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Abstract

Hybrid work is a coordination problem at heart—how frequently and on which days
of the week should hybrid employees come into the office? The COVID-19 pandemic
accelerated a remote work revolution and caused the hybrid model—where employees
split time between in-office and remote work—to become the norm as employees
return to the office in 2022 and beyond. The shift to fully remote work during
the pandemic highlighted numerous remote work benefits. The challenge is that
remote collaboration is more difficult and time consuming to orchestrate—potentially
decreasing innovation.

Acknowledging that remote and in-person work have different, and at many times
complementary goals, our study tests whether employee collaboration data can help
organizations solve the coordination problem inherent in hybrid work. We find that
collaboration data can align work groups to maximize in-person collaboration gains
while minimizing the number of days in office per week. We use data to recommend
the optimal in-office frequency and find that offices will be 60% under capacity when
employees return. Most importantly, we think about offices as networks—the value
of being in the office scales non-linearly as users increase. We find that organizations
can use collaboration data to model employee networks and appropriately align work
communities. Ultimately, we develop a scheduling system that will help stabilize
office space demand in 2022 and beyond.
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Chapter 1

Introduction

Verizon Communications was created on June 30, 2000 by Bell Atlantic Corp. and

GTE Corp., in one of the largest mergers in U.S. business history. GTE and Bell

Atlantic evolved and grew through decades of mergers, acquisitions and divestitures.

Today, Verizon is a global communications technology company delivering the promise

of the digital world to millions of customers every day. Verizon’s primary product

is connectivity—in early 2009 it became the largest wireless service provider in the

U.S., as measured by the total number of customers. Verizon is currently focused on

investment in and expansion of 5G ultra wide band services. Based on this history of

merger and acquisitions, Verizon maintains a large real estate network—the Global

Real Estate division maintains a 110 million square foot portfolio with an annual

operating budget exceeding $1.7B. In 2019, Verizon initiated a hub strategy focused

on consolidation to regional hubs aligned with major metropolitan centers [34].

Verizon shifted to nearly 100% remote work for all corporate functions in early

2020 due to the Global Corona Virus Pandemic (COVID-19). The COVID-19 disrup-

tion accelerated trends towards employee flexibility in our era of ubiquitous connec-

tivity. Following this forced remote work experiment, Verizon believes that a hybrid

work environment is the workplace of the future.

In early 2021, Verizon launched its WorkForward initiative that designated over

90% of employees as hybrid. A hybrid employee operates with a blend of in-person

work days at the work site, and fully remote days working from home. This study
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is focused on how to leverage data to optimize the hybrid work environment for

employees and the company—we anticipate our findings will influence real estate

strategy. Our team establishes that remote work and in-person work have differing,

but complementary benefits. With this basis set, we present methods for using data

to define a hybrid work operational model.

This study has three primary aims and two secondary aims. The primary aims

are to:

1. Develop a data backed methodology to recommend how many days per week

hybrid employees should come into the office—a "curve" of hybrid work.

2. Design, implement and assess a model that aligns schedules under the current

system constraints; assess increase in stakeholder alignment.

3. Design a new hybrid scheduling process that is not constrained by the current

system; architect an improved system at scale.

The secondary aims are to:

1. Use Monte Carlo simulations to model campus constraints—design an approach

that can be updated using behavioral data in 2022.

2. Recommend experimental structure for testing the improved scheduling system.

While it is important to highlight that this study is conducted at Verizon—a large

telecommunications provider with an expansive commercial office network—our goal

is to demonstrate that the study’s findings generalize across industries. Every orga-

nization that provides value via collaboration of knowledge workers has to navigate

the new hybrid environment. We provide an approach that any corporation can use

to provide structure in the hybrid environment.

1.1 Problem Statement

Following an unprecedented shift to remote work in 2019, countless organizations seek

to discover and operationalize the optimal hybrid work strategy. The hybrid work

14



model has become popular because when managed correctly, it allows for a blend

of in-office work—which is shown to increase organizational innovation—and remote

work—which is shown to increase individual worker productivity. The shift to hybrid

work underscored excess capacity in commercial office space portfolios. At the start of

this project, the overarching request from leadership was to understand how the shift

to hybrid work impacts consolidation strategies and organizational effectiveness—we

quickly identified that in order to answer these questions, we first have to understand

employee behavior and informal networks. Therefore, we have framed the underlying

problem into four distinct components—how can we use data to recommend in-office

frequency, model employee networks, align in-person collaboration and forecast the

impact of hybrid work on real estate portfolio strategy?

First, organizations need to determine the recommended frequency of hybrid

worker in-office time (e.g., 3 day/wk, 1 day/wk, 2 day/mo). The current schedule

recommendation practice is a one-size fits all approach based on heuristics and as-

sumptions around job function. How can we use data to provide an in-office frequency

recommendation?

Second, leadership needs tools to model employee work groups and properly align

in-office collaboration (e.g., a certain team is 1 day/wk, which day would be most col-

laborative?). In a matrixed, knowledge work environment, the problem of optimizing

for employee collaboration can’t be managed by senior leaders. How can we model

employee networks, gain insights about how hybrid work changes collaboration and

determine optimal in-person work schedules?

Finally, real estate strategy and operations need to visualize how hybrid em-

ployee behavior affects portfolio consolidation, capacity utilization and space modi-

fications decisions (e.g., should below-capacity sites be shuttered on Fridays; should

low-collaboration sites be divested). How can we use data to simulate hybrid work

and model campus constraints? Can we use networks to define a real estate metric

that provides an objective measure of collaboration at a work campus? Does this

metric become a part of the equation for valuing a real estate campus?
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1.2 Thesis Organization

When we initially framed this problem, it appeared to build sequentially to the real

estate strategy simulations discussed above. As with many real world problems, our

solution did not evolve sequentially—ironically, we started by building campus level

capacity simulations framed as question four in our problem statement. We quickly

identified that capacity concerns need to be addressed up front. As such, the thesis

is not organized chronologically by how we solved the problem. Rather, the sequence

in which we present our analysis is a recommendation itself. We believe this thesis is

a road map to help large corporations implement a structured hybrid work strategy.

We first survey relevant research surrounding remote and in-person work. In

Chapter 2 - Literature Review, we show that there are different, and many times

complementary, benefits to remote versus in-person work. Research illustrates that

collaboration is more challenging to orchestrate remotely and maintaining cohesive

teams comes at a cost. This drives us to focus on employee collaboration networks.

In Chapter 3 - Current State and Problem Solving Approach, we present

the current scheduling process, stakeholder landscape and data available to solve this

problem. We go on to outline our approach which rests on using employee metadata

to understand work patterns and model networks.

Starting in Chapter 4 - A Better Way to Estimate Hybrid Frequency, we

begin to highlight foundational hybrid work decisions that need to be based in data.

We present a method to estimate hybrid frequency using historical collaboration data.

Then, we design a Monte Carlo approach to simulate a work campus in the hybrid

environment and understand system constraints. An organization must understand

if capacity is an issue before architecting a complete hybrid work strategy.

Next, in Chapter 5 - Modeling Employee Networks, we make the case for

using network theory to help align collaboration between knowledge workers. We

design a process to model employee collaboration using networks and conduct a proof

of concept with data from one business unit. We generalize the power of networks

and provide a variety of metrics which are vital to assess the impact of hybrid work.
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In Chapter 6 - Aligning Schedules Under Current System Constraints, we

build on the proof of concept and optimize schedule alignment at a specific work

campus.

We remove the current state constraints in Chapter 7 - A Better Way to

Schedule, and develop a scalable approach to scheduling that takes into account

relationships and office capacity. We use unsupervised machine learning to cluster

communities and draw on our proof of concept to test and evaluate clustering accu-

racy. In Chapter 8 - Testing the New System and Future Work, we recap the

outcomes of the study and how Verizon can test improvements at a larger scale. We

also discuss how the study findings generalize beyond Verizon. Finally, this chapter

discusses future extensions of this study.
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Chapter 2

Literature Review

We began by surveying existing research on hybrid work. We find three prevailing

themes—the employer perspective on hybrid work, the influence of proximity on col-

laboration, and the employee perspective on hybrid work. Ultimately, we interweave

these themes to think about how the optimal hybrid work design balances the interests

of the employer and employees.

2.1 Remote Work - What’s Best for the Company?

The remote work revolution began gaining momentum in the mid 2000s and continued

in pockets until the large shift to remote work occurred in early 2020. This section

proceeds chronologically and details early experiments in remote work along with

analysis of remote work during the COVID-19 pandemic. We present a variety of

sources that highlight the associated benefits and costs of having an entirely remote

workforce.

Cisco conducted an important large-scale modern era business experiment with

remote work practices in 2009. This pilot program observed almost 2,000 Cisco em-

ployees and evaluated impact on productivity, quality of life and job satisfaction. The

key finding was remote work practices could save $277M per year in costs for Cisco

and employees [8, 6]. Beyond cost savings, Cisco used surveys to estimate that 69%

of employees saw increased productivity and 75% of employees thought work time-
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lines improved. Overall, the pilot program recommended moving to a model where

employees work remotely two days per week—though details on how this conclusion

was reached were not provided [6].

Beyond business oriented pilot programs measured with surveys, academics have

been actively researching remote work for over two decades. Many of these studies

hone in on specific types of workers whose productivity can be measured against a

quota. For example, Bloom et al. of the Stanford Graduate School of Business studied

a large Chinese travel agency as it moved call operators to fully remote work [4]. This

study estimates a 13% increase in productivity during the trial program. While this

study is commonly cited to support a remote work shift, it lacks application outside

the domain of an hourly, quota driven employee. Ultimately, the work group studied

did not provide value through collaboration or innovation. Furthermore, after nine

months 50% of the employees requested to return to the office, despite an average

commute time of 40 minutes.

On the opposite coast, Harvard Business School Professor Tsedal Neely has done

extensive research on how to effectively lead and manage a remote work force in the

knowledge economy. Neely’s key message is that leaders have to deliberately plan

when teams need to meet and collaborate. Her research shows that properly planned

and resourced “launch meetings” are the key to capitalizing on the deep focus gained

from working remotely. In short, teams still need to collaborate to understand the

leader’s vision and build relationships with key stakeholders—but this doesn’t mean

employees need to be in the office everyday [21]. This research helps our team identify

that hybrid schedules require an intentionality; companies can’t simply assign random

schedules focused on optimizing office space capacity utilization across a work week.

Two key studies using COVID-19 remote work data were published about a year

into the pandemic. The first is an academic study from the University of Chicago

Becker Friedman Institute for Economics. Gibbs et al. provide a comprehensive

analysis of knowledge workers in the information technology/analytics field at a large

corporation—they describe the campus of this company as being similar to that of

Apple or Amazon. The research team had comprehensive access to human resources
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data (e.g. goal tracking, performance reviews, and demographic metadata) and soft-

ware that tracked employee work patterns. The key finding was that working hours

rose by 18% and average output declined slightly. Ultimately, fully remote work

yielded a productivity decrease of 8-19% across the company. This study argues

that decreased productivity is driven by increased costs to orchestrate meaningful

collaborations in the remote environment.

Gibbs et al. control for pandemic lockdowns and parenting challenges to con-

clude that 1.4 hours per week, per employee is expended on excess coordination

and check-ins associated with remote work—this is coined as the “Work From Home

(WFH) Effect.” Furthermore, they found that the WFH effect reduced focused work

by 1.4 hours per week, per employee. We use these findings to estimate net weekly

cost of fully remote work at 1.4 hours per employee—or .28 hours of value

lost per day of remote work, in the rest of this thesis. We are confident that

the collaborative nature of the company Gibbs et. al studied can translate across

knowledge work specialities.

Finally, Microsoft conducted an independent study of its employees during the

COVID-19 pandemic [29]. Microsoft’s findings largely align with Gibbs et al.—on

average during the pandemic, workers worked more and delivered the same produc-

tivity. Additional insights are provided on how Microsoft employees collaborated

during pandemic remote work. Researchers empirically observed that “stronger ties

seemed to endure while weak ties seemed to atrophy.” For organizations that de-

liver value through innovation, this trend is concerning. In sociology, strength of a

tie is summarized by interaction time, intensity, intimacy and reciprocity [29, 10].

Strong ties are associated with in-group interactions—work with your manager or di-

rect peers—while weak ties promote interdisciplinary collaboration [21]. Two parties

sharing a weak tie generally work in a similar “community” but not directly together

or for the same supervisor.

These findings demonstrate that productivity is not the only concern: most cor-

porate knowledge jobs deliver value through interdisciplinary collaboration and inno-

vation. Even Nicholas Bloom who is an economist and staunch advocate of remote
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work options, admits concern surrounding innovation in the solely remote environ-

ment. In mid 2021 he stated, “I fear this collapse of in-office face time will lead to

a slump in innovation. The new ideas we are losing today could show up as fewer

new products in 2021 and beyond, lowering long-run growth” [32]. This highlights

concern around making long term decisions based on short term data—many firms

are moving to strictly remote work without truly considering the long term costs.

2.1.1 Does Employee Proximity Influence Collaboration?

Corporate leaders and employees are both questioning the value of being in the of-

fice. This section details two studies that analyze how space and employee proximity

impact collaboration. The first study was conducted by Thomas Allen at the Mas-

sachusetts Institute of Technology [1] . In line with Prof. Bloom’s concern about

innovation, Allen hypothesized that employee proximity influences interdisciplinary

collaboration. Allen showed that physical proximity has an inverse exponential re-

lationship with the probability of communication between colleagues. Visually, this

is represented as “The Allen Curve” displayed in Figure 2-1. Allen et al. argue that

simply designing a workplace to create the potential for collaboration delivers innova-

tive ideas. This research provides the basis for many open floor office plans familiar

today.

Figure 2-1: The Allen Curve (Adapted from [1])

A more recent study at the Massachusetts Institute of Technology validates Allen

et al.’s findings. In 2017, Claudel et al. proved that "The Allen Curve" holds even in
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our modern era of connectedness [7]. This study uses collaboration data to build net-

work models and shows that academic collaboration—measured by co-authorship—is

driven by spatial versus hierarchical/institutional ties. Collaboration data is fit to

an exponential decay model shown in Figure 2-2—chart A uses co-authored patent

data and chart B uses co-authored papers. It is clear that spatial alignment of work

communities is a factor in how knowledge workers collaborate.

Figure 2-2: Validating the Allen Curve in the Modern Era (Adapted from [7])

From the employer perspective, our conclusions are threefold. First, knowledge

work fundamentally delivers value via the exchange of ideas—a change from the indus-

trial era measures of value. Second, research shows that employee proximity influences

collaboration—strong ties may continue to flourish in a fully remote environment, but
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weak ties, which are valuable for innovation, atrophy. And finally, our overarching

conclusion is that organizations need to build hybrid work systems that cultivate the

right in-person interactions within an employee’s community—this is how organiza-

tions will unlock the complementary benefits of remote and in-office work.

2.2 What’s Best for the Employee - Flexibility?

Up until this section, the research surveyed has been framed from the perspective of

the employer—we believe the employee perspective is also a part of the hybrid work

equation. Overall, the pandemic changed employee priorities, and this must be taken

into account as corporations design hybrid work models.

A number of studies show that flexibility is the “fastest-rising job priority in the

U.S.” [11, 2]. Adam Grant, an organizational psychologist at The Wharton School,

has been a proponent of work-life balance research for years. He recently published an

editorial piece that succinctly describes the generational shift our society is witnessing

in the post COVID-19 workforce [11]. Grant, along with other scholars, argue that

COVID-19 gave employees a taste of the freedom that comes with working from home

and "the taste of freedom left [them] hungry for more." By early 2021, a number of

large companies began insisting that employees return to the office full-time—this

sparked what many are now calling "The Great Resignation." While this moniker

may be caused by a variety of factors, employees do appear to be leaving jobs that

are not flexible; hybrid work design is about more than just productivity, it is critical

to retain top talent.

A separate 2021 study published in Harvard Business Review presents data that

illustrates flexibility is critical [25]. Of 5,000 knowledge workers surveyed, 59% re-

ported that "flexibility" is more important that compensation. Furthermore, 77%

said they would prefer the ability to work from anywhere versus an amenity strewn

corporate campus. This study also highlights an important point about bringing

employees back—any mandate will naturally feel like a violation of flexibility and au-

tonomy. In the study, 59% of employees said they would not work for a company that
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required five in-office days a week. Specific anecdotes include resignations from Apple

following a strict in-office requirement of three days in-office per week. Apple em-

ployees responded with demands that hybrid work arrangements be an autonomous

decision for each team.

Another interesting facet of Grant’s argument is that this tension between em-

ployers and employees started more than a decade ago—COVID-19 just accelerated

change that was already happening [11]. The new generation of workers, more com-

monly referred to as millennials, care more about autonomy and flexibility than net

worth. The shift we are witnessing is forcing employers to rethink the standard indus-

trial era assumption that work is conducted for 40 hours a week from 9 to 5 Monday

through Friday. Grant highlights that successful companies should replace back to

work mandates with systems that protect employee focus time and create intense

interpersonal interactions at a regular interval. This thesis also sees this as the future

of hybrid work.

From the employer vantage point, we see the next step as finding a balance—giving

employees flexibility but providing enough structure to drive important, in-person in-

teractions which stagnate with fully remote work. As presented in the Apple anecdote,

a requirement for employees to come back for no particular reason is bound to fail—

organizations must provide structure that connects networks and gives employees a

reason to come to the office in-person.

2.3 Literature Review Conclusions

Bringing together these perspectives from relevant literature, we come to three con-

clusions . First, organizations need to find the right blend of remote and in-person

work to unlock the benefits of the hybrid design and remain effective long term. Sec-

ond, employee proximity affects collaboration—to maintain important weak ties in

networks, many of which drive innovative ideas, employees need to have the potential

for in-person interaction. And finally, organizations need systems that align collabo-

ration and provide employees value when they come into the office—mandates alone
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are unlikely to work.
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Chapter 3

Current State and Problem Solving

Approach

In this chapter, we detail the WorkForward program, the current scheduling process

and the stakeholder landscape surrounding WorkForward. The current system is

made up of sub-systems, or tools as described by the subject organization, that are

designed to help business leaders manage hybrid work—we present each sub-system

and discuss the flow of scheduling. WorkForward has a number of stakeholders spread

across the human resources and real estate business units. The political considerations

of the stakeholder landscape, along with critical feedback from the customers using

these tools, shape our overall approach to the problem.

3.1 Current State of Hybrid Scheduling

By mid 2020, corporations started thinking about how the COVID-19 pandemic fun-

damentally changed the nature of the workplace. Verizon launched the WorkForward

program to help employees navigate the new hybrid work environment. As a part

of the program, 90% of employees were classified as hybrid—this means following

an in-person/remote split set by leadership. WorkForward consists of three main

sub-systems—the Human Resources (HR) Recommender Tool, the Human Resources

(HR) Scheduler Tool, and Book-A-Space. This section will provide an overview of
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the current process. The flow of information through the system is displayed in

Figrue 3-1—each tool will be discussed in depth.

Figure 3-1: Current State Scheduling Process

The HR Recommender Tool is the first step in the current process. Each direc-

tor has the opportunity to use—but is not required to use—the HR Recommender

Tool prior to submitting schedules for all subordinate employees. For organizational

context, the typical director in the subject organization has anywhere from 100 to

200 employees with several associate directors and senior managers managing daily

operations. The tool is a simple survey that asks the director questions about the

nature of work across his/her team—directors are given three possible responses to

each question. A sample of view of the tool is shown is Figure 3-2.

Figure 3-2: HR Recommender Tool

In addition to several questions on the nature of work, the survey directly asks

about frequency of collaboration required on the team. The responses to these ques-
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tions are limited to A) rarely (monthly), B) intermittently (biweekly), and C) regu-

larly (weekly). The survey responses are scored using a Likert scale algorithm that

produces a frequency recommendation. There are three possible rhythm recommenda-

tions: weekly, monthly, and biweekly; and three possible day recommendations: one

day, two days, and three days. This yields nine potential recommendations such as:

weekly—one day every week, monthly—three days one week a month, or biweekly—

two days every other week. It is important to highlight that the output from the HR

Recommender Tool is a non-binding recommendation—directors can choose to follow

or ignore the recommendation. Furthermore, the tool does not provide a recommen-

dation around which day of the week or week of the month. This is left up to the

director to determine manually.

The second tool in the process is the HR Scheduler Tool. After receiving a fre-

quency recommendation, directors enter the HR Scheduler Tool and assign schedules

to each subordinate employee. In this tool the directors are given an additional

scheduling option—custom. The custom schedule option allows the director to as-

sign in-office days without a recurring rhythm. This gives the current system four

hybrid schedule models—weekly, biweekly, monthly and custom. The director can

submit different schedules for each employee: however, given the challenge of doing

so across a large business unit, we observed directors submitting one schedule for the

entire business unit even if employees are geographically dispersed and serve different

purposes.

Once the schedule is submitted in the HR Scheduler Tool, the schedule appears

on each employee’s profile in the company intranet. The goal is visibility and pre-

dictability; published schedules help colleagues coordinate in-person engagements. In

the vein of predictability, HR stated that schedules will be set once a year and fixed

for the entire calendar year. Finally, there is no capacity data behind the schedule

submission or recommendation—i.e. all directors could submit the same schedule

at a campus even if that scheduling scheme would put the campus over capacity on

certain days of the week.

The third and final sub-system is the space reservation tool “Book-A-Space.”
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Book-A-Space is the application employees use to reserve desk and meeting room

space. When employees enter the app, there is an option to book reservations using

the employee’s assigned schedule from the HR Scheduler Tool—this creates reserva-

tions for 30 days in line with the employee’s schedule in the HR Scheduler Tool. For

example, a biweekly Tuesday/Thursday employee would see four reservations popu-

late for the next four weeks—two days, every other week. Our team refers to these

as "scheduled" bookings.

Employees do not have to use this “book on-schedule” feature and are not restricted

from booking outside of the assigned schedule. We refer to these as “flexible” or “flex”

bookings—an employee needs to be in the office outside of his/her assigned schedule.

Leadership states that an employee’s schedule defines the minimum amount of time

he/she is expected to be in the office; however, the frequency an employee schedules

in-office time does not have an upper bound—i.e., a weekly employee can come in

five days a week by flex booking a desk four days a week in addition to one scheduled

day per week.

These three sub-systems outline the scheduling process from initial frequency rec-

ommendation through reservation booking. The details of each sub-system influenced

how we framed the problem and conducted stakeholder interviews. Three points to

remember from the current state are; 1) frequency is recommended based on direc-

tor survey answers, 2) recommendations do not specify days of the week or align

work groups, and 3) employees can book “scheduled” or “flexible” space reservations

in Book-A-Space. We will return to these points when defining the problem solving

approach. But first, it is helpful to expand on the stakeholder landscape surrounding

the current state.

3.2 Stakeholder Interviews and Mapping

While mapping the current process our research team also conducted stakeholder in-

terviews across the Human Resources and Real Estate business units. In this analysis

we discovered an HR/Real Estate silo and heard directors describe the challenge of
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manually aligning employee schedules with the proper stakeholders.

At the top level, the design of our subject organization’s hybrid work system

involves two macro stakeholders—Human Resources (HR) and Real Estate (RE).

Within these two silos, there are three categories of tactical stakeholders—tech tools,

campus capacity, and portfolio strategy. These tactical stakeholders use data and

drive decisions that straddle the divide between Human Resources and Real Estate.

A streamlined model of the stakeholder landscape is visually displayed in Figure 3-3.

Figure 3-3: Hybrid Work Design Stakeholder Landscape

In theory, company leadership stated that HR owned planning of the hybrid work

system and Real Estate would own implementation. Early in the study, we observed

that this transition was challenging for the subject organization because of the divide

between HR and Real Estate; HR did not want to give up control of the system and

iterate on changes recommended by Real Estate.

As with many large scale initiatives, the tactical stakeholders focus on influencing

specific outcomes. On the Real Estate side, campus capacity stakeholders want to

ensure the scheduling system does not overwhelm the campus on a specific day of the

week. In a similar vein, portfolio strategy stakeholders are advocating for a system

that stabilizes office space demand quickly and allows elimination of excess capacity

in the real estate network. On the HR side, the focus is on providing tools that help
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business leaders and employees remain productive in the hybrid environment. The

ownership of technology tools is split between HR and Real Estate—this creates a

challenge for data sharing and integration. HR owns the HR Recommender Tool and

the HR Scheduler Tool, while Real Estate owns the Book-A-Space application.

Beyond the stakeholders influencing hybrid system design, our team also engaged

with perhaps the most critical stakeholder, the customer—or in this case, the directors

and employees. Our interviews with directors using the system helped focus the

study. Director feedback was threefold. First, directors voiced concern about the

frequency recommendations from the HR Recommender Tool. Second, directors felt

the business unit level was too high for them to effectively assign in-office frequency.

And finally, directors said it was overwhelming to align employee schedules with

those of key stakeholders. Our team saw that these three areas also answered senior

leadership questions around if the organization was implementing hybrid work in the

most efficient and promising manner.

