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ABSTRACT

We consider the statistical properties of electro-
magnetic radiation scattered by many particle systems.
Using techniques which have been developed to treat the
coherence properties of the radiation field in quantum
mechanical terms, we obtain statistical properties of the
light scattered by inelastic processes such as Raman
scattering and scattering by density fluctuations. We
amphasize the first and second order temporal correlation
functions of the radiation field and find that, for the
processes considered, they are related to each other by
an equation which is very similar to that which is expected
to hold if the radiation field is taken to be a classical
narrow band Gaussian process. The suggestion that the
statistical properties of matter near a phase transition
critical point are not Gaussian lead us to construct a
theory of the statistical properties of a Heisenbers-Ising
model ferromagnet. We obtain equations of motion which
describe the non-equilibrium evolution in time of the system
towards thermal equilibrium by considering the ferromagnet
coupled to a thermal reservoir. We find that the dynamical
behavior is different for different reservoirs, of which
Ne consider two types in detail, but that the steady state
(thermal equilibrium) properties are independent of the
specific nature of the reservoir. We show that our steady
state solutions lead to the Landau form for the magnetic
free energy near the Curie temperature, and to the molecular
field equation of state and the Bragg-Williams form of the



free energy for all temperatures. Our density operator
cquation of motion method avoids the explicit statistical
counting procedures employed in conventional derivations
Of the free energy.
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INTRODUCTION

The atomic properties of matter have been investigated

orincipally by studying the interaction of matter with

electromagnetic fields. The earliest studies revealed

that atoms of pure elements emit and absorb electromagnetic

radiation at a sequence of discrete frequencies, each

sequence or pattern being characteristic of the particular

clement under study and different from the patterns of

other elements. Spectroscopy thus provided the empirical

data upon which atomic theory was later constructed, and

even today the study of the emission and absorbtion of

radiation by atomic systems continues to provide information

about the structure of complex atoms and molecules.

A complementary method in the study of matter by means

of its interaction with electromagnetic radiation is the

observation of the scattering, rather than the emission or

absorbtion, of radiation. The properties of individual

atoms or molecules as well as the structure of aggregates

of particles - gases, liquids, and solids - may be studied

py light scattering. With regard to the former category,

the Raman effect, first observed in 1928 t provides the basis

of the experimental techniques which center on the study of

the spectrum of the scattered light. The presence in the

scattered light of frequencies other than those in the

incident 11g which illuminates the scatterer yields

information about the quantum states of the target. Thus



many atomic and molecular species have been studied in

is 2
this way

Since the inelastic scattering of light is generally

very weak, observation of the effect is enhanced by

increasing the number of atomic or molecular scatterers.

Thus, Raman scattering studies were frequently done with

liquid targets. However, in addition to scattering light

via the Raman effect at frequencies characteristic of its

constituent atoms or molecules, a liquid (gas and solid as

well) scatters light because it is not perfectly homogeneous.

That is, fluctuations of the density of atoms of the fluid

over distances of the order of an optical wave length cause

fluctuations of the dielectric constant which in turn cause

a light beam to be scattered away from the forward direction.

Studies of the fluctuation scattering of light 3 go back to

Tyndall and Lord Rayleigh in the latter part of the 19th

century, although Brillouin was one of the first to relate

the scattering of light by density fluctuations to a

model of the properties of the scatterer. First inspired

by the Debye model of a solid, and later by a study of hyper-

sonic waves in liquids, Brillouin predicted 4 that a liquid

or solid should scatter light by means of thermal sound

waves which continuously exist in any body at a non-zero

temperature. These sound waves would appear to an incident

light wave as a regular alternation of the density of the

body and thus would act like a moving diffraction grating.



I'he scattered light would be Doppler shifted in frequency

from the incident light by an amount proportional to the

velocity of the sound wave in the body. Thus, Brillouin

proposed that the structure of a liquid could be studied

by observing the light inelastically scattered from it.

There were very great experimental obstacles to the

observation of Brillouin scattering. Besides the very

weak character of the scattering, which thus required very

intense sources of illumination, the frequency shifts

axpected were extremely minute. Hence, the source of

radiation had to have a very narrow spectrum in order to be

able to distinguish the Brillouin scattering from the

elastically scattered light which was always present - due

in part to dust impurities in the sample and in part to

intrinsic elastic scattering by the fluid, an effect

treated by L.D. Landau and G. Placzek in 1934 °. It was

not until quite recently that major advances in both light

sources and detectors made the observation of fluctuation

scattering in liquids relatively easy.

The laser provided 2 1ight source of greatly increased

intensity relative to discharge tubes. At the same time,

the laser also provided an extremely narrow spectrum of

light, so that two of the main experimental difficulties

were overcome at once. However, a great deal of work on

lasers 6,7,8,9 revealed inadequacies in the description of

s]lectromagnetic fields hitherto used. Tt was discovered
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that the characterization of the radiation field by its

power (aMPLITUDE) spectrum was not sufficient to completely

describe the state of the radiation emitted by a laser.

In addition, new electronic methods of detecting radiation,

such as the photomultiplyer tube, emphasized the quantum

nature as well as the fluctuation or noise properties of

the optical field. To deal with these problems, a new

general description of physically realizable radiation

fields was evolved 10,

The method developed characterizes the radiation field

oy giving the values of average properties of the field.

Besides the average electric field strength, a complete

description of the field involves specification of average

values of the product of two field strengths (evaluated at

different space and time points), three field strengths,

and so on. The radiation field is thus looked upon as a

stochastic system. The statistical properties of such a

system are fully known only in terms of Joint multitime

probability distributions or equivalently, the expectation

values of products of variables computed with respect to

the joint probability densities. This guatintlond des-

cription of the electromagnetic field is analogous to the

characterization of a many-body system by an infinite

hierarchy of multiparticle Greens functions or correlation

functions.
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Considerable work has been done on the statistical

properties of laser radiation. In particular, 1t 1s known

that a laser produces light which is not Gaussian in its

statistics 6,8 Therefore, the question arises as to how

the statistical properties of laser radiation are modified

oy scattering processes of the types mentioned above. Is

the characterization of the scattered light by 1ts frequency

spectrum an adequate description, or can additional useful

information about the target be extracted by measuring

higher order correlation functions of the scattered field?

There is a great deal of information about the scatterer

contained in measurements of the intensity distribution ana

frequency spectrum of scattered radiation 11,12 and one

may well wonder if measuring higher order correlation functions

would provide more. We shall attempt to answer 1n part

this A in Part A of this work by presenting cal-

culations of the coherence properties of light scattered

by systems which model the processes mentioned above. In

Section I of Part A we define the statistical properties

5f optical fields and demonstrate that a certain class of

density operators leads to field correlation functions which

obey a Gaussian-like factorization relation. In Section II

of Part A we study a model of Raman scattering by density

operator techniques. In Section III of Part A we calculate

temporal correlation functions of the light scattered by

density fluctuations in a particular model.
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The suggestion 13 that the validity of thermodynamic

fluctuation theory, which generally results in Gaussian

statistics for fluctuating thermodynamic variables in a

system in thermal equilibrium, may be in doubt near a phase

cransition critical point of a many particle system leads

us to consider the statistical properties of such a system

in Part B. We choose to investigate the Heisenberg-Ising

model of a ferromagnet 14 and construct a density operator

theory of this system in order to obtain from a microscopic

calculation its statistical properties. In Section I of

Part B we obtaln an equation of motion for the density

operator of the spin system which describes the time evolutior

of the ferromagnet through non-equilibrium states toward

thermal equilibrium by considering the system to be in

contact with a thermal reservoir. In Section II of Part B

we introduce a c-number quasiprobability density distribution

function 15,16 and obtain its equation of motion from the

density operator equation of motion by techniques 17 developed

originally to treat properties of the electromagnetic field

interacting with atoms in a laser. In Section III of Part B

we treat the equation of motion by an approximation expected

to be valid in the critical region and show that although

Che dynamical properties of the system depend upon the

details of the reservoir to which it is coupled - we consider

cWo particular kinds of thermal reservoirs in this Section -

che steadv-state solution is independent of those details.
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In particular, we obtain a non-Gaussian form for the steady

state probability distribution of the magnetization which

leads us to ldentify the free energy of the magnet as

being of the form predicted by the Landau theory of a

second order phase transition 18 In Section IV of Part B

we use a discrete representation to show that the exact

steady state solution of our equation of motion ylelds the

Bragg-Williams form 18 of the magnetic free energy for all

temperatures. We obtain this result without resorting to

any of the usual statistical counting procedures commonly

employed in deriving it.



PART A: STATISTICS OF SCATTERED LIGHT

Part A. Section I. Ontieal CoherenceandGaussianStatistics

According to classical electromagnetic theory, the

electric field E(¥,t) of a radiation field may be written

in general as a linear super position of normal modes of

“he form 20

E, ~ —iwpt Nn Joi
Ere) = 2 Cz Uz)e © J Ca Lairre ®¢  (1l.1la)

ww

Lop

+r li
(r, +) + E (r ) © (1.1b)

where the mode functions Uz (P) and frequencies w,; satisfy

the wave equation

[IF + WE a(R
— Ug Fl=0 (1.2a)

with the condition

SS

Ve U(r) =o (1.2b)

and appropriate boundary conditions. ‘The positive (+) and

negative (-) frequency components of the field are defined

oy (1.1b) and are complex conjugates of each other. Hence,

the electric field is entirely determined by specifying the

values of the set of complex constants {Cz}

Towever. the sources of either natural or man-made

radiation fields are atomic in nature. Fach tinv atomic
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radiator contributes to the total radiated field, but it

is impossible to arrange them such that they all radiate

together in a coherent fashion. To a greater or lesser

axtent, the individual atomic radiators emit their fields

randomly, different groups of atoms of a macroscopic source

radiating for short periods of time. Therefore, the fields

in nature cannot be wholly specified at each instant of

time. Rather, they exhibit fluctuations or noise properties

and measuring devices that respond to some function of the

electric field, say f(E), record average values of that

Function &lt;F(E)&gt; :

SE=[HIEGay]pia)Teews
2 . -

where d Cr = d(Re Ce Jd (Uw CR) and the statistical

properties of the field are contained in the probability

distribution of the set of exvansion coefficients J Cz}

O(1cl) = Peg,Cr,) (1.4;

The quantum-mechanical description of electromagnetic

radiation regards the electric field as an operator. It

possesses a mode expansion analogous to (1l.la) where the

expansion coefficients [Cry are replaced by operators:

=H, : 5 [1 4 = ~fwpt= (RE)=( (4 wg) 2 Gz Ug IF) eo “K
(1.5a)
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E76) = [Ere] (1.5b)

I'he positive and negative frequency parts of the electric

field operator are Hermitian conjugates of each other while

+
the photon annihilation and creation operators (ag , ag)

obey Bose commutation relations:

[oy of ]= Oz ar; lan, ae] [a ak J=0 (1.6
The statisitical nature of the electromagnetic field is

now properly specified by a density operator C .

As pointed out by Glauber 20 radiation detectors

commonly in use function by absorbtion of photons. For

Chis reason it is useful to define a set of electric field

correlation functions as they are precisely the field

quantities determined by conventional experiments. The

general nth order electric field correlation function is

defined by

nm)~ = (=) = (= = = (+)&gt; (X, Xu, Xuan Xan ) = Trip E(x) E xu] E “arr ) wo Yan) }
(1.7)

where X= {Ft} . Note that 6(1) in general depends

Jpon the 2n polarization vectors of the fields, but this

dependence has been suppressed in (1.7) as we shall not be

significantly concerned with these properties of the cor-

relation functions. We shall frequently refer to the
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rirst order (or amplitude) correlation function given by

Get): Tee Ee) Een] (1.3)

and the second order (intensity) correlation function

ziven by

Cee) = Tr pEterEe€MenE The | (1.9)

We have suppressed the spacial arguments in (1.8) and (1.9)

as we will primarily be interested in the temporal coherence

properties of the radiation field (we imagine all field

operators in the correlation functions fo be evaluated at

“he same space point).

The significance of the first and second order cor-

relation functions is this: frequently it is argued that

the statistical proverties of the radiation fileld ought to

be Gaussian. That is, classically one supposes that the

stochastic properties of the field may be obtalned by

treating the electric field as a c-number (that is, non-

operator) Gaussian random process. For such a process,

it may be shown 21 that all correlation functions higher

than the first order may be expressed in terms of the

first order correlation function. In particular, one has

chat | ]

 EMIT [E@ DIY = KIEV 4 ICE vEED]” (1.10)
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The method of light beating (or self beat)

spectroscopy 22,23,24 in fact directly measures the intensity

spectrum of the radiation field, that is a(2) rather than

the amplitude spectrum a(1), One needs a relation like

(1.10) in order to interpret the results of such experiments

in terms of a(1) or its Fourier transform, about which

most theoretical predictions are made. Indeed, most self

beat experimenters assume that the radiation field is

adequately described as a Gaussian process and thus use

(1.10) directly. It is clear that the analysis of such

experiments crucially depends upon this assumption.

A basic theorem of statistics is usually invoK ed to

justify the assumption that the radiation field of scattered

light is Gaussian. If one 1s observing light scattered by

density fluctuations, the total scattered field at the site

of the detector 1s the sum of fields scattered by density

fluctuations throughout the (macroscopic) scattering volume.

It is argued that, by the central limit theorem of statistics?’

whatever the statistics of the density fluctuations in volumes

of the order of an optical wavelength on a side, the actual

scattering volume contains so many such regions that the

sum of the electric fields scattered by these fluctuations

must have Gaussian statistics. In addition, one can show

from thermodynamic fluctuation theory that the fluctuations

of the medium themselves have Gaussian statistics 13, The

valld application of thermodynamic fluctuation theory to
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the large fluctuations near a critical point 1s however by

no means certain.

The techniques of self beat spectroscopy are particularly

dseful in investigations of critical phenomena and phase

Eransitions 13,24, However, it 1s Just in such phenomena

that one expects density fluctuations to be of long range.

Should the range of fluctuations extend over the entire

scattering volume, the incident beam would be scattered as

by a mirror, and one would expect the scattered light to

have statistical properties very much like those of the

incident beam. Since the source of illumination for such

experiments is invariably a laser, and since 1t is known 6,8

that the radiation emitted by a laser is not well described

by Gaussian statistics, one might question the validity of

analyzing the results by making the Gaussian assumption (1.10;

Hence, it is clear that the question of the statistics

of the scattered light is of importance in practice as well

as of intrinsic interest. It shall be studied by some

model calculations in the succeeding two sections, and the

question of critical fluctuations will be discussed in

Part B. However, before proceeding to specific models of

the scattering process, we demonstrate a result which is

the quantum mechanical analogue of (1.10).

A very similar relation between the first and second

order electric field correlation functions, as defined by

(1.8) and (1.9), can be shown to hold in general whenever
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Ehe density matrix of the radiation field factors into a

product of single mode (diagonal) density matrices. That

is, assuming that

ENE) = Coyim din In'} (1.11)

(where {wn} - IM, 12, -

numbers of the various modes) and

labels the occuvation

NEE 2liny) = (rina &gt;

od ’

n. Yi; (1.12)

chen the following relation exists between the first and

second order electric field correlation functions:

(1) @ (0)
Pe ghergr- Get) Gee) +6 (Ete) - Clee)GC(ee)

(1.13)

For a stationary process 20 the correlation functions

/

depend onlv on the variable T =¢ -% so that the Fourier

transform of this relation gives

2
va (Ww

)] = a|e (¢ €;6t )- 6"(t¢ 1G fe ]f#y SLL ch(Ww / G’
¥

{ww) (1 14)

where the intensity spectrum a(2) (Ww) and the amplitude

spectrum g(1) (Ww) are defined by

&gt; (
2 wT 2)

5 fw) = [dee G (0,T;T,0)
(1. iH,
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\

{tGG" (w)
wT (1)

Joe G (7,0) (1.16)

and the convolution product is cefined by

(1) (1) *
Sw ® GG wr =

, (1) 1) ¥

dw!G (6 (ww)
AD

(1.17;

For Gaussian fields, such as black-body radiation described

by a Planck density operator, one has in addition that

2 (1)ol (ett) JG ee) (1.18!

so that relation (1.14) becomes identical to the one which

holds for a classical Gaussian process, (1.10). In general,

for non-Gaussian fields which obey the diagonality and

factorization conditions, (1.11) and (1.12), the coefficient

of the 0- function term in (1.14) differs from the one

for Gaussian light, but the convolution of the amplitude

spectrum with itself always constitutes the second term

of that relation. For example, for a radiation field

composed of a single monochromatic mode with Poisson

statistics - that is, a single mode pure Glauber coherent

state 20 of the field - the coefficient of the d - function

term vanishes identically. In the time domain, this means

Chat the normalized intensity correlation function

a™) (tlt ¢) defined bv



 Lo

} (2) (2) )

(=) loo! = G (et |G ]&amp; &amp; — t,t, ¢ t,t ;qe, ele) / J 1,2: ¢,¢ (1.19)

jecreases from a maximum value of one at 7C= t' t =o

to zero at ( =&gt;+ (not to the asymptotic value of one

nalf as it does for Gaussian light).

