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ABSTRACT

An analytical model for the flow of blood in roller
pumps is developed for the case when inertial forces are
small in comparison with viscous forces. The pressure-
-flow characteristic of the pump and the shear stress
distribution on the tube wall are determined as functions

of the geometrical and dynamical parameters. A criterion
permitting relative comparisons of the rate of hemolysis
produced by roller pumps of various designs is derived
with the assumption that the wall shear stress is the main
agent of hemolysis. According to this criterion, the
hemolysis index is minimum when the roller is set so that
the minimum gap in the compressed tube is typically of the
order of 50 microns.
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NOMENCLATURE

=semi-major axis of elliptical transverse

-ube cross-section

2
R

B =time or space average over one full wave-

length of A-B; see Eg. (3.25)

=semi-minor axis of elliptical transverse

tube cross-section

_b
R

wave speed

2(Z,t) =1limits of integration over cross-section

of tube at (Z,t)

dimensionless effective roller radius _—

‘dimensionless roller radius) + (dimension-

less tube wall thickness)

2 _2
- 22; see Appendix 2

A

=complete elliptic integral of Second Kind;

see Ea. (A 2.1)

=dimensionless flow in wave frame =(~3,-)
TTR C

=Witch of Agnesi pumping parameter; see Eq.

(3.26)

3 (u)

~

-t

=function defined by Eg. (A 5.8)

Witch of Agnesi pumping parameter; see

Ea. (3.27)

=dimensionless major axis of transverse cross-

section of undeformed tube = 2.B .
maximum



=function of (X,Y,Z,t); H=0 gives shape of

inside surface of tube

=hemoglobin

I.E. =index of hemolysis

-[% ug) -J(x,y) = 5 + 5 1 ; see Eg. (A 3.3)
a b

(subscript) denotes a quantity evaluated in

“he compressed region (i.e., in the "well")

of a square wave

="surface interaction coefficient" for

hemolysis criterion; see Eg. (4.9)

=adjustment factor for average shear stress;

see Egs. (4.21) and (4.22)

A

=shape parameter in modified Witch of Agnesi

wave (usually, m=0.4); see Eg. (3.39)

=inner normal coordinate direction from wall:

see Eg. (4.10)

=(n _,n_) = unit inner normal vector to
x y'wall -

wall (in x-y cross-section); see Eg. (A 3.1)

=order of magnitude of, e.qg., Of e&gt;) = order of

magnitude of ec?

=pressure measured in wave frame

=perimeter of elliptical cross-section = 2MR

=volume rate of flow in wave. frame

=volume rate of flow in lab frame
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)
= gpace average over one wave length, or

time average over one wave period, of volume

rate of flow in lab frame

Rass maximum Q compatible with Re*?* See

Egs. (5.54)-(5.58)

(1) radial coordinate in straight circular

cylindrical tube;

(2) quantity defined by Eq. (4.43)

=internal radius of undeformed tube = radius

of circle having perimeter equal to perimeter

of elliptical cross-section (all lengths are

non-dimensionalized by dividing by R)

- =approximate Reynolds Number = ratio of inertia

to viscous terms of Navier Stokes Equation:

see Eg. (5.18)

Re** maximum Reynolds Number on centerline of tube;

see Eq. (5.48)

=radius of straight circular cylindrical tube

(1) dimensionless length of compressed region

of sguare wave:

(2) arc length

=time

horizontal transverse fluid velocity measured

in wave frame

=horizontal transverse fluid velocity measured

in lab frame

=vertical fluid velocity measured in lab frame

=vertical fluid velocity measured in wave frame



A

=longitudinal fluid velocity measured in wave

frame

=waveframe longitudinal centerline velocity.

see Eg. (5.6)

=longitudinal fluid velocity measured in lab

frame

=wave frame transverse (horizontal) coordinate

=lab frame transverse (horizontal) coordinate

=1imits of integration over cross-section of

tube at z in wave frame

X(z,t) =limits of integration over cross-section of

tube at z in wave frame at time t

=wave frame transverse (vertical) coordinate

=Y ox (Z7Ct) = dimensional wave shape in wave

frame; see Eg. (2.11)

Y max

=lab frame transverse (vertical) coordinate

{ asf? rt)=dimensional wave shape in lab frame; see Eq.