Identifying the silo between HR and Real Estate is critical to our strategy. We

will develop the overall problem solving approach later in this chapter, but for now it

is important to note how the organizational dynamics shape our focus. Since this was

an HR designed system, we turn to the customer to build a case for improvements

prior to gaining HR leadership buy-in. We specifically use a director inside the Real

Estate organization as a proof of concept. By building a concrete proof of concept,

our team is able to effectively identify where analytics can improve the current system

and convince HR leadership to implement a large scale experiment testing analytical

methods to set frequency and align schedules.

3.3 Data Available

We use three main data sources to solve this problem—employee Google calendar

data, employee details data, and employee schedule data. This section describes the

data structure and data fields for each source.

Employee Google calendar data is logged for each employee using the corpo-

31



rate network. These data are filtered to include all events pertinent to workplace

activities—personal events are eliminated and only engagements between subject or-

ganization employees remain. These data are retrieved using an application program-

ming interface (API) that passes an employee email address and returns a text file

of the employee’s corporate calendar. These data are merged to create a comma sep-

arated value file with calendar events from all employees of interest over a specified

time horizon.

Each row in these data is one event from an employees calendar. For each calendar

event there are a number of data fields—unique meeting identifier, meeting subject,

start time, end time, location, by name list of invitees, and by name list of confirmed

attendees. Since the API passes an email, these data do contain duplicate events—if

we pass employee A email and employee B email and both attend the same event,

this event will show up twice in the initial data. Throughout our analysis we use

the unique meeting identifier to ensure that duplicate meetings are not present in the

data. All calendar data in our study is structured and filtered in this manner.

The second source of data comes from an employee details database. The data

fields include the employee’s identification number, job title, email, campus assign-

ment, business unit alignment, where he/she sits in the organizational hierarchy and

a contractor/full-time designator. These data are primarily used to understand em-

ployee campus assignments and embed the organizational hierarchy into our modeling

solutions.

Finally, we use employee schedule data held in an HR database. These data con-

tain one row for every hybrid employee. The data fields include the employee iden-

tification number, campus assignment, leadership hierarchy, schedule type (Weekly,

Monthly, BiWeekly, Custom), day of the week assigned, and week of the month as-

signed (1, 2, 3, 4). Since this is organized at the employee identification number level

it can be joined with the employee details data to gather more descriptive information

about an employee as needed.

Combining these three data sources delivers what we refer to as employee metadata—

in plain terms, a comprehensive set of data to describe the how/when/who of hybrid
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employee interactions. We provide more detail about these data sources when de-

scribing our analytical methods in Chapters 4, 5, 6 and 7.

3.4 Hypotheses and Problem Solving Approach

We believe that analytics can solve four problems in the current system—recommending

hybrid employee frequency, modeling campus capacity, determining if director level

is correct for setting schedules, and aligning employee schedules with stakeholders.

Overall, our hypothesis is that network models using employee metadata will improve

hybrid work outcomes for the subject organization. Network models and employee

metadata naturally quantify a “curve” of hybrid work that profiles how frequent a

hybrid employee should physically come into the office. Furthermore, we believe that

applying analytics and unsupervised machine learning on these networks will deliver

a measurable increase in schedule alignment. Our goal is to test this hypothesis

and design a scheduling system that is rooted in analytics. Ultimately, an analytical

solution to these problems will enable proactive corporate real estate decisions.

Our approach starts by thinking about frequency and campus capacity—how often

should hybrid employees come into the office and is the subject organization at risk

of exceeding capacity at hub campuses? In Chapter 4, we analyze a variety of factors

including meeting frequency, employee desk/meeting room booking behavior, and av-

erage number of days in office by hybrid employees. Our goal is to design an index

methodology to recommend hybrid frequency. To understand capacity constraints,

we explore using Monte Carlo simulations to model the hybrid environment at hub

campuses. Our goal is to design a simulation framework that enables real estate strat-

egy and operations leaders to make proactive portfolio decisions. Proactive decisions

are a challenge because hybrid work introduces new variables and unpredictability

when modeling office space capacity.

In Chapter 5, we experiment with network models to quantify employee collabo-

ration. Organizational Network Analysis is a modeling technique that traditionally

relies on surveys from employees to build networks. Our approach uses employee
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metadata to understand and visualize collaboration patterns; we believe this data is

less biased than survey data and allows for implementation at a much larger scale

than traditional methods. Furthermore, we experiment with exponential random

graph models—similar to response test models with non-network data—to test if the

director level is the right level to set employee schedules.

To make this concrete and test the hypothesis on a manageable sample, we design a

business experiment within one business unit—a business intelligence unit made up of

200 geographically dispersed, hybrid employees. The goal of this business experiment

is to test two hypotheses: 1) the current scheduling methodology is inefficient, and

2) network modeling provides a measurable increase in stakeholder alignment. We

seek to develop a process that models director level networks at a specific campus.

Furthermore, we examine how this director level model can be de-aggregrated to the

individual employee level. Finally, we ideate on how network metrics can be used by

organizations to understand the impact of hybrid work.

Following this descriptive network modeling in the proof of concept, in Chapter

6 we develop a method to improve scheduling in the business intelligence unit. We

start by quantifying the baseline schedule alignment with stakeholders and move

from descriptive analytics to prescriptive analytics by formulating an optimization to

maximize stakeholder schedule alignment. The customer for this prescriptive portion

is the business intelligence director and key stakeholders. Our goal is to demonstrate

that we can optimize scheduling while subject to the constraint that schedules must

be set at the director level—–a level we hypothesize is not granular enough.

Following the proof of concept under the current system constraints, in Chapter 7

we present a model that aligns schedules by relying solely on employee metadata pat-

terns. This model removes the current constraint requiring directors to set schedules.

Instead, we use unsupervised machine learning to cluster employee communities and

recommend schedules based on these cluster assignments. We quantify how these as-

signments improve scheduling alignment compared to the heuristically set schedules

in the current state. The primary customers are company executives determining

remote work polices and the goal is to design an analytically grounded employee
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scheduling pipeline.

Overall, our approach focuses on testing if employee networks can help organiza-

tions design schedules that maximize in-person collaboration in work communities.

We believe that the sequence of our approach is an insight for organizations structur-

ing hybrid work—understand frequency first, then employee networks. This will help

deliver the optimal in-person/remote mix for hybrid employees and keep communi-

ties connected in the hybrid environment. Furthermore, we believe a system rooted

in data will improve employee satisfaction and stabilize hybrid employee behavior.

Quickly stabilizing how frequently hybrid employees come into the office will in turn

enable proactive real estate consolidation strategies.

3.5 Future State - How will we know the problem is

solved?

The desired future state is a scheduling pipeline that leverages analytics to set hybrid

employee frequency, align hybrid work groups at campuses and balance campus ca-

pacity. Since the hybrid work system is in the late stages of development, our goal is

not to completely overhaul the system in this study. Rather, we focus on building a

proof of concept with the new scheduling pipeline—ideally this convinces the subject

organization to launch a large scale experiment in 2022 when hybrid work is officially

implemented.

The high level goal is to build a system that improves hybrid work outcomes

and enables proactive real estate strategy. With this in mind, the problem can be

framed sequentially: 1) can analytics help recommend hybrid employee frequency?,

2) who should set schedules?, 3) can networks align schedules/balance capacity?, 4)

understand hybrid employee behavior, and finally, 5) determine optimal real estate

strategy. This is framework is depicted visually in Figure 3-4. The first three questions

are the focus of this study.

Our goal is to use analytics to improve the first three decisions because these affect
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Figure 3-4: Hybrid Work Real Estate Strategy Model

real estate strategy long term. This study will be successful if we test and quantify

how analytics can improve scheduling—the ultimate goal is to build a scheduling

pipeline the subject organization adopts long term. The secondary aim is provide

a plan for testing and implementing the improved system. This study is truly an

experiment within an experiment—COVID19 has fundamentally changed the way we

live and work—we hope to contribute to the larger experiment by showing how data

can help organizations decipher the optimal balance between fully remote and fully

in-person work.
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Chapter 4

A Better Way to Estimate Hybrid

Frequency

In this chapter, we describe an approach to recommending hybrid employee in-office

frequency using employee metadata. Literature surrounding in-office frequency re-

veals that common methods rely on employee/manager perceptions versus objective

data. Furthermore, research shows that the pandemic has resulted in over collabo-

ration among knowledge workers—this is costing organizations time and money. We

argue that hybrid frequency should be determined using objective collaboration data.

This allows a hybrid employee to minimize time in-office while still achieving a sim-

ilar quantity of in-person collaboration. In turn, this allows real estate strategy to

simulate campus capacity and make proactive portfolio consolidation decisions. Hy-

brid frequency is the first of many hybrid work decisions; it is critical to ground this

decision in data because it affects many portions of the system downstream.

4.1 Current Research on In-Office Frequency

Currently, organizations are not anchoring in-office frequency decisions to data. We

believe that the frequency decision is critical because it has cascading impact on

the hybrid system—in-office hospitality, space configuration and portfolio size are

all dependent on how frequently hybrid employees come to the office. This section
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presents the current frequency research—mainly from well-respected consultancies—

and we highlight the subjectivity of these decisions. Then, we present survey data

around weekly in-office frequency to help organizations benchmark decisions.

BCG and McKinsey, global consultancies, have published numerous pieces on

hybrid work models. Generally speaking, these articles provide recommendations by

displaying the spectrum from fully on-site to primarily remote, and aligning why an

organization should chose a certain model [33]. Figure 4-1 displays one such model

recommender chart—as we discussed in Chapter 2, different work models optimize

different objectives.

Figure 4-1: BCG Model Selection Criteria [33]

Additional recommendations have been made by researchers in academia. One

such study from the Massachusetts Institute of Technology’s Sloan School of Man-

agement establishes a four step framework where organizations heuristically estimate

the number of days needed to optimize for key business metrics [28]. Similar to a

Likert scale, this model is displayed below in Figure 4-2.

These types of subjective tools represent the prevailing perspective on how to

select in-office frequency. In our subject organization, a Likert scale model similar

to Figure 4-2 sits behind the survey based HR Recommender tool that provides

a recommendation. Although these tools make a subjective process slightly more
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Figure 4-2: MIT Research Model [28]

objective, the process is still biased by human input. Our perspective is that these

tools do not leverage enough data and need to be anchored to an unbiased data source.

We also consider data from a study that is compiling hybrid frequency data across

a diverse sample of organizations. This benchmark analysis allows our team to assess

where our subject organization resides on the frequency spectrum. A team from

Stanford and the University of Chicago has been collecting survey data on employee

in-office frequency throughout the pandemic [3]. The surveys have asked two main

questions: 1) How many days per week does your employer plan for you to work

from home once the pandemic concludes? 2) How many days per week would you

like to work from home once the pandemic ends? These data are presented in Figure

4-3, which shows employer plans for number of days working from home for hybrid

employees, and Figure 4-4, which shows the number of days per week hybrid employees

desire to work from home. It is apparent that the longer the fully remote trend lasts,

employers are increasing the number of days per week hybrid employees can work

from home. In contrast, employee desire to work from home has leveled off at just

over two days per week.

Using these data as a benchmark, our subject organization is well below the av-

erage in terms of in-office frequency—on balance, hybrid employees are scheduled to

work from home four days per week versus the benchmark of one day per week work-
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Figure 4-3: Employers Plans for In-Office Frequency [3]

Figure 4-4: Hybrid Employee Work From Home Preferences [3]

ing from home. Being an outlier is not necessarily negative—if employees can gain

the requisite amount of collaboration with one day in the office per week this actually

could be a competitive advantage. The challenge is calibrating where this balance

lies.

4.1.1 Pandemic Impact on Collaboration

To decide how much collaboration is enough, we need to acknowledge how COVID19

has changed collaboration. Overall, COVID19 has created a corporate culture of over

collaboration—knowledge workers have an endless stream of Zoom, Microsoft Teams

and Bluejeans calls. It is important to acknowledge this finding; organizations can

gain a competitive advantage by designing hybrid tools that help employees prioritize
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collaboration on in-office days and heads down focus work on remote days.

The data tells the story of over collaboration in the post pandemic era—Gibbs

et al. use Microsoft teams data to visualize how COVID19 impacted the IT firm in

their study [9]. Figure 4-5 displays the data from Gibbs highlighting the increase in

collaboration and decrease in focused work. In Figure 4-5, the vertical bar at week 0

represents when the pandemic lock downs first occurred in March of 2020. This study

demonstrates that the initial spike in collaboration and decrease in focus hours was

sustained throughout remote work. Furthermore, there is a significant upward trend

in after hours work, as employees struggle to offset the increase in meetings and calls

associated with fully remote work.

Figure 4-5: Pandemic Impact on Collaboration [9]

We test the collaboration hypothesis in our subject organization. We use a sample

of 600 employee Google calendars from June to September of 2019, pre COVID19,

and from June to September of 2021, during fully remote work due to COVID19.
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Figure 4-6: Testing Over Collaboration Hypothesis at the Subject Organization

After data cleaning and controlling for pandemic associated events—e.g., monthly

meditation or virtual social gatherings—the sample displays an 87.5% increase in

weekly time in meetings from 8 hours in 2019 to 15 hours in 2021.

This finding leads to three conclusions and guides the focus of this study. First,

fully remote work has caused employees to spend more of the work week in meetings.

Second, if we properly align employee networks we can return collaboration to pre-

pandemic levels. Finally, by aligning schedules we may be able to minimize employee

time in the office while maximizing collaboration. This would in turn achieve the

balance we have discussed—employees achieve a sufficient amount of in-person col-

laboration but the individual focus time gained during fully remote work is protected.

Based on these analyses, we hypothesize that organizations can use calendar data

to solve for frequency and optimize collaboration. The next section discusses how

organizations can calibrate in-office frequency using collaboration data. Then, in

Chapter 5, 6 and 7, the core of our study addresses how organizations can use networks

to foster the right collaboration and protect valuable focus hours.
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4.2 Calendar Data as a Frequency Methodology

Different job functions require different levels of collaboration. This is a key prin-

ciple that organizations should strive to operationalize with hybrid work—in-office

frequency is naturally a function how much an employee needs to collaborate. Un-

fortunately, many organizations are taking a “one size fits all” approach to in-office

frequency. In this portion of the study, we start by validating that the current schedul-

ing system does not provide a correlation between need for collaboration and in-office

frequency. This finding pushes us to design a new system that leverages collaboration

data to recommend in-office frequency.

We analyze the same sample of 600 employees to test whether employees with

more collaborative roles are assigned a higher in-office frequency. The data presented

in Figures 4-7 and 4-8 displays how many hours each employee collaborates per week

and the employee’s assigned in-office frequency per month. The number of employees

in the sample is reduced to 198 after removing contractors and employees that had not

published schedules in the HR Scheduler system. These data confirm our hypothesis

that the current system does not produce in-office frequency assignments correlated

with the collaboration required in a role.
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Figure 4-7: 2019 Hours Collaborating vs. Assigned In-Office Frequency

n=198 employees with in-office schedules published

Figure 4-8: 2021 Hours Collaborating vs. Assigned In-Office Frequency

n=198 employees with in-office schedules published
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Our solution is to generate frequency recommendations using collaboration data—

this achieves the overarching goal of maximizing in-person collaboration while min-

imizing the number of days per week a hybrid employee comes into the office. We

propose a simple “collaboration index.” This index represents the potential in-person

collaboration at the employee’s assigned campus, relative to the total number of hours

worked per week.

Employee Collaboration Index =
Potential In-Person Collaboration Hrs/Week

Average Total Work Hrs/Week
(4.1)

After calculating the collaboration index, organizations can map the index—which

is derived from objective data versus subjective surveys—to in-office frequency rec-

ommendations. The sensitivity of this translation can be determined by business

leaders—in the translation chart in Table 7.8 for our subject organization, we assume

that an employee can realistically spend half of an eight hour day in the office com-

pleting formal collaboration. Therefore, if the employee has more than four hours of

potential in-person collaboration per week, they should come in two days versus one

day per week. This allows for time to move between meetings, engage in informal

communication and arrange lunch/coffee engagements.

Collaboration Index (CI) Estimated Collaboration Recommended Frequency

0.00 < CI < 0.025 0 - 1 Hours/Week 1 Day/Month
0.025 < CI < 0.10 1 - 4 Hours/Week 1 Day/Week
0.10 < CI < 0.30 4 - 12 Hours/Week 2 Days/Week
0.30 < CI < 1.0 12 - 40 Hours/Week 3 Days/Week

Table 4.1: Collaboration Index Translation

By rooting in-office frequency recommendations in objective data, organizations

can begin designing the optimal hybrid environment. Although this collaboration

index heuristic may not achieve a global optimum, it is simple enough for leaders

to implement and will move the organization towards a culture where employees

come into the office commensurate with their collaboration requirements. This will

enable organizations to maximize potential in-person collaboration while minimizing
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time in-office. Furthermore, a data backed index will improve employee satisfaction

with the system—frequency recommendations will make sense to employees. And

finally, organizations can architect in space for the serendipitous interactions that

Allen showed are critical for innovation. For example, our subject organization only

maps four hours of a typical work day to formal collaboration, leaving space for those

critical informal engagements.

Based on this initial frequency versus collaboration mismatch, we analyze a larger

data sample to validate this hypothesis and demonstrate how the collaboration in-

dex solution would improve the current state. The next section details these data,

validates the mismatch at a global level and simulates in-office frequency using the

collaboration index.

4.2.1 Aligning In-Office Frequency through Data

This section applies our frequency methodology on a larger data sample. We present a

use case that confirms our hypothesis that frequency is not aligned with collaboration.

Furthermore, we illustrate how an objective collaboration index can improve the

overall frequency alignment.

The data sample for this use case is a year of calendar data (2021) for all em-

ployees under the chief operating officer in the subject organization—3,383 employees

designated as hybrid. The chief operations officer’s organization is comprised of all

operations and legal functions. Since we want in-office frequency to be driven by po-

tential in-person engagements at a campus, we filter these data to the headquarters

campus. This produces a sample of 548 employees assigned to the headquarters cam-

pus. The number of data points is further pared down by the number of employees

who have published schedules in the HR Scheduler system—only 346 had submitted

schedules at the time of the study.

We analyze the 2021 calendar data for these 346 employees to estimate the poten-

tial “meaningful” in-person interactions per week for each employee. We accomplish

this by parsing each calendar event, determining if more than two employees assigned

to the headquarters were invited to attend and then calculating an in-person to remote
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ratio in that specific event.

The in-person to remote ratio allows us to objectively determine if a potential

interaction was “meaningful”—if two employees could have attended in person, but

it was a large 50 person meeting with 48 remote attendees, it does not seem criti-

cal that the two employees come into the office. However, if eight employees out of

ten attending the meeting are all assigned at the headquarters, this is a collabora-

tive engagement that may provide value in-person. The in-person to remote ratio

objectively captures subjective judgments on the value of being in the office. We

set the “meaningful” threshold equal to the median of the remote/in-person ratio.

As a result, events with small in-person/remote ratio—below the median—are not

counted as meaningful; events with an in-person/remote ratio above the median are

deemed meaningful. Although there are flaws in this approach, we believe it achieves

a balance—very large, mostly remote events are removed while large all-hands where

a preponderance of the team is assigned at the headquarters campus remain in the

data.

We apply this approach to our sample of 346 employees assigned to the headquar-

ters campus and estimate that the average “meaningful” in-person collaborations per

week in 2021 was 3.3 hours/week. This discovery provides an answer to one of

the subject organizations initial questions—are we getting in-office frequency right?

Meaning, are employees coming in too few or too many times per week? In the chief

operating officer’s business unit, employees were scheduled to be in the office 0.87

days/week on average—just under one day per week. At a high level, this matches

with the collaboration index we developed in the previous section—employees with

one to four hours of in-person collaboration per week should come in one day per

week.

A granular investigation tells a different story. We match each employee’s calendar

to the frequency submitted in the HR Scheduler system. These data are presented in

Figure 4-9.

47



Figure 4-9: 2021 Potential In-Person Collaboration vs. Assigned In-Office Frequency

n=346 Hybrid Employees at HQ Campus

First, we can use these data to confirm that once we filter collaborations to a spe-

cific campus, the number of collaborative hours drops significantly. In this sample,

the maximum number of collaborative hours is just over 15 hours per week. Previ-

ously, in our initial 600 employee sample we saw employees collaborating up to and

above 40 hours per week when we did not align by campus—as a global organization

teams/business units are geographically distributed. This tells us that the requi-

site amount of collaboration at an employee’s assigned campus is much lower than

executives might estimate through intuition.

More importantly, Figure 4-9 tells us that the “one size fits all” approach to in-

office frequency is not delivering an optimal mix of in-office/remote work. This was
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our hypothesis since the HR Schedule Recommender Tool relied on the director’s

view of how collaborative his/her business unit is—the data confirms this hypothesis.

If frequency was being properly calibrated, we would expect to see a meaningful

correlation between in-person collaboration and monthly in-office frequency.

There are two primary arguments against bespoke frequency recommendations—it

is challenging to scale organizationally and employees may bias the process if each fills

out an individual frequency recommender tool. We believe the collaboration index can

solve both of these. As for scaling, a simple data pipeline can transform calendar data

and produce a collaboration index for each employee. This metric is the only factor

that drives the frequency recommendation—yielding recommendations commensurate

with an employee’s potential in-person collaborations. An important word here is

potential. This removes the bias; an employee cannot skew the recommendation by

never going into the office—the potential interactions will still be counted and drive

his/her frequency recommendation.

To illustrate how the collaboration index would change Figure 4-9, we conduct

a simple simulation. We calculate the collaboration index for each employee in the

sample and assign the employee frequency according to the map displayed earlier

in Table 7.8. The results are displayed in Figure 4-10, and we see each employee’s

frequency scale relative to in-person collaboration.
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Figure 4-10: Figure 4-9 After Aligning Frequency Using Collaboration Index

n=346 Hybrid Employees at HQ Campus

Ultimately, calendar data produces a frequency recommendation free from the

opinion of each individual leader or employee. This is important from a real estate

perspective because it allows for more precise long term capacity planning—in short,

more OPEX savings because real estate capacity is matched to demand. This concept

of matching capacity to demand is not new—it is a core principle in manufacturing.

The era of hybrid work brings this principle to light in the commercial real estate

domain. Organizations that use data to recommend frequency will be a step ahead

of the market because they can shed expensive assets while other organizations wait

to decipher frequency via employee behavior—a signal that will likely take a number

of years to stabilize post pandemic.

This leads into the next factor in hybrid work design—how can we forecast em-

ployee behavior with limited historical data?
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4.3 Modeling System Constraints at Hub Sites

As presented, we see that frequency is the first decision impacting real estate network

capacity. This section focuses on the second, and arguably harder to decipher factor,

employee behavior—how often will hybrid employees actually come to the office post

pandemic? We believe that setting hybrid schedules is critical to begin influencing

employee behavior; schedules give real estate strategy a baseline occupancy estimate

and provide predictability for work groups to connect—we urge organizations to think

about implementing a simple scheduling system. By setting schedules, organizations

can structure an ambiguous problem and model employee behavior. This section de-

scribes a general simulation design which organizations can use to model a variety

of hybrid work scenarios. Ultimately, this process will help organizations understand

the system constraints before designing a more complex hybrid work scheduling al-

gorithm.

The Monte Carlo simulation rests on considering each employee arrival as an

independent Bernoulli trial. Since the subject organization is setting schedules, on

any given day of the week, an employee is either scheduled or not scheduled. If an

employee is not scheduled, he/she can still get a last minute call from a colleague

and need to “flex” into the office. As such, employees are initially bucketed into

two categories—scheduled or flex. To model mathematically, we define two Bernoulli

random variables, 𝐴𝑠, arrival scheduled and 𝐴𝑓 , arrival flex.

𝐴𝑠 =

⎧⎪⎨⎪⎩1 w.p. 𝑝𝑠

0 w.p. (1− 𝑝𝑠)

, (4.2)

𝐴𝑓 =

⎧⎪⎨⎪⎩1 w.p. 𝑝𝑓

0 w.p. (1− 𝑝𝑓 )

, (4.3)

Since these two events are mutually exclusive—i.e., an employee can only fall in

the scheduled category or the flex bucket, not both—the total number of arrivals on

51



day 𝑑, 𝐴𝑑 is represented by:

𝐴𝑑 =
𝑛𝑠∑︁
𝑖=1

𝐴𝑠𝑖 +

𝑛𝑓∑︁
𝑗=1

𝐴𝑓 𝑗 , (4.4)

where, 𝑛 = 𝑛𝑠 + 𝑛𝑓 , and:

𝑛𝑠 = Total Number of Possible Scheduled Employees on Day 𝑑,

𝑛𝑓 = Total Number of Possible Flex Employees on Day 𝑑,

𝑛 = Total Number of Hybrid Employees assigned to campus,

The average arrivals on any given day is calculated by using the properties of the

probabilistic model. By definition of a Bernoulli random variable, the expected values

for 𝐴𝑠 and 𝐴𝑓 are:

E[𝐴𝑠] = P(𝐴𝑠 = 1) = 𝑝𝑠,

E[𝐴𝑓 ] = P(𝐴𝑓 = 1) = 𝑝𝑓 ,

And subsequently, by applying linearity of expectations, the average arrivals on

day 𝑑 is:

E[𝐴𝑑] = E[
𝑛𝑠∑︁
𝑖=1

𝐴𝑠𝑖] + E[
𝑛𝑓∑︁
𝑗=1

𝐴𝑓 𝑗],

E[𝐴𝑑] = 𝑛𝑠E[𝐴𝑠] + 𝑛𝑓E[𝐴𝑓 ],

E[𝐴𝑑] = 𝑛𝑠𝑝𝑠 + 𝑛𝑓𝑝𝑓 .