These results are derived in Appendix I. The relation

(1.13), or the equivalent one in the frequency domain,

(1.14), will be referred to in what follows as the Gaussian

factorization relation between the first and second order

correlation functions.



Part A. Section IT, Statistics of Raman Scattering

Inelastic scattering of light by Raman processes is

a useful method of investigating the properties of atoms

and molecules 26 In this section we shall study the

statistical properties of the Raman scattered light by

calculating the density matrix of the radiation field. We

atilize a simple model of the process asiphenomenological

description to avoid explicitly introducing details (which

of course depend upon the specific nature of the scatterer)

that are unimportant for the purposes of our study.

Therefore, we imagine a set of N two level atoms

illuminated by an incident beam of frequency ww. . We

shall focus our attention on the light inelastically scattered

into a particular direction and label by w the different

modes (all having propagation vectors in the same direction)

of the scattered field. Thus, we take the Hamiltonian H

of our system to be

H = He + Ha * (2.1)

where Hq is the Hamiltonian of the free radiation field;

Ha is the Hamiltonian for N (non-interacting) two level

atoms whose states will be denoted by I&gt; and \3)&gt; , where

the energy separation of these states (taken to be the same

for all N atoms) is Ex -Es= JL 2 o ; and we take the

interaction to be 27
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N —t =

SS TRY ~IK, oF |

V= hy L 2 1a, ¢ “ae Toth f (2.2)
J= w

iere the index zero refers to the incident beam and the

atomic operators 63, 0 connect the upper and lower states

in the following way:

 135 28g IBY; G8578gla:&gt;+ - v oA (2.3)

The atomic states are taken to be orthogonal for different

atoms and normalized to unity:

 &gt; = 0; 2.1Car) B= 0; Ald;=&lt;Plf:&gt;=0:0(zum)

We include all numerical constants and matrix elements

(including sums over virtual intermediate states) in the

single effective coupling constant g, which we note has

che dimensions of a frequency.

Next we transform to the interaction picture to obtain:

ye ott | Eee)
N = (kos ke r, iw, -w -R]¢ (2.5)

+ 7) 0

ng JL {0,005 we
Je!

The density operator for the total system (atoms and

radiation) in the interaction picture, _d(¢]/ , obeys the

equation of motion

7 er = (VI), At {7 a \J



[t is convenient to formally integrate this equation

Jle)= AF) 5 IE3 [Vie!) A) | (2.7)

and insert the result into the right side of (2.6) to obtailn

/ 7¢ - [-c0)

cdeViel,[vi] Ares |

(2. 8)

The statistical properties of the radiation field may

be obtained from the reduced density operator of the field,

J| defined by

Pe) = Ir Alt (2.9)

Ne next write the density overator for the combined system

in the form

di) = Ptler
Th

/
(2.10)

M
where the matter density operator 0 is assumed not to vary

vith time and to have the following properties:

1%

Tels1eVI8) 0 Trron &gt;5,3. 0 hms f 1 (2.11)

Mm
That is, ( factors into a product of diagonal single atom

matrices. Hence, taking the trace of (2.8) over atomic

states yields



- A —

sire = by Towne J LVL Vit), E0807 (2.12)

vhere we have neglected the contribution ofAA since we

assume that the interaction is weak enough to be adequately

treated to second order. That A is of higher order is

seen since if = O the two systems are uncorrelated and

the density matrix always factors into the product of

radiation and atomic density matrices.

We note that (2.12) depends on atomic variables through

their correlation functions. We shall assume that the

apper atomic state has a finite damping constant ¥ so that

such atomic correlation functions decay rapidly for times

t' very much different from t. Because of this damping,

se argue that the equation of motion for {(f] should depend

upon ¢ at the time t, voter than t' as it does in (2.12)

We therefore take the following Markoffian equation of

motion 28,29 for 02

ot = — - Toes JE [Viel Vie) prej@e” (2.13)

We shall use equations of this type in succeeding sections

and discuss their validity for the specific problems under

consideration. A general derivation of the Markoffian

approximation is given in Ref. (28) and (29). We shall



solve (2.13) and verify that the characteristic time scale

of changes of ¢ is much slower than the scale of time

changes (lifetimes) of the atomic system provided that the

Following relation between the coupling strength g and

the atomic damping rate ¥ is satisfied:

\

Cr

- LL]
(2.11)

 J

The four terms which come from expanding the double com-

mutator in (2.13) mav be written as

Dh - 2,p=1 5 (2.153)

vhe re

C4 = “[7 Jat! Vie 1 Vt) Pere o™

” Mg
Cy = TV aroms Ju Vie) peep VIE)

hb.

C, = C, ) C4 = C

(2.150)

(2.15¢)

(2.154d)

The contribution of (; 1s obtained as follows: taking

matrix elements and substituting for the V's from (2.5)

cives (we take AWE W, ~w-R, 4wW'sWa—w'-JT



/ td

e 0 5 | YI, Ys |(Co),py=CRPBEC NGI
N

&lt;7

1 roms {Ma gMs$}7 Hr. ~
J - !

aAw J

CAKE —iawt 5 -iK, -R,)-7

Co { + CK -K  )e Fon ~pw'e!
+ Uy Uy Ton ¢ ’ e

(2.16)

~ \

Li fR=Ky ) Tm [aw't’ mM
3, dy Cm © vo ype ning,

s
N

/

where "My refers to the occupation number of the incident

beam, {¥3to the scattered beam occupation numbers, and

{$/} specifies a set of states of the N atoms. Since

pM is diagonal in the atomic states, equation (2.11), only

two of the four possible terms of the above product con-

tribute; also, since o" factors into a product of single

atom density matrices, the sums over all atomic variables

other than those specified by the indices on the pair of

atomic operators within the matrix element contribute a

factor of one. Thus,

. IK ~R Jor . /
/ 5 3 ¥ Ll w wy ~dwe WLCG) i» --g J nmfifg oot Le 5
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hy) Fo Co
* t w RW AWE gt

3; Ao Ay, 0 Ayr ¢ e 0 Fees 17 ay (2.17)

vhere

p. _ Lots] oY «&gt;
(2.18)

and similarly for Pa; . If we assume that these occupation

probabilities are the same for all atoms so that they do

not depend on the index j, then the sum over j in (2.17)

can be done if we assume that the atomic locations I ave

fixed to a regular spacial lattice. The sum over J thus

contributes delta functions of the difference between the

propagation vectors K., and Kuw' . Since we assumed that

we are looking at the light scattered into a single direction.

and since the magnitudes of the propagation vectors are

directly proportional to the frequencies « and w' , this

makes all terms for which wW¥ w' vanish. Hence, doing

fo.
-he sum over WwW gives



LJwoe

. | yy -rawit-t’)

Codyony= J &amp; LIE, Hy 1) 1800, Ol € prema)

3 &lt; 2! i 0 ay, do 0 ’ ( Y n |

© J, Ve) oo

. "

ad ' :

2 / FP (n+1)N ge 4 -(Awlt-t')a» « ° Ww in .e [ ¢
on", orl) (2.20)

i) - (Aw (¢-¢)
Ps Mo Mu +2) f, IMA My, [ite !

Taking damping into account by adding a small imaginary

oart to the atomic separation energy and thus denoting

rn
/!

rl
 gs MN wo (ry) (2.21)

the time integrations in (2.20) may be carried out to yield

 +1
,

Cy) EA Nn LMM, Ind

P (Mot! Nw _ Ly n, lg (t) )
Cipw? (AU Ho I, Hy J (2.22)4

The contribution from C, , (2.15¢c), may be calculated

in a similar way to obtain
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ag.
|

5 (ro) My F (t)
i AN wt N, +1 In, n, fey M,.,-1 |

—_— | (2.23? |+1 ve!
Nw +1] ( onP. 1, ( : 6, nn

{AW

Thus, using (2.15d), one obtains the following equation of

motion for the radiation density matrix

CL In , reed
Sa Jaz [ loA = im se = (M,+1)W

, / Fv (Jw)? % L

t)Lamm, +1) fr, fun, cong, wed

[t)
P 3 (Vo t1 | Ne, Ps IN, M, “a No, 1nd (2.20)

ND it)
Zu Mo (Mut!) fe YUU, cs AH }/ |

If we try a solution of the form

(t . Tp

Co, ” my, 3 Fu,
Nn

(2.25)

then (2.24) yields
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 a2?
Ce Tp J fe)
n, Mk I fr 1 wo yo (Aw)* J A Me Wo (ns Nw

1

2 (Vo, Yi) 2 _
Oo ) Ww

(t)C (MoM) bot on +1 3 fron
(2.26)

Since the coefficients A,B, and C only involve ",

and VY,,we may identify the indices K=w and obtain a

solution of (2.24) provided the submatrices satisfy the

following equation (the quantities A,B, and C are evident

From (2.24):

&gt; ft) _ 2 qty } 2

Fr, 7, = a. — P, (nm, +1) nN, + ?, m,)(1,+1) pr
2 2 ow

/ “© (2.27)i) NM #1F f, Mo+1) or he, - x “ 5 Not!

If we take Pp, ~v0 &gt; 1 and argue that for spontaneous

(non-stimulated) scattering the occupation numbers WY, are

expected to be small, this equation becomes (note that the

two terms in (2.27) thus neglected correspond to the

rescattering of photons back into the incident beam, =

presumably weak effect)



6, PrYo Mu TH (aw)? CRO 6,
Aa”

(2.28)

M41), A° ’ w +

which we may interpret as giving the rate of change of the

occupation of the (Yo, Mw ) state of the radiation field

due to absorbtion of incident photons and emission of

scattered photons. We drop the "stimulated" terms in

(2.28) by setting 7, +1 # 1 in the first term and

m,-1)+1=1 in the second. This gives

, 2327
n @t) = ——— B Yi, El + (m4) (t)\ U, Y,, Yo (wl * fon ‘ on A, 1

(2.29)

subject to the initial time boundary condition

J (0) “ 1p2sou,PL (2 30)

L
where Pu (0) is the incident beam density matrix. This is

a special case of the more general initial value boundary

condition

(0) $ L
0 = (0) (0)br, Nw Co M,, C. Hy (2.31)



In (2.30) we are therefore assuming that the initial value

of the scattered field density matrix consists of unity

for the vacuum state and zero for all other occupation

numbers. Since (2.29) couples density matrix elements for

which ¥%,+7,, 1s constant, we may define a new variable

N JV

v + 7.
AJ

J

(2.32)

Thus we define

(V) ~

P,, = Con Me) Cas Ho (2.33)
(w)

so that, from (2.29), P, satisfies the equation
 Ww

* (wv)

P,
v) (wv)

i - N-1.)P, + (- nn) 2, / (2.34)

Before proceeding to solve this equation, we note that we

may recover the guantlitv desired bv

(WV)p= PM
\ Y, Nw NJ Nw N- Nw n.

(2. 35)

30 that the density matrix for the radiation field alone is

SY (v) &lt;M n,)

r,s 2 Fron 2 2 L Son ", 2. p,, (2.36)
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Now, equation (2.34) is a special case of a more general

equation solved in 1957 in an early paper on photon noise

in quantum amplifiers 30 ~ by Shimoda, Takahasi, and Townes.

hey obtained the solution of the equation

d Pur
Tr

(a+b) m e CRE [a (m-1)

(2.37)
. c/ fr v-1 + b mt) Lon

with the boundary condition that at t=0, eo = It, m

(the index n is given significance only through this boundary

condition) in the form of a generating function defined by

/
- 5

&lt;4
via

Co A vr (2.38)

T'helr solution for f is

F 1

i |I | &amp; [(—x]

C
1 a [i (6K) (=x)

1+ G(I-x)L.
(2.39)

there (assuming a,b, and ¢ in (2.37) are independent of time)

A
(a~b)

¢
Ar

5 = L [k= 1
{.

(2 40)

de note that should we wish to solve (2.37) subject to the

more general boundary condition

P (0) _ (J) (n) a. , mM (2.47)



n

where Q 1s some function of M , the appropriate generating

Function would be

Es Quod, (2.42)

since this reduces to the correct term at t=0. Generalizing

further to include the boundary condition

P._ (0) = Q (wm) (2.43)

that is, there is a full initial distribution, the appropriate

generating function would be

- = ). (0 (n) fa
(2.44)

[f we make the identifications via comparison of (2.34)

and (2.37)

N= TT nn { « C  nN
C — -

py

/

(2.41)

and note that our boundary condition (2.30) implies that the

correct generating function for (2.34) is given by (2.42)

with M=0

 rv
—

, — sop
1, wo

po) {

v,_
(2.42)

(2.43)

dowever, let us define a generating function for the



radiation density matrix Cw

2 = 2 Pu, A
ny,

no (Ww)

W., Ly Fr

(2.444)

(2.44p)

where the second line of (2.44) follows from (2.35). We thus

Nave

Y= 22 xp," = 2h Gur
nN Ny a (2.45)

oy (2.43). However,from the constants in (2.41) and (2.39)

ve find that

fs © [1+ 61-0" = -&lt;)" [= "
{2 U6)

Using the binomial expansion theorem this becomes

N-n| vow x “Mu
{ = (I-K) /. 1, |— K

0 Nn =o

Ne may formally extend the sum up to infinity since the

pinomial coefficients for Yu &gt;N vanish identically.

Thus, the generating function we want becomes, from (2.45).

0
1

-

&lt; ” 00 NJ K N-Yy,
Ww

2 x 2 oh) [1-1] = I&lt; | on fo) (2.47)
Comparing (2.47) with the definition (2.443) we can

immediately read off the scattered field density matrix:



Br (€) N-

Iv the

 oO
Nw _ N-n, _L

[v.] (I- e") (¢ ") Fun? (2.18)
This is then the complete solution obtained from (2.29) and

the boundary condition (2.30).

We note that the maximum value of [' is achieved for

Aw=0 + Imax= %4*/¥ . Therefore, while the atoms in

the system evolve according to factors like e~ 7° , the

density matrix evolution involves exp [- 4 2° « ] =

exp [2 (2) 7] . Provided that the relation (2.14) is

obeyed, we see that the density matrix evolves at a much

slower rate than the atoms, thus justifying our original

Markoffian approximation for the density operator equation

of motion.

The solution has the characteristic property that if

the incident beam density matrix pL 1s either Gaussian

(thermal) Poisson (coherent), then the scattered field

density matrix will also be Gaussian or Poisson resvectively

If the incident beam 1s Poisson:

n, MN,
(v,) @€

Cum (QD) fy +!

Then (taking (= |—¢
[14

Sr A,x Te (7,)gh [(- 1)Cw [)
nN=o

0. 1E) = Il

(2.49)



Fn, 1) =
VI ~V~,~w e) eo — n

= Leger”
1 =o RA = Ny)!vi,

~N “My ~M
Fer) Ye °C

mo) 2, I+, " a
= (2.50)

-Nw- 1, — _ _
’ © Vo (1-0) Vn

0 “(1- 7) e 0 fe (1-07
(v,,)!

_ I — A,

(vi,~) “ e

(Vv,,)

which is again Poisson with mean photon number 7, 0

If the incident beam is thermal, characterized by

semperature T:

p, (0) = x
[ AF

rt,
 ff —x

(2.51)

Nhere

X

_ hw

é KsT (2.52)

since

zg n
Nn, = 2 Ve X T(I-x1 =

 WM, =o
1 (2.53)

Ne can also write the distribution as

i; 1"
0 -

ao — +n
° (yy 57 T7'H7e

(2.54)
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Then:

 )Me
Mo n No~H,, °
ln) rm {i-o) T(x]

Yl. — me wo.
SH -

L hw, =°(5,|
3

uly.
, (2.55)

OHM Megs i
- = ({I~x)

"wl [i-t-xe] J
A-1 Az

(—) Mw (2) | ~
n dA [ 1=(~2c).