(2.10)

by

4

-Z
R

an intermediate limit of integration in evalu-

ating I.H. for modified Witch of Agnesi

Nave Shape; see Eg. (A 4.1)

rs

2

=value of ry at "truncation point" in Witch

of Agnesi Wave Shave

=value of ny when Re=Re**, (apart from region

of Reynolds Number singularity); see Eg. (5.47)



=Z-ct = waveframe longitudinal coordinate

=lab frame longitudinal coordinate

(Zt)

"Pa
AX

( ay

2

fo.

A

_al ) a specific constant which

between 0.7 and 1.7

probably lies

A = A(B) &amp; T- Ar BZ; see

and Appendix 2;

'2) shape parameter in general Witch of

Agnesi wave shape; see Eg. (2.14);

(3) coefficient in Eq. (5.48)

=shape parameter in general Witch of Agnesi

wave shape

=shape parameter in general Witch of Agnesi

wave shape

(2.9)

—area of tube cross-section at (Z,t)

=shape parameter in general Witch of Agnesi

wave shape

=pressure rise per wave length

=characteristic horizontal transverse length

scale for changes in longitudinal velocity

in compressed region of tube; see Eg. (5.8)

=characteristic vertical length scale for veloc-

ity changes in compressed region of tule;

see Eg. (5.9)

 YX
R

-%.1

=dimensionless minimum gap width = 2°*B_. .
minimum
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-

- =value of € that minimizes I.H.

(1) wave length = distance between two rollers;

(2) length of straight, circular cylindrical

ube

=viscosity of liquid

=kinematic viscosity

(1) shear stress in fluid;

(2) characteristic time of flow motion;see

Eg. (5.3)

tn?

Corall

=mass density of liquid

=shear stress at wall of tube due to longi-

tudinal velocity profile

Cuwall),,,, =mean longitudinal shear stress around

oerimeter of a transverse tube cross-

dection; see Eg. (4.15)

§

XJ

Vi 2 =dimensionless Laplacian operator; see Eg. (3.1)

3
aN

 7

~
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1. INTRODUCTION

Peristaltic pumps are used for pumping blood, sterile

fluids, corrosive liquids or gases, slurries, and suspen-

sions whenever it 1s necessary to isolate the transport-

oad fluid from the pumping mechanism. This type of pump

consists of a flexible tube compressed along a part of

its length by a moving roller, a nutating plate or a

series of mechanical fingers. Usually, the compressing

nechanism occludes the tube completely or almost comple-

tely and the pump works by "milking" the fluid through

the tube, but complete occlusion is not at all necessary

for a peristaltic pump to work; viscous forces can pro-

duce effective pumping even if the tube is not occluded,

but the volume flow rate then depends upon the pressure

head.

This paper is mainly concerned with roller pumps

ased for pumping blood in extracorporeal circulation

during open-heart surgery. A severe disadvantage of

these pumps is their high rate of hemolysis (destruction

of red blood cells) which, with the hemolysis due to

other mechanical components of the extracorporeal blood

circuit, limits the duration of pumping to a few hours.

There is evidence’ that the rate of homolysis associated

with blood flow through a tube is directlv related to

Fhe shear rate in the flow.

L.1 DescriptionofCommerciallyAvailablePumps

The 1969-70 Guide to Scientific Tnetruments? of
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Science magazine lists 27 manufacturers of peristaltic pumps.

Some of these pumps are for general industrial use; others

are strictly for medical applications. A survey of the man-

unfacturers' literature reveals a considerable variety of de-

signs, mechanisms, special features, and operating parameters

Production models of roller pumps have between one&gt; and

six rollers? and maximum flow rates ranging from 0.1 liter/

nin to 10.0 liters/min”; tube diameters range from 3/16 to

5/8 inch inside). 213 Special features available on some

roller pumps are: micrometer adjustment devices3’&gt; for chang-

ing the degree to which the rollers occlude the tube; a re-

silient back-up plate? against which the tubing is compres-

sed during passage of the roller (such a back-up plate re-

duces tubing wear); an automatic pulsator accessory&gt; which

periodically interrupts the roller motion to produce a pul-

satile flow of any desired rectangular wave shape.

The largest of the commercially available finger pups ®

accomodates tubing with inside diameter up to 1 inch, and

pumps a maximum of 17 liters/min; the design permits pumping

through as many as four tubes simultaneously; the tube is

completely occluded by the mechanical fingers.

