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ABSTRACT

We consider the statistical properties of electro-
magnetic radlatlon scattered by many particle systems.
Using techniques which have been developed to treat the
coherence properties of the radiation field in quantum
mechanical terms, we obtain statistlical properties of the
light scattered by inelastic processes such as Raman
scattering and scattering by density fluctuations. We
emphasize the first and second order temporal correlation
Punectiliong eof the radiatien fileld anmd Find that, fer the
processes considered, they are related to each other by
an equation which i1s very similar to that which is expected
to hold if the radiation field is taken to be a classical
narrow band Gaussian process. The suggestion that the
statistical properties of matter near a phase transition
critical point are not Gaussian lead us to construct a
theory of the statistical properties of a Helsenbers-Ising
model ferromagnet. We obtalin equations of motion which
describe the non-equilibrium evolution in time of the system
towards thermal equilibrium by considering the ferromagnet
coupled to a thermal reservoir. We find that the dynamical
behavior 1s different for different reservolrs, of which
we consider two types in detall, but that the steady state
(thermal equilibrium) properties are independent of the
specific nature of the reservoir. We show that our steady
state solutions lead to the Landau form for the magnetic
free energy near the Curie temperature, and to the molecular
field equation of state and the Bragg-Williams form of the
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free energy for all temperatures. Our density operator
equation of motion method avoids the explicit statistical
counting procedures employed in conventional derivations

of Gthe freelcnergy.
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INTRODUCTION

The atomic properties of matter have been investigated
principally by studying the interaction of matter with
electromagnetic fields. The earliest studies revealed
that atoms of pure elements emit and absorb electromagnetic
radiation at a sequence of discrete frequencies, each
sequence or pattern being characteristic of the particular
element under study and different from the patterns of
other elements. Spectroscopy thus provided the empirical
data upon which atomic theory was later constructed, and
even today the study of the emission and absorbtion of
radiation by atomic systems continues to provide information
about the structure of complex atoms and molecules.

A complementary method in the study of matter by means
of its interaction with electromagnetic radiation is the
observation of the scattering, rather than the emission or
absorbtion, of radiation. The properties of individual
atoms or molecules as well as the structure of aggregates
of particles - gases, ligquids, and solids - may be studied
by light scattering. With regard to the former category,
the Raman effect, first observed in 1928 1, provides the basis
of the experimental techniques which center on the study of
the spectrum of the scattered light. The presence in the
scattered light of frequencies other than those in the
incident light which illuminates the scatterer yields

information about the quantum states of the target. Thus,
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many atomie and molecular species have been studlied in
this way

Since the lnelgstliec scattering of light 1s generally
very weak, observation of the effect is enhanced by
inereasing the number oflatomich or molecular scatterers.
Thus, Raman scattering studies were frequently done with
liquid targets. Howewer, in addition fto scattering light
via the Raman effect at freguencies characteristic of its
constituent atoms or molecules, a liquid (gas and solid as
well) scatters light because it is not perfectly homogeneous.
That is, Ffluectustions eof the density of atoms of the fluid
over distances of the order of an optical wave length cause
fluctuations of the dlelectriec constant whieh in turn cause
a light beam to be scattered away from the forward direction.
Studies of the fluctuation scattering of light 3 go back to
Tyndall and Lord Raylelgh 1in the latter part of the 19th
century, although Brillouin was one of the first to relate
the scattering of light by denslty fluctuations to a
model of the properties of the scatterer. First inspired
by the Debye model of a solid, and later by a study of hyper-
sonle waves in ligulds, Brillouln predlcted A Lhat- g liguid
or solid should sesatter light by Means of thermal sourd
waves which continuously exist in any body at a non-zero
temperature. These sound waves would appear to an incident
light wave as a regular alternation of the density of the

body and thus would act like a moving diffraction grating.
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The seattered Light would be Deppler shiffed in freguency
fremrcheVlneident Elght by an smountiproporticnal tol the

veloelty of'the sound wave ln the body.' Thus, Brillouln

proposed that the structure of a liguld ecould he studled

by observing the  Light inelzsticallylcseattered from 1T,

There were very great experimental obstacles to the
observation of Brillouin scattering. Besides the very
weak character of the scattering, which thus required very
Intense sourees of i1llumination, the Ifrequency shifsts
expected were extremely minute. Hence, the scurce of
radlation had to have a very narrow spectrum in order to be
ablette distinguish the Brilleuin Secatlering firom the
elastically scattered light which was always present - due
in part tovdust dmpuritieg . in the sample and 1n part to
intrinsic elastie scattering by the fluid, an effect
treated by L.D. Landau and G. Placzek 1n 1934 5. It was
not until quite recently that major advances in both light
sources and detectors made the observatlon of fluetuation
scattering in liguids relatively easy.

The laser provided a light source of greatly increased
intensity relative to dlseharge tubes. At The same tlime,
the laser also provided an extremely narrow spectrum of
light, so that two of the main experimental difficulties
were overcome at once. However, a great deal of work on

6,7,8,9

lasers revealed inadequacies in the description of

electromagnetic fields hitherto used. It was discovered
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that the characterization oif the radiatvion fleld by 1ts
power (@MPLITUWE) spectrum was not sufficient to completely
describe the state of the radiation emitfed by a laser.

In addition, new electroniec methods of detecting radiation,
such as the photomultiplyer tube, emphasizZed the guantum
nature ags well as the flucfuatien or noise properties of
the optical field. To deal with these problems, a new
general description of physically realizable radiation
fields was evolved lO.

The method developed characterizes the radiation field
by giving the values of average properties of the field.
Besides the average electrle fleld strength, a cemplete
description of the field involves specification of average
values of the product of two field strengths (evaluated at
different space and time points), three field strengths,
and so on. The radiation field is thus looked upon as a
stochastic system. The statdistical properties of such a
system are fully known only in terms of joint multitime
prebability digtributions or eguivalently, the expectation
values of products of variables computed with respect to
the joint probability densities. This statistical des-
cription of the electromagnetiec fleld is analogous to the
characterization of a many-body system by an infinite
hierarchy of multiparticle Greens functions or correlation

Funetiong.
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Considerable work has been done on the statistical
properties of laser radiation. In particular, it is known
that a laser produces light which 1s not Gaussian in its

statlstieas °

Therefore, the gquestion arises as to how
the statistical properties of laser radiation are modified
by scattering processes of the types mentioned above. Is
the characterization of the scattered light by its frequency
spectrum an adequate description, or can additional useful
information about the target be extracted by measuring
higher order correlation functions of the scattered field?
There 1s a great deal of information about the scatterer
contained in measurements of the intensity distribution and

11,12 and one

frequency spectrum of scattered radiation
may well wonder if measuring higher order correlation functions
would provide more. We shall attempt to answer in part

this question in Part A of this work by presenting cal-
eulations of the coherence properties of light scattered

by systems which model the processes mentioned above. In
Section I of Part A we define the statistical properties

of optical fields and demonstrate that a certain class of
density operators leads to field correlation functions which
obey a Gaussilan-like factorization relation. In Section II

of Part A we study a model of Raman scattering by density
operator techniques. In Section III of Part A we calculate

temporal correlation functions of the light scattered by

density fluctuations in a particular model.
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The suggestion 13 that the validity of thermodynamic
tluectuation Cheory, which generally results ipn Gausslan
statistics for fluctuating thermodynamic variables 1n a
system in thermal equilibrium, may be in doubt near a phase
transltion eritleal point of a many parblele systen dleads
us to consider the statistical properties! gf guch & system
in Fart B. We choose to investigale the Helsenberg-Ising
model of a ferromagne’ 14 and lecristruct a2 detisdty’ operator
theory of this =ystem in order to obtain from e microscople
galculation lts statisfical preoperties. In Secticon L of
Part B we obtain an equation of motion for the density
operater of the spln system whieh desecrlbes the time evolutlon
of the ferromagnet through non-egquilibrium states toward
thermal equilibrium by congidering the system to be in
contaect wlth a thermal reserveir. In Section II of Part B
we introduce a c-number quasiprobability density distribution

15,16

funetion and obtain its equation of motion from the

E developed

density operator equation of motion by techniques
originally to treat properties of The eleetromagnetic fleld
interacting with atoms i1n a laser, In Eeetion I1I of Part B
we treat the equation of motion by an approximation expected
to be valid in the critical region and show that although

the dynamical properties of the system depend upon the
detalls of the reservoir to which it is coupled - we consider

two particular kinds of thermal reservoirs in this Section -

the steady-state solution 1s independent of those detalls.
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In particular, we obtain a non-Gausslan form for the steady
state probability distribution of the magnetization which
leads us to identify the free energy of the magnet as

being of the form predicted by the Landau theory of a
second order phase transition 18. Tn¥eeetiany Vol EsrE B
we use a discrete representation to show that the exact
steady stale solution of cur equation of motion yields the
Bragg-Williams form 9 of the magnetic free energy for all
temperatures. We ebtain this result without resorting to

any of the usual statistical counting procedures commonly

employed in deriving it.
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PART A: STATISTICS OF SCATTERED LIGHT

Part A. Section I. Optical Coherence and Gausslian Statlstics

According to classlical electromagnetlec theory, the
electric field E(¥,t) of a radiation field may be written
in general as a linear super position of normal modes of

the form =

E(7,¢) el e

(\
N
=)
x|
Stk
=|
=
® X
~
+
-
W
O“k
=\
Ea A *,
SL
™

p— + i
= BEMNpeg ok e (1.1b)

where the mode functions l{f(ﬁ) and frequenciles w, satisfy

the wave equation

72 wp =
(V t -z% ) Wetle =12 (1 .Pe)

with the condition

— — o
v.u;{r)=o (1,2B)
and appropriate boundary conditions. ‘he positive (+) and

negative (=) frequency components of the field are defined
by (1.1b) and are complex conjugates of each other. Hence,
the electric field 1s entirely determined by specifying the
values of the set of complex constants {ng

However, the sources of either natural or man-made

radiation fields are atomic in nature. Each tiny atomic
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radiator contributes to the total radlated field, but 1t
1s impossible to arrange them such that they all radiate
together in a coeherent fashion. To a greater or lesser
exbenb, thevindividual stomilesradiaters) emit thelr flields
randomly, different groups of atoms of & macroscopile source
radiating for short periods of time. Therefore, the fields
in nature cannot be wholly specified at each instant of
time. Rather, they exhibit fluctuations or noise properties
and measuring devices that respond to some function of the -

glectpriel fdeld, Say f(ﬁ), record average values of that

function <F(E)> :

ey = [HEQep]Pia)Toe  as

2 ) -
where d Cﬁ & J@Q CKJJ(Lm"CK) and the statistical
properties of the fleld are contained 1n the probabllity

distribution of the set.of ezpansion coefficients { Cg }

P({Cg}) = Pt Can, i) (1.4)

The gquantum-mechanical descriptlon of electromagnetic
radiation regards the electric fleld as an operator. 1t
possesses a mode expansion analogous to (1l.la) where the

expansion coefficients {(H?} are replaced by operators:

L i ~fwzt

E(ﬂ[ﬁj.é]: ('Z‘(";l’ﬁw,;Jl G UK [&)fe at

(1.5a)
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= — (+) 1
£ '(g,e):[E (r?,H] (1.5b)

The positive and negative frequency parts of the electric
field operator are Hermitian conjugates of each other while
the photon annihilation and creation operators (4g , 42 )

obey Bose commutation relations:

(QR', ] 5}(?( [a [W C(uJ o (1.6)

Thevscablsdtlicalinature of e electromacietich fleld s
new properly specified by & density operator ( ;

As polnted out by Glauber 20, radlation detectors
commonly in use function by absorbtion of photons. For
this reasen it 1s useful to define a =set ef electrle Tleld
correlation functions as they are precisely the field
quantities determined by conventional experiments. The

general nth order electric field correlation function is

defined by

) =) = ¢ E’” ) IHEMU’»:)}
G (Kf X’HJ x”” it X;{q) = Tf‘{f’ E {Kl) t x'ﬂl] {XrH-J

where X= {F,é} . Note that G(n) in general depends
upon the 2n polarization vectors of the fields, but this
dependence has been suppressed in (1.7) as we shall not be
significantly concerned with these properties of the cor-

relation functions. We shall frequently refer to the
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first order (or amplitude) correlation function gilven by

(1)

i =i i R
(> {t,t}-Tr{(”t (er {t/} e

and the second order (intensity) correlation function

given by

G ettt )= Tr 26EH{f)E“'rt’fE”}!wt‘”’f“} (1.9)

We have suppressed the spacial arguments in (1.8) and (1.9)
as we will primarily be interested in the temporal coherence
properties of the radiation field (we imagine all field
operators in the correlation functions to be evaluated at
the same space point).

The significance of the first and second order cor-
relation functions is this: freguently it is argued that

the statistical properties of the radlatlion field ought to

o

e Gaugsian. That is, elasslecally one supposes that the
stochastic properties of the field may be obtained by
treating the electric field as a c-number (that is, non-
operator) Gaussian random process. For such a process,
it may be shown el that all correlatien functliens higher
than the first order may be expressed in terms of the

first order correlation function. In particular, one has

that

LIEW) | E@ D) = (<\E(e)f‘))2 : [<E(~e+'c)f€?»fi)(;L (1.10)
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The method of light beating (or self beat)

spectroseepy 22,23,24

in fact directly measures the intensity
spectrum of the radiation field, that is G(g), rather than
the amplitude spectrum G(l). One needs a relation like
(1.10) in order to interpret the results of such experiments
in terms of G(l), or its Fourier transform, about which

most theoretical predictions are made. Indeed, most self
beat experimenters assume that the radiation field is
adequately described as a Gaussian process and thus use
(1.10) directly. It is clear that the analysis of such
experiments crucially depends upon this assumption.

A basic theorem of statistiecs is usually invohed to
Justify the assumption that the radiation field of scattered
light 18 Gaussian. 1L one 1s observing light scatfered by
density fluetuations, the total scattered fileld at the sglte
off the detecbor is fThe sum of fTields seattered by density
fluctuations throughout the (macroscopic) scattering volume.
It 1s argued that, by the central 11mit theorem of statistics25,
whatever the statistics of the density fluctuations in volumes
of the order of an optical wavelength on a side, the actual
scattering volume contains so many such regions that the
sum of the electric fields scattered by these fluctuations
must have Gaussian statistics. In addition, one can show
from thermodynamic fluctuation theory that the fluctuations
of the medium themselves have Gaussian statistics 13. The

valid application of thermodynamic fluctuation theory to
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the larpge fluetuations near & critical polnt dls howewver! by
noNmeanscartalin,

The techniques of self beat spectroscopy are particularly
useful in investigations of critical phenomena and phase

transitions 13!24.

However, 1t . ls Just in such phencomensa
that one expects density fluctuations to be of long range.
Should the range of fluctuations extend over the entire
scattering veolume, the incident beam would be scattered as
by a mirror, and one would expect the scattered light to
have statistical properties very much like those of the
incident beam. Since the source of 1llumlnation for such
experiments is invariably a laser, and since it 1s known 6,8
that the radiation emitted by a laser is not well described
by Gausslan statistics, one might question the walldity of
analyzing the results by making the Gaussian assumption (1.10).

Hence, it is c¢lear that the question of the statistics
of The seatbered light 1s of inperfance in practice as well
as of intrinsie interest. It shall be studied by some
model calculations in the succeeding two sections, and the
question of eritical fluectuaticns ﬁill be discussed in
Part B. However, before proceeding to specific models of
the scattering process, we demonstrate a result which is
the quantum mechanical analogue of (1.10).

A very similar relation between the first and second

order eleectrie field correlatlon functieons, as defined by

(1.8) and (1.9), can be shown to hold in general whenever
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the density matrix of the radiation fleld factors into a
product of single mode (diagonal) density matrices. That

is, assuming that

<{V’”f/{f”:}> ’ F{n”y,g 521«3 in'} (1.11)

(where {w} :{W“7hj-~} labels the occupation
numbers of the various modes) and

o) .

o
<Inye1inyy = o = 00 Coy (1.12)
then the followlng relation exists between the first and

second order electric field correlation functions:

(1) o (t) ()
GMe treney- 6Mee) G itie) 46 (566) - € Tt )G (¢)¢) jppean

For a statlionary process 20, the correlation functions
!
depend only on the variable 7T = € -¢ 50 that the Fourier

transform of this relation gives

‘ 8\.‘}]\ " o i i (L) *
62’((,,;) = zn\qe (¢,6¢t)-G {z'-,é)@/t,'z"}?n‘giw Guw@ G w) (1.14)

where the intensity spectrum G(E) (w) and the amplitude

spectrum G(l) (W) are defined by

%)
(@) fo( w:w'cG(Zl '
= T e 0, T 1,8
G (w) 0 (0,1, %,0) _
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: ) (1)
GU(W: /ﬁjce G (t,0) (1.16)

and the convolution product is defined by

0 (,)* ) *
G w®G w ﬁJw w’} G | (w!-w) (1. 17)

For Gaussian fields, such as black-body radiation described

by & Flanck denslby operater, ore has in addition thas

(2)

G (&t 6¢) = 02/@”’(5,5)/ (1.18)

so that relation (1.14) becomes identical to the one which
holds for a classical Gaussian process, (1.10). In general,
for non-Gaussian flelds which obey the diagonality and
factorization conditions, (1.11) and (1.12), the coefficient
of the gm function term in (1.14) differs from the one

for Gaussian light, but the convolution of the amplitude
spectrum with itself always constitutes the second term

of that relation. For example, for a radiation field
composed of a single monochromatic mode with Poisson
statisties - that is, a single mode pure Glauber coherent

20

state of the field - the coefficient of the 5— function

term vanishes identically. In the time domain, this means
that the normalized intensity correlation function

(z) _éﬁ__&f é
ﬂ Lo i defined by
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=)
[1] (l’

decreases from a maximum value of one at 7= t'=t =0
to mers at L o2 R (not to the asymptotic value of one
half as it does for Gaussian light).