(1 axe) | ~~
-— Xr z oe

(= x + xo) wt! [= ) 1+

which 1s again a thermal distribution of mean value

X —

yy | —~ »° (2.56)

We have thus obtained the statistical properties of

the scattered radiation by computing the density matrix

of the field. In addition to the properties mentioned

above, we note that since the scattered field density matri:

obeys the diagonality and factorization conditions (1.11)

and (1.12), the field correlation functions are expected

co obey the Gaussian factorization relations (1.13) and

(1.14).
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Part A. Section ITI. Scattering by Density Fluctuations

The use of light scattering techniques to study the

properties of many particle systems has a long history 3,13,26

In particular, light is a particularly useful method for

orobing density fluctuations of such systems. The sig-

nificance of scattering experiments in measuring fundamental

statistical mechanical properties of many particle systems

was demonstrated, in the case of neutron scattering, by

Van Hove 1, His analysis was extended to light scattering

by Komarov and Fisher 12

Tn this section we shall study the effects of the

statistical properties of density fluctuations upon the

statistics of the scattered light by considering a model

of the scattering process. Since we shall be concerned

primarily with the effects induced by the properties of

the scattering medium, we take the incident field to be a

classical monochromatic light wave of frequency Wo |

amplitude Es , and propagation vector K, . If such a

light wave is incident upon a homogeneous, isotropic scattering

medium, a scattered wave Es (Rt) is produced by the

dielectric constant fluctuations of the medium 13,

= ( KR=,t

cE (Qt) = -E, (=) &lt; -* ain) ob pc Je 3,4)4

(3.1)
(RR - wot) \

£ oe Sez.6)@
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Here J is the angle between the direction of polarization

of the (plane polarized) incident light and the propagation

sector K of the scattered light, and J ¢ (g¢) is the

q spacial Fourier component of the fluctuating part of

she dielectric constant ( €= &lt;€&gt; + SE(F,t)

since, for simplicity, we are considering an isotropic

nedium, we take € to be a scalar) ,where

ob _ wd

K = K,t4 (3.2)

For a one component homogeneous isotropic medium in

thermal equilibrium, the density f and temperature T are

appropriate thermodynamic variables. We may assume that the

local fluctuation of the dielectric constant at some point

® in the medium, OE(®,€) , is related to the

local fluctuation of the density AGES and the

semperature OT (Ft) at the same point:

EY IreJE Op Ft) + ( :NE (Ft) = [5 | (3. 3)

Neglecting the second term, which is frequently much smaller

than the first due to the small thermodynamic derivative,

we thus see from (3.1) that the scattered field Eg (Rt)

is proportional to the g™ Fourier component of the density

fluctuation. Therefore, in view of the form of the incident

field assumed, the first and second order correlation

Functions of the scattered field will be proportional to the



i
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corresponding correlation functions of the density

fluctuation:

-~ (lMe, oH « EF

7
[
-

\

rr (R¢) EL (R,0)) (3.4a)

Cw, t (~) IN \

CLIP Fede) (3.40)

(2) =) ~/ , =~ — +) a $, =

5G (0,tt,0) = {E. R01 ER (Re) EMRE) ES Kop) (3.5a)

7 . ~ (= H-

280 5,00 08 e107"(50)Opy(3.50)

The correlation functions are ensemble averages of positive

{ A e we ) and negative frequency quantities; the density

fluctuation averages are to be taken with respect to a

thermal equilibrium ensemble.

We now take the following model for the density fluctu-

ation Jp (gt) : we regard it as a quantum

mechanical (one dimensional) linear harmonic oscillator

coupled to a thermal reservoir consisting of a canonical

ensemble of (noninteracting) oscillators at a temperature

T= (ks 3)" . Hence, we identify the density

fluctuation oe" (7¢) with the second quantized

(boson) annihilation operator Alt] and the fluctuation

dp (7, t) with the creation operator @'/t)

The Hamiltonian for the entire system of interest - single

oscillator mode ("system") plus reservoir plus interaction -
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is taken to be

1) — |2 ~

Lf = To. ato

(3.6)

(3.7)

ad

Eo (5 _8)

/
HU; beat + v

”

oS Ta (3 J)

where MW. WU’
J)

are c-number coupling constants.

The equation of motion of the density operator C of

“he entire system, in the Schrodinger picture, is

AE ay~1 fro = L [H+R + V 0]a (3.10)

The density operator in the interaction picture, A(€), 1s

riven by

D(H) = ep |&lt; ear |X [¢] exp (hen)t| (3.11)

and satisfies

X (4= Lye), Xe]
Cima

(3.12)

vhere the interaction Hamiltonian in the interaction picture



Ew

is given by

JL] = 2X k (Heh) € | Vv exp | ElHeR)E| (3.13)

tus

pe ST EOa = (t) = ’ “rp € fe)e

oo

A(t]é
£ He

(HHA)E
(3.14)

where

Ale) — Ir 4 X (t, (3.15)

Assuming the interaction is turned on at t=0, we take

N 1

203 = Sto Lik) = go) Ley =

NS

[ Aoe e k

Se

X (0, (3.16)

(3.17)

The differential equation (3.12) may be formally integrated

vO ocive

€

 XY (¢) = X (0) + [de [vee X(t] (3.18)
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Inserting this into the right side of (3.12) we have

(EH)= = J VIE), Xo)|
+ (3.19)

de [vi Tren
Ne look for a solution of the form

CL) = AE) LR) + ALLE]

there / xX (t) must evidently satisfy

(3.20)

Tr, 4K) =0

Since for V = 0 the systems are uncoupled and 4) = &amp;

fhis correction term must be at least of some order in V

nigher than the zero th. If we assume that the interaction

is weak enough to be treated to second order, then this

term will represent a higher order effect in (3.19) which we

may neglect. Thus, to second order, we have (tracing

over the reservoir in (3.19) ) the following equation for

the reduced density operator of the system, A(t]

Ale) = % Ir, [Vit], Aw) fair) ]
(3.21)

€

LS Trg [Vie [Vie] ate) fe]!
following Louisell 16,31 we develop this equation for the

particular model we have chosen
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In view of our choice of Hamiltonians (3.7), (3.8),

and (3.9) for our model, (3.13) yields the following

2xpression for the interaction V(t) :
&lt; ~~ (HH)

JIE) = pw (HR) Ey TI (nbatentohalle h

—
-y

—

rw. t (ft

i b. (je Y qlorer

+ (w. t — Rt -

nb) eT wo)e |

Tk [Fes ato) Fre acer]

(3.22)

In view of (3.17), which is diagonal in the reservoir states,

ne see that the following correlation functions of the

 Tt
teorces" E(t) and FF (¢] vanish:

{ Fit) Fle, ) &gt; = Trelf (R) Flt) Fle,  4

(3.23)

, 1 +
cet) Pa) = Trg | 2 (F) (6)F(2) =°) F (&amp;)&gt; R Hf r (3.2L)

However

\

+ 7, A ‘2 (lw, -R)4, (w=) te |

Fol) F6))s 2 NM Llp) biol) € (3 25)

Joes not vanish since
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iio 0) = A; Oi
K

(3.26)

where ”, is the mean occupation number of mode Jj. Thus

ie) Fie) = Cr

LZ ~— (Ww, ~ 52 t,-t)
ylmaoe /

(3.27)

and similarly

CEE IE)
7 _ Twa) tt

VV (1e 7) e (3.28)

sirice

NN, b.(o) Lo (00&gt; = [1+ n ) 0,
(3.29)

As | £, — t= os , both of these correlation

functions must vanish. Let Te be the time over which these

functions have a significant non-zero value. Then, integrating

with respect to ¢, and £, over an interval 4¢ much

larger than v gives:

T= a
¢ Af E+ 4+

| JL
— _ wsS)(EF-ta)
Jae
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I Cana |
1° 7.

Foc) [£44¢) wo -J2) 6 TL ip = RJEA8E] od
| 2 J - £ Ff Le

/ (w.- an) n “(tr -_)

: Cw -Rjat lw. -J — i {W- SR) gt

| 1+ @ - P ’ ,

(Ww:-5

— [elo

1

2 -[1 Cos [oy -2) at]!
(Lor - NF

- (w-R)4t4 4. I ——

flo- 2)
Thus:

1 _ NEEiT st 2 MITT.
4 yw 2 (vg -2) A

A

7]

(wo —R)=@e)

”, _ 4 git| lataw Jw) | Aw] = TT v | R |
(wr — flat)?A



 hy

Nhere g(wy) is the density of reservoir states per unit

frequency at frequency Wy . If A4t &gt;&gt; Ce , the integral

ls strongly peaked at Ww: ~ (l . Thus
oo

l ~ T= 2 Siw © (BEX)
LT 2 2 59) 2 | s
gi 1 AT ( py _ Cdx

 TZ gis) =r 7 Ns) At = YVR)

Nhere

J — ar gre) [W()l (3.30)

Therefore, without loss of generality we may take

CE) FI) = Yas Jt —t (3.31)

and similarly

CEPT) = vy (tere) (4-6) Gas

Returning to the equation of motion (3.21) and using

the interaction in the form given by (3.22) along with the

reservoir correlation function results (3.23), (3.24),

(3.31), and (3.33), we find that the reduced system density

operator Jt) satisfies the equation



T we

' aq + + t |
Alt) = 7 LC(0)41¢)a’N0)—Ajo)Al0)41)~4lt)Aid0)[

JAR) [atio) Alo] aw) + aro) 41¢)a To)
(3.33)

_ atoyawy ae) — dita) afro

Note that the first term of (3.21) makes no contribution

in view of the form of Vit)

In order to compute two-time correlation functions

from the solution of this equation, we use the regression

theorem for Markoff processes 32,7,8,31,33 This theoremn,

which is a consequence of writing the total density operator

X(t) in the product form of equation (3.20) (neglecting

che AX (¢) term), enables one to calculate two time

correlation functions if one can find the single time

evolution of the average value of some system operator.

It is discussed in more detail in Appendix II. We use the

regression theorem here in the following way: suppose that

the solution dt) to the above equation of motion is

known in the number (n) representation of oscillator states:

tl =dy - PN Finn's K'
Kr K'

(0)AY (3.34)

The mean value of an operator 0 will thus be given by

"0 is an operator which acts on the svstem variables)
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JoE)&gt;= Ir C pie) |

Tea [pe] |,

-

~~
- 5 (HH)¢ Lec

Tq le Yiele”\_

he HH i
Lr

i 1 AN

0 oY “Ir |r 2h |R Kix En

r~
f

AD )O Ak J] (¢) ¢ #
H+

le*"0 eT) se |Ir

(3.35)

1 Lope

7 {3.36

Tr. JO) PIR

The time dependence of Of) is the free (V =0 ) time

dependence—--in what follows this function of time will be

understood to have been factored out of the Tr. Hence,
 £L ®

Je have
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= Cf gy dLJ01¢)) = 2 48 Lt 2 On n Font K, Kt) KK(3.37)
hn ion! KK, K

Ne now assume that the following expansion can be made:

’ IN —

cf : 4
C

0, J (m,n! + (kK) ("1 40lin2

nn!Kk

(3.38)

There

ovy =o

n / ) | \
C0

7" (0
CL KK AL,

0 ¢ J

¢ (kl (ki
wk

(3.39)

(3.40)

I'he regression theorem then states that the correlation

Function LO) FP (0) &gt; is given by

ot) Bory = 2) [2 Oia 3 ni) [K@VLDuy (3.41)

Nhe re

) i; i 3 iyCW b&gt; = ok! @ rn Pees
kk! ¥" all (3.42)

x 4 (0) («')? (ck) p (0)
Ki! KK

&lt; i&lt;'gel
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Hence:

LOW) Pup =  OC .

 0 0 ,
—- n'n Linnie) tc) tx 410) Pel
Kl et Mr! TKKKK (3.43)

lV

vhere

“1

[ Ov Linn en wie) 4 (0) Plo)
won! KK! "KK

g kc!

(3.404)

2 Own +w'n (WM nl ott
n,n'
AL

 Cy (3.45)
lt pe!

1" (o) = p (0) (0)4,00 - 2 kK" Kk 45
(3.46)

Therefore, the regression theorem states that the correlation

function &lt;LO(¢) P(0)&gt; is obtained by computing just O[¢)&gt;

assuming that the initial density matrix is ALL

rather than Aol . This result may be used to

reduce the calculation in the following way. Suppose that

the generating function of the initial distribution

ad
"A 1a known:

Ie

- D&gt; A X=x y,0) ee Kk! 7H
n

(3.47)

Solution of the equation of motion of At) implies that one

can find an overator (Fx yt) which. when acting on the
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initial generating function, yields the generating function

For the time-evolved density matrix elements J

=p, 61 = Dixy, 6) Fix go)

= 7

- _ (t)

Fx, 4, ¢) = A
5

(3.48)

(3.49)

Presumably the average LOE) can be obtained in a

simple way (by differentiation) from F(X, I t)

The regression theorem then indicates that COW) Pro)&gt;

can be obtained by carrying out the same operations on

“x,y +) , where

= (xg,6)=Ox yt) F(x, 9,0)

A
f— (X, o, ¢) — je) ey

1&lt;, ic! [te !

so

 A

(3.50)

(3.51)

It is to be noted that this method relies on knowledge of

the solution for A(¢) for arbitrary initial distributions.

The first case of interest with regard to the density

correlation functions we wish to obtain involves the

calculation of &lt;af(¢)&gt; . It can be seen that &lt;atlt)p

depends on the AE) matrix elements of the system density

operator. Hence, we shall first solve the equation of

motion for them. Taking the (VM, +1 ) matrix elements



~f the above equation for s(t) yields the following equation:

V ! t) _

2 4, = J (+77) V/m+1) (nex) Ar ea — ¥ [one) (27 +1)
{ t)2 ] 4 Eq

 ame) 4,}Cu

(2 .52)

It can be seen that the equation couples density matrix

2lements along a stripe parallel to the main diagonal.

dence, it is convenient to define

/
— (€)

§ ft) = I
dl

(3.53)

and introduce the generating function f (x,t):

| (x ¢) = 2 $5 pre”
(m+1) n=o

+1

(3.54)

The subscript refers to the boundary condition:

m+ 1

S$ = Opes. N+ 1 =&gt; I [5] -

Jsing the following relations (we omit the subscript (m+1l)

on f until further notice)

- we of
Z Vez So X on 3x (3.56)
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oo oo 00
9 n+l n+ vw}

r=. 3 x2 2h mT SHE ™
Proof: f= 2 A eT Z Son vavz dX 24. ‘ J AE JX

&gt; ner § x 3 J = x" -_ 4
: or X= x 5x 24 mm TO 0x (3.51)

- ’ rbfe 230,
n - Dx 5 nH Vn

— x &amp; Ji
OX (3.58)

{,. - 4

and multiplying the equation for 4,5, by Pat (ner) =

and summing on MN gives the following equation for the

rsenerating functicn:

7

Mike . of n 2

Dix L+t) a J
Zt1 or [Ex (a(+A) =A x * 2DX - 2 {

2

(3.59)

3.60)

This first order linear partial differential equation may

pe solved by the method of anaracterietlans9: The

characteristic equations for the above equation are

{, IL “RAHN XE Ax]

dt df
1 rr (3.61)
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The right hand pair is soluble at once:

dd _ 7
eg ly

re
—_—

— é
AN

(3.62)

The integration constant is determined from the boundary

condition

[(x0) = (m+- 7

(3.63)

Hence

J +
A

{ _ £
- JT

yy m+!

wi+1

(x)

vhere X 1s the initial value of X

(3.64)

The left hand pair

a

vi xX —(2AR+ TIX + 1+

Letting (= In

 ay— ) Ia hd xoF q

/
/
I

then

1% (x- == y[(x-1

(3.65)

(3.66)

Solving for x gives

7

atl
— C - ¢

raat

Jt

(3.67)
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At £t=0, we have

| A + /

xX, - FCF C
(3.68)

lence, the solution for x reducing to X at t=0 is given by:

(742 )ido~1) = (Fx. ~ 7 - 1 vo TT [(x-1]

~TxX,-n—1p=Th
(3.69)

[nverting this relation we find x in terms of x and t:

X

-v¢

(1- x) [(kr)e I
(3.70)

(1- x VA fe 72

Therefore, the complete solution for Lois (X,¢)

(restoring the subscript on fixe)

€
Zz - YE

e [ (ex) [CsRTe -nj-1
Vrs ! (ex w]e 8 a

wi4+1

[ (x,t) =
(3.71)

at

lowever, we have obtained the solution which corresponds to

the evolution starting with a single non-zero density matrix

element J1° at t=o , To obtain the generating

function for A re) which evolves from an arbitrary



Ni)=

0 y

initial distribution of elements - say e. 0h - we do

the following:

£0

fer = 2 fo (Xt) pL = 2 fom at) fi ©) (3.72)

since el = 0 . Suppose that the generating function

Hy) ffor the initial distribution is known:

Fre = fi Fegmp OE" 241 (3.73)

lien

J Fl
6 = J “ ¢Coley = UB (gaa). (5) ; =0 (3.74)

Therefore, using the above solution for I (X)¢)
(m+1)

and the shifted sum for Lx, t) we obtain the generating

function for the matrix elements A 5% which have

evolved from the (arbitrary) initial distribution €.40

[i x,¢) = 2 Li, (xr) f, fo}

"

5 c% x)" Ak 5) Pip].—

= exp [% 2 [ Fy) Pr..