This progression shows the underlying probabilistic model behind the Monte Carlo

simulation—on the average, 𝐴𝑑 will simply be a function of the number of employ-

ees in each category and the probability that each category of employee arrives to

the office. Translating this probabilistic model into a simulation helps real estate

leaders understand the variability of arrivals throughout the year. Organizations
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can use behavioral data to estimate 𝑝𝑠 and 𝑝𝑓 and test the sensitive of a variety of

assumptions—we find this to be a powerful approach to address real estate leader-

ship’s uncertainty around how frequency and employee behavior impacts capacity of

the system.

Since the subject organization’s system design further categorizes hybrid employ-

ees as weekly, biweekly, monthly and custom, our team expanded the model in Equa-

tion 4.3 to the following:

𝐴𝑑𝑠 =
𝑛𝑠𝑤∑︁
𝑖=1

𝐴𝑠𝑤𝑖 +

𝑛𝑠𝑏∑︁
𝑖=1

𝐴𝑠𝑏𝑖 +
𝑛𝑠𝑚∑︁
𝑖=1

𝐴𝑠𝑚𝑖 +
𝑛𝑠𝑐∑︁
𝑖=1

𝐴𝑠𝑐𝑖 , (4.5)

𝐴𝑑𝑓 =

𝑛𝑓𝑤∑︁
𝑗=1

𝐴𝑓𝑤𝑗 +

𝑛𝑓𝑏∑︁
𝑗=1

𝐴𝑓𝑏𝑗 +

𝑛𝑓𝑚∑︁
𝑗=1

𝐴𝑓𝑚𝑗 +

𝑛𝑓𝑐∑︁
𝑗=1

𝐴𝑓𝑐𝑗 , (4.6)

𝐴𝑑 = 𝐴𝑑𝑠 + 𝐴𝑑𝑓 , (4.7)

where 𝐴𝑠𝑤, 𝐴𝑠𝑏, 𝐴𝑠𝑚, 𝐴𝑠𝑐 and 𝐴𝑓𝑤, 𝐴𝑓𝑏, 𝐴𝑓𝑚, 𝐴𝑓𝑐 are Bernoulli random variables cor-

responding to employee categories of scheduled weekly, scheduled biweekly, scheduled

monthly, scheduled custom, flex weekly, flex biweekly, flex monthly, and flex cus-

tom. Again, the associated probability of arrival, or 𝑝𝑠𝑤, can be estimated based on

behavioral data, and can be used to simulate the sensitivity of hybrid work scenarios.

Using the model described in Equations 4.4 through 4.6, we recommend orga-

nizations simulate scenarios by drawing from a uniform probability distribution to

determine whether employee 𝑖, arrives at the office campus on day, 𝑑. Algorithm 1

details the simulation used to model a year of hybrid work at the subject organi-

zation. At a high level, this simulation runs a trial for each employee and uses the

probabilities of arrival to simulate if an employee arrives in the office or does not

arrive in the office on a certain day.
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Algorithm 1 Simulate a Campus for Year
1: procedure SimulateCampus(𝑛𝑠𝑤, 𝑛𝑠𝑏, 𝑛𝑠𝑚, 𝑛𝑠𝑐, 𝑛𝑤, 𝑛𝑏, 𝑛𝑚, 𝑝𝑎𝑟𝑟𝑖𝑣𝑎𝑙)
2: 𝑛𝑠𝑤, 𝑛𝑠𝑏, 𝑛𝑠𝑚, 𝑛𝑠𝑐 ◁ dictionaries with scheduled employee count
3: 𝑝𝑠𝑤, 𝑝𝑠𝑏, 𝑝𝑠𝑚, 𝑝𝑠𝑐 ←p𝑎𝑟𝑟𝑖𝑣𝑎𝑙 [scheduled] ◁ store arrival probabilities
4: 𝑝𝑓𝑤, 𝑝𝑓𝑏, 𝑝𝑓𝑚, 𝑝𝑓𝑐 ←p𝑎𝑟𝑟𝑖𝑣𝑎𝑙 [flex]
5: Initialize 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡𝑠 with columns [Mon,Tue,Wed,Thu,Fri]
6: Initialize 𝐷𝑎𝑦𝑠𝑂𝑓𝑊𝑒𝑒𝑘 to [Mon,Tue,Wed,Thu,Fri]
7: Intialize 𝑊𝑘𝑖 ◁ Indicator variable to toggle week of the month
8:
9: for weeks 1 to 52 do

10: 𝑊𝑘𝑖 set to week of the month (1/2/3/4)
11: Initialize 𝐷𝑎𝑦𝐶𝑜𝑢𝑛𝑡𝑠
12:
13: for 𝑑𝑎𝑦 in 𝐷𝑎𝑦𝑠𝑂𝑓𝑊𝑒𝑒𝑘 do
14: for all 𝑛𝑠𝑤 [𝑊𝑘𝑖] [𝑑𝑎𝑦] do
15: sample from a uniform distribution
16: if sample < 𝑝𝑠𝑤
17: then increment 𝐷𝑎𝑦𝐶𝑜𝑢𝑛𝑡𝑠[𝑑𝑎𝑦]
18:
19: Repeat lines 11 through 14 for each category of scheduled employee
20:
21: for all 𝑛𝑤 - 𝑛𝑓𝑤 [𝑊𝑘𝑖] [𝑑𝑎𝑦] do ◁ calculate number of flex possible
22: sample from a uniform distribution
23: if sample < 𝑝𝑓𝑤
24: then increment 𝐷𝑎𝑦𝐶𝑜𝑢𝑛𝑡𝑠[𝑑𝑎𝑦]
25:
26: Repeat lines 18 through 21 for each category of flex employee
27:
28: Once week is finished, concatenate 𝐷𝑎𝑦𝐶𝑜𝑢𝑛𝑡𝑠 to 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡𝑠
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The scheduling system gives the subject organization more insight into scenarios

than the average organization. However, insight on the probabilities of arrival can

be gleaned from a combination of historical data and survey data—the organization

can track behavior as hybrid employees return, or gather data on expected behavior

through surveys. The power of the simulation tool lies in sensitivity analysis—what

will it take for our office campus to be over capacity on a given day throughout the

year? In the subject organization, we find that the hub campuses will not reach

capacity until 100% of scheduled employees and 50% of flex employees come to the

office—this is a very high level of attendance considering pre-COVID attendance

hovered between 40-60% of assigned employees. The results of one sensitivity study

at the headquarters campus is displayed in Figure 4-11.

Figure 4-11: HQ Campus Monte Carlo Simulation

Our conclusions from these simulations are threefold. First, the subject organiza-

tion in our study has, on average, 60% excess capacity at major hub campuses. This

is because on average employees are coming in less than one day per week, and sched-

ules are distributed across the week and month. Second, a campus will only approach

capacity with a very high schedule adherence (100% scheduled and 50% flex arrivals);

55



based on pre-pandemic attendance of 40%, this is highly unlikely. This observation is

critical as we think about aligning collaboration in this study—our opinion is that a

more densely populated office on popular days of the week will deliver greater returns

for the employees and the organization. Finally, there may be significant operational

savings by closing campuses on low demand days of the week and shifting demand

to a more consolidated portion of the work week—i.e., Tuesday, Wednesday, Thurs-

day. In our subject organization, the combination of excess capacity means this is a

realistic option to eliminate waste and maximize use of space.

At this point, organizations need to analyze the frequency, behavioral and capacity

data discussed to determine the next step in hybrid work design. In our subject

organization, we estimate there is significant excess capacity in offices, and the optimal

decision is to densely align hybrid employees on three days of the week. For other

organizations with capacity concerns, the objective moving forward may be to spread

out hybrid demand to ensure that the system is not overwhelmed. In each scenario,

the next question is how to align the right employees on the right day to foster

the right in-person collaborations—this is the focus of the remainder of this study.

Potentially unsurprising at this point, we argue that again, this problem can be solved

with employee collaboration data.
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Chapter 5

Modeling Employee Networks

In this chapter, we present our process to model the underlying network of knowledge

workers. A key finding of this study is that we must understand employee networks

before we can properly align schedules. As described in Chapter 3.1 - Current State

of Hybrid Scheduling, directors at large corporations are attempting to align hybrid

schedules for at times, hundreds of employees—this is an inefficient and ineffective

method. The possible permutations of schedules and relationships are too complex

for a heuristic solution.

We start this chapter by presenting a process that cleans employee metadata,

filters to specific work campus and models a director’s network at the work campus.

Figure 5-1 visually depicts our process to model director level networks—this chapter

discusses our rationale for using networks and then proceeds sequentially through a

process to model director level networks.

Figure 5-1: Network Modeling Process
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The director level network model built in this chapter is the input into an opti-

mization model we describe in Chapter 6. This pipeline improves the current state

of hybrid scheduling without a complete process redesign—schedules are still set at

the director level but optimized for collaboration.

We continue this chapter by exploring how networks, when applied more broadly,

can improve the current scheduling system. We investigate a level beyond the director

network model and build an employee level network—where each node in the network

is an individual employee. Furthermore, we discuss how business leaders can use

network modeling and network metrics to quantify the impact of hybrid work. By

the end of this chapter, we demonstrate that network modeling is a powerful tool

that captures the abstract notion of employee collaboration. Ultimately, modeling

collaboration is the first step to optimizing schedules.

5.1 Network Rationale

In the first two months of research, we conducted numerous small studies measuring

schedule adherence across large campuses, using employee behavior as a proxy for

schedule effectiveness. Quickly, it became apparent that the highest rate schedule

adherence occurred when an employee’s schedule was defined as “custom.” Even the

midst of uncertainty surrounding COVID-19 resurgence in July 2021, employees with

custom built schedules—versus the default weekly, biweekly, or monthly recurring

option—displayed a rolling adherence of up to 60% compared to less than 20% in the

default categories.

In Figure 5-2, we present schedule adherence at the headquarters campus; each

line graph represents the schedule adherence for a specific employee schedule type.

We primarily analyze data points from the two week period between Tuesday 13 July

and Wednesday 21 July. We believe that this data window is valid because it was two

weeks after employees began returning to the office and just prior to an increase in

COVID19-Delta at the end of July. Leadership soon after announced that the return

to office was formally delayed until November. Therefore, this data window is our
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Figure 5-2: Schedule Adherence at HQ Campus
n=2394 Employees Assigned to HQ Campus

only insight into employee hybrid behavior. Based on this data point and consistent

with research on remote work by Neely [21], we conclude that intentional schedule

setting is critical to maintain employee engagement in the hybrid environment.

Based on this conclusion, we focus on finding a method to properly align sched-

ules using data. This method needs to provide an objective model of employee re-

lationships and be able to scale across a large organization. We leverage the field

of organizational network analysis—a technique used in the field of human resource

consulting. Historically, organizational network analysis uses employee surveys as

the primary data source to model the underlying networks in an organization. This

method naturally lends itself to deciphering which employee work groups should be

scheduled together.

Cross and Gray published research in June 2021 highlighting the use of organiza-

tional network analysis for hybrid scheduling [12]. Their work encountered scheduling

practices similar to those in our study—"leaders advocating for hybrid models based

on intuition." Cross and Gray worked with a mid-sized biotech organization to model

employee interactions and decipher work group “clusters.” These clusters naturally

aligned with scheduling recommendations and accounted for 77% of in-person collab-
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oration needed by employees.

We build on this approach by using employee metadata—primarily Google cal-

endar data and employee campus assignments—to fully capture underlying employee

networks. Rooting the networks in employee metadata provides a distinct advantage

because it is less susceptible to human bias and allows analysis to scale across a large,

dynamic organization. Our vision is a scheduling system that is re-calibrated quar-

terly as work groups naturally change and evolve. Our hypothesis is that models

incorporating employee collaboration data will present measurable improvement over

heuristic schedules.

5.2 Network Theory Overview

Organizational networks can be mathematically represented in three basic forms:

adjacency lists, edge lists and adjacency matrices [19]. Throughout this study, we use

the R programming language to convert networks into a visual format for business

leaders; however, it is useful to understand the underlying concept of the adjacency

matrix. Behind the visualizations, graphs are stored in matrix form as an Nv x Nv

adjacency matrix. For a graph G=(V,E), the adjacency matrix A is defined such

that:

𝐴𝑖𝑗 =

⎧⎪⎨⎪⎩1 if i,j ∈ E

0 otherwise
(5.1)

Adjacency Matrix Representation

Simply put, A is a square matrix with the same number of rows and columns as

actors in the network. These matrices can be represented as “symmetric,” correlat-

ing to a non-directed network, and “asymmetric,” correlating to a directed network.

Therefore, a non-directed network of four actors is represented by a four by four adja-

cency matrix with 1 indicating the presence of a connection between two actors [13].

A simple network model is represented below in Figure 5-3.
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Figure 5-3: A Simple Adjacency Matrix for Four Node Network

The adjacency matrix can be combined with an edge weight database, which

classifies the strength of connection between two nodes, to generate a network model

from the data. Behind each node there are also embedded nodal attributes. We will

detail the edge and node database structure in depth in the coming sections of this

chapter. The power of this modeling technique is that it captures the interdependence

of nodes—unlike linear modeling techniques, we cannot assume independence when

conducting analysis. Interdependence is powerful when we think about applying

networks to help solve hybrid work challenges—knowledge work is not linear nor

independent and relationships cannot be fully modeled by an organizational hierarchy.

With this basic definition of a network, we can define descriptive statistics of

networks that will help our analysis throughout the chapter. The three basic char-

acteristics of a each node in a network are degree, strength and centrality. The

degree 𝑑𝑣 of a node 𝑣, in a network graph 𝐺 = (𝑉,𝐸), counts the number of edges

in 𝐸 incident upon 𝑣. Simply put, this is the number of connections from a specific

node 𝑣 to other nodes in set 𝑉 that defines our network. We can graph the degree

distribution of a network to understand global tendencies. [19] The strength 𝑠𝑣 of a

node 𝑣, in a network graph 𝐺 = (𝑉,𝐸), is the sum of the weights of edges connected

to vertex 𝑣. This provides a measure of how strong a node is—similar to degree, we

can graph a network’s strength distribution. [19] The centrality is a mathematical

measure of importance for a node 𝑣, in a network graph 𝐺 = (𝑉,𝐸). There are a

variety of centrality measures that can be used: our analysis uses eigenvector cen-

trality because it is shown to capture the notion of status or prestige. Eigenvector

centrality was originally proposed based on the work of Bonacich [5, 19] and Katz
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[18, 19] following the form:

𝑐𝐸𝑖(𝑣) = 𝛼
∑︁

(𝑢,𝑣)𝜖𝐸

𝑐𝐸𝑖(𝑢) , (5.2)

This provides an absolute value between 0 and 1 representing the centrality of a

node [19]. When visualizing networks, it is typical to scale the size of a node based on

the node’s eigenvector centrality—all visualizations in this study follow this pattern.

Scaling node size provides us with a quantitative and visually intuitive measure of

importance in the network. In Figure 5-4, nodes with larger eigen centrality measures

appear with a larger diameter and in the center of the network.

Figure 5-4: Example Eigen Centrality Scaling

This introduction to network theory lays the ground work for our analysis in the

coming chapters. We will build upon these foundational ideas to represent and analyze

employee networks, and demonstrate how organizations can use network analysis to

help design, implement and measure hybrid work.

5.3 Use Case Overview

We start by designing a proof of concept with one business unit in the subject or-

ganization. Our initial focus is testing whether network models can optimize hybrid

schedules within the constraints of the current system—mainly that directors set
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schedules for their entire teams. This subsection details our sample population and

contextualizes the proof of concept.

The sample population consists of all employees working in a specific business in-

telligence unit—when the analysis was conducted this unit consisted of 201 employees

with 1 director, 4 associate directors, 17 senior managers and 184 data engineering

and data science individual contributors. Employees are dispersed geographically

across three regional hubs in the United States—the HQ campus in New Jersey, a

southeast campus in Atlanta and a southern campus in Texas. These business intel-

ligence teams provide analytical support to the supply chain and real estate business

units—these stakeholders are also dispersed geographically across United States hub

campuses. The sample population has recurring relationships with a variety of stake-

holders across the larger organization. These relationships contribute to the selection

of the sample population—we are able to heuristically evaluate model recommen-

dations based on domain knowledge about this portion of the organization. This

construct helps us assess the viability and impact of scaling network models beyond

the sample population.

The data set consists of 74,000 distinct Google calendar events from June to

September 2021. For the proof of concept, the calendar data is largely unstructured

and required significant cleaning to create the final data set consisting of a unique

meeting identifier and a list of all confirmed meeting attendees. We only had access

to calendar data for employees in the business intelligence unit. As such, we place a

variety of constraints on our scheduling solution, and believe actual implementation

with the full data set will deliver an even larger gain in stakeholder collaboration.

5.3.1 Network Database Design Methodology

As discussed in Chapter 5.2, networks consist of two components—nodes and edges.

Behind each component is a database that contains attributes of the node or edge. In

our network models, each node represents a specific employee, or a specific director

when we aggregate employees to associated directors. The database behind nodes

contains 87 attributes for each node. These data points include common attributes
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such as employee first and last Name, work title, email, business unit, and work

location. The node database requires little manipulation—we can use any standard

employee detail file. The edge database—or relationship database as we define it—

requires more manipulation. The remainder of this section focuses on how to create

a meaningful edge database using employee collaboration data.

The edge database stores the strength of connection between two nodes in the

network. We start building this database by pre-processing raw calendar data—first

we have to determine which employees accepted and declined each invite. This elimi-

nates the noise we find on employee calendars in the remote work environment—e.g.,

managers who do not attend meetings or working sessions but keep the data on their

calendars to understand subordinate focus areas. Then, we model relationships be-

tween two nodes using the number of interactions between nodes over a certain time

horizon. One meaningful interaction between nodes is a confirmed attendance at

the same calendar event. The raw meeting attendee data is transformed to an edge

database that contains pairs of nodes and the associated count of connections between

these pairs. Technically, we accomplish this by selecting each calendar event, gen-

erating the unique pairwise combinations, and concatenating pairs over all calendar

events. Figure 5-5 visually depicts the process for each calendar event in our data

set. Furthermore, Algorithm 2 provides the detailed process to build the database.

Figure 5-5: Relationship Building Process

When creating the pairs, we are not concerned with order of the connection. We

use a function in the R programming language, combn(), to build all pairs of event

attendees and then filter out duplicates. Mathematically, we confirm this number
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Algorithm 2 Building Relationship Database
1: procedure GenerateRelationshipDatabase(𝑟𝑎𝑤𝐶𝑎𝑙𝐷𝑎𝑡𝑎)
2: Instantiate 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒
3: Filter 𝑟𝑎𝑤𝐶𝑎𝑙𝐷𝑎𝑡𝑎 by unique calendar ID ◁ Prevents duplicate events
4: Clean organizer email, remove @ ◁ Simplifies matching
5: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐶𝑎𝑙𝐸𝑣𝑒𝑛𝑡𝑠← 𝑟𝑎𝑤𝐶𝑎𝑙𝐷𝑎𝑡𝑎
6: for 𝑙𝑒𝑛(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐶𝑎𝑙𝐸𝑣𝑒𝑛𝑡𝑠) do
7: Define 𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠
8: Pop next event
9: 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠← 𝑒𝑣𝑒𝑛𝑡[𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠]

10: for 𝑙𝑒𝑛(𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠) do
11: if 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒[𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑] = 𝑇𝑅𝑈𝐸 then
12: 𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠← 𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠+ 𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑒

13: Generate pairwise combos of 𝑎𝑐𝑡𝑢𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑒𝑠
14: Store each combo as new entry in 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒

using Equation 5.3 which calculates the number of unique pairs of meeting attendees.

𝑛!

2!(𝑛− 2)!
(5.3)

This process results in a database with all the pairwise interactions between nodes

in our network—we refer to this as our relationship database as it captures connectiv-

ity between nodes. Finally, we aggregate our relationship database by unique pair in

order to add a count of “connection occurrences” between two nodes. The final rela-

tionship database that creates edges in our network is visually depicted in Table 5.1.

We use email addresses as the unique employee identifier, and link the relationship

database to node database using each employee’s email address.

Node A Node B Relationship Strength

Unique Email Unique Email Integer R+
Unique Email Unique Email Integer R+
Unique Email Unique Email Integer R+
Unique Email Unique Email Integer R+
Unique Email Unique Email Integer R+

Table 5.1: Final Relationship Database Structure
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The meaning of this relationship database is rooted in frequency of collaboration

between two nodes. We acknowledge that a frequency based metric fails to capture

the intensity of collaboration between nodes. However, at a high level, frequency

does signal how each employee prioritizes his/her time for collaboration—more col-

laboration between two nodes means that work is interdependent and these employees

can benefit from aligning in-person schedules. The simplicity of the frequency metric

also allows us to analyze the distribution of relationship strength and determine a

meaningful collaboration threshold based on our sample population.

It is important to note that the strength field of our relationship database could

be derived from a variety of underlying data sources. We only had access to Google

calendar data, but a more diverse set of underlying data could more accurately portray

employee collaboration and produce less biased models. For example, an organization

could compile calendar events, emails, and slack communications between employees

to build a robust representation of connection strength between two nodes. We chose

to call this attribute “strength,” versus simply frequency, in an effort to highlight this

delineation.

As a recap, a network has two databases that reside behind the nodes and edges.

The nodes in our networks are linked to a basic employee database containing nu-

merous attributes such as last name, email, title, business unit, and work location.

Our network edges are linked to a relationship database based on employee calendar

data. Finally, we associate the node and edge database via employee email address

which is a unique identifier contained in each database. Below in Figure 5-6 is the

final database design.

5.3.2 Modeling Director Networks at a Campus

The database structure provides the base of a network model. Next, we detail our

process that transforms the databases into a director level network model. The pro-

cess begins by mapping each employee in the relationship database to his/her as-

signed work location and schedule assigner—this is generally the employee’s director

or executive director. We analyze the distribution of relationship strength between di-

66



Figure 5-6: Final Database Design for Network Models

rectors and determine the meaningful relationship threshold between two directors—

relationships that do not meet this threshold are filtered out of the model. Finally,

we use the visNetwork package in R to visualize and analyze this director network

model. The descriptive outputs of this analysis become inputs to an optimization

model to align schedules in Chapter 6.

The first step in building an aggregated director level network is aligning assigned

work locations to the relationship database. We match each employee email in the

relationship database to his/her work location. This additional data point enables

us to filter to a specific campus of interest—the overall goal is to align in-person

schedules at a campus. As such, the relationship database and employee database

are filtered to only include employee relationships where each employee is assigned to

the same campus. Our proof of concept analysis targets the subject organization’s

headquarters campus located in New Jersey.

Next, we create a map that takes the emails in the relationship database and

matches each to his/her schedule assigner. This should be a simple data pipeline,

but we did not have access to a data set aligning each employee to his/her schedule

assigner. The majority of employee schedules are assigned by a director; however

based on the organizational chart approximately 15% of employee schedules are set

by executive director or senior managers.
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To solve this problem, we embed the organizational chart into our employee

database and assume that if an employee reports to a director, then this director

sets the employee’s schedule—if an employee reports to an executive director, then

this executive director sets the employee’s schedule. We tested this process on a

sample population of 2,394 employees in wave one. In this early data sample, we

had access to the schedule assigner data field, allowing us to validate the interpola-

tion process—we accurately matched 95% of schedule assigners. This interpolation

and aggregation results in a database depicted below Table 5.2. The director em-

ployee identification (EID) is the transformed unique identifier in the relationship

database. This director relationship database represents the aggregated strength of

relationships between each director’s employees. Ultimately, this database captures

the organizational connections that should be driving scheduling decisions.

Node A Node B Relationship Strength

Director EID 1 Director EID 1 Integer R+
Director EID 2 Director EID 1 Integer R+
Director EID 3 Director EID 3 Integer R+
Director EID 4 Director EID 1 Integer R+
Director EID 1 Director EID 4 Integer R+

Table 5.2: Director Relationship Database at HQ Campus

Finally, it is important to note that internal relationships between director subor-

dinates are filtered out depending on the modeling goal. The initial network model for

our proof of concept excludes internal director relationships—i.e., Table 5.2 “Director

EID 1” and “Director EID 1” as Node A and Node B—because we focus on improving

stakeholder alignment. The internal/external split does contain valuable information.

After presenting our director level model to solve the proof of concept, we generalize

how these internal network metrics can help leaders in a hybrid environment.

With this director relationship database established, we analyze the relationship

strength distribution to determine the threshold for a meaningful connection be-

tween directors. The distribution of relationship strength in our director relationship

database is detailed in Table 5.3.
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Min. 1st. Qu Median Mean 3rd Qu. Max

1.0 1.0 4.0 20.26 20.00 2115.0

Table 5.3: Distribution of Strength Between Director Organizations

We find that strength between director organizations is a long tailed distribution

with the meaningful relationships occurring in the top 10%. Based on this analysis,

we choose to select a heuristic threshold and later conduct a sensitivity analysis.

The sensitivity analysis of the whole pipeline will be detailed in section 5.7. We set

our initial threshold at a value of 100 which captures the top 2.4% of our director

level relationships. The distribution is displayed in Figure 5-7—the bottom graph

transforms to a log scale using natural log and displays our threshold.

Figure 5-7: Director Relationship Strength at HQ Campus
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Based on this analysis, we constrain our director relationship database to only

include pairs with a relationship strength greater than 100. This produces a truncated

director relationship database with 157 distinct relationships and the distribution

displayed in Table 5.4 and Figure 5-8.

In Figure 5-8 we identify six key high strength relationships—this confirms our

hypothesis that relationships between certain director’s organizations are more robust

and vibrant than others. We believe that this finding will hold across any large

organization of knowledge workers attempting to orchestrate in-person collaboration

in the hybrid environment.

Min. 1st. Qu Median Mean 3rd Qu. Max

100.0 118.0 149.0 186.2 191.0 2115.0

Table 5.4: Truncated Distribution of Strength Between Director Organizations

Next, we actually build the director network model using this truncated director

relationship database. The truncation is important because it removes unnecessary

noise from the model and enables analysis. In this study, we use two R packages

to generate networks—iGraph and visNetwork. We use the suite of iGraph tools

to build and analyze networks, and use the visNetwork package for visualizations.

VisNetwork allows us to customize visualizations and help leaders understand their

organizations key network interactions. As discussed in section 5.2, the size of the

node is proportional to a director’s eigenvector centrality—this captures the notion

of importance of the network and provides a value metric to globally align schedules

later in our analysis. The width of an edge is proportional to the strength of the

connection between two director’s organizations.

Figure 5-9 visualizes our initial network model for the Business Intelligence unit

assigned to work at the main headquarters campus.

The network in Figure 5-9 presents a view of how business intelligence employees

interact with the Business Intelligence key stakeholders. It is important to highlight

that this does not fully capture the stakeholders’ extended network; this is because the

data set only contains Business Intelligence calendar data and no data on the global
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Figure 5-8: Truncated Director Relationship Strength at HQ Campus

calendar activity of stakeholders. Stakeholders only appear in this network when they

appear at an event on a Business Intelligence employee’s calendar. As we progress

to optimizing schedules this limits the increase in alignment we can achieve—for the

initial proof of concept we only adjust the Business Intelligence schedule because

stakeholders may be coupled to other portions of the global network. With full data

access, this modeling pipeline can produce the entire network at a campus site and

enable a global analysis.
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Figure 5-9: Business Intelligence Network (Director Level) at HQ Campus

5.3.3 Business Intelligence Network Analysis

For now, we focus on analyzing the Business Intelligence unit’s network. In Figure

5-10, we zoom into the meaningful connections between the Business Intelligence di-

rector and her key stakeholders. Each node is labeled with its position—e.g., Director,

Business Intelligence—to maintain anonymity throughout the analysis. For ease of

reference, we refer to the Business Intelligence director as Director BI and encode

her stakeholders with an alphabetic matching A through Q. Each node contains 83

attributes in the node database that were used throughout the analysis to understand

relationships. Director BI’s key stakeholders are highlighted in red. We can further

analyze this data to understand the percentage of relationships we are capturing in

this model.

Min. 1st. Qu Median Mean 3rd Qu. Max

1.0 2.5 7.0 36.1 22.0 1134.0

Table 5.5: Distribution of Strength of Business Intelligence Relationships

We observe a few strong relationships which represent the key stakeholders for

the business intelligence organization. After truncating the distribution at a rela-
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Figure 5-10: Business Intelligence Network (Director Level) at HQ Campus - Zoom-In

tionship strength of 100, we find 17 key stakeholders—the stakeholder statistics are

detailed below in Table 5.6. The distribution after truncation is detailed in Table

5.5. These 17 relationships capture 65.9% of all business intelligence interactions at

the campus from June to September of 2021. The remaining 34.1% of interactions

were spread out across 218 different director organizations. In Table 5.6, the “Rel. %

of Engagements” column uses all possible relationships in the denominator—so this

column sums to 65.9% or the percent of engagements captured by the top 17 stake-

holders. Looking at Director I to Director Q, we observe that the relative strength of

the relationships plateaus—these are less frequent than relationships with Director A

through H. Therefore, we conclude that the threshold of 100 captures the recurring,

meaningful relationships that can benefit from orchestrated in-person collaboration.

The final point to highlight is that the Business Intelligence unit has meaningful

relationships with 17 other departments at the campus—in the current state, each

director listed in Table 5.6 must communicate with each other and attempt to align

schedules. Large organizations arranging hybrid work need to understand the com-

plexity of this problem, especially if they are mandating set schedules. While setting

schedules provides structure and can increase meaningful in-person interaction, doing

so without analytics presents a high probability for misalignment among work groups.
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Stakeholder Strength Rel. % of Engagements Engage/Day Eigen Centrality

Director A 1134 13.4% 18.9 1
Director B 817 9.6% 13.6 0.879
Director C 563 6.6% 9.4 0.335
Director D 461 5.4% 7.7 0.207
Director E 386 4.6% 6.4 0.241
Director F 366 4.3% 6.1 0.144
Director G 348 4.1% 5.8 0.208
Director H 322 3.8% 5.4 0.166
Director I 166 2.0% 2.8 0.117
Director J 153 1.8% 2.6 0.036
Director K 148 1.7% 2.5 0.0422
Director L 138 1.6% 2.3 0.0322
Director M 128 1.5% 2.1 0.139
Director N 122 1.4% 2.0 0.0953
Director O 120 1.4% 2.0 0.0755
Director P 114 1.3% 1.9 0.0353
Director Q 112 1.3% 1.9 0.0276

Table 5.6: Business Intelligence Stakeholder Metrics

We also analyze the sensitivity of the meaningful relationship threshold. Since

the distribution of relationship strength is long tailed, the important relationships

fall in the top 10 relationships—below Director I in Table 5.6, the stakeholders rep-

resents a small fraction of the overall connections. Our goal is to align the most

important interactions; many of the stakeholders on the tail of the distribution are

noise. To demonstrate this conclusion, a sensitivity analysis for the meaningful rela-

tionship threshold is shown in Table 5.7. The threshold we use to define a meaningful

relationship is 100, in boldface in Table 5.7.

Table 5.7 displays how the quantity and relative percentage of relationships re-

tained changes when applying different thresholds for relationship strength. In our

networks, we find that selecting a threshold which captures the top 2.5% of relation-

ships is a good rule of thumb. Setting a lower threshold has diminishing returns,

as each additional relationship captured is not strong enough to impact stakeholder

alignment. This confirms our observation that business units have recurring relation-

ships which represent the bulk of connections in the underlying network.
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Threshold Retained Relationship % Added %/Relationship Threshold Quantile

50 31 77.0% 0.7% Top 8.0%
60 27 74.4% 0.7% Top 6.1%
70 22 70.8% 0.9% Top 4.5%
80 21 69.9% 1.0% Top 3.5%
90 17 65.9% 0.0% Top 2.7%
100 17 65.9% 0.0% Top 2.4%
110 17 65.9% 1.3% Top 1.9%
120 15 63.3% 1.5% Top 1.3%
130 12 58.9% 1.6% Top 1.0%
140 11 57.3% N/A Top 0.8%

Table 5.7: Sensitivity Analysis—Relationship Strength Threshold

The director network model in Figure 5-9 and subsequent stakeholder metrics

presented in Table 5.6 are the key descriptive inputs to our optimization model in

Chapter 6. To stay focused on networks, the next section shifts to thinking more

generally about how networks can help answer many hybrid work design questions.

We return to the director level network model in Chapter 6 when we optimize the

Business Intelligence hybrid schedules.

5.4 Generalized Employee Network Modeling

Since this chapter is focused on network models, we refrain from moving straight

into the optimal proof of concept solution. Instead, we use the business intelligence

data to generalize the value of network models in the hybrid work environment. In

this section, we introduce a class of statistical models to analyze networks, present a

process to model the individual employee level network and develop network metrics

hybrid organizations can track. This general application of networks is not critical to

solving the proof of concept, but is powerful nonetheless. Our goal is to emphasize

the complexity of hybrid work and illustrate the power of network analytics.
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5.4.1 An Introduction to Exponential Random Graph Models

Network scientists initially conducted statistical analysis of networks using standard

regression methods [14]. As we have already shown, network relationships are rooted

in dependence and thus violate key independence assumptions that enable traditional

regression modeling [14]. The exponential random graph model (ERGM) was devel-

oped to fill this analytical gap—originally referred to as p* models in the early 1970s,

these evolved to modern ERGMs. Currently, ERGMs are used by social scientists

to understand the local forces that shape global network structure [16]. We intro-

duce the basics of ERGMs and demonstrate how this modeling technique can provide

hybrid work insights.

EGRMs are analogous to logistic regression—they predict the probability of an

event occurring given a set of exogenous variables [17]. In the network context,

we are concerned with the probability that a pair of nodes develop a tie based on

sharing certain attributes. As an example, are two employees more likely to have a

meaningful relationship if they work for the same manager or align under the same

business unit? The underlying premise of EGRMs is simulating randomly generated

exponential graphs and comparing these with our real world network to determine

significance of certain attributes.

The general formulation of an ERGM considers G=(V,E) as a random graph.

Let 𝑌𝑖𝑗 = 𝑌𝑗 𝑖 be a binary random variable representing the presence of an edge

between nodes—this produces a matrix Y that is the random adjacency matrix for

graph G. Therefore, an exponential random graph model is formulated to estimate

the parameters of the joint distribution of Y [19]:

𝑃𝜃(𝑌 = 𝑦) =

(︂
1

𝜅

)︂
exp

(︃∑︁
𝐻

𝜃𝐻𝑔𝐻(y)

)︃
(5.4)

where,

1. each 𝐻 is a set of possible edges among the vertices in G
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2. 𝑔𝐻(𝑦) =
∏︀

𝐻 𝑌𝑖𝑗, meaning it is 1 if 𝐻 is in 𝑌 or zero otherwise.

3. a non-zero value for 𝜃𝐻 means that the 𝑌𝑖𝑗 are dependent for all pairs of vertices

𝑖, 𝑗 in 𝐻, conditional upon the rest of the graph

4. 𝜅 = 𝜅(𝜃) is a normalization constant,

𝜅(𝜃) =
∑︁
𝑦

exp

(︃∑︁
𝐻

𝜃𝐻𝑔𝐻(𝑦)

)︃

This formulation creates a dependency among elements of Y and allows simu-

lations, specifically Markov Chain Monte Carlo simulations to assess significance of

attributes in the network under study.

5.4.2 Building ERGMs for Our Director Network

We ran experiments fitting ERGMs to the director level network built earlier in this

chapter. We also use ERGMs on the more granular employee level network that

we build later in this chapter. Our conclusion is that ERGMs are a powerful class

of models that organizations can use to understand what drives connection in their

networks. By understanding which attributes drive relationships we can start aligning

hybrid work based on meaningful factors. In our director level network, we confirm

our hypothesis that directors aligned within the same business unit are more likely

to share a meaningful relationship. A more telling insight is that when we match

director schedule preferences in the network, we do not find evidence that similar

schedules increased the probability of a meaningful relationship. This confirms the

hypothesis that schedules are not aligned with key stakeholders.

Building on the formulation presented in Section 5.4.1, R provides a practical

package to build and test a variety of ERGMs on networks. An procedure to fit

an ERGMs is detailed below in Algorithm 3. When the ERGM is built in line 8 of

Algorithm 3, we can specify co-variates using the nodecov, nodefactor or nodematch

command. Similar to regression modeling, nodecov applies to continuous variables

and nodefactor applies to categorical variables. Nodematch assesses the concept of
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homophily in a network based on a categorical attribute. Homophily is formally

defined as “love of sameness;” for our purposes it simply shows whether two nodes

are more likely to share a relationship if they also share a particular attribute. This

gives us the flexibility to test a variety of hypothesises about our network.

Algorithm 3 Fitting an ERGM
1: procedure GenerateERGM(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐺𝑟𝑎𝑝ℎ)
2: 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑀𝑎𝑡𝑟𝑖𝑥← 𝑎𝑠.𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦.𝑚𝑎𝑡𝑟𝑖𝑥(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐺𝑟𝑎𝑝ℎ)
3: 𝑁𝑜𝑑𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠← 𝑎𝑠.𝑑𝑎𝑡𝑎.𝑑𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐺𝑟𝑎𝑝ℎ) ◁ Store Attributes
4: Transform categorical 𝑁𝑜𝑑𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 into factors
5: 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙← 𝑎𝑠.𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑎𝑠.𝑚𝑎𝑡𝑟𝑖𝑥(𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝑀𝑎𝑡𝑟𝑖𝑥))
6: for Attribute in NodeAttributes do
7: 𝑠𝑒𝑡.𝑣𝑒𝑟𝑡𝑒𝑥.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙, 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑁𝑎𝑚𝑒, 𝑙𝑖𝑠𝑡(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒))

8: 𝐸𝑅𝐺𝑀 ← 𝑒𝑟𝑔𝑚(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙, 𝑒𝑑𝑔𝑒𝑠+ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠)

We gain our first insight by simply matching nodes on an attribute in our node

database called PB ORGANIZATION—this is a slightly more granular attribute than

business unit; it contains classifications such as Supply Chain and Real Estate, Con-

sumer Marketing Ops, and Corporate Finance. There are actually five different vari-

ations of “business unit” connected to each employee in our node database and it is

not clear which is the most meaningful for work alignment—we imagine this noise is

not unique to our use case.

ERGMs cut through the noise and decipher which attributes should drive hy-

brid work alignment. When we match on PB ORGANIZATION, we find that direc-

tor’s sharing the same PB ORGANIZATION code have an 80% chance of sharing

a meaningful relationship. This finding is supported by a high degree of statisti-

cal significance, a p-value of .0001. Results from fitting via Monte Carlo maximum

likelihood estimation are detailed below in Table 5.8. Our key result is a simple

scheduling heuristic: match director schedules based on PB ORGANIZATION code

in the human resources database. In our sample, when compared to randomly assign-

ing schedules, this would provide 4 to 1 odds of successful alignment—a 3x increase

from the baseline.

Following this insight, we build models to test schedule alignment in our director

network. We incorporate the day of the week that each node (director) planned
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Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.0096 0.1024 -29.381 .0001***
NodeMatch(PB ORGANIZATION) 1.4292 0.1874 7.628 .0001***

Null Deviance: 3348
Residual Deviance: 1069

AIC: 1075 BIC: 1085

Table 5.8: ERGM 1 - Matching Nodes on HR Organization Designation

for employees to come into the office. If schedules are aligned, we expect to see a

significant relationship similar to our observation in ERGM 1 matching on business

unit. Our ERGM 2 matched on business unit incorporates the following co-variate

attributes from nodes: days scheduled, monthly in-office freqency, eigen centrality,

and betweenness centrality.

Table 5.9 displays our results for the more robust model. ERGM2 matches nodes

by granular business unit alignment and an indicator variable designating a node’s

schedule. For ease of viewing, we only show results when matching Wednesdays—the

conclusions hold when we fit this model matching Tuesdays and Thursdays. The

data contained a limited number of observations with Monday and Friday schedules.

We observe that nodes sharing the same business unit and schedule are not more

likely to share a meaningful relationship—when we couple this with the significance

of business unit alignment, it is another data point supporting the hypothesis that

schedules are not aligned. Furthermore, when analyzing the coefficients in ERGM 2,

we see that “Scheduled Wednesday’s” actually has a negative coefficient. Although

not statistically significant in the model, it is still concerning when our goal is to have

work groups in the office with collaborators. Unsurprisingly, nodes with the high-

est monthly in-office frequency (12 times per month) have a statistically significant

increase in the number of meaningful relationships.

Overall, our key finding from this modeling exercise is that organizations are not

placing enough analytics behind the alignment of hybrid schedules. We confirm our

hypothesis that a certain business unit identifier—in our case the PB ORGANIZA-

TION classifier—can provide a simple heuristic to align schedules. ERGMs are a
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Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -4.046 0.721 -5.609 .0001***
NodeMatch(PB ORGANIZATION) 1.661 0.314 5.284 .0001***
NodeFactor(Month.Frequency = 4) 0.385 0.402 0.958 0.338
NodeFactor(Month.Frequency = 2) 0.307 0.542 0.576 0.571
NodeFactor(Month.Frequency = 3) 0.421 0.313 1.344 0.178
NodeFactor(Month.Frequency = 8) 0.419 0.824 0.509 0.6106
NodeFactor(Month.Frequency = 12) 0.553 0.298 1.854 0.064*
NodeFactor(Month.Frequency = 6) 0.347 0.425 0.817 0.4142

NodeCov(Eigen Centrality) 0.459 0.376 1.219 .2229
NodeCov(Betweenness Centrality) 0.002 0.0003 6.96 .0001***
NodeMatch(Scheduled Wednesday) -0.907 .683 -1.328 0.1842

Null Deviance: 1698.2
Residual Deviance: 439.8

AIC: 461.8 BIC: 518

Table 5.9: ERGM 2 - Matching Nodes to Organizations and Schedules

tool that organizations can use to understand what drives work groups and align

schedules based on those attributes. As we saw with our proof of concept data, we

can experiment with different granularity of attributes to find a meaningful level for

employee scheduling. ERGMs are not key to finding the optimal solution for our

use case, but they help our team confirm many hypothesises surrounding scheduling.

Organizations designing hybrid work can use this modeling technique to decipher the

right echelon at which to set schedules and test schedule alignment before it impacts

organization productivity.

5.4.3 Creating an Employee Level Network

Next, we focus on understanding the larger network contained within the aggregated

director level network. We start this section by discussing a method to build the em-

ployee level network—where each node is an individual employee versus a director—

and we progress to show how organizations can analyze employee level networks using

metrics and tools introduced in Sections 5.2 and 5.4.1. Aggregating by director was

useful for our proof of concept because this is how scheduling currently takes place—
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our conclusion is that for large organizations this aggregation obscures the richest

insights of network analysis. The true value of network analysis lies in transforming

data to model relationships that are not apparent on an organization chart.

The modeling process for an employee level network is similar to the director

level process presented earlier in this chapter. We filter our data to a particular

work campus—in this case the organization headquarters in New Jersey—and design

a node database where each entry is an individual employee, and an edge database

that embeds individual employee relationships. Since we presented the algorithm

in detail previously, we move directly to the model and analyze the distribution of

relationships. The models presented in this section use the same data as our proof of

concept and focus on one campus location. The only nuance is that each node now

represents a single employee versus a director’s organization.

We begin by analyzing our relationships and estimating a meaningful relationship

threshold. The distribution of employee relationship strength is summarized below

in Table 5.10.

Min. 1st. Qu Median Mean 3rd Qu. Max

1.0 1.0 2.0 7.5 9.0 156.0

Table 5.10: Distribution of Individual BI Employee Relationship Strength

In Figure 5-11, we display the distribution and log transformation to understand

the distribution of relationship strength, and to visualize our meaningful relationship

threshold.

Again, we set a threshold that represents a meaningful relationship between two

employees, and truncate our data set prior to building the employee network model.

We set our meaningful relationship threshold at a strength of seven—this captures

all relationships above the third quartile and truncates the dataset from 19,866 pairs

to 5,444 meaningful employee relationships. In Table 5.11 and Figure 5-12 below, we

display summary statistics of the truncated distribution.

Framing this data in terms of weekly employee engagements helps with compre-

hension. In this light, on the minimum end of this relationship spectrum, employees
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Figure 5-11: Individual BI Employee Relationship Strength at HQ Campus with
Threshold in Red

encountered each other eight times over a 12 week period—meaning three weeks out

of the month they had an interaction. On average, employees met 21 times during the

12 week period, or 1.7 times per week. Based on this frequency transformation, we

believe this is an accurate representation of a meaningful, recurring relationship be-

tween two employees—on balance, it seems reasonable that employees meeting about

two times per week have a recurring relationship.
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Min. 1st. Qu Median Mean 3rd Qu. Max

8.0 11.0 17.0 21.3 25.0 156.0

Table 5.11: Truncated Distribution of Individual BI Employee Relationship Strength

Figure 5-12: Truncated Individual BI Employee Relationship Strength at HQ Campus

We use this employee level data to generate the global BI network, and present the

network using VisNetwork in Figure 5-13. In this network each node is an individual

employee that is either a member of the Business Intelligence unit or has a meaningful
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relationship with Business Intelligence employees. Again, with the limited data set

the extended global network of all employees in not captured in this network—data

is only drawn from Business Intelligence calendars. As hypothesized, this network

is complex and there are natural work groups that form. To understand where the

Business Intelligence employees lie in the network, in Figure 5-14 we highlight and

observe that they manifest across the network and work with a variety of stakeholders.

Figure 5-13: BI Employee Level Network at HQ Campus

Figure 5-14: BI Employees Highlighted in Network

This visual confirms our hypothesis that BI employees collaborate in a variety of

different work groups. We believe this is not unique to the specific use case—the
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nature of knowledge work is matrixed. The employee level network illustrates that

scheduling simply by a business unit identifier is not granular enough to orchestrate

meaningful in-person collaboration at scale.

5.4.4 ERGMs using the Employee Network

ERGMs can help organizations quantify visual observations in an employee level

network model. This section follows the same progression as the previous ERGM

analysis and demonstrates that the level of network granularity provides different

insights. We find that at the employee level, aligning on the business unit identifier

is not significant to orchestrate collaboration. Furthermore, we confirm empirically

that schedules are misaligned between key stakeholders in the network.

Our first employee level ERGM tests if aligning on a business unit code can provide

meaningful schedule alignment for hybrid employees. The results of ERGM 3 are

presented below in Table 5.12. The business unit code is not a factor that drives

relationships between employees. This confirms the observation made in Figure 5-

14—business intelligence employees are spread throughout the network and engaging

with stakeholders from a variety of business units.

Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.397 0.021 -161.739 .0001***
NodeMatch(PB ORGANIZATION) -0.0458 0.058 -0.781 .435

Null Deviance: 115,667
Residual Deviance: 23,742
AIC: 23,746 BIC: 23,765

Table 5.12: ERGM 3 - Employee Network Matching HR Organization Designation

Next, organizations can investigate if a certain echelon in the leadership hierarchy

drives network connection. In our current state scheduling system, the director level

sets the schedule, a level we hypothesize is not granular enough. Table 5.13 displays

ERGM 4 which tests if sharing a director influences the probability of sharing a

meaningful relationship between employees.
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Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.399 0.019 -172.508 .0001***
NodeMatch(Director Name) -0.361 0.203 -1.78 .075*

Null Deviance: 115,667
Residual Deviance: 23,739
AIC: 23,743 BIC: 23,762

Table 5.13: ERGM 4 - Employee Network Matching Employee Director

Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.397 0.019 -171.959 .0001***
NodeMatch(Tier 5 Leader) -0.339 0.163 -2.081 .0374*

Null Deviance: 115,667
Residual Deviance: 23,738
AIC: 23,742 BIC: 23,761

Table 5.14: ERGM 5 - Employee Network Matching on Tier 5 Leader, a proxy for
Director

ERGM 5 simply validates our process to match employees to director names in

our database. The coefficients of the models can be interpreted using log-odds—

with statistical significance, employees that share the same director are actually 33%

less likely to share a meaningful relationship. Framed differently, this means that

in our current system, randomly assigning employee schedules would provide a 33%

increase in the odds of an employee being in the office on the same day as his/her

key collaborators. While this finding is only supported by a p-value of 0.075, we

believe it highlights a flaw in the current scheduling system design. More generally,

organizations architecting hybrid work can use this modeling technique to decipher

the right scheduling echelon. This level will likely be different in every organization.

In our proof of concept data, we test a variety of echelons in the organizational

hierarchy and find the levels below director—senior manager and manager—are also

not statistically significant. This confirms our hypothesis that we need a new method

of aligning in-person collaboration.

The final ERGM using the employee network confirms that the subject organiza-

tion has a schedule alignment challenge. This model matches the human resources
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business unit designation—e.g., Supply Chain and Real Estate—and matches days

scheduled. ERGM 5 summarized in Table ?? only matches on Wednesday, but we also

test Tuesday through Thursday to see if this was significant. If schedules were aligned

to meaningful relationships, we would expect our model to find “Scheduled Wednes-

day” as increasing the odds of a meaningful relationship between nodes—Table 5.15

illustrates that this is not the case.

Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.773 0.099 -38.245 .0001***
NodeMatch(PB ORGANIZATION) -.028 0.059 -0.469 .6389
NodeFactor(Month.Frequency = 2) 0.049 0.056 0.877 0.380
NodeFactor(Month.Frequency = 3) -0.124 0.103 -1.203 0.229
NodeFactor(Month.Frequency = 4) 0.011 0.043 0.254 0.799
NodeFactor(Month.Frequency = 6) -0.346 0.359 -0.962 0.336
NodeFactor(Month.Frequency = 8) 0.0007 0.047 0.015 0.988
NodeFactor(Month.Frequency = 12) -1.336 0.581 -2.299 0.0215*

NodeCov(Eigen Centrality) 1.382 0.047 28.948 .0001***
NodeMatch(Scheduled Wednesday) 0.010 0.038 0.269 0.7881

Null Deviance: 115,667
Residual Deviance: 23,025
AIC: 23,045 BIC: 23,138

Table 5.15: ERGM 5 - Matching Nodes to Organizations and Schedules

In addition to confirming that schedules are not aligned with key stakeholders,

this model presents two other interesting insights. First, we observe that employees

with a monthly in-office frequency of 12 times a month—or three times a week—are

actually 70% less likely to have meaningful connections with nodes in the same busi-

ness unit that share a Wednesday schedule. It is hard to draw an absolute conclusion;

however, this leads us to believe 12 times per month in the office may not be necessary

and rather a reactionary solution in an effort to match a variety of stakeholder sched-

ules. This point will be re-engaged as we heuristically map schedules in Chapter 6.

Secondly, eigen centrality is clearly an influential predictor to gauge the probability

of whether two nodes share a meaningful relationship—this insight also allows us to

leverage eigen centrality as we frame an optimization in Chapter 6.
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5.4.5 Network Metrics

We continue by discussing key network metrics that can be gleaned from the BI em-

ployee level network model. These network metrics can be tracked quarterly—similar

to any other business key performance indicator—giving business leaders an under-

standing of how an organization is evolving in the era of hybrid work. For example,

the director of a business development organization may want the organization to

have more external connections than internal. Network analytics provides a method

to measure if the organization is achieving a goal and a way to visualize how the

network has evolved. Furthermore, as hybrid work arrangements unfold every orga-

nization has the chance to architect small business experiments to test how certain

work designs impact networks—network analytics captures the baseline and enables

comparison across time and employee work type.

This subsection presents the four primary descriptive statistics used to describe

a network—node degree, node strength, centrality, and betweenness. These

are analogous to describing the central tendency and measures of variability in a

continuous distribution. Next, we present four more sophisticated network metrics—

think of these as common business intelligence metrics that quantify business unit

performance—density, transitivity, assortativity, and external-internal in-

dex. In the hybrid work environment, these metrics can be used as benchmarks and

quantify the impact of different hybrid work models on organizational cohesion.

Degree

As presented in Section 5.2, the degree of a node describes the number of connec-

tions each node shares with other nodes. It can be thought of as a proxy for connec-

tivity of a network. Organizations can use collaboration data from prior to COVID-

19 to develop a baseline network degree distribution. Networks can be analyzed in

pockets—e.g., at the director level—to understand how the shift to fully remote work

has changed the degree distribution of a network. Our hypothesis is that organi-

zations will find that fully remote work can induce collaboration overload—similar
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to this study’s finding in Chapter 4 when analyzing pre-pandemic/post-pandemic

collaboration data.

Figure 5-15: BI Network Degree Distribution Q3 2021

Min. 1st. Qu Median Mean 3rd Qu. Max

0.0 4.0 12.0 16.08 29.0 92.0

Table 5.16: BI Network Node Degree Distribution - Fully Remote Environment

We can translate the numbers presented into insights a manager might find useful.

On balance, employees in the BI network have 16 meaningful, recurring relationships.

At the high end of the spectrum, some BI employees have over 29 meaningful, recur-

ring relationships. As we highlighted in Chapter 4.2, many organizations are making

frequency decisions in absence of data—the network node degree distribution can be

coupled with meeting analysis to further refine the right frequency recommendation.

A network analytics dashboard could provide directional guidance for leaders by

comparing a specific network’s degree distribution to the average network profile

across the organization. In our example, the director of the BI network in our proof

of concept would receive feedback such as “2% Increase in Stakeholder Connectivity
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since Q2 2021,” or “Similar Network Connectivity as other BI Organizations.” As

employees return, organizations can use in-person collaboration data to measure if

schedule and in-office rhythm are helping or hindering collaboration. While this is not

a perfect measure, it provides an objective method to assess hybrid work impact on

connectivity. As with many business metrics, we believe network metrics are powerful

when coupled together, and enable a leader to quantitatively represent a process that

is biased towards qualitative decision making.

In addition to tracking network metrics over time, each of the metrics presented

in this section allow organizations to execute a variety of business experiments as

hybrid work unfolds in 2022 and beyond. An organization can baseline networks pre-

COVID, model network metrics throughout COVID with fully remote work, and use

in-person collaboration data as employees return in a hybrid schedule to understand

the impact. Pre-COVID and during COVID models can be created using the method

we presented in our proof of concept. The post COVID in-person networks can be

developed using booking data, meeting room data and schedule/adherence data.

Strength

The nodal strength distribution is similar to degree but factors in the weight of

relationships between nodes. We believe organizations can use the strength metric

alone, or coupled with the degree distribution of the network to produce an average

relationship strength metric—average degree of network nodes divided by average

strength of network nodes. For a cross-functional organization like the BI organization

in our proof of concept, this could be a proxy for global stakeholder connection.

In a more nuanced manner, an organization could build the network between two

organizations that they desire to work closely together and actually measure how

hybrid work is impacting collaboration.

Using our proof of concept data, the strength distribution of the BI network is

presented below in Figure 5-16 and Table 5.17. As mentioned, a meaningful metric

design for this network might be average strength/relationship—a proxy that helps

the BI director understand if hybrid frequency is diluting the quality of stakeholder
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engagement.

Figure 5-16: BI Network Strength Distribution Q3 2021

Min. 1st. Qu Median Mean 3rd Qu. Max

0.0 53.5 202.0 347.0 468.2 1851.0

Table 5.17: BI Network Node Strength Distribution - Fully Remote Environment

Avg. Stakeholder Engagement =
Average Node Strength
Average Node Degree

(5.5)

BI Avg. Stakeholder Engagement Q3 2021 =
347.0

16.08
= 21.6 (5.6)

There are two options for how to use this metric—tracking over time or as a

benchmark for leaders. To track over time, we normalize this in a range from 1

to 10 and directors can visualize how a network changes throughout the calendar

year. The metric could be applied to compare similar business units coming into the

office four times a month versus 12 times a month—does this have significance on in-

person collaboration with stakeholders? Our hypothesis is that at a certain frequency
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threshold—which may be different across organizations—the value of in-office time

reaches a point of diminishing returns. In order to benchmark for senior leaders,

we can simply model all business intelligence units across the company, normalize

the metric to 0 and provide directors a directional gauge compared to the average

business intelligence unit.

Eigen Centrality

Centrality provides a mathematical representation of importance in the network.

In this study we use eigen vector centrality as detailed in Section 5.2 because it

captures the notion of importance or prestige in the network. The eigen centrality

ranges from 0 to 1 and can highlight key aspects of the network we are analyzing.

The most important node in a network has an eigen centrality of 1. In Figure 5-17

we display the BI Network eigen centrality from Q3 of 2021.

As observed in our BI network visualization, there are clearly important nodes

driving much of the connectivity in a network—the nodes with a value above 0.2.

As such, the eigen centrality of a node can be factored into the frequency calcula-

tion equation. It could be a simple additive structure where nodes displaying above

average eigen centrality—e.g., connectors or stakeholder facing roles—are allocated

one additional in-office day per week. Again, this would help frequency be linked to

data and prevent real estate strategy from maintaining too much or too little office

space square footage. While there is not an easy corollary to a leadership metric with

eigen centrality, the average eigen centrality of a directors network could be tracked

quarterly, and used as a lagging sign of misalignment with stakeholders or lacking

in-person connection inside the business unit.
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Figure 5-17: BI Eigen Centrality Distribution Q3 2021

Betweenness Centrality

The final network metric is betweenness centrality, or the measure of how nodes lie

between each other in relation to the shortest path between nodes. A high between-

ness centrality means a node is a power broker—lots of information flows through that

specific node. If a network has below average betweenness then it can be interpreted

as “flat;” there are not large connector nodes that bottleneck the flow of information.

We believe betweenness is a key metric to monitor in hybrid work—do employees

who are in the office more frequently generate a higher betweenness metric? Testing
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this hypothesis as employees return is critical. If this is true and statistically signif-

icant, organizations need to decipher why this is occurring. For a director or senior

manager, this information is also useful. A betweenness metric can answer hybrid

work questions such as—are my employees who come in more frequently becoming

bottlenecks of information? Is my organization remaining as “flat” as during fully

remote work?

In Figure 5-18 the BI network betweenness is displayed. We conduct a logarith-

mic transformation for visualization purposes and see that that average betweenness

measures 6.63 on a logarithmic scale. The descriptive statistics are listed in Table

5.18.

Min. 1st. Qu Median Mean 3rd Qu. Max

0.0 0.0 0.667 760.15 444.745 25253.19

Table 5.18: BI Network Betweenness Distribution - Fully Remote Environment

We visualize a business metric titled "organizational hierarchy index" that is scaled

from 1 to 10 and uses the logarithmic transform of betweenness to help leaders un-

derstand how work design is impacting organizational dynamics. This could easily be

interpreted—closer to 10, a business unit has numerous hierarchical bottlenecks that

prevent information from moving between key parties; closer to 0, a business unit is

more decentralized. Again, this would be useful as a comparison over time and/or

used as a benchmark against similar business units across the organization.
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Figure 5-18: BI Betweenness Distribution Q3 2021

Density

Next, we move into descriptive network metrics that are used across network

science disciplines to derive insights. The density of a network is simply the number

of edges that exist relative to all the potential edges [19]. Mathematically, we can
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expressed density for a network G as:

Density(G) =
𝐸𝐺

|𝑉𝐺|(|𝑉𝐺| − 1)/2
, (5.7)

where V represents nodes in the network G and E represents edges present in network

G [19]. The density of a network lies between 0 and 1 and provides one manner of

assess cohesion in a network.

Real world networks tend to have low densities: every node is not connected to

every other node. For example, in our BI network the density is 0.03. We believe that

organizations would have to be deliberate to interpret and use this metric. Looking

globally, organizations could benchmark network density during fully remote work and

measure changes as hybrid work evolves. This approach could also involve building

business unit profiles using data across the organization—analytics teams could then

convert the density into a directional measure telling leaders if they fall above or

below the average. This could be used to understand how well an internal network is

staying connected by only modeling employees inside the business unit—or looking

externally, it could be used to triangulate business unit cohesion with stakeholders.

Transitivity

The density of a network can be combined with transitivity to help leaders un-

derstand the nature of connection—a low density and high transitivity means work

groups are well defined and can be effectively clustered. Transitivity is defined as

the probability of two nodes connecting with a third—commonly referred to as the

clustering coefficient of a network [19]. Mathematically, transitivity is represented by:

Transitivity(G) =
3𝜏△(𝐺)

𝜏3(𝐺)
, (5.8)

where the numerator represents the number of triangles—three nodes connected—

found in graph G, and the denominator is the number of potential triangles where

three nodes only have two edges. As such, transitivity measures the relative frequency

of triangles in the network.
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We see transitivity as another metric business leaders can use to assess the im-

pact of hybrid work design. An analytics team can benchmark transitivity before

COVID-19 and measure whether hybrid designs are having significant impact on an

organization’s network transitivity. Again, transitivity can be renamed such that

business leaders understand the meaning—"organizational cohesion"—and the mea-

sure can be normalized or converted into a percent for ease of interpretation.

Assortativity

Assortativity is the extent to which nodes collaborate with nodes of similar types

versus nodes of different types. This can be thought of as a correlation statistic—

commonly referred to as the assortativity coefficient [27]. The assortativity coefficient

can be calculated on any nodal attribute and defined mathematically as:

A =

∑︀
𝑖 𝑓𝑖𝑖 −

∑︀
𝑖 𝑓𝑖+𝑓+𝑖

1−
∑︀

𝑖 𝑓𝑖+𝑓+𝑖

, (5.9)

where f is the fraction of edges in network G that join a node in the ith category with

a node in the 𝑗th category, and f+ denotes the 𝑖th marginal row and column sums of

the resulting mixing matrix [19]. More succintly, for all the nodes in our network, we

calculate the percentage of nodes that share ties and share the attribute of interest.

This metric is malleable as it allows an analytics team to assess how a network “mixes.”

We believe organizations constructing hybrid environments can leverage assortativity

to understand what drives connection. Furthermore, assortativity can be used to test

work group schedule assignments—we would want a high assortativity, close to 1,

when we calculate assortativity for a work group. In Chapter 7, we build on this idea

by assessing clustering algorithms using assortativity.

External-Internal Index

Finally, a powerful network metric that builds on the concept of assortativity is the

external-internal (EI) index. Krackhardt and Stern first proposed the EI Index in 1988

to quantify interaction tendencies in social netowrks [13]. Similar to assortativity, this

index can be applied on any nodal attribute in the network—in our proof of concept we
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can apply to director name to understand what percentage of relationships are internal

versus external. The index is represented mathematically in Equation 5.10 [13]

E-I Index =
External Group Ties - Internal Group Ties

Total Network Ties
. (5.10)

The EI index ranges from -1 to 1. An EI index of -1 means that all ties are

internal, and an index of +1 means all ties are external. This is a powerful metric

because it can be calculated for any nodal attribute. Naturally, the first application

on our proof of concept network is calculating the EI index aggregating on director

name. This once again confirms our hypothesis that director is not the right level to

set schedules—the EI index = .98 for our BI network when aggregating employees

by director name. All else equal, this means that nearly 98% of meaningful, recurring

employee relationships occur between employees that do not share a director.

Next, we can analyze just the BI director by using an indicator variable in our node

database. The BI Director’s EI index = -0.778. This also provides the BI director an

indication of how her business unit is behaving—it is slightly more introverted than

we might expect for a stakeholder oriented business unit. As organizations transition

to hybrid work this metric can help gauge how the organization is evolving based on

hybrid work—it would be concerning to see our BI network display a more introverted

stance as we track in-person collaboration data going into 2022. Again, this EI index

can be tracked over time or benchmarked against similar business unit profiles.

Interestingly, we also find that the EI index can be used to check for schedule

alignment in a network. In our network, we encode scheduled days of the week with

an indicator in order to allow us to aggregate on this attribute. The EI indices by

scheduled day are displayed below in Table 5.19.

EI Tuesday EI Wednesday EI Thursday

-0.088 -0.043 -0.003

Table 5.19: EI Indices Aggregating on Schedules

This means that the network is doing a little better than random chance at aligning
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schedules—an EI of 0 means equal external/internal group ties. Each of the EI indices

by day of week are slightly negative, meaning employees sharing a scheduled day are

slightly more likely than random chance to also have a meaningful relationship. In a

network with correctly assigned schedules, we expect a negatively skewed EI index—

employees have relationships with colleagues scheduled on the same day.

5.5 Chapter Summary and Extensions

Network models are an extremely expressive modeling tool that organizations can

use to drive hybrid work decisions. Although we initially focused on using networks

to solve a problem specific to our proof of concept, network models can help answer

a multitude of hybrid work questions. As discussed, many business leaders are con-

cerned that hybrid work will stifle innovation because employees lose serendipitous

workplace interactions. Our solution is network representation and analysis methods.

Networks naturally provide a model to align work groups and prevent collabora-

tion from stagnating due to misaligned schedules. Furthermore, networks contain a

variety of metrics geared toward quantifying how different hybrid schedules impact

organizational connectivity.
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Chapter 6

Aligning Schedules Under Current

System Constraints

Now that we are familiar with network models, our focus returns to finding the optimal

solution for the proof of concept. This chapter formulates the goal of stakeholder

alignment as a linear program. The director network model from Chapter 5.5 is the

primary input to the optimization. In the coming sections, we discuss our proof of

concept in depth, translate these details into constraints, formulate an objective and

provide the results.

6.1 Proof of Concept Overview and Constraints

As discussed in Chapter 3, many organizations are requiring senior leaders to set

schedules for subordinate employees. The goal of the proof of concept is to present a

workflow that improves the process without changing the current state. As such, we

create a relationship database from the perspective of one such director who leads a

business intelligence organization. The nature of work is cross-functional and involves

numerous stakeholders.

We pick up from the director level network model developed in Section 5.5—more

specifically, the model presented visually in Figure 5-9. This model allows us to iden-

tify the top ten stakeholders and understand each organization’s eigen centrality, or
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importance in the network. The first constraint we place on the proof of concept is op-

timizing for in-person scheduling alignment with only the top ten stakeholders—these

top ten account for 84% of the meaningful stakeholder relationships. This simplifies

the proof of concept to help executives understand the power of applying optimiza-

tion. A sensitivity analysis at the end of this chapter presents results factoring in all

seventeen business intelligence stakeholders.

Next, all stakeholder schedules and frequencies are fixed. These inputs were sub-

mitted by each director and the goal is to realign within the constraints of the current

process. The decision to fix each stakeholder’s schedule centers around the limited

insight gained with our director network model—it was built with only collaboration

data from the Business Intelligence employees. This perspective does not capture

the larger network. We can not decipher if each Business Intelligence stakeholder

is requesting certain days to align with another business unit in the global network.

While a limitation in our proof of concept data, this highlights the potential value of

a global optimization at the campus level—a network model can capture all of the

coupled business units.

From the perspective of the Business Intelligence director, the simplest formulation

of stakeholder value is a relative frequency interpretation. The value of stakeholder i

is proportional to stakeholder i ’s relationship strength relative to the top ten stake-

holders. Later, to expand this formulation globally we use eigen centrality to leverage

the network concept of importance.

The final pieces are modeling the typical month and identifying our objective.

While this varies from month to month, we assume the typical month has 20 working

days. The objective is to find the four days of the month that the Business Intelligence

director should schedule to maximize in-person alignment with stakeholders at the

HQ campus.
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6.2 Quantifying the Heuristic Solution

We also need to model the current state. The heuristic schedule set by the BI director

is a Tuesday/Thursday bi-weekly schedule on the second and fourth weeks of the

month. Table 6.1 is a visual mapping of the current state schedules at the HQ

campus.

Monday Tuesday Wednesday Thursday Friday

Week 1 Director A
Director B Director E

Director A
Director C
Director D
Director E
Director F
Director G
Director I
Director J

Director B
Director D
Director E
Director G

Week 2 Director A
Director B

BI Director
Director E

Director A
Director C
Director D
Director E
Director F
Director I
Director J

BI Director
Director B
Director D
Director E

Week 3 Director A
Director B Director E

Director A
Director C
Director D
Director E
Director F
Director G
Director H
Director I
Director J

Director B
Director D
Director E
Director G

Week 4 Director A
Director B

BI Director
Director E

Director A
Director C
Director D
Director E
Director F
Director G
Director I
Director J

BI Director
Director B
Director D
Director E

Table 6.1: Heuristic Schedule Mapping—BI Director Bi-Weekly Tue/Thu

We observe that the BI director is not aligned with the majority of her stakehold-

ers, and our goal is to quantify the improvement analytics can capture. As such, we

represent this current state using a binary indicator variable—BI Director equals 1 if
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scheduled to be in-office, 0 otherwise. This means that our objective of stakeholder

alignment, or “alignment value,” is a positive, non-zero value if and only if the BI

Director is scheduled to be in-office. For a specific day for which the BI director is

scheduled, the alignment value equals the sum of the strength of all the stakeholders

scheduled on that day. Table 6.2 provides a visual of this transformation. As an ex-

ample, on the second Tuesday of the month the BI director is scheduled—entry [row

= 1, column = 10] equals 1—and the sum of the stakeholders also scheduled on the

second Tuesday equals .082. Therefore, the alignment value from the second Tuesday

equals .082. The 𝑖 column helps frame the optimization and allows stakeholders to

be referenced intuitively using 𝑖 from 1 to 10.

Dir i Wght M T W Th F M T W Th F M T W Th F M T W Th F

BI N/A N/A 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

A 1 .240 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

B 2 .173 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0

C 3 .119 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

D 4 .098 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0

E 5 .082 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

F 6 .078 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

G 7 .074 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

H 8 .068 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

I 9 .035 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

F 10 .032 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Table 6.2: Schedules Transformed to Indicators

Since we are measuring alignment with stakeholders, the baseline value of a bi-

weekly Tuesday/Thursday schedule is 0.87 out of a total possible value of 6.49. This

value is calculated by summing the stakeholder weight in each Tuesday/Thursday

column when the BI director is scheduled—or where the first row in Table 6.2 equals

1. For ease of interpretation, we convert alignment into a percentage and establish

our baseline stakeholder alignment at 13% aligned.

Another point to highlight when mapping schedules is the number of schedule vari-

ations that appear in this small sample. Our finding is that the number of schedule

options over complicates the decision for directors and causes more alignment issues

than a simple, streamlined offering. In Chapter 7, we formally lay out a recommen-
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dation for streamlining options. For now, the key observation is that in our sample

of 10 directors, there are seven different schedule combinations—bi-weekly Tue/Thu

2nd and 4th week, bi-weekly Wed/Thu 1st and 3rd week, weekly Mon/Thu, weekly

Wed, weekly Wed/Thu, weekly Tue/Wed/Thu, and monthly 3rd Wed. Although the

weekly schedules are slightly misaligned, much larger misalignment is rooted in the

variation created by bi-weekly selections. Part of the misalignment is because the

number of weeks in a month is dynamic throughout the year—four weeks versus five

weeks—making the rhythm challenging to decipher. In the entire company, 13% were

assigned a bi-weekly schedule. One quick step to eliminate schedule misalignment is

removing the bi-weekly schedule option.

Table 6.2 is a helpful visual when formulating the linear optimization. Although

it may seem obvious in this example that the BI director should shift to a weekly

schedule on Wednesdays, our goal is to highlight the power of optimization to exec-

utives with this simple use case. The power of this framework is amplified once we

gain access to the full data set of collaboration at a campus.

6.3 Optimization Formulation - Simple Model

This section translates the proof of concept overview and baseline data into an opti-

mization formulation. Below, we define the sets and parameters used in the formu-

lation, identify the BI schedule as our decision variable and frame our objective to

maximize alignment with stakeholders. We constrain the number of days in-office to

match director preferences in constraints 6.5 through 6.15, and force the stakeholder

schedules to remain constant using constraints 6.16 through 6.25.

Sets

𝑖 : 1, ...10 directors A through J

𝑗 : 1, ...20 days
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Parameters

𝑋𝑖𝑗 =

⎧⎪⎨⎪⎩1 director 𝑖 assigned on day 𝑗

0

(6.1)

𝑉𝑖 ∝ director 𝑖’s relationship strength (6.2)

Decision Variables

𝑎𝑖 =

⎧⎪⎨⎪⎩1 Business Intelligence aligned w/ director 𝑖

0

(6.3)

Formulation

maximize
10∑︁
𝑖=1

20∑︁
𝑗=1

𝑎𝑗 · 𝑉𝑖 ·𝑋𝑖𝑗 (6.4)

s.t.
20∑︁
𝑗=1

𝑎𝑗 = 4 (6.5)

20∑︁
𝑗=1

𝑋1𝑗 = 8 (6.6)

20∑︁
𝑗=1

𝑋2𝑗 = 8 (6.7)

20∑︁
𝑗=1

𝑋3𝑗 = 4 (6.8)

20∑︁
𝑗=1

𝑋4𝑗 = 8 (6.9)

20∑︁
𝑗=1

𝑋5𝑗 = 12 (6.10)
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20∑︁
𝑗=1

𝑋6𝑗 = 4 (6.11)

20∑︁
𝑗=1

𝑋7𝑗 = 4 (6.12)

20∑︁
𝑗=1

𝑋8𝑗 = 1 (6.13)

20∑︁
𝑗=1

𝑋9𝑗 = 4 (6.14)

20∑︁
𝑗=1

𝑋10𝑗 = 4 (6.15)

𝑋𝑖=1,𝑗=1, 𝑋1,3, 𝑋1,6, 𝑋1,8, 𝑋1,11, 𝑋1,13, 𝑋1,16, 𝑋1,18 = 1 (6.16)

𝑋2,1, 𝑋2,4, 𝑋2,6, 𝑋2,9, 𝑋2,11, 𝑋2,14, 𝑋2,16, 𝑋2,19 = 1 (6.17)

𝑋3,3, 𝑋3,8, 𝑋3,13, 𝑋3,18 = 1 (6.18)

𝑋4,3, 𝑋4,4, 𝑋4,8, 𝑋4,9, 𝑋4,13, 𝑋4,14, 𝑋4,18, 𝑋4,19 = 1 (6.19)

𝑋5,2, 𝑋5,3, 𝑋5,4, 𝑋5,7, 𝑋5,8, 𝑋5,9, 𝑋5,12, 𝑋5,13, 𝑋5,14, 𝑋5,17, 𝑋5,18, 𝑋5,19 = 1 (6.20)

𝑋6,3, 𝑋6,8, 𝑋6,13, 𝑋6,18 = 1 (6.21)

𝑋7,3, 𝑋7,4, 𝑋7,12, 𝑋7,13 = 1 (6.22)
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𝑋8,13 = 1 (6.23)

𝑋9,3, 𝑋9,8, 𝑋9,13, 𝑋9,18 = 1 (6.24)

𝑋10,3, 𝑋10,8, 𝑋10,13, 𝑋10,18 = 1 (6.25)

6.4 Results

Although this formulation is over constrained and only optimizes the BI director’s

schedule, it still produces measurable improvement in alignment. The resulting max-

imum alignment value is 2.95 out of 6.49—an increase of 157% from our baseline.

Unsurprisingly, the recommended BI director schedule is a weekly cadence on Wednes-

day.

This Wednesday recommendation is concerning to real estate business leaders—

leaders are concerned campuses may exceed capacity on popular days of the week.

This highlights the importance of modeling constraints in the system. Our finding is

that offices clearly operate with a network effect—the value of the resource increases

non-linearly as the right work groups co-locate. As such, if an organization has no

concerns around exceeding capacity, the goal should be finding a solution that clusters

the correct work groups and densely populates the office on popular days of the week

(unsurprisingly Tuesdays, Wednesdays and Thursdays). As we move to a solution at

scale in Chapter 7, this is an important finding to carry forward from the proof of

concept.

In addition to the initial results, we are able to conduct a sensitivity analysis

for the BI director because it is framed as an optimization. We acknowledge that

frequency will ultimately be determined by business leaders, but network analytics

provides a quantitative measure of what a leader is gaining by increasing the frequency

of in-office schedules. Table 6.4 presents the data from a sensitivity analysis varying
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the number of days the BI employees come into the office per month.

Baseline 2-Days 4-Days 6-Days 8-Days 10-Days

Days/Month 4 2 4 6 8 10
Alignment
Value

0.87 1.59 2.95 3.81 4.63 5.46

% Aligned 13% 24% 45% 59% 71% 84%
% Increase 0% 82% 239% 338% 432% 528%
Rate of Change N/A 1.82 1.86 1.29 1.22 1.18
% Align/Day 3% 12% 11% 10% 9% 8%

Schedule Rec. N/A
Wk1:Wed
Wk2:Wed

Wk1:Wed
Wk2:Wed
Wk3:Wed
Wk4:Wed

Wk1:Wed/Thu
Wk2:Wed
Wk3:Wed/Thu
Wk4: Wed

Wk1:Wed/Thu
Wk2:Mon/Wed
Wk3:Wed/Thu
Wk4:Mon/Wed

Wk1:Mon/Wed/Thu
Wk2:Mon/Wed
Wk3:Mon/Wed/Thu
Wk4:Mon/Wed

Table 6.3: Results with Sensitivity - BI Director Scheduling

Figure 6-1: Stakeholder Alignment Shows a Point of Diminishing Returns

Quantifying alignment is powerful for directors. The sensitivity analysis helps a

leader understand what his/her organization gains by increasing frequency from four

days per month to six days per month—in our proof of concept stakeholder align-

ment increases by 14%. As presented in Chapter 4, human resources is empowering

frequency decisions to business leaders. We agree with this approach—leaders should

own the operational rhythm of their business unit. Our key point is that by ap-

plying network modeling and optimization we can provide business leaders key data
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to make an informed decision. Finally, and as mentioned previously, the global in-

crease in alignment would be significantly larger if we had access to all data at the

headquarters campus.

6.5 Localized Business Value

The business case for realignment is intuitive—better schedules increase in-person

collaboration with stakeholders and remove the detrimental aspects of collaborating

remotely—a win-win that provides value to the organization and employees. We

believe that there is both quantitative and qualitative value to realigning schedules

via network analytics.

Starting with the quantitative value, we estimate realignments by anchoring to

Gibbs’ study “Work from Home Productivity” [9]. In Chapter 2, we outlined the

merits of Gibbs’ study and highlighted that fully remote work costs 1.4 hours per

employee per week. This means, when working remotely, employees work 1.4 hours

longer per week to accomplish the same quantity of work as working fully in-person.

Gibbs attributes this net negative productivity effect to the challenge of orchestrat-

ing collaboration in the remote environment—an effect coined as the work from home

(WFH) Effect [9]. In Chapter 4, we confirmed the hypothesis that the subject organi-

zation is experiencing the collaboration overload referenced in Gibbs work. As such,

we anchor to Gibbs’ findings to estimate the business value of realigning the Business

Intelligence schedules.

To start, let us outline our assumptions. First, the average number of days in office

per week in our subject organization is one day per week. We take a conservative

approach and assume this means realignment only captures one-fifth of the extra 1.4

hours worked each week. The logic behind this assumption is that if schedules are

perfectly aligned one day a week for in-office work, employees still experience the

WFH effect on the remaining four work days. Of course, the embedded assumption

is that the 0.28 hours gained by alignment are used to provide value to the business.

Next, we estimate the value of time using the average employee salary, benefits, and
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overhead throughout the typical working year. Finally, we factor in the increase in

alignment from 13% to 45%.

Value/Day =
1.4 hours
𝑤𝑒𝑒𝑘

· 1 day
𝑤𝑒𝑒𝑘

=
0.28 hours

𝑤𝑒𝑒𝑘
(6.26)

BI Hours/Week =
0.28 hours

𝑤𝑒𝑒𝑘
· 200 employees · .33 improvement = 18.48 (6.27)

Equation 6.27 converts the .28 hours into a metric for the whole Business Intelli-

gence unit, 200 employees, and scales by the alignment improvement our optimization

provided, 33%. Next, we simply apply our estimates for employee value per hour. We

estimate that employee average salary, benefits and overhead sum to approximately

$150,000 per year per employee.

BI $ Value/Year =
18.48 hours

𝑤𝑒𝑒𝑘
· $150, 000

2080 hours/year
= $1, 332 /week (6.28)

Converting this value estimate to a yearly figure yields $88K—meaning, through-

out the calendar year, realigning the Business Intelligence organization schedules is

worth approximately $88K in work contributions that would have otherwise been

spent orchestrating remote collaborations.

We scale the proof of concept data above to estimate the value of realigning

schedules across the 51K administrative employees classified as hybrid. Following the

same logic as above, and assuming an average alignment improvement of 33%, the

enterprise value is $16.3M per year. We acknowledge that the various assumptions

made in this calculation yield a wide confidence interval—our goal is not to provide a

precise valuation, but rather highlight the importance of a phenomena that is being

overlooked in many hybrid work designs. Based on our analysis, aligning schedules is

a critical piece of a well designed system that enables employees to move seamlessly

between remote and in-person work offerings.
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In addition to the quantitative value, there is intangible value to improving align-

ment. Employees are demanding flexibility and the return to office strategy is critical

to retain top talent. It is our opinion that misaligned schedules will contribute to

worker attrition in the current employment market. As an employee, we can all see

the frustration of being told to come to the office on a day when your stakeholders are

not also present in the office. If large organizations are going to take the scheduling

decision out of the employees hands, they need an analytical method to understand

collaboration and align schedules accordingly.

6.6 Sensitivity Analysis and Centrality Optimization

This section present a sensitivity analysis and builds a slightly more sophisticated

optimization around the centrality of stakeholders versus relative frequency of inter-

action.

To demonstrate the flexibility of the optimization tool, we move on to include

all 16 BI stakeholders—one stakeholder had not published a schedule and is not in-

cluded, reducing our meaningful BI stakeholders from 17 to 16. We add constraints

for our six additional directors and calculate that the potential total alignment value

with all stakeholders is 6.87. Potential total alignment increases from 6.49, or 5.8%,

demonstrating that the additional stakeholders represent a marginal amount of BI

stakeholder interactions. Nonetheless, our formulation yields slightly different sched-

ule recommendations in order to gain alignment with all BI stakeholders, as seen in

Table 6.4.

The full stakeholder optimization provides marginal improvements for a 2 day, 4

day and 8 day frequency schedule. We still see that the 4 day, weekly, Wednesday

schedule is optimal based on stakeholder selections and the BI directors preference for

4 days in-office per month. Our key take away is that the stakeholder optimization

model is not significantly sensitive—we produce similar results accounting for the top

10 stakeholders versus all top 16.
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Baseline 2-Days 4-Days 6-Days 8-Days 10-Days

Days/Month 4 2 4 6 8 10
Alignment
Value

0.92 1.7 3.15 3.81 4.93 5.80

% Aligned 13% 25% 46% 55% 72% 84%
% Increase 0% 90% 242% 314% 436% 530%
Rate of Change N/A 1.85 1.85 1.21 1.29 1.18
% Align/Day 3% 12% 11% 9% 9% 8%

Schedule Rec. N/A
Wk1:Wed
Wk2:Wed

Wk1:Wed
Wk2:Wed
Wk3:Wed
Wk4:Wed

Wk1:Wed
Wk2:Mon/Wed
Wk3:Wed/Thu
Wk4: Wed

Wk1:Mon/Wed
Wk2:Mon/Wed
Wk3:Wed/Thu
Wk4:Mon/Wed

Wk1:Mon/Wed/Thu
Wk2:Mon/Wed
Wk3:Mon/Wed/Thu
Wk4:Mon/Wed

Relative to Top
10 Model

N/A +1% +1% -4% +1% 0%

Table 6.4: Sensitivity Analysis—BI Director Scheduling, All 16 Stakeholders, Opti-
mizing on Relative Frequency

It is helpful to visualize the increase in alignment and the rate of change in align-

ment. Leaders can use visuals in Figure 6-2 and Figure 6-3 to analyze the benefit of

adding in-office days. Furthermore, we can pinpoint the point of diminishing returns

for adding additional in-office work days.

In the proof of concept data presented in Figure 6-3, the rate of change in align-

ment levels off at approximately 3-4 days per month. This finding confirms our hy-

pothesis that business units in-office schedules reach a point of diminishing returns—

adding in-office days is not likely worth sacrificing focused remote work. For our

proof of concept data, we estimate that the point of diminishing returns is 3.6 days

per month. The data in Figure 6-3, coupled with frequency data presented in Chapter

4, drives our recommendation that the BI Director should target a frequency of four

days in office per month.

The point of diminishing returns will naturally converge with reference to the

stakeholders modeled—if the average days in-office per month for our stakeholders in

the BI network model was 8 versus 6.1, then we would observe the alignment rate of

change start decreasing at approximately five or six days per month. This connects

to our recommendation of setting in-office frequency using data. Our perspective is
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Figure 6-2: BI Stakeholder Alignment Per Day in Office

Figure 6-3: Rate of Change - BI Stakeholder Alignment Per Day Added

that organizations need to make top level frequency recommendations using data or

employees will simply start coming into the office more and more frequently and/or

sporadically to engage stakeholders. This is not the ideal solution for real estate

strategy planners.

Recommending frequency using data is the proactive solution. If we embed fre-

quency at the start, leaders can visualize the trade-off displayed in Figure 6-2 and

Figure 6-3. Ultimately, a pipeline would provide these visual tools and enable each

director to make a business decision around in-office frequency.
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6.6.1 Optimizing on Eigen Centrality Versus Relative Frequency

Since we built a network model to provide descriptive inputs to our optimization,

we can optimize for any specific network metric. As discussed, calculating the eigen

centrality of a node quantifies the notion of importance. We test our optimization

pipeline using eigen centrality as V in Equation 6.2. It is interesting to begin by

visualizing the stakeholders ordered according to relative frequency versus eigen cen-

trality.

Director Freq. Director Centrality
Director A
Director B
Director C
Director D
Director E
Director F
Director G
Director H
Director I
Director J
Director K
Director L
Director M
Director N
Director O
Director P

24.0%
17.3%
11.9%
9.7%
8.2%
7.8%
7.4%
6.8%
3.5%
3.2%
2.6%
2.5%
2.3%
2.2%
2.1%
2.0%

Director A
Director B
Director C
Director E
Director G
Director D
Director H
Director F
Director M
Director I
Director N
Director O
Director K
Director J
Director P
Director L

1.00
0.879
0.335
0.241
0.208
0.207
0.166
0.144
0.139
0.117
0.0953
0.0755
0.0422
0.035
0.0353
0.0322

Table 6.5: Relative Frequency vs. Eigen Centrality

In Table 6.5, eigen centrality provides a new vantage point on stakeholder prior-

itization. This is the power of the network—the BI director can align to the most

important, not simply most frequent, stakeholders in her network. We believe it is

best to prioritize stakeholder alignment according to eigen centrality—a hypothesis

we validated using ERGMs in Chapter 5. Employees are more likely to share re-

lationships with nodes that have a large eigen centrality. For our proof of concept,

we started with a relative frequency interpretation of relationship strength because

business leaders naturally understand and connect with this metric. As organiza-

tions look to move beyond a proof of concept and put a network modeling tool into

production, eigen centrality is the metric to optimize.
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Baseline 2-Days 4-Days 6-Days 8-Days 10-Days

Days/Month 4 2 4 6 8 10
Alignment Value 3.31 4.94 9.51 13.45 17.46 20.47
% Aligned 14% 20% 39% 55% 72% 84%
% Increase 0% 187% 713% 1166% 1626% 1972%
Rate of Change N/A 1.49 1.93 1.41 1.30 1.17
% Align/Day 3% 10% 10% 9% 9% 8%

Schedule Rec. N/A
Wk1:Wed
Wk2:Wed

Wk1:Wed
Wk2:Wed
Wk3:Wed
Wk4:Wed

Wk1:Mon/Wed
Wk2:Mon/Wed
Wk3:Wed
Wk4: Wed

Wk1:Mon/Wed
Wk2:Mon/Wed
Wk3:Mon/Wed
Wk4:Mon/Wed

Wk1:Mon/Wed/Thu
Wk2:Mon/Wed
Wk3:Mon/Wed/Thu
Wk4:Mon/Wed

Table 6.6: Sensitivity Analysis—BI Director Scheduling, All 16 Stakeholders, Opti-
mizing on Eigen Centrality

The optimization results are presented in Table 6.6. The overarching change to

schedule recommendations is a bias towards a Monday/Wednesday recommendation—

a reaction to the shift in priorities driven by eigen centrality prioritization.

Similar to the relative frequency sensitivity analysis, we can visualize how the rate

of change in alignment changes as we add in-office days. We observe an interesting

phenomena here. Shifting to an eigen centrality optimization simulates what would

happen as stakeholders increase in-office frequency—we see that the optimal point

on Figure 6-4 increases above four days per month. This is because Director E and

Director O have a higher prioritization according to eigen centrality and have an

above average in-office frequency.

Figure 6-4 supports two key points mentioned throughout the chapter—employee

networks are highly coupled systems, and frequency decisions without data may un-

dermine the purpose of hybrid work. Our hypothesis based on this observation is,

if important nodes in the network are biased toward higher in-office frequency, the

behavior of the entire network will gradually shift to a higher in-office frequency. We

tested this hypothesis on the proof of concept data and did not find a meaningful cor-

relation between importance and frequency. Organizations orchestrating hybrid work

selections need to test this hypothesis globally. A positive or negative correlation

between importance and in-office frequency is concerning—on one end, important ex-
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Figure 6-4: Rate of Change - BI Stakeholder Alignment Per Day Added, Eigen Cen-
trality versus Relative Frequency

ecutives are not embodying the hybrid designation, on the other, important nodes are

less likely to be in the office helping co-workers solve problems. Our simple proposal

to avoid this situation, and help the hybrid system stabilize quickly, is data driven

frequency recommendations.

In short, this supports our argument that the ideal hybrid pipeline starts by

grounding frequency estimates in data. A data pipeline would then model networks,

optimize on eigen centrality and provide visual tools to business leaders. These tools

would be used just like other business analytics models to inform decisions around

adding/subtracting in-office frequency. And finally, as presented in Chapter 5, orga-

nizations can use a variety of network metrics to monitor the evolution and impact

of hybrid work.

6.7 Key Discoveries and Recommendations

When our team presented these optimized schedules to the BI director, she made

a comment that truly highlighted the need for an analytical solution. She was not
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surprised by the top 10 stakeholders, as these findings matched her expectations—

rather, she was surprised by the fact these stakeholders had changed schedules since

the initial submission deadline. The BI director had done a heuristic optimization

by talking to her peers and using her time to map schedules. However, this is an

interdependent system, and BI stakeholders connected with their collaborators and

changed schedules—likely, based on recency basis versus data. This highlights the

need for a global optimization.

Furthermore, from a real estate perspective, leadership can not make proactive

strategy decisions before schedules are aligned. We have demonstrated in Chapter 4,

5, and 6 that data can drive hybrid frequency, networks and alignment. Organizations

need to design a hybrid system that uses this data proactively versus simply waiting

to monitor employee behavior. The coupling effect discussed with the BI director il-

lustrates that employee behavior will be very noisy as we transition into a hybrid work

environment—leading real estate strategy to delay valuable consolidation decisions.
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Chapter 7

A Better Way to Schedule

In this chapter, we design a new system that leverages network properties to cluster

work communities at a campus and align schedules. Our key operational recommen-

dations for organizations orchestrating hybrid work are: 1) simplify the number of

schedule types, and 2) align in-office days using network relationships versus hier-

archical relationships. The new system design starts by grounding frequency rec-

ommendations in data and moves into network modeling. An analytics pipeline, as

illustrated in Figure 7-1, generates the network at a campus, builds optimal commu-

nities using unsupervised clustering, tests significance of these clusters and aggregates

similar clusters into three work groups. These clustering takes into account employee

in-office frequency to build frequency proportional work communities. The three work

groups can be aligned to Tuesday, Wednesday and Thursday; this matches employee

bias against Monday/Friday in-office assignments. Ultimately, this pipeline optimizes

network effects in the office while balancing capacity across the work week.

Figure 7-1: Proposed System Design
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This pipeline is a simple, scalable method that solves the scheduling challenge for

directors. A business leader receives a data backed frequency recommendation for each

employee, and each employee is placed into one of three work groups based on network

models. One counterpoint to this approach is a director or senior manager may not

fall in the same work group as his/her direct reports. Our data in demonstrates

Chapter 5 that meaningful work relationships are not necessarily aligned with an

organizational chart. Furthermore, if there is a hierarchical relationship, then it will

be present in the data—direct leaders of a team will interact and be aligned in the

same work group. In sum, this system is rooted in data and will align employees

based on work versus strict organizational ties.

This chapter strengthens the argument for modifying the current system in our

subject organization. We apply the new system to our proof of concept data and

assess the performance. One challenge of unsupervised methods is assessing model

performance. Our approach is to first test and quantify on our director network

model—this grounds the approach in real data. Finally, we demonstrate how network

metrics can be used to validate clustering results.

7.1 Why would we want to do this?

The dichotomy evolving in the post COVID-19 era is the employer’s desire to maintain

structure versus the employee’s demand for flexibility. Although structure and flexi-

bility are naturally antonyms, we believe a data backed scheduling system can deliver

structure without violating the employee demands for flexibility. Our hypothesis is

that an archaic, hierarchically grounded scheduling system will violate the employee

demand for flexibility. And most importantly, hierarchically grounded scheduling will

fail to deliver the organizational benefits and employee satisfaction that comes with

effective workplace interactions. We encourage all organizations to test this hypoth-

esis via employee behavior in the years to come. Lacking omniscience about what

will happen, we use our data from the proof of concept to support this hypothesis

and make the case for changing—or at least conducting an A/B experiment on—the
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current scheduling system.

A powerful data point for why we should change the scheduling system is taking

our employee network from the proof of concept and simply color coding each em-

ployee by his/her director. This visually corroborates the lack of statistical evidence

that employees develop meaningful work relationships via organizational chart ties.

Figure 7-2 illustrates the disparity of work groups versus director alignments. In the

network each node is an individual employee and the colors correspond to the 17 dif-

ferent directors present in our proof of concept data. As we discussed in Chapter 5,

there is no data that shows employees under the same director are more likely to

share relationships.

Figure 7-2: BI Proof of Concept—Employee Level Network, Colored by Director

We also analyze schedules by day of the week and create network visualizations to

show how many business leaders seem to be defaulting to Tuesday schedules in our

sample. In Figure 7-3, we observe that 58% of employees, or 216 out of 369 in the

sample, are scheduled on Tuesdays. Beyond our proof of concept sample, our study

observes a large scheduling bias towards Tuesday and Wednesday across the subject
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organization. Figure 7-3 can be contrasted against Figure 7-4 showing employees

scheduled on Wednesday—in our proof of concept 58% of employees have a Tuesday

schedule versus 28% on Wednesdays. In each of these figures, we observe employees

that work closely together but are scheduled on two different days of the week.

Figure 7-3: BI Proof of Concept—Employee Level Network, Scheduled Tuesday High-
lighted

Figure 7-4: BI Proof of Concept—Employee Level Network, Scheduled Wednesday
Highlighted

As demonstrated in Chapter 4, scheduling is globally biased towards Tuesday/Wednesday.

This could be the result of a number of cognitive biases in the decision making process,
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but our goal is not to pinpoint why this Tuesday/Wednesday overload is occurring.

We believe the “MidWeek” effect is due to some combination of being the easiest

scheduling solution and a network effect. The point being, if we can accurately group

into three work groups, we can balance demand across Tuesday/Wednesday/Thursday

and ensure that the right employees are in the office on corresponding days. The po-

tential gains from changing the system are proper work group alignment and balanced

system capacity on Tuesday/Wednesday/Thursday, the high demand work days. Fur-

thermore, the organization and employees do not lose structure or flexibility—while

some employees may prefer certain days of the week, our data show that the differ-

ence between coming in on a Tuesday/Wednesday/Thursday is negligible; the true

preference is against Monday/Friday in-office scheduling.

Based on these observations, we develop a scalable solution that uses data to

align schedules and balance capacity at a campus. Next, we delve into the technical

foundations of clustering communities in our network. With this groundwork set, we

test and assess performance based on the proof of concept data used throughout the

study.

7.2 Introduction to Community Clustering Algorithms

Intuitively, a community in a network is a cluster of closely connected nodes. More

formally, a community is “a subgroup of nodes that has many edges between its mem-

bers, and a few edges connecting to nonmembers [15].” Detecting work communities

is an optimization problem at heart. In short, nodes are assigned to communities

based on data in the network, and community quality is iteratively assessed using a

performance metric. This section introduces two classes of algorithms—modularity

optimization algorithms and spectral algorithms. We discuss the difference between

approaches and detail two modularity optimization alogrithms—FastGreedy and Spin-

glass—and one spectral alogrithm—Leading Eigenvector. This sets a basis for testing

community clustering alogrithms on our proof of concept networks.

The first class of community detection methods are the modularity optimization
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alogrithms. Modularity is a metric used to measure the quality of an assigned commu-

nity in the network [15]. First introduced by Newman and Girvan in 2004, modularity

is a score that relies on randomly generated networks to baseline community structure

in the network under study. Modularity is best described in steps. The first step is

calculating the proportion of edges that link two nodes in the community, this can

be thought of as, 𝑝𝑤𝑖𝑡ℎ𝑖𝑛, or the proportion of edges that fall in the community [15].

The next step is generating random networks of the same degree as the network un-

der study. This quantifies the fraction of connections expected within the assigned

communities due to random chance. This can be described as, 𝑝𝑟𝑎𝑛𝑑𝑜𝑚, or the pro-

portion of nodes that randomly fall in the same community. Finally, modularity is

equal to the difference between these two proportions, 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑝𝑤𝑖𝑡ℎ𝑖𝑛−𝑝𝑟𝑎𝑛𝑑𝑜𝑚.

Modularity quantifies the quality of community clusters on a scale between -1 and

1. A modularity of positive 1 means nodes only interact with nodes in the same

community; a modularity of 0 means the community structure is not significantly dif-

ferent than a randomly generated network. Broadly speaking, a modularity of above

0.3 means that the community structure in the network is significant and contains

valuable insights into how nodes form relationships.

The simplest modularity based optimization is the FastGreedy algorithm. Fast-

Greedy is an agglomerative—or merge driven—method. Each node starts in its own

community and FastGreedy optimizes modularity by merging pairs of communities

that produce the greatest increase in modularity.

Algorithm 4 Fast Greedy Community Clustering
1: procedure Fast Greedy Cluster(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐺𝑟𝑎𝑝ℎ)
2: Begin with every node in its own community
3: Calculate the change in modularity for each pair of communities
4: Merge the two communities with the greatest increase in modularity
5: Repeat steps 3 and 4 until all nodes are in one large community
6: Select community assignments with highest modularity

The FastGreedy algorithm was first introduced in 2004 by Newman and follows a

hierarchical approach [22]. As shown in Algorithm 5, the modularity is calculated at

each merge building a hierarchy. Each level in this hierarchy has a modularity—the
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level with the highest modularity is selected as the optimal community assignment.

A number of studies have assessed algorithm performance. On balance, FastGreedy

underestimates the number of communities and performs worse as the size of the

network increases, but it delivers optimal clustering speed [35].

The next modularity based algorithm is the Spinglass community algorithm. Sp-

inglass was first introduced in 2006 by Reichardt and Bornholdt, and translates a

modeling technique from the field of statistical mechanics [15]. In short, the model

is a system of spins with the goal of optimizing an energy function. In community

detection, the spins assign group labels to nodes, and the energy of a spin is used

to assess quality of community assignments. The energy function is formulated as

a minimization—rewarding edges within communities and penalizing edges between

communities. A simplified interpretation of the objective function is,

−
∑︁

internal edges +
∑︁

internal nonedges +
∑︁

external edges −
∑︁

external nonedges

This objective is a simplified form of the objective Hoffman et al. presented in

their 2017 publication [15]. The negative terms act as a reward since this is a

minimization—we want more edges internal to the community assignment and less

edges external to the community. Simultaneously, the positive terms penalize edges

that do not appear in the community and external edges that connect to other com-

munities [31]. Broadly speaking, the Spinglass community tends to overestimate

the number of actual communities but performs well on large networks up to fifty

thousand nodes [35]. Practically, a variety of packages have a Spinglass community

function that executes this optimization formulation.

The Leading Eigenvector algorithm is the third clustering approach we test in

this study. Leading Eigenvector uses the concept of modularity but incorporates

traditional spectral clustering concepts [15]. Spectral methods naturally align with

networks because they rely on the concept of affinity—or how points are interrelated—

versus the absolute location of a point to determine cluster alignment [20]. For com-

munity clustering, the modularity matrix is used in place of the Laplacian matrix
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traditionally used in spectral clustering [15]. Newman introduced Leading Eigenvec-

tor in 2006 by reframing modularity optimization in terms of the eigen values of the

modularity matrix [23].

In short, the method works by calculating the modularity matrix, computing the

eigenvector for the largest positive eigenvalue of this modularity matrix, and separat-

ing nodes based on the sign of the eigenvector [24]. This process is divisive because it

continues to divide each of the communities until there is no improvement in overall

modularity [15]. Again, for practical application on networks, R contains a robust

leading eigenvector package that implements the algorithm on a network object. Lead-

ing Eigenvector clustering generally produces a marginally higher modularity than

other methods but is computationally expensive [35].

An important step of any clustering procedures is assessing the results. In addition

to cluster modularity—the measure our routines are optimizing—we can use a network

metric to assess cluster goodness of fit. When working with the director level network,

we have a heuristic mapping of the ground truth. We could measure how many of

the top 17 stakeholders are clustered with our BI director and calculate a standard

F1 score. As we scale, since our data are unlabeled—e.g. we do not know the ground

truth—the two measures we use to assess the goodness of cluster fit is the external-

internal index by cluster and an ERGM reponse test by cluster. As discussed in

Chapter 5, EI index ranges from -1 to +1, with -1 signaling that every relationship

is an in-group relationship and +1 signaling that every relationship is an external

group relationship. Thus, when calculating the EI index on clusters, the best possible

result is a -1 for the clustered network. Since this provides a relative measure, we

use a simulation style approach to validate results. The approach is similar to a

statistical t-test—we generate classical random networks of the same order and size

as our network under study, apply the clustering routine to the randomly generated

network, and visualize our results [19]. The distribution of number of community

in our random graphs allows us to assess whether the clusters in our network under

study are meaningful. We expect to observe that the number of communities clusters

identified in our network under study falls on either tail of our randomly generated
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distribution.

This concludes our introduction to community clustering techniques. Next, we

apply and assess these methods on our director level network and employee level

network. Initially, the goal is to leverage our heuristic knowledge about the director

level network to validate clustering performance—we devise this approach to act as a

semi-labelled test set. We use this simple network to test and describe our assessment

criteria. Then, we scale by assessing the employee level network clusters using these

network metrics and simulation techniques.

7.3 Clustering and Assessing Community Structure

This section applies community detection algorithms to the director level network. If

our subject organization is tethered to the current scheduling process where business

unit directors set schedules for an entire organization, our finding is that community

clustering at the director level will provide a 74% improvement over the current

process. We believe that simple recommendations to directors would greatly improve

alignment outcomes—a simple recommendation to the BI director would state who

falls in her community based on the data. She could then communicate with the

right directors and align schedules. While this would not produce optimal work group

alignments, it would be a step in the right direction. This section provides details

on how to cluster the director level network and our method to assess goodness of

cluster assignment.

Each clustering routine can be implemented in R or Python using the appropriate

package. To describe our methods, we detail the process using the Spinglass algo-

rithm and provide a table comparing algorithms in the results section. We apply the

Spinglass algorithm to the director level network and color code by community to pro-

duce the network seen in Figure 7-5. The Spinglass algorithm determines the optimal

number of clusters and encodes nodes according to the optimization formulation.

A logical starting point after executing a clustering routine is to aggregate the de-

scriptive statistics from the entire director network and subsequently calculate similar
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Figure 7-5: Director Network Clustered

metrics within cluster assignments. The global descriptive statistics after implement-

ing the Spinglass algorithm are detailed below in Table 7.1.

Nodes Modularity Density Transitivity Clusters Avg Degree Avg Centrality

83 0.592 0.060 0.410 8 4.9 0.06

Table 7.1: Director Level Network—Descriptive Network Metrics, Spinglass

The first point to notice when assessing the quality of clustering is the modularity

measure. After clustering using the Spinglass algorithm, the director network displays

a modularity of 0.592 which is well above the generally accepted benchmark of 0.30

for “good” community assignments [19]. Of course, our goal is to demonstrate how

to triangulate goodness of community alignment more rigorously. The additional

descriptive metrics in Table 7.1 show the basic structure of the network under study

and lay the ground work as a representative structure when simulating random graphs
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to assess cluster significance.

The next logical step in analyzing community clusters is to build granular network

metrics by cluster. We accomplish this by inducing sub-graphs from our global graph.

Then we can calculate a variety of network metrics for each community cluster. Table

7.2 presents network metrics for each of the seven community clusters identified by

the Spinglass algorithm. We expect to see density higher within clusters when com-

pared to the global network—this means our clusters are well connected internally,

or “cohesive.” Analyzing the data in Table 7.2 leads us to discount cluster 7 and 8,

these are outlier dyads disconnected from the rest of the graph. Looking within the

6 primary clusters, the density of each cluster is greater than the global network den-

sity in Table 7.1. This is a positive indicator: the communities have meaning because

nodes are more densely connected in the community versus the global network.

Cluster Nodes Avg Degree Avg Centrality Density Transitivity

Cluster 1 18 7.6 0.001 0.45 0.56
Cluster 2 6 2.0 0.028 0.40 0.30
Cluster 3 13 2.5 0.001 0.21 0.21
Cluster 4 20 3.9 0.22 0.21 0.41
Cluster 5 8 2.0 0.028 0.40 0.3
Cluster 6 14 3.4 0.047 0.43 0.26
Cluster 7 2 1 0.0 1 N/A
Cluster 8 2 1 0.0 1 N/A

Table 7.2: Cluster Analysis—Director Level Network

The second step in assessing community significance is simulating similar random

networks and clustering these randomly generated networks. Clustering results are

then compared with the network under study. The simulation algorithm is detailed

in Algorithm 4, it is adapted from [19].

The distribution of results is plotted and helps assess the significance of clustering

in the network under study. In the director network clustering results, we choose to

exclude the two unconnected dyads and posit that there are six distinct communities

in the network. The distribution of communities in simulated graphs displayed in Fig-

ure 7-6 provides a reference. Similar to a t-test, if the actual number of communities

in the network under study falls on either tail of the distribution, the null hypothesis
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Algorithm 5 Simulating Randomly Generated Networks and Clustering
1: procedure SimulateRandomGraphs(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
2: Determine number of trials
3: In each trial,
4: Build Random Classical Graph, each edge has equal probability of developing
5: Build Random Graph with same degree characteristics as network under study
6: Cluster communities in each type of graph and log data

is rejected. In this case, the null hypothesis is that no meaningful community struc-

ture exists in the network under study. Analyzing where six communities falls on the

distribution in Figure 7-6 provides another positive indicator that the communities

are meaningful and not due to random chance.

Figure 7-6: Distribution of Number of Communities in Simulations

Now that the significance of community clusters has been baselined against ran-

dom networks, we can use the external-internal index and an ERGM model to con-

firm that the clustering aligns with relationships in the network. When aggregrated

by cluster, the director network EI index is -0.649—meaning the majority of rela-

tionships occur internally in clusters. This is the third positive indicator that our

community clusters capture the right relationships.

The final tool is the ERGM. After implementing a clustering routine, we assign

“cluster” as a nodal attribute and build an EGRM model to test the significance of

clusters. The model parameters are presented in Table 7.3, and it is clear that cluster
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assignment is significant. As discussed earlier with ERGMs, the model coefficients are

interpreted using log-odds. After converting the coefficients, we can say that there is

a 95% probability a relationship exists between two nodes in the same cluster.

Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -4.1441 0.2520 -16.45 .0001***
NodeMatch(Cluster) 3.0982 0.2991 10.36 .0001***
Null Deviance: 1698.2

Residual Deviance: 394.1
AIC: 398.1 BIC: 408.3

Table 7.3: ERGM 6 - Director Network Match on Cluster Assignment

Although we have demonstrated throughout this study that assigning schedules

at the director level is not optimal, if the subject organization is set on continuing

this practice, then a significant improvement to the process would be clustering at

the director level. Using our proof of concept sample data, the Spinglass algorithm

assigns 14 out of 17 BI stakeholders to cluster 4. Although this example only serves as

a semi-labelled test set—e.g., we know that the groups work together but do not have a

full picture of each stakeholders extended network—our finding is that unsupervised

clustering can identify meaningful work groups at scale. This example improves

alignment from the 13% baseline to 82% alignment after clustering—a stakeholder

alignment increase of over 6 times.

The methods presented in this section are used throughout the remainder of this

chapter. Before extending these methods to the more complex employee level net-

work, we compare performance of our clustering algorithms on the director network.

Following this exploration of clustering methods, we apply clustering to the employee

network and detail our improved system design at scale.

7.4 Clustering Analysis—Director Network

This section focuses on applying the three different clustering methods and assessing

performance. We choose to investigate clustering algorithms because there is limited
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research around which community clustering algorithm is best suited for analyzing

work communities—much of the literature focuses on clustering social networks. We

follow the methods detailed in Section 7.4 and report results for three clustering

algorithms—FastGreedy, Spinglass and Leading Eigenvector. The clustering results

are shown in Table 7.4.

Algorithm Clusters
# of Clus-
ters 95% CI

Modularity Density EI Index
ERGM
Coef.

ERGM
P-Value

FastGreedy 5 7.2 - 7.3 0.605 0.33 -0.698 2.88 .0001***
Spinglass 6 7.3 - 7.4 0.592 0.35 -0.649 3.09 .0001***
Leading
Eigenvector

14 7.4 - 7.9 0.554 0.34 -0.512 2.75 .0001***

Table 7.4: Algorithm Comparison—Director Level Network

For clarity, we detail the meaning of key columns in Table 7.4 and highlight

findings. Column 2—clusters, specifies how many clusters the algorithm identified

in the director network. This can be compared with column 3—# of clusters 95%

CI, or the 95% confidence interval of clusters identified in our simulation significance

test. Columns 7 and 8—ERGM coef. and ERGM p-walue—present the parameters

of an ERGM matching nodes by cluster. The coefficient can be used to understand

how likely it is that nodes in the same cluster have relationships, and the p-value

demonstrates significance of this finding.

On balance, we observe that community structure is present in our director net-

work. The first indicator supporting this claim is the quantity of clusters identified

by each algorithm. All three algorithms produce a cluster quantity that falls outside

of the 95% confidence interval for clusters in a randomly simulated network. This

means that the communities are not due to random chance; there are exogenous fac-

tors at play. Second, the modularity produced by each algorithm is greater than 0.30,

the generally accepted threshold for good community structure. Third, the aver-

age cluster density is approximately 8 times greater than the overall director network

density—signifying dense interaction within clusters. Fourth, the EI index aggregated

by cluster is less than -0.5. This means the majority of the relationships occur within
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clusters versus between clusters. Finally, the coefficients of the ERGM matching by

cluster, are positive and strongly significant—a key indicator that relationships are

much more likely within cluster assignments.

Between the algorithms, we observe three notable differences in performance.

First, the Leading Eigenvector algorithm appears to over estimate the number of

communities present in the network. This results in lower performance across all

goodness of fit indicators and confirms a similar observation made using social net-

works in [35]. Second, the Spinglass algorithm provides the largest ERGM coefficient

but still lags behind the FastGreedy algorithm on the remaining cluster goodness

metrics. This comparative analysis drives our finding that the FastGreedy and the

Spinglass algorithm are effective on our proof of concept data, and are relatively ef-

ficient as organizations look to build a clustering pipeline to schedule work groups.

Next, we extend this analysis methodology to the larger employee level proof of con-

cept network.

7.5 Communities in the Employee Network

The next step towards scaling is testing clustering on a more complex network. In

this section we use the FastGreedy, Spinglass and Leading Eigenvector algorithms

to cluster the larger employee level network from our proof of concept. We follow

the same process to assess community significance, test our hypothesises about algo-

rithm performance at scale, and set the stage for a simplified and scalable scheduling

pipeline.

The natural starting point is, again, the descriptive networks metrics for the net-

work under study. The employee level network is approximately seven times larger

than the director network and displays a higher transitivity, as seen in Table 7.1.

Nodes Density Transitivity Avg Degree Avg Centrality

528 0.031 0.714 16.1 0.01

Table 7.5: Employee Level Network—Descriptive Network Metrics Pre-Clustering
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To get a sense of the clustering results after applying the FastGreedy algorithm,

Table 7.6 details key network metrics in each recommended cluster.

Cluster Nodes Avg Degree Avg Centrality Density Transitivity

Cluster 1 135 13.2 0.005 0.099 0.54
Cluster 2 89 19.4 0.389 0.221 0.84
Cluster 3 28 10.9 0.001 0.405 0.81
Cluster 4 39 17.9 0.164 0.47 0.98
Cluster 5 41 10.73 0.001 0.268 0.68
Cluster 6 9 4.7 0.001 0.583 0.84
Cluster 7 14 12.4 0.012 0.96 0.97
Cluster 8 10 4.0 0.002 0.44 0.72
Cluster 9 59 16.9 0.007 0.29 0.80
Cluster 10 11 7.3 0.001 0.73 0.91
Cluster 11 7 5.7 0.0 0.73 0.91
Cluster 12 6 5.0 0.0 1.0 1.0
Cluster 13 37 27.4 0.0 0.761 0.94
Cluster 14 6 2.0 0.0 0.93 0.92
Cluster 15 5 2.0 0.0 0.50 0.43
Cluster 16 4 3.0 0.0 1.0 1.0
Cluster 17 4 2.5 0.0 0.83 0.75
Cluster 18 3 2.0 0.0 1.0 1.0
Cluster 19 3 2.0 0.0 1.0 1.0
Cluster 20 3 2.0 0.0 1.0 1.0
Cluster 21 3 2.0 0.0 1.0 1.0
Cluster 22 2 1.0 0.0 1.0 N/A
Cluster 23 2 1.0 0.0 1.0 N/A
Cluster 24 2 1.0 0.0 1.0 N/A
Cluster 25 2 1.0 0.0 1.0 N/A
Cluster 26 1 0.0 0.0 N/A N/A
Cluster 27 1 0.0 0.0 N/A N/A
Cluster 28 1 0.0 0.0 N/A N/A
Cluster 29 1 0.0 0.0 N/A N/A

Table 7.6: Cluster Analysis—Employee Level Network, FastGreedy Clusters

The first observation is that many clustering routines will naturally group un-

connected nodes into single communities. This phenomena is more common in our

data because we only have access to the Business Intelligence data—with a full data

set, we believe this would not occur frequently. Table 7.6 details all 29 clusters, but

eliminating these “disconnected” communities leaves 15 meaningful clusters in the

network. Within these 15, we find remarkably high transitivity and density. This is

our first sign that community clusters are indicative of how groups interact.
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The next step of our method is simulation—this provides a reference for how com-

munities randomly develop in networks. Clustering results from 1000 simulated trials

are presented in Figure 7-7. The simulations highlight that our resulting 15 commu-

nities are clearly significant when compared to the random reference distribution.

Figure 7-7: Distribution of Number of Communities in Simulations

After analyzing details of the FastGreedy algorithm, we test our performance

hypothesis—our goal is identify the best clustering method for a scaled scheduling

pipeline. We apply our five goodness of fit metrics—simulation clusters, modularity,

average cluster density, EI index on cluster, and an ERGM matching nodes by cluster.

The results are detailed in Table 7.7.

Algorithm Clusters
Sim. 95%
CI

Modularity Density EI Index
ERGM
Coef.

ERGM
P-Value

FastGreedy 29 6.8 - 6.9 0.715 0.55 -0.759 4.11 .0001***
Spinglass 35 7.5 - 7.8 0.765 0.75 -0.772 4.83 .0001***
Leading
Eigenvec-
tor

32 7.4 - 7.9 0.723 0.69 -0.718 4.57 .0001***

Table 7.7: Algorithm Comparison—Employee Level Network

These results confirm that Spinglass is the optimal clustering method as our net-

works scale in size and complexity. For ease of interpretation, the EI index can be
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translated to the percent of internal relationships that the cluster assignments cap-

ture. In the case of the Spinglass algorithm, 88.6% of work relationships fall within

cluster assignments. Based on the effectiveness of clustering in these initial trials,

we next focus on how to structure a data pipeline that leverages clustering to align

schedules.

7.6 The Case for a Redesigned Scheduling Pipeline

Up until this point, we have presented a variety of data and analyses highlighting de-

sign limitations in the current scheduling process. Throughout, we have highlighted

simple changes that the subject organization can implement to improve results with-

out a complete overhaul of the scheduling system. Now, we present a newly designed

process that leverages data and removes the scheduling burden from executives. The

overarching finding of this study is that the scheduling system is too complex and

forces executives to make decisions without appropriate data.

We propose a simple, five step system that matches appropriate work groups

while balancing office capacity across high demand weekdays. Most importantly, this

is a scaleable and unsupervised pipeline that can be trained quarterly to match the

dynamic nature of knowledge work. We present this process at the employee level

because we find this will deliver optimal results: however if the subject organization

wants to continue scheduling at the director, level this process can still be imple-

mented. All of the data, networks and clustering would simply be executed at the

director level.

The high level process is:

1. Use lagging quarter meeting data to recommend in-office frequency at senior

manager level.

2. Senior managers select schedule type—monthly or weekly.

3. Build campus network using collaboration data from previous quarter, assign

frequency as a nodal attribute.
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4. Cluster campus network into work communities.

5. Group communities to build three proportional “communities of communities.”

Throughout this section, we detail each step of the process using the proof of

concept employee network. But before delving into the process, we apply three key

simplifications upfront: 1) eliminate the bi-weekly schedule option, 2) eliminate the

custom schedule option, and 3) only offer Tuesday/Wednesday/Thursday as in-office

options.

The bi-weekly option is a key cause of misalignment between work groups. First,

this selection is confusing to employees and real estate capacity planners alike. Not

every month of the year has four weeks, causing the bi-weekly rhythm to change

frequently. Even the booking system implemented by the subject organization does

not accurately implement a bi-weekly schedule when an employee selects the bi-weekly

option. Our finding is that bi-weekly scheduling undermines the stated objective of

setting in-office schedules—predictability. Second, there is much research around the

impact of choice architecture on system design; Thaler summarizes this in his 2008

book, Nudge, which shows the prevailing finding across studies is simplified default

options lead to better global outcomes [30]. We embrace this logic and encourage

the subject organization to present four in-office options to hybrid teams: 1 day

per/month, 1 day/week, 2 days/week, and 3 days/week. The default selection for

each team should be based on the Team Collaboration Index and day of the week

selection limited to Tuesday/Wednesday/Thursday.

Similar to the bi-weekly schedule, the custom option also undermines the stated

goal of predictability. While our study did discover higher adherence to custom sched-

ules, we believe the value is isolated internally to that team. The custom patterns

submitted are not simple or intuitive, limiting collaborators from aligning in-office

days. Our findings in Chapter 5 and 6 drive this logic—employee networks are highly

coupled systems,and thus custom schedules will make leaders reactionary.

Finally, our data showed a large bias towards Tuesday/Wednesday/Thursday

schedules. To simplify real estate operations, organizations should acknowledge work-
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force preferences and close offices accordingly. In our subject organization this would

mean closing the office on Mondays and Fridays. Hybrid organizations can test ca-

pacity concerns by analyzing the average days in-office per week and using Monte

Carlo simulations as shown in Chapter 4. In our subject organization, the average

number of scheduled in-office days was approximately one day per week. This data

point was coupled with simulation to verify that a Tuesday/Wednesday/Thursday

model would not present capacity concerns. Furthermore, workplaces provide value

via network effects. By limiting the number of week days the office is open, we can

more densely populate the correct work groups to enable the desired collaboration.

With these upfront recommendations clarified, we move into each step of our

recommended scheduling pipeline.

7.6.1 Step 1: Frequency Recommendation

Our first step in the new scheduling process is anchoring in-office frequency recommen-

dations to collaboration data at the senior manager level. The subject organization

does not have a data backed reason as to why schedules are being set by directors—

our hypothesis is that setting schedules at the director echelon was an attempt to

maintain control and/or simplify the process. This section discusses why organiza-

tions should empower first line leaders to set schedules and anchor decisions using

collaboration data.

Figure 7-8: Five Step Process

Regardless of why the decision was made to set schedules at the director level

in our subject organization, we encourage leaders to rethink scheduling assumptions

in light of the data in this study. First, prevailing research in Chapter 2 highlights
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the need for autonomy in hybrid work designs—this means empowering the lowest

level of leaders in an organization to set schedules. Second, Chapter 5 and 6 proves

that knowledge work does not unfold neatly along lines on an organizational chart—

directors simply have too many subordinates engaging with too many colleagues.

Finally, rooting frequency recommendations in data eliminates employer concerns

around empowering decisions below the director/executive level. An automated data

pipeline can scale recommendations to the senior manager population and properly

anchor junior leader’s frequency decisions so teams are not coming into the office too

few or too many times a week.

The frequency calculation is simple. For each senior manager’s team, calculate the

average time spent collaborating in groups of three or more per week with employees

assigned to the same campus. Then calculate the average meeting length per engage-

ment on that team. These two components combine to form a “team collaboration

index,” similar to the calculation in Chapter 4:

Collaboration Index =
Collaboration Hrs/Week * Average Meeting Duration

Average Total Work Hrs/Week
(7.1)

The team collaboration index is simply the ratio of amount of work hours with

potential in-person collaboration versus total available work hours. The index is

translated to a frequency recommendation using a scale similar to the one presented

below in Table 7.8—business leaders could adjust the sensitivity of this scale.

Collaboration Index (CI) Estimated Collaboration Recommended Frequency

0.00 < CI < 0.10 0 - 4 Hours/Week 1 Day/Month
0.10 < CI < 0.30 4 - 12 Hours/Week 1 Day/Week
0.30 < CI < 0.50 12 - 20 Hours/Week 2 Days/Week
0.50 < CI < 1.0 20 - 40 Hours/Week 3 Days/Week

Table 7.8: Collaboration Index Translation

Our finding is that once we isolate employees by campus, the frequency of in-

person interaction is less than leaders estimate using intuition alone. We saw this
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phenomena is Chapter 4 of this study. In our Business Intelligence unit, we found

that employees at the HQ campus have on average 16.8 hours of potential in-person

collaborations and an average meeting duration of 45 minutes. The calculations for

our sample population are as follows:

Collaboration Index =
16.8 Hrs/Week · 0.75 Hrs

40 Hrs/Week
= 0.32 (7.2)

Finally, the team collaboration index is converted to a frequency recommendation

to enable the leader’s decision. In this case, the algorithm recommends that the team

be scheduled in-office twice a week based on historical data from the previous quarter.

7.6.2 Senior Manager Selects Frequency

We envision the recommendation algorithm driving the default selection, but not

removing the business leader from the loop. A simple data dashboard would display

the collaboration statistics for the leader’s team and provide the data required to

make an informed decision. Each subordinate’s frequency would default based on

the team collaboration index from the previous quarter. The senior manager would

manually adjust selections to vary from the default.

Again, we recommend four simple options: 1 day/month, 1 day/week, 2 days/week,

3 days/week. While this may seem too streamlined, we found that over complicating

the scheduling options creates more opportunity for misalignment. If leaders believe

they fall in between these frequency categories, our solution is flex reservations; our

subject organization, and most large organizations without capacity concerns, are not

going to prevent a team from coming in one additional time per month if leadership

thinks it is necessary.
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7.6.3 Steps 2, 3 and 4: Build Campus Network, Cluster and

Test

The next three steps in the process have been discussed in detail—we use employee

collaboration data to build the campus network, cluster employees into work commu-

nities and test the clusters.

Figure 7-9: Five Step Process

We apply the Spinglass community algorithm since it demonstrated optimal per-

formance on larger networks and delivered the highest modularity of the three clus-

tering methods assessed. The resulting clusters are visualized in Figure 7-10.

Figure 7-10: BI Employee Network Clustered—Color Coded by Cluster Assignment

The clustering results after applying the Spinglass community algorithm are pre-

sented again in Table 7.9. Initially, as we apply this method at a large site, an
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analytics team can interpret the significance of clustering.

Algorithm Clusters
Sim. 95%
CI

Modularity Density EI Index
ERGM
Coef.

ERGM
P-Value

Spinglass 35 7.5 - 7.8 0.765 0.75 -0.772 4.83 .0001***

Table 7.9: Employee Network Clustering Results

To scale across many sites and execute on a quarterly basis, we recommend set-

ting thresholds that would prevent poor clusters from being recommended. The two

intuitive thresholds are modularity and EI index. Our hypothesis is that clustering

results with a modularity less than 0.3 will not increase in employee alignment and

should not be implemented. Similarly, a EI index from 0.0 to 1.0 is an indicator that

the clusters are not meaningful—this indicates relationships are more prevalent out-

side of the cluster assignments versus internally, a sign of poor cluster assignments.

Based on the success of our proof of concept, we believe that large campuses will dis-

play meaningful clustering results—these thresholds would function as an anomaly

indicator for the few campuses that do not present meaningful clustering results.

Once the campus network model is built and clustered, a frequency attribute

needs to be added for each employee to ensure that the final work group optimization

model can balance capacity across Tuesday/Wednesday/Thursday. A practical way

to accomplish this is encoding the monthly frequency—so, for an employee assigned

3 days/week, monthly frequency is 12 times per month. This transitions into step 5

of the pipeline and embeds an attribute into the network that allows organizations

to balance capacity without sacrificing work group alignment.

7.6.4 Step 5: Build Three Work Communities

In an effort to design a simple system, the final step is to aggregate the gran-

ular cluster assignments into three work communities. In our subject organiza-

tion, the three work communities align with the recommendation to open offices on

Tuesday/Wednesday/Thursday—for other organizations it may make sense to have
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Figure 7-11: Step Five

four or five work communities. This section formulates an optimization that re-

clusters granular communities into three, frequency proportional work groups. Each

employee’s work community assignment is coupled with his/her frequency to produce

a day of the week assignment—we present a simple mapping at the close of this sec-

tion. As the conclusion of this pipeline, each senior manager receives an assignment

for employees such as “Employee A—Work Community #1: Weekly on Tuesdays.”

In our first attempt to build three macro work communities, we tryto simply use

the Spinglass community algorithm and set the objective to find three large clusters—

unfortunately, this method only optimizes for modularity and does not take into

account in-office frequency. The three resulting work communities are not balanced

across the week or month. Based on this discovery, we devise a method which starts by

using the Spinglass algorithm to build granular clusters and then finds three connected

macro communities—each made up of a combination of granular clusters. In this

approach, in-office frequency can be balanced proportionally across the three macro

work communities—e.g., not all the high frequency employees assigned to the same

work community.

Our revised approach builds three macro communities by finding the three group-

ings of granular clusters that are the most “connected.” The metric to assess the

“connectedness” between macro communities is the EI index discussed in Chapter 5.

As a refresher, the EI index can be calculated on any nodal attribute and provides a

normalized measure of external/internal relationships based on that nodal attribute.

This is useful when building macro communities because we can calculate the EI

index for a grouping of granular clusters to assess “connectedness.” The goal is to

find macro communities that are most connected and assign these to the same work
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community. For example, a macro community of 10 granular clusters that has an EI

index of -1 has no connections between granular clusters. This is not a particularly

good macro community assignment—the goal is to assemble a macro community of

granular clusters that share connections and should work in-office on the same day—

mathematically, we want to maximize the EI index across three macro communities.

Practically, we accomplish this task using an approach similar to a grid search in

hyper parameter optimization—however, we place constraints on the solution space to

keep macro communities proportional. The objective is to find three macro commu-

nities which maximize the average EI index while maintaining less than 5% deviation

from the in-office frequency mean of four days per week and less than 10% devia-

tion from the mean of 178 nodes per macro community. This is accomplished by

Algorithm 6.

Algorithm 6 Maximize EI Across Three Macro Work Communities
1: procedure Find3OptimalWorkCommunities(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑂𝑏𝑗𝑒𝑐𝑡,𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑠)
2: Instantiate "Best Macro Communities" as "BCs"
3: Create 3 Combos of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑠 - Current Macro Communities
4: Build 3 Induced Sub-Graphs; 1 for Each Macro Community
5: Calculate Mean EI Index of the 3 Sub-Graphs
6: Calculate SD of Sub-Graph EI Index
7: Calculate SD of Sub-Graph Mean Attendance Freq.
8: Calculate SD of Sub-Graph Node Count
9: IF Current Mean EI Index > BCs’ EI Index

10: AND Current EI Index SD <= 3 * BCs’ EI SD
11: AND Current Attendance Freq. SD < 0.15 ◁ 3.75% from mean = 4
12: AND Current Node Count SD < 20 ◁ 11.6% from mean = 178
13: THEN Store current macro communities as BCs
14: Repeat Steps 3 through 13

The algorithm iteratively searches macro community assignments to find “con-

nected” assignments while maintaining in-office frequency proportionality between

communities. The procedure starts by randomly sampling three lists of clusters—in

our data there are 35 clusters so the algorithm generates three lists of 11 to 12 cluster

each—each list is a potential macro community. Then, for each macro community an

induced sub-graph is created—this is simply a network that only includes the clusters
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in that macro community. For each of the three macro communities, we calculate net-

work metrics to assess “goodness” of assignment. Again, the goal is to maximize the

EI index across the three communities while constraining solutions that do not pro-

vide three relatively proportionally work communities. The steps are repeated until

a desired EI threshold is achieved—in our study, trials stabilized at a local maximum

of approximately -0.90.

The impact of this re-clustering routine is best articulated visually. The same

network presented with granular clusters in Figure 7-10 is now displayed in Figure

7-12 with colors corresponding to three macro communities.

Figure 7-12: BI Employee Network— Three Macro Community Clusters

Furthermore, the impacts of our optimization routine can be visualized by break-

ing down the statistics of each macro community. The makeup of each macro commu-

nity is detailed in Table 7.10. First, we validate the clustering routine and articulate

what this means for hybrid work architects. The distribution of number of nodes in

each macro community yield a standard deviation of 14.73 or approximately 8% from

the mean—within our threshold. Furthermore, similar results are achieved in com-

munity EI and average monthly attendance. The key take away for business leaders

is that networks have enabled us to build a model that can balance capacity without

sacrificing work group collaboration. The standard deviation tolerances are simply
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parameters that an analytics team can adjust to meet the goals of real estate strategy

leaders.

Macro Community Nodes Assigned Community EI Attendance
Community 1 168 -0.89 4.28 Days/Month
Community 2 193 -0.88 4.06 Days/Month
Community 3 167 -0.94 4.13 Days/Month
Mean 176 -0.90 4.16
Standard Deviation 14.73 0.03 0.11

Table 7.10: Macro Community Statistics

Second, the work communities are highly significant and capture over 90% of

relationships in the network. The macro work communities yield an EI index of

negative 0.86, an 11% EI improvement from the granular clusters assigned in step

3 of the pipeline—the maximum we could achieve is -1 or all relationships internal

to macro community assignment. Translating the impact of macro communities into

percentages is helpful. In this study, the three macro community assignments capture

93% of relationships, leaving only 7% of relationships external to an employee’s

assigned community. Finally, using ERGM’s, we estimate that the probability of

a node having a meaningful relationship in his/her assigned macro community is

0.967—near certainty that employees will be in the office with someone in their

network.

The key finding of this study is that network clustering provides a scaleable method

to balance capacity and optimize for work community collaboration. Although our

method of re-aggregrating clusters at the end of the pipeline could be formulated as

a more sophisticated optimization, we feel that the marginal gains are not relevant

considering that the macro communities properly align 93% of work relationships.

To solidify the impact on hybrid work, we transition the macro community assign-

ments into a simulation where we match schedules to communities to quantify the

improvement.
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7.6.5 Results of Data Backed Schedules

We simulated the typical month to assess the impact of the new scheduling pipeline.

We begin by mapping work communities to schedules. Then, we simulate a month

at the HQ campus and compare the current schedules with the future state sched-

ules. Overall, the new scheduling pipeline achieves 88% schedule alignment with

stakeholders—an increase of 68 percentage points from the current state—and results

in an over 4x increase in the estimated network value of in-office work throughout the

typical month. Furthermore, office space demand is spread across the core portion of

the week and real estate operations expenses can be reduced by approximately 40%.

The first step in implementing community assignments is mapping work commu-

nities to day of the week assignments. Because our subject organization demon-

strated a high preference against Monday/Friday scheduling, our finding is that

creating three work groups simplifies scheduling and naturally aligns with Tues-

day/Wednesday/Thursday. We assign a core day to each work community—community

1 = Tuesday, community 2 = Wednesday, community 3 = Thursday—and then build

in overlap between communities using the remaining days of the week. The mapping

is laid out below in Table 7.11.

Schedule Type Frequency Community 1 Community 2 Community 3

Weekly 1 Day Tue Wed Thu
Weekly 2 Days Tue/Wed Tue/Wed Wed/Thu
Weekly 3 Days Tue/Wed/Thu Tue/Wed/Thu Tue/Wed/Thu
Biweekly* 1 Day/Wk Tue Wed Thu
Monthly 1 Day Tue Wed Thu
Monthly 2 Days Tue/Wed Tue/Wed Wed/Thu
Monthly 3 Days Tue/Wed/Thu Tue/Wed/Thu Tue/Wed/Thu
Custom* 1 Day/Wk Tue Wed Thu

Table 7.11: Mapping Work Communities to Days of the Week
*Biweekly and Custom are reverted to 1 Day Weekly for simulation

A key improvement with this method is that monthly scheduled employees now fall

on the same day as the rest of their work group—maximizing meaningful in-person

interaction while minimizing the need to come into the office more. The monthly
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assignments can be further aligned by week of the month—e.g., community 1 monthly

employees come in on the first week of the month, community 2 aligns to the second

week of the month, community 3 the third week of the month. Again, this prevents

the misalignment between work group identified throughout this study. Furthermore,

by mapping an overlap day on Wednesday, interaction between communities is still

facilitated. In the simulation, we will see that only 15-20% of employees come in more

than one day per week, but those that do will benefit from being aligned with other

work communities on the overlap day.

The next step is simulating the current state. Each node in the BI network con-

tains information on the employee’s schedule. These plain text schedules are trans-

lated into a binary encoding that models the typical four week month. Furthermore,

each node has an associated macro community from the clustering pipeline—this at-

tribute enables visualization by community before schedules are adjusted using our

mapping. The simulated results of the current state are presented in Figure 7-13.

Figure 7-13: Current State Simulation

This matches our hypothesis that work communities would be relatively evenly

distributed across the work week—this would be expected of a random process. Based

on our research, this is the opposite of what organizations should strive for with hybrid

work design. The goal needs to be maximizing in-person interaction between work
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groups while minimizing the need for extra days in the office. The current state does

not achieve this objective—approximately one-third of each community is assigned in

office throughout the week.

Using the simulated current state, we estimate that the current average in-

community alignment is 20%. This establishes the reference baseline organiza-

tions can use to test whether clustering provides measurable scheduling improvement.

The alignment value is calculated by averaging the percent of each community as-

signed across the days of the month.

Furthermore, to estimate the concept of a network effect in the office, we look to

Metcalf’s law [26]. Metcalf’s law states that the value of a network equals the square

of the number of users—more users results in a non-linear increase in value. This

concept is generally accepted across platforms that rely on network effects. Applying

this logic, we calculate the monthly network value by community—community 1 =

40,275; community 2 = 54,695; community 3 = 40,394. The baseline network

value allows us to estimate the increase in network value when we compare the current

state simulation to the future state simulation.

The same process is used to simulate the future state, but now the schedule map

from Table 7.11 is implemented to schedule employees by communities. Future state

results are visualized in Figure 7-14.

The key finding is that aligning employees according to macro community assign-

ments captures 93% of meaningful relationships, achieves 88% alignment with stake-

holders and provides a 4.6x increase in office space network value/day of scheduling.

These results match our objective of maximizing meaningful in-person collaboration

while minimizing—or at least not increasing—the amount of time an employee is

required to be in-office.

Furthermore, an ERGM can be used on the network behind the simulation to

test whether employees scheduled on the same day are more likely to share work

relationships—this is the overall goal of scheduling optimization. We fit two ERGMs

to test this hypothesis; both demonstrate that community aligned schedules properly

align employees. The first model matched nodes scheduled on the third Wednesday
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Figure 7-14: Current State Simulation

of the month and produces the estimate in Table 7.12.

Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -3.83 0.02648 -144.52 .0001***
NodeMatch(Scheduled 3rd Wed) 0.628 0.03286 19.11 .0001***

Null Deviance: 192142
Residual Deviance: 37322
AIC: 37326 BIC: 37346

Table 7.12: ERGM 7 - Simulation Match on “Scheduled 3rd Wednesday”

The coefficient of this model can be interpreted as a 0.65 probability that two

randomly selected nodes scheduled on the third Wednesday of the month share a

meaning work relationship. This result makes sense, since we have three work groups

over lapping on Wednesdays. Our expectation on Thursdays is a much higher model

coefficient since the entirety of community three falls on Thursday. The model esti-

mate is below in Table 7.13.

As expected, the probability of two nodes sharing a relationship when scheduled on

the third Thursday is 0.84—meaning our scheduling pipeline is producing measurable

increases in alignment.
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Nodal Match/Covariate Coeff. Est. Std. Error Z-Value P-Value

Edges -4.77 0.046 -103.31 .0001***
NodeMatch(Scheduled 3rd Thu) 1.72 0.049 34.97 .0001***

Null Deviance: 192142
Residual Deviance: 35888
AIC: 35892 BIC: 35912

Table 7.13: ERGM 8 - Simulation Match on “Scheduled 3rd Thursday”

In summary, the network modeling pipeline presented in this chapter is a scaleable

method that provides quantifiable improvement over the current manual heuristic

scheduling solutions. Furthermore, the pipeline could be automated and executed

on a quarterly basis. This would provide business leaders updated recommendations

by campus as work relationship change due to project alignment. We do not argue

that this method is perfect; however, we do believe it will create alignment across the

majority of the organization while maintaining employee satisfaction and productivity.

7.6.6 Detailed Simulation Data

The current state simulation is presented in tabular format in Tables 7.12 through

7.16. The future state simulation data follows in Tables 7.17 through 7.21. These data

are used to build the simulation visuals and quantify the improvements presented in

the previous section. The key take away is that assigning simple communities can

increase the network value while minimizing the number of days employees allocate in-

office time. This allows organizations to quantify the value per/day of office operations

to gauge if opening the office for more than three days per week is valuable to the

network.
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Table 7.14: Simulated 1st Week of Month—Current State

Community 1-Mon 1-Tue 1-Wed 1-Thu 1-Fri

1 (# Scheduled) 25 71 65 27 1
2 (# Scheduled) 14 95 69 29 0
3 (# Scheduled) 11 73 66 27 0
Comm. 1 Aligned 15% 42% 39% 16% 0%
Comm. 2 Aligned 7% 49% 36% 15% 0%
Comm. 3 Aligned 7% 44% 40% 16% 0%
Comm. 1 Value (𝑛2) 625 5041 4225 729 1
Comm. 2 Value (𝑛2) 196 9025 4761 841 0
Comm. 3 Value (𝑛2) 121 5329 4359 729 0

Table 7.15: Simulated 2nd Week of Month—Current State

Community 2-Mon 2-Tue 2-Wed 2-Thu 2-Fri

1 23 60 65 15 1
2 14 92 65 28 0
3 13 71 63 25 0
Comm. 1 Aligned 14% 36% 39% 9% 0%
Comm. 2 Aligned 7% 48% 34% 9% 0%
Comm. 3 Aligned 8% 43% 38% 15% 0%
Comm. 1 Value (𝑛2) 529 3600 4225 225 1
Comm. 2 Value (𝑛2) 196 8464 4225 324 0
Comm. 3 Value (𝑛2) 169 5041 3969 625 0

Table 7.16: Simulated 3rd Week of Month—Current State

Community 3-Mon 3-Tue 3-Wed 3-Thu 3-Fri

1 25 79 74 31 1
2 14 101 73 32 0
3 11 82 69 28 0
Comm. 1 Aligned 15% 47% 44% 18% 0%
Comm. 2 Aligned 7% 52% 38% 17% 0%
Comm. 3 Aligned 7% 49% 41% 17% 0%
Comm. 1 Value (𝑛2) 625 6241 5476 961 1
Comm. 2 Value (𝑛2) 196 10201 5329 1024 0
Comm. 3 Value (𝑛2) 121 6724 4761 784 0
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Table 7.17: Simulated 4th Week of Month—Current State

Community 4-Mon 4-Tue 4-Wed 4-Thu 4-Fri

1 22 52 66 15 1
2 12 74 63 18 0
3 10 59 60 22 0
Comm. 1 Aligned 13% 31% 39% 9% 0%
Comm. 2 Aligned 6% 38% 33% 9% 0%
Comm. 3 Aligned 6% 35% 36% 13% 0%
Comm. 1 Value (𝑛2) 484 2704 4356 225 1
Comm. 2 Value (𝑛2) 144 5476 3969 324 0
Comm. 3 Value (𝑛2) 100 3481 3600 484 0

Table 7.18: Current State Summary

Community Average Alignment Network Value Freq. In-Office Daily Value

1 21% /day 40,275 /month 20 days/month 2,013 /day
2 20% /day 54,695 /month 16 days/month 3,418 /day
3 21% /day 40,394 /month 16 days/month 2,524 /day

Table 7.19: Simulated 1st Week of Month—Future State

Community 1-Mon 1-Tue 1-Wed 1-Thu 1-Fri

1 (# Scheduled) 0 147 34 0 0
2 (# Scheduled) 0 29 161 0 0
3 (# Scheduled) 0 0 30 140 0
Comm. 1 Aligned N/A 88% 20% N/A N/A
Comm. 2 Aligned N/A 15% 83% N/A N/A
Comm. 3 Aligned N/A N/A 18% 84% N/A
Comm. 1 Value (𝑛2) 0 21609 1156 0 0
Comm. 2 Value (𝑛2) 0 15 25921 0 0
Comm. 3 Value (𝑛2) 0 0 900 19600 0

Table 7.20: Simulated 2nd Week of Month—Future State

Community 2-Mon 2-Tue 2-Wed 2-Thu 2-Fri

1 0 158 34 0 0
2 0 32 180 1 0
3 0 2 34 157 0
Comm. 1 Aligned N/A 94% 20% N/A N/A
Comm. 2 Aligned N/A 17% 93% 0% N/A
Comm. 3 Aligned N/A 0% 20% 94% N/A
Comm. 1 Value (𝑛2) 0 24964 1156 0 0
Comm. 2 Value (𝑛2) 0 1024 32400 1 0
Comm. 3 Value (𝑛2) 0 4 1156 24649 0

152



Table 7.21: Simulated 3rd Week of Month—Future State

Community 3-Mon 3-Tue 3-Wed 3-Thu 3-Fri

1 0 151 36 0 0
2 0 30 164 0 0
3 0 0 32 148 0
Comm. 1 Aligned N/A 90% 21% N/A N/A
Comm. 2 Aligned N/A 16% 85% N/A N/A
Comm. 3 Aligned N/A N/A 19% 89% N/A
Comm. 1 Value (𝑛2) 0 22801 1296 0 0
Comm. 2 Value (𝑛2) 0 900 26896 0 0
Comm. 3 Value (𝑛2) 0 0 1024 21904 0

Table 7.22: Simulated 4th Week of Month—Future State

Community 4-Mon 4-Tue 4-Wed 4-Thu 4-Fri

1 0 150 34 0 0
2 0 29 162 0 0
3 0 0 30 142 0
Comm. 1 Aligned N/A 89% 20% N/A N/A
Comm. 2 Aligned N/A 15% 84% N/A N/A
Comm. 3 Aligned N/A N/A 18% 85% N/A
Comm. 1 Value (𝑛2) 0 22500 1156 0 0
Comm. 2 Value (𝑛2) 0 841 26244 0 0
Comm. 3 Value (𝑛2) 0 0 900 20164 0

Table 7.23: Future State Summary

Community Average Alignment Network Value Freq. In-Office
Daily
Value

Improvement

1 90% on core day 96,638 /month 8 days/month 12,080 /day 6.0x /day
2 86% on core day 115,068 /month 8 days/month 12,785 /day 3.75x /day
3 88% on core day 90,301 /month 8 days/month 10,033 /day 3.98x /day
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Chapter 8

Testing the New System and Future

Work

At the close of this six month study, leaders in HR and Real Estate began formally

collaborating to implement a large scale experiment with the new system. Our final

chapter recaps the findings in this study and provides input on experimental structure.

Furthermore, we discuss potential follow on research applying networks to real estate

strategy and employee collaboration.

8.1 Summary of Contributions

At its core, hybrid work is a coordination problem—how frequently and when should

hybrid employees come into the office? We have shown that collaboration data and

employee network models can help organizations answer these questions. Ultimately,

to achieve optimal results for an organization, a hybrid work system needs to minimize

the amount of time hybrid employees are required to be in the office while maximiz-

ing the correct collaborations during office visits. When designed in this manner,

employees can capitalize on the deep focus that comes with work outside of the office.

In sum, this study comes to a number of conclusions that can help organizations

implementing hybrid work. In this section, we recap the findings for Verizon and then

think about what these findings imply more generally.
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8.1.1 Recap of Study Findings at Verizon

This study reaches four broad conclusions in the subject organization:

1. At the HQ campus, employees in our sample collaborate on average less than

four hours per week with co-located colleagues. Based on this sample, we con-

clude that one day in the office per week can provide the requisite collaboration

if an employee is properly aligned with his/her work community.

2. Simulations show that office space capacity is not a concern across the major

hub campuses—on average, office space demand will fall 60% below capacity

once hybrid workers return to the office.

3. Hybrid schedules are currently misaligned. At least partially, this is because

schedules are being set at an unrealistically high level—directors have too many

employees to understand schedule intricacies. The second factor contributing

to misalignment is over complicated scheduling options.

4. Employee collaboration data can be used to build networks and align schedules.

When coupled with appropriate in-office frequency, a network model matches

work communities and achieves the goal of minimizing in-office frequency, while

maximizing necessary collaborations. Furthermore, network models can help

spread demand for office space throughout the work week without separating

employees who need to collaborate.

These findings are specific to the subject organization but hold insights for every

large organization shifting to hybrid work. This study provides a road map organi-

zations can use to decipher the optimal hybrid work system.

8.1.2 Generalized Findings

More generally, this study provides three key contributions to the field of hybrid work

design:
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1. When analyzing the data, knowledge workers spend less time collaborating with

co-located colleagues than leaders may intuitively imagine. Workplace data and

calendar data provide a means to estimate how many hours per week hybrid

workers need in the office to satisfy minimum collaboration requirements.

2. Hybrid work introduces a number of variables that may impede collaboration

between teams that should be working together in-person—especially in ma-

trixed organizations. We have shown that network models and simple schedule

recommendations can ensure key links are maintained and employee demands

for flexibility are satisfied.

3. Finally, organizations gain a competitive advantage by using data to find and

orchestrate the optimal balance between in-person and remote work—employees

gain deep focus from time working remotely and maintain interpersonal con-

nections when in the office.

8.2 Running a Hybrid Scheduling Experiment

We encourage organizations to run experiments when hybrid workers return to the

office in the post COVID19 era—rigorously test the ideas presented in this study. The

subject organization began designing a large scale business experiment at the close

of 2021. Fueled by continuing employee feedback around alignment, HR combined

forces with our study to test the concepts at scale. In this section we develop an

experimental structure—the three key points are level of the intervention, duration

of the experiment and what to measure.

The ideal experiment needs to be executed at a high enough level in the organi-

zational hierarchy to provide a diverse and random sample of employees. We believe

that the correct level in the subject organization hierarchy is a vice president’s busi-

ness unit. Specifically, we recommend using the operations vice president as the test

population and marketing vice president as the control population. These organiza-

tions each have an average in-office frequency of approximately one day per week and
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contain a variety of employee specialties. Furthermore, the scope of the experiment

should not be contained to a single campus as in our proof of concept—opening up

the problem will test if there are benefits for geographical dispersed organizations.

While it may be tempting to shorten experimental duration to deliver results,

the hybrid employee return to office will take time to stabilize. We recommend a

minimum experiment duration of six months. This timeline would begin when the

subject organization encourages employees to return to offices according to designed

schedules. Ideally, this allows for three to four months of data analysis prior to calen-

dar year 2023 in the case of our subject organization. The results of the experiment

could then influence system changes in the next calendar year.

A vital piece of the experiment structure is how to measure impact of the new

scheduling system. We recommend using a combination of quantitative and qual-

itative data sources to assess the performance of the new scheduling system. The

quantitative data can be drawn from the Book-A-Space reservation system. Ana-

lysts can use Book-A-Space data to calculate four quantitative metrics: 1) schedule

adherence, 2) flex day bookings, 3) network cohesion metrics and 4) number of tele-

conferences when employees are in the office. Each metric can be calculated for the

test and control population to help leaders understand how the new system is impact-

ing hybrid work. We expect that the test population will display a higher schedule

adherence, lower flex behavior, higher cohesion and less teleconferences when they

are reserved in the office. These are objective data points that can demonstrate if the

new system achieves alignment. Finally, capacity data between the groups can tell

real estate planners if the new system is spreading demand across the work week.

Qualitative data can provide insight into the employee perspective on how hybrid

work is evolving. A survey methodology can test employee satisfaction between the

legacy system and the new system design. Furthermore, the subject organization can

use retention data to test whether the legacy scheduling system contributes to more

attrition. Finally, a telling qualitative data point will be the number of schedule

changes that occur six months into hybrid work—our hypothesis is that the new

system will yield fewer changes because employees are aligned with their networks.
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8.3 Potential Areas for Future Work

There are a number of extensions to this study. Two areas of research which would

help businesses orchestrate hybrid work are network recommender systems and hybrid

worker productivity. Recommender systems are ubiquitous in today’s society and

could eliminate the need for a scheduling system. A network recommender system

could use the reservation data and employee calendar data to understand employee

networks and recommend the optimal days to schedule in-person collaboration. The

other area is productivity—testing what mix of in-person and remote work is most

productive. While the common response is that this answer will depend by job

function, it has not been formally investigated. Once workers return to the office

and adopt different hybrid patterns, a team could connect with HR systems such

as WorkDay to test if there is correlation between productivity and frequency of in-

person collaboration. Each of these research areas could answer business leader’s

questions and help organizations build the optimal hybrid work design.
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