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Abstract

A stable and cost-effective workforce is key to manufacturing life-saving medical de-
vices. However, an ongoing global labor shortage is causing national economic chal-
lenges and causing companies to have significant workforce shortages, delaying oper-
ations and production activities. Additionally, human visual inspections of medical
devices are less reliable and effective than new technological inspections with machine
and artificial intelligence vision systems. This research explores the efficiency of hu-
man visual inspections, the impact new technology, such as machine and AI vision,
can add, how to lead technological change, and an approach to implementing this
change at a medical device manufacturing company.

Specifically, it examines best practices and a specific strategy for identifying ma-
chine and AI vision opportunities at a large manufacturing company where quality
is extremely important. It also examines strategies to quickly identify improvement
areas and get manufacturing excited about new technology. Finally,it compares a
traditional field visit approach to a data driven opportunity identification approach.
Ultimately, it proposes a data-driven approach using visual tools to communicate
opportunities to management in order to get the buy-in to proceed with these tech-
nological improvements.
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Chapter 1

Opportunity Statement and Overview

Currently, a national labor shortage is causing national economic challenges. Accord-
ing to the US Chamber of Commerce, in June 2021,there were approximately half as
many available workers for every open job across the country as there have been on
average over the past 20 years, and the ratio is continuing to fall. (U.S. Chamber
of Commerce)[14] Boston Scientific (BSC) is affected by this shortage, having open
roles in a historically competitive market and relying on labor to make their life saving
medical devices. Across all BSC sites, over $140 million is spent annually on human
inspections. The high volume of inspection tasks and long training time required to
certify new employees on inspections results in an inability to respond to labor mar-
ket shortages. Additionally, human inspection is less consistent than machine vision.
BSC’s goal is to eliminate human inspection tasks, with machine vision and artificial
intelligence (AI) being two tools that can aid in this elimination.

However, globally launching new technology requires a lot of training, time, re-
sources, and infrastructure that must fit into competing priorities and business needs
at each manufacturing site. In order to achieve their technology platform goals, BSC
created a Digital Factory initiative, with each site piloting a key Industry 4.0 prin-
ciple. The Maple Grove, MN site was chosen to pilot the machine and AI vision
component, aiming to reduce human visual inspections (HVIs) To date, BSC has suc-
cessfully launched multiple AI vision inspections as part of a pilot program at their
Maple Grove, MN site. Further work must be done to expand this pilot to BSC’s
global manufacturing platform. This project aims to create a strategy and best prac-
tices for scaling the machine vision and AI Vision program across all BSC sites, with
focus on the Maple Grove, MN and Spencer, IN sites as initial pilots. Other sites were
engaged for input and learning sharing as their availability throughout my project
timeline allowed.
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Chapter 2

Background

2.1 Medical Device Industry Overview

According to the International Trade Administration, "the medical technology in-
dustry, commonly referred to as medical devices, consists of articles, instruments,
apparatuses, or machines that are used in the prevention, diagnosis or treatment of
illness or disease, or for detecting, measuring, restoring, correcting, or modifying the
structure of function of the body for some health purpose." The US leads the global
market in consumption, accounting for 40%, $156 billion, in 2017. The industry ac-
counts for over 2 million jobs in the US, of which 300,000 of these jobs are associated
with direct employment. (The International Trade Administration) [2]

The medical device industry market size was $423 billion in 2020, corresponding
to a 3.7% decline in year-on-year growth compared to the 2017 - 2019 periods. This
is due to the impact of COVID-19 reducing medical procedures. It is projected to be
a short-term impact, with the growing prevalence of chronic disease and increasing
emphasis on preventative healthcare, including diagnosis, driving long term growth
in the medical device industry. Additionally, the main companies, such as Johnson
& Johnson, are continuing to increase their R&D investments in the space. (Fortune
Business Insights) [11]

Competitively speaking, the industry is comprised of about ten key players and
was led by Medtronic, Johnson & Johnson, Abbott, and Stryker in 2020. The market
can be segmented into twelve categories, shown in Figure 2-1 below, with In Vitro
Diagnostics (IVD), Cardiovascular Devices, Diagnostic Imaging, and Orthopedic De-
vices being the lead market segments. (Fortune Business Insights) [11]
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Figure 2-1: Breakdown of US Medical Devices Market Share in 2020 from Fortune
Business Insights [11]

Industry profitability is driven by product differentiation, regulatory price ap-
proval (Medicare, Medicaid, and other country equivalents), cost-cutting, and re-
lationships with care providers who choose which devices to use on their patients.
Medical Device manufacturers must pay for labor, raw materials, services, and steril-
ization. Federal regulation causes the time to bring new devices to market costly and
time intensive.

Within this industry, Boston Scientific primarily focuses on manufacturing im-
plantable devices and scopes across six key business segments including Endoscopy,
Interventional Cardiology, Neuromodulation, Peripheral Interventions, Rhytm Man-
agement, Urology and Pelvic Health.

2.2 Implants and Scope Manufacturing

2.2.1 Manufacturing Methods

Medical devices can be manufactured through a variety of methods including metal
rolling, extrusion, forging, casting, and punching; attachment methods including
grinding and joining; polymer processes including injection molding, thermoformoing,
and extrusion; ceramic processing; additive manufacturing; CNC and other machin-
ing, and hand assembly amongst other methods. (Raymond H.W. et al.)[12] BSC
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deploys a lot of these methods, depending on the device they are making. However,
hand assembly is most often used to turn the individual device parts into a final
component. The cardiac rhythm management device, Acuity X4, shown in Figure
2-2 below, provides a great example of hand built assembly. The leads for this and
similar devices are built using hand assembly at one location, another manufacturing
plant might build the housing, and a third location assembles all of the components
into a final product. This allows the company to specialize at its manufacturing sites
and train their employees assembling the product to be very skilled on specific tasks.

Figure 2-2: Acuity X4 Cardiac Rhythm Management Device, Courtesy of Boston
Scientific [21]

An illustration of how the hand build assembly looks throughout fabrication is
shown in Figures 2-3 and 2-4 below. In the first image, a technician is working on
fabricating a wire component similar to the the electrical leads that go into cardiac
rhythm management devices. In the second image, a team of technicians are working
on assembling the same type of equipment, in stages, indicative of how their skilled
assembly lines operate.
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Figure 2-3: BSC Employee Hand Assembling a Wire Component, Courtesy of Boston
Scientific [20]
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Figure 2-4: BSC Employees Assembling Wire Components in Assembly Line, Cour-
tesy of Boston Scientific [19]

I interviewed a BSC Senior Process Engineer, Seth McIntire, about why BSC
builds many of their product components by hand. Seth highlighted that most of the
decisions regarding manufacturing are driven by product safety, product quality, and
speed to market. With those drivers in mind, there are three key areas that lead to
hand assembly being chosen for a product: time to specificity, economies of scale, and
priority alignment. (Seth McIntire) [13]

The first area is time to specificity. In order to achieve speed to market with
quality, specifications for a product must be established. It is easier and faster to
make a specification of "no bubbles," versus doing a research study to determine the
specific bubble size that is permissible. You can give a human a specification of "no
bubbles" and know they will understand what that means and successfully inspect
for it. However, a computer algorithm has to be given more measurable specifics
to do the same inspection, and getting those specifics requires a lot more time than
aligning upon "no bubbles".

The second area that impacts manufacturing decisions is economies of scale. Ini-
tially most products do not have enough estimated volume to justify a fully automated
assembly or to purchase machines to build the parts. BSC has a large product port-
folio. Across that portfolio there is a high mix of product sub-types due to some
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products coming in various sizes that scale with body size. The volume and mix
leads to hand assembly most often being selected as the manufacturing method.

The final area that impacts manufacturing decisions is priority alignment across
the manufacturing and process development teams. Once an item is in production,
the margins exist to allow hand assembly and have a profitable product. At the
same time, new products or improvements to existing products are being developed
and need their manufacturing processes established. The process engineering and
manufacturing teams can either automate existing processes that are achieving good
margins and having good quality performance, or use the same resources to help
bring new products to market. In most cases, bringing new products to market is the
priority and old processes are kept as-is.

While these factors usually lead to hand assembly being chosen, there are some
instances where machine assembly and automation are a better approach, in which
case BSC chooses that option. Examples of this include metal part punching, such as
for battery casings and housing for devices such as the Acuity X4, battery fabrication
by robots, adhesive assembly by co-bot, and packaging on mechanized lines.

BSC carefully reviews each product and chooses the right manufacturing method.
Due to the large volume of hand assembled items, I chose this as the focus area for my
research, which seeks to bring those automation techniques into products currently
made by hand. One area to start is removing humans from inspection.

2.2.2 Quality

Quality is a top priority for the medical device industry in general and Boston Sci-
entific specifically, as the quality of medical products can have a significant impact
on the success of a therapeutic regime and on patient safety. (BSC Global Qual-
ity Manual) [17] The Food and Drug Administration (FDA) mandates that Current
Good Manufacturing Practices (CGMP) must be followed when producing medical
devices, and codifies this under the Code of Federal Regulations Title 21 Part 820
Quality System Regulation. (Food and Druge Administration) [8] Similar European
standards exist for companies selling their devices abroad. Quality systems enable
companies to ensure they are the meeting customer needs and the multiple regula-
tory requirements of each sales location. Quality, or lack thereof, also has a major
impact on companies’ profits and valuation. According to a 2013 McKinsey study
on medical devices, in the period from 2003 - 2013 an average of one company per
year experienced a ten percent drop in share price after a single, major quality event,
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such as a recall. (McKinsey Center for Government) [9] The same report estimated
that the total cost of quality for the medical device industry was $17 to $26 billion
annually.