The kinetic clamp pump compresses the tubing between

two circular plates, one of which nutates - i.e., wobbles

without rotating - to produce on the tube an advancing

point of maximum compression. The largest of the kinetic

clamp vunne® accepts a single tube with inside diameter of

ap to 1/4 inch, and pumps as much as 1.5 liters/min: occlu-
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sion is complete.

Laboratory models of roller pumps with other special

design features have been tested; pumps with gear-driven

(as opposed to free-rolling) rollers’, with spring-loaded

rollers® (as opposed to rollers with degree of occlusion

held rigidly constant), with a free-centered roller’ (as

opposed to a roller which rotates about a fixed axis), and

with flat, naturally-elliptical and internally-valved

~ubing. &gt; |

Most peristaltic pumps are operated in or near the

fully-occlusive mode in order to prevent variations of flow

rate with changes in pressure rise across the pump and to

nake the flow rate be directly proportional to the pump

cycle speed. In the fully occlusive mode, volume flow rate

is approximately given by the transverse cross-sectional

area of the undeformed tube multiplied by the velocity of

the roller (or other compression mechanism). In the non-

fully occlusive mode, which is the more general case (and

vhich is the case treated in this paper), the flow is less

than in the fully occlusive mode due to backwards "leakage"

flow beneath the point of maximum occlusion. Asurgeon de-

scribes this circumstance as follows: "Under the pressures

encountered in pumping blood through a cannula into the ar-

terial tree (up to 400 mm Hg) calibration of the pump out-

put can be based upon the rate of rotation. Unless the rol-

lers or fingers are set to produce occlusion, it has been

shown that the output drops and the pump rate is not a re-



liable index of the actual output as pressure rises". S

1.2 Blood Damage Caused by Pumping

"Blood damage" covers a highly complex set of phenom-

ana which include rupture (hemolysis) of some red cells

with release of hemoglobin into the plasma, weakening (i.e.,

sublethal damage) of other red cells, acute decrease in

platelet count, and acute increase in the white cell count. 9

A convenient index (but not an absolute measure) of

blood damage is the Index of Hemolysis (I.H.) which is de-

fined as the number of mg of hemoglobin (Hb) released into

the plasma per 100 ml of blood pumped. In the normal, av-

erage, healthy adult human, the I.H. for the heart and cir-

culatory system is about 0.0868 mg Hb per 100 ml blood pump-

ed by the heart (see Appendix 1 for the calculations lead-

ing to this value). The I.H. of blood-handling apparatus

and pumps can be compared with this "normal" value of I.H.

to determine the relative importance of the blood damage due

to the appartus and pumps.

The factors that cause blood damage in peristaltic pumps

(or any other kind of blood-handling apparatus) are only

Jualitatively described in much of the medical literature.

For example, in Ref. 8 it is stated that "...the scrubbing

action of one side of the tube against the other and the in-

tense eddy formation which may occur if occlusion is not com-

plete result in hemolysis". In other papers 117 12¢there are

reported empirical measurements of I.H. for particular com-

opinations of geometry, flow, pressure, tubing, etc. But in
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all cases a general quantitative, algebraic expression for

the relation between geometry, flow pressure, etc., and

I.H. is lacking. This paper will develop such an expression

for I.H. The general purpose of the present investigation is

to analytically predict the pumping performance and hemoly-

sis characteristics of roller-type peristaltic blood pumps

as a function of the relevant geometric and dynamic para-

meters.
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2. GEOMETRY

2.1 General Considerations

As unambiguous definition of the geometry of the peris-

taltic pump is a necessary precondition for the analytic de-

termination of the pump's dynamic characteristics (e.qg.,

velocity profile, pressure vs. flow relation, shear stress

distribution, hemolysis index criterion, etc.). A suffi-

cient geometrical specification would be a function giving

at all times the complete three-dimensional shape of the

inside surface of the tube (which contains the liquid).

Such a function could be represented as

 1 wey $220) = J (2.1)

where X, Y, Z are rectangular coordinates in the lab frame,

and t is time. To obtain H for an actual tube would reguire

an analysis of the problem of large deformation of an elastic

tube with finite wall thickness. Such considerations would

be too complex for a study such as this, so a simplified

approach, yielding an approximate expression for H, has been

devised. The simplified geometric approach rests upon three

assumptions: that the centerline of the undeformed tube is

straight, that all the transverse cross-sections of the in-

ner surface of the tube are ellipses, and that these ellip-

ses are of constant and equal perimeter (but of varying

accentricities). The centerline of the undeformed tube is

assumed to be straight because the internal radius of the
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tube is small in comparison with the radius of the pump.