These results are derived in Appendix I. The relation
(1.13), or the equivalent one in the frequency domain,
(1.14), will be referred to in what follows as the Gaussian
factorization relation between the first and second order

correlation functions.
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Part A. Section II,Statistics of Raman Scattering

Inelastic scattering of light by Raman processes 1s
a useful method of investigating the properties of atoms

26

and molecules In thls section we shall study the
statistical properties of the Raman scattered light by
calculating the density matrix of the radiation fileld. We
utilize a simple model of the process asaphenomenological
description to avoid explicitly introducing details (which
of course depend upon the specific nature of the scatterer)
that are unimportant for the purposes of our study.
Therefore, we imagine a set of N two level atoms
illuminated by an incident beam of frequency w» . We
shall focus our attention on the light inelastically scattered
into a particular direction and label by w the different
modes (all having propagation vectors in the same direction)

of the scattered field. Thus, we take the Hamiltonian H

of our system to be

Ho=oHter i vV (2.1}

where HR is the Hamiltonian of the free radiation rleld;
HA is the Hamiltonian for N (non-interacting) two level

atoms whose states will be denoted by I4> and ) where

3
the energy separation of these states (taken to be the same

for all.N atoms) 1s E}'”Ep: LJL > 0O ; and we take the
2%,

interaction to be
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i e it =2

Nt ] ¢ K, -er-
\/: i‘ﬁ‘l L 2%6 JC{L@ 6‘}-!_-{—[,1_(:_} 2]
w

J=1

<.’k

o

Here the index zero refers to the incident beam and the
atomic operatorsfﬁ,o}f connect the upper and lower states
in the following way:

G195 =8y 8> 6718528y 14>, 3= i

(2.3)

The atomic states are taken to be orthogonal for different

atoms and normalized to unity:
CLNFY 0, <Al = <P I > =0 (2w

We include all numerical constants and matrix elements
(including sums over virtual intermediate states) in the
single effective coupling constant g, which we note has
the dimensions of a freguency.

Next we transform to the interaction picture to obtain:

%(HR’LHA)f Ve“i(HR"Hﬁ)é

Vit = e
NI = L'{E:-E;)).?, —!‘/WB-W—_.Q)é (2.5)
= b Z; 21 Qoai,?f 4 “e ¢ h.c.
124 ,f

The density operator for the total system (atoms and
radiation) in the interaction picture, _4(¢/ , obeys the

equation of motion

Tii,d'/éi = [1//6),44(%;] (2.6)
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It is convenient to formally integrate this equation
t
* I
-/J(i'): /4(‘00)"';“; f&j[\/['&jJ,JKtJ] (2.7)
and insert the result into the right side of (2.6) to obtain
drl= 5 [V#), e ]
t
_o Jat Vi), [y, 4 w]]
(o]

The statistical properties of the radiation field may

(2.8)

be ebtained from the redueced density operator of the field,

6 , defined by

ATOmS

ple) = T AlE) (2.9)

We next write the densitfy operator for the combined system

in the form
4 A
dk)= Pl + (2.10)

M
where the matter density operator € 1s assumed not to vary

with time and to have the following properties:

M (j) () L M
— : ol i <
f -'JT( J <§J}€ )?J> CS.%}%" ) }{;TDMS F g j_ (2.11)
. M
That dis, f factors into a product of diagonal single atom

matrices. Hence, taking the trace of (2.8) over atomic

states ylelds



=R

(2.12)

t
/ M
e S0 Jatlve) [vie), perme”]]
where we have neglected the contribution of A since we
assume that the interaction is weak enough to be adequately
treated to second order. That A is of higher order 1is
seen sinece 1if VE O the two systems are uncorrelated and
the density matrix always factors into the product of
radiation and atomic density matrices.
We note that (2.12) depends on atomic variables through

their correlation funetions. We shall assume that the
upper atomic state has a finite damping constant ¥ so that
such atomic correlation functions decay rapidly for times

t' very much different from t. Because of this damping,
we argue that the equation of motion for f(f] should depend
upon f at the time t, rather than t' as it does in (2.12)
We therefore take the following Markoffian equation of

8529 for f

¢
é(él = ”"{l_:?_ Trﬂfwms :L(u'f [V/HJ [V[tljl E[{'M}@FM]/ G 1)

motion .

We shall use equations of this type in succeeding sections
and dilscuss thelr validity for the specific problems under
conslderation. A general derivation of the Markoffian

approximation is given in Ref. (28) and (29). We shall
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solve (2.13) and verify that the characteristic time scale
of changes of e is much slower than the scale of time
changes (lifetimes) of the atomic system provided that the
following relation between the coupling strength g and

the atomic damping rate ¥ 1s satisfied:

% 2 (o

The four terms which come from expanding the double com-

mutator in (2.13) may be written as
/f

s gz'ji Cg (2.155)

where ;
S fg,ff Vs V') perep™
Gy =inge Lavimsd & (2.15b)
] M
CZ - (El Fraons d[j{/lu il Fm@f} Vit) (2.15¢)
¥ >
=R G o, (2.154)

The eontribution of C1 is obtained as follows: taking
matrix elements and substituting for the V's from (2.5)

gives (we take 4wz wW,-w-1, Aw'= w, - w' - J¢ )
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|(‘E;‘ ;(Lw)'F — 14wt o —[(KO*KW o
e e + &oégJ@:e )u

T e N (e
AW }{C/O awja\m'f- o wa e—fdw

Hey -

where W, refers to the occupation number of the incident
beam, |¥;}to the scattered beam occupation numbers, and

5?1} specifies a set of states of the N atoms. Since

FM is diagonal in the atomic states, equation (2.11), only
two of the four possible terms of the above product con-
tribubes ‘galge, since FM faetors dnte a product of single
atom density matrices, the sums over all atomic variables
other than those specified by the indices on the pair of
atomic operators within the matrix element contribute a

factior of one. Thus,

: Y e T
f 4;'[5\’!‘)-;(“'),,3 . _
(Ci)n fﬂsﬁ :sz\[ﬁlz Z <Mo?ﬂ};'{,€%ao ai)af)aw{ e J€ dwrg,dwt
& - o9 J;[ W,Lb"
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q%’ﬂJ'? CAWE gt

* t £
4,%. Qo Qyy G A € ¢ p ]f{t))%?%}) (@.07)

where

(J'}
= <o{j & -

Pﬁ; gL 152 (2.18)
and similarly for Q% . If we assume that these occupation
probabilities are the same for all atoms so that they do
not depend on the index j, then the sum over J dn (2.47)

_

can be done if we assume that the atomic locations f} are
fixed to a regular spacial lattice. The sum over J thus
contributes delta functions of the difference between the
propagation vectors El, and i?w’. Since we assumed that
we are looking at the 1light scattered into a single direction,
and since the magnitudes of the propagation vectors are
directly proportional to the frequenciles « and w! e

[
makes all terms for which wx W vanish. Hence, doing

b
the sum over W gives
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t
) { ‘ -lAwlt-t)
L& gfﬁ H D10 0y Aol € prthniag)

N, Mg 3

cdwle-t')
+05 <mmilata,, g.al, € £, 11>
(2.19)
G Nl
= —-a% ‘ 1 &) !_rﬂw[i-*t}
(cijmw g %2@ (n,+1)7, @?n,m‘--wwm;ﬂf ¢ s

-+ : i
®t) (J&J{f“‘f}
+Bp Moot 26, i,y [ }

— Co
Taking damping into account by adding a small imaginary

part to the atomic separation energy and thus denoting
ST = Lot o (et (2121)

the time integrations in (2.20) may be carried out to yield

inw? tdw

(Mo +1 )N f Mot )
”7 Z/ (o, L] (o 00)

The contribution from C; , (2.15¢c), may be calculated

in a similar way to obtain
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S P o+ "
(xR ke 2ok

n, 3 T Mot Jn, oy e -1 m}
) i4w” M=l I e N 42 0] (2.23)

Thus, using (2.15d), one obtains the following equation of

motion for the radiation density matrix

. ez Y
fnff) ) { ‘onfiilies [“ (Fo( M+,

L) w LY ()

-
n f’ﬂ W, muﬂzl)) (0‘4.,( jSM'Hme .

4 fﬂ (Vi t1 | Y, t)

Mott 39, My v A= n Y (2.24)

4 Ea{ Mo (Mt woﬁffj;w W, oo M ]]}

If we try a solution of the form

t = tt)
(Viu( )?Vh My, oy Fﬁn n; (2,25)

then (2.24) yields
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R A
. —_— | j
K

z z
K e W o Yt (Aw)

v (% (M, M) €

+1 o

(2.20)

()
+ C(”°'”w)ﬁ?o~r,ww+1}ﬁ (t)

JFEW

Since the coefficlients A,B, and C only involve ¥,

and ¥, , we may identify the indices K=w and obtain a
solution of (2.24) provided the submatrices satisfy the

following equation (the quantities A,B, and C are evident

from (2.24):
> 2q2 7
f%o#w = 4473 [l? e fig hgﬂww+?i Jﬂ
Yt (4w)? T

Mot M Mol M+l

(2.27)
{“ Pﬁ !WO'H) V-'lth e + poc w°(nw+lj (ﬂ (ﬁj }

If we take ‘Ed S DI E% ~ A4 and argue that for spontaneous
(non-stimulated) scattering the occupation numbers V. are
expected to be small, this equation becomes (note that the
two terms in (2.27) thus neglected correspond to the
rescattering of photons back into the incident beam, a

presumably weak effect)
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g2 ¥
L J -
g Y, (W, +1 t)
(v, Y (aw)? L A fwomu
(2.28)
+ Meit)m, noﬁj - ]

which we may interpret as giving the rate of change of the

occupation of the (Yo, w ) state of the radiation field
due to absorbtion of incident photons and emigsion of

scattered photons. We drop the "stimulated" terms in

(2.28) by setting %, +1 ¥ 1 in the first term and

m,-1)+1 = 1 in the second. This gives
. ZgtY
(f:) = F e [_ Mﬂ (014 (ij - (wb‘”) G ]
z o o My Vot 7 - 1
Mowu) ot (Z]IAJ/ w (2.29)
subject €o the initial tTime boundary condition
L
(o)~ (0) 2.30
ézoww - Voo Flbwo (2.30)
L
where P“ ﬁm is the incident beam density matrix. This 1s

a special case of the more general initial value boundary

condltion

Gl =k oo P

WWH(&J VIDVID (2.31)
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In (2.30) we are therefore assuming that the initial value
of the scattered figld denslty matrixz consists of unity
for the vacuum state and zero for all other occupation
numbers. Since (2.29) couples density matrix elements for
which ¥, + 7, 1is constant, we may define a new variable
N by

Ny + My = N (2.32)
Thus we define

(v)

—in = €N_ijﬂw - ﬁ/lo,viw (2.33)

(W)
so that, from (2.29), pn satlsfles the eguation
w

Po= T (— (/\/—Ww)f;:} ¢ (/U— (nw-/ﬂfw{zi,] (2.34)

Before proceeding to solve this equation, we note that we

mMay receover the gquantity desired by

G; . _ ZZ: _E(NJ cg

N N- ¥

(2.35)
4 oy W

so that the density matrix for the radiation field alone is

@w:%zﬁmu:zj

4

| (v) o M, )
%; f)n J;_ < é} J?M (2226

W Wu] o W

o
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Now, equation (2.34) is a special case of a more general
eguation selved in 1957 in an eafly paper on photon noise

30

in quantum amplifiers by Shimoda, Takahasi, and Townes.

They obtained the solution of the equation

(t)
dj"‘;”” = = [(Q*lﬂjw + CJ pﬂ,&m} ¥ [O((Vﬂ—i)
t
(2.57)
{-C] P)qiym-l t ({)(W’/’n’)ﬂmim“

with the boundary condition that at t=0, £, irCSme
(the 1index n is given significance only through this boundary

condition) in the form of a generating function defined by

7(,4 = 2 Pw,m " (2.38)

Their solution for ;; Al

(™

9

[ [ 1 @ | 1+ (6-K)(1—x]
w1 & (1—x] 1+ G~ (2.39)

where (assuming a,b, and ¢ in (2.37) are independent of time)

(a-b) ¢ Qa

K= @ ; G ——;{wij (2.40)

We note that should we wish to solve (2.37) subject to the

more general boundary condition

P o - () tn) JWJW, (2.41)

(M



e

where Q is some function of M , the appropriate generating

function would be
Fﬁ = Qw fn (2.42)

since this reduces to the correct term at t=0. Generalizing

further to include the boundary condition

P = Qom (2.43)

- W

that 1s, there is a full initial distribution, the appropriate

generating function would be
F’ = %ﬁ CQ(”) 'Iw (2.40)

If we make the identifications via comparison of (2.34)

and (2.37)
; DT e
R i (O g e (o 41

and note that our boundary condition (2.30) implies that the
correct generating function for (2.34) is given by (2.42)

with =0

Fo- 2 fw A (2.42)

) (2.43)

However, let us define a generating function for the
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radiation density matrix f”u):

Nw
Wi = DRIP ¢ (2.11a)

Mw
()
2 e 2 R (2.44D)
Vi N

where the second line of (2.44) follows from (2.35). We thus

have

Y= 2 xS ) < Zh G

(2.45)

by (2.43). However,from the constants in (2.41) and (2.39)

we find that

N
f - [1+eu-«]" ) [E ek ]

(2.46)

Using the binomial expansion theorem this becomes

N M‘”u

2. o n (fv) (TL Mo

V=0

We may formally extend the sum up to infinity since the

binomial coefficients for Wy N  vanish identically.

Thus, the generating function we want becomes, from (2.45),

AL

/?j < Zcf)(ﬂw ZO?‘ {;\j) (f—fq’u (ffK ) @u [0) (2.47)
M=o

N=o
Comparing (2.47) with the definition (2.44a) we can

immediately read off the scattered field density matrix:
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od
o AL Y e TS )
O, 11 = 2 (”“) (/_ <) (€7 ol (2. 48y

N=o

This is then the complete solution obtained from (2.29) and
the boundary condition (2.30).
We note that the maximum value of ['is achieved for

A =ees mmx:: 25%/3’ . Therefore, while the atoms in
the system evolve according to factors like e_?'te y GRe
density matrix evolution involves exp [- X i; ¢ ] =
exp [-2 E) Vf] . Provided that the relation (2.14) is
obeyed, we see that the density matrix evolves at a much
slower rate than the atoms, thus Justifylng our original
Markoffian approximation for the density operator equation
of metlen.

The solution has the characteristic property that if
the incident beam density matrix fﬁﬁ} 1s either Gaussian
(thermal) Poisson (coherent), then the scattered field
density matrix will also be Gaussian or Poisson respectively.

If the incident beam is Poisson:

)wb _7,
L 7, e
FVID"?JO) = ‘——W 2 gy
Then (taking @‘EI*WZVFzf )
Al n, = Fb




Wi h”w_;q:
@) ] = " (= ) f [w{,(wo—)]%
__-_7____'__——-——__
? (Vo) M=o (Yo~ Mu)!
¥ -7,
™ s ST j? [W hﬁwﬂwwwu e
(Wu))z ms=o (‘Wl)l
Hmw_“o N
- Twwu—mJ : 6—% A, (1-0) .
A € ¥, (I-7)
() (55
e N, -7,
GO
= (Vi) !

which is again Poisson with mean photon

number ﬁ;ga

If the inecldent beam is thermal, characterized by

Gemperature Ta

]
x
i
>

(L.
On”

where

since

2 "
Wa: 2‘ WOXb(thJ:

M, =0

we can also write the distribution as
S
¢ (V) °
ef =

e Uy [}_}—ﬂ]H—”n

(@.51)

(2.52)

i (2.53)

(2,54
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VAl =il
e . (2. 55)
(i)”wg_r_;}/ o e
K Ml e = (1~ Ly IRCLY N IBN(ESYS x}"“*‘ { X'EI
1,1

Yy
Ll Ol r [m ]
n

(P‘x+xr)w

I
5

which is again a thermal distribution of mean value

e oy 2
W ks e s (2.56)

w |~ X

We have thus obtalned the statlstical propertles of
the secattered radiation by computing the densify matrix
of the fleld. In addition to the properties mentioned
above, we note that since the scattered fleld density matrix
obeys the diagonality and factorizatlion eonditions (1.11)
and (1.12), the field correlation functions are expected
to obey the Gaussian factorization relations (1.13) and

e
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Part A. Section III.Scattering by Density Fluctuations

The use of light scattering techniques to study the
properties of many particle systems has a long history 3’13’26.
In particular, light is a particularly useful method for
probing density fluctuations of such systems. The sig-
nificance of scattering experiments in measuring fundamental
statistical mechanical properties of many particle systems
was demonstrated, in the case of neutron scattering, by

11

Van Hove His analysls was extended to light scattering

by Komarov and Fisher 12.

In thils section we shall study the effects of the
statistical properties of density fluctuations upon the
statistics of the scattered light by considering a model
of the scattering process. Since we shall be concerned
primarily with the effects induced by the properties of

the scattering medium, we take the incident field to be a

classical monochromatic light wave of freguency We ,

S

amplitude [, , and propagation vector K. . If such a

light wave is incident upon a homogeneous, isotropic scattering
- S

medium, a scattered wave EE(R;f) is produced by the

dielectric constant fluctuations of the medium

= -~ S E L[l?a*w‘,{:)
Ea 18%)~ -E (T)

A

v (31 IE (561

4w A

(3.1)
A

e, B Lt
_ Ee( )5ezzg,ew
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Here q is the angle between Tthe direction of polarization
of the (plane polarized) incident light and the propagation
vector K of the scattered light, and J € (g’jé) is the
%Tk

the dielectric constant ( €= <€> + OE(F,¢t) 2

spacial Fourier component of the fluctuating part of

since, for simplicity, we are considering an isotropic

medium, we take € to be a scalar),where
u - s
KE = G B (3.2)
For a one component homogeneous isotropic medium 1in
thermal egquilibrium, the density f and temperature T are
appropriate thermodynamic variables. We may assume that the

local fluctuation of the dielectric constant at some point

¥ in the medium, OCE(F,€) , is related to the
local fluctuation of the density <5€ (v, v) and the
temperature 57’(Fﬁj at the same point:

€ (F¢) = /j%;JT éf”FﬂJ L (55%23 ST (Fre) (3.3)

Neglecting the second term, which is frequently much smaller
than the first due to the small thermodynamic derivative,

we thus see from (3.1) that the scattered field EE*(ng)

is proportional to the gni Fourier component of the density
fluctuation. Therefore, in view of the form of the incident
field assumed, the first and second order correlation

functions of the scattered field will be proportional to the
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corresponding correlatlion functloris of the density

fluetuation:
citie oy S OE et s R (3.4a)
2 ‘w, t (= ‘
= { Ct <(5€ ){gft/5<3(+}(6—\'t> (3.le)
(2)

G l0,kjE,0) = <E‘;’(&‘.OJEf;’{ﬁ,f)Eg"(éjf;f;’({o)) (3.5a)
)5 - - -
- £ J{?,O)s(p(%Z,{-I5|0{H(Z”,é)5€%oj>(3.5b)

The correlation functions are ensemble averages of positive
(== e e ) and negative frequency quantities; the density
fluctuation averages are to be taken with respect to a
thermal equilibrium ensemble.

We now take the following model for the density fluctu-
ation aﬁf ({ffj : we regard it as a quantum
mechanical (one dimensional) linear harmonic oscillator
coupled to a thermal reservoir consisting of a canonical
ensemble of (noninteracting) oscillators at a temperature

T= O(B/ZJBJ . Hence, we identify the density
fluctuation c§€{”(gﬂt) with the second quantized
(boson) annihilation operator @!¢] and the fluctuation

6}9&”(§1é) with the creation operator a’le)
The Hamilltonian for the entire system of interest - single

oscillator mode ("system") plus reservoir plus interaction -



T

is taken to be

H=H+R+V (3.6)

M=k S At (3.7)
< ¢

Q = 2_: tluj 10J' IDJ‘ (38)
J:

V = ﬁZ’(MJbJa“LfLMJ*Lja) S

o=l

*
where L@ , W

; are c-number coupling constants.

The equation of motion of the density operator f of

the entire system, in the Schrodinger picture, is

GJ%W: é{f] = Lﬁ [H+R+\/, {’(ffj (3.10)

The density operator in the interaction picture, ﬂfﬁﬂ,is

given by

Pl = e»ép[-"é (HWH] X (¢ e"ﬂﬁ (H*’?)f] (3.11)

and satisfies

X(H: !Lﬁ [\/[{’Jj X[LLJ] (3.12)

where the interaction Hamiltonian in the interaction picture
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is given by

ViE) = €w9{£{“*R)fJ v e‘FK}E[H+RJf:J<3J3>

Thus
S )t £ )t
* ST k) e
R GE §Sit) = Trg € A ) .
-5 HE = He
= € A (t) e
where
k) = Trg X (¢ (3.15)

Assuming the interaction is turned on at t=0, we take
pro) = S0y £ (8) = 40y Ly = X (0) (3.16)

with
i

5ﬁ€ fﬁ';g r
LR)= € [Tfa e / (3.17)

The differential equation (3.12) may be formally integrated

to give

&
il / f /
7( (£) = X(o) il [GL{' [Wf’), At j] o s
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Inserting this into the right side of (3.12) we have

vl = Vi)

¢ (3419
/ /
T focf,f [Vie) [vier) K it )]J
We look for a solution of the form
%[H = _4¢) TQ(R) + 4 K(¢) (35209

where A'Y[f) must evidently satisfy

WE i e

Since for V/:‘O the systems are uncoupled and 44){2 e
this correction term must be at least of some order in V
higher than the zero th. If we assume that the interaction
is weak enough to be treated to second order, then this

term will represent a higher order effect in (3.19) which we
may neglect. Thus, to second order, we have (tracing

over the reservolr in (3.19) ) the following equation for

the reduced density operator of the system, A ()

A'(%): }{; TPR [V/H, Jf"}ﬁm}]

£3.21)
€
L [e! Teg [Ve, e, até' o1 ]|

16,31

Following Louisell we develop thls equation for the

particular model we have chosen.



T
In view of our choice of Hamiltonians (3.7), (3.8),

and (3.9) for our model, (3.13) yields the following

expression for the interaction V[%)

7
(

< . - — (H+R]¢
Vig) = gR It [# IR EL A V‘JWW)]@ “
J
e, {
= e Z [M\; [gJ. o)e ¥ gfo)e =
i
(Wt o (3.22)
+ MJ«*‘ U:r(o) € ' cw)e ,sz]

— ik [Fma*ro) g F*rwacozj
In view of (3.17), which is diagonal in the reservoir states,
we see that the following correlation functions of the

et
"forces" F(t) and F  (¢) vanish:

I

LFit) Flb)> Wa[aQ(RJF/f'/F/fzj o

(3.23)

[

+ + e
LB T D e A H“’F“"F“"] (3.24)

However

+ =7 .4 + Eﬁaﬁhj)ﬁgwmkiﬂ)fﬂ
LF /LL,)/:({LD:JZK, N Lol by o) @ e

does not wvanish since



48—

A0 {a)L (o) 5= §r< (3.26)

where ﬁk is the mean occupation number of mode j. Thus
+ Al 2 — L,(M)d'ﬁﬂj[f,‘ktl)
bl Fié] ) = nl"n. e
J
and similarly
—f/-w - )t )

LFI)F fz)> L 1“4)6 (3.28)

since

<<L?j(o) é‘i (o);> = tl+'?zn) O

{6 (3.29)

As \ = le o , both of these correlation

functions must vanish. Let ?E be the time over which these

functions have a significant non-zero value. Then, integrating

with respect to ¢, and t; over an interval 4t much

larger than 'Q gives:

L+ At E+at

T~ [d [, 2 M7 e
T ¢ J

I'(WJ' -Rj H‘ = t'.r_)
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Clw -0 ) [¢+4¢) - R )6 10 ipw. )¢ s
I =2 [e J e j[e Shtal ]
J

,(@vk-ﬂ) *’th‘~Q)

VARV 2(1 - cos 5224 |
J

= )
s el Bis 2l e
Y Z‘MJ'/LYFJ‘ 4%/1/ [ = ]
4 = 2l
Thus:
co2f (we-n)At T
LT = ae 2T i 2| |
A€ J.

(w: -2 ) "ae)"

” Hlloa Lide
g [o’w G, ) I )] Tt 13 [ i ]
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Where \g(ug) is the density of reservoir states per unit

frequency at frequency W/ ' Iyl 22 | THie L) thegintegral

J
is strongly peaked at (AU A s Thus
oo
IR Es e i 2 Siw® (4t X
~i—f—wmﬁf e
Aé AT At X

= o Tw) At = YR

where

y = ﬂrrjrmm(sz)/?“ (3.30)

Therefore, without loss of generality we may take

<F’L/{_IJF{1€L)>: X?T/ﬂj cs{ﬁ“:“fzj (3.31)

and similarly

LFSIF L) =Y (7)) §l6-6) ¢

Returning to the equation of motion (3.21) and using
the interaction in the form given by (3.22) along with the
reservoir correlation funetion results (3.23), (3.24),
(3.31), and (3.33), we find that the reduced system density

operator 4/t) satisfies the equation



- i

z
2

4'/5} = [a?cuo) dit)ao) —ato)aw) ar) -4it)aw) ma;]

+ I AR) [fﬂm dlo] aw) + aro) 41¢)at(o)
(3.33)

— atoyan) gre) — dit)a) ato)]

Note that the first term of (3.21) makes no contribution
in view of the form of V7f}

In order to compute two-time correlation functions
from the solution of this equation, we use the regression

b e

theorem for Markoff processes lihnist heorem:,
which is a consequence of writing the total density operator
-X/{) in the product form of equation (3.20) (neglecting
the AfX({j term), enables one to calculate two time
correlation functions if one can find the single time
evolution of the average value of some system operator.

It is discussed in more detall in Appendix II. We use the
regression theorem here in the following way: suppose that

the solution _d/[t) to the above equation of motion is

known in the number (n) representation of oscillator states:

/wat;f,, = 2, i(w,”’; Ky K o el 1 (3.34)
et

The mean value of an operator O will thus be given by

( 0 is an operator which acts on the system variables)
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iyt L o{t
-‘—TP,{O 6fi 4(%}€ﬁ }

= Try 2 [eéﬁéO e-éﬁf)mé/}

N {O{H 4(&)}

The time dependence of Of¢) is the free (V=0 ) time
dependence--in what follows this function of time will be
understood to have been factored out of the 775/ . Henee,

we have
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<f0[f}> = ng“dwﬁ{ C%ﬁn Ziifjﬂ n l\ K j’4g2%3.37)
) Mn' K K

We now assume that the following expansion can be made

<0[1£J> = Z ZO)A” f {V;yg it (k| (K.'}dA(O}

MM'HK’I” i
(3.38)
= 27[2 O.,w, I (n,n' f)]<@lj> Eh
N My +39)
where A
Nl : 9
' m1 ) _ ¢ T
<QJ> 2 Q LRI ol (3.40)
ICK

The regression theorem then states that the correlation

function <Ow¢) L (o) >

is given by

Lot12@y= 2 [2 O I tnie) [KQ¥E >
fld'

(3.42)
where
oy T A4HG,. 0
Gl R L F (3.42)
R P oy
» Kkt W' i

f et
kl <
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Hence:

- i?\,‘l ; ?
1 J ( (@)
B O . s (Kr} (k") /g[{ﬂ}' P”
<(C”%)£%é>'— ;; ; nn I}”whit) M TKK (3.43)
L

{ !
KKK

non'

= Z Omlm \f(wf'wfllkﬂ)!{z&}ﬁ {0{ ﬂ-p{ouj
mon! KKK <" K (3.41)

1 H
1<, K4 K

= ZZ: Cjw'n 4TFW,W“'K”)KfIf) ,&U(OJ (3.45)

Kleil
where

QT/wJ (3.46)

)
K" Kk K KK/

!

= (O) o
SN Lbat
K

Therefore, the regression theorem states that the correlation

Ffunetion ¢<O(H @/N:> is obtained by computing just <(CN&L>

(o)

assuming that the initial density matrix is /dK”K,

rather than .4 /(o) . This result may be used to
K",K'

reduce the calculation in the following way. Suppose that

the generating function of the 1nitial distribution

Aﬁ;ﬁ% is known:
iy K k'
I (ol =2 A Lo X (3.47)
qu'

Solution of the equation of motion of .4(¢) implies that one

can find an operator C}T&Yﬂd which, when acting on the
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initial generating function, yields the generating function

for the time-evolved density matrix elements /dKf{

Fioy el = Oy e Fngiol (5
— gl i K K’
Fx 4, ) = ((Z;rdK!Kf L (3.49)

Presumably the average <O(¢)) can be obtained in a
simple way (by differentiation) from FT(K,;f,fj
The regression theorem then indicates that < O(¢) Lro)p

can be obtained by carrying out the same operations on

R 6y, €)  wmere
Bt peh= Ol E ot (3 50

s

FUx,9,0) = 2 Ao xSy~ (3.50)

< f
1<) 1c! el

It is to be noted that this method relies on knowledge of

the solution for A4 (t) for arbltrary initial distributions.
The first case of interest with regard to the density

correlation functions we wish to obtain involves the

calculation of <<af[fL> . It can be seen that <af(&)p

depends on the «dmﬁ{| matrix elements of the system density

operator. Hence, we shall first solve the equation of

motion for them. Taking the ( W,14+1 ) matrix elements
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of the above equation for s(t) yields the following equation:

e e e
j% 4%4ﬁii = ¥ (li+n )V?%+H(h+z}—é&+ﬁiwz - ?’[(H+/)(§ﬁ‘+jj
I
- )
i ]4\4,(\44—1 (3.52)

+.g'ﬁ-y€ﬂgiﬂﬁ (t)

v—i, %

Tt can be seen that the equation couples density matrix
elements along a stripe parallel to the main diagonal.

Hence, it 1s convenient to define

/
Hlelblmeton 265, (3.53)
N |

and introduce the generating function f(x,t):

L

= 2 n+1l
7[ (x5 2 S Mrt) T x (3.54)
(

i+ ) n=o

The subscript refers to the boundary condition:

m+ 1

= = =
£;+JOJ £ZM+1,11+1 -£;¢U(XMI Vq;ﬁjzﬂ (355

Using the following relations (we omit the subscript (m+1)

on f until further notice)

Q
-+

|

n+2a

o

— / N+
ZE Va2 J‘ X =
n=p

L\ 98
X

(3.56)
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rroots f= 35 o T B e ZEa 2 2
oo n+ |
f i X = XX £ S fhar 2 X (3.57)
(== +1
o . n+] zji Qif il =y 2 Qij
Z/S; Vn' X = X Al = LI ] oxX (2.58)
o
- - s i g N+, é
and multiplying the equation for xﬂTmH by X (ner)

and summing on M gives the following equation for the

generating function:

N

Qﬂnu BjHM)—)L-T[OM+1)x+~-«ff] YA x° 12 )

JE £3.59)
A )

ot +?r[(2ﬁ+uxmmml i ﬁifjf (3.60)

Jt

This first order linear partial differential equation may
be solved by the method of characteW1ct16530 The

characteristic equations for the above equation are

d x e ijz
uy[lﬂz -(21?T+!)x+ﬁxl] 1 ’B’;

-..h

(3.61)
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The right hand pair is soluble at once:

ody
{ 9 { 202

The Integratlon cconstant ls determined from: the boundary

condition
—é wi+ 1
F(x,0) = fme1) = X (3.63)
Hence
'g% y+1
I (%) (3.64)
== !
m
where X, is the initial value of X . The left hand pair
is
d x

T X" —(AR+1)X + 147

= Sl g[x— %_V—T)—f—(x’/}—/}c/)(
(

3.65)

{
Letting C::}W C s+ then

o =
el - Joliblt (e (3.66)

Solving for x gives

X = ot (3. 67)
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At £=0, we have

Al S / _H:E:;i_fﬂ
)(O = n ._:> C = |+a
C fil i Xo—- " (3.68)

Hence, the solution for x reduecing to x at t=0 is given by:
0

Ve [(mzuxm)—(ﬁx;mmz e I [mig-1)

(3.69)
5
—x-Fo1) et ]

Inverting this relation we find Xo in terms of x and t:

X = (3.70)

Therefore, the complete solution for ¥“M+1](K;f) is
(restoring the subscript on i{x,é} )
b_ff’ _ ¥yt B m+ 1
J[ (x)[(+R)e  -n]-1
(Al = === — = s T
e —TE
1 Vst (-x)n[e ¥ ‘11] =1 (3. 71)

However, we have obtained the solution which corresponds to
the evolution starting with a single non-zero dendity matrix

element deﬁﬂ;+1 at t=o . To obtain the generating

function for ,dmifu which evolves from an arbitrary
A+
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initial distribution of elements - say f; ﬁi, - we do
I

the following:

o co
_ (o) ~ (X, ¢) (2)
'§[&f}— ;?-‘EMH)(XJJ FVmH %f £m} r ﬂm (3.721)
glnee € HO} = . oSuppose that the generating function

29[5} for the initial disftribution is known:
g+f

;Z)//JJ’ Z fg {gdfr (3.73)

Z_ 8+1

then

+1
(6) = Vet ( ﬁﬁy )5 6%¢Q7) /

9 4+1 J (g+1)!

Therefore, using the above solution for <£M+1)(fﬁ)

(3.74)

and the sghifted sum for if%f) we obtain the generating

function for the matrix elements /Jwﬁﬁ, which have
evolved from the (arbitrary) initial distribution €)§?’
fixe) = 2? _ﬁhr(&fj fa 1) (8.75)
xd | ¥t
e i/”a%// 3y
= e ]
g Vn' (B.76)
re J ]
= X ;gf} "
He =udnl = 2 (3.77)

C9Tx;é) ;@Qy)

(378
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where Xo 1is the above funection of x and t.
We indicate how the regression theorem above allows
us to use this result in the special case of the first

order correlation function we want.

{Qﬂf Z & '(H 2. ) 5 N+l /"Ivuf&n'

WH’ “Kr v,n' (3-79)
_-1
_ ' fe (3-80)
‘4M£L = 4 l(ﬂ,w+!,K é)'4KK’
< k!
The eguation fer /4 (] couples only elements on the
v, M+

stripe parallel to the main diagonal, so that we need not

sum over all K, Kl:

/dw(fyii = Z ‘ﬁ(}/f' YH—:Lj' Kik"‘—l/"f) A,K(Z),Ll (3.81)
<
S0
La 4—/1‘)\; = Z Un+1 76(14 n+l K K”’{—)"{j(fﬁi (3.82)

K
Let us write this in the same form that we had for the

general case:

<a+f€ S - Z 5,4 W I+ _f v K k! f},dKK, 5&;,‘”1
hnl K Kk! (383)

rl-
J -
= 20 ), St 1P [mnve)ua’ (< 4te) éf:im (3.84)

<!

i Z (Zr (S—M, mimgtldrvl,w‘,-f) <Q’J) (3457
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where

r_
Z QK B KKf Z (k)* (Kfj ' /<+1A££0K//

1<, K €, K

(3.86)

The regression theorem then states that

(a/é)dm)) Zngj\m (n+i” 7[(””{_}].(@ a> (3.87)

An!

where
"d’
(o) .88
<@ a> Z /JKK’ !k ak”fc (3 )
&K,K"
¢ (3.89)
27/4 fo) K ) k') ésk'!f(”.;.l WCYKI'/ ot
K,Kﬂ,’(”
Thus &

<a+({_ 02(0)> - Z Z 3! e I/VH-I' ‘f fVI v 19) (k"} (K} dfalik 9 K”K—/
e (3.90)

e VT é; e  uer L[W Wt e ) ij%j K Kl,éiéngﬁ

won! (3 91)
pc|!{
Now:
R Sen s 40 &, = R ~
%- - kﬂw4 JKK' KiK"g M—i;jjg"’K' e (3.92)
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Hence, summing n',K' gives

<<Q le)aol Y = Z:lﬁw: f)ﬁnujx”jKﬁgf}/ﬁtfxﬁwﬁiK&r
i (3.93)

X Ve 'P14n+1 K“IK“#I) T o) ’

Z? /dK”+f,K+/ (3.94)
')‘lfk“

Thus, this equation, when compared to the first expression
above for <a+%J> , indicates that the correlation

function is obtained by just calculating 4<12+(6J> with

the changed initial distribution L)

Il

el (0
4 (0) = VK"t At )K” (3.95)
Kl ®"s1 e
Suppose that we know the generating function for the

alistributdonon 41 (o)
kg el

L i+

(e})] © R
j4n+.(m+, G (3.96)

Suppose also that we know the generating function for

4 t0)

» l*
»j—_

v <~ = 22 it 4,000 (w+dﬁ y
I/\_{ = 2_ 4 L{D)_'_ (M+1) Wi ﬁw-&-l
7! aners "l (3.97)

I
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We are interested in the particular case that at t=0
the system 1s 1In thermal equilibrium with N occupation

number.  Henee .Jmﬁi is a thermal distribution:

AL 2’2’ 777” . \/Vl - 1
htg) = 2 A J+7 (1= V) (3.99)

Previously we have found the operator d%f;f) which gen-

erated the distrlibutilon /4Mﬁh needed to compute
Late)> : since
€] (e L0t
<ﬁ+(‘f> Z Uner A, gc:r . (2/4“1“ S \x=r (3.100)

e
. a&i: f}x:‘ et Zf@méj ;4(5”}/,@1 (3.101)

the regression theorem indicates we need te carry out the

same operations to obtain the correlation function, except
AL

H(J} replaces gD@) 2 8o

¥t 1

2 = z % 2
<aflelae> :x;{[&fwwtﬂ / ”a?ge [e’(p("'ﬁ') '*“’T""J’]Y_ (3.102)

X=1

QL

X=1

where X, 1s the above found functlon of x and t. Substituting
for X, » and carrying out the indicated operations (using

exp (aj)gj bﬂig)f: Uia) ) one finds
=

La'le) aw)y=v e (3.103)
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Recalling that we have left off the time factor cor-
responding to the free time evolution of <a'(¢]>
we finally obtain

" >t
(St =BT

<Q+HJQ(O]> e &€ (3.10L4)

Returning to the electric field correlation function

()
G '(€,0) (3.4), and assuming that it is a function of
B only, we obtaln for the spectrum of scattered light
&0 =
() ~lwt 7 Cfw,+ - w )t _xitl
G{U(UJJ = f(}’ /5,0)6? fb": g }7)4/6 & Z\CLf_
W S (3.105)
() 52 n U
G w) = (3.106)

w-w, =)+ (E/

We now proceed to obtain the intensity-intensity correlation
- - e ale)> g

function. The calculation of <a'/¢€)d >> involves knowledge

of the diagonal density matrix elements ,dmﬁf . Taking

the (n,n) matrix elements of the equation of motion (3.33)

for s(t) we obtain:

;—‘i— 4,0 =Nl [(@a+iyn+i | 4,8
Py rer) vt ) 45 (3.107)

s ¥ A A

M=, W~
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Calling

8 ) (3.108)

and solving the equation subject to the boundary condition

) T (3.109)
N

is at once possible since the above equation for fjm ft)

is a special case of the problem treated by Shimoda, Takahashi,
30

and Townes The result for the generating function is

%l
7[ o | U+ (6K )(1=x) ]
L2 S
() | e t-x) 1+ &(1-=x) (3.110)

where
—¥t _ — %
K= ¢ ;G =7 e ) (3.111)

Once again, the generating function which gives the diagonal
/
density matrix elements ASu#) which have evolved from an

arbitrary initial distribution FMKUJ is given by

47 Zir i? b, 10 (3.112)

(m )

Suppose that the generating function Z%Q?J of the initial

distribution FM(M is known:

%{j Z Putory "

(3.213)
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Thus

0 = L {%J” 55(5)/

M n 4= (3.114)

Therefore, using the solution for £M9 above,

60 w "
Lixe) = 2 TRLT }"Wéhkm_ﬂj ;!; (;jv) ;//J)/Fo

e ~%) L+ G{i~%]
(3.115)

G-k)(l=x) o
ﬁ(ﬁél: _ eﬂﬂ[f+[ <) f—; ;ZGJ)/ . (3.116)

[+ GlI-x) |+ 6(=x)

. (G P (3, 117

Now, the regression theorem argument in this case goes as
follows: we use only one index, since all matrix elements

are diagonal -

Jy,,,(ﬂ = % f(w,k.{:) J;/o/ (3.118)
atwralt)y = 2 v Syl = 2 nd el £ (3.119)
n b
= o -f(.(}q,i—) K{,K o) (3.120)
Wik
_ Z [zn{gm,u)<&>{> (3.121)
where

(3.122)

g’y = Z W e = <o)’
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Thus , the regression theorem states that the intenisty

correlstlon funetion wilill be glven by

aerdlierait)ansy= ) (Z n (wm) Lat@‘a >
¢ 5 (3.123)

] Z (% ot tm’“) % ) {K‘UL‘S; - (3.124)

ff

{5.125)
= 20 ﬁrw)x-géql<,§1(m

v, i

, 1 (3.126)
= 2 fonee) ke §to)
W, K
This correlation function corresponds to evaluating
<Q+NJ&(U> with an effective initial diagonal density

. T
matrix g'ro) :

-

e .12
S;(a) = (k+) S (o) (3.127)

A

We may obtain the elements JT((OJ from the initial gen-

erating funetion ;ﬂg} by

AL

5,{ oy= L [D)%)KH}(K; f 12

(
K. {=6

Hence, the generating function of the distrlbutlon Jﬁﬁv

is obtained by:

ﬁfj)

5 Sy e Db (s Pl

1< =o

g (3,129

2 X QWO[\/‘;D);] ?}(‘”‘X:a

exp (¥ 5) ( %‘%@)

I

(3.130)

¥=o

(3.131)
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Therefore, the new generating function which we must use to

compute <QZ%0)ﬂ+“7Jaff)a{0)>> is given by

A g | (+ (& -k ) I1-x) J } ;ﬁJ (
- ewﬂ{Hﬁ—————#——-— STNTE
L ie) = Oer 41 = e, [+ 6(1-x) 99 S y=o
(3.132)
i [+ (G-Kk )t=x) ) 7 J H(z)
L L
|+ G (1=x) ey oy [IQPT% &igé%ﬂm
Since
J
Lattvawy = Zn 5 :{?;? Ffﬁél}L:( i
we have
J T (3.135
<ﬁ+h)a7€Ja!ﬁhﬂw)> = g?;; f[ﬁf{}l_i ;

withlh&}given above. We are interested in the specific
case that the system starts off in thermal equilibrium.
Jtlathbal., ;ééd is taken as a Bose-Einstein distribution:

T
Hiz) =

I

et [ 2y (3.136)

Thus

-2
2 Fay - A=)

)2 (3.137)
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Using
/
J ’ _
exp (@ i3 ) O’L’[?)L:o - @) (3.138)
we get
iy oz o -
exp(y5) Fer| = i e (3.139)
Next.,
/
2 . a (;; ( [+(G =K ) (1~%)
’F[K’H’ [+ 6 (1-x) |+ & (I-x] (3.140)
T A
where d‘(z} is the function given above, and it is to be

evaluated with the indicated argument. The last step

involves the operation (x fa f‘[ v 4 and, using this

Pl

result for [ , the algebra yields

[y
ator a'iiatiae) = TrReR e (3.141)

This dis the exact result gince the free field time evolution
of Late)alel> 1s just equal to one.
(%)
Returning to the definition of & (ot ¢,0) , (3.5),
we find for the intensity fluctuation spectrum:
o
2 (2) i C
& Sy, = fG (0,¢, ¢,0) e df
- (3.142)

AT Az
e ey | ar At St

It is to be noted that this result satisfiled the Gaussian

Los+ ¥

"factorization" property, if the light 1s treated as a



T
Gaussian random variable, or the equivalent density matrix
factorization condition. Both of these lndlicate that the

following relation should hold:
() (1)

() e
Gl = ar [G !f,“j dw+k 6 we G w)
= (3.143)

where ® denotes convolution as given by (1.17). Similar

results for the oscillator correlation functions have been

obtained by other methods 16’31.
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PART B. FLUCTUATIONS OF A FERROMAGNET

Part B. Section I. Model and Density Operator Egquation

of Motion

The results of the previous Part have shown that the
light scattered by "normal' systems may well be expected
to be Gaussian in nature in the sense that the intensity
correlation function of the scattered light is determined
ezsentially entirely by the smplibude ecorrelatieon funetion.
That is, measurement of the second order temporal correlation
function does not furnish more information than that con-
talned in the flrst order correlation funection.

By normal systems we meant to exclude systems under-
going phase transitions. Such systems are known to exhibit
peculiar light scattering properties such as critical

34

opalescence The interpretation of scattering and

35

other anomalous properties is usually linked to the
existence of long (that is, of macroscopic dimensions)
range fluctuations. The consequences of such fluctuations
to the interpretation of self beating experiments have
already been noted. In addition, the possibility arises
that the fluctuations themselves will not have the Gaussian
statistics usually associated with thermodynamic fluctu-

13,18

ations and thus will have properties unlike the

system studied in Part A, Section IIT.
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Motivated by these considerations, we undertake a
study of fluctuations in a magnetic system. Although
extensive experimental work has been done on light scattering

36

by ferro- and antiferro magnetic crystals as well as on

37,38,39

the theoretical interpretation of these experiments,
we present the results of this Part as a study of the
dynamical fluctuation properties of a model ferromagnetic
system without an explicit calculation of the scattered
light statisties.

We wish to study the dynamical properties of a ferro-
magnetic system 40 using density operator technigues closely
related to those usged to study the oseclllator of Part A,
Section III. Our general approach will therefore be to
consider the ferromagnetic spin system to be in contact
with a thermal reservoir. We shall obtain the equation of
motion for the combined reservoir - ferromagnet system and
then trace over reservoir states to obtain an equation of
motion for the reduced density operator of the spin system.
The latter operator contalns all of the information relevant
to the calculation of the dynamical and fluctuation pro-
perties of the ferromagnet.

We take as our total Hamlltonian H the sum of the
ferromagnet Hamiltonian Hs’ the reservoir Hamiltonian HR’

and an interaction V:

H= H,.«,"LHR hae s (1)
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We choose the Heisenberg-Ising model 14

for our magnetic

system:

That is, we imagine N spin one half angular momenta, locallzed

at fixed lattice sites and each having a magnetic moment

M, to interact ferromagnetically ( JU 2 © ) with each

other and also interact with an externally applied uniform

magnetic field Ho which is taken to define the Z-directlon

of the system. The angular momentum operators obey the

usual commutation relations (for a spin one half total

angular momentum) :

[E7 me Glafi=sediicn o3
S A

4

(3)
(the complex constant i in (3) 1s not to be confused with
the site index i on the spin operators) and the two similar
relations obtained from (3) by cyclically permuting the
spacial indices x,y, and z.

We shall imagine that the spin system is in thermal
contact with another system (such as the phonons in the
crystal, or spiln impurities) which forms the reservoir. The
specific nature of the reservolir will be clarified when
particular examples are considered below. We will take the

reservior Hamiltonian to represent a set of uncoupled modes:
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+
He = 2 hta Ox Ox ()

We take the following general form for the system-

reservolr interaction V:

V= Z 2, [ O () + ff OI“J'J] (5)

e

where

* 7

are the usual spin raising (+) and lowering (-) operators
TEETE aedaE jthspin and the reservolr opeprators are evalugbed
at. the position eof the jth spin. For simplicity., we
consider a single effective coupling constant g. (In
Appendix IIT we shall present an glternative derlivatlon
of our main equation, to be derived below; we shall see
there that our choice for V, equation (5), is not quite
the most general possible system - reservoir interaction,
but it is entirely adequate for the main purposes of our
discussion).

Having specified our total system, we proceed to

consider an equation of motion for i1ts density operator

effj in the interaction picture:

ém S ey pier] -

where
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St 2 Hl )t el B i
2

Vit)= € (8)

In order to evaluate (8), we make a molecular field

approximation to the Ising Hamiltonian (2) in the form
s 22 ﬂ(% s ~ Sa
%{g iy ’/%{.‘ et Sy, LA %Af? 4

(9)

e
where we denote the energy splitting of the two states of
each spin one half system by f1b021 =20 . We shall call the
state of higher energy (but lower value of z component of
spin, i*—é ) "2" and the state of lower energy (but

higher z component of spin, Sz:+-é i VIV =0 that the

energles €y . €, of these states are related by

€ omn = TRl unA O (10)

Using (4) and (9) we obtain from (8) A1,

n
! = Rk —c‘:.j?‘{— it Sy t
\/(H:ﬁZZﬁ[%e O lG)e +S;7Le fOf'“-Mﬂj(ll)
J

ol ' d
= £

Formally integrating (7) we obtain

(12)

£
ple) = pl-=) + ik [ [ye, pten]
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which we insert in the right side of (7) to get

F'/H = i [!//g// Tﬂ(kw)j

| & ’ (14)
/
B Lw[vm, [vien, (e )]J
We try a solution of the form
ple) = (t) 4, (He) + A (15)

where (/¢) 1is the reduced density operator of the system

defined by tracing over the reservoir

(] = TrR p (€]

and 4; (He ) is the thermal equilibrium density operator

' _ -1
of the reservoir ( 3= (KgT) )

< S o
f (i) =" e P JTF« e ﬁHﬁ] (16)

Assuming that the reservolr-system interaction may be
adequately treated to second order, we ignore A and thus

obtain,upon tracing over the reservoir in equation (14)

.6
(~ie) = ‘éiff{ Tog LVIe], [ye'), U—[éij(HRJ] (17)

where the first term in (14) does not contribute due to the
form of VYéJ and the diagonal reservoir density operator.

The Markoff approximation ¢(¢')=> 0°(¢) will be
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justified below. Using (11) for V(¢] in each of the four
terms obtained by expanding the double commutator in (17),
one has a number of resulting terms to calculate. We
shall consider one of these in detaill to i1llustrate the
calculations.

One of the terms of (17) is

& Moyt ST L4 i
T:—ﬁsz’TFK[z,;Sje O« L) € IZIZSJ
2] 3= 2=

(18)
iy, t ( a1t
e . O}(q)e Y w[c,(w)]

Since £(HQJ is diagonal, only the x:/G term c¢an contrlbute
to (18). We make the following assumption about reservoir

correlation functions:
+
Z Trg [0 1104 (] = 2 <00 1> <S-8) (19)
o _

so that only terms for which jf=K survive. This assumption
means that each spin Interactzs with the chaetliec heaf reservolr
independently of the others. In the calculation of other

terms of (17), we assume that

~
g<0“(rf")0d(r‘|<)>°<5(ﬁ*f}) (20)

and we have implieitly assumed that all correlations of

the following forms vanish

L0%lr) Op(r)) = <0, () 0al6 )7 =0 (21)
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Thus, we obtain from (18):

W ‘-’Qa()[f“f{)
7\[&* Z. Z S f <O 0 _> . e

(22)

We assume that the sum over reservoir states « may be
converted into an integral over energies %, by means of
a density of states factor g(JSl« ) so that

(W)~ ) (t-¢")

%I e <oo“7r fJﬂ 3{)2 )<OO+ qu>€a{wz,—_rz,¢jlt-—tj
- oo + ;‘M{t"f"}
= [(—J«J G (0, ~u) OO (ea-ur> € (23)
i

‘ufe-t')

(e

? (UJLI } <OO+(MI_EJ> CLM €

< AW Glw,,] <00% (1> o(t-t')

Thus we see the Jjustlfliecation of the Markoff approximation

in (17) and obtain

n
orym R
T:‘.%QZSJ&J &

g =t

Ll

where, returning to the more general expressions, the

damping constant [; is given by

¢
E Rl = 9" R [ <T0I 20005 €

£, tE—E]

(25)
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A similar calculation shows the damping constant of the

other level of the two level systems to be

= Hiky(t=2")

=
— + ’
LT e ) = g @b[:f;%f<%0,k(w§0,}fﬂ)€ (26)

21

By taking only the real parts of the expressions involved

we neglect the frequency shifts assoclated with these damping

constants. Note that they depend upon the level separation
¢y q In Appendix IV we show from the general forms (25)

and (26) that the following relation holds, as expected

from detalled balance considerations:

_ﬁhwm

[ (wa) = € [l (war) A

By computing the other terms of (17) in a similar
manner, we obtain the following equation of motion for the
reduced density operator of the ferromagnetic system:

v
. S 7 ] i =
= = = . [
Fo < 20% I s en o[ -8 ],

J—l
2 € i i 27 e, o
-§; e "[?i *:}M’[*IJ‘*SJ] [% o & [

2 . -
& SJ-] Ll QJ» o*(éJSJ-

(28)

+ =
tl 8§, e §, }



=

We have returned to the Schrodinger picture and Ij is

161

the unit operator in the space of states of the J Sheltaky,
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Part B. Section II. Magnetization Distribution Function

In order to work out the calculation of this section,
it is convenient to rewrite (28) in terms of atomic
operators rather than spin operators. Thus, denoting by
'1>J the lower energy state of the jth spin and by !2>?

the higher energy state, we obtain the following relations:

Sj = [|z><u’)j .
+

S o= (l><2); e
€ i

S i (31)

IJ- = ([i>] )j L (UJ(L/); (32)

The inverse relations for the last palir of relations are

(lzvm)J. = gIJ. = (34)

In terms of these operators, (28) becomes:

(v
U:(‘H = 2 { J:,% - g:} [“><”JJ- Tle) + { £ ¥ g’-]([z)(zf). 71¢)

it J
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_[?—lk - g ] [t [I'7<”)J' = [ ,C:_l + %rﬁ“{f) (il)'ij),
e (;;><11)J_ 0 (¢) (]l><2!)d.
+ I3 (1v<21), m (o) (lz><!fJ~ (35)

d J

We now define operators corresponding to the transverse

e

components of the total (dimensionless) magnetization by

v Mz

({2>411)J

o I

L

(36)
S = ;i [ 11> <21),

J

Since the total number of spins is fixed at N, it is con-

venlent to introduce a third operator variable corresponding
to the total upper state population:

N

N, = Zi (1z><21),

(37)
‘ J
gy

We may similarly define the total lower state number operator
by

ik

v,
Nyz 2 (1), (38)
J‘:r

and note that the following relation always holds between
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these two quantities:

Ny + N, = N (39)

We next define a c-number quasiprobability distribution

15,216,353

function P of c-number variables 4, 7, and,éﬁby

& ek U‘[{—JCSM*S‘J 5(771~m1) 5(/4’2 g
Plam, 4% ¢) "[ ~] (40)

where the delta functions are defined formally by integral

representatlons
co
[ (.(WLHMZJX
S(WL— Nz)i ;T dxe
o (41)
and similarly for the other two. The exponential operator

in (41) is defined formally by its series expansion

CX (M- Ny ) = (L'KJK K
e =gve (M2 =W, ) (42)

<!

=0

We note again that the quantities . 7, and/4¥are not
operators, but rather are c-numbers so that the distribution
funetion) ﬁ4%WL,14*,f) is also a c-number function.

The significant point is that in (40) we have chosen to
order the (non-commuting) operators § , N, and £t in a
particular way: that is, in every term of (40) obtained by
using the expansions of the delta functions all of the s~

operators are to the left of all of the Aﬂ_operators which
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in turn are to the left of the S+operators. We have chosen
this operator order arbitrarily; chooslng a different
order neither changes the final form of the equation we
solve nor simplifiles the calculation noticeably.

The guaslipreobabllity distributicon funebion dintroduced
here is closely related to the Glauber P (« ) distribution 10
which was introduced in order to ' study statistlesl properties
off the electromagnetle fileld, The mathematical properties
of P (oL ) have been extensively studied M2. The system
beling studied here!l reguires! three operators,; so theidis-
tribution function (40) is a generalization of the P (¢t )
funetion. " The wtility eof intreducing such: a distribution
comes from the fact that as we are dealing with a system
involving the set ( Su}!Ul ] S+— ) of non-commuting operators,
we may use thelr commutation relations to put every product
of operators which may oeeur into a particular chosen
order (namely every § to the left of every N, which in turn
is to the left of every gt ). Having thus chosen a
conventional ordering, we may associate with an arbitrary
operator O (§, Na , S*¥ ) (we envisage O to be sums of products
of the three basic operators) a c-number function

C)KJ(43@344‘) of the c-number variables &£, ¥, , o7

e
O(g-; Mz, S+):CO (4’ 7, A%) (43)

or
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O, 1S WJ%J# O 14 n,, 4%) O14-S7) 0 (1) {ﬁuf)

where the delta functions are defined by (41) and (42).

The operator C instructs one to replace in Cﬂ()b4,”L,4*)
each of the variables 4,1, , and 4 * by the corresponding
operators S , N, , g+ —-keeping the operators in the chosen
order by doing the integrations in (44) in sequence. One
can similarly defilne a c-number distribution function
associated with the density operator 6/t) by (U40) so that in
order to calculate the average value of the operator

O (SN, ST ) we need

Tr [U_' ff}O . L; +)J

l

<O, M, 875

= e T fof,gi Dy, d o 0(C)u,m/4"}5(41-5)5('7;-%}5(4‘-@‘)

(45)
= IJ/JJVLJM O(C(}A.m,«ﬁ”) 7}[0‘/19)(5{4—5“) dPr-m) 614 S"J

_ ﬁjﬁcj%&ﬁ 0 Can, a#) Lona, 4%¢)

The interpretation of P (4,M,,4% € ) as a classical
probabillity distribution may not always be justified.
Studies 42 of the Glauber F (&) distribution have shown
that it may possess singularities as well as take on negative

values for some range of its arguments. However, we shall
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use (40) in expressions of the type (45) and shall see
that in certain cases that it does Iindeed have the pro-
perties of a classical distribution function.

Returning to (40) and differentiating both sides with

respect to time, we see that the equation of motion of

P (47,47, ¢ ) 1is

> Wl = Tr |0 ¢ 5{4-875(?7};/\11}5(4% st
E( ! / / } [ j (46)

Therefore, using the equation of motion (35) we have

f‘(/a') N, ,4%¢) = TP{U\{'&J Z [(2 nggc(lbﬂfl- +{§é -g)gc(lz.)a{%.

R

2

S (H)(t,!).gc— E—af—ﬂ (117<sz'5(
[ &) ooy = (- 3) : (47)

+ [ Uz><u$. ) c([{><z{%
+ 1 (I'DK.ZIJJ' §° (fzvu.‘)d']}

where we have abbreviated the product of the three delta

functions occuring in the definition (40) by 5C
C *
S - O(d-57) 0 (M- ) d (#7-5Y) (48)

Note the slightly different order of the operators in (49)
compared to (35) due to our extraction of the density operator

to the extreme left.



_88-
We shall evaluate the various terms in (47) by rearranging
them into the chosen operator order and using various
devices to compute the resulting expressions 17. We begin
by noting that the atomic states are orthogonal for dif-
ferent atoms (1,j)

1 = = ‘e =
Gainy, - gy = By gy se g

so that the commutators of our basic operators may be

written, using the definitions (36), (37), and (38), as:

N

[S /\/] [Z (11>¢2() Z |2>421)]

»N
ZE ;? [ l§<z4{,((2>4145.w (!1)<a/$.((|><a/k!]

A
Z Z JU ((t7<a()J» (50)

[T, 0 ]= -5 (51)
e S (52)
I S4: Ni] =1 4 S+ G

[S— Ni] = S-H (54)
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Consider the first term of (47):

7

T= (&-0) Tr [rie) o257 i U S T

Noting that Mi is directly proportional to N, via (39),
we wish to commute it through the first delta function so
as to bring it next to the middle delta function. We note
that we may rewrite the chosen order delta funection as

J ¥,

. y
¢ 8o e —ghe, #
5 - e e é J/JJJJ(WL)J(A# ) (56a)

by interpreting the exponential factors as displacement
operators which act on c-number (delta) funetions. We

next evaluate

_E -—S-‘LJA_* N S+0]4*
=l IRe .
(56b)
(we shall use the shorthand notation that ﬁé = Jdy R
etc.) by considering the following object
Tre gt §s*
SEsit by ik (57)

/
where § i1s a c-number variable. Evidently F1%) satisfies

+ + +
e R o 35
J_ij‘{: e [‘S+Vl +ﬂ/1 S+]€ = £ S‘+_e = S’+
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using the commutator (53). We may integrate (58) to get

f(ﬁ):ﬂ[ﬂﬂ St (59)

where, from (57),

{lo) = Ng (60)

Thus, using (60) in (59) and replacing 2 by g * we obtain

Eor &
+
Thus we may write
iF + + + et
— 8 [ -S'g sw%i] -S'dx D g S0
@ ST dee ¢ = (M et (62)

so that Tl becomes

— S—&A —N;_d?!;_ =0

(e D)t [rme T v des?) e

(R =

) %
i ]5/41(5/7&)&&*)
(63)

The operators in (63) are in the correct order so that no

other ordering must be done. We evaluate it as follows:

SR
e e L )T}ﬁﬁf)fJ4UM;J4*’e'4C%€ m'"z( N-

\fﬁ 2
(64)
‘y —AI*&JQ" [ - 4
+0,4 4 )9 Ol4ls )O 1t - )J(a"-s*)é(ﬂ&(nljé_(/ﬂ")]

%
T

where we have introduced new variables_4ﬂ 74;
We note that the only operators in (64), besides & f) 3

are the theee delta function terms so that, recognizing



o
that the exponential derivative factors operate on the

last three c-number delta functions, we get
i = él- r.T " /[ /
‘i ‘ (?_t' 2 >f0’4c{)7"jor4* (’Uﬂ 7’/‘J+d49¢ Af)a\fﬂﬁ/pt‘l)cv/nf 771')5/4’14&)
7}‘[THJCS(4L—S_J O (M~ M) O(4%_ S+%]

:,( L g’ JJ41J”/J4 e nl+.4¢,4*tj5fﬂaﬂgﬁ -7.')

; / 6
S [er= 4% ), Bt ot 2% 1) S

(ST )5 34T ) L lan, 24 )

where we have called ¥, = V-7,

Using the same sort of manipulations, we may calculate

the contributions of the following three terms:

Ty (- 6] Flens] o5 Bifn -4, )P1an,
.+[ A)P WS
Ty = (6o D Tnfrond e (e 2) I dETaR, €

(67)
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—Ua _(%f'_g) Tr[(ﬂf) /1/156]

(68)
G e
sae et Yos dund y). Lol st iun'
We next consider the fifth term in (47):
- ¢
[ [U‘ﬁf) _Z_! ([2><r{)J. ) (!l?(Z.‘}J-] s
=

We use the displacement operation (56a)to write it as

4 . - N, I, - ' ,
T Lt [(rm‘z (12>¢n). e e A(..><LI)J§(AJJWJ7A"}

Y=

(70)

Using the definitions (36) and (37), we write the exponential
displacement factors out explicitly: the quantities within

the brackets of (70) become
v,

= S (i2xit). -, D (125¢a)) -gh<2 (11><al)
[lu]: O-‘(f'} Z(l)_){I!J‘; e Ara( ffe Haﬁ l,&_ 77 =

& (1142

=

n _ 974 (ll)(”)ﬂ _,ay;z ((2><ei _Oa¥ (H)(?_IJP
- ()\_ft) 2 (Il?d.'.'}‘ 77_8 /T_e J / e {,l|>4z|)u‘-
- J= I J P § r

(L)
N Q) (2321] ~ O, @>¢2] -, (15¢2)

= ey F T;, Z [u‘z‘m;Q [ e [,><af]

r#\j v,‘:l‘ J

where

7 Z’ Hd@ il 5}”2_ (27<2) -..d,ﬁ*{l%tz,j
=/ € £
/ = £ (72)
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We have used the fact that the atomic operators for
different atoms commute so that all terms for P ¥ J can
be pulled through the sum over j. The notation [ ' ]P
denotes the operator expression within the brackets refers

to the Fth atom. We next consider

_,‘1?{?_/'6)”1 fi)'@f()nL

=t [ 2
¢ g (73)

in which the operators refer to a single atom. By
expanding the exponential operators explicitly we see that
higher powers of 122<2| are equal to 22 42| s Lor
example

J 2

i oz 2 S AR T N O

so that we have

-d”z, n, d”z.
e [1 Flzr<2 (e -11Jj1|>6a/[1+fzxzde ,,)]':e [1><2( (7U4)

Therefore
- o (22¢1| ~0M, 122¢2) — 24 liv¢ay -y 122 —M, [2)
DZ?<’re € = M><&{]':!€ L3 “IIZRWI@ e
J
—chA (192
I15¢e (€
~J A3/ N, (25« N, 129¢2) /
= 7 2| 2 A Y ¢
= [é’:‘ 1z7¢q1 e 92 @ e * e-dﬁ fl><uJ.

o
75 )

d”?_ _c) R5¢ —dn (2>ex ) (1
S [e % II;J<LI€ } Ch s <2{]

J.

1 i‘ -dy 12941 Ny _dn, 125¢x1 _ X (15<2
u—e 'i)(l"f?(&.' e e € -
J
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We may use (75) in (71) and recognize that since the product
over P does not include p:J' , We may recombine the

exponentlal operators and get

w0 £ x o
él\fz_ me~s e ]5/4)5'(7,1}0{4#)

C dy
(76

M, 4
,‘"; /p [G‘(‘fje 'Uz

The operators in (76) are in the chosen order so that,

using a manipulation as in (64) and (65), we obtain the

final result:
on, - p )
= 12

e R ) (77)

The calculation of the last term in (47) is quite

complicated due to the reordering of the operators:
(78)

v
To< G Te T 3 (mar; § Qs

Using the displacement operation (56) and the factorization

as done in (71), this can be written as

~dgirocil  — Jn, #2352
£ (79)

[ll)(b{@
{

~
i i i
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e laz
e $ ;ma:] O (4) Si,) 5ta*)
;

By expansion of the exponential and orthogonality of the

states
fool Nasdi
Zd
_ + d [2>¢

é = L = g 12ecd (80)

so that we may calculate

o, 1224 -, [25¢1] 2

81
C (1<) € = D2 —[12411d, +12><21d, ‘%Jzy(«f)

Doing a similar treatment of the term on the right end of

(79) we obtain the following expression for Tg :

i L T L P =5 -, (2741
le b "{VV%JET'/F ;Z [ i (|17<a{f!|>01d4
r J=!
_ On, 12522
+|27<L{dg-—Q:iz><M)e i (Il?(!lp[z7<z;44#
(82)
= ey dﬂa(
_ o« l19<2]
— &;x }f‘?(aQe o ]'
7

It is clear that a total of sixteen terms result from
multiplying out the factors in the brackets of (82). We
have 1ndicated the methods used to reorder the operator

products and calculate the trace over §(t). For
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completeness we llst the results for those terms indi-
vidually in Appendix V

Here we quote the final result
RerSvhimeSenbilre Nt eqam

-9hz —-@nL 2
'é - 2 € Ui € { a

dade?
3
o v
+ 4 + 2
deoda*?

T dﬁ44J*4*)+g N

(83)
L'r n —
ii,fl eﬁ)zwl } ll_Pldﬂg!4ff)
Pada”

Before comblnlng the six terms computed, we rewrlte

L

slightly the following expressions which appear in T

5 and
o,

on, o
e e (€M
-on, _on
5 7“ A (6 :._[) n‘f7 o L [T
—on, —INy b
e 174#4* = e ll)ﬁﬁ%ﬁﬂ* + [ &5 4
~om, ey
e [7 dg/é = (e

Using these expressions in T

and T6’ and defining

(84)

we combine the six terms to get the following equation of

motion for the magnetization distribution function:



J ‘
I {4,”1,’4#)f) =1 Ja* (12 Fiwa ) 4% fi‘(ﬂz lw,) 4
oA
~dn e dﬂz 92
fale st Gty vl C G Yt 50 Y
J o ) i
J”E*(e —')'4+i,(€ —1) T <
3 (85)
0 3
+ e ,A’F{_ 2 =
Jé e S
i INe
+ _4—&—————2 e ! J’T)qz } _p (/4,’??2;4‘.’{-)
Jatda”

This eguation evidently couples the transverse components
of the magnetization~4V4# to the upper state population (which
is clearly proportional to the longitudinal magnetization).
Its complication precludes any slimple Ereatment, so instead
of working with the full dlstributicon fumnetion, we shall
integrate over the transverse components in (85) to obtain
anseguatlion’ fopttheldd shributioniunebiionSo P the Upper
state population alone. Assuming that F[) (; , and ¥z

are independent of 4 and 4% , we obtailn

p(7, ¢

I

[dodat B (o n, 0%
(86)

Il

—dn, My
g(e - )rn, + (e =N 7/12_}@{?4,_,1‘)

Since the other terms involve derivatives with respect to

the transverse variables, they may be immediately integrated.
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We have assumed that the distribution function vanishes
when evaluated at the limits of integration for the transverse
components (which lie at infinity).

It may be noted that (86) might have been obtained

directly from (35) if we had defined

P (n,e)= Tere O00,- e e

and proceeded to compute its equation of motion using the
techniques described above. In this way we of course lose
all information about the transverse components, and
furthermore it is not a priori obvious that (35), which does
involve three basic operators, is of a form such that using
a one variable distribution function as (87) will result
in an equation in terms of only that single variable.

In view of our original definition of the atomic
variables in (31), we may define the (dimensionless)
longitudinal component of the magnetization by

N% '
My = - gd :E(N

4) =

- N, ) (87)

We shall denote by m the c-number variable corresponding

to the operator M ;. Thus
me H(N-W) ;D - O, (88)

and (86) yields
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(89)
e o05 - e /5] Jeine

This then 1s the final form of the equation of motion for

the magnetization distribution function.
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Part B. BSeeficen FEIL. Critical Fluetuzstions

A useful approximation to the full equation of motion
(89) for the longitudinal component of the magnetization
may be made as follows: there is ample evidence 43,44, 45
that large fluctuations exist in the magnetigzation for
temperatures near the Curie temperature Tc above which the
system is paramagnetic. This means that near Tc the Dunetdon
P(m) of (89) should be a relatively slowly varying

function of WM so as to increase the fluctuations, which

the mean square fluctuation

2 2
10 s one measure. Therefore, in this region we expect

that the higher order derivatives, obtained by expanding
the exponential operators in (89), will rapidly become
smaller than the lowest order terms. It is thus reasonable
to approximate the complete equation by retaining only the
lowest order terms.

Expanding the exponential factors up to second

derivatives only, we obtain from (89)

Bomt) = { [ (Tm=Eim) + (Timr e 5 O ]
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Equations of the form

0 ] 0 i
ol (spen ?‘Jxﬁ b B F (% ¢]

2t (92)
| ) he | .

are referred to as Fokker-Planck equations with drift
coefficient A and diffusion coefficient B. It is seen

that our equation is of this general type, but with non-

constant drift and diffusion coefficients. From the definition
<mg)> = fcfmvmff”‘at) (93)

we obtain from equation (91) the equation of motion for the

average magnetization:

<)4/1.H7J> ” <%f [[’;{m)_ﬁ(mﬂ> —<[I,‘(MI+E(MJ]M> (ok)

Here we have integrated by parts and assumed that the
distribution function and its derivative vanish at the
extremepilimite ot M ntesralbion .

To proceed further we must know what the functions
[ and [, are. Although, as stated in (27) and
demonstrated in Appendix IV, the ratio of these quantities
is known from the general forms (25) and (26), their explicit
forms depend upon the details of the reservolr chosen to
represent the thermal bath to which the ferromagnetic spin

system is coupled. We therefore introduce two specific

reservolr models and study the dynamical properties of the
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spin system as it interacts with each one in turn.

(a) We first consider the reservoir to be composed of an
infinite array of harmonic oscillators of a broad distribution
of frequencies whose density operator is the canonical
ensemble thermal equilibrium density operator. This reservoilr
coincides with that chosen in Part A, Section III above.
Thus, we identify the reservoir operators CZ{ ; C): of

(4) with the boson absorbtion and creation operators bj %

bﬁ; which obey the commutation relations

[ by, lﬁf’]: Fian MU’%"]: [&%, ”j] 5 (95)

Thus the reservolir Hamiltonian 1is

H, = Z hu: bt L e
J

Taking the thermal equilibrium reservoir density operator

(16) and the general formula (25) for [, , we have

t
EEW”%‘?KDjﬁJ<ZCL“/ZC¢/Fﬁ>€'%’H%U
-z o< /L

‘ i gl

T e e e e e

: : ‘ (97)

; flor— )t~
Sl geeLiunmt Gl
~ < J

¢
g ope [H' 2 (71w +1] €

J
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where

~
_ By
N W) = [e % 1] (98)

is the average thermal occupation number of phonons in the
jth mode. We assume that the number of degrees of freedom
(modes) of the reservoir is large enough to enable us to
convert the sum in (97) into an integral by means of a
density of states function JZH%J
il gy = ) (6 ¢
| o Cf Wy = ) (-
EC(W;;J = ffa ﬁe fclfrfc/&{)'ﬂ(%-) [M(L.JJ\)i—lj e
—~ 2 o}
e . CUult-¢t')
32-}{@f f{uﬁ&)ﬂ(w;,“li}[”/wu‘“)*'j]e
e (99)
* =7
31}@ fgj}{{fiqﬂ{wll"ull []-/I_{W;r"u}'f‘jje
Yo -e#

(-t

Arguing that the density of states funcetion and the thermal
occupation number are slowly varying functions of their
arguments compared to the exponential function in (99), we
approximately calculate the integral by extracting those
two functions from under the integral sign - evaluated at

the point of least rapid variation of the exponential,
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WhillehNecelirs o P =0

i ea
I; {WZI ) = 231 KQ —fﬂb{-f fg((ﬂ;,] [ﬁ(b/;;/+jj fd:«etuff._f—!]

4‘2ﬁgzﬂ”wlq [WMAJ+1J

(100)
= }441 [ﬁw“Uf)¢1 ]

(@)
where we denote by 7" the spontaneous phonon emission rate.

We obtain the {{ in a similar calculation from its

defining relation (26):

I iPay )

1]

4o B —
297 Re [ &' <2 0bits T 0061y > ¢ M
— A X p

(!

i S A — lwy [E-E]
2 A [t n[{(m pribrelis e e 5" 1
- d :

t
1 [ (ot f Lt e
- 230 Re [ 2 <upip e SR e

(101)

il

: f i N Ul =ty [t 2]
sz Rp waf IJUJJ- JZ{wJ.J niw:) £
§ 4]

i\l

€ %
P (- ¢t
24% R J I ST (wu) Fwn) [ e S

If

c?'ﬁ"ﬁl jszqu ﬁ{wllj

1 A Y
- Y V'[w:q)
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We may now return to the equation of motion for the
magnetization distribution function. However, first we
note that the molecular field approximation yields the
following connection between the two level energy separation
%lﬂai and the magnetization:

ﬁwlli J/“(HoJ'XM) 102

where Hy  1g thel uniform!external field, A is the Weiss
internal field constant, and M 1is the (correctly dimensioned)

magnetization given by

M = "—7_—1-’;_ pi (103)

where A is the magnetlic moment of each spin and V is the

volume of the system. Using these relations in (91) we

obtain
* o o fa) 7
Q( J(M,LLJ= gd_ﬁJ/LF f% + CDTZ«I[%M(HU%JM)]]
. (104)
0

-+

4 2y Na
e =X Gt [pm a0 )] - M]} Pl e

We have used (98) to obtain
rl_((/‘)l() & E [UJ;.,) S )

B : (105)
J, (Wai) + E(wm) = C@m{;{ﬂ*&);,]
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From (104) we see that the mean magnetization satisfies
the equation of motion

J M
f = i e Coll [am (H + A (M (£2>
;h) JE <L 2 i S )y [ﬂ ( _1106)

where we have neglected fluctuation effects 1n this equation
by writing the average of a product of M(t) factors as the
product of the average value M #)> . We note at once
that the steady state (time independent) solution of (131)
yields the molecular field equation of state:

N

o= T - > La&!ﬁﬂ/%*)<M”]

(10T)
Ny

Uy = o Tank [ﬂ,a (Ho + 2 <M>]

Equation (106) is difficult to solve exactly, but if
we assume that the magnetization's time rate of change is
small, as it may be for small perturbations away from the
equilibrium value given by (107), and that the equilibrium
value itself 1is small compared to the saturation value
(as it would be at temperatures near TC), we may obtain an

approximate solution. Equation (106) may be rewritten as

LM L€)>

Touh [pa (ot ) <00y ] = ————— < (108)
= — {MED

T oy e
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Defining dimensionless variables by

s ) Mo WSy
XKL= (pasv) " 7 A (wasv) '
(109)
where the transition temperature TC is defined by
_ AN
Mg el = r—jij—— (110)

and using the following expansion of the inverse hyperbolic

tangent function for small values of its argument

). 3
e, %— + O(u’| (111

we obtain from (108)

Tihix) 2 x+ 1 x4 xa (112)
where
L 2 xper (113)
,d = gﬁ) )
B’m df

and we have kept only the lowest order term in the product
of the two small quantities X and A . Setting the external
field to zero and solving for 4 , we find that the resulting

equation may be readily integrated to give

J% X
4 ~f
= f“lf=J?~Tmb s
7 -1 d% T

(T30 LRyt
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< X _
SO e R
V3(T-1) V3 (t=1) =1

Xo a
) 7“&«(/\[—“ D/{/;.Lj

TR T T e (114)

1 e DE?%%EV wmA[JrETYMId]

Here X, is determined via (109) from the initial value of
the magnetization <ﬁ4[01> , and we have assumed that el
is a constant. Note that (114) reduces to the correct
form (as obtained by expanding the molecular field equation
of state (107) near Tc) for t > +0o0

Returning to (104), which we write in terms of the

dimensionless wvariables (109) as

éMQXﬁ): { jiﬁuu Kaﬂaﬁ1u+xﬂ —j)

NooIdxE

= a la)
Slee b “{w P J}P (115)

we may easily obtain its steady state (time independent)
solution. Calling the drift and diffusion coefficients
of (115) A and B respectively, as in (92), we see that the

(a)
steady-state solution [ (x) satisfies
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(a)

(& o . é (a el
[/-'1/9 {z()]'{--—- [Gr" /3 S [_A_P o er GE(xillm

We note that the Fokker-Planck equation in general has the

form of a conservation of probability law:

P 2
st ox 7° ek

Here J is a probabllity current. At steady state, provided

we are restricted to a finite range of the wvariable

(in our case |[X[| & e ), we must choose J=0 in order
he

not to violate this general conservation requirement

Thus, the integration constant from (116) must vanish and

we have
Lo ij o
I (118)
where
(a)
Uixls B P x) (119)

Changing variables to

W) = f*ﬁ[’ﬁ, Gu )4 j Ul (120)

we find upon substitution into (118) that it is convenient

to ety K= —1 and so obtain the steady-state solution:
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A(x')
) ¢ | SOE
|y 6 ey e"FHJ* 6(x) ]

(L21)

- X

N6 |z [y X e frne 4] -1

s - s S e , (122)
C@ﬂ«[’c{wﬂ] —x 0 [t (hd)] = £

where C 1s a normalization constant (depending upon N .

i » and T ). We note that we may write (122) in the form

X
P Y Cex/ﬂ—/\fg fa/x’ e
]

Coﬂx['c‘(!/w ;()f_ %

- l@ ]m[ﬁ’ﬁ” (Coﬂt W= x)]

Since N 1s an extremely large number ( N~ p?? Vol il

(123)

a reasonable approximation to neglect the second term in
(1L48) in comparison with the first, so we take as the

steady-state solution to (115)

%
o< Conp - [is Jebbti] 2
0 oM [T(h+)] - %

We note that the first derivative of this function
vanishes at points X= X, where X satlsfies the molecular
field equation of state (107). Because of the great
numerical value of N, the peak of the maximum 1s extremely

sharp for low temperatures. However, since we neglected
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higher derivatives in obtaining our Fokker-Planck equation,

this solution is not expected to have any validity in

that region where it is so sharply peaked. However, for
temperatures near Tc (T~ 1 ), we may expand the

solution (124) for small x (since the peak of the distribution
geeurs at the molecular field value of x, whieh' will be

small near TC) to obtaln (for zero external field)

(a)

e
Py = C € xp ‘AJZQXI<[UTJ£+ #{PTI+§TJ]§j)

[ [ Ll =t i wm Y
_ - = e — Rt
= Cexp{ T C L=l L,]
where
Kg
Ky = T3+3TH—T}IA' d = =
el : 3N Zu
Ny (126)
: : B, 47 :
The thermodynamic theory of fluctuations predicts

that the probability density for the fluctuations of a
thermodynamic variable W T g e Ny
P(7)
2 2200 ca aet (127)

where ¢HW) is the appropriate thermodynamic potential for
the situation considered. Besldes having this general
form, (125) also has the form for the free energy which the

Landau theory of a second order phase transition 18 predicts:
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namely, Landau theory predicts that near such a phase

transition ¢(%) 1is of the form

(#(WJ = Q} + &(T‘J1J72'+ 5—74 (128)

where Y is the order parameter of the transition. That S
W is a thermodynamic variable which is assumed to vanish
above the transition temperature TC (corresponding to the
disordered state) and be non-zero below T, (in the ordered
state). In the case of a ferromagnet the order parameter
is the magnetic moment ™ . The precise values of the
constants = and 4 (&« is independent of temperature while
4 may be a function of temperature) are not predilcted
by the Landau theory.

However, 1n fact the constants ¢ and d are preclsely
those which come from expanding the free energy which leads
one to the molecular field equation of state. The appro-
priate free energy is that obtained from the Bragg-Williams i
approximation, which corresponds to making a mean field
approximation. Thus, the solution of the Fokker-Planck
equation (104), or (115), for the distribution function of
the magnetization yields the correct free energy of the
system as its steady-state value in the region where this
approximation to the exact equation (89) is expected to be

valid.
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(b) We turn next to a different model for the thermal
reservolr with which the ferromagnetie system is in contaect.
For the reservoir we take an assembly of two level systems
possessing a broad distribution of energy level splittings

1 W . The reservoir Hamiltonian P%K now becomes

z
=
LJR ;; Wi = (129)

where the spin one half angular momentum operators of the

reservolr obey the usual commutation relations

+

[F /9,? |7 = d A (130)

< 5

| 3 /?i] = O Ay (131)

N - X - oV
Al B opilo g K= A= d8 (132)

<

Once again it is convenient to relate these to atomic

operators via

(1< ) (133)

(

4% = peoan), S

K

where the energies of the two states obey

62(*‘) i é; (k) = tuk >0 (134)
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+
We thus identify the reservoir operators Oo(, Oy . of
~ +
(4) with /QK 5 /QK and take the reservoir density operator

£ (He ) to be

e (3 Hr {TPR e ﬂ”x]

I

S (He

(135)
i gl exngﬂ[éf“’(“x’”x + Gl(kj(uquKH

{l

K

where

ek tel ~ A€ (k)
bk ve !l (136)

Thus, from (25) we may calculate [, :

¢
r 2 ~  —fw t + Cldpr £ [y (€=t
i‘l{wm):iaz&ﬂf (%/S’Ke 2Ae Ok

<!

al

¢
- ;(wlf-ak =
zﬁl&_jf’%@?k/f:)e S

(137)

oz
!'l{uz.l“w.tc (¢!
zjz&jw D <(|(><r|)K>e e
_on K

(l

t
. Wy~ ) [E-¢)
= 23t Re fﬁ' 2 Vgt €
) <

£ 2J
. "232 e J'J/{'{ JJWK Sw, ) Ny lwkl €

(W ~t, ) (¢ ¢
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where

_AE ()
n ) e -
(Wi ) = =L e
! —BE(K)  —a¢€, (i) I K
¢ - i [+ e (138)

Once again assuming that the reservolr density of states
LOoTom. and ., (wi ) are slowly varying in comparison

with the exponential function in (137), we obtailn

[o (wa] = &mg* Slws) 7, (ws)
(139)
Sek T b

(b
where ) ’ is the spontaneous decay rate.

In a similar fashion we may obtain E from (26):

-e .
]_;(W.;u) = ;jz R{ch//%lg </gi /.?,: > eﬂf‘d«-%r)ff—f)

- ; L (e € o Lpe e S e~¢')
A R J LT A an e
= E & (140)

o w:—; )f‘f'j

€ (1
,Zjl %J‘HJ % <([27<z{)K> e

3 Kace o ke ~ 0oy IE=E1)

= 271’ /QQ f&{jJWrc Q{&JKJW?_“”KJQ
— 2 (6]
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where
ﬁﬂe;m
é 7l
- A o8
Py ey wanEpiacin 1B e — g
1 _AE(K) <~ e (K) i
s o |+ € e
Thus we obtain from (140)
!-{W;;) = lnj’zﬂ(w;‘)-ﬁl{wg_,)
[
e pithepinng, o (142)

Returning to the general eguation of motien for the

magnetization distribution function (91), we obtain for this

spin reservoir, using (139) and (142) and the molecular

field approximation (102) for h Waq

B0 - [ 5 [ = 2 i et ]

() T M (143)
7 % = S Fanly [[M(%HM)]] Ly )

P
A @
+ — —
v oM™
where we have used (103) to define the magnetization M
and the results for this reservoir
IT(W::} — Mo (2 ) = = Fash [;ﬁﬁ“{u]
(144)



T

f;(W21) +[:(uaa)= 1 | (145)

We see at once from (143) that the equation of motion

for the average magnetization is given for this case by

L2 e = /—Uﬁ ’rmA[p/u(HOHzM(w] -l

yb) It (146)
where we have neglected fluctuation effects in this mean
equation of motion by writing the average of a product of
factors of M(t) as the product of the average value
LME)> . We see immediately that the steady state solution
of (146) is the molecular field equation of state (107).
Therefore, although the equation of motion for the average
magnetization for this thermal reservoir is different from
the corresponding equation of motion for the phonon reservoilr,
equation (106), both equations have the same steady-state
solution.

In terms of the dimensionless variables X ,ltand iz
defined by (109), the Fokker-Planck equation (143) may be

written

é{b}(*ré): {BJQJ{X_ Faely fz(u+x)1]

8 (b )
; 9 b’””)[/_ xmq&[r(mx;]ﬂPMH (L4T)

1L
N oIx*
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The steady-state solution, from (121), is therefore
L T
_Qfﬁx): AICZF' i exp _A/jyx./x—'mwﬁ[f(h+xq ]

|- X fam b (hx)] [ % fanbfT (bt )]
(148)

where C is a normalization constant. We write (148) in

the form

_Q fx) = C €)‘(I'a e v/J |
o | — x te-l ﬁ(“+i@

~,—{3 lm[b/(b)@_“ x fanls ffrwrup]}

Since N is such an enormous number (~41023), we may neglect

)i—;_?"&»&[’t{hq-,})f

Lo

the second term in comparison to the first one in (149).
Thus, we take as the steady-state solution to the equation
of motion of the maghetization distribution function,

equation (143) or (147),

X

Y%= Cexp “N]c{xf(xe Sl ]
: J

= Tl [’(.(f't"fll

(150)

We note that, although the equations of motion for
the magnetilzation distribution function are different for
the two types of reservoirs, the steady-state solutions

are in fact the same, as comparison of (150) with (124)



e

immediately shows. Thus, although the time-dependent
properties of the ferromagnetic spin system depend upon

the detailed nature of the thermal reservolr with which it
is in contact, the steady-state properties are the same.
The mean magnetization at steady-state for both types of
reservolrs satisfies the molecular field equation of state,
and the steady-state magnetization distributions agree with
the Landau form of the magnetic free energy for temperatures
near the Curie temperature, and identically with the
Bragg-Williams free energy when 1t 1s approximated near the
transltion temperature.

If one could show that the dielectric constant fluctu-
ations in our ferromagnetic model were proportional to the
magnetization fluctuations (as one might expect, for example,
in thinking of the Raman scattering of light by spin flip
processes - light being down-shifted in frequency and a
glngle gplin' flipped from +11 > Be 423> and the: converse
process for the anti-Stokes component - in which the
Stokes intensity would be proportional to the average
number of spins in state |1> while the anti-Stokes
intensity would be proportional to the average number of
spins in |2)> , both average values expressable in terms of
the magnetization), one would not expect that the scattered
light would have (Gaussian statistics at temperatures near
TC as the distributions for the magnetization deviate from

the Gaussian form.
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Part B. Sectlon IV. Discrete Representation and Bragg-

Williams Free Energy

As we have noted earlier, exponential operators such
gs those found 1n the full eguatlion of motien for the
magnetization distribution function, equation (89), are in
effect displacement operators acting on the functions to
their right. Thus, we may let the displacement operators
in (89) act on the functions of the variable m that are
placed on their right side. Noting that these include the
damping functions Fi(vn) and f;(vw), and the factor m
itself as well as P(w, ¢ ) we carry out the displacements

to get

P (mt)= T (m-1) [g —(M*UJ p{m—gﬁ) _fz(m]{%‘MJf%mﬁJ

Ty (& #m ] Pomt HTW-')H *MH]PMH,H (151)

{

We have indicated explicitly that F£ and [; depend on the
variable m, since, from their definitions (25) and (26),
they are shown to depend on the energy difference between
the  two spin states. This splitting in twen, ¥vla our
molecular field approximation to the Ising Hamiltonian in
(9) depends upon the effective field at the spin site and
so upon the resultant field produced by all of the aligned
magnetic moments as well as the external fileld He . The
displacement operators in (89) thus act on [, and (, also

and yield (151).



-121-

The solution of (151) corresponding to steady-state

¢ L(my independent of time) may easily be found to be

Pomi [ (m) = m )
P (m-1) M (m) e
(152a)
n
+f ~ - m
Pim1 £ Afiifg, Z.j;___,_fg ] (152b)
Prw) [ (m+1) Mot om ol

where (152a) corresponds to the balance of the first and
third terms of (151) and (152b) to the balance of the
second and fourth terms. It is seen that (152a) and (152b)
arenddentieal 1lnm fact.

We imagine that m is a discrete variable which, by

(88) and the fixed total number of spins, obeys the in-

equality

A
3
In
"

Pz

(153

We first consider the case m>»0. Thus, (152a) gives

/ﬂjm+ﬁw%”g)
Pomy = ¢

__ZQt;!_] F(m~i)

N
Z
N
AR

(154)

where we have used the detailed balance relation (27)

connecting [ and [ :



where P is the value of P ( m
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[E(m~m-—E(M}]
- éffg

(155)
where the energy of the system E(m) is found from the

\
molecular field approximation to the Ising Hamiltonian to
be

Ew) =l i B A e

(156)

Here we have for simplicity taken the exchange energy Ji

J
of (2) to be independent of 1 and j and equal to J.

Thus, using (154) repeatedly we obtain

ﬂ[Jm+wH&—§] ﬁ[JW“UhM%“%;]
& e

s
1

~ (w~t) e N
Z j [ : k Z— . JZ p
n U, o
ﬁ L T & 1 g + 1

s3]
€

= o0 ). Thus

_PTIZN) 3 )m )l G5 1) [ ][4

b I

we thus obtain
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Lprmtopunm Y]] ]2
Q(M}: 6 ” N 0(157)
[ bl e |

2

If we imagine that m <0, we may use (152b) to get

Q{M): €
A
2

Al Tme) b, - I ] ey
— ey F{w‘\ti)
(158)

where we have used

] €—ﬂ[5/1«w]- E/»u—l}]_ éﬂ[j{mw)+ﬂﬁ_ —:{j

[, (m+!)
o (m) (159)
Thus :
~ B[ Timt) sur, - % ] -p [Tmiz )i - Z 7
S 3] Jio UK, 7
(m) = € € ]... € [ ]
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Since m < 0 we have

- O=1{~2 co={|ml+ - Ho#—:r
N e B e

B o] [ ]l
pees—se anuputed fhoa”ihe B

i
[£n] - 5 e 2] )1 (£
Usil’lg Wil
PR L m(med]
N=o < T o Tz
we have i .
§p7m2+pﬂﬁﬁm M :
p(wz) e [[:Jj A Mk

[ -w]l [5om]]

Thus, from (157) and (160) we have the complete solution.
The constant f{ (which is independent of m but will depend
on the external field H, and the temperature ﬁ ) can be

obtained from the normalization requirement:

(161)
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Using either solution (157) or (160), 1f we compute

R I, y
Fom) - F, ; b £ im) e

we find that F(m) is exactly the free energy of an Ising

model ferromagnet as computed from the Bragg-Williams

method A (we include all terms independent of m in F, ).
We note that the conventional Ising Hamiltonian

is written as a function of varlables that assume only the

I+

values 34

N N
(
L, == 200 T 2 us o
e - 1'“":( : =] : (163)
;-:ed'
Our Hamiltonian (2) is written in terms of spin one half
2
angular momentum operators 5} which have eigenvalues
+ 1/2. Thus, our energy differs by a constant factor
from the conventional model (163): that is, for example
in the state ]O) where all of the spins are perfectly

. z
aligned ( O\Z =T, a1 IO RAE oS La el .

our energy (in the molecular field approximation) is

ZolHIB>'= ~5 J(5 )[4 )~ (X (164)

while the energy of (102) is

LolHylo) = =L T W)WV -t Hy (W) (165)

L
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Thus, to compare our results with the Bragg-Williams theory
of the conventional Ising model (163), we must change our

energies E(m) from (156) to

Ef/m?:“![—éj””zj*if“/”%m] (166)

Noting that E(m) 1s precisely the factor which enters into
the solutions (157) and (160) for f?(m), we substitute
E'(m) in these expressions and then compute the free energy

F(m) given by (162) to be

Flm) = = 2wt =i+ L (10 2 )1
(167 )
S ARG )

Noting that our variable m still corresponds to a spin one
half system, we may change variables to model a two level

system with arbitrary value M of magnetic moment by defining

M= 2puom= (7 =) (168)

Defining a dimensionless variable x as the ratio of M to

its saturation value NV( , we obtain from (167)

F(X) =~ TW A s Hox e NKGT 2L (140) b i (140)]
¥ (169)

b5 (%) )m[a(w]}



S

M oA
N

X = s (170)

Minimizing the free energy F(x) with respect to x by

setting

OF (X1 s
P X (171)

and solving for x we obtain the conventional molecular

fhield eguatich of state:

3 NT
A= 2o o [ﬂfi;r . b (%)J

(1T2)

Had we been slightly more careful in evaluating the energy
(166) by taking each spin to interact with only Z of its
neighbors instead of all N of them, we would have observed
the factor (NMNJ ) in (172) to be changed to ( ZJ ).
Referring to (169), if we set H, =2 and assume
that x ££ 1, we may expand the logarithymic factors in
order to approximate the expression. Thus, keeping fterms

up to the fourth degree, we get

- ]r o 2 e MK'ng‘{
I:(K) = _z?UKGT’ JN )X i i
DR NS M, WKy 1 MY
Tt R S W
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using the definition (172) for %x. If we make the i1denti-=

fication

which in view of the definition (110) of T relates the
¢

Weiss internal field constant } fo the exchange energy J

via
2

1/“:7

e

we see that the Bragg-Williams free energy becomes, near

T Z
3 M 4
& F(nﬂ) = Jjﬁl ) (T-T¢ ) — +({f§§___) L
Nur ~ 3:’\)’3//'!" i)
MZ M"‘i’
CNE s L e

which 1s exactly like the expression found by expanding the
solutions of the Fokker-Planck equations near Tc’ equation
(125) (the constant d differs negligibly from the constant
druof (B2 lhfarn =) 4

Although we have not obtained the complete time-
dependent solution of the equation of motion of the
magnetization distribution function, equation (151), we may

consider the equation for the mean magnetization:

o y

i) = ZVMP.(W.&) ey i

o~

G (173)

i
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Using the equation of motion (151) we may easily evaluate
the various terms implied by (173). For example
w

W ey o 4 y
P W.YT;[Z ( )JE(MI)P(W;’,%)
= ) [%—M] (W) Pru, ¢)
Vi S
s (174)
- Z(M”)[,{'”]E (W) Plu,¢

L) [E=m] T (m) >
Similarly evaluating the other three terms we get

J‘Z:——<WI[’V-

A DA PRGN

(v}
(1

- < (Bow )

;) >

< [ -f}{§ MMI {T(m/>

Hence, we obtain from (173)

‘[:! o

Lmigd = £ <4 f;(mi—!j(w) = [Qmqu]}

(LT5)

Thus we see that the equation of motion (94) of the average

magnetization deduced from the Fokker-Planck equation for

the distribution function agrees exactly with the equation
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for the mean motion (175) which followed from the complete
equation of motion for the distribution function.

We have therefore shown that the steady state solution
of the full equation of motion for the magnetization
distribution function, equation (89), yields the same free
energy (for all temperatures) as the Bragg-Williams
approximation. We note that nowhere in our equation of
motion method did we have to use any of the statistical
counting procedures usually employed in the derivation of

the Bragg-Williams free energy.
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CONCLUSION

The results of our studies of the statistical properties
of light scattered inelastically by material systems in
Part A of this work have indicated that such systems as
are well represented by our models would exhibit scattered
light having Gaussian statistical properties. We have
shown that under the general conditions of a diagonal,
factorizable density matrix, the first and second order
temporal correlation functions of the electric field of a
radiation field are related such that the latter 1is
essentially determined by the former. In terms of freguenciles,
the intensity spectrum is the convolution of the amplitude
spectrum with itself and therefore does not contain more
information than is obtained by measuring the power spectrum
of the light. We found that the radiation density matrix for
Raman scattered light did satisfy the two general conditions,
and that the Gaussian factorigation relation between the
amplitude and intensity spectrum of light scattered by
density fluctuations also held. In these studies we focussed
our attention on a single component of the inelastically
scattered light and neglected components at far different
frequencies which may be present in the light scattered by
a real system. We also made extensive use of density
operator techniques to study the temporal evolution of the

modes of interest to us, treating the effects of all



-132-

unobserved degrees of freedom as reservoirs with which
those modes Iinteracted.

The possible breakdown of thermodynamic fluctuation
theory, which generally predicts Gaussian stat}stics for
the fluctuations of a material system, near a phase transition
critical polint led us to consider & Heisenberg-Ising model
of a ferromagnet in Part B. We obtained equations of
motion for the density operator of the system by assuming
that it was coupled to a larger system which served as a
thermal reservoir. Using technigues developed originally
to treat laser problems, we transcribed the operator equations
into a c-number quasiprobability density function formalism
which could be treated by algebraic methods. Approximating
the magnetic interactions of the system by a molecular
field, we found that near the Curie temperature the dynamical
evolution of the magnetization could be described by an
equation of the Fokker-Planck type with nonlinear drift and
diffusion coefficients. The specific form of the equation
depended upon detalls of the thermal reservoir system to
which the ferromagnet was coupled, but the steady state
solutions for the twe types of reservolrs consldered 1in
detalil were identical and yielded the Landau form for the
magnetic free energy. It was then demonstrated that the
exact steady-state solution of the equation of motion of
the magnetization distribution function ylelded the

Bragg-Williams free energy at all temperatures and the
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48

molecular field equation of state Thus, wWe have

obtained the free energy of a ferromagnetic system starting
with microscopic Hamiltonian dynamics and using a density
operator technique which at no point involved the statistical
counting procedures usually encountered in derivations of

the Bragg-Williams approximation and which also ylelded

equations for the temporal evolution of the system through

nonequilibrium states toward thermal equilibrium.
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Appendix I. Gaussian Factorization Relation

The first order temporal correlation function G(”(t,t')
and the second order temporal correlation function
G{z)(t,t'; t',t) are defined by (1.8) and (1.9% as

el = Tr {(Ef'(%)é”"“(t’)}

(I.1)

(;m(f,fﬂ'é m i {fE(_J(wa[f'}fW/C")fﬁff}} (1.2)

For a stationary radiation field the density operator
is time independent and the field operators may be

expanded in free-field normal modes (1.5):

i
< - g i . =i t
£ {f“,f}: LZ(:'E’%WKJ a k M!(“'}€ (L.38)

K

EMIEH :[EwﬁﬁJT— (I.3b)

The mode functions 11Kfﬁ) are assumed to form a complete
orthonormal set of functions and the operators a“; d%k
obey the Bose commutation relations (1.6). Using the

expansions of the field operators in the defining equation

. (2

for (B,t%: £',t) gives:

. L
2) -l €

G ffraiaé):‘ﬁ\{%aiziﬂe
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Trahathber B TR a L Ul ¢
P vn
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n=

Here we have labeled the occupation numbers of the field

modes by n n2, CGE,

17 , and to save writing we take

U= [T ]
{

Assumlng that the density operator is diagonal as in (1.11)

3

(I.5)

<§)’7}/(7”7’7’}>: /pgw?imgf”?ﬁ?’?’} (I.6)

we have three cases to consider in (I.4):
4=k p=g
(cé) 4= ke
(e = P=1
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We next assume, as in (1.12), that
_ N} [2.} Ik
= f”'“z 0 = @f . (L. 8)
(?”%?Vl; ", My 6”,\4‘, lel @ @Fw}(”k@lu

Since the normalization

77; E = 1_ (I.9)

implies that

(I.10)

for arbitrary K , the second order correlation function

may be written as

2 Wttt s, (£-¢)]

GPetete) = ) Z }U;/l/U}/ ¢
’ﬂ

M_g]}’\ |
fixp
o ) (P)
SH NGB R Vel 2 qu fm”r"
(I.11)
2 2 L ) ()
+ Z‘ Z }_D;/ /Uf—’/ <H,Wf/ﬁﬁaﬁﬁfqp (”{”p> ta”ﬂ’_t 1014 n
W, }’1{: 11’9 £ Io
I 14p
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In the first two terms, since the sums are restricted to

terms for which /% ¢ we have that

1
Do KN 0% Bl Gy by [V W > Fm;; f{f;
y[(mf @) WF Jid
2: i ] =7 1#) r Cheld)
[,,,j ‘”fpwm %”ﬂ (pwfwf F e
while in the third term
3 “ — (1.13)
n e [ 8% 00 8 4e [Me > (Ow ny 0y - e -
Hence:
(2 " (gt Wy (-t )
Gl dieiii= o U e @ /U/z e
g4 S F
rEL
(I.14)
| > — Iy S
4 %«Jp /q/ ;p}// ﬂjm,a 'f”Z/UJ/(Hj “ﬁj
fed !
We rewrite this as
— 2 tw,(t-4') l'wf‘{{:tj
Gt eirene) = 21[ 2 e ot ﬁ/;/ i
y
4 L% p
2 n‘w‘(,ré—t’) U/z (b (-2
AR w o [Gle™ 5,
Lol ! (4 2 2 CHsEs
+2,); /U;/fu +)U;/“r’ */ ,,/i,,}w/:/lﬁf,

r A%p
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Using the expansions of the fileld operators (I.3) and the
same assumptions of the form of the radlation density
matrix (I.6) and (I.8), one can easily find that the first

order correlation function can be expressed as

(e (E-¢)

2
G”' (¢,¢') = Z )Uﬂj ¢ o, (I.16)
P

so that the above expression for @ (t,t'; t',t) can be

written as

fr] 2 (w = ! ¢ yw )
G-(Z!(&)'é("'ff)‘é)': z {G_{({_If"} _JZ);/C /;(f lf]__ jJD_/e i.’f‘t
r

L D60 ', I, -1 itE-5)
r

G(zgé,f‘;t‘,t) = Z}/U,,/i({ p 674 jG {“)“Z/U,,/q?rz

fd
/ 7
f () (I.18)
( g
+Z/U;/ G (¢ ¢) - Z/p;Jﬁlv*ZJU;/q(?@
Vs P I p 4
(;Df L ) 1 (1) () ﬂ/r,
gt = G (&%) & (¢le) + G (6¢)GEE) (1.19)

P U (7 - - 29d )
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Now, setting t' = t in (I.19) gives

o) Yoo
67t ¢, ¢,¢)=2[6 s ) UL (R Ty ) o
4
so that finally the relation between the first and second
order temporal correlation functions for a stationary
radiation field with a diagonal, factorizable density
operator becomes

(tl ) (2
R e e e Ly R R S T
GO (et = & i ' i (I.21)

= Gt )
which is the same as (1.13). Using the definitions (1.15)
and (1.16) for the intensity and amplitude spectrum
respectively, one obtains (1.14) by Fourier transforming
CIEs
For Gaussian 1light, that is, light whose individual

mode density matrices are of the form

; -(n-t1)
(J’) o YIJ = (MJ{-
= 7, & -]
e () [1+m (1.22)
it 1s easily shown that
R B F 7 (1.23)
J J J

so that in this case one has

71
()

()
6V ekt = 2|6 ] (1.2
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and the relation between the intensity and amplitude

spectra 1s
1) *

Z (1) {
(&1 i ( G 7
G (w] = XTF)G (f!{:)/ J(wj + Zﬁf 6 (W)@ (w)
(1.28)
which is the same relation found to hold if the eleetric
field is considered to be a classical Gaussian random
process. We see that it is not expected to hold in general.

In particular, if the radiation field consists of a single

mode Glauber coherent state 10
) n. _h. [ l -1
e J
S e 2«7.‘] (I.26)
(EERABLEIEY ) J
one can show that
Ziud 1) i_,‘z G
}7f = Y. * W. (I.27)
J J J
26 Bhat P

o
—
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|
—
L
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S
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o
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'
|
N
3
Sop
o S

Glzl(flif,éf_é): A [‘

so that the frequency relation becomes simply

(ry

i)
Gm[cu) = ;LT G (w) & 6 (w)
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Appendix II. Regression Theorem for Markoff Processes

Following Lax 7, we consider the relation of a two
time correlation function to a single time average for a
Markoffian stochastic process. A process is specifiled by its

multitime probability density functions

Pa, a0 w0, )= Lo eaiat,~attn, ]

which give the joint probability of find ing the wvarlable a
to have value Q)= 4, at t,, Alt.]= A, at t, etec. for
the case of a single variable process. Defining the

conditional probability in general by

P(AIB)= PLAB)/P(B)

a Markoffian process is defined by (%M > L s e )

Pl la,. ~ a;) = P \&ns)

The identity

P, 0 ay)) 0 ) - [faa, a0/ wa)lfuslPa)

Thus becomes for Markofflan processes

Prla,a, | a) = Plasiac) Plas.1as)

P /a,f;&je’{aal@) = P (o /aft’)_ﬂ G T
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multiplying by ‘ﬂq (Q(fJ): [LQ(Q) and integrating over

a and a'
(itaw)y, = [ (Mgl e Pleing
Ao C{{f’j:a'
Similarly multiplying by M (arer) V (aiey) = M (a) M(a')
we get

M)V lawen)) = f{ﬂ/l (ae)) . i Na') P et 1a, %)

Multiplying by the initial distribution and averaging we

get
D) =J<m/z i)y, M) Plaer) da’

Specializing to N=1 we thus have

<M ([awr)) = f(M(Q(H)%UC{afP (a' ')

Thus, the one and two time averages have the same time
dependence. This is the idea of the regression theorem.
In the case that the mean of a variable can be linearly
expressed 1in terms of some set of variables at an earlier
time

<M[ﬁrm}> = /Z O [t U, (4')

a(

then 1t follows that

LMam)Niawn)) = 2. O, [4,¢'] L M. (a) W12t
}/(

<M, @) Na)) = f% (') Vi) Praet) da’
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This theorem has been proved by Lax for quantum systems 8,32

by technigues not used elsewhere in this work. It has also
been demonstrated using ordered c-number distribution

funetion methods 31’33.
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Appendix III. Damping Theory

Here we follow Louisell i in obtaining a density
matrix equation for a reservoir-system interaction slightly
more general than that taken in Part B, Section I. We
treat the case of a single atom with states K > (energy Ex)
coupled to a reservolr by a general interaction V which

may be written as

Z kyek(V [£2 281 = h 2{1 (k><e|

(ITI.1)
[<r 2 I<f,?

kf,, = <KIVID (I11.2)

Assuming a thermal oscillator reservoir as in Part A
Section III and arguing in ways similar to that Section we
obtain the Markoffian equation of motion for the reduced

system density operator ,3;(t) in the interaction picture:

aﬁ/e; s EJ s fute) Jure) Sper L F/R)]]

_ o T .2
: g
sl — H*”«/f e
VIt = Qﬁ e ﬁZJ; [¢ )lk>¢e| & (ITT.1)
e ~$ et
]EKP €)= € K2 s (TI] .5}
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We have assumed that V contains no matrix elements diagonal
in reservoir states since such terms could be absorbed into

the reservoilr Hamiltonian. Inserting for V(t) in (III.3) we

gat

1

5’/ [t) — Zj[g:m lf<><m,5;(fl — m><w/§/f k> | B (&)

4

KLy
KN
(III.7)
74
pl= Z [’j; [£) fm><'{’i5m< = ”‘ﬁ)(fl,_rlff}}m><mg @my,:ekfj
5L in
E
e, teca i—j (III.8)
9 o [ f e[ Kp -
® Slamstanidt bell e Risniong

’ [W t ¢ i, 1*](111.9)

Qmmm jﬂ < ‘F"““ (t') ‘ﬁk‘? fj> e

(l

Clearly the reservoir correlation functions depend only

upon the time difference t-t' so that we may write

f")/“ <£K,Q 7[;rmcn >€[Wt+w“‘“twj

KIW!y[

(+) f-. [WK-P +wmn]f

= WKMM € (III.10)

~ Gy U ,'[wa fwm]t

O = [kipm,mpe e

W { [Weq #lediun [ (III.11)

mnk £
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Substituting these results into (III.7) and assuming that
(i & 224 for any pair of levels m,n so that we may

keep only the energy conserving terms where Wy, +%

ke = C
we obtain
5}/1&) = 12 %[fme j“fé)] j W m> <l L't +1<2::[ K:L:W
(I1T.12)
+‘W;:MW‘ jl“ﬂ)(l(l j%j - T[WW Ik><k( SEE)+ S !KXKIZ({W’J

where Zr means leaving out the m=n terms of the double sum
m

We have transformed back to the Schrddinger picture and

LS L R

1§ ntw ¢ Kumm(C

W) 2R W

(II1.12)
(~) . {"J " {) wéﬂ}
1 (wkmw’k’) ! Y/Uf;w-wh'( = AR Sataing
We define
) z ;‘*’ 22’/ r) )

Returning to the definitions of the quanties on the right
side we wrilte

0O [ 6> 15 03]
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Using the diagonal representation of reservoir states

He IR =R | R > we get

<
(R R")E
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Defining R, |7 ’K = [on and thus extending the time

integrals in (III.15) to minus infinity, we obtain

[ Z?ﬁ { Rl e puay2yp sfs

jjz [<RUL 1S S (R R wop)
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Thus we obtaln the usual Fermi Golden Rule expressions for
the level damping constant$ G' and (; but we also obtain
a new damping constant which did not appear in Part B
Section I because of the form of the interaction chosen there.
However, we shall find below that this new constant in no
way modifies our final equation ( &7 ) for the
longitudinal magnetization distribution function although
it does change somewhat the full equation of motion
involving the transverse components of the magnetization.

Continuing, we note that

()

Qe (wzu’m( o M’é;f() i, ‘f’;f( +&g /Wm/ ' w(u, )

g ¢ A mme

i ﬁgl i é 2; (1OLK *Zbﬁf/)

w3
) = Pl a | ) (Ll A7)
= Al 2RS0T ) o5 (1,
h
= — [;: + _% (M4 +w&1t‘()

Returning to the density operator equation of motion (III.12)
and generalizing to the case of N atoms, each interacting
with its own thermal reservoir but not directly with any
other atom, we get (using the same symbol S(t) for the
density operator of the whole collection of atoms, a product

of the atomic density operators)
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2,2 (sz [(i;’ —gﬂwdr)jﬂi’(% " _z@),f’ﬁ‘} (uwl%]

!

J =

£l [ . ?Mﬂ) §#) [1k><er).

i, £

L |1’:1 ((K><KJ) el (f«”ﬂf ]}

If we specialize (III.18) to the case of N two level atoms

GEET .18

to represent our ferromagnetic spin system and carry out
the transition to the c-number magnetization distribution
function as in Part B, Sectlion II we obtain the following

equation:

¢/

. : . ),
P(/J}sz/ﬂ ;1&): 2/5;* (,1 *(w;u)’4%

—"{-’—f,J
+M(,z Wy, )

_awl — Jﬂz_ -
cle =) v (e )

2 on,
;2 [2’7:“6 W 4o ] (III.19)
oAde*
Q ~dwz 07 - 07”2- _ 0)3 }'711
+ dz.{. (e -’.")[ZA 4'0')';[6 mi)!f,{f +/——-;_"?‘
3 i on
9 2 2
+ 4r’4 b o———u F M } *
where YL i n iz P(ﬂ, ?71,/.?,‘6)
ph
]_;12 = !—:2 + é (rl' + /’2) (IIL.20)

Thus, aside from the slight change in E; given by

(III.20) and in one other term of (III.19), we obtain the



-150-

same equation of motion as before, in particular after

integrating over the transverse variables.
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Appendix IV. Detailed Balance Relation

We shall derive the detailed balance relation (27)

-Bhw
— o 3 Al
}1 “Ul[)“ ¢ f:/uhf)
using the general expressions (25) and (26). Thus

*
L [ (wy )| = 47 Re jﬁ{(l@i(éJZOpﬂ’/) o {0 L]
— o7 & ﬂ

3H Het —EHf fmf’~iﬁff—mhk4v
j@ﬂf% [ﬂeﬁ Be™ " "per™ /e

where

o= DR

o

~3H
Zg = ltg [6 ’ E_Z

Thus

I ...‘ ﬁT)
% /”*A H,fo 4, - E Kt (g, [E=7
5’.{2 WB! jﬂf Trq [e - s

H(gﬁﬁ%ﬂ“
£, U
a1 1my<mignz €

e

7 ke fw 2;;;;[ P,

stfe .

©

i Uu
hff'HR_ .i + e HRM —1 2y
f}éu 2 Y}R [ > e 9,76



—152=—

;,TC" (Em"gm -ﬁ_wil‘/“

g _ -3,
éx’qf(w;{:) 0 Zﬁ Zme fé” 5 <m[9+(r/m><m19}”)

—

- { e
et E Mzme ﬁ nd(%" 5;“ —way ) <n |G mwIBIN>

We change the summation indices by n = m, m—n to get

T e P o (& e wa) <ml&Iny <nl@1m

wm

F() =

Since 5[— XJ = 5 (X] and substituting for Em

=i = (€h+hw )
Tlen) = g2 2, I & O - L vuy) alopmromieling

@b e
g € T €IS - ) ovsmroni

", W
_ hW; - 1 "ﬁE ‘éi E wm t'w”)
= i s 2 g fa’“ = dn 18 [m3mlB)
5 W,m =
_ "ﬁi‘wm -f3E, f ?( (En~Eot wag U
& 3 Z 2 € du ¢ Ll & Pm>mlgling
W

- Bl TfE Enthuwy, ) (t-2')

= g ¢ 3, f
ﬁ & Z J/{- <n| 9/vw><m/9fh>

Vi, m



_153_

En

I (hai) ﬁ 6 KIIQ jaf Z;?:e

Z

£ g, [t i g ety - (e
il € ae” (3 omiGmy €
- gk - fHg i,q £
L o %ﬁw [ ¢
,_é HR'(LJ E[:H,ef( £ H%Hgflj €~tw2.| (t-¢')
e e o é
t
= Titofr-t')

gt i <o gten M

_phwa
o ﬂ o é, Uﬁm)]



_154_

Appendix V: T6

For completeness we list the sixteen terms obtained
from (82) (we abbreviate the notation to save writing by
including only the 1dentifying parts of each term) and the
final results of properly ordering them and computing the

trace over 0 (t).

— O, [25¢2y ~ M %
tiz 195421 ¢ 12541 — € e E(/o’, Ny, A7, €)
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B My (27<2]
fL{ = l1yeu € (—&; [i5<el ) = 0
_Qﬂl(:\?(tf
o N 2741 —» ©
— Oz 13342
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»@"1 (2242 =
£
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o 1P, g%
tg = (_{,ymd’d) & FHML'%‘)éd/Ao)A“/J | LO( 2 A )



-155~

N —Oy, [2542(
tcr = 1204210, € 2241 = &44{7f(41}72?4"1£)
_OMy (2742 QE’_ s
Jcm = i?JQ!da % )m(zrdﬂ,‘ ~>d o )71 /7 E (/";”1;'4;5)
B R
<IN, 122<¢z)
£ Sabeaid, e (~ru><ud4,<) > p
— M, (22¢z) "
=i Ne (—(;741;&/4%) =0
S Oz 12 2|
Ei= (m&/ﬂ [23¢11) € el R
5 _dna(2o¢e
%!LI = (~@ﬂ l)>zn') € 239 <2 :%1,; = 0
— Iy 1ancze 3
2 e *
tlf = ("&/4 [.1)4.'!) L (—{!74’!(%*} *)/ﬂdﬂw_ 4/7 f[ﬂ,%,/ﬁ;ﬁ
_dn, Az 4] 0
2 Na —
s [k (ur,741,%i) 2 58 vy [ Pl 1)

Daa*?



.5

w15 o

NOTES AND REFERENCES

C.V. Raman and K.S. Krishnan, Nature 121, 501 (1928);
Proc. Roy. Soc. (London) 122A, 23 (1928). C.V. Raman,
Indian J. Phys. 2, 387 (1928); C.V. Raman and K.S.

Krishrnan, ibid.s; P399

G. Hertzberg, Molecular Spectra and Molecular Structure,

Vol. II, Infrared and Raman Spectra of Polyatomic

Molecules (D. Van Nostrand Company, Inc., Princeton,

New Jersey), 1945. See also Raman Spectroscopy, H.A.

Szymanski ed., (Plenum Press, New York, 1967).

T.L. Fabelinskil, Molegular Scattering of Light, transl.

R.T. Beyer, (Plenum Press, New York, 1968).

L. Brillouin, Comptes Rendus de 1'Academle des Scilences

158, 1381 41914) Ann. 8. Bhys. U7, 88 (1522).

L.D. Landau and G. Plaeczek, Physik Z. Sowjet Union 5,

LLT2 s34,

Marlan 0. Scully and Willis E. Lamb, Jr., Phys. Rev. 159,
No.2, 208 (1967); Phys. Rev. 166, No.2, 246 (1968);

Phys. Rev. 179, No.2, 368 (1969).

M. Lax, "Quantum Theory of Noise in Masers and Lasers",

in Dynamical Processes in Solid State Optics: 1966

Tokyo Summer Lectures in Theoretical Physics Part I,

R. Kubo and H. Kamimura eds., (W.A. Benjamin, Inc.,

New York, 1967).



1.5 T

M. Lax, "Fluctuation and Coherence Phenomena in Classical

and Quantum Physics", in Statistical Physics, Phase

Transitions and Superfluidity: 1966 Brandeils University

summer Institute in Theoretical Physics Volume 11,

M. Chretien, E.P. Gross, and 3. Deser eds., (Gordon and

Breach, New York, 1968).

H. Haken, "Dynamics of Nonlinear Interaction Between

Radiation and Matter", in Dynamical Processes in Solid

State Optics: 1966 Tokyo Summer Lectures in Theoretical

Physics Part I, R. Kubo and H. Kamimura eds., (W.A.

Benjamin, Inc., New York, 1967).

10.

11

L

13.

R.J. Glauber, Phys. Rev. 131, No.6, 2766 (1963).

L. Van Hove, Phys. Rev. 95, No.1l, 249 (1954).

IF s

Komarov and I.7. Bisher, Soviet Physics J.E.T.P.

16, No.5, 1358 (1963).

G.Bi. Benedek ;

"Thermal Fluctuations and the Scattering

of Light", in Statistical Physics, Phase Transitions and

Superfluidity: 1966 Brandeis University Summer Instltute

in Theoretlc¢al Physles Volume 11, M. Chretien, E.P. Gross,

and 8. Deser eds., (Gordon and Breach, New York, 1968).

R. Brout, "Statistical Mechanics of Ferromagnetism",
in Magnetism, Vol. II Part A, G.T. Rado and H. Suhl

eds., (Academic Press, New York, 1965).



.

16.

T -

18.

19,

20,

_158_

M. Lax and H. Yuen, Phys. Rev. 172, 362 (1968). See

sglso J.P. Gordon, Phys. Rev. 161, 367 (1967).

W.H. Louisell in Quantum Optics (Proceedings of the

International School of Physics "Enrico Fermi", Course

XLIL); RuJ. Glayber ed.; (Academle Press, New Yarik,

1969). W.H. Louisell in The Physics of Quantum Electronics,

S.F. Jacobs and J.B. Mandelbaum eds., (Optical Scilences
Center Technical Report 31, University of Arizona,

Tucson, Arizona, 1968), Vol. II, p.31l.

W.H. Louisell, unpublished manuscript. We are grateful
to Professor Loulsell for providing us a copy of this

bock priorp to lts publicatlon,

L.D. Landau and E.M. Lifishitz, Statistlcal Physiecs, 2ad

Edition, (Addison Wesley, Reading, Massachusetts, 1969).

R. Kubo, Statistical Mechanics, (North Holland Publishing

Company, Amsterdam, 1965), p.305.

R.J. Glauber, "Optical Coherence and Photon Statistics",

in Quantum Optics and Electroniecs, C. DeWitt, A. Blandin,

and C. Cohen - Tannoudji eds. (Gordon and Breach, New
York, 1965), p.63. In this Section we follow the notation
and treatment of this excellent review of modern

eptiical eccoherence theory.



2L,

2

250

24,

205

26.

~-159~

A. Papoulis, Probability, Random Variables, and Stochastic

Processes, (McGraw Hill Book Company, New York, 1965) ,

p.481. See alsoc Ref. 23.

N.C. Pord,Jr,, and G.B. Benedelk 1n Gonference on

Phenomena in The Neighborhood of Critical Points, M.S.

Green and J.V. Sengers eds., (National Bureau of

Standards, Washlngton, D.C., 1966), p.150.

T.J. Greytak, "Light Beating Spectroscopy", in The

Physics of Quantum Electronics, S.F. Jacobs and J.B.

Mandelbaum eds., (Optical Sciences Center Technical
Report 31, University of Arizona, Tucson, Arizona, 1968),

Vol.I, p.195.

H.Z. Cummins and H.L. Swinney, "Light Beating Spectro-

scopy", in Progress in Opticg Volume VIII, E. Wolf ed.

(North Holland Publishing Company, Amsterdam, 1970).

J.V. Uspensky, Introduction to Mathematical Probability,

(McGraw Hill Book Company, New York, 1937), p.314.

For a review of various types of inelastic scattering

see Light Scattering Spectra of Solids, G.B. Wright ed.,

(Springer-Verlag, New York, 1969).



AT

24,

29,

30.

Sl

32.

33

34.

-160~-

Note that we are neglecting by this choice of interaction
the other component of the light scattered by such a
system which would be primarily centered around the
frequency w= w, +JL . Similar phenomenological
interactions are often used in studies of light

scattering, e.g., sSee Ref. 37 below.

P.N. Argyres in Proceedings of the Eindhoven Conference

on Magnetic and Electric Resonance and Relaxation,

J. Smidt, ed., (North Holland Publishing Company,

Amsterdam, 1963), p.555.

P.N. Argyres and P.L. Kelley, Phys. Rev. 134, No.lA,

A98 (1964).

K. Shimeda, H. Takahasl, and C.H. Townes, Phys. Soc.

Japan 12, No.6, 686 (1957).

W.H. Louisell and J.H, Marburger, I.E.E.E. J. Quant.

Electronics, Vol. QE-3, No.8, (1967).
M. Lax, Phys. Rev. 129, 2342 (1963).

J. H. Marburger and W.H. Louisell, Phys. Rev. 186, No.l,

1rd (1969),

L.F. Ornstein and F. Zernike, Proc. Acad. Sc¢l. Amsterdam
17, 793 (1914-1915). See also L.D. Landau and E.M.

Lifshitz, Electrodynamics of Continuous Media, (Addison

Wesley, Reading, Massachusetts, 1960), p.393.



35.

36.

37.

39.

ho.

h1.

h2.

-161-

Ibid., and M.E. Fisher, J. Math. Phys. 5, 944 (1964);

see also References 44 and U45.

P.A. Fleury, Phys. Rev. Letters 21, No.3, 151 (1965);
Phys. Rev. 180, No.2, 591 (1969); J. App. Phys. 41,

No.3, 886 (1970).

P.A. Fleury and R. Loudon, Phys. Rev. 166, No.2, 514

(1968).

R.J. Elliott, M.FP. Therpe, &G.F. Imbush, R. Loudon, and

J.B. Parkinson, Phys. Rev. Letters 21, No.3, 147 (1968).
T. Moriya, J. App. Phys. 39, No.2, 1042 (1968).

A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii,
Soviet Physics J.E.T.P. 36, Ne.l, 146 (19532). See also

M. Suzuki and R. Kubo, J. Phys. Soc. Japan 24, 51 (1968).

Note that our choice of Hamlltonian and spin labels
for the two states gives the interaction picture time
dependence of the spin raising (lowering) operators
S+ (S~) to be somewhat different from the convention

treatments; i.e., our spin raising (lowering) operator

has negative (positive) frequency time dependence.

For a discussion and list of references on this subject

see Fundamentals of Quantum Optics, J.R. Klauder and

E.C.G. Sudarshan, (W.A. Benjamin, New York, 1968).



43.

by,

b5,

4e.

b,

L8.

~-162~

L.P. Kandanoff et. al., Rev. Mod. Phys. 39, No.2, 395

(1967) .

M.E. Fisher, "Theory of Equilibrium Critical Phenomena",

in Reports on Preogregsgiin Pliveles, Yiol., XX Barpt EL,

A.C. Stickland ed., (The Institute of Physics and the

Physical Soclety, London, 1967). 1967 p.615.

P. Heller, "Experimental Investigation of Critical

Phenomena', in Reports on Progress in Physics, Vol. XXX

Part II, A.C. Stlckland ed., (The Institute of Physiles

and the Physical Society, London, 1967), p.731.

R.L. Stratanovich, Topics in the Theory of Random Noise,

Volume I, (Gordon and Breach, New York, 1963), p.66.

H.B. Callen, Thermodynamics, (John Wiley and Sons, Inc.,

New York, 1960), Ch. 15.

Recently 1t has been shown that there exists a very strong

analogy between the Landau theory of a second order
phase transition and the threshold region of a laser.
Jee V. DeGiorgic and Marlan O, Scully, Phys. Rev, A, 2,

No.l4, 1170 (1970).



-163-

BIOGRAPHY

John C. Goldstein was born in New York City in 1944
but was raised in the state of New Mexico. In 1961 he
enrolled at the University of Illinols, Urbana, Illinoils
to pursue undergraduate work which was completed in 1965
when he received his Bachelor's degree in Physics. He
then entered the M.I.T. Physics Department as a graduate
student and was financially aided by a National Science

Foundation Graduate Fellowship during the years 1965-1968.