Siw) Hi  &gt;4

7 J

(3.75)

(3.76)

(3.77)

( 18"
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where Xo is the above function of x and t.

We indicate how the regression theorem above allows

18 to use this result in the special case of the first

order correlation function we want.

! 1!
(att) = 2. ati, AE =) Vn 0,1 A tt]

oe 7 pt N+1 n,n!

tl = N+, kK khCANA 2 bon,
K.K

t ) 4.L)

(3.79)

(3.80)

I'he equation for 4,5, couples only elements on the

strive parallel to the main diagonal, so that we need not

sum over all XK, K':

(¢) = 7
4, “—

[74

im, n+l; kK, k+l, ¢) A (¢
K,K+1

(3.81)

La Th) - Zz n+l Lon mea ie, wen; t) 455), (3.82)
IK

Let us write this in the same form that we had for the

general case:

&lt;atte)S = D, Dn ney [n+l Linn k k!pe) AL) 0,
nn k oo it “= , +2

(3.83)

i’
J . .

? rm] v J21 Opts 7 Lone) i) (x) 4) Oru (3.84)’

—

J

’ on .

a Ba PT ier|20S(3.85)
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vhere

IN l 6 48
£ e Kk! -

I

Rent

 Yr lr

(K)* (ir ~ pa
kK! K+ Ki!

(3.86)

~

The regression theorem then states that

\, a  )Alo)&gt; =

; "

21), Ort [ne onic) ) {67a
¥ - nn!

(3.87)
J

Nie rit

" K&lt;

iJ
¢ { k«

/ (e) K
KK

Pelt
= -N h

1 (3.88)

fo) " J &amp;4, «ho, Opn (3.89)
Ci

ys Kk! fe IF

"hus:

: .

Wk)ge)0IR2 TD Sia PE nie) EO ROafte) ay) = &lt; 2 n'nea ;
Kgl et (3.90)

&lt;M — &lt;12 Oi, nr Lonpnt gen kt) JU Ott 42) Opn,
myn! (3.91)
&lt;tc"

NOw®

JK © Opn Pr 4 = Vkfe a 4 1° Oct ett, = Ker 4 [o) dwer wt w( k'"+1 (2.92)
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Hence, summing n',K' gives

! 7 " (e

nte)awr) = 2 net Loner x K 1,6) ew Aen) ky
noel! ann)

|Ver fon ne; kK" KK") J fo)
a LY Kr, K%1 (3.94)

Thus, this equation, when compared to the first expression

above for &lt;a 'f¢)&gt; , indicates that the correlation

function is obtained by just calculating J a*t(¢)&gt; with

the changed initial distribution -4/) :

4 (0) = vk dO
CK ke

(3.95)

Suppose that we know the generating function for the

jistribution (2)
KG ik"
oa

&lt;7 (0). IR
his) = oe) mer (ner)

Suppose also that we know the

4 (0) -

v14

generating function for

(3.96)

vv &amp; ~~ - wit! = rd, n+
=D 40) (ms) = 2 Vn a, le) (n+) 2hy) — VIEL, nar ~ MH ntl

’ o r (3.97)

oC

{(0) nel
. And ay \/

A

qewv A \

wi (3.98)
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Ne are interested in the particular case that at t=0

the system is 1In thermal equilibrium with MN occupation

number. Hence, 4, is a thermal distribution:

h (4)
od
&lt;7

[4

7 '

Cem [+7 (1-y) (3.99)

Previously we have found the operator Aix, ¢) which gen-

¢
erated the distribution A, needed to compute

Zoate)&gt; + since

 Ale &gt; = Ln

a
2 “ &amp;

J (t) 2 “|nv 4, - Xx [2 Veit X= (3.100)

HoHae | ay J Boxe Fill (3.101)
the regression theorem indicates we need to carry out the

same operations to obtain the correlation function, except

h (4) replaces Fy) 1 SO

J ~ 7 2 2 i] olate) aor “x7, [Banbin]] =X Je [esele2) l+&amp; (=) es ,! (3.102)
5-1

where X, is the above found function of x and t. Substituting

for xX, » and carrying out the indicated operations (using
J —

e XD (a 7) “gf Ua)

7

Catle) ap)d=a oe
’ A

(3.103)
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Recalling that we have left off the time factor cor-

responding to the free time evolution of ate)

we finally obtain

t= Z

SHea)S = Te e
(3.104)

Returning to the electric field correlation function

(t)
76,0) (3.4), and assuming that it is a function of

| £] only, we obtain for the spectrum of scattered light

oQ
. /Zz Sup R-w)t ELLEF x [eo © Jt

(3.105)

I&lt;

; «) ~fwé

2 Mw = 6 (t,0)@ dt
C

(1)
C (ww) = £

— Ne
 MN ov

(Lo - IEwr R12:eEF
(3.106)

Ne now proceed to obtain the intensity-intensity correlation

Function. The calculation of Latieraie)&gt; involves knowledge

&gt;f the diagonal density matrix elements Jf/ . Taking

the (n,n) matrix elements of the equation of motion (3.33)

for s(t) we obtain:

J

ZA sr [@astynen|48
don

(t)Y (w+) (w+) Ane N+ (3.107)

an A (E
Nel, Wei
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Calling

JE = St) (3.108)

and solving the equation subject to the boundary condition

y [o) = On. vw (3.109)

Is at once possible since the above equation for g ft)

Is a special case of the problem treated by Shimoda, Takahashi

and Townes 30, The result for the generating function is

Fons (Xt) -

-

6 (1=x) L

- mm

A+ (6k )(1=x)
1+ &amp;(1-x) | (3.110)

Nhere

— Ut — — rt

i = € , G = Nn ([-¢ (3.111)

Once again, the generating function which gives the diagonal
/ .

density matrix elements Saft) which have evolved from an

arbitrary initial distiibution , (0) is given by

Lx) = &gt;) f. (Xi¢) p,, /0) (3.112)

Suppose that the generating function Fy) of the initial

distribution E alo) is known:
p72]

Fig= 2 Pater” (3.113)
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Thus

7 lo) = - Gi) Fy) [ye
(3.114)

I'herefore, using the solution for Fons above,

&gt; m J

y 5 (L(G) (I~ x) 1 [2]
F(x, ¢) - [+G (=x) _ | + &amp;(I—x) m! ’§

oy
1

Vo

(3.115)

A ( | + (G&amp;G ~k) (=X) ofore exp [PLE2)Ty |

(Gy X, 4) H (4) (3.117)

Now, the regression theorem argument in this case goes as

follows: we use only one index, since all matrix elements

are diagonal -

\"o ~ 2 five, o) 5 fo

alvralt)s =
IN

n 5 l= Dw fone,el 10)
V,; IK

RAT { (nt) K J (0)
WK

[ &lt; nt ner) &lt;6"

(3.118)

(5.119)

(3.120)

(3.121)
1

Nhere

2 (y
hs

oN

y

yl
kT) = @t@'al-

(3.122)
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Thus, the regression theorem states that the intenisty

correlation function will be given by

Caleralierat) an = /
&lt;

(0 an Loner] &lt;a*e /"
F972

\

(3.123)

J (

a fom nf (me) J K (k=1)" S$" (0)

72 fin, k-1,¢)1&lt; Sto)
AL IC

Jo fie t) (kr) S70 (0)

(3.124)

(3.125)

(3.126)

A, IC

This correlation function corresponds to evaluating

Lafie)alel&gt; with an effective initial diagonal density

matrix So) :

A
y (0) = (k+l) §, (0) (3.127)

~~

We may obtain the elements AT 0) from the initial gen-

crating function Hq) by

~~ J K+!

5 (0) = = [5] om | (3.128)

lence, the generating function of the distribution J @

is obtained by:

F(¢)=
o &gt; o KH

ay ery = Iv L [5 Fl
I&lt; =o Nn

2 X €xp [vy &amp;1 7 x) es
(3.129)

Fix)!
exp Y £) ( z=) =

(3.130)

(5.1 27)
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Therefore, the new generating function which we must use to

compute &lt;a‘ralle)at)ao)&gt; is given by

~~ . (+ (6 —k)I-x)] J ol
SU commitm——————ieen ([re - Otsyt) 7) [+ 6G ((-x) 2 [+ G6 (1—X) 5 am

(3.132)

[+ (Gk )(1x) 27) /. LAG | mmr.$n 4d 27°F+ G (=X) 1 +6 (1x) 5 Jeers © "5 Ta)"

Since

&lt;attyaw) = Ly = [es&gt;= ZnS=fFue)x= (3.134)

ve have

; J

Catala ans = pe 5 I fn (3.135)

with ix) given above. We are interested in the specific

case that the system starts off in thermal equilibrium.

Thus, Hz) is taken as a Bose-Einstein distribution:

or’
4 (2) =

1A [|~ 2) (3.136)

rus

J= Pra | = nw [+R
RR

(3.137)
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Jsing

Exp (a 2 | F(Z) | Tr 1a)

N &amp; Jeu

= AR (-g)]2x0 [ 2 ) Fr (2) I

Next,
ar7ot G —KJ(=x) &gt; [Lele ln) )Fixe +6 (1-x) 1+ &amp; (1X

(3.138)

(3.139)

(3.140)

 oo 1/
where (2) is the function given above, and it is to be

evaluated with the indicated argument. The last step

involves the operation (x = ] w= 1 and, using this

result for f , the algebra yields

Ct "PFCOT)AEE)Qlo)) = VE va“ A (3.141)

This is the exact result since the free field time evolution

of Late) ar) &gt; is just equal to one.
(2)

Returning to the definition of G&amp;G (ot; ¢,0) (3.5)

we find for the intensity fluctuation spectrum:
od

2 (2) NE
a om = [6 (0,¢,¢,0)¢

(3.142)

2 x TAF
Ze = £ {ar 2 (Ww) + ? ”

(Or+ ¥

[t 1s to be noted that this result satisfied the Gaussian

"factorization" property, if the light is treated as a
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Gaussian random variable, or the equivalent density matrix

Factorization condition. Both of these indicate that the

following relation should hold:

y (a) 2 (t) (1) *
ct wo) = ar (6 ee) | Stas +L Gwe G (Ww)

-— (3.143)

where®denotes convolution as given by (1.17). Similar

results for the oscillator correlation functions have been

obtained by other methods 16,31



PART B. FLUCTUATIONS OF A FERROMAGNET

Part B. Section I. Model and Density Operator Equation

of Motion

The results of the previous Part have shown that the

light scattered by "normal" systems may well be expected

to be Gaussian in nature in the sense that the intensity

correlation function of the scattered light is determined

2gsentially entirely by the amplitude correlation function.

That is, measurement of the second order temporal correlation

function does not furnish more information than that con-

tained in the first order correlation function.

By normal systems we meant to exclude systems under-

going phase transitions. Such systems are known to exhibit

peculiar light scattering properties such as critical

opalescence 34, The tnborprebaiion of scattering and

other anomalous properties 35 is usually linked to the

existence of long (that is, of macroscopic dimensions)

range fluctuations. The consequences of such fluctuations

Eo the interpretation of self beating experiments have

already been noted. In addition, the possibility arises

that the fluctuations themselves will not have the Gaussian

statistics usually associated with thermodynamic fluctu-
1ations 3,18 and thus will have properties unlike the

system studied in Part A. Section III.
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Motivated by these considerations, we undertake a

study of fluctuations in a magnetic system. Although

extensive experimental work has been done on light scattering

by ferro- and antiferro magnetic crystals 36 as well as on

Che theoretical interpretation 37,38,39 of these experiments,

we present the results of this Part as a study of the

dynamical fluctuation properties of a model ferromagnetic

system without an explicit calculation of the scattered

light statistics.

We wish to study the dynamical properties of a ferro-

magnetic system 40 using density operator techniques closely

related to those used to study the oscillator of Part A,

Section III. Our general approach will therefore be to

consider the ferromagnetic spin system to be in contact

with a thermal reservoir. We shall obtain the equation of

motion for the combined reservolr - ferromagnet system and

then trace over reservoir states to obtain an equation of

motion for the reduced density operator of the spin system.

The latter operator contains all of the information relevant

Co the calculation of the dynamical and fluctuation pro-

certies of the ferromagnet.

We take as our total Hamiltonian H the sum of the

ferromagnet Hamiltonian H,, the reservoir Hamiltonian Hos

and an interaction VV:

Ls, [
5



7TH

We choose the Heisenberg-Ising model 14 for our magnetic

system:

ir )
«1 y . { T—{ Co \ Xl

tL, r=!

iv

y,
- u H

I

/

—f d

| =

(2

That is, we imagine N spin one half angular momenta, localized

at fixed lattice sites and each having a magnetic moment

UU , to interact ferromagnetically ( Jy 2 © ) with each

other and also interact with an externally applied uniform

nagnetic field Ho which is taken to define the Z-direction

of the system. The angular momentum operators obey the

dsual commutation relations (for a spin one half total

angular momentum):

[¢” [4 | ~ i J. $/ (3)

(the complex constant i in (3) is not to be confused with

the site index i on the spin operators) and the two similar

relations obtained from (3) by cyclically permuting the

spacial indices x,y, and z.

We shall imagine that the spin system is in thermal

contact with another system (such as the phonons in the

crystal, or spin impurities) which forms the reservoir. The

specific nature of the reservoir will be clarified when

particular examples are considered below. We will take the

reservior Hamiltonian to represent a set of uncoupled modes:



[=

OF 0,J he,Fla = oO (4)

Ne take the following general form for the system-

reservoir interaction V:

/

[
——y

Noo
j=0

a |S; 0, (r) ¢. 0. () | \

Nliere

5

v ~ —— f oN

are the usual spin raising (+) and lowering (-) operators

for the 3 Pspin and the reservoir operators are evaluated

at the position of the jth spin. For simplicity, we

consider a single effective coupling constant g. (In

Appendix III we shall present an alternative derivation

of our main equation, to be derived below; we shall see

there that our choice for V, equation (5), 1s not quite

che most general possible system - reservoir interaction,

but it is entirely adequate for the main purposes of our

discussion).

Having specified our total system, we proceed to

consider an equation of motion for its density operator

0 (t) in the interaction picture:

pie) = = Vie) piel]

NL1re



\/(¢) = Let Het  |,
SH. +H)

/
; Jd

[n order to evaluate (8), we make a molecular field

approximation to the Ising Hamiltonian (2) in the form

|] On

 rN

Le

.

3

Her:
7

71.

~

( 7

1 . t
A a : ’

\ £ 1 [~
Ad

—

where we denote the energy splitting of the two states of

each spin one half system by Twy,q4 =0 . We shall call the

state of higher energy (but lower value of z component of

spin, 5-4 ) "2" and the state of lower energy (but

higher z component of spin, §% + 4 ) "1" so that the

energies €, . €, of these states are related by

¢ - £ = tw, - - { (10)

Iq.m (8) :i fro) and (9) we obtaini Ly gUsing (

n

| | = - Jw,t Rt rh t ‘Ry

(lel =% 2 “ an eter ee ™ ay

formally integrating (7) we obtain

Dit] =  PD (— co [ees ote Cf
LL



ff

which we insert in the right side of (7) to get

pie) =
i. [71t] P (-e J

[1 [viel [vies eh] |
(14)

Ne try a solution of the form

Die) = T(t] + (He) prJ— (15)

where ((¢) 1s the reduced density operator of the system

defined by tracing over the reservoir

l= Tr, p (¢)

and { (He ) is the thermal equilibrium density operator

~~
of the reservoir ( (3 = (KaT

(He)= ©
r

Tr ¢ PH (16)

Assuming that the reservoir-system interaction may be

adequately treated to second order, we ignore A and thus

obtain,upon tracing over the reservoir in equation (14)

el L

Cy
(Tr, Vie) Tye re) Af elf] -.

where the first term in (14) does not contribute due to the

form of V(¢) and the diagonal reservoir density operator.

The Markoff approximation 0(t']&gt; T/¢) will be
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justified below. Using (11) for V(t) in each of the four

terms obtained by expanding the double commutator in (17),

one has a number of resulting terms to calculate. We

shall consider one of these in detall to illustrate the

calculations.

One of the terms of (17) is
. nN _ n

oz [4 Tr [2 2S e “C0 i) e ut 5 a
co jee kK=1 [3

(18)

iw, t 4 ( [t!)
0 Opie PT te fo (He

Since (He) is diagonal, only the «=, term can contribute

to (18). We make the following assumption about reservoir

correlation functions:

1 af
Z Tre [Oc 5)Ca(n)] = 2 &lt;0 70; (w)&gt; =O) (19)

so that only terms for which {= K survive. This assumption

means that each spin interacts with the chaotic heat reservoir

independently of the others. In the calculation of other

terms of (17), we assume that

&lt;

 | LOS (Om )&gt; &lt; O(rh-r) (20)

and we have implicitly assumed that all correlations of

che following forms vanish

COXIr) Dr.) = (0, (r)04(r)) =o
\

")
if
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Thus, we obtain from (18):

JeCg

| [Way =H) (6-2)
0.00 &gt; C TUE) (50)

Ne assume that the sum over reservoir states £ may be

converted into an integral over energies 5, by means of

2 density of states factor g(JSlx ) so that

Cl ~52,) (E-¢") «° /= [Wy —Ry ) 1E-2)n &lt;00ky = [1s, 9(5) &lt;00 2) 21 Lu

~ Jalt-t)

[(-du) g(w,a)COO(w-w&gt; 0 (23)
Wy

—-

co

 7 (wa) LO0Hw,0&gt; [du € cutee

- £7ATT 9 (wy) £00 (wn )&gt; ot t

Thus we see the justification of the Markoff approximation

in (17) and obtain

 Hn

jl -

Qo
&lt; J o

- ~~

{ JU

( bj

where, returning to the more general expressions, the

damping constant [; is given by

[, (Wa) = a“ K. [.
Z

} £L fw, (t-¢'/
OD. 6] 2 0a lt] ¢ |

= J)
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A similar calculation shows the damping constant of the

ryther level of the two level systems to be

J) (Wp) = 4° A, a i)
 a
«(2 0,1)Dutt) 20,1892€

3y taking only the real parts of the expressions involved

ve neglect the frequency shifts associated with these damping

constants. Note that they depend upon the level separation

¢,, + In Appendix IV we show from the general forms (25)

and (26) that the following relation holds, as expected

from detailed balance considerations:

wa) =
Bhw m™ [ Wy (2|

By computing the other terms of (17) in a similar

manner, we obtain the following equation of motion for the

reduced density overator of the ferromagnetic system:
N

&gt; c r | 2
T(t) = — Ys = . c 5Ie) 2405 IRR cSilre se BTM

y= x

2 &amp; L 2 _ | &amp; /,so len) -[% few [353 [-[5 +L [rufa
mt Cle TST fe

ot

+ -

 Er § |

(23)
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We have returned to the Schroddinger picture and I, is

the unit operator in the space of states of the jth spin.
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Part B. Section II. Magnetization Distribution Function

In order to work out the calculation of this section,

it is convenient to rewrite (28) in terms of atomic

operators rather than spin operators. Thus, denoting by

11&gt; the lower energy state of the th spin and by [2&gt;.

the higher energy state, we obtain the following relations:

i t

(125411)

(11&gt; 421).

« | (151), - (12&gt;&lt;2(). |

= [[15&lt;.] 4 [(2&gt;¢2))

( J)

( &lt;0}

(31)

(32°

The inverse relations for the last pair of relations are

| / eof

127(122¢2), = 5 TI: ~

(53)

(34,

[n terms of these operators, (28) becomes:
1

v G, x

CL] = J | | - : ] [113&lt;u). (+) + &amp; - k [ (ean). 71¢)
=



-"3J)

 € _[ &amp; 7

Cor | T(t) (117i). [= Pz (ree) [125¢2)

bot

’

[
£ \ [0

”
,

FN eda Cee) [1

|) re) [125 (35)

We now define operators corresponding to the transverse

components of the total (dimensionless) magnetization by

fr 1

~~

N

-

r.
252)

/ Ne

( &lt; JJ

~

d=

Since the total number of spins is fixed at N, it is con-

venient to introduce a third operator variable corresponding

co the total upper state population:

nN :

V, —

Y=[

(12&gt;&lt;21). (37)

We may similarly define the total lower state number operator

 J

ng

M,z= [(&gt;en). (33)

ind note that the following relation always holds between
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4

—

these two quantities:

Ny+N,=p
(39)

we next define a c-number quasiprobability distribution

Function PT2220:33 of c_number variables 4 Nn, and 4" by

Plan, 4% ¢)= Tr [ores 1e- S)O(n. -n,) Ola” © F

(HQ

vhere the delta functions are defined formally by integral

representations

O, - N,)3 o Jd oT ve)
AT

A

( 4

and similarly for the other two. The exponential operator

in (41) is defined formally by its series expansion

X (7, - Ny ) » 2K
cx) \

lox) (1. = N,
= I&lt;!

( hp

Ne note again that the quantities 4, 7, and4“arenot

operators, but rather are c-numbers so that the distribution

function F (4, n,,4% ¢) is also a c-number function.

The significant point is that in (40) we have chosen to

order the (non-commuting) operators 7, N, and $7 in a

particular way: that 1s, in every term of (40) obtained by

using the expansions of the delta functions all of the s~

operators are to the left of all of the N, operators which
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in turn are to the left of the S$” operators. We have chosen

this operator order arbitrarily; choosing a different

order neither changes the final form of the equation we

solve nor simplifies the calculation noticeably.

The quasiprobability distribution function introduced

here 1s closely related to the Glauber P (® ) distribution 10

which was introduced in order to study statistical properties

of the electromagnetic field. The mathematical properties

of P (L) have been extensively studied he The system

being studied here requires three operators, so the dis-

tribution function (40) is a generalization of the P (9¢¢)

function. The utility of introducing such a distribution

comes from the fact that as we are dealing with a system

involving the set ( S$, Ny , st ) of non-commuting operators

we may use their commutation relations to put every product

of operators which may occur into a particular chosen

order (namely every § to the left of every Nx which in turn

is to the left of every st ). Having thus chosen a

conventional ordering, we may assoclate with an arbitrary

operator O ($7, N,, S* ) (we envisage 0 to be sums of products

of the three basic operators) a c-number function

OCs, 4* ) of the c-number variables «4 7

Os, n, ST C0 (a, 7, 4%) (43)
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O(s™ 7M..S7)= Jady, dat OF(da dy, da OF Lyn, 4%) S15) (mmm 1 OES(an

where the delta functions are defined by (41) and (42).

The operator C instructs one to replace in 04,1, 4%)

cach of the variables4,v,,and4%by the corresponding

operators S , N,, St --keeping the operators in the chosen

order by doing the integrations in (44) in sequence. One

can similarly define a c-number distribution function

associated with the density operator €/t) by (40) so that in

order to calculate the —— value of the operator

O(STN,, ST) we need

COST MN, SHS = Tr [o ¢) OST Mm, ST),

wp [dadn, Jax 0 “tan, 4%) 04-58),

(45)

El

: T. -[Lady do 0 an, 4%) Tre) ols) ds) §4~ s7).

(1, dn, da? 0“ AN, 4%] Pn, * t)

The interpretation of P (4 NM,,4%€ ) as a classical

probability distribution may not always be justified.
IStudies 2 of the @lauber FP (X) distribution have shown

chat it may possess singularities as well as take on negative

ralues for some range of its arguments. However. we shall
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use (40) in expressions of the type (45) and shall see

that in certain cases that it does indeed have the pro-

perties of a classical distribution function.

Returning to (40) and differentiating both sides with

respect to time, we see that the equation of motion of

(4d nN. AF ¢ ) is

0 (4, 4% £) = Tr oe) O(4- S1817,-N, ) 6(a*- st
(L6)

Therefore, using the equation of motion (35) we have
nN

&gt; - 1 ) 2 n c n (

Pan, 4% 4) mr) T(t) Lt )o (1&gt;&lt;u1). He -&amp;)S (1x5¢21)
=

i C

-[&amp; ay (&lt;u); 8 - (2 xy (1z&gt;&lt;2) 1.

— 0 (125¢ : (lon). 67 (oer

W

; ] {

_ ¢

 4 [115¢z21); 0 (zen); |
where we have abbreviated the product of the three delta

C
functions occuring in the definition (40) by é&amp;

~)
{ Ald) S5(n, -N, ) Sa? ct) (43,

Note the slightly different order of the operators in (49)

compared to (35) due to our extraction of the density operator

to the extreme left.
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We shall evaluate the various terms in (47) by rearranging

them into the chosen operator order and using various

devices to compute the resulting expressions 17, We begin

by noting that the atomic states are orthogonal for dif-

ferent atoms (i,])

~ -1 4 &lt;a ay = O-.
{ 1

»
£

(L4Q

so that the commutators of our basic operators may be

written, using the definitions (36), (37), and (38), as:

N

(127 &lt;21),

[(2ocit! -

- ((1v&gt;&lt;2()

hy. coq) 1,[1w..ce! Aiea)

(50)

J

Similarly we find that

[s™ow, |=

ct
Jy.

V
J ny 7

Fo EY 1
 £&amp;

N = N,

(51)

(52)

(53)

(+ 4)
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Consider the first term of (47):

Re (6-0) Tr rer Sia-s0 6mm btanstirg |

Noting that Mia is directly proportional to NWN, via (39),

we wish to commute it through the first delta function so

2s to bring if next to the middle delta function. We note

that we may rewrite the chosen order delta function as

_ J 2 +d

CLS RTI, Ta Sa Sn, ) Se) (56a5 = ¢ ¢ €

oy interpreting the exponential factors as displacement

operators which act on c-number (delta) functions. We

next evaluate

ut Se
voeo

(56b)

(we shall use the shorthand notation that 2 = dy

~te.) by considering the following object

[1$) = ¢
jo:

w

3 «

 Mr 1%

shere § is a c-number variable.

(57)

[
Evidently ¥ (5) satisfies

+ gs” -5s7 5.DE »
dfs) _ he [-s*u, +My S [e =f ste

 4d %
(©, 5;
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using the commutator (53). We may integrate (58) to get

1($)=f10) = L

vhere, from (57),

Tip) = MN (60)

lhus, using (60) in (59) and replacing 3 by Og we obtain

“or ©

NJ 5 O 4+
ge OL

hus we may write

£
 -_—

a co X SY sto —&lt; dx 4 ENC

“ye eT Hc megase (62°

50 that T, becomes

_ 5D, —mMhn ~s)x
&amp; SR * ?i - [= I) Tr [ere e (v, + 4ST) € [0108im. 814%

(63)

I'he operators in (63) are in the correct order so that no

Other ordering must be done. We evaluate it as follows:

A, On, {( dnl dat 4% YE)I. (5-0) Tere 4'dn,* “ik 2

(64)
_ [*) . -

4 Jo “ Sats™)5 nt wa ) 81a" s4) SiarS on 1514)0. 4

. * / {

where we have introduced new variables 4! wn, . +

Ne note that the only operators in (64). besides 5ft)

are the theee delta function terms so that. recognizing
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that the exponential derivative factors operate on the

last three c-number delta functions, we get

TT - € - [ y / /ly = 5 2 ) [datdn, asx (W-7+ du 4* ) O12")5(y.-mn,"bla

Telow Siai=s™) S(n/~ a) Sia%

c a ,

(=) [datdn dan (nny! vin
) ¢

S (2% 4% ) Pre ”
n ok

&amp;

[SCe Lo) (71,+Gy *
1

 fr Cw SA

3 O (4- 0M!)

(65

where we have called 7, = N-7%,

Using the same sort of manipulations, we may calculate

he contributions of the following three terms:

_ € é

(66)

€ 0f= (Ee Ta fron 3s (3) rd A) BOAT AS)
(67)
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 oz [240] Trfo te) p, 51 (68)

N,, 2A"( “L(y, 0, 4) [Li4( Kk Z

Je next consider the fifth term in (47):

nN
— ¢

[llr | ett) 2 (12&gt;). &amp; (17¢20) |
Je

(t J

le use the displacement operation (56a)to write it as

~ -$ 0), MN. yy _ do * :
= 2% A

me i Tr joie) J (t2&gt;¢&lt;11). @ ot . 10&gt; c1) Sard Bi
1 gz J

(70°

Using the definitions (36) and (37), we write the exponential

displacement factors out explicitly: the quantities within

the brackets of (70) become
nN

— Ja Z (121) dn DT (12&gt;¢2)) =ghx2 (113&lt;zl),

J=1

n _ dy [12&gt;&lt;u1) — On, (125¢el! _da* (v&lt;2l)
fT 2

0f) 2 (12 &gt;&lt;il ) Ir e € Te (115&lt;21)
= J 4 ’

(71)

~Qy [2521] On, [15¢2] — dx (15¢2)
(4) IT T ) Jioare e e frees |

o = =

Nhere

J ~d, 127&lt;1) ~ on, (2&gt;&lt;z] ~Oyxl15¢21 ’
E ¢

(7;



We have used the fact that the atomic operators for

different atoms commute so that all terms for Pp ¥ J

be pulled through the sum over Jj. The notation [ lp

denotes the operator expression within the brackets refers

Co the pth atom. We next consider

{
Avg2l Mn,

hyo|
22] Oy

3
[

\ {3

in which the operators refer to a single atom. By

expanding the exponential operators explicitly we see that

r1igher powers of [122&lt;2] are equal to 122 &lt;2] y

ax ample

12 erik V2 )« 21xS&lt;c2] ~~ =p

s0 that we have

-n, on, oh,t= [1 tzo&lt;2(e “1 [ice [1+ 22&lt;z2(fe —i 1 [-e [1&gt;&lt;2) (74)

Therefore

=e [22&lt;1] _=0n, 125¢2) — gx 119¢zy ~Jy 127&lt;1f on, 1232
[125¢11 e ¢ ¢ ee |, -J¢ 12211 @ *

) —ch#1&lt;2

"&gt;&lt; |e
[2% 1A5&lt; on [2542 | IN, 123¢2 a

€ ociie nC _ Guu ir¢al
(9€2¢ e e e I;

(75)

-
~

oN, ~-d, (Ay¢ ~dn, (2v¢r 0
[e Ix2&lt;2l ©  Dax [1 ~~

~ =dy x Ny dn, 1252) _ dpx (15¢3
€ la&gt;&lt;iliv&lt;ce @ «¢
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We may use (75) in (71) and recognize that since the product

over f does not include p=, , we may recombine the

2xponential operators and get

-¢
Me SS EI Sa 515) Sin,)Oa)oT. ow) é v. 0 ns

The operators in (76) are in the chosen order so that,

using a manipulation as in (64) and (65), we obtain the

final result:

Te \

on,
", ba Plan, a.

(77)

The calculation of the last term in (47) is quite

complicated due to the reordering of the operators:

Te Tr re 2 (ail § mn) (78)

Using the displacement operation (56) and the factorization

2s done in (71), this can be written as

I~

{  [CTeyIT
0

0 Z
~dglroail  — In, 125¢z|

Live! € (79)
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gx [1062] —

&amp; &gt;&lt; | Ste) Sim) due*)

3y expansion of the exponential and orthogonality of the

states

vy [2 Da, |
J c, [25 [ &amp; J]J

350 that we may calculace

9, 12&gt;] ad, (2v¢1]
0 [12¢21@ | 2 (81)

 1942) =[12411d, + 12&gt;&lt;214, -2, 125 &lt;1]

Doing a similar treatment of the term on the right end of

{7T9) we obtain the following expression for 1, :

cr {rT T ~J, lrB { Te 2 |e ? [scar =nsend,
J p=!

ia _ Ox, 12242
1942] 0, -2, l25¢1l) o (125¢11 [RA7&lt;2] J, x

1D tl 0, %

hs eele J, + {7 &lt; 2] |
wt

(52°

Ff
wh

N

It is clear that a total of sixteen terms result from

nultiplying out the factors in the brackets of (82). We

nave indicated the methods used to reorder the operator

oroducts and calculate the trace over F(t). For



completeness we list the results for those terms indi-

vidually in Appendix V. Here we quote the final result

for this entire term:

on 0eT, " [ ¢,« 7 N
dhe?

7

r

D005
a&gt;

So
J

D4% a’

x

Zz 27" mn, J I Pian, a
Pada” |

3efore combining the six terms computed, we rewrite

(83

slightly the following expressions which appear in T_ and

I,
~~
o
App

MN, on
n To= (6 T-1lmin +o

c
No’

IN,
nr

— In

(e *~iIa rl 7 |

2
- on,

[Doe d* «| oneo) dx 4*

0
-oM, _ _dn, _

“da = [HT dA 4 [To «

7 $ x 7

Using these expressions in T and Ts and defining

| 2  cs (7 +03) (ou

ae combine the six terms to get the following equation of

motion for the magnetization distribution function:



P (4m, J
§

" {

J
[5 (1, Fiwy )4* Ja .

a (Ty -e) 4

oe ra“Me my +(e ~t)rn, EPP
- Yan

LoeJax
on,

¢ [e Si) TT
 4 re)

(85°

”
Ae 2)a

7I pe1

oN P
er, UP (4720

2.0 at? .
his equation evidently couples the transverse components

of the magnetization LAF to the upper state population (which

is clearly proportional to the longitudinal magnetization).

[ts complication precludes any simple treatment, so instead

of working with the full distribution function, we shall

integrate over the transverse components in (85) to obtain

an equation for the distribution function of the upper

state population alone. Assuming that [7 | [, , and

are independent of 4 and Fy , we obtain

0( 7, = (dy da 0 (a n, 4% +

(36)
 dn, 2le rw ele Sin ue Lf (nt)

Since the other terms involve derivatives with respect to

the transverse variables. they may be immediately integrated.
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We have assumed that the distribution function vanishes

when evaluated at the limits of integration for the transverse

components (which lie at infinity).

It may be noted that (86) might have been obtained

directly from (35) if we had defined

p (N,,€) = Tr [rt O(n, - MN, (G ( J)

and proceeded to compute its equation of motion using the

cechniques described above. In this way we of course lose

811 information about the transverse components, and

furthermore it is not a priori obvious that (35), which does

involve three basic operators, is of a form such that using

2 one variable distribution function as (87) will result

in an equation in terms of only that single variable.

In view of our original definition of the atomic

variables in (31), we may define the (dimensionless)

longitudinal component of the magnetization by

2

Mos = Se 5 (v=on, (87)

Ne shall denote by m the c-number variable corresponding

to the operator M.,. Thus

nr — 2 (mm -n } Z,,, . —- IN. 5 }

(Uy

and (86) yields
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0 (wt) = | &gt; [(€"-1) 1271) [-

F733

" dumen = (em nm me)

This then 1s the final form of the equation of motion for

-he magnetization distribution function.
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Part B. Section ITT. Critical Fluctuations

A useful approximation to the full equation of motion

(89) for the longitudinal component of the magnetization

may be made as follows: there is ample evidence 43,04, 45

fhat large fluctuations exist in the magnetization for

temperatures near the Curie temperature T. above which the

system 1s paramagnetic. This means that near T, the function

(m) of (89) should be a relatively slowly varying

function of Wm so as to increase the fluctuations, which

the mean square fluctuation

~ .

1 wv
— yt — Zw

(50,

is one measure. Therefore, in this region we expect

that the higher order derivatives, obtained by expanding

the exponential operators in (89), will rapidly become

smaller than the lowest order terms. It 1s thus reasonable

fo approximate the complete equation by retaining only the

lowest order terms.

Expanding the exponential factors up to second

jerivatives only, we obtain from (89)

Pom, t) = I KE (I tm) = Fw) + (Tews 15 Om) mn |

(91)

z E [mrefmt|+[m1= on on Tt)
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squations of the form

J ¢
ZF (x)= 4- =7 Fo 5 / - 2pr FF X, €

(92)

are referred to as Fokker-Planck equations 46 with drift

coefficient A and diffusion coefficient B. It is seen

that our equation is of this general type, but with non-

constant drift and diffusion coefficients. From the definition

Cm k)S = [dw wm P Ouse) ( 7

ve obtain from equation (91) the equation of motion for the

average maghetization:

&lt;mie)y = (3 [om Tom] = ([Rompehon]m}

Here we have integrated by parts and assumed that the

distribution function and its derivative vanish at the

axtreme limits of integration.

To proceed further we must know what the functions

[1 and [, are. Although, as stated in (27) and

demonstrated in Appendix IV, the ratio of these quantities

is known from the general forms (25) and (26), their explicit

Forms depend upon the details of the reservoir chosen to

represent the thermal bath to which the ferromagnetic spin

system is coupled. We therefore introduce two specific

reservoir models and studv the dvnamical properties of the
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spin system as it interacts with each one in turn.

(a) We first consider the reservoir to be composed of an

infinite array of harmonic oscillators of a broad distribution

of frequencies whose density operator is the canonical

ansemble thermal equilibrium density operator. This reservoir

coincides with that chosen in Part A, Section III above.

Thus, we identify the reservoir operators Ox , OF of

(4) with the boson absorbtion and creation operators bo:

bo which obey the commutation relations

[bs bt - Oj J [he bl JorL1 ’ J

'hus the reservoir Hamiltonian 1s

— f el
kw bw (Cb

Taking the thermal equllibrium reservoir density operator

(16) and the general formula (25) for [, , we have

t

pwn)=97K, Jd &lt;7 0,115 0% (&gt; o Twn Et
“ of 7

. &amp; - a \ / ¢ 2 ¢ —¢!

2h, [4 To [4 tH 3 Le tte aE] pt! t')

v R, a = ¢9 J 2 (bibt) pb te-t) (97;

atu,Ko

C

[43
C (Way - w- J [4=t!)

[7 tw.) +1] e
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Nhere

. ABH
on { y

 iw )= |€ (98)

is the average thermal occupation number of phonons in the

jth mode. We assume that the number of degrees of freedom

(modes) of the reservoir is large enough to enable us to

convert the sum in (97) into an integral by means of a

jensity of states function Jl(w.) :

£ - Way) (E- E. C 21 ry - /

at [d, [AH [de 2 tw) [Fie e1T € |

T

 ec k/ Foo

v7
qe fo

_ ‘U(t-¢

cin) (2 (wow) Twa wel /
(99)

[4t! | du SC (wy -u) J (wu) 1] 0 FU (Et)
2

£ 27

Arguing that the density of states function and the thermal

occupation number are slowly varying functions of their

arguments compared to the exponential function in (99), we

approximately calculate the integral by extracting those

two functions from under the integral sign - evaluated at

the point of least rapid variation of the exponential,
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vhich occurs for WU= 0

 2 (war) = 2e® fo Jo Sten) (twa) +1] [dug tte
C7)

+1]) | 5 twa)“Sw,rg

[ (ware 17
(100)

nhere we denote by 7 the spontaneous phonon emission rate.

Ne obtain the [; in a similar calculation from its

defining relation (26):

[wa )= da? Re [ a CZ OL) Z 04002 emt
Ye

t . ‘ / — Wy, [t-t
pr tow —(w t 2

2 Ro Jd re 4 (Fe ) « bt el / b, e x [e

 iL 1° Re |dt" 24 sq -7 &lt;b7 b&gt; CS te’)

_ Uw —wy, | [E=2') (101)
&lt; at Re [4 [Jo lu) Vw] o ’

- Fu(e-¢)
du €) 7 (wa) || "2 (wv he Jt&lt;9

Ziret Jw,| 7 wa)

a
ni{w,,



We may now return to the equation of motion for the

nagnetization distribution function. However, first we

note that the molecular field approximation yields the

Following connection between the two level energy separation

h wi4 and the magnetization:

how, = Iu [Hot NM)
(102)

where H, 1s the uniform external field, A is the Weiss

internal field constant, and M is the (correctly dimensioned)

magnetization given by

 AM
M = =

ww
(103)

vhere A is the magnetic moment of each spin and V is the

volume of the system. Using these relations in (91) we

obtain

. 2 (a) J
(@) o) — Yo La 1, + /Pmoe) } 5m / &gt; tMTL[sult+m)

(104)
2 A

A“ 2, 7! [ CoTh [pa Hota )] ~ wu] Plo /t)"TT oom* Vv 1

Ne have used (98) to obtain

(wy) = [, (wa, pr—

buon,|oh [sp) =WsI + (w
(105)
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From (104) we see that the mean magnetization satisfies

the equation of motion

where we have neglected fluctuation effects in this equation

by writing the average of a product of M(t) factors as the

product of the average value {IM (£)&gt; . We note at once

that the steady state (time independent) solution of (131)

yields the SOLE CALAY field equation of state:

Nu
o= = - mS Co Ih | (Hot my)

py [Ma Toh [au (Ho +) &lt;4&lt;M&gt; = 1 [/2
(107)

tquation (106) is difficult to solve exactly, but if

we assume that the magnetization'stimerateofchange is

small, as 1t may be for small perturbations away from the

equilibrium value given by (107), and that the equilibrium

value itself 1s small compared to the saturation value

(as it would be at temperatures near T.,)» we may obtain an

approximate solution. Equation (106) may be rewritten as

Touh [pu (Hot) Lip] = mt
Naa=~ Lg &lt;u How
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Defining dimensionless variables by

Xe!=
{mt)&gt; ,
(Nw Jv)

te

Sivas) | CF T
(109)

vhere thie transition temperature T, is defined by

4
2Ny

[¢= (110)

and using the following expansion of the inverse hyperbolic

cangent function for small values of its argsument

Fob Thu ~~ WA A- C fpr (111)

ve obtain from (100)

&gt; (htxl .

 i 7 (112)

Nhe re

4- + 2
Y@) Jf

X ( (113)

and we have kept only the lowest order term in the product

of the two small quantities X and A . Setting the external

field to zero and solving for A , we find that the resulting

equation may be readily integrated to give

- xX

 ev = JA ml
ST Tol ex V3]

-
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Fol —
J2(T-1)

Xft) = Vator

- tool 0° 2 YI4
3 (1-0) 1

Ao , 3 (a

— + + = +V3TToT sane cr UF

Xo 3

V3(t-1) fale | 2 CAR

(114)

Here X, is determined via (109) from the initial value of

the magnetization JM (0) &gt; , and we have assumed that x

is a constant. Note that (114) reduces to the correct

Form (as obtained by expanding the molecular field equation

of state (107) near T ) for +t —&gt; +00
c

Returning to (104), which we write in terms of the

dimensionless variables (109) as

® (a) J (a)
0% xe) = J ET (xh oer)

Lo 0° yw 7, la)no Ox? Co [Tthes Tx) P [xt] (115)

ne may easily obtain its steady state (time indevendent)

solution. Calling the drift and diffusion coefficients

of (115) A and B respectively, as in (92), we see that the

steadv-state solution Pr) satisfies
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i a &lt; Q a

§ [ap (+2 Jari] o = 2 [4% p22 20%)
 A IX - x (116)

Ne note that the Fokker-Planck equation in general has the

form of a conservation of probability law:

 ob, 27
At oO X Land’

Here J 1s a probabllity current. At steady state, provided

we are restricted to a finite range of the variable

(in our case | X | &lt;1 ), we must choose J=0 in order

not to violate this general conservation requirement 46

Thus, the integration constant from (116) must vanish and

ve have

_A 0| 2+ ge [ue [PP

(118)

There
(a)

fix) = fn P (xX) (119)

changing variables to

Ax')ix)= €x¢ [Kk] LL dn | Ux (120)

we find upon substitution into (118) that it is convenient

to set K-= i and so obtain the steady-state solution:



—— 110)=

@) C Ax)fia =, | Sm

(121)

NC [¥ 7”
“oh tlh oo [i [LetleuetgaNX ——=

exe A Olhfe (wrt) - / ; (122)

vhere C is a normalization constant (depending upon VN

hw +» and T ). We note that we may write (122) in the form

Jd X CoM [7 (htd)]-1‘. -_—

to Cole [T+ %)7- 4
(12 3)

| 7 (com [rts: dn

AJ

Since N is an extremely large number ( NN ~ [p*? ), it is

a reasonable approximation to neglect the second term in

(148) in comparison with the first, so we take as the

steady-state solution to (115)

0% = Coxp -n [di Pehla]1
0s &gt; lof [Tlhed)] (124)

Ne note that the first derivative of this function

vanishes at points X= X, where X satisfies the molecular

field equation of state (107). Because of the great

numerical value of N, the peak of the maximum 1s extremely

sharp for low temperatures. However. since we neglected



higher derivatives in obtaining our Fokker-Planck equation,

this solution is not expected to have any validity in

that region where it is so sharply peaked. However, for

temperatures near T_ (T~ 1 ), we may expand the

solution (124) for small x (since the peak of the distribution

occurs at the molecular field value of x, which will be

small near T,) to obtain (for zero external field) |

n! (Xx) o C exo =m [dx [tldIv frome]?

(125)
2 y

vhere

a. J's [TPe3Ti-Ti Td pod
Ny? }

Kg
2) 3u (126)

The thermodynamic theory of fluctuations

chat the probability density for the fluctuations of a

Ehermodyvnamic variable » 1s given by

18 HT predicts

$01)
Pin)=C ec (127)

where b(n) is the appropriate thermodynamic potential for

the situation considered. Besides having this general

form, (125) also has the form for the free energy which the

Landau theory of a second order phase transition 18 predicts:
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namely, Landau theory predicts that near such a phase

transition ©(v) is of the form

(128)

where Y is the order parameter of the transition. That 1s,

V is a thermodynamic variable which is assumed to vanish

above the transition temperature 2, (corresponding to the

disordered state) and be non-zero below T, (in the ordered

state). In the case of a ferromagnet the order parameter

1s the magnetic moment  . The precise values of the

constants « and 4 (« is independent of temperature while

4 may be a function of temperature) are not predicted

oy the Landau theory.

However, in fact the constants c and 4d are precisely

those which come from expanding the free energy which leads

one to the molecular field equation of state. The appro-

priate free energy is that obtained from the Bragg-Williams

approximation, which corresponds to making a mean field

approximation. Thus, the solution of the Fokker-Planck

equation (104), or (115), for the distribution function of

the magnetization yields the correct free energy of the

1c

system as its steady-state value in the recion where this

approximation to the exact equation (89) is expected to be

7alid.
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(b) We turn next to a different model for the thermal

reservoir with which the ferromagnetic system is in contact.

For the reservoir we take an assembly of two level systems

possessing a broad distribution of energy level splittings

 hn Wi . The reservoir Hamiltonian Ha now becomes

He = ). K wie “9
(129)

vhere the spin one half angular momentum operators of the

reservoir obey the usual commutation relations

or {/
Ae IN

{
wi! =

r _ 9 &amp;

0 [ A) K A &amp;! Ox! A

~ .

; + = A +
7 U le = k

- Y
y AD ry = A ¥

A . Y

- CE

(130)

(131)

(132)

Once again it is convenient to relate these to atomic

operators via

*

ws
[12 22)  ES TPYE TE (133)

vhere the energies of the two states obey

rr

“ (x) = &amp; (kK) = Rw, &gt; 0
(134)
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Ne thus identify the reservoir operators Ou | Ox of

-— +
(4) with A. ’ A. and take the reservolr density operator

[ (He ) to be

H — { J rr ? €

(135)

n 2 exp) [0c + € ©) (12¢21),

Nhere

- 3 € (&lt;]ye’ - €,73 (k)
(136)

Thus, from (25) we may calculate [, :

wy,) = 2at RR,

—

oN a MA

J d

|
GC

wt

— (Wet « + Wer ¢ Fwy, (€-2)

Lee Ae TD—

—

nN — + =
- J I&lt; . t”

c (Wa, = We) (+-¢'
-

~

(137)

A
|
a

J

ERD4|AN
9

1 (Wy, ~ 0, 1 (£—¢'}

{A=

“qt I&lt;
{&lt;c

__ (Wa —w ) [£-¢')
 mn (wel €

C oJ

Jae Re [0] 7, arJ J¢ ) deo Sltw,) Ny (wel eo wel (eel
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vhere

~/% 6 (K)
e

N (wy) ~
REE) pt, (Kk)

wy

—-—

|
hw (133)

Once again assuming that the reservolr density of states

Swe) and WN, (wi ) are slowly varying in comparison

with the exponential function in (137), we obtain

(wa, = amo? Siwy) 7, (ws)

(139)
 TM Ada

C)where J J is the spontaneous decay rate.

In a similar fashion we may obtain 3 from (26):

(WwW. ) = 2a? RR, | d «

T

Ermine A TN
I /

£
¢ (WW,-w,,) [+ =")

247A, [BAT ey |_eo K J Kk / A —Wert! ~Wa LadATR: ve
(140)

bv {

t

- [dt = \ (2321), &gt;
&lt;&lt;

Cg - w,, 4 ¢!)
- 1

t co

- L nN | i )) 2, Jd Jde tw, ) are be lips 1168")
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There

3 E(k,

Nn. (Wi)
I E, -GIK

+ &amp;
1

«hw

(141)

Thus we obtain from (14C)

 ~ jw,) = Awe? JE)N,(Wa))

Ck) —
A , (oy, / (142)

Returning to the general equation of motion for the

magnetization distribution function (91), we obtain for this

spin reservoir, using (139) and (142) and the molecular

field approximation (102) for Th Waa

j]]Mat ple [pm [Ho + 3 M5 0) - J 5 ye) [nm -

&gt; (143)LH 9 rE - M tals frachoan] gH,
 UT )M* +

there we have used (103) to define the magr..tization M

and the results for this reservoir

T (wy) = Fo (Wa) = = Fal [£ Blu,
(144)
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iN (Wag) + [aa )= 1 (145)

Je see at once from (143) that the equation of motion

for the average magnetization is given for thls case by

&amp;Ln 5 IM (ED = MuHb) Of - Tamh[ au (H, +3 &lt;4 te!
— ME]

(146)

vhere we have neglected fluctuation effects in this mean

equation of motion by writing the average of a product of

factors of M(t) as the product of the average value

MES . We see immediately that the steady state solution

of (146) is the molecular field equationofstate(107).

Therefore, although the equation of motion for the average

magnetization for this thermal reservoirisdifferentfrom

the corresponding equation of motion for the phonon reservoir.

equation (106), both eauations have the same steady-state

solution.

In terms of the dimensionless variables X , h and T

defined by (109), the Fokker-Planck equation (143) may be

Nritten

® (Yb VC0) xe) = Jv [x= Fob Telex,

, b)

C2 Ef) teend]LPnt)aa
nN Ixtr
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The steady-state solution, from (121), 1s therefore

’

i.

7 wr”(X)= ney ;

|= X fam hie (hex)
ern-n[d’

OO

IY=toch [Ttih+ x)

{ 4 tol Se (htL

(1 L8

where C is a normalization constant. We write (148) in

she form

C
lo ~fo), oy = (ex n ] Id" pu Fal [Rih+d)T

KX Tomb fo (lied)| -

(149)

L [7 (2- X Fale Foe)
yd J

Since N is such an enormous number (~1023), we may neglect

the second term in comparison to the first one in (149).

Thus, we take as the steady-state solution to the equation

&gt;»f motion of the magnetization distribution function,

aquation (143) or (147),

(x) = e xp wfus [Tm 7© l— SE

"tach [Trhet)]| (150)

We note that, although the equations of motion for

the magnetization distribution function are different for

the two types of reservoirs, the steady-state solutions

are in fact the same. as comparisonof(150)with (124)
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immediately shows. Thus, although the time-dependent

properties of the ferromagnetic spin system depend upon

the detalled nature of the thermal reservoir with whlch it

is in contact, the steady-state properties are the same.

The mean magnetization at steady-state for both types of

reservoirs satisfies the molecular field equation of state,

and the steady-state magnetization distributions agree with

the Landau form of the magnetic free energy for temperatures

near the Curie temperature, and identically with the

3ragg-Williams free energy when 1t is approximated near the

transition temperature.

If one could show that the dielectric constant fluctu-

ations in our ferromagnetic model were proportional to the

magnetization fluctuations (as one might expect, for example

in thinking of the Raman scatteringoflightby spin flip

processes _ light being down-shifted in frequency and a

single spin flipped from [12 to 12&gt; and the converse

process for the anti-Stokes component - in which the

Stokes intensity would be proportional to the average

number of spins in state [1 while the anti-Stokes

intensity would be proportional to the average number of

spins in ]2)&gt; , both average values expressable in terms of

the magnetization), one would not expect that the scattered

light would have Gaussian statistics at temperatures near

r_ as the distributions for the magnetization deviate from

che Gaussian form.
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Part B. Section IV. Discrete Representation and Bragg-

Nilliams Free Energy

As we have noted earlier, exponential operators such

as those found in the full equation of motion for the

nagnetization distribution function, equation (89), are in

effect displacement operators acting on the functions to

sheir right. Thus, we may let the displacement operators

in (89) act on the functions of the variable m that are

placed on their right side. Noting that these include the

damping functions (wm) and [,(m), and the ractor m

itself as well as P(w + ) we carry out the displacements

~0 ef

Bim = Tp (met) [5 =a] Pomorie) = 0 om)[5om]Prt)

Com (2 0m] Pony + Gomer)[5ome[Pstt)(151)

Ne have indicated explicitly that [4 and [; depend on the

variable m, since, from their definitions (25) and (26),

they are shown to depend on the energy difference between

the two spin states. This splitting in turn, via our

molecular field approximation to the Ising Hamiltonian in

(9) depends upon the effective fleld at the spin site and

s0 upon the resultant field produced by all of the aligned

magnetic moments as well as the external field Ho . The

displacement operators in (89) thus act on [0 and [, also

and vield (151).
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The solution of (151) corresponding to steady-state

Pp ( M) independent of time) may easily be found to be

Lim]
P (wm-1) -

[2 (m=)
==

A

(hm —{ )

(152a)

Pim +1) [2 (m) | -
Pew) (m+) E+ m+

(1520)

where (152a) corresponds to the balance of the first and

third terms of (151) and (152b) to the balance of the

second and fourth terms. It is seen that (152a) and (152b)

are identical in fact.

We imagine that m is a discrete variable which, by

88) and the fixed total number of spins, obeys the in-

aguality

VIA &lt; +
/ i

2 (153)

Ne first consider the case m &gt;0. Thus, (152a) gives

Im + J

0m _ Pl AH, 3
r Y font] [.

2 my (1954,

where we have used the detailed balance relation (27)

connecting [, and [ :
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I, (m=1)

 (wm)

2 [E(m-1)- E (=) ]ol
(155;

where the energy of the system E(m) is found from the

molecular field approximation to the Ising Hamiltonian to

E (wm) =
A

A

An ,o-
}

(156)

Here we have for simplicity taken the exchange energy J;

of (2) to be independent of 1 and j and equal to J.

Thus, using (154) repeatedly we obtain

, plimept,-%7  p[Tom-0) raat, -L | plTemn-5
Pm)= € 0 24  €¢

N (vm -t) 1
2

ve .
=

Y ea- via —

Per

 VS

~

 A
SIat's 2 J
-

 Ov
nd

there P is the value of F(m=o0). Thus

7(2 Mn) BMH 3 )mPimr= 2 J.
Nr

BEE) [Eom] [Lom]
[%Z rw [Yea TE) owl-

a Via (wn #()
Using J no = we thus obtain
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PDim)= ¢
Larmor [21]

I wll Nv mJ ~ (157 )

.I' we imagine that m &lt;0, we may use (152b) to get

4 [wva) = €

 J (m+) Lp
~

o ha +2 t

r - nia
“

~

Plmsz)
(158)

vhere we have used

Teme)EmEle]pateun-T/ - = @ e

r, [wm (159)

fhhus:

&gt; | J Imitl)+UH - J 7
fon i ¢ -MH, 3 ~3 [Vm rut - 2 / 70) 2 [do omH,-% 1

2 cmlJ[Semen|JYbo]
C

‘NV
2 =~) / ~ A J

ml

 a

(

[ 2
+

-
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Since m « 0 we have

V wv) — F
[9 Cr es(mir)] = Blak,- 2 Jimi

GIGI ermal [2],
A

WaT [Ea] YT

Jsing _

Ne

en
 VN — ¢

(m=) [mi
Em-1) (=m)

have

FpIm pu tym [p
Pry = ¢ [x

7

No
&gt;

r

wa (m+1

{

A
fim’

(160)

Thus, from (157) and (160) we have the complete solution.

The constant P (which is independent of m but will depend

on the external field H, and the temperature (3 ) can be

sbtained from the normalization requirement:

Pom) =me ¥ -

I (161)
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Using either solution (157) or (160), if we compute

~ (wm) |
- 1

73
In f (m

(Le 7

we find that F(m) is exactly the free energy of an Ising

model ferromagnet as computed from the Bragg-Williams

nethod Ly (we include all terms independent of m in F, ).

We note that the conventional Ising Hamiltonian 19

is written as a function of variables that assume only the

values IX 1:

- z

: N

L rm MH 2
’. r=

i

(163)
i %

Our Hamiltonian (2) is written in terms of spin one half

2
angular momentum operators s, which have eigenvalues

+ 1/2. Thus, our energy differs by a constant factor

from the conventional model (163): that is, for example

in the state 10&gt; where all of the spins are perfectly

aligned ( Op = +1, all ( g s¥ = + 5, all 7

our energy (in the molecular field approximation) is

‘ol Hb = Ty J = [5] —uH, tm (164)

while the energy of (102) is

ra i] 0) = TUV) (Vv) ~ 0 HV) CL 0GH)
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Thus, to compare our results with the Bragg-Williams theory

of the conventional Ising model (163), we must change our

snergies E(m) from (156) to

Em) = 4-5 Tm] + [ut 1 /
(166,

Noting that E(m) is precisely the factor which enters into

the solutions (157) and (160) for P (m), we substitute

'(m) in these expressions and then compute the free energy

F(m) given by (162) to be

Sim) == 2 Tmt Jute ier|(142ali
(167)

we df= 2) a [L- 2

Noting that our variable m still corresponds to a spin one

half system, we may change variables to model a two level

system with arbitrary value MU of magnetic moment by defining

M = Im m= m17=U (163)

Defining a dimensionless variable x as the ratio of M to

its saturation value Nu . we obtain from (167)

=(x)= 4 INTE mH VX 4 NET 25 (14x) nf (140)

! .

I st} | [L Fw ¢

(169)
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Mo dm
X = N N (79)

Minimizing the free energy F(x) with respect to x by

setting

OF (x1
2) X = (3172.

and solving for x we obtain the conventional molecular

field equation of state:

X= M He + NY [2 |== = Tah | &lt;3 T KT ul
Nu i D (172 f

Had we been slightly more careful in evaluating the energy

(166) by taking each spin to interact with only Z of its

neighbors instead of all VN of them, we would have observed

che factor (MJ ) in (172) to be changed to ( Z J )

Referring to (169), if we set H, =°© and assume

that x £4 1, we may expand the logarithymic factors in

order to approximate the expression. Thus, keeping terms

Jp to the fourth degree, we get

Yr 2 11 - Tn?(xX) y 4 [NKyT
N Kp

KKKs (tM, wks LA
(Noa)? Kg | 2 = wud 43 na A



“128

using the definition (1770) for x. If we make the identi-

fication

— NJ

{, = &lt;p,

which in view of the definition (110) of T relates the
c

Weiss internal field constant A to the exchange energy J

7

Au
ve sec tinat the Bragg-Williams free energy becomes, near

 Mm" K, |

Nur IN Su

 ~~
T

« KX

r &lt; AN
mr.) 4 + dT 2

which 1s exactly like the expression found by expanding the

solutions of the Fokker-Planck equations near I. equation

(125) (the constant d differs negligibly from the constant

d' of (126) for TT ~ 1).

Although we have not obtained the complete time-

dependent solution of the equation of motion of the

nagnetization distribution function, equation (151), we may

consider the equation for the mean magnetization:

nn » J

Cie)S=DmDime&lt;TT,eV Ld (173)
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Using the equation of motion (151) we may easily evaluate

the various terms implied by (173). For example

A

be
No

&lt; |1) P(m-l,Foie] 7 (m2)vv I 4—

 nN

Pp Plu, ¢)th [Yow TT (w) u

(174)

 +0) [Su] 1 (wy Pou,e

(+) JE -mT, (wi)
Similarly evaluating the other three terms we get

— Cw (NM.. 2 wm) O(N

Cv (Yop)fw

Soe Lm)[5eeDmg

lence, we obtain from (173)

 2 N

mit] ) = = Km) = fm) =dwm [om wT mT) (175)

Thus we see that the equation of motion (94) of the average

magnetization deduced from the Fokker-Planck equation for

the distribution function agrees exactly with the equation
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for the mean motion (175) which followed from the complete

aquation of motion for the distribution function.

We have therefore shown that the steady state solution

of the full equation of motion for the magnetization

distribution function, equation (89), yields the same free

energy (for all temperatures) as the Bragg-Williams

approximation. We note that nowhere in our equation of

notion method did we have to use any of the statistical

counting procedures usually employed in the derivation of

che Bragg-Williams free energy.
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CONCLUSION

The results of our studies of the statistical properties

&gt;of light scattered inelastically by material systems in

Part A of this work have indicated that such systems as

are well represented by our models would exhibit scattered

light having Gaussian statistical properties. We have

shown that under the general conditions of a diagonal,

factorizable density matrix, the first and second order

temporal correlation functions of the electric field of a

radiation field are related such that the latter is

essentially determined by the former. In terms of frequencies,

“he intensity spectrum is the convolution of the amplitude

spectrum with itself and therefore does not contain more

information than is obtained by measuring the power spectrum

of the light. We found that the radiation density matrix for

Raman scattered light did satisfy the two general conditions,

and that the Gaussian factorization relation between the

amplitude and intensity spectrum of light scattered by

density fluctuations also held. In these studies we focussed

our attention on a single component of the inelastically

scattered light and neglected components at far different

frequencies which may be present in the light scattered by

a real system. We also made extensive use of density

sperator techniques to study the temporal evolution of the

modes of interest to us. treating the effects of all
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anobserved degrees of freedom as reservoirs with which

“hose modes interacted.

The possible breakdown of thermodynamic fluctuation

theory, which generally predicts Gaussian statistics for

the fluctuations of a material system, near a phase transition

critical point led us to consider a Heisenberg-Ising model

of a ferromagnet in Part B. We obtained equations of

motion for the density operator of the system by assuming

that it was coupled to a larger system which served as a

thermal reservoir. Using techniques developed originally

to treat laser problems, we transcribed the operator equations

into a c-number quasiprobability density function formalism

which could be treated by algebraic methods. Approximating

the magnetic interactions of the system by a molecular

field, we found that near the Curie temperature the dynamical

evolution of the magnetization could be described by an

equation of the Fokker-Planck type with nonlinear drift and

diffusion coefficients. The specific form of the equation

depended upon details of the thermal reservoir system to

which the ferromagnet was coupled, but the steady state

solutions for the two types of reservolrs considered in

detail were identical and yielded the Landau form for the

magnetic free energy. It Wha then demonstrated that the

axact steady-state solution of the equation of motion of

the magnetization distribution function vielded the

Bragg-Williams free energy at all temperatures and the
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molecular field equation of state 48 Thus, we have

obtained the free energy of a ferromagnetic system starting

with microscopic Hamiltonian dynamics and using a density

operator technique which at no point involved the statistical

counting procedures usually encountered in derivations of

the Bragg-Williams approximation and which also ylelded

aquations for the temporal evolution of the system through

nonequilibrium states toward thermal equilibrium.
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Appendix I. Gaussian Factorization Relation

The first order temporal correlation function aW(g,e)

and the second order temporal correlation function

3@) (¢ gr. $1.6) are defined by (1.8) and (1.9) as

[ ho I, J ES Ee) (1.1)

Ad -— ~ ~ (— ~ -

STEENE)=IJpET) Ee )E Ten Cle (I.2)

For a stationary radiation field the density operator

is time independent and the field operators may be

expanded in free-field normal modes (1.5):

ams

he
(Ft) =

: —rw, t
_ 2 _ ,TL Eu] a k U (r]A
mt

- +)

 RE) = [E (Fe)|

(I.3a)

(I.3b)

The mode functions Uy (F) are assumed to form a complete

orthonormal set of functions and the operators Ay, at

obey the Bose commutation relations (1.6). Using the

expansions of the field operators in the defining equation

for ¢ (9 (t,t'; t',t) gives:

§%1ede)=To[JakUte™TalUeTante

Zag U, e “i
f :

ple
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ot 09 9 ”
dor ! “ Toy : I

(t,t t) = ). .. | o oly J” LT U 0 rp t= wot wt)7,=0 Na r mn 7 inn milak dy a !2, m LHe Ap AngOfP17

Here we have laheledtheoccupationnumhersofthefield

modes by n., 0, etc., and to save writing we take

fe thw wii)
(1.5)

Assuming that the density operator is diagonal as in (1.11)

«Mh | -2 ein [0 Ponting Opus (1.6)

te have three cases to consider in (I.l4):

(&amp;) d=mkxp=2¢
(ct) 4 = g £2 p=wm

(ccc) 4- wm _ p=

dence,
: 2 lu, (Et) 2 {w, 1t5E)

Gre eee) = 2 i &lt;p | U,| ¢ A €  4mlaiasda,
Inj pxd

oe 2 Foot in}UT paleap Spd

! Y « 4+ !UL anil atag dea, 1) Cousins
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Ne next assume, as in (1.12), that

0 =~ Hy Ny =| mond fo Mo ro
A | (2 (x (1.8)
i. ¢ Co ® Of @n

Since the normalization

9% (I.9)

implies that

1K

Tr I eee

1

? (kK
Nie Nie (1.10)

for arbitrary K , the second order correlation function

may be written as

~ (R)
&gt; (+ Jt lt! ¢ /. :ne, Lt | T; 1 be orne Ae [Ul 0 t') tu, (the)

{
oo at _— “| (#;

, ] "f p'! eP Coy, Crono
(I.11)

~~ | « zJU1H UL nnababpd,ns04), F mn, nN

-

&lt;1

Ay y-
’

(4)yUL nelatafanteings£,
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[n the first two terms, since the sums are restricted to

rerms for which f% ¢ we have that

To&lt;mngiatata, ang, plop
M, Ne Te Me Vip Ve

Zing “) 1) (1.12)
0 } Vi = 7" Mg M. 0 of a, 7,

vhile in the third term

CL + oat —
Le [OD Ap de [MD Cop, = Mn;

3

nm{

(1.13)

dence:

, 2 /
5 (¢ tlie! s ) / U I? rw, Ey 20" Aas

”

(T.14)

LAGI V5, 5
AP

Ixp

[U1]CH  AJ

Ne rewrite this as

¢CH ee  =&lt; “ure tt2 ¢ W |

i S/S/
 7?

jeg pt n ‘0} ! ti, #Ul e pe n

(1.15)

Lo 5, «10,1 #, JUS»
1 -

Kw Cv _

oY
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Using the expansions of the field operators (I.3) and the

same assumptions of the form of the radiation density

matrix (I.6) and (I.8), one can easily find that the first

order correlation function can be expressed as

SU eT-
J ¢) re (I.16,

50 that the above expression for G (t,.’'

written as

: n

J CJ) Can DE

2Ce wpa
~v ft} ‘wo t- iE)

SG tee UL
Z  «

1wpltt,\v le Np

 46" we TL, Hil 2161
(I.17)

~2) [ {
Goeth tht) =

‘ ()

RTA (Ly (£-¢) | leer)f 10,] C ar G
—

[a 2

me
In

2

2 (v) &lt; g (1.18)

0] wm, G6) - IU 20 J JU 2
a

(&gt; fn () “ JClee ithe) = 6 tee) Gene) «+ 6 (e,¢) GE) (1.19)
»

el, —

 Cl (72 -, - 27,7)
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Vow, setting t' = t in (I.19) gives

~{2)
5 (t,t, 4, ¢]~ 216M nl”? 0. Nn: ~n, ~ AN| (n &amp; TR) 2 a0)

so that finally the relation between the first and second

&gt;rder temporal correlation functions for a stationary

radiation field with a diagonal, factorizable density

operator becomes

(cl Ht) (2]
Cle etn) Glee Tee) GT Gee

- (t/ /Cee2ene)

7

(I.21)

vhich is the same as (1.13). Using the definitions (1.15)

and (1.16) for the intensity and amplitude spectrum

respectively, one obtains (1.14) by Fourier transforming

(1.13).

For Gaussian light, that is, light whose individual

node density matrices are of the form

ii)
i

Une
(7. J [1+ n- r

n-+1
(1.22)

it is easily shown that

n= AAA (I.23)

so that in this case one has

/ {41 if
Ce et) = AG rt (1.24)
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and the relation between the intensity and amplitude

spectra is

(21 4 (1) (1) =
5 (w] = ar | G 4,6) Sw) + = G (w)X 5 7)

(1.25;

which is the same relation found to hold if the electric

field is considered to be a classical Gaussian random

process. We see that it is not expected to hold in general.

Tn particular, if the radiation field consists of a single

mode Glauber coherent state 10

(J,

Co m1.
f
4

-S

’
&amp;

(1.26)

one can show that

7 V1 (I.27)

50 that

SH tet) = L HU, | -

I

(1) “aOO

ny (w? Aq. he 27 *

(I.28)

so that the frequency relation becomes simply

~(2) J hn G (+~ sr G Ww) x WwO (W) A iT ! (w)
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Appendix II. Regression Theorem for Markoff Processes

Following Lax [5 we consider the relation of a two

time correlation function to a single time average for a

VMarkoffian stochastic process. A process is specified by 1ts

multitime probability density functions

Dla as. wa, )z Lloes tara) tate, tn]

vhich give the joint probability of find ing the variable a

50 have value Qf¢,)= A; at t,, Qlt.]= A, at 1, etc. for

she case of a single variable process. Defining the

conditional probability in general by

PAIR)= PAG)FP(B)
y Markoffian process is defined by (tt, &gt; [I

Ola la,. va |) = Plaal&amp;ng)

The 1dentity

Pla, a, a.)/ Plas) = [fia,a., a, 1/0 (0.0) flea Pia)

‘hus becomes for Markoffian processes

Pra,a,a)=Playlaz)Plazas)

Plat ae la )= Plata’? ) (2 (at 1G.)
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multiplying by [VI (G(t))= I (a) and integrating over

3 and a’

i (a “) - | (Mm (aw) 0 da! IE (att!12: 2,l=a'

Similarly multiplying by May) (ae) = MM (a) Mla")

Ne ge

 J ‘ atl (4 f 4, ]
CMa) V (ae) = | &lt;Miaer)y de Nia} F(a! t" 14, t.)

Viultiplving by the initial distribution and averaging we

ret

Wan) Maen) = | &lt;ma), Nia) Pale) da’

Specializing to N=1 we thus have

CMa) = | &lt;maw)datPate
Thus, the one and two time averages have the same time

dependence. This is the idea of the regression theorem.

In the case that the mean of a variable can be linearly

cxpressed in terms of some set of variables at an earlier

- ime

J fl (are)
A

DO (te) ML (a
7

fel

then it follows that

CM (aw) Maw)
x

2i O, 14,2] LM, (a) ia"
x

yr ‘a') Nia \ “Moa Via) Prat] da
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This theorem has been proved by Lax for quantum systems 8,32

by techniques not used elsewhere in this work. It has also

oeen demonstrated using ordered c-number distribution

function methods 31,33
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Appendix III. Damping Theory

Here we follow Louisell 1 in obtaining a density

matrix equation for a reservoir-system interaction slightly

more general than that taken in Part B, Section I. We

treat the case of a single atom with states [K &gt; (energy Ex.

~oupled to a reservoir by a general interaction V which

may be written as

J’ Kk [4 Le = 1 D! I, [k&gt; ef (ITI.1)
&lt;P KK |

ft, = Le | \/ 12
(ITT.2)

Assuming a thermal oscillator reservoir as in Part A

Section III and arguing in ways similar to that Section we

sbtain the Markoffian equation of motion for the reduced

system density operator S(%) in the interaction picture:

085 1H
a4 4-

i]
Tre Jd (uit), Jure't 3. er Live) f|

Bp (ITII.3)

JIE) = [HH Jt -&amp; (Hs+HeJtV/ % 75! | Uee -%) . [¢)Ik&gt;ce| 8
Z (ITIT.L)

¢
7 Het

frie 7, ¢

howe, = €.  —- €

: Het
(ITI.5)

(III.6)
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We have assumed that V contains no matrix elements diagonal

in reservoir states since such terms could be absorbed into

“he reservoir Hamiltonian. Inserting for V(t) in (III.3) we

ret

[Es 7d, S.Z, / om OSH El = put fie) oe | 0 (¢)
£0 van Kemy

(III.7)
/ /, J [£) (m&gt;Le| 0, —- 1K scat SL terims &lt;u | er

LP vari

oe) =
Kem

0) (+)wmnKJyp =

[140
iw, teow ¢1] (III.8)&lt;q.) Lowe be ¢ reat]

| } [dee rime! [ (111.9)
| dt’ 4 Fon (t') hy (&gt; €

Jlearly the reservoir correlation functions depend only

apon the time difference t-t' so that we may write

ple.

5 ft) —

du LL, 00 L ©) Ln t+ Wn (Emu)

+) ¢ [Wie Fn [t
r €

yo
 fd yvu in

a)

nN ~ IW U i fu  t Wa, [E

dn Sf fo) {, (w))€ ¢
Ny

we
mwnk?

( [Wis Wn J
e

(ITI1.10)

(III.11)



“146

Substituting these results into (III.7) and assuming that

Wyt&gt;&gt; 1 for any pair of levels m,n so that we may

keep only the energy conserving terms where Wy, +%, = C

Ne obtaln

&lt;1 &amp; lS t) #Fe J 2 [ioscan Serf +2, W, imo cml S81 +) Wim
Kw I&lt; wm

(III.12)

=) ft)IW fm &gt; &lt;K | §* KK wut | mk

where 7 means leaving out the m=n terms of the double sum.
mn }

Ne have transformed back to the Schrodinger picture and

= (+) «) -

JW lk &gt;&lt;K( SIE)# St) is&gt;&lt;k1) |
4 Kmmic Kmmik

=)
. ’ W pi

{

= Wo.We

x
1 H) (1 +

ww = Ae Wis
(III.13)

iF ~ 1B mmK
[34

mw k w 12 t

Ne define

_ ©) (+) -

BE Wo =Ik SOKK Wore "Ly
? +) (-)nas 7”) (III.14)

returning to the definitions of the quanties on the right

side we write

rT,

’e y

yl f,, (¢) £, (9) 268% (0) fie ¢) &gt;



1 /

— (Wy t

od Fp 16) fone (00&gt;
74%

If . ~1w, tm

1, [0] L, [£)D \

Using the diagonal representation of reservoir states

Ha IRD = WR IR &gt; we get

fr

Y

fp | 7
s

L Qe

RB

| IR"-R" Jt
/ RR IRD GRY LL IR

{ i n Lo 8EE en) (R If, IR YR |
(III.15)

3 ht ~1 1

| i . , a Je mr
yin x it 5

RR

*vd

((RERY)EL 08) SR fw 1 8 CR" Hon IR

Wt wir 1) ¢ , . {
¢ e ‘ [ &lt;R fo wr", [R5

Defining He r, er _ fs and thus extending the time
K

integrals in (III.15) to minus infinity, we obtain

£14
id “Lg J &lt;RIfE, - Fo) ey”

 KRU TRUSTE(R=Reap
(III.16)

CRI RSTO (R= Rew, |
 mM X-.¢

dL su OW)”ty ERE  J
1A
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Thus we obtain the usual Fermi Golden Rule expressions for

che level damping constant? 5 and ( but we also obtain

a new damping constant which did not appear in Part B

Section I because of the form of the interaction chosen there.

However, we shall find below that this new constant in no

gay modifies our final equation ( £7 y for the

longitudinal magnetization distribution function although

it does change somewhat the full equation of motion

involving the transverse components of the magnetization.

Continuing, we note that

(+) -/ « (+/ -)

1. |W gpk ¢ Wag) = ly. "Ke &lt; [LW t Ww, /

f “x
4+ -LA (Wh * Wht)

me iC,
mxUd

Fh (III.17)
, Ai Fae)[+ (C+; ) #1 (Uhr hr)

ph
[7 + 3 (1, + Wi )

Returning to the density operator equation of motion (III.12)

and generalizing to the case of N atoms, each interacting

with 1ts own thermal reservoir but not directly with any

other atom, we get (using the same symbol S(t) for the

density operator of the whole collection of atoms, a product

of the atomic density operators)



LHD)

ATE) =
~ (&amp;% Sve) [€ [ /~ i (2 &lt; )erenr) ?(% * 2 ) SE)(&gt;&lt;a,

J=r (

fp
——

=&lt; r

La | Wh, (10&gt;¢ki). Se) (Ie&gt;&lt;er).
Kp v 4

(II1.18)

ry (1 P&lt;K &lt;1). $e (i &gt;&lt; ) | l4] fn

.f we specialize (III.18) to the case of N two level atoms

to represent our ferromagnetic spin system and carry out

the transition to the c-number magnetization distribution

function as in Part B, Section II we obtain the following

equation:

01am, at) = 2 (rm rlw,, ) a” 2 (I, ~(,,) A

vhere

_ Ov, On. ~
[c —1)L 1, +(e “1) 1, n,4£

. on
D¢ ph 2
So le en] (ITT.19)

) ~n 02 2 J =n 2°
h Je =) 4 sole t=) og fd
0 1 Id ( )i A ta
0 4 on
I 2 a 2 *Ad oe - TPE M n, | F(a N,, 4%

7I = rr
12

+ L
A (r+ 77) (TIT.20)

Thus, aside from the slight change in r given by

'"TTIT.20) and in one other term of (ITII.19). we obtaln the
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same equation of motion as before, in particular after

integrating over the transverse variables.



1 - hi
a

Appendix IV. Detailed Balance Relation

Ne shall derive the detailed balance relation (27)

wy, ) = €
~ 1h U4

[wa

using the general expressions (25) and (26). Thus

L [Tw] = at Ke yy of (¢]  Cs1) £
SN 4 !

Ro Id? 7... LPR £ fet :z RC o* Pk whetl&lt;p pet!]6 epi /tn 1! Sf
=

where

0 = 2, Ux; or.

7
~ (3H= Tra [o=FHe]

 t

4
[

Thus

- 1 = - Hg &lt;q (£-¢' CL re-t!) Sw [e-¢')
Lg) = Oe |107, Trg IP pt A dts 22 ye 2

Pa

a iE shoyu
&gt; _pnE, fEY (Et

REY 7 [e Pon 0 galgimo&lt;mlgin? €
wi. vi

24th

~ pHa LHW, Ee U ale de
[du 24 Tre [ee" ae wed fem7
a
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3 ~-pRE &gt; = (En Lu ~ Rus Ju
1 q 2 ce” [hu e. (Wz ) = 2 K od nT mOcmIe Ins

DEYT # Bln
TZ 0 TO Er wy) nim

Ne change the summation indices by n = m, m-—=n to get

-3E, \
ARCIE mat 2 2, € ? O (En. oo wa) Km(B ny &lt;n Gm

Since [=x = O (x) and substituting for Em

2
(wv, | = 2 271 ~p (6 thwHen] set 2, Tel 2) $6 Ba vy) .

VM, t= 21) &lt;n [Qm&gt;mIOnp

 YAN wy ~[3E~ Enrrziel TET (SE Bec) cuit onisie
A, Wh

x) Cc,o£ -E + kw2 phug ot BE wlEaEat hy)J° oF Zz, . ¢ [PY nl md mle
2 wm,mm Ce

. Boy, &lt;= -, -3E,
il: Re lu zy €

 WW. na

cz

oq
| du op" [En~ E+ wy JU

Zn) 0 Im d&gt;mlg’in

¢

or 2 ofan K, 7. ET fu pF (En Eth, (e-¢)
Li Ty 1B wi im! Bins

/1. mA  ~~
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-Ahw ‘ rT - (2En

fe) gre Re fat!) 2 €
I n . _ ha [E-t'

onl en “ fEnt) yg &gt;5 ¢€ fm&gt;&lt;ml E&gt; €

t v t+
_4k Lor | -pHe wT,

g¢ € f “tgp [wz i) e 4

H.7 L,
gz I

¢ -£')
vo, whet] tw (EF

Ato IC
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Appendix V: Te

For completeness we list the sixteen terms obtained

from (82) (we abbreviate the notation to save writing by

including only the identifying parts of each term) and the

final results of properly ordering them and computing the

trace over 9(tt). |

!
— In, 125¢2] _ du,

Cfy421 ‘ [2541] —&gt; € M4 Pls n, ATE]

_ ON, [2&gt;&lt;2| _ on
I x
to= mK oe ak (2542) =&gt;

£OA" Plan, a*

I. — OA, 139&lt;2]
-- £1942] € (=d% (&lt;u) =&gt; ©

’

_ ony (27&lt;2]

= 15a @ (J [1542] ) —&gt;

_Eh, (27

 - cid,) 29&lt;11 —&gt; ©

— Oty [242

= (= (0&lt;ud, | € Oy [2542] =&gt; © tL

 (154110, ) eM ne 2 1 - &gt;(= [411x) &gt; mil Plan, 4%¢)

!
1

_ OM, 12%&lt;2| 2 53 . }
~~ 2 471 Plan, ptt

y&lt;nd,) 4 (~154210 2 at &gt;A
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—y, (2542
bq =lz23&lt;z2id, € 23a = doar Pah, 4%

_

Ks2 ¢oe 2m (amt
= (2/4210, e 1254210), « a Tak3

&lt;n, [2 &gt;&lt;z |
= )2dvayd, @ (~115€110.«} = ©

—OM, (2)¢2) ‘ z

= (254210, e (=&lt;zta,) &gt;«-

2 _on, 122]
/Ly = (-9, avin) € 12541) — i.

. IN 120
«[-0, 12 Sl) e ‘ 129 421 dyn =&gt; «o

, _ IN, az 5° 2h

Gg * (2, (25411) € (=t0&lt;11d, | Pe A I Flan, 4:t

_ dn, acai

t = (-3, [25 ) z ‘ Y/IC A &lt;i) € z on(-1&lt;21d ~ 2 e 7, I Plan 2%,
DaiA2
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