Thus secondary flows due to centerline curvature are ne-

ylected. The ellipse is chosen as the approximation to the

cross-sectional shape because, except for the circle, the

2llipse is analytically the simplest of the two-dimensional

closed curves and the Poiseuille velocity distribution in a

tube of elliptical cross-section is known. Each transverse

(elliptical) cross-section is characterized by a semi-major

axis "a" and a semi-minor axis "b". The constant-perimeter

assumption yields a functional relationship between "a" and

'b". At this point, to complete the specification of

H(X,Y,Z,t) it is only necessary to specify

J DZ,; (2.2

the longitudinal and time variation of the semi-minor axis

(which is the axis being compressed in the pump).

2.2 Shape of the Compressed Tube

A. Elliptical Cross-Sections

Assuming that the lowest point of each cross-section

lies on the Z - axis, the equation of the elliptical cross-

sections is

VW 2
 ——

~
sr

—-

3

A

132(Y-b
L&lt;

(2.3)



B. Constant-Perimeter Condition

The perimeter, P, of the ellipse represented by Eq.

(2.3) is given by the Complete Elliptic Integral of the

Second Kind:

Ta 1/2
_ b*-a%) ein?P= vay [1 + (22)sin w] dw (2.4)

which can be expanded as ppinfinite series?®3
1 /a-

P r(arb)[1 2 (5)

£(aby, £23 /a-b\°7]20 12 a+b) rrgr a+b p
If R is the radius of the circle which has the same perime-

(2.5)

i

ter as the ellipse of Eg. (2.3), and defining dimensionless

variables:

a
A =7R B=2L

R
(2.6)

then the constant-perimeter condition, using Eg. (2.5),

vields

2 = (BLABY+A(R)] (2.7)

On keeping only the first two terms of Eg. (2.7) (since the

series converges very rapidly), and solving for A in terms

of B, the following expression is obtained:



~)D =

A = &lt;= [-3B + 4+ 4-(1-B*+B)"*| (2.8)

Tor A + B.

The approximate value of A given by Eq. (2.8) differs

from the exact value by 1.86% at most. The error is maxi-

mum at B = 0. For B&lt;&lt; 1, a more accurate expression is:

A=(Z-«B?) , Bd (2 4

vhere Kk is a constant between 0.7 and 1.7 (see Appendix 2).

Figure 1 shows a comparison of the "exact" constant-

perimeter relation A = A(B) given implicitly by Eg. (2.4)

and of the approximate one given by Eg. (2.8).

Figure 2 shows a family of constant-perimeter ellip-

ses, of the form of Eg. (2.3).

C. Wave Shape

The shape of the longitudinal vertical mid-section of

he tube is called the "wave-shape" and is specified by

/ to (Z,L) = 2 Dil, CJ (2.10)

(Eq. (2.10) is obtained by substituting Eq. (2.2) into (2.3)

and setting X = 0.)

For an idealized roller pump, Yoox is a wave of unchang-

ing shape propagating along the tube at a constant velocity,

Y is produced by the roller (s) compressing the tube.
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Real roller pumps are so designed that there is always

at least one roller compressing the tube. Each roller per-

iodically comes into contact with the tube, compresses the

ube while rolling along a certain length of the tube, and

then separates from the tube. Except when the roller first

meets the tube or when it leaves it, the wave shape produc-

ed by the moving roller(s) is (very nearly) constant.

Therefore, if (as in most actual roller pumps) the time dur-

ation of the contacting and separating stages is short com-

pared to the time duration of the steady rolling-compression

stage, then, as a reasomably good first approximation, the

wave shape may be assumed to be constant for all t. This

assumption, combined with a coordinate transformation:

¥ =

yo oY. Ymax = ¥ max

z = (2 - ct)

(2.11)

and with a definition of dimensionless coordinates

§ = x/R

Nn = y/R,

ne=z/R

Nmaxy = Yoax/ R (2.12)

and with Ea. (2.6), converts Eg. (2.10) into the form

) = Domax = 2°B(3 (2.13)

The frame (x,y,z) defined by Eg. (2.11) is called the "wave

frame". In the wave frame, the wave shape, given in dimen-

sionless form by Eg. (2.13), is steady (i.e., fixed in shape



and position).

Figure 3 illustrates a wave shape qualitatively typi-

cal of roller pumps. In Figure 3, the wave shape is regard-

ed as being symmetric about 7 = 0. "¢" is the dimension-

less gap width at the point of maximum compression.* "gd"

is the dimensionless effective roller radius (approximately

equal to the actual dimensionless roller radius plus the di-

nensionless thickness of the tube wall) -- equal to the dimen-

sionless radius of curvature of the wave at y= 0. "h"

is the dimensionless diameter of the undeformed tube; for a

naturally circular tube, h = 2.0; for a naturally ellipti-

cal tube, h # 2.0.

Two basic wave shapes will be considered in this paper:

the "Witch of Agnesi" shape and the "Square" shape. The

Witch of Agnesi wave shape (so called because of its resem-

blance to the classical curve of the same name) is a close

approximation to the wave shape of conventional roller pumps.

The Square wave shape, which cannot be produced by a cir-

cular roller, permits simpler calculations and is an inter-

~gting case for comparative purposes.

The Witch of Aghesi wave has an equacion of the general

Form

= max (3) = aa
¥ont + §

 7? t- \ 2 14,

Only three of the four coefficients, d ,@, ¥ , $8 , are inde-

pendent, so only three geometric conditions need be speci-

* All lenaoths are non-dimensionalized by dividing bv R.
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fied in order to determine them. These geometric conditions

are (see Figure 4):

-.

ys Tmax (0) (2.15)

1 radius of curvature of Max (ny) at y= 0 (2 L6)

- *

h = Noga (")

The best fit of Eq. (2.14) to a conventional roller

(2.17)

pump wave shape is obtained by truncating the Witch of Agnesi

at a finite yx and assuming that the tube is cylindrical

for |] 2a, so that

1 = Nay) = h Nien lal &gt;n’ (2.18)

The value of ny* depends upon the elastic properties of the

tube and must be determined empirically. (A typical value

is ny* = 8.)

Solving ford ,R3, ¥., and $ in terms of€.,d ., h, andny*

and combining Eg. (2.14) with (2.18). the following expres-

sion is obtained for the Witch of Agnesi wave shape:

g

 hg 2(h-9adyf2h-9de”]ENAREEORreserwor wr
for n? £ pt?

h, {op nF &gt; n*z

y

(2.19)
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Note that the derivative, Max, is discontinuous at

dy
Y= ry. This discontinuity in slope is of negligible im-

portance.

Since €,d ,h , and a" are independent parameters, Eq.

(2.19) is effectively a four-parameter fit to the conven-

-ional roller pump wave shape.

The osculating parabola to Eg. (2.19) is obtained by

taking the limit of Eq. (2.19) as h-&gt;9°® (necessitating,

by Eg. (2.17), that ry * &gt; 00 also). The osculating parabola

thus obtained 1s:

N
1 :

Aan (3) = [at +] (2 20)

which is a very good approximation to the Witch of Agnesi

wave shape, Eq. (2.19), when ny” is sufficiently smaller than

ne, or (equivalently), whenn - as computed by Eg. (2.19)

is sufficiently smaller than h. Eg. (2.20) will turn out

to be very useful in Sections 3.3D, 4.4, and 5. Figure 5

shows a comparison of Egs. (2.19) and (2.20) for a particu-

lar set of dimensionless geometric parameters.

2.3 Empirical Verification of the Geometric Model

A. Constant-Perimeter and Elliptical Cross-Section
Assumptions

Several straight, circular cross-section, polyvinyl

chloride tubes were filled with wet plaster and compressed

transversely at one point with a circular cylinder. After

the plaster had hardened, the tube was cut off of each plas-

ter casting, and the casting was sliced transverselv to
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display its cross-sections. Outlines of representative

plaster cross-sections are shown in Figures 6 and 7. These

diagrams confirm the assumptions (see Section 2.2) of ap-

proximately elliptical shape and constant perimeter, for

“he degrees of compression shown. For degrees of compres-

sion greater than those shown in Figures 6 and 7, the cross-

sectional shape may begin to depart from an approximately

elliptical shape and become narrower at the middle (¥ =0 )

than at the ends (near§= IN This tendency is barely

visible in the narrowest of the cross-sections (2= 1/2 inch)

of Figure 6. No attempt will be made in this paper to cor-

rect for this "pinching" effect; the effect can be minimi-

zed (or perhaps eliminated) by using special tubing which

nas thinner walls at the ends (near§= A) of the cross-

sections than at the middle ( § = 0)°

B. Photo Studies of Tubes Transversely
by Circular Cylinders

Compressed

Straight, transparent, polyvinyl chloride tubes with

circular cross-sections and uniform wall thicknesses were

transversely compressed by horizontal circular cylinders

of various diameters. The longitudinal vertical profiles

were photographed. From each photo the dimensionless geom-

atry of the longitudinal cross-section of the inner wall

in the § = 0 plane was determined and graphed. For com-

parison with Eq. (2.19), a value of n&gt; was estimated from

each empirical graph, a value of € was measured, a value

of d was calculated (by adding the dimensionless tube wall
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thickness to the dimensionless radius of the compressing

cylinder), and h was set equal to 2.0 (h = 2.0 for a tube

which is naturally round). The corresponding graph of Eq.

12.19) was plotted on the same graph as the dimensionless

ampirical profile.

This comparison, carried out for three different di-

nmensionless geometric configurations, is displayed in Fig-

nres 8, 9, and 10. The results indicate that the shape of

the empirical "conventional roller pump" wave shape can be

fairly well represented by Eq. (2.19), if a proper choice

of n* is made.

Observe that there is only a small discontinuity in

slope at ny on the curves, given by Eg. (2.19), in Figures

8, 9, and 10.



3. PUMPING CHARACTERISTICS

3.1 General Considerations

The basic objective of Section 3 is to find the rela-

tionship between pressure rise and flow rate for a peristal-

tic pump. To do this it is first necessary to find the

fluid velocity profile w(¥,n) at each transverse cross-section

of the tube in the wave frame. This is done by solving the

appropriately simplified Navier-Stokes equations subject to

appropriate boundary conditions. [w can be assumed to be in-

dependent of time if there is assumed to be an integral

number of identical waves between two pressure reservoirs,

or if there is assumed to be an infinite train of identical

waves on the tube]. Integrating the velocity, w, over each

cross-section then gives the volume flow rate, gq, through

that cross-section, as a function of the local pressure

gradient. Continuity requires that at any given time g be

identical for all wave frame cross-sections if the wave

shape is constant. Transforming to the lab frame, the wave

frame constant flow, gq, is transformed to the lab frame

variable flow, Q. Averaging Q over one wave length (or over

one wave period) yields the average lab frame volume flow

rate, Q. Integrating the pressure gradient over one wave

length gives the pressure rise per wave length,Sp, . The re-

lation thus obtained between Q and $p, is the desired result.
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3.2 Velocity Distribution at Each Cross-Section

The assumption of an integral number of identical waves

between two constant-pressure reservoirs, permits analysis

of the flow as a steady flow in the wave frame. The assump-

tion is a fairly good approximation to actual roller pumps,

except during those phases of the pumping cycle when there

may momentarily be a non-inteégral number of waves on the

tube because a roller is coming into contact with or separat-

ing from the tube.
: Lo Yan|

Assuming that blood is Newtonian and that —gz 1s

always sufficiently small that transverse pressure gradients,

transverse velocities, and z-gradients of longitudinal vel-

ocity are very small everywhere, then the longitudinal Navier-

Stokes equation may be approximately simplified (by elimi-

nation of inertia terms and the third viscous term) to the

form:

- dp , a 3
© = 3. te Vw

vhere 7 2

xX: VY
longitudinal fluid velocity in wave frame

fluid density

pressure

N

0

(3.1)

M = viscosity of the fluid
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The boundary conditions for Eg. (3.1) are:

AJ when (3.2)

In terms of the dimensionless wave frame coordinates

Jefined by Eq. (2.12), Egs. (3.1) and (3.2) become

D=-dp |, Mc /2w | 2%w1, "TR (5% $52)
N1lch boundarv conditions:

-1 when ir sLa=BY) 1A

where Eg. (2.6) has been used, and where

AJ "4
~ = dimensionless longitudinal fluid

velocity in wave frame

(3.3)

(3.4)

(3. 5)

The solution of Eq. (3.3) satisfying (3.4) is:

R_ 5] 21-5- bi] = Hg A*+B* dnt A (3.6)

3.3 Pressure Rise Across Pump vs. Volume Rate of Flow

A. Arbitrary Wave Shape

If. for a particular fluid element, w is the longitu-

dinal velocity measured in the wave frame and W is the long-

itudinal velocity measured in the lab frame, then, since

the wave and lab frames are related by Eg. (2.11), the



relation between w and W is:

v(z,t) = w(Z-ct,t) = W(Z,t) - c (3. 7

the volume flow rate in the lab frame is defined by:

Q(Z,t) = S\W(zZ,t) dX dy
C(Z +)

3 1

b)

where C(Z,t) designates the limits of integration over the

Fransverse cross-section of the tube at (Z.,t).

Jsing Eg. (3.7), Eg. (3.8) becomes

Q(z Sw(Z-ctt) aXdy +c )idX ay
C(z,t) C(Z,t) (os 3

"he volume flow rate in the wave frame is defined as

g(z,t) = 0S w(2,t) dxd
X(zt)

vhere X(z,t) = C(z + ct, t) designates the limits of inte-

10)
J

gyration over the tube cross-section at (z,t).

NT =.

13a iy = I'(Z +t)
= the area of the tube cross section

(3.11)

at (7. +)



So, on using Egs. (2.11), (3.10), and (3.11), Eg. (3.9)

becomes:

iZ,t) = gqlz,t) + c-['(Z,t) (3.12)

The validity of Eg. (3.12) does not depend upon the assump-

tions of constant wave shape, steady flow in the wave frame,

2lliptical cross-sections of constant perimeter, or incom-

pressible fluid. (Note: for a wave of changing shape, the

wave frame is still defined by Eq. (2.11).)

Now, using the assumptions of constant wave shape,

steady flow in the wave frame, and incompressible fluid,

the expression for g(z,t) simplifies to:

Ji{z,t) = g = constanc (3 1 3»

And, using the assumptions of constant wave shape and ellip-

tical cross-sections of constant perimeter, and using Eq.

(2.11), the following result is obtained:

(Zt) = em Gb)| | (3.14,

So, substituting Egs. (3.13) and (3.14) into Eq. (3.12),

and noting that Z and t enter on the right hand side only

together as (2 - ct), Ea. (3.12) becomes:

QR(Z-ct) =a roe (2b)] 1, _ [3 15;



The assumptions which led to Eq. (3.13) are also sufficient

to reduce Eg. (3.10) to the form:

lv 0 w (2) dx d,
X (2)

(3.16)

where, now, X (2) designates the limits of integration over

the (elliptical) cross-section at z in the wave frame.

Substituting Egs. (3.5) and (3.6) into Eg. (3.16),

asing Egs. (2.6) and (2.12), and integrating the result

vields the expression:

- (AB) Re :1 En (75)iy) Inq (3.17°

Substituting Ea. (3.17) into (3.15), and solving for dp/dz

Jjives:

dp te (AE) _da, TR? Vir n Q(Z- et)
where, by Egs. (2.11) and (2.12),

_ Zz - (452)YT R R

(3.18;

(3.19)

Define:

A =

L=2=
R

SP, = pressure rise per wave length in the wave frame

wave length (= distance between rollers on the tube)

dimensionless wave length (3.20)



Integrating Eg. (3.18) over a full wavelength in the wave

frame gives:

tL/2 2,02

+02 _-4u A +B | Q(z-e) dnPs ) 3 iy rR* 1. FE),2

(3.21)

But, using Egs. (3.19) and (2.6), Eg. (3.15) becomes:

Q(Z -ct) = q+ em R* (AB), (3.22)

Substituting Eg. (3.22), into (3.21) yields:

0 = —Hm § ( (AE&gt; 3 * d

BTR (Cpe)
(3.23)

wi “EE dn,rR fo ;

Pressures, and pressure gradients, are invariant under a

Galilean velocity transformation, so $p,, the pressure rise

oer wavelength in the wave frame, is also equal to the pres-

sure rise per wavelength in the lab-frame. Therefore Eq.

(3.23) holds for either the wave or lab frame.

If Eq. (3.22) is spatially averaged over one wavelength

(or if the time average is taken over one wave period), then

the result is:

QA = q + c-m- RAB (3.24)

where the bar()denotes an averaged quantity. gq is constant,

so its average value is equal to g. AB is defined as:



~y

7 B)| -dTR = —. A dnAS = L a, ” (3.25)

0 is analogously defined.

Now define the quantities:

L 2

ro = ( "(AE ;= ips I

SAVER
(3.26)

~+L/2 SZ dn= = ),, Lh . (3.27

Then, solving Eg. (3.23) for g, substituting the resulting

expression for gq into Eq. (3.24), using Egs. (3.26) and (3.27).

and dividing through by Rc, gives:
~ ~~

- —_— Q

(9 | Ze + AB -&amp;2 C 0 QwR HMC/R GF F J (3.28;

Eg. (3.28) gives the relation between the

(time or spatial) mean volume rate of flow in the lab frame

and the pressure rise per wave length due to the motion of

an infinite train of waves (or an integral number of waves

between two pressure reservoirs) of arbitrary but constant

shape on a straight tube with elliptical transverse cross-

sections of constant perimeter.
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B. Witch of Agnesi Wave Shape

The coefficients, (33) and (AB - So) in Eg. (3.28)

can be computed for the Witch of Agnesi wave shape by sub-

stituting Egs. (2.19) and (2.8) into Egs. (3.25), (3.26)

and (3.27), and then integrating numerically for specific

values of L, h, €, d, and 73*.

See Table 2 for a tabulation of computed values.

C. Square Wave Shape

The square wave shape, defined as:

5 for O 4 S
1= max) 286) &lt; r al &lt; /2

h, for A &lt;n &lt; L/
(3.29)

permits an analytic calculation of the coefficients (725) and

(AB - §. Eg. (3.29) is diagramed in Figure 11.

The square wave shape may be thought of as an oversim-

plifified approximation to the Witch of Agnesi shape or it

may be regarded as a reasonable approximation to the wave

shape produced by a special kind of roller*. See Figure 12.

The subscript "k" will be used to denote quantities

svaluated in the compressed region (i.e. 0&lt; |z[&lt; o) of the

square wave [e.g., € =2 - Bl.

Then, using Eg. (3.29), with h = 2.0, the integral ex-

pressions for AB, F°, and G° given by Eags. (3.25), (3.26), and

(3.27) become simple algebraic expressions:

Note: this special type of roller was suggested to me by
Prof. Ascher H. Shapiro in a private communication on
6 September 1969.
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5 (EBD [1p

 -[s(5E) + ws)

6° [5 (4)+(L-9)]

(3.30)

(3.31)

(3. 32)

Substituting Egs. (3.30), (3.31), and (3.32) into Eg. (3.28)

(Q\_ (3 [meRte STE EY)
0 + 2 h* 2 -.4-1) EF) ( 52), 0-48)
A*+B*(5%), f (5 - 1)

Eg. (3.33) is the general relation between Q and ¢p, for a

square wave shape; Eg. (3.33) is subject to the same restric-

tions as Eq. (3.28).

gives:

\
(3.33)

If two additional assumptions are now made, chat:

B. = £ &lt;&lt;1 (3.34)

which is a reasonable assumption, since roller pumps are usual-

ly operated in the nearly occlusive mode, and that:



L A*+B*5) «(55) (3.35)

and observing that Eq. (2.9), with Eq. (3.34), implies that:

~ J
A, = 3

then Eq. (3.33) becomes:

Q \x=[mR 7 2 gy -ze)]i) = ag +t WiC r) (3.37)

 3 3 5)

Eg. (3.37) is a special case of Eq. (3.33) and holds only

when Egs. (3.34) and (3.35) are satisfied. Eg. (3.35) is

sgquivalent to the condition:

[£) « # (3.38)

when Eq. (3.34) is satisfied. Eg. (3.38) is a condition

which is met by almost any reasonable set of square-wave para-

meters; so, in effect, the only restriction on Eq. (3.37),

oeyond the restrictions on Eg. (3.33), is that Eg. (3.34) be

satisfied.

D. Modified Witch of Agnesi Wave Shape

The simple square wave shape, Eg. (3.29), which finally

yielded Eg. (3.37), has a serious limitation as an approxi-

mation to the Witch of Agnesi wave shape. The limitation

lies in the fact that the square wave lacks wall curvature,



1)

so that € and S for the square wave (see Figure 11) are not

directly comparable to €¢ and d for the Witch of Agnesi wave

(see Figure 4.) In order to obtain analytic results which

can be related to the Witch of Agnesi shape, it is necessary

to use a wave shape which is analytically simpler than Eq.

(2.19) but which retains the "most important” properties of

the Witch of Agnesi shape. In a peristaltic pump, most of

the pressure rise across the pump is due to viscous forces

acting on the liquid within the highly compressed regions of

the tube; this is the region directly beneath the roller

where the wave shape is mainly influenced by the values of

d and €. Therefore, as far as the pumping characteristics

are concