depth range, enabling full-depth profiling of the sample.
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Figure 5.4.1: Examples of sample depth profiling. (a) Schematic of the multi-layer sample.
(b) The reconstructed depth profile shows four reflectivity peaks corresponding to the air-glass
interfaces. The spacings between the peaks are consistent with the physical thickness of the glass
slides and the coverslip when assuming a refractive index of glass of 1.5. The sampling step size
was 12 µm. (c) Cross-sectional image of another sample acquired with either the 54 cm or the
206 cm MMF. For each case, a selected depth profile is plotted in log scale to show the relative
intensity of sample reflectivity. Reflectivity peaks are consistent with physical locations of air-glass
interfaces of the sample. Using the 206 cm MMF allows full-depth imaging of the sample yet
suffers from inferior SNR compared to using the 54 cm MMF. The sampling step size in lateral
and axial directions was 10 and 20 µm, respectively, and the scale bars are 1 mm.

5.5 Discussion

We presented a depth profiling system with micron-resolution and centimeter-long

depth sensing range by performing computational coherence gating with random encoding
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functions generated from modal interference in a MMF. The ability to easily control the

spatio-temporal coupling within the MMF affords a remarkable flexibility in adjusting

the axial sensing range.

In theory, the physically available sensing depth range depends on the difference in the

group delay between the fastest and the slowest guided mode. Based on geometric optics,

with the fastest guided mode propagating parallel to the cylindrical axis and the slowest one

zigzagging down the length of MMF at the critical angle θc = sin−1(n2/n1), where n1 and

n2 = n1−∆n are the refractive indices of the fiber core and the cladding, we can estimate the

maximal sensing depth range available with a given length of MMF L by their relative delay:

∆zmax ∼ (n2/n1)×∆n× L. (5.4)

With 206 cm or 54 cm long step-index MMF, the maximal sensing depth ranges are

35 mm and 9.2 mm, respectively.

In our experiments, we first demonstrated that the sensing depth range and averaged

SNR improve with the number of populated modes. While the speckle coupling regime and

mode mixing help to populate higher-order modes, Tikhonov-inversion numerically corrects

for unequal energy distribution among the random encoding functions. The Hermitian

transpose is not an ideal reconstruction technique since the system is lossy and not unitary.

Even with Tikhonov inversion, the achieved sensing depth range, 11.1 mm, is well below

the theoretical lossless approximation of 35 mm for the 206 cm MMF. Several reasons can

explain the restricted sensing depth range: The speckle input in the speckle coupling regime

was not optimized to populate all guided modes (468 experimentally populated modes vs.

790 theoretically available modes). Mode mixing in the strong mode coupling regime, where

light is coupled between guided modes of very different propagation constants, causes large

path lengths to be averaged with shorter ones, thereby leading to a reduced sensing depth

range [46]. Also, higher-order guided modes are more likely to experience propagation loss

upon fiber deformation and scrambling, and coupling energy to random encoding functions
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at large pathlength offsets is challenging. Finally, the detection of a single polarization state

likely leads to additional loss. Engineering the input wave front coupling into the MMF

and employing full polarization detection may offer more uniform energy distribution.

The number of resolvable depth positions can be calculated as the sensing depth range

divided by the decorrelation distance. Based on Eq. 5.4 and the source coherence length,

the number of the maximal resolvable depth positions with 206 cm MMF is 3097, which

is significantly larger than the total number of available guided modes, ∼790 in a single

polarization state. Since the delay of the random encoding functions is not continuous due

to the discrete distribution of the propagation constants of the MMF’s guided modes, it

is conceivable that this would fragment the sensing range. However, we did not observe

any discontinuity within the experimental energy trace or sensitivity matrix. This may

suggest that sufficient mode mixing is taking place to maintain a continuous sensing range.

Notwithstanding, our experiments revealed a trade-off between sensing depth range and

sensitivity. When the number of resolvable depth positions exceeds the number of the

REM’s singular values with appreciable amplitude, the signal reconstruction becomes

ill-conditioned and more sensitive to noise, as shown in Table 1. To operate the system in a

well-conditioned regime, where its REM is highly invertible and the sensing depth range is

maximized to use all degrees of freedom, the number of resolvable depth positions should

match the degrees of freedom. Therefore, considering a MMF with all available modes

equally populated, the optimal sensing depth range, ∆zopt, can be determined by the number

of total available guided modes of a MMF, Nmode, and the source coherence length, lcoh,

∆zopt = Nmode × lcoh. (5.5)

Specifically, for the depth profiling system operating with the Φ = 105 µm, 0.22 NA MMF,

the number of total available modes in a single polarization state is 790, and the optimal

sensing depth range is 10.3 mm, which corresponds to 61 cm MMF according to Eq. 5.5,

assuming all available modes are equally populated.
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Our imaging strategy using random encoding functions generated by a MMF does

not rely on sample sparsity. Although the properties of the generated encoding functions

would likely be suitable for subsampling of sparse signals, the set of encoding functions

spans the entire depth range, allowing direct inversion and, hence, reconstruction of the

full depth information. However, digital post-processing for distortion compensation,

aberration cancellation, or noise suppression to improve measurement performance would

be possible through refined inversion strategies and inclusion of regularization in the image

reconstruction. Using the random encoding functions obtained from complex media for

computational imaging can circumvent physical constraints encountered by conventional

imaging systems and facilitate the development of novel measurement architectures leading

to smaller, faster, or cheaper devices. For instance, in a grating-based spectrometer for

spectral-domain optical coherence tomography (SD-OCT), a large sensing range demands a

diffraction grating with high spectral resolution, and the number of resolvable positions is

linearly proportional to the dimension of the utilized line scan camera. A typical SD-OCT

with millimeter sensing range and micron-scale axial resolution already employs line scan

cameras with thousands of pixels. The specifications to enable centimeter imaging range

with SD-OCT comparable to our depth-profiling system would be difficult to meet with

commercially available line scan cameras. Previously, linear OCT has been proposed as a

path to cheaper and simplified coherence gating by using spatial multiplexing. However, to

achieve centimeter-long imaging range, it would still require a similar unpractically long

linear image sensor or a sophisticated free-space interferometer [117, 118]. While the initial

implementation of our system used carefully designed achromatic off-axis holography, we

verified experimentally that similar results can be obtained by simply tilting the MMF

reference fiber, equivalent to replacing the reflective grating with an angled mirror. This

suggests that even lens-less off-axis interference between the light from the single mode

fiber and the MMF should result in comparable random encoding functions, offering a

striking simplification of the system design. Indeed, the achromatic interference pattern is
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only needed when attempting to demodulate the broadband interference term into spatial

camera coordinates. This is unnecessary for our sensing matrix which is constructed

in the in-plane momentum domain, although extended bandwidth will radially blur the

interference term and increase the number of elements in each column of the REM, eventually

affecting the reconstruction stability.

5.6 Conclusion

In this chapter, we introduced a depth profiling system that performs computational

coherence gating by employing a set of random encoding functions generated from a MMF.

The reflectivity at each axial position within a sample is encoded by interference with the

corresponding random encoding function. With a calibrated REM, 1D reflectivity depth

profiles of a sample can be non-adaptively reconstructed from a single camera snapshot

without mechanical or optical scanning. Tailoring the physical length and coupling regime

of the MMF, we demonstrated a scalable sensing depth range from 3.25 to 13.4 mm,

while achieving high axial resolution of 13.4 µm.
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Optical multimode fiber (MMF) may serve as narrow-gauge imaging probes that extend

the reach of optical endoscopy based on computational reconstruction considering the fiber

transmission. However, calibrating the fiber in an endoscopic setting is exceedingly challeng-

ing, limiting the flexibility of probes and wide-spread applications. Here, we demonstrate a

121
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solution by recovering the fiber transmission from proximal measurements using optimization

techniques and insights from waveguide physics. Final manuscript in preparation.

6.1 Reciprocal Symmetry and Solution Ambiguity

The implementation of a flexible MMF endoscope remains technically challenging

despite recently proposed strategies [22, 37, 39, 78, 119–121] and the lack of flexibility is

the enduring bottleneck for MMF imaging applications. Because the transmission through

MMF is notoriously sensitive to physical fiber deformation, a flexible MMF endoscope would

demand repeated on-site calibration without open distal access in practical endoscopic

settings. Imaging through MMF with certain flexibility based on data-driven approaches

has been reported, yet relying on a transmissive regime that requires open distal access

[120, 121]. Although calibrating MMF with only proximal access is a desirable strategy,

robust experimental MMF proximal calibration methods remain to be demonstrated.

Understanding the reciprocal nature of light propagation through a MMF and the underlying

symmetry constraints may help tackle this challenge. In the context of proximal MMF

calibration, where the measurement of T2X may be available, the demonstrated reciprocal

symmetry in Section 2.4 precludes straightforward recovery ofTfw orTbw, which is needed for

imaging through the MMF [20, 22, 29, 34]. To appreciate this limitation, we can factor Tfw

into its symmetric and anti-symmetric parts based on the second polar decomposition [122],

Tfw = AL, (6.1)

where A is orthogonal (AT = A-1) and L is transpose symmetric (LT = L). In this

case, Eq. 2.9 becomes

T2X = L2. (6.2)

The orthogonal parts cancel each other upon forward and backward transmission, preserving

only the symmetric part in the round-trip transmission measurement. Equation 6.2 states
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a fundamental restriction: while the symmetric part of Tfw can be uniquely retrieved by

taking the matrix square-root of the proximally measured T2X [123] (if it has no negative

real eigenvalues), the orthogonal part, A, vanishes due to the intrinsic propagation property

imposed by the optical reciprocity. Put differently, although a square, complex-valued matrix

of dimensionM has 2M2 unknown coefficients, the transpose symmetry reduces this number

to M2 +M , masking the additional M2 −M of the orthogonal component. This leads to

the symmetric degeneracy of Tfw even though T2X is known. This explains why Tfw cannot

be directly retrieved from T2X, which complicates strategies for MMF proximal calibration.

6.2 Physics-informed Proximal Calibration Method

6.2.1 Distal Calibration Elements and Triplet Measurements

To eliminate the degeneracies, we propose a proximal calibration method, as illustrated

in Fig. 6.2.1(a): A calibration element at the MMF distal end that is capable of at least

three different realizations, where the round-trip TM, Ci=1,2,3, of each element realization

has sortable eigenvalues and distinctive eigenvectors [124]. We then measure from the

MMF proximal end a triplet of round-trip TMs, Mi=1,2,3, with the corresponding distal

calibration element realizations. The light forward propagation through the MMF, followed

by the distal element and reflection, and backward propagation along the reciprocal path

can be modeled as TM multiplications,

Mi = TT
fwCiTfw, i = 1, 2, 3. (6.3)

Together with the prior knowledge of the distal calibration element, we previously showed

with numerical evidence that the single-pass TM of the MMF in an arbitrary physical

conformation could be retrieved analytically [124]. Nevertheless, a real-world MMF is lossy,

where its TM is low-rank, creating an ill-posed problem subject to measurement noise.

The method or other analytical approaches [37], which attempt exact matrix inversion
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or factorization, are therefore not feasible in a realistic condition. As a result, we need

modifications to the numerical algorithm.

We alternatively resort to an adaptive method by minimizing a cost function, which

is the difference between the measurements and analytical model and searching for

a complex Tfw matrix,

Tfw = arg min
Tfw

3∑
i=1
||Mi −TT

fwCiTfw ||2F , (6.4)

where the overline indicates optimal value, and F is the Frobenius norm. This is similar

to the simulation work by Gordon et al. [39], where multiple color filters and passive

metasurface reflectors were designed as distal calibration elements, and operations at three

wavelengths served as three different realizations. The advantage of our configuration here

is that the requirement of distal calibration element is much relaxed, and no complicated

design is needed. Unfortunately, directly optimizing the problem without a good initial

estimate generally results in false solutions corresponding to local minimums, which,

empirically speaking, are far away from the true solution. Therefore, we investigate

additional constraints that can be integrated to the problem to avoid false solutions. For

simplicity, we drop the subscript of Tfw and use T to specify the forward TM from here on.

6.2.2 Optimization with Waveguide-physics-based Constraint

According to waveguide theory, an ideal and straight MMF has a set of N guided

propagation invariant modes (PIMs) with different propagation constants, and each PIM

is an eigenvector of the MMF TM and does not interact with others. Under a general

condition of mild fiber bending and looping, most modal interactions between PIMs are

those with similar propagation constants due to momentum conservation, and this is often

termed as weak coupling regime (scattering mean free path < fiber length). As a result,

while a practical MMF is considered as a complex media with chaotic transmission, there

are underlying physical constraints structuring the TM, which can be revealed when the TM
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Figure 6.2.1: Overview of the proposed proximal calibration method. (a) Using a distal
calibration element C and the knowledge of transmission sparsity, we retrieved the MMF forward
transmission T from proximal measurements M based on optimization. The color maps encode
complex values. (b) The reconstructed MMF transmission allows focusing and imaging through
the fiber.

is in the PIM representation. Incorporating the constraints into Eq. 6.4 may help to avert

false solutions. This is similar to compressive sensing and regularization strategies, where

the signal sparsity facilitates reconstruction in underdetermined linear systems [125, 126].

To represent TMs in PIM basis as illustrated in Fig. 3.1.1(a), we numerically generated

a set of theoretical PIMs based on the MMF specifications, grouped the vectorized PIMs

into E in a descending propagation constants order, and projected T, Mi, and Ci from

the original recording coordinates to the modal space

X = E†dTEp

Pi = ET
pMiEp

Di = ET
dCiEd,

(6.5)
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where we used subscripts p and d to denote PIMs on the proximal and distal ends, Ep

and Ed, respectively. Due to the projection, X, Pi and Di are square matrices. Numerical

corrections are necessary to compensate physical misalignment (see Section 2.2.4). In the

modal space under the weak coupling regime, X has diagonal-ish structure. To leverage the

waveguide structure in the optimization problem, we designed and generated a real-valued

and elemental-wise regulator S that penalizes the off-diagonal elements, which represent

the less likely coupling between modes of much different propagation constants. Strictly

speaking, we are not performing basis transformation on the round-trip TMs, P and D, as

the complex Ep matrix is unitary but not orthogonal, and this is to preserve the transpose

symmetry of the round-trip TMs in the projected modal space. Plugging the changes into

the original optimization problem including the regulator, we have a modified cost function

X = arg min
X

3∑
i=1
||Pi −XTDiX ||2F + λ||S�X ||2F , (6.6)

where X is the speculated T in the PIM basis, the � symbol indicates Hadamard product,

and λ is the parameter controlling the importance of the regularization term. To achieve

efficient calculation of Eq. 6.6, we developed an analytical gradient for steepest descent.

We then optimized the three sub-problems sequentially and iteratively to avoid local

minimum since the degeneracies in each sub-problem are not typically the same. With

reconstructed X, we recovered the single-pass T by reversing the basis transformation

from the modal space back to the recording coordinates with the previously calculated

transformation matrices, Ed,p,

T = EdXE†p. (6.7)

The recovered T, which specifies the full light transfer information for all spatial channels,

can thereafter allow coherent focusing or imaging techniques through the MMF with matrix

inversion T-1 [22, 86], as illustrated in Fig. 3.1.1(b).
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6.2.3 Experimental Setup

To prove the concept of the proximal calibration method based on the numerical

algorithm as in Eq. 6.6, we measured T and C and synthesized M in Eq. 6.5. The

polarization-resolved TM measurement setup is shown in Fig. 6.2.2, which is the same as

in Chapter 3 and 4 and publication [86]. We used a 1m-long step-index MMF (SI-MMF)

with 50 µm core size, and 0.22 NA operated at 1550 nm, which theoretically supports

∼129 spatial modes per polarization state. The fiber was loosely coiled with a minimum

radius of curvature of ∼ 50 mm. We measured T by sequentially probing proximal input

channels and detecting the corresponding distal output including both polarization states,

as illustrated in Fig. 6.2.2(a). The input and output channels of T have been ordered

first by spatial coordinate, then by polarization, leading to four quadrants corresponding

to either H or V illumination and detection.

The same MMF was utilized as a distal calibration element with the glass-air interface

at fiber distal facet providing reflection signals. In Fig. 6.2.2(b), to measure its round-trip

TM, C, we probed through the same set of input channels and detected the corresponding

proximal outputs at the same input locations. Similar to T, C also has four polarization

quadrants. We separately obtained the round-trip TMs, Ci=1,2,3, in three different fiber

shape realizations, respectively. To retain the intrinsic transpose symmetry of C imposed

by optical reciprocity, we numerically corrected the misalignment of output channels [41].

As illustrated in Fig. 6.2.2(c), we then modeled the concatenation of the distal calibration

element to the original to-be-calibrated MMF segment with matrix multiplication, and

synthesized proximal measurements, Mi=1,2,3 following Eq. 6.3. In a practical endoscopic

setting without open access to MMF distal end, we have prior knowledge of C and

can measure M. To approximate a real experiment, we added to Mi complex white

Gaussian noise with a signal to noise ratio of 18, justified by noise quantification in

repeated TM measurements.
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Figure 6.2.2: Experimental setup of MMF TM measurement. PR: phase retarder, GM: gal-
vanometer scanning mirror, BD: beam displacer, BS: non-polarization beam splitter, Ref.:reference
wave, Cam.: camera. Using (a) single-pass T measurement and (b) round-trip Ci=1,2,3
measurements, we can (c) synthesize proximal Mi=1,2,3 measurements imitating calibration
signals in an endoscopic setting.

6.2.4 Regulator Generation

The regularizer S in Eq. 6.6 penalizes the matrix entries accounting for unlikely coupling

in estimated X to impose the sparsity constraint. To design an adequate regularizer,

we generated a generic real-valued mask S by fitting the sparsity model Sq on each

polarization quadrant of empirical X

S =
[
SHH SVH
SHV SVV

]
Sq(ζ, ξ) = 1− e−a(r/N)−((θ−b)/c)2

r =
√
ζ2 + ξ2, θ = tan−1(ξ/ζ)

Sq = arg min
Sq

∣∣∣∣∣0.7− ||Sq �Xq||2F
||Xq||2F

∣∣∣∣∣,
(6.8)
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where a, b, c are the parameters to be fitted, and ζ and ξ are the row and column indices,

respectively. Figure 6.2.3(a) shows X, the forward TM in PIM basis, where the energy

concentrates towards the diagonal. Lower order modes have more localized cross-coupling.

We generated sparsity mask S for optimization regularization, as shown in Fig. 6.2.3(b),

where each quadrant has similar structure. We tested the mask on forward TM of MMF in

several shape realizations, and all TMs have 70± 4% energy contained within the mask.
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H

Figure 6.2.3: Sparsity of the transmission matrix in modal representation. (a) The forward X
(b) Generated mask S based on TM.

6.3 Transmission Reconstruction Accuracy

6.3.1 Reconstructing Forward TM

With proximal measurement P, prior knowledge of distal calibration element D, and

generic waveguide structure S, we aim to retrieve X for MMF imaging by solving the

optimization in Eq. 6.6 with λ = 0.04. While minimizing the designed cost function, we

monitored the normalized error of current estimated X compared to ground truth Xgt,

ε(X,Xgt) = ||X−Xgt||2F
||X||F ||Xgt||F

. (6.9)
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We also evaluated the matrix correlation by calculating

C(X,Xgt) =

∣∣∣∣∣∣
∑
ij a
∗
ijbij√∑

ij |aij|2
√∑

ij |bij|2

∣∣∣∣∣∣ , (6.10)

where , i and j are the matrix row and column indices, and aij and bij are the entries of X

and Xgt, respectively. In addition, we synthesized focusing through MMF for visualizing

reconstruction efficacy. To show the robustness of our method, which does not require the

knowledge of fiber shape, we started from a random initial guess Xinit, which is a complex

normally distributed random matrix masked with 1− S, and the corresponding focusing

through MMF resulted in speckle output. As shown in Fig. 6.3.1, the initial cost, error, and

matrix correlation are 0.69, 168.4%, and 0.02, respectively. The matrix product XgtX†init
is a chaotic matrix, indicating that the initial guess is far from the ground truth. The

optimization algorithm converged within 12000 iterations in ∼20 min. The final cost, error,

and matrix correlation are 0.51, 43.2%, and 0.78, respectively. Therefore, the optimization

leads to a good solution regardless of a random initial guess.

6.3.2 Reconstruction Evaluation

To test the spatial uniformity of the reconstructed channels in real space, we converted

X back to T in real space following Eq. 6.7, and numerically focused through individual

channels. To synthesize focusing through the MMF, we separately measured another

T̃, where the ∼ symbol indicates replicate measurement. We then computed the input

wave-fronts, which are essentially the columns of T−1(tik) using Tikhonov regularized matrix

inversion since the TM is low-ranked and non-invertible. Numerically propagating the

wave-fronts through the MMF, which is modeled by T̃T−1(tik), creates foci at varying distal

positions. Reshaping the distal output to 2D coordinates allow us to visualize focusing

and evaluate the recovery of T, as few examples are shown in Fig. 6.3.2. The focus

contrast at each channel, η, defined as the ratio of the peak intensity at the intended

focal point to the average level of speckled background, is computed, and the averaged



6. Proximal Calibration Method towards Flexible MMF Endoscopy 131

H V

V

H

iteration

sec

co
rr

el
at

io
n

co
st

er
ro

r 
(%

)

Xgt Xinit Xgt Xopt

35

170

0.5

0.7

50 120k

cost
error

0 1200
0

1

arg min Σ| Pi - X
TDiX |F + λ| S⊙X |F

X

2 2

0.5

(a) (b)
H V

V

H

0

1

Figure 6.3.1: Forward transmission reconstruction by solving the designed optimization problem.
XgtX

† (a) before (b) after the optimization.

value over all available channels is ∼100.7. For comparison, we repeated the process using

the ground truth T, where the averaged focus contrast is ∼187.5, as if the open distal

access is available in common MMF calibration experiments.

In addition to focusing through MMF at individual channels, we simulated reflectance

imaging through MMF to visualize performance. To image an object through the MMF,

we mapped the generated scanning focus within the MMF core to reflectance intensity

of the object at the corresponding position on a 2D grid, which is equivalent to common

imaging through MMF experiments based on WFS systems [22, 72]. We then tiled multiple

images as if the MMF is moving across the object to augment the FOV. The results

are shown in Fig. 6.3.3.
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Figure 6.3.3: Simulated imaging through MMF of (a) object with (b) no calibration (c) our
proximal calibration approach, and (d) common distal calibration.

6.4 Discussion

Calibration of MMF forward transmission without open distal access is inevitable in the

development of flexible MMF endoscopy. However, the transpose symmetry of proximal

measurements results in ambiguity when reconstructing the MMF forward transmission. By
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leveraging the distal calibration element and sparsity constraint on the MMF transmission

as analogous to compressed sensing [127], we crafted an optimization formulation that

avoids convergence to false solutions in the under-determined system.

While bending admittedly remains the most fundamental limitation towards practical

use of flexible MMF endoscopy, several strategies tackling the problem from different aspects

are being pursued to address the need for TM calibration without open access to the distal

fiber end: The transmission through MMF can be predicted given the fiber shape [22]; The

installation of carefully designed passive distal optics to the MMF tip may provide additional

mathematical constraints that in retrieving the TM from round-trip measurements [37,

39]; Graded-index MMF has been shown to feature increased robustness of light transport

to bending deformations [38]; A distal guide star together with prior knowledge of TM

structure can assist recovering a subset of spatial channels using only proximal access for

partial imaging through a MMF [40]; Compressive sampling of TM has been reported

to greatly reduce the number of measurements by assuming a TM sparsity constraint

[79], which could also be used for TM deduction in proximal calibration; Alternatively,

input to MMF with random fiber conformations can be reconstructed from output speckle

patterns based on a data-driven approach [128]. Further progress with these methods in

combination with our matrix approach would pave a way to flexible MMF endoscopy in

a general clinical setting. The proposed iterative method is different from an analytical

attempt, as it does not involve direct matrix inversion or factorization that may amplify

the measurement noise and compromise the retrieval of a good solution. The optimization

converges to a good solution regardless of random initial guess, allowing on-site MMF

calibration. Since the triplet proximal measurements with different realizations of the distal

calibration element render information of forward transmission spanning all available spatial

channels, the reconstruction is not limited to certain physical position and hence partially

calibrated MMF. Furthermore, the method does not require exact fiber shape and geometry,

integrated optics with sophisticated nano-structure, and precise operating wavelengths,
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and a common complex medium may suffice as a distal calibration element. In this study,

we demonstrated the proximal calibration by synthesizing round-trip measurements from

experimental experimental TMs, indicating the practicality and potential of implementation.

In the experiments, we used another MMF segment as the distal calibration element

to show that our method works with readily available complex media. As a result, an

optical diffuser that scrambles light propagation may also serve for the purpose and

have a miniaturized footprint. However, in this case we need to consider the optical

coupling efficiency, as high laser power for compensating loss may be dangerous, and

the stray light reflection may lead to additional problems. Also, while we physically

perturbed the calibrating MMF for different realizations, the design and engineering of

the calibration element with actuators will be necessary for pragmatic development. One

possible engineering solution is to use polymer-dispersed liquid crystals, where their optical

properties can be configured by applied voltages [129]. Lastly, a remotely controllable

optical filter for separating MMF calibration and imaging modes is also required to achieve

a fully functional MMF-based endoscope.

In our designed optimization problem, the time complexity of computation grows

with the power of number of modes, and the calibration of MMFs with larger core size

and more number of modes may need huge computing power for on-the-fly calibration.

Similar to many steepest gradient descent algorithm, an adaptive step size may help

accelerating the convergence. Since the TM sparsity relies on a weak scattering regime,

the efficiency of the proximal calibration method upon MMF bending with small radius

of curvature remains to be investigated.

Remaining efforts towards achieving flexible MMF endoscopy are practical implementa-

tion of miniaturized distal calibration elements, high-speed TM measurements, and fast

numerical recovery of forward transmission from proximal measurements, which may also

spark new approaches for deep tissue imaging or remote sensing.
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6.5 Conclusion

In this chapter, we learned how reciprocal symmetry in proximal measurements of

MMF transmission imposes ambiguity on the retrieval of forward light transport process.

Nevertheless, using the optimization approach with sparsity constraint according to

waveguide physics, we can solve for the ill-posed inverse problem and reconstruct all MMF

imaging channels. The demonstrated proximal calibration method may relax requirements

on the design and fabrication of MMF and distal calibration elements, which may expedite

the imaging probe development towards flexible MMF endoscopy.
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Research is what I’m doing when I don’t know what
I’m doing.

— Wernher von Braun
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In the previous sections, we developed various simulation toolboxes and computational

solutions to address critical technical challenges of imaging and sensing through MMF.

Here, we summarize the chapters and highlight the main contributions of our works. Then,

based on the achievements, we will discuss the future outlook of MMF-based endoscopy

and pertinent applications. Finally, we will give conclusion of this thesis.

7.1 Summary and Contributions

In Chapter 2, we reviewed theoretical MMF transmission model, created numerical

simulation toolbox, and studied the fiber-guided modes, propagation constants, and

mode coupling effect under fiber bending. The different refractive index profiles between

SI- and GI-MMF lead to distinctive transmission properties. We employed a coherent

137
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transmission matrix (TM) technique to characterize the end-to-end light transport process

between input and output channels, which allows us to quantify number of guided modes,

study transmission loss, visualize hidden transmission structure and underlying physics,

and enable focusing and imaging through MMF. We also developed several numerical

techniques to handle matrix inversion, correct physical misalignment in experiments,

and transform matrix basis.

In Chapter 3, we disclosed a computational imaging paradigm for multi-modal 3D

reflectance imaging through MMF of unlabeled samples and without active wave control.

Using the TM technique, we numerically created depth-gating effect for optical sectioning,

refocused on varying axial position for 3D imaging, and extracted elastic signals with

various sample specificity. We evaluated the optical sectioning, fully characterized the

imaging system performance, and demonstrated numerical point spread function engi-

neering. Compared to the previous imaging through MMF approaches, our method has

advantages in image rendering flexibility, label-free contrast generation, hardware system

simplicity, and potentially imaging speed. The method has also enabled many first-

time imaging demonstration through MMF including phase and polarization-resolved

imaging in a reflection geometry.

In Chapter 4, we demonstrated a computational spectral correlation in MMF, which

brings new insights in spectral DOF of complex media. We created a parametric dispersion

model that allows compensating waveguide dispersion in fiber transmission, revealing an

ultra-wide hidden spectral correlation. This computational method allow us to study the

nonlinear dispersion effect in principal modes without additional experimental require-

ments. Application-wise, the dispersion model enabled highly efficient multispectral system

calibration strategies in MMF, which may be widely applicable to other complex media

such as resonant cavities, disordered media, and biological tissues. The method may also

spark new calibration strategies in nonlinear microscopy, multicolor imaging and sensing,

and dispersion correction in meta-surfaces and photography.



7. Conclusion and Future Outlook 139

In Chapter 5, we described a new depth profiling system by harnessing the random

functions generated from MMF. The multiple pathlengths of broadband light transmission

through MMF create a long sensing range and high axial resolution without assuming

sample sparsity. The imaging specifications such as sensing range and signal to noise

ratio can be reconfigured by altering the MMF input coupling and fiber scattering regime.

We demonstrated depth reflectivity profiling of layered samples with centimeter range

and micrometer axial resolution. The method may be useful in areas where a flexible

trade-off between performance and system simplicity is beneficial, such as in industrial

inspection, remote sensing (or LiDAR), or medical imaging, and may inspire extension

to two and three-dimensional imaging.

In Chapter 6, we demonstrated a proximal calibration method to tackle the flexibility

problem in MMF-based imaging systems. In an endoscopic setting, the reciprocal symmetry

in proximal measurements imposes ambiguity in deriving the forward transmission, which is

needed for focusing and imaging through MMF. The method is based on a distal calibration

element, the knowledge in waveguide physics, and developed optimization approach. We

showed, with experimental TMs, that the method allows reconstruction of MMF forward

transmission with high accuracy. The optimization approach with entry-wise regularization

is also analogous to least absolute shrinkage and selection operator (the so called Lasso

method [130]), which was introduced in order to improve the prediction accuracy and

interpretability of regression models.

7.2 Next Steps and Outlook

Looking forward, we believe that the following topics will guide the research direction

towards practical MMF-based imaging and sensing probes:

1. Coherence gating through MMF for optical sectioning - We have shown a computational

confocal gating effect by exploiting the DOFs of monochromatic transmission through
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MMF, but the resolution, especially in the axial direction, depends heavily on the fiber

NA and imaging distance. A superior 3D spatial resolution down to organelle scale may

be straightforwardly achieved by using MMF with higher NA or operated at a shorter

wavelength. However, this leads to an increased number of modes and thus inevitably

longer MMF calibration and image acquisition time. Furthermore, the effective fiber

NA decays with imaging distance, so the high-resolution imaging range may be very

limited. Coherence gating, on the other hand, is another optical sectioning method

that uses broadband low-coherence light or a wavelength-swept laser source to capture

micrometer-resolution axial reflectivity profiles across the sensing range. The axial

resolution relies on the spectral bandwidth instead of the spatial attributes. For example,

current optical endoscopy based on optical coherence tomography (OCT) uses light

source with bandwidth of several tens of nanometers and employs a SMF to deliver

light between a remote sample and proximal detection. While the coherence gating

technique has also been implemented on MCFs or fiber bundles [131, 132], to apply

the technique to MMF imaging will require multispectral calibration as an inevitable

prerequisite. Fortunately, as we introduced the dispersion model of transmission through

MMF in Chapter 4, we can efficiently reconstruct spatio-spectral channels based on

the computational methods and drastically reduce the number of measurements during

multispectral calibration. As a result, realizing OCT through MMF may be a promising

research direction.

2. Imaging weakly scattering samples through MMF - We have conducted proof-of-concept

3D reflectance imaging of layered samples, i.e., cell clusters on both front and back

surfaces of a coverslip, through MMF based on computational reconstruction in Chapter

3. Reflection from the coverslip, which was ∼0.04, provided sufficient reflectance signals

for imaging demonstration. However, biological tissues are weakly scattering samples

with reflectivity as low as ∼10−4 to 10−5 [133], which can only be resolved with a

much higher system sensitivity. Similar to OCT imaging systems, in our interferometric
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detection setup, we may increase the reference arm power to amplify weak signals, but

this will also amplify the specular reflection from fiber facet and saturate our limited

camera dynamic range. As a next step, we may use anti-reflection coating on MMF

facets or other engineering solutions to suppress the specular reflection from both the

proximal and distal fiber facets to favor detection of weak sample signals [134, 135]. We

can thereafter determine the optimal sample and reference arms power in the MMF

imaging system to resolve realistic samples for biomedical applications.

3. Field of view, resolvable points, and imaging speed - As described in Appendix A,

the lateral field of view (FOV) of imaging through flat-end MMF is bounded by fiber

core size and NA. A large FOV can be obtained, however, at the expense of more

invasiveness. As an alternative, side-view MMF imaging is possible with an engineered

fiber termination that reduces compression and damage to the tissue [33]. We have

also shown in Appendix B that, for monochromatric volumetric imaging through MMF,

the number of total resolvable 3D voxels (throughput) is on the order of ∼N3/2 (N1/2

resolvable points in each spatial dimension), where N is the number of MMF guided

modes. For instance, a SI-MMF with 100 µm core size and 0.22 NA operated at a visible

wavelength may provide ∼104(lateral)× 102(axial) = 106 resolvable voxels. While the

number of en face resolvable points is close to a typical endo-microscope [136], and

an even higher throughput (megapixel 2D image) may be achievable with a larger N

(MMF with more modes), there is an inherent tradeoff between throughput and imaging

speed. In our monochromatic polarization-resolved TM measurement, it took several

to tens of seconds for MMF with several hundreds to over a thousand guided modes.

The physical measurement speed is currently bottle-necked by the 120-Hz near-infrared

InGaAs camera, and we may switch to other cameras at visible wavelength with > 20

kHz frame rate, which may significantly reduce the TM measurement time by a factor

of > 100, leading to volumetric images in few frames per second for our computational

imaging approach. Alternatively, the time reduction may also translate to real-time
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proximal fiber calibration for flexible MMF-based imaging probes. Furthermore, as

imaging through MMF with partial TM measurement at compression rate more than

90% is possible [86], we can study the optimal compression rate for realistic samples (or

the optimal number of measurements) and may accelerate the imaging rate by more

than another factor of 10.

4. Parameterizing dispersion in other complex medium - We have created a dispersion model

of transmission through MMF and showed effective numerical dispersion compensation.

To evaluate the efficacy of our parametric dispersion model on other complex media and

find potential applications, we may repeat the same procedures with common scattering

materials such as optical diffusers, disordered waveguides, or paint layer. While our

current steepest descent optimization algorithm is sufficient for solving high order

dispersion in several-meter-long MMF, new and more efficient optimization strategies for

constructing dispersion model of longer or higher NA MMF will need further investigation.

Integration of the dispersion model into the design of SDM systems with MMF will also

be a good research topic in optical communications.

5. Other proximal calibration strategies - We have explained the technical challenge of

on-site MMF calibration in an endoscopic setting. In the proposed proximal calibration

method, to configure the distal calibration element into different realizations may need

remote access to the distal end in practice, which, however, increases the fabrication

complexity and cost. An alternative approach may be to include other constraints in the

spectral domain: a passive distal element with strong dispersion such that when solving

for the forward fiber transmission from the proximal multispectral measurements, we can

apply the computational spectral correlation and impose additional constraints. This

may avoid moving parts in the MMF distal end and relax the implementation difficulties.

6. Other sensing through MMF applications - We have developed an axial profiling system

using the spatio-temporal modes generated from MMF. The similar idea to depth sensing
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with MMF can be extended to other physical or chemical variation. For instance, we

can use the same system to measure the refractive index of an unknown substance based

on the pathlength change in the sample arm. Alternatively, we can calibrate the TM

of MMF under different environments, and, in the sensing phase, measure the fiber

perturbation and convert it to the corresponding physical quantities by analyzing the

TM change. Previous literature on sensing with MMF typically used optical coupling

efficiency through a MMF spatial channel as a single indicator for measuring the variation

of physical quantities [137–140]. However, the TM approach uses full DOFs in the MMF,

which may be more sensitive and offer a larger sensing range.

While remaining technical challenges for clinical translation of imaging through MMF

are likely to be solved following the above-mentioned steps, there are still fundamental

limitations of MMF imaging difficult to overcome. For reflectance imaging, which is ideal

for clinical applications, since, on average, each resolvable point in sample space roughly

requires one camera snapshot on the proximal side, the camera frame rate will be a hard

limitation imposed on the imaging speed. Even with fast cameras with kHz frame rate and

applying compressive measurement approach, it will still take several seconds to complete a

megapixel 2D image through the MMF. A video-rate MMF-based endoscope may thus come

at the expense of the number resolvable points. Another limitation is the imaging FOV,

which scales linearly with the fiber core size and will typically be in sub-millimeter range.

Combined with optical sectioning based on coherence gating with multispectral measurement,

the realistic sample volume may be in the range of ∼107µm3. Since the signal to background

ratio (SBR) of imaging through MMF is essentially constrained by the number of guided

modes, the limited SBR may restrict the image dynamic range to ∼103 to 104. As a result,

clinically speaking, we believe that this minimally invasive endoscopic imaging modality,

under efficient placement guidance to lesion sites, is best suitable for visualizing pathology

at cellular level such as infection, hyperplasia, hypertrophy, atrophy, and metaplasia. Such

ability is critical for early diagnosis and prognosis improvement for serious or fatal diseases.
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7.3 Final Conclusion

In this thesis, motivated by unmet medical needs, we proposed imaging and sensing

through MMF for minimally invasive endoscopic applications. To achieve this, we studied

and addressed critical technical challenges. We demonstrated the potential of computational

reconstruction in overcoming hardware limitations, and the results also opened the door

to many new science questions as discussed in each chapter. In addition, we developed

various algorithms for correcting imperfection in experiments, investigating waveguide

physics, signal processing, multi-variate fitting, and solving inverse problem based on linear

algebra, matrix calculus, and optimization techniques. We believe the thesis has provided

foundational elements towards developing a hair-thin MMF-based imaging probe that,

as elaborated in future outlook, has high likelihood in clinical translation. Although the

imaging throughput may not match the conventional white light video-endoscopy with

megapixel specifications, the MMF-based endoscopic imaging will open new opportunities

in biomedicine that are otherwise impossible with current technology.
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The microscope image is the interference effect of a
diffraction phenomenon.

— Ernst Abbe

A
Resolution and Field of View in Imaging

through MMFs

Contents
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A.1 3D Resolution

To calculate the theoretical lateral and axial resolution, we need to first compute the

effective NA, NAeff , specific to an OP at an axial position. While the effective NA may

also be dependent of the lateral displacement from the optical axis, we only consider an

on-axis point object on the OP for convenience. Given the object at a distance d away

from the MMF facet, the effective NA can be calculated from the maximal angle formed

with the point as the vertex and marginal rays within the MMF acceptance angle as sides,

as illustrated in Fig. A.1.1(a) and (b). When d is within the focal length of the MMF,

Ω ∼ ηD/2NA, a full NA can be obtained, which is determined during MMF fabrication.
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Figure A.1.1: Illustration of effective NA for an on-axis point object (red dot) on an OP (a)
within and (b) beyond the MMF focal length. The dotted line indicates optical axis. (c) The
simulated beam divergence at d = 600 µm with experimental T, and the circular blob diameter
associates with the imaging FOV. The plotted radius-wise mean intensity in logarithmic scale
with defined threshold determines the expected FOV on the OP at d. The scale bar is 100 µm.

Here, η is the medium refractive index, and θa is the fiber acceptance angle. Once d

is larger than this range, only a partial NA can be achieved due to the limited MMF

diameter. The value of effective NA is summarized as

NAeff =

NA, if d < ηD
2NA .

∼ D
2d , otherwise.

(A.1)

Given the effective NA, we can then compute the expected lateral and axial resolution

as in confocal microscopy [141]

δx = 0.4 λ
NAeff

(A.2a)

δz = 1.4 η λ
NA2

eff
, (A.2b)

where we see that the axial resolution has a strong dependence on the system NA.

A.2 Field of View

With the circular symmetry of fiber core shape, we can define the FOV on an OP as

the diameter of a circular area with circumference from furthest off-axis points having
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normalized confocally detected intensity dropped below 1% threshold. Using the measured

T of the MMF, we can free-space propagate each output light field per input to an OP

and incoherently sum all output light intensity over each input realization. This results

in a circular blob on the OP indicating the average illumination power at each spatial

channel. Taking the spatial-channel-wise intensity square of the blob informs confocally

detectable power, as shown in Fig. A.1.1(c), where the OP is 600 µm away from the MMF

distal facet. The low light coupling efficiency at FOV peripheral causes the vignetting

effect on reconstructed images, and the quantified FOV has ∅∼260 µm by applying the

threshold to plotted radius-wise mean intensity.
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Calculus works by making visible the infinitesimally
small.

— Keith Devlin

B
Resolvable Voxels in Imaging through MMF

Contents
B.1 Number of Modes in MMF . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2 Effective NA and Spatial Resolution . . . . . . . . . . . . . . . . . . . . 152
B.3 Number of Resolvable Observation Planes . . . . . . . . . . . . . . . . . 152
B.4 Number of Resolvable Voxels . . . . . . . . . . . . . . . . . . . . . . . . 153

The number of resolvable en face image features in monochromatic 2D imaging through

MMFs has been discussed extensively [142, 143]. Given a MMF supporting N modes, the

number of resolvable points is also ∼N . However, for volumetric imaging, especially the

axial dimension, the achievable number of resolvable "depths" has not been studied so far.

Here, we discuss the number of resolvable voxels (throughput) in 3D imaging through MMFs.

B.1 Number of Modes in MMF

Assume a step-index MMF with diameter D and NA operated at λ. The dimensionless

V number is calculated as

V = π ·D · NA/λ, (B.1)
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and the number of modes N is related to the V number

N ∼ V 2/2. (B.2)

B.2 Effective NA and Spatial Resolution

Consider an OP at d away from the facet, when d is smaller than the MMF focal

length, the generated on-axis focus through the MMF has a minimal lateral dimension

δ and depth of focus σ [144]

δmin = 0.6λ/NA

σmin = 1.4λ/NA2 . (B.3)

However, when d is larger than the MMF focal length, the MMF has an effective NA

NAeff = D/2d, (B.4)

and we have

δ = 0.6λ/NAeff

σ = 1.4λ/NA2
eff . (B.5)

δ is linearly proportional to d, whereas σ is proportional to the square of d. Note that while

δ grows with d, it cannot exceed the aperture size D according to wave optics.

B.3 Number of Resolvable Observation Planes

Rearranging the variables, we can parameterize NAeff and d as a function of δ

NAeff = 0.6λ/δ, (B.6)

and

d = Dδ/λ. (B.7)
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To calculate the number of separated OPs NOP , we integrate the number of depth of

focus upon small δ increment

NOP =
∫ D

δmin

∂d
∂δ

σ
dδ

=
∫ D

δmin

0.257 D
δ2 dδ

= 0.257 D · NA− λ
λ

∼ 0.257 D · NA
λ

= 0.257
π

√
2N (B.8)

B.4 Number of Resolvable Voxels

As illustrated in Fig. B.4.1, on each OP, we can have roughly N resolvable points,

so, taking also the axial dimension into account, we can have total resolvable voxels

within the MMF viewing cone

Ntotal = N ·NOP

= N · 0.257
π

√
2N

= 0.116 ·N 3
2 , (B.9)

which is a finite number.

In our computational imaging in Chapter 3, we used a N -by-N reflection matrix R

to model the reflectance of a sample, where the matrix R has N2 complex elements,

and we collected on-diagonal elements for confocal imaging. Assume the total detected

out-of-focus background energy, B, distributed uniformly over the N2 matrix elements

of R, and the in-focus signal intensity within a voxel S, then the theoretical signal to

background ratio (SBR) of the voxel will be ∼N2 · S
B
.
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d

Figure B.4.1: Number of resolvable points in the MMF viewing angle. As the effective NA
decays to a point where the lateral resolution approaches D, we cannot generate focus spots
anymore since the wave from the fiber facet has no convergence.



It’s not that I’m so smart, it’s just that I stay with
problems longer.

— Albert Einstein

C
Matrix Optimization with Unitary

Constraints
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Numerical matrix optimization under given constraints may involve optimization

methods on Riemannian manifolds and require closed form gradient for efficient computation.

In the Section 4.3.4, we optimized for complex matrix D(∆ω) = eX(∆ω) = e
∑K

k=1 Xk∆ωk under

the unitary constraint, which is equivalent to the optimization of skew-Hermitian matrix Xk.

While optimization with orthogonality constraints was neither simple nor computationally

cheap, we developed analytical gradient for Eq. 4.10 following the work by et al. [84].
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C.1 Theory

We are trying to minimize the complement correlation

arg min
Xk ∈ g

N∑
n=1

(1− |tr(M†
ne
∑K

k=1 Xk∆ωk
nM(ωo))|2), (C.1)

which is equivalent to

arg min
Xk ∈ g

−
N∑
n=1

f(eX(∆ωn)), (C.2)

where

f(eX(∆ωn)) ≡ tr(A†nBn)tr(A†nBn)∗,

An ≡Mn,

Bn ≡ eX(∆ωn)M(ωo),

X(∆ωn) ≡
K∑
k=1

Xk∆ωkn. (C.3)

The gradient of f(·) with respect to Xk

∂f(eX)
∂Xk

= ∂f(eX)
∂X

∂X
∂Xk

= ∂f(eX)
∂X

∆ωk (C.4)

is subject to Xk ∈ g. Since Xk is skew-Hermitian, X is also skew-Hermitian. This

results in a constrained derivative

∂f(eX)
∂X

= ∇(f ◦ exp)(X) = eX(d exp)−X(1
2(∇f(eX)†eX − (eX)†∇f(eX))), (C.5)

where the unconstrained derivative

∇f(eX) ≡ ∂f(eX)
∂eX = −2 · tr(M†

nBn)MnM†
0, (C.6)

and the factorized differential of the exponential function on a matrix Lie group

d expXY = eXφ(adX)(Y) = eX (1− e−adX )
adX

(Y) = eX
∞∑
k=0

(−1)k
(k + 1)!(adX)k(Y),

φ(Z) ≡ 1− e−Z

Z
,

adX(Y) = [X,Y]. (C.7)
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Putting everything together, Eq. C.5 can be also written as

∇(f ◦ exp)(X) =
∞∑
k=0

(adX)k
(k + 1)!(e

−X∇f(eX)), (C.8)

and we can update Xk iteratively with the corresponding gradient.

C.2 Numerical Implementation

The differential of the exponential of matrices (d exp)X can be approximated by Fréchet

derivative to machine-precision through computing the exponential of a 2n×2n matrix [145]

e

[
−X Q
0 −X

]
=
[
e−X (d exp)−X(Q)
0 e−X

]
. (C.9)

During optimization, to do gradient decent and update all Xk in each iteration, we

average the gradient of Xk over all frequencies

Xi+1
k = Xi

k − α
∂f(eX)
∂X

∆ωk, (C.10)

where i indicates the i-th optimization iteration, and α is the iteration step size (or learning

rate).
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