In order to help all employees feel personally invested in the impact BSC has on the
30 million patients its products help treat each year, the company hosts and annual
Everyone Makes an Impact (EMAI) event. Its 35,000 employees are connected to the
patients the company reaches. The employees are able to hear personal stories from
patients and caregivers about how BSC products helped improve and save people’s
lives.

The company also has a Strategic Quality Process (SQP) that reinforces their
quality policy and covers areas including operations strategy, management systems,
continuous improvement, cascading metrics, and recognition and engagement. (BSC
2020 Performance Report) [15] All BSC manufacturing sites use the overarching SQP
to ensure cohesive quality at an enterprise level.

The Global Quality Process is comprised of eight pillars (BSC 2020 Performance
Report) [15]:

1. Quality system management

2. Documents, records and data control

3. Design controls

4. Product approvals

5. Material controls

6. Production and process controls

7. Post-market support

8. Corrective action, preventive action

These quality systems enable BSC to make products that reliably improve people’s
quality of life and save lives. In order to achieve this, McKinsey found that the average
total quality costs for the industry are 12 - 18% of revenues and the day-to-day costs
are 10 - 14% of revenues. (McKinsey Center for Government) [9] BSC earned $9.913
billion in revenue in 2020. (Boston Scientific Announces) [16] Using the McKinsey
estimate, BSC spent approximately $1.18 billion on day-to-day quality efforts in 2020.
One of the key components of this day-to-day cost is inspections.
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2.2.3 Inspections

Inspections play a crucial role in risk management of medical device manufacturing.
One of the fastest, easiest, and most cost effective ways to mitigate risk is to add
an inspection step. In order to prioritize speed to market, human visual inspection
is often added during the research and development (R&D) stage to ensure prod-
uct quality and prevent ’escapes’, events where a product or component not meeting
specifications makes it into the downstream work flow. Due to the large volume of
hand assembled products, multiple inspection steps are added to account for the pre-
viously discussed reliability issues with human inspections. At BSC, these inspections
can range from examining a small sub part of an individual component, as shown in
Figure 2-5, to a multi-dimensional inspection of a finished component or product.
Each inspection requires the technician to be trained and certified. BSC currently
has nearly 4000 HVIs globally and spends $140 million annually on labor to complete
these inspection tasks. It can take weeks to months of training for an employee to
pass a proficiency test. Additionally, the current labor shortage is leading to internal
attrition rates of up to 75% at some locations. This results in recruiting, on-boarding,
and training one person to be approximately five times more expensive than a base
analysis. None of these costs are currently included in the cost of inspection analysis
or in the cost savings calculations for inspection alternatives.
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Figure 2-5: BSC Employee Inspecting a Medical Device Component, Courtesy of BSC
[18]

2.3 Machine Vision and Artificial Intelligence for In-

spection

2.3.1 Machine Vision

According to the Automated Imaging Association, AIA, and Cognex, a leading ma-
chine vision equipment manufacturer, machine vision encompasses all industrial and
non-industrial applications in which a combination of hardware and software provide
operational guidance to devices in the execution of their functions based on the cap-
ture and processing of images.(Cognex Machine Vision Introduction) [7] Industrial
machine vision requires low cost solutions the deliver acceptable accuracy and high
reliability. These systems use digital sensors, located inside of industrial cameras, to
acquire images and then pass those images to computer hardware and software which
processes, analyzes, and measures various characteristics for decision making. An
example of a machine vision system for bottle fill-level inspection is shown in Figure
2-6 below.
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Figure 2-6: Machine Vision Example, Bottle fill-level inspection, Courtesy of Cognex
[7]

Machine vision is a great resource to use for several different image identification
categories: guidance, identification, gauging, and inspection. (Cognex Machine Vision
Introduction) [7] Guidance refers to machine visions’ ability to locate the position or
orientation of a part and compare it to a specific tolerance. This is used to help align
parts on an assembly line or as a precursor to further machine vision or artificial
intelligence applications, which require the part to be in a specific orientation to
complete their analysis, such as a measurement assessment or to help guide a robotic
arm to work on the right location of the part. An example of machine vision guidance
applications is shown in Figure 2-7 below.

Figure 2-7: Machine Vision Image Guidance Example, Courtesy of Cognex [7]

Image guidance can also involve pattern matching, where the machine vision ap-
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plication looks for a specific pattern in order to identify the part. An example of this
is shown in Figure 2-8.

Figure 2-8: Machine Vision Pattern Matching Example, Courtesy of Cognex [7]

The next area machine vision can be applied is for identification, where the cam-
eras and software work together to identify a specific object such as reading bar codes
or other characteristics on the part.

A widely used application of machine vision is for gauging, where the machine
vision system calculates the distance between two or more points and determines
if the distance meets the part specifications. Figure 2-9 below shows an example
where gauging is used to measure part tolerances within 0.0254 millimeters. (Cognex
Machine Vision Introduction) [7] The machine vision system then takes action to
identify bad parts that do not meet specifications, either by sending a message to the
assembly person, in the case of hand assembly, or rejecting the part from the line, in
the case of automated assembly line production.
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Figure 2-9: Machine Vision Gauging Example, Courtesy of Cognex [7]

The final key application for machine vision is for inspection of defects, contam-
inants, or other irregularities. Figure 2-10 below shows two examples of this, the
inspection of a medicine tablet for flaws and the inspection of a display to ensure the
right pixels are present.(Cognex Machine Vision Introduction) [7] This application is
often deployed at final acceptance to perform a quality control review on a part or
product.

Figure 2-10: Machine Vision Inspection Example, Courtesy of Cognex [7]

In order to have a successful machine vision system, several main components
must be present including lighting, lens, image sensors, vision processing software,
and communication hardware (Cognex Machine Vision Introduction) [7]. A complete
machine vision system set-up is shown in Figure 2-11 below.
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Figure 2-11: The Main Components of a Machine Vision System, Courtesy of Cognex
[7]

The lighting provides the illumination needed for the lens to properly capture
the image, which is then sent to the sensor in the form of light. The sensor con-
verts the light into a digital image which is sent to the vision processing software
for analysis. The vision processing software is comprised of algorithms that review
the image, extract the right information, run the necessary comparison model, and
make a decision regarding pass or fail (Cognex Machine Vision Introduction) [7]. For
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traditional machine vision this software is normally sold as a part of the overall vision
system, from vision system manufacturers such as Cognex, and does not require AI
programming by the company. Cognex and similar companies provide machine vision
packages that make training the models very easy and often use point and click user
interfaces. These systems are usually the starting point for companies looking to im-
plement machine vision into their manufacturing lines, and can be further enhanced
with custom applications, such as artificial intelligence.

2.3.2 Artificial Intelligence Models with Machine Vision

According to Britannica, artificial intelligence is the ability of a digital computer or
computer-controlled robot to perform tasks commonly associated with intelligent be-
ings. (Copeland Britannica) [3] When applied to machine vision systems, artificial
intelligence usually refers to models that work beyond the techniques of traditional
machine vision, and involves self-teaching models that learn by example. According
to Cognex, deep learning artificial intelligence models can precisely and repetitively
solve complex vision problems, distinguish unacceptable defects, tolerate natural vari-
ations in complex patterns, and be adapted to new examples without re-programming
the base algorithm. (Cognex Deep Learningfor Factory Automation) [5] Compared to
traditional machine vision, artificial intelligence vision can solve more complex prob-
lems such as classification and location based applications that are not possible with
classic rules-based machine vision. Additionally, artificial intelligence differs from ma-
chine vision in its ability to conceptualize and generalize a part’s appearance based
on distinguishing characteristics that might deviate or vary, which is beyond the abil-
ity of traditional machine vision. Figure 2-12 below shows the five main categories
machine learning artificial intelligence algorithms can be classified as.
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Figure 2-12: Five Categories of Machine Learning Algorithms, Courtesy of Cognex
[6]

When the power of artificial intelligence is combined with traditional machine
vision applications, companies can tackle more advanced inspection applications.

2.3.3 AI Vision’s Role in Replacing Human Visual Inspections

Compared to human visual inspections, artificial intelligence vision applications are
more consistent, being able to operate for 24 hours a day, 7 days a week while main-
taining the same level of quality and accuracy. When properly trained, they are more
reliable, and are able to be trained and tuned to hit a specified tolerance rate. They
are also faster than humans. Additionally, machine vision systems have lower error
rates than human vision. This will be elaborated on in the literature review. Where
possible, replacing human inspection with machine vision systems will enable compa-
nies to reallocate their workforce to jobs humans are required to do while improving
the reliability of their inspection processes. This will help lower cost by improving
yield, reducing the risk of undetected quality issues, and helping to optimize the
workforce.
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Chapter 3

Literature Review

3.1 Leading Technical Changes and Digital Trans-

formations

George Westerman, Deborah L. Soule, and Anand Eswaran published an article in
MIT Sloan Management Review titled "Building Digital-Ready Culture in Traditional
Organizations." Their research discussed how a company can become more agile and
innovative without alienating their employees or the best existing practices. Per their
research, it is important to understand the four critical values of digital culture,
"impact, speed, openness, and autonomy". (Building Digital Ready Culture) [10]
Additionally, it involves adopting a set of digital ready practices that will shape em-
ployee actions. In order to understand how to share a digital ready culture, necessary
to lead a technical change, culture must first be defined and understood. Westerman
et al. define culture as "what happens when the boss leaves the room...it’s present in
the espoused values of management, the unspoken assumptions of employees, and the
commonly accepted behaviors that have helped an organization succeed in its chosen
environment." [10] A company has to understand its prevailing culture before trying
to change it and must change the culture slowly so as to not alienate long time, high
performing employees who are needed for a successful change. Additionally, leaders
must understand what digital values and practices they hope to embrace in order
for the change to be successful. (Building Digital Ready Culture) [10] The principles
required to create a digital ready organization are highlighted in Figure 3-1 below.
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Figure 3-1: Principles for Creating a Digital Ready Culture, Courtesy of MIT Sloan
Management Review [10]

Once the digital transformation objectives are identified, companies should pro-
mote rapid experimentation while preserving practices that promote integrity and
stability. In order to achieve this, companies should reframe the vision around radi-
cal impact, visibly promote new values and practices, be selective in choosing where
to start, give people the chance to make an impact, look to IT where possible, provide
the right tools, and be transparent about goals and performance. (Building Digital
Ready Culture) [10]

3.2 Human Visual Inspection Reliability

Sandia National Laboratories in Albuquerque, New Mexico, conducted a literature
review of visual inspection research. The research highlighted the large differences
between human visual inspection and machine vision inspection. According to their
analysis, "inspection processes require a large amount of mental processing, concen-
tration, and information transmission, along with extensive use of both short-term
and long-term memory." (Judi E. See) [22] Short term memory is used to determine
what areas have and have not been inspected while long term memory is required to
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recall the inspection requirements. These inspection tasks are inherently stressful to
the human inspectors who must be required to work quickly and not make mistakes.
(Judi E. See) [22] Additionally, the stress is enhanced by the fact that defects tend
to be rare occurrences but the cost of missing them is high.

Human inspection error is a fact of life that can be reduced with interventions but
cannot be eliminated. (Judi E. See) [22] According to the Sandia report, inspection
errors are more likely to be omissions (missing a defect) rather than commissive errors.
Many factors lead to these human errors, and a summary of common factors is listed
below. [22]

1. Task: the task pacing may not enable the inspector to have sufficient time to
thoroughly inspect each item.

2. Environmental: time spent continuously inspecting items may lead to lapses in
attention.

3. Individual: the inspector may lack the capability needed to preform the job or
have biases based on past experience.

4. Organization: the training provided may be insufficient .

5. Social: pressure from manufacturing to reduce the number of items not passing
inspection may lead to accepting items that are borderline.

As shown in Table 3.1, When performing an inspection there are four outcomes
that the inspection can result in. A hit is the correct detection of a defect and a false
alarm is when a good item is incorrectly identified as defective. A miss is when a
defective product is incorrectly identified as good and a correct accept is when a good
product is correctly identified as good. The inspection criteria, and the difficulty
in measuring or detecting that criteria, will affect the relative frequency of the four
outcomes.

Table 3.1: Four Possible Decision Outcomes in Detection Situation [22]
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Per the Sandia National Laboratories review, the primary highlights of human
inspection literature are "that human inspectors are imperfect, large individual and
group differences in performance exist, and multiple differences in performing inspec-
tion tasks have been observed." [22]. Additionally, Sandia’s summary provides some
recommendations to improve human inspection reliability, including incorporating up
to six independent inspections to increase accuracy; having two inspectors inspect ev-
ery item and classify it as defective only if both inspectors reject it; reducing reliance
on memory by using standards for comparison; and using overlays or templates to
organize complex products. (Judi E. See) [22]

An article on Human Factors in Visual Quality Control, authored by Angieszka
Kujawinska and Katarzyna Vogt, published in the Management and Production En-
gineering Review Journal, researched visual inspection from a human and machine
vision standpoint. Their review summarized the multiple studies done measuring the
effectiveness of visual human inspection and found effectiveness rates ranging from
45 to 100 percent accurate, highlighted in Table 3.2 below. (Human factors in visual
quality control) [1]

Table 3.2: The effectiveness of visual inspection in actual process example [1]

Kujawinska and Vogt also concluded that the visual inspection error rate in hu-
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mans ranges from 20 to 30 percent incorrect. (Human factors in visual quality control)
[1] Additionally, "according to the FMEA (Modal Analysis of Failures and Effects)
inspection process guidelines, the human visual inspection is effective, reliable in only
80% of cases based on the observation of multiple factors such as different points of
sight or operators, reduced cycle time, visual fatigue and defects not detected by the
human eye, among others." (Jorge Broto) [4] Machine Vision, when properly imple-
mented, eliminates most of the factors that lead to missed inspection and can be fine
tuned to have a target acceptance rate at or near zero.

3.3 Maximizing Return on AI Initiatives

Laks Srinivasan and Thomas H. Davenport, from the Return on AI Institute pre-
sented a webinar, in partnership with MIT Sloan Management Review, in October
2021 on Critial Success Factors for Achieving ROI from AI Initiatives. This presen-
tation highlighted the key ways companies can maximize their return on invest on AI
projects and help ensure they are picking projects that add value for the company.
Their research focuses on large, non-digital native companies that have made heavy
investments in AI and have a high risk of business model disruption. (Laks Srinivasan
et al.) [23] They conducted over 45 qualitative interviews across six sectors. Their
work highlights that the greatest challenges in deploying AI solutions arise from defin-
ing a path to value delivery. Additionally, leaders of AI journeys at the companies
they interviewed tended to be isolated, which is not optimal for positive outcomes. To
get value out of AI projects, business models must be transformed to create strategic
versus operations returns.

In order to achieve this strategic intent, Srinivasan and Davenport recommend
companies make three crucial decisions [23]:

1. Strategic Intent for AI: A company must commit to AI as a capability for
achieving corporate goals

2. AI Money Map: A company must establish and align on a prioritized list of
high value, defined use cases

3. Return-on-AI Governance: A company must define the results of AI, in a mea-
surable manner, that is consistent with the company’s financial management
control framework.
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Strategic intent for AI is required in order for a company to take their AI projects
from research and experimentation to a strategy that can be acted upon at scale. This
strategic intent should work well with the existing goals of the company. Starbucks
used this methodology to turn their entrepreneurial goal of, "driving convenience,
brand engagement, and digital relationships," into their AI strategy of "becoming
world class at AI will ensure Starbucks will continue to be world class at creating
shared experiences that drive human connection." (Laks Srinivasan et al.) [23] This
combined entrepreneurial goal and strategic intent led to an overall AI solution of
Starbucks DeepBrew, an AI based tool, which enables personalizing, improves oper-
ational efficiency, engages customers, and improves sales.

The next crucial decision a company must make is to deploy a Money Map, which
shows the critical qualities including linking to an attractive value pool, having a
willing executive sponsor or profit and loss owner, and having the ability to model
the use case. An example of the AI Money Map is shown in Figure 3-2 below.
In this example, the boxes represent the individual use cases, the size of each box
represents the value proposition, and the colors represent another dimension such as
the functional area or region etc. (Laks Srinivasan et al.) [23]
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Figure 3-2: Example of AI Opportunity Money Map, Courtesy of the Return on AI
Institute [23]

Once an organization uses a Money Map to find the right AI opportunities to
pursue, it needs to take the necessary steps to maximize its return on those AI
investments. The Return on AI Institute also researched how to have a successful AI
implementation and determined the following three catalysts that lead to a successful
implementation: (Laks Srinivasan et al.) [23]

1. Analytical Quotient: An organization must have cultural awareness and the
ability to shape sub-cultures that create more localized opportunities to capture
value on AI

2. Analytic Ready Data: An initiative should start with available now data and
collect and build historical data first. Then it can move to centralize the capture
of data from use cases in production.

3. Enabling Capabilities: The implementation team should focus on three critical
areas: Personnel and Interface, the AI Technology Stack, and a Functional
Organization.
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Combining the three decisions and three catalysts together leads to a road map
that the institute proposes to successfully implement AI projects, shown in Figure
3-3 below.

Figure 3-3: Return on AI Institute Recommended Road Map for Successful AI
Projects [23]
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Chapter 4

Methodology and Initial Findings

In order to develop an Operations Strategy for the deployment of machine and AI
vision at BSC, I first had to understand the existing state of machine and AI vision
at the company and the factors that were holding sites back from perusing projects in
this area. Through a series of interviews, site visits, and data source screenings I was
able to identify the best path forward for the project. The majority of my internship
was remote, meaning I had to conduct my interviews with Microsoft Teams and only
had access to salaried employees versus the hourly technicians assembling the medical
devices outside of the few field visits I was able to participate in. The Digital Factory
AI Vision team was established prior to the start of my internship, and already had
contact people at all participating sites. I engaged with this group to initially conduct
interviews and schedule site visits.

4.1 Problem Area and Best Practice Identification

I started by interviewing employees at the sites that had successfully implemented
machine and AI vision projects to identify best practices and then followed the subject
matter experts on line walks to understand the current state of this initiative.

4.1.1 Gemba Walks

Gemba is a Japanese word meaning the actual place, and in Lean Manufacturing,
Gemba refers to the place where value is created. In the first month of my research
the Digital Factory AI Vision core team and I had the opportunity to visit the Do-
rado, Puerto Rico site to conduct line walks and identify potential opportunity areas
to implement machine and AI vision projects. During this visit, site leadership pro-
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vided us with an overview of the site business model and key products. The AI vision
team provided the Dorado leadership and engineering team with an overview of suc-
cess stories, ways they can assist the sites, and the resources required to implement
a machine or AI vision project. We then went on line walks using a potential op-
portunities list developed by a lead R&D engineer. The list covered seven different
areas of the plant and took two full business days to explore with a team of seven
engineers and vision experts. Through field visits to these seven areas, we identified
over 90 potential machine and AI vision projects and had to reduce this list down to
ten potential opportunities to do further analysis on. This list reduction process took
approximately eight hours over a series of meetings, and required multiple follow-up
activities to determine if there was a business need paired with the technical oppor-
tunities we identified. This line visit process identified that the opportunities for AI
projects existed and that a streamline approach was needed to find these opportunities
more efficiently.

4.1.2 Employee Interviews

Co-current with the Dorado, PR site visit planning and execution, I conducted inter-
views with AI model creators and the Digital Factory initiative leads at several sites
to determine the current best practices and areas for improvement. There were three
main sites that had started work on finding and implementing AI and machine vision
projects: Arden Hills, MN; Maple Grove, MN; and Galway, Ireland. The goal of
these interviews was to determine the role of this initiative at each site, the resources
currently in use, the intra-site relationships, the best practices each site established,
and what sites would like improved. A full list of the questions asked in the interviews
is included in Appendix A.

The first people I spoke with were my work directors and the Digital Factory AI
Vision initiative leads, Joe Mabis, Project Manager I in Maple Grove Operations,
and Eric Wespi, Data Scientist Fellow in Maple Grove Operations. They outlined
their work process for identifying opportunities. First, they educate and engage each
site or business unit. They lead a road show with quality, manufacturing engineering,
and production present. They visited each site in the global network to provide
education on machine and AI vision, the Digital Factory initiative, the ways their
team has added value at Maple Grove, the assistance they could provide, and what
next steps were to find machine and AI vision projects at each site. Second, each
site developed a business case for their projects. This occurred through business unit
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meeting with leaders, subject matter experts, and process development leaders for
the site to determine where the sites machine and AI vision value is. Finally, they
evaluated the complexity of the opportunities through line tours, or Gemba walks,
with the subject matter experts. After the line tours, the business units conducted
formal calculations to determine if the return on investment existed to move forward
with the project. This effort was initially performed across the different Maple Grove
business units over the initial two-year Digital Factory site roll-out. Joe and Eric are
both Maple Grove employees who had an established reputation and network at the
site.

Next, I spoke with the process development and equipment engineering teams at
Maple Grove to get a better understanding of the current state of the technology. The
Principal Data Scientist in Maple Grove Process Development, discussed the work his
group was doing to make a single source software to use for AI model creation and
deployment. This software is very useful when launching a model across multiple
production lines or pieces of equipment, as it greatly reduces the amount spent on
third-party licenses. Additionally, using a common software will better enable sharing
of models to apply to future production lines or similar uses at other sites. The
Principal Data Scientist also spoke about the importance of using a common image
labeling software and library. For future transfer learning to be possible, having all
of the labeled images in on repository was ideal. However, most sites were not at the
point to deploy these commonalities and did not have the resources to support these
efforts. Each site needed to reach the maturity and project count of Maple Grove
before technology became the key barrier and improvement area.

Steve Maves, Principal Software Engineer in the Maple Grove Equipment En-
gineering group, discussed the key work the group does, including specifying vision
equipment, building models using third party software, and deploying their own mod-
els along with open source models made by the data science group. The Equipment
Engineering group has existed at the site for a long time, working on things outside of
AI vision, and has built up a lot of trust with Maple Grove operations. The manufac-
turing team now comes to the Equipment Engineering group to show the equipment
group engineers areas they want their help on and potential machine or AI vision
improvement ideas. This relationship is a crucial as the technology the team works
to implement. According to Steve, the site manufacturing teams he has spoken to
believe in the power of the machine and AI vision technologies and trust it. The
barriers to implementation lie in other areas of the process outside of the existing
technology.
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In addition to speaking with the team directly implementing these changes, I also
spoke to senior management to understand their perspective. I had the opportunity
to interview an Operations Senior VP. They highlighted that forty percent of BSC’s
direct labor is allocated to jobs involving humans looking at things and determining if
they are acceptable. When you start to look at the use of smart technology and smart
equipment, human inspection is a great first place to start because machines are much
better than humans at visual identification. Their goal is to have zero HVIs by 2025
because it reduces BSC’s reliance on direct labor; labor markets; and the labor rate,
and it improves quality. Their belief is that this initiative will help the sites grow
the skills they need to be leaders in smart factory technologies, and the sites will
then start to come up with other improvement ideas on their own. Additionally, for
machine and AI vision, the real driver is a quality of service and time basis. Humans
are 95% effective, at best, and all manufacturing processes have product escapes due
to failed HVIs. To meet the companies’ growth rates while maintaining quality, BSC
needs to reduce the number of HVIs. They have officially made the 2025 target part
of all of the sites’ goals and deployed a global initiative team to work on the strategy
and execution.

Seeing that there was such strong senior leadership support for the machine and
AI vision efforts and zero HVI initiative, I asked each site about the support they
were receiving for their projects. Most sites expressed that they heard this support
at the senior leadership level, however they remarked that there was passive support
at the management level, especially with the manufacturing teams overseeing the
production lines. As the 2022 strategies were established, the Operations Senior VP’s
drive for zero HVI by 2025 became more prominent and this passive support is likely
to turn to active in the coming years.

Across interviews with all three sites, multiple employees at each site stressed
that not having a return on investment, ROI, was the key reason projects didn’t
get approved. BSC calculates savings and ROI through a system know as VIPS,
Value Improvement Projects. These ‘VIP’ projects must then compete with the site’s
project portfolio to move forward. AI vision projects are typically identified by tech-
nical feasibility first and then the VIP credits are calculated. These early, low risk
projects can often not compete at the site level and when they are approved, they
are lower on the priority list. Per Jayce Oxton, a Principal Manufacturing Software
Engineer at Arden Hills, their team had a hard time getting the operations team to
gather the data needed for VIP calculations and perform the calculations due to the
perceived low priority and value of the machine and AI vision projects. Julio Zanon,
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a Principal Engineer in the Galway Equipment Engineering group remarked that Gal-
way’s biggest constraint is getting expert support from production engineers as this
cohort of professionals is already overstretched trying to keep up with ever increasing
volume demands. At Galway, automated inspections are seen as a high-risk, long
payback initiative and therefore they tend to be deprioritised when competing with
other, faster and less complex initiatives that can also achieve the site’s VIP goals.
These interviews indicated that a key barrier to this program is finding the value in
the projects and starting with a value driven approach might be a good way to get
sites on-board and grow the machine and AI vision initiative successfully.

The final area I inquired about was project opportunity identification. As dis-
cussed, Maple Grove met with business units at their site to find parts of the plant
with need, and then conducted line walks to see if machine or AI vision could improve
those areas. Interestingly, when they expanded this effort to new sites, they usually
coordinated with one to a few people at the site to determine where to do line walks,
versus specific business units, which led to longer, more complex line walks that saw
a larger portion of the manufacturing site at once.

The Dorado site visit outcomes provide a good overview of the pros and cons of
this approach. The Arden Hills site used a two-tiered approach. They met with the
manufacturing teams and gave them a presentation to educate them on the benefits
of machine and AI vision projects, areas the technology could help, and whom to
contact if they thought there was an opportunity in their area. They would then
follow-up these inquiries with targeted line walks. Additionally, they invited the
Maple Grove AI Vision team to do multiple unstructured line walks, like at Dorado,
to see what they found. These sites are less than 30 minutes apart making site
visits very economical. These visits produced some follow-up projects but were time
consuming and the projects ended up not having a high enough VIP to move forward.

Finally, Galway has a third approach to opportunity identification, believing that
line walks are not the right starting approach. Galway has a technology proof of
concept strategy and review team, which was created prior to the launch of the Digital
Factory strategy. This team believes that scaling technology is similar regardless of
the technology, and the machine and AI vision projects were wrapped into this team,
amounting to a small fraction of the projects evaluated each year. Galway’s technical
department feels line walks, without collaboration with manufacturing, signal a lack
of trust in the manufacturing teams that is counter to relationship building with
manufacturing. Instead, they find projects using the technology scaling team, where
ideas are brought forth by a multi-disciplinary team, and then the team assigned to
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the project conducts a multi-disciplinary line visit.
These three different approaches highlighted that there are multiple ways to suc-

cessfully identify projects and helped solidify my belief that starting with the value
proposition, rather than the technical opportunity identification, was the right strat-
egy to gain support and resources for the machine and AI vision initiative.

4.1.3 Data Collections

In order to lead with a value proposition based approach, I needed to identify the
right sources of data that would be a good proxy for likely value improvement. I
looked at the existing project portfolio of Maple Grove projects, the site with the
most completed and in-execution projects, to determine the basis on which they were
approved. The BSC Digital Facotry Machine and AI vision initiative has implemented
four projects including 24 AI models across 40 automated systems to date. There
was a clear trend in this data, with projects falling into one of four categories:

1. Labor Reduction

2. Quality Improvement

3. Off-specification Product Escape Risk Reduction

4. Scrap Reduction

I then began interviewing employees in the departments that worked with this
information and looked at various sources of site data to determine the best data
sources to show the need in these four areas.

Choosing the Right Data Sources and Trade-offs

My second round of employee interviews were conducted with employees working on
manufacturing oversight, industrial engineering, and quality improvement in manu-
facturing. Through these interviews I reached three main conclusions: BSC has a lot
of great data available to track production and quality, the data is decentralized with
each site using its own approach, and most of the data is hard to understand unless
you are very familiar with the specific site’s manufacturing. A lot of work is ongoing
at BSC to standardize the data and and put it in a common repository, but this work
was not ready at the time of my internship. Understanding that there would be trade
offs between site-specific, detailed data and global data sources, I worked with each
group to determine what the best choice for this application was.
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4.1.4 Labor Reduction

Twenty-five percent of the projects implemented by the Maple Grove team have tar-
geted labor reduction, and this is the key driver of this initiative from a senior lead-
ership standpoint. Therefore it was very important to identify a good data source
that provided an estimate of the time humans spent inspecting things and where to
look for potential machine and AI vision projects. Through employee interviews I
determined that each site’s Industrial Engineering group kept work content graphs
breaking down the tasks required to manufacture a device or sub-component, and
what tasks each person was assigned. This provided great quality data with a lot
of detail. However, each site was responsible for making these data sources and all
used their own format. Additionally, this data was kept on site network drives or
Microsoft Teams sites, and was not search-able by anyone in the company. Further-
more, in order to read and correctly interpret the work content graphs, one had to
be familiar with the site product portfolio, terminology, and manufacturing steps.
Using the work content graphs would include site buy-in, a close partnership and
time commitment from the site to help analyze the data, and a tailored approach to
analyze the data due to each site’s unique formatting.

The global data approach came from the cooperation of Industrial Engineering
managers and the foresight of the Digital Factory AI Vision team. In the first quarter
of 2021 this team asked each site’s Industrial Engineering manager to compile a list
of all of the production lines, the time spent conducting human visual inspections,
and the annual production volume from each work station, making a summary of the
work content graph data. This data was available when I began my internship and
was used to determine which areas of the manufacturing site spend the most time
annually on human visual inspection. Because we already had this initial data, no
further input from the sites was required to do an initial labor analysis, making this
data source favorable to the site-specific data.

4.1.5 Quality Improvement

One-hundred percent of the projects implemented by the Maple Grove team have
targeted quality improvement as a secondary driver, and this is a key focus area for
the quality department and senior leadership. Similarly to the Industrial Engineering
data, each site also has its own way of stewarding detailed quality information. There
is a common database, eCAPA, that all quality incidents of a certain severity must
be entered into. eCAPA stores all Corrective Action / Preventative Action, CAPA,
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reports and all Nonconforming Events & Prevention, NCEP, reports. Often sites
use additional processes and databases to look at all of their quality data as well as
implement early detection processes. These systems have more detailed information
relating to each specific event. However, they also require site specific knowledge to
know where the data is stored, how to access it, and how to correctly interpret the
details provided in the reports. For instance Maple Grove has a system designed to
track all reports, from multiple sources, that show process quality indicators. This
database is very powerful and shows all of the quality data available for the Maple
Grove site in one place. It pulls from eCAPA, the Manufacturing Execution System,
scrap data, manufacturing complaints, and other sources. However, it is unique to
Maple Grove and other sites likely have their own compiling systems. Using this
would require reworking the quality data approach for each site to tailor to its unique
data architecture.

Of the incidents logged in the eCAPA system, NCEPs are the most frequent due
to their lower range of severity. The eCAPA system proved to be a good place to
get data for a global project due to its consistency and scope. All quality incidents
of a certain type had to be entered into this global system. Additionally, the system
was programmed to run standardized reports that generated the same data frame for
each site and allowed any BSC employee to view and download this data. While a
site-specific contact person was required to further analyze the data and ensure it was
being classified properly, this resource provided a great tool to get the initial data set
to analyze and the consistency in classification made it easier to analyze the data.

4.1.6 Risk Reduction

Twenty-five percent of the projects implemented by the Maple Grove team have tar-
geted risk reduction. This project aimed at reducing mis-counts by operators, saving
approximately $150 K annually. This area is harder to define and therefore find
projects for. However, it was included in this assessment framework due to the data
sources available in this area. An Operations VP recommended that I look into the
Workstation Vulnerability Assessment, WSVA, tool, which is targeted at minimizing
the nonconforming product escape risk. The assessment was required to be completed
by each site, although some have only done so for a faction of their workstations. This
assessment has multiple questions asking specifically about human visual inspection,
and was therefore a good data source to use to understand where in the manufacturing
site HVIs were occurring.
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4.1.7 Scrap Reduction

Scrap reduction was a key value driver for machine and AI vision projects, with fifty
percent of the projects implemented by the Maple Grove targeting this area. The
estimated scrap reduction for these projects totaled $1.5 M annually. Additionally,
one of the projects reduced downstream labor requirements by reducing the amount of
downstream scrap that required processing. A lot of projects created in conjunction
with the manufacturing teams and the Maple Grove equipment engineering group
were to help improve the accuracy and efficiency of product builds, reducing scrap. For
example, projects were implemented to deploy AI visual aids over the manufacturing
microscope image the technician looks at during assembly. These visual aids can help
do counting tasks or show when a part is configured properly. This helps speed up
the technician while improving the accuracy of the build, and in some cases, can help
ensure a sub-component is properly assembled while rework is still possible, before
going to a point when a defect could not be corrected. These projects have led to
savings of $100 thousand to $250 thousand per project. While scrap reduction does
not directly address the zero HVI initiative, it was still included in the assessment
scope due to the value these projects added to production.

Site specific scrap data is available with a deep level of data, including scrap
codes with reasons attributed to the scrap. However, like the other site specific data,
great knowledge of the manufacturing line, products, sub-components, and assembly
methods must be known to properly analyze these codes. Additionally, the scrap codes
are all kept in varying data programs across each site, including Tableau, PowerBI,
and ClickView. Getting access to these data sources requires multiple user licenses
and each site controls their own data. The scrap code information gets compiled into
a total scrap cost, which is reported monthly for both scrap variance, versus annual
operating plan, and as scrap as a percent of the value of production, VOP. This
information is calculated by the site or business unit financial analyst on a monthly
basis and is readily available to get for an entire year with limited additional work.
It took about an hour for the financial analyst to compile the monthly data for our
team to use. Consistent with the other data categories, global data was chosen for
the scrap analysis.

4.1.8 Global versus Local Data

After looking at all of the data sources available across the global manufacturing sites,
I choose to start with a global data analysis for consistency between sites and due
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to the availability of the data. My hypothesis was that a global analysis that took
limited time, targeting 8 hours of work, would enable the team to get a snapshot
of a manufacturing site. This snapshot could be used for initial discussion and to
highlight the key value improvement areas for the site. We would then engage with a
site contact and use the locally available data for this specific area, or business unit,
to dig deeper into the specific manufacturing processes driving the need for value
improvement. Once we had that list narrowed, Gemba walks could be conducted to
see if machine and AI vision were the right tool to help drive value in these areas.
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Chapter 5

Data Analysis

5.1 Initial Analysis

I started the data analysis by gathering the available 2021 data for Maple Grove,
capturing 8 months’ of data. Maple Grove was chosen as a target site because of my
work directors’ tie to Maple Grove and because the ongoing work at Maple Grove
provided a data set I could check the results of my analysis against.

5.1.1 Labor Data

I started the Maple Grove labor analysis by using the summary of the work content
graph provided by the industrial engineering department. Maple Grove is divided into
nine business units and consistently used these units to break-down their various data
sources. The work content graph summary included the business unit, area name,
industrial engineering contact, manual inspection time per line, and annual volume
for each line. Using this data I was able to multiply the manual inspection time by
the annual volume to get the annual inspection hours per line. I then sorted this data
to get a descending list of the highest inspection time lines at the site, as shown in
Table 5.1 below.
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Table 5.1: Work Content Graph Analysis

5.1.2 Quality Data

The eCAPA NCEP report took an hour to download. It provided forty-two unique
columns of data and for each NCEP entry and over 1300 entries for the first eight
months of 2021. Upon reviewing the data, I decided to use a Pivot Table to summarize
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the top quality improvement areas. The data included a unique NCEP number for
each event, the business unit, if the event was operations related, the work stream, the
product family, a description of the event, and other key identifiers. Initially, I hoped
to use text filtering to identify all NCEPs that were inspection related. However,
through interviewing manufacturing and quality employees, I determined that there
were no requirements to enter this information in the NCEP system and the right
level of text details were only available in a small percentage of the entries, making
the text filtering an unreliable analysis. With the data available, I proposed we pivot
the data to look for unique NCEP entries that were operations related and then do
a descending list of the work stream, which represented the nine business units, and
product families with the most entries. My work directors agreed that this was the
best approach for the data. I then filtered out the work streams and product families
that would not be related to human visual inspection, such as defects in the raw
materials arriving from a supplier. The NCEP pivot table analysis is shown in Table
5.2 below.
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Table 5.2: Nonconforming Events & Prevention Analysis
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5.1.3 Risk Reduction Data

According to the BSC Lexicon, an internal reference library for BSC,the workstation
vulnerability assessment is "a tool used at BSC manufacturing and distribution sites
to help identify and mitigate process vulnerabilities at each manufacturing worksta-
tion, in order to reduce downstream quality issues." It is comprised of forty-three
questions that span a range of categories and focus areas including people control,
measurement control, and equipment control and inspection types, automated equip-
ment accuracy, and process setup respectively. Each question is very specific and has
a range of answers, called "risks" from one to five. Each "risk" score corresponds to
a specific answer for that question. For example, question one is in the category of
people control with a focus area of inspection type. A risk one answer for question one
indicates that no inspection takes place at this work step or no defects are inspected
while a risk five answer indicates that sample and/or human inspection with manual
equipment occurs. A risk one and five answer for a different question have their own
unique text to explain the risk scale for that specific assessment.

Upon reviewing the forty-three questions with the Digital Factory AI Vision team,
we aligned on eight questions that indicate if the workstation has a high risk related
to HVI.

1. Are defects inspected as part of this work step’s inspection activities? What
type of inspection method’s are used at the work step (automated/monitor/
manual/sample)?

2. Does the product builder complete inspection on their own work that is being
processed at this work step or at a work step further downstream?

3. Is this an automated acceptance activity (vision system) making a quality deci-
sion? Is there a periodic check to ensure ongoing accuracy of the measurement?

4. Can you physically distinguish processed and unprocessed or inspected and
uninspected at the workstation?

5. Is part positioning a critical input to process, print, downstream operations, or
performance output?

6. Can the processing or inspection steps at the workstation be bypassed?

7. Are visually similar components/materials stored locally at this work step, or
stored offline in a communal setting prior to being brought to this work step?
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8. Is there a likelihood of wear due to moving parts within the process work step
that impacts product quality (i.e. functionality of equipment or transfer of
metallic, plastic FM on to product)?

We then reviewed each of these eight questions to pick the proper risk scores,
and corresponding question answers, that should be used. Once this question and
answer set was created, I added logic to the Microsoft Excel workbook containing the
WSVA answers for the site. I then created logic columns to indicate if a workstation
answered the proper risk score for one of these questions, and flagged those worksta-
tions accordingly. The WSVA also contained a column for the business unit and a
column for the workstation. Additionally, the workstation data contained an overall
score calculated from looking at the "risk" answer for each question, the impact score,
and an occurrence score, where the impact score is a measure of the overall impact
of the error and/or defect occurring and the occurrence score is a measure of the
likelihood of the error and/or defect occurring. I created a pivot table to look at only
the workstations that had been flagged based on the answers to the eight questions,
and summarized it by business unit - workstation combinations. The overall score
was used to rank the business unit - workstation combinations in descending order
based on overall score, shown in Table 5.3 below.
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Table 5.3: Workstation Vulnerability Assessment Analysis
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5.1.4 Scrap Data

The Maple Grove scrap data for the first eight months of 2021 was provided to me by
a financial analyst. This data was already sorted into the nine key business units and
included scrap as a percent of VOP and scrap variance. I used this data to find the
rolling average of scrap as a percent of VOP and the total annual variance to date.
Both of these data sets were then put in descending order by business unit and are
shown in Table 5.4 below. The scrap data required the least additional analysis due
to the work previously done by the financial analyst.

Table 5.4: Scrap Analysis
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5.1.5 Checking Data with Site Resource

After I completed the initial data analysis I verified that it took less than a business
day to collect and analyze all data. I then met with my work directors to quality
check the data and make any site-specific adjustments I would not be aware of. This
screening step involved removing product lines that were about to be discontinued
and adjusting for any other areas that did not fit within the human inspection realm
but were not labeled in an obvious manner. After the final adjustments were made, I
recorded the top 10 highest areas from each data source analysis, as shown in Table
5.5 below.
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Table 5.5: Top Areas for Each Data Source
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5.2 Communication Methodology for Data Analysis

5.2.1 Site Alignment of Strategy

Once I had the top priority areas for each of labor, quality, risk, and scrap, I needed
to find a way to clearly communicate this to the site. The list made it too difficult
to find overlapping areas, as there was too much data to look at and it was hard
to quickly see the difference between business units frequently at the top of the lists
versus the bottom of the lists. Considering that the business units and management
were familiar with looking at score cards for various corporate metrics, we decided
to focus on a similar visual approach. I tried a grid approach, putting the five data
categories on the x-axis and the business units, Maple Grove has 9, on the y-axis. I
then recorded the rank each business unit had for each category, shown in Table 5.6
below.

Table 5.6: Data Classification for Analysis Visual

Looking at this data table, an obvious issue came to rise. Business units without
representation in the top ten list for each category had the lowest score of all, which
conflicted with the business units having the most items in the first place, and there-
fore the most room for improvement, having the second lowest score. To resolve this
conflict, I applied a reverse ranking to the data, where items in the first place were
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assigned a score of 10, and items in the tenth place were assigned a score of 1, shown
in red in the Data Classification for Analysis Visual table above. This converted score
table is the bottom graph in Table 5.6 above. I then summed the converted numbers
for each score, and used that to create a table of the combined score for each category,
shown in Table 5.7 below. Upon review with the Digital Factory AI Vision team, we
were concerned people would put a lot of meaning into the scores and give them more
merit than they had. This led us to consider using an approach similar to the Money
Maps discussed in the literature review. Because we coded the data based on the
scores, we called this approach a heat map.

Table 5.7: Data Analysis Visual with Total Scores

5.2.2 Heat Map Creation

To switch from a scored table to a heat map, I used the conditional formatting feature
in Microsoft Excel to put each x-axis category on a color gradient scale, with higher
numbers getting the darkest color, as shown in Table 5.8 below.
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Table 5.8: Data Analysis Visual with Color Gradient Overlay

Next, I sorted the data to rank the business unit with the highest total score first,
and removed the numbers so the final heat map only had a color gradient, shown in
Figure 5-1 below. This final heat map was used to move forward with the analysis
and as the primary communication tool for the operations strategy.
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Figure 5-1: Final Heat Map for Maple Grove

5.3 Bench-marking with Existing Opportunities

In order to determine if this proposed heat map methodology was a good analysis to
use for finding machine and AI vision opportunities, I next compared it to the projects
the Digital Factory AI Vision team at Maple Grove had discovered through their past
two years of work. According to the heat map the top labor opportunities were in
business units six and two, and Maple Grove had discovered and implemented labor
reduction projects in both of these areas, shown in purple in Figure 5-2 below, through
their process of meeting with individual business units and conducting line walks.
The top quality areas were in business units seven and four, and the Maple Grove
team had independently discovered a seal inspection quality improvement project in
business unit four, also shown in purple in Figure 5-2 below. Business unit eight
had the greatest scrap contribution, and there were multiple scrap reduction projects
underway in this area, also shown in purple. Of all of the high opportunity areas
shown in the assessment, business unit seven was the only one that did not have
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active projects, shown in red in Figure 5-2. Upon speaking to the Maple Grove team,
they had not yet engaged with business unit seven and started working with them to
find quality and risk reduction opportunities as a result of this assessment. Based on
the high overlap between the heat map assessment and the opportunities the Maple
Grove Digital Factory AI Vision team had found independently, we decided to proceed
with this analysis as the primary assessment tool for the Digital Factory machine and
AI Vision operations strategy.

Figure 5-2: Final Heat Map for Maple Grove with Opportunity Overlap

To further validate this assessment, Arden Hills, who was also actively identi-
fying projects through their own methodology, provided me with their data set to
benchmark against. The Arden Hills heat map is shown in Figure 5-3 below.
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Figure 5-3: Final Heat Map for Arden Hills

The Arden Hill heat map overlay did not match as well as the Maple Grove com-
parison did, however, there was a strong enough correlation to show that this analysis
helped highlight the areas the sites were finding on their own through a much more
time consuming process. Through their own analysis, Arden Hills identified potential
machine and AI Vision labor improvement projects in business units one, three and
four, which matched the heat map well. In the quality improvement opportunities
there was overlap in two of the top four categories, and in one of the top categories
for risk and scrap. Due to an upcoming assembly relocation to another manufactur-
ing site for a large part of business unit five, Arden Hills had decided not to pursue
the scrap reduction potential in this area. Finally, the Arden Hills team had not
yet assessed business units seven and eight. Overall the Arden Hills data showed
significant overlap for all of the high opportunity areas and furthered our confidence
in proceeding with this analysis.
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5.4 Application of the Heat Map

5.4.1 Target Area Selection

The heat map is just the first step in finding machine and AI Vision opportunities.
This tool helps the technical team target their approach to the right business unit,
and then engage in a deeper analysis with that unit. Using the heat map, the Digital
Factory AI Vision team meet with the site teams to determine which of the high
opportunity, dark blue, areas was best to pursue based on current site activities and
ongoing work. In the Maple Grove case, there were already projects underway for
all of the high opportunity areas except business unit seven, so we chose to engage
with them. Once the business unit(s) is selected the team can engage in a deeper
analysis using site-specific data to get more details on what parts of that business
unit to conduct manufacturing line walks at.

5.4.2 Additional Analysis Steps

The additional analysis step usually starts by seeing what analysis is possible using
the data already in the assessment. The quality NCEP data and the risk WSVA
data both have additional levels of data that can be filtered and pivoted to find
the top product families contributing to high NCEP count and the top workstations
contributing to the high risk. These areas are then used to create a business unit
specific seriatim. For scrap data, the business unit is asked to provide their site-
specific scrap data including scrap codes, so this data can be analyzed to make a
seriatim. Finally, for labor data, industrial engineering is engaged to take a deeper
analysis of their work content graphs and find the workstations with the highest
individual inspection times and volumes. The top opportunity areas from each of
these additional analysis was then turned into a list to do a targeted site visit and
line walk to assess for machine and AI vision opportunities. Because the line walks
were now focused to areas of known value, if a project was found the team had much
more confidence that it would have the VIP to get approved and would be a priority
for the manufacturing site.

By doing this work after the heat map is created, only a few business units are
asked for each type of information, taking the total number of site-specific data anal-
ysis from forty-five to six in the Maple Grove case, based on their nine business
unit grid. This greatly reduces the time requirements of the site personnel who have
conflicting priorities. Additionally, when speaking to these business units about the
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specific high opportunity areas, they were very receptive to our help because we were
addressing a high priority for them as well. For instance, when the team set up meet-
ings with the quality team for business unit seven, they were naturally aware of their
business units quality issues and were happy to discuss a collaboration. They had not
been aware that machine and AI vision could improve quality issues and therefore
had not thought to partner with this team. Our proactive engagement with a group’s
common issue led to a lot of support, a productive meeting where they highlighted
their biggest quality issues, and the scheduling of line walks to see if AI vision could
help solve some of these issues.

5.4.3 Workflow to Opportunity List

The heat map was just the initial step to identify areas of a manufacturing site to
look for opportunities. However, to get sites on-board to execute this process and
ensure there was proper ownership so it did not get ignored, a workflow needed to be
established. I worked with the Digital Factory AI Vision team to create the workflow
shown in Figure 5-4 below. All of the steps in this workflow are led by the Digital
Factory AI Vision team.

Figure 5-4: Workflow from Data Analysis to Line Walk

We started by having a kickoff meeting with the site we were working with, and
asked them to identify a site single point of contact, SPC, to work with us on the
analysis. Some sites provided us with this person, while others named multiple people
to this role. In all instances where a single person owned this relationship for the site,
more progress was made during my internship and responses were received faster than
the sites that appointed a team and had shared ownership. At the kickoff meeting
we reviewed a slide deck and proposal showing the value of machine and AI vision
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projects, the four data sources I proposed we examine, and the results of the Maple
Grove heat map to demonstrate the plan we were proposing to execute at the new
site. We also went through this workflow to show the required commitment.

After the kickoff meeting I conducted the initial data analysis, working with the
site SPC, and developed the heat map. The site SPC was a crucial team member for
the proper heat map generation because they helped provide site-specific knowledge
and helped establish the categories for the y-axis of the heat map. Not all sites had
their data classified into consistent business units or labels like Maple Grove did,
and site expertise was required to establish heat map categories that made sense to
the site manufacturing was set-up. The site SPC helped with quality checking the
information and reviewing the final heat map.

Once the heat map was finalized we held a follow-up meeting with the same team
that attended the kick-off meeting. At this follow-up meeting we decided which busi-
ness units to focus on based on the high opportunity zones and ongoing work at the
site. We then discussed what data sources would be used to conduct the additional
data analysis discussed in the previous section. The site SPC and I conducted the
additional data analysis and met with the target business units to gain any insights
they had regarding the opportunities in their area. We then analyzed the new seri-
atims and created a list of ten to thirty workstations to visit, with the objective of
spending one day doing line walks at the site looking at these targeted areas. Finally,
line walks at the site were scheduled and conducted.

At the end of my internship, we had only executed the workflow through the
line walk. However, we established the post line walk workflow shown in Figure 5-5
below. Post line walk, the site owns the workflow and the Digital Factory AI vision
team supports the process. This is a critical part of the process as potential projects
need assessed and taken through to the approval phase in order for solutions to be
implemented.
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Figure 5-5: Workflow Post Line Walk

After line walks are conducted, the site must start gathering the required data to
do a VIP calculation. These calculations are led by the area engineer, who has the
required knowledge about the area. We created tools, discussed in Chapter 7, that
help simplify the VIP calculations. In addition to the VIP calculations, a technology
feasibility assessment is also conducted to understand the complexity of the project.
The Digital Factory AI Vision team assists with this assessment as much as the site
needs them to, and can help advise on the type of solution, the resources required,
and the equipment required. Factors that are considered are if the part is fixtured
during inspection / assembly or moved by a technician, if a camera is already present,
if a measurement is being made or a visual judgement, and how quantifiable what is
being measured is. Once the VIP calculations and technical feasibility assessments
are completed, the site can make a list of the potential opportunities and plot them
on a complexity versus VIP scale, shown in Figure 5-6 below.
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Figure 5-6: Example of Complexity Versus Value Map for a Site

Finally, the site takes the opportunity list through the management review process
to get projects approved and incorporated into the active project list or included in
the next year’s annual operating plan. The site then begins planning and executing
the projects and sharing their learning’s with the Global AI Vision Community of
Practice. Upon completion the projects are logged on the AI Vision SharePoint site,
discussed in Chapter 7, so future sites and project teams can reference it as applicable.
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Chapter 6

Results

6.1 Site Reception

The first test of the AI Vision Operations Strategy was site adoption. Before pro-
ceeding from the initial test heat map, using Maple Grove data, to testing it at a
site without an active AI Vision team and project portfolio, I had to see if sites were
receptive to the heat map process. I presented the heat map and workflow at an AI
Vision Community of Practice meeting, which is attended by representatives from
all of the manufacturing sites. The sites had positive reception and seven additional
sites were interested in working with our team to get heat maps created for their sites.
Ultimately I created heat maps for the following sites:

1. Arden Hills, MN, USA

2. Clonmel, Ireland

3. Cork, Ireland

4. Coyol, Costa Rica

5. Galway, Ireland

6. Heredia, Cost Rica

7. Maple Grove, MN, USA

8. Spencer, IN, USA
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6.2 Test Site - Spencer, IN

Of all the sites I worked with, Spencer had the most resources available and agreed
to partner with me to get to the line walk process before the end of my internship.
They were also one of the sites that appointed a single point of contact to help with
the assessment.

6.3 Identified Opportunities

During the last week of my internship, a member of the Digital Factory AI and
Machine Vision team was able to visit the Spencer site to do a line walk of the areas
the heat map process identified. However, results from this walk were not available at
the time of my departure. In the time since my internship Spencer has begun pursuing
two projects identified during the December site visit. The heat map process helped
by targeting the line walks so the team ended up taking a close look at approximately
fifteen percent of the factory versus the previous method of taking a cursory glance
at one hundred percent of the factory. Additionally, one of the projects identified and
being pursued was missed during a May 2021 visit to Spencer before this assessment
methodology was developed. While this is only one data point, it provides strong
evidence that the assessment method helps improve the time requirements and impact
of line walks and helps to identify viable machine vision and AI projects to replace
human inspection.
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Chapter 7

Other Implementation Considerations

7.1 Cultural Impacts

As discussed in Chapter 3, Literature Review, culture is a very important part of
leading a digital change. This was apparent from the start of my project and was
also addressed in some of my interviews. It was important to address each sites’
culture and ensure the communication and approach from the the corporate Digital
Factory team was tailored to the site and programs needs. The end goal was to have a
pull strategy where the manufacturing teams were aware of the machine and AI vision
tools and sought out help to partner with the technical team to solve manufacturing
problems. However, we had to start with a push strategy, because many sites did
not know about these resources, while building the framework to transition to a pull
strategy at a later date.

In order to achieve this, the Digital Factory team made a road show style presen-
tation to present the technology, its successes within BSC, and how their team could
help. They presented this, virtually, to all of the manufacturing sites and offered to
work with the sites on next steps to develop an opportunity list. Through the Gemba
walks we aimed to identify those opportunities and also help build awareness on the
manufacturing floor.

Additionally, we leveraged a training presentation the Arden Hills team made,
targeted towards manufacturing teams, which explained how machine and AI vision
add value, gave example projects, and discussed how to get help for consultations on
these projects. We put this tool on the AI Vision intranet website in order for all
sites to use it to help train their teams and build awareness.

One issue I expected to arise throughout the project was technicians being wary or
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against the machine and AI vision projects, out of fear of being automated out of their
jobs. However, this ended up not being an issue. In the geographic locations where
removing humans from tasks makes economic sense, there are ongoing labor shortages
where more skilled labor is needed than is available. At these sites, when a human
is removed from an inspection task they are placed on a new open job. Because
the employees are aware of this, and no employees have lost their jobs thanks to
automation, to date, the cultural trust in seeing automation and AI technologies as
a partnership and job aid exists.

The final cultural item we considered was the role of a global Digital Factory team
providing guidance to the technical teams at other sites. This had to be approached
delicately to not insult the sites. In order to do this we formed partnerships and
offered help versus mandating what the sites do. Additionally, we asked sites to share
their experiences and included their learning’s with the global tools. Finally, if a site
did not want to partner with us we did not force them to.

7.2 Tools for Successful Technology Launch

Through my interviews I determined that most sites had great tools but everyone
was making their own and not collaborating. Some sites had great tools for one area
but needed help in another. It became clear that the tools to find these projects,
plan them, and execute them were just as important as finding the opportunities
was. Additionally, the tools were required to have a successful technology launch and
make the work I did sustainable for the future. I worked with the AI Vision Digital
Factory team leads to understand what tools were required and build out the AI
Vision intranet site to be a single source resource for future projects. We also created
a model reference library on this site so everyone could see what projects had been
completed and find contact people to collaborate with for similar projects.

7.2.1 Resource Alignment and Requirements

One of the key questions the AI Vision Digital Factory team was frequently asked was
what resources were required to execute a project, how long it would take, and what
information they should put in their annual business plan to secure these resources
and be able to do a future project. This was a very difficult question to answer when
sites did not have a project list identified let alone scoped. In order to assist with
this I gathered information on the Maple Grove completed projects to make reference
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resource tool. New project teams could use this tool to assist with estimation. This
tool included the complexity, VIP savings, existing equipment such as cameras, if the
project was executed in-house or by a third party, time required to execute, and the
hardware cost. It also included the labor required for the project by job role and full
time equivalent hours,such as AI/Machine Vision Engineer, Software Programmer,
Project Manager, Quality Engineer, etc. Finally, it included the number of systems
the project addressed. By looking at this table and finding a project similar to the
one a site thinks they identified, they can quickly get a rough estimate of what it
would take to execute the project. As more projects are completed this table will
continue to be updated to become a better resource, in the future, hopefully, an
actual estimation tool capable of extrapolating estimates within the data set range.

7.2.2 Timeline

Another question the AI Vision Digital Factory team was often asked was how long
the process takes from having a site kickoff meeting to working through the sites top
few priority opportunities. Using the Maple Grove and Spencer sites as models, I
created a timeline, shown in Figure 7-1 below, to highlight the workflow and time
requirements. I modeled a moderate situation where a site cannot devote full time
resources to these efforts but does make a single point of contact and meets up to
once a week to progress these issues.

This timeline shows that it takes approximately three months to get an initial
project list and have a project ready for management review and approval, listed
at "Management Opportunity Review" in Figure 7-1. After the initial process has
been kicked off and one key focus area has been assessed, it takes approximately two
additional months to analyze a new focus area and get additional projects approved
in these areas, highlighted by a color change in Figure 7-1.
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Figure 7-1: Timeline to Complete Opportunity Identification Process

7.2.3 Value Proposition Calculation Tools

Value Proposition calculations, or VIP calculations in BSC terminology, were a re-
peated area of concern and difficulty for the machine and AI vision projects, as quality
at an individual workstation is difficult to assign a cost to. If we can reduce the per-
cent of product escapes at one workstation, but the product still goes through many
more workstations downstream, how much value was added? This is a question that is
difficult to address. Additionally, scrap value is often not assigned at a specific work-
station and is also hard to address. Finally, the savings of a project is not always
known at the estimation stage, often only an indication that the project will improve
the outcome is known. Through my interviews I identified that the Arden Hills site
had made a great VIP calculation spreadsheet that included important questions to
ask to understand the complexity of a project, such as if the part was fixtured, if
rework was still possible at this stage, and what equipment such as cameras were
already present. Additionally, the spreadsheet had a tab that included standardized
company financial estimates to use for the things like an ergonomic improvement, a
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quality improvement, and other key items. This tool made calculating the VIP value
for a project much easier and helped standardize the way these projects are evaluated
across the company. We added this spreadsheet to the AI Vision website so everyone
had access to it.

7.2.4 Technology Readiness Assessment Tools

The final tool that multiple sites needed but only one had was the Technology Readi-
ness Assessment Tool, created by the Galway site’s technical team. This tool helps
take an inspection standard and translate it into the information needed for the ma-
chine and AI vision engineers to turn it into an automated inspection via code. This
tool streamlines the process and makes getting the right information to the project
team easy, preventing potential project delays and rework. It also helps a project work
through the technical challenges early on, before they get too far along the project
pipeline. The tool helps document key information so all project members have access
to the same information such as ambiguities in the pass/fail criteria, tactical steps
required during the inspection, post inspection handling requirements, image acqui-
sition complexity, example inspection images, reference inspection documents, and a
list of all product varieties subject to this inspection specification. When this tool
was demonstrated at an AI Vision Digital Factory Community of Practice meeting,
all of the sites in attendance were very excited to start using the tool to assist them
with their project scoping and implementation.
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Chapter 8

Recommendations for AI and
Machine Vision Launch in Global
Manufacturing

8.1 Recommendations

This project enabled me to network with most of BSC’s manufacturing sites, job
functions, and departments. Through this work and the third party literature review
there were several key areas that led to improvement or could have improved the
effectiveness of the AI and Machine Vision efforts.

First, sites with Equipment Engineering groups seemed better prepared than sites
without this group to handle technical changes, implement new innovations, and
have a collaborative relationship with the manufacturing team. The Equipment En-
gineering group regularly works with the manufacturing team and the technicians
assembling the BSC products. This relationship fosters trust and helps the manufac-
turing team know whom to go to when they see areas for improvement. In turn, more
improvement areas are identified faster, and the Equipment Engineering group and
manufacturing teams can collaboratively solve the problems. The on-site Equipment
Engineering group model should be considered at all manufacturing sites, especially
as BSC continues its work to bring Digital Factory capabilities to its manufacturing
lines.

The next recommendation is to have sites communicate better with each other,
continuing to share their tools and projects with the rest of the AI Vision Community
of Practice. When I spoke with sites about the tools they developed, such as the
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VIP calculation tools, some sites had unknowingly spent valuable time duplicating
work already done by other sites. When these tools were shared by various parties at
Community of Practice meetings, the other sites in attendance were very receptive and
started using these tools themselves. As BSC continues to lead technology changes,
they should further utilize the Community of Practice structure to encourage sharing
of tools and resources to avoid duplicating work and instead foster collaboration to
strengthen the ability of each tool.

A lot of the projects discussed during my internship had strong technical potential
and long term impacts, however, the initial return on investment and corresponding
VIP valuation was low, which made the project not get chosen versus others in the
portfolio. Per section 3.3 of this thesis, Maximizing Return on AI Initiatives, com-
panies must commit to AI as a tool for achieving corporate goals. In order to get
some of these AI projects started, so the company can meet its long term manufactur-
ing technology goals, BSC should develop a way to provide funding for these projects
from a different source than the standard project review process and funding. If these
projects have to compete with the site VIP list, they will have a difficult time getting
approved. BSC should consider treating these projects as an intermediary between
the early stage research partnerships and normal manufacturing projects, and use
this separate funding to approve projects with high technological improvements or
returns and a longer pay-back period. The same logic can be applied to lines moving
to other sites, which end up in an odd holding pattern in the year leading up to the
move, where improvements do not have the appropriate returns for the site to pursue,
but then the new location inherits issues the company was aware of and could have
fixed.

The final recommendation is to review the work content graph labor data and
consider doing a deeper analysis. If the inspection reduction work continues, the
existing data does not provide the right level of detail to effectively identify and
address solutions. The current work content graph data has inspection times available
at the line level. However, the total inspection time could be evenly spread out across
multiple work stations or all concentrated at one workstation. The workstations with
most of the inspection tasks are great candidates to remove the inspection from or
automate. However, if the work is spread across all workstations, and the technicians
are only inspecting for a small percentage of each task, the returns from pursuing these
projects are not competitive. If the Industrial Engineering team re-does their time
studies at the workstation level, the data set helping identify areas for improvement
will have much more impact.
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8.2 Lessons Learned

In addition to learning about BSC culture, medical device manufacturing, and ma-
chine and AI vision, several key lessons were reinforced regarding project approach
and implementation:

1. Take time to understand the problem upfront so you reach the right problem
and solution

2. Choose the right level of data for the problem

3. Lower the barrier to entry to get more stakeholders on-board

4. Design the project and solution with job hand-off in mind

The first lesson I had reinforced was that it is worth taking the time to understand
the true problem upfront, not just the stated problem. For this project, there was
a business objective for the global team to increase the use of machine vision and
AI in inspections and reduce the number of HVIs. However, upon speaking to the
key stakeholders and sites, I determined that there were underlying problems, such
as corporate goals, resource availability, and lack of tool sharing leading to barriers
in project identification and approval. By adjusting my project to fit this problem, I
was able to address the root problem of finding opportunities and sharing resources,
hopefully leading to a larger project list.

The next lesson learned involved choosing the right level of data for a problem.
BSC has a lot of site-specific data and can use it to answer almost any question.
However, due to the unique characteristics and tools used to track this data at each
site, it is not standardized and requires a large time commitment of a knowledgeable
site employee to analyze. By pivoting to global data available for all sites, I was able
to analyze the data more efficiently and do this analysis for all manufacturing sites.
However, because the data was in a standard global tool, it was not formatted in a
way to maximize site value and lacked a lot of details available in other site-specific
databases. This degraded the quality of the analysis and was something that had to
be considered when moving forward with this path. For future projects, always strive
to understand the pros and cons of the data sources and pick the one that best fits
the project.

The final lessons I learned was that creating a low barrier to entry enables sites
with low bandwidth to get on board with the initiative. Companies often launch
these large technology initiatives and work groups have a hard time balancing the
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new priorities. Before the heat map, getting sites to follow-up on the machine and
AI vision efforts to reduce HVIs was very difficult, as the sites were busy and the
effort required a lot of work. Additionally, our requests were for the entire site, which
were vague. When we shifted to a work group specific request and spoke to common
concern areas with the site leadership, reception greatly increased and nearly all of
the manufacturing sites wanted to be involved in our work process. Lowering the
barrier to entry and starting with a phased approach is a strategy I will deploy for
change management in the future.
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Appendix A

Interview Questions

A.1 Questions asked to Maple Grove, MN Team Mem-

bers:

1. Can you describe your role in the AI vision development and implementation
at Maple Grove

2. Technical

(a) What parts are transferable

(b) What parts should be done from scratch

(c) Any recommendations on how to share learnings with other sites

3. Organizational

(a) Any recommendations on how to share learnings with other sites

(b) What is working well from project management, alignment standpoint

(c) How do you get alignment with line that AI will go on

(d) What would you change if doing again

(e) How do you think groups should be set up across sites

(f) Should this team remain as center of excellence or let each site have their
own infrastructure

(g) Have you been involved in VIP calculations

(h) Any standardization recommendations
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4. Political

(a) Have sites been open to adopting this technology

(b) What do you see as the biggest hang-ups

(c) What has worked to get alignment

5. Other ways to approach reduction in human inspection

(a) Traditional machine vision

(b) Improved process controls / less person handling

(c) Can we use risk tree / decision tree approach to implementation

A.2 Questions asked to employees from non Maple

Grove sites:

1. Can you describe your role in the AI vision development and implementation
at your site

2. Did your site have machine vision prior to the digital factory push

3. What was your site’s / group’s reaction to digital factory AI inspection

(a) Supportive

(b) Needed or forced

(c) What do you see as the biggest hang-ups

(d) What has worked to get alignment?

4. How have you found the existing resources and collaborations with the Maple
Grove team

(a) AI vision website

(b) Line walk program

(c) Connections to Vidi and other third party programs

(d) Open source software and labeled data sets

(e) Guidance document

5. Organizationally
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(a) What is working well from project management, alignment standpoint

(b) How do you get alignment with line that AI will go on

(c) What would you change if doing again

(d) How do you think groups should be set up across sites

(e) Should this team remain as center of excellence or let each site have their
own infrastructure

(f) Have you been involved in VIP calculations

(g) Any standardization recommendations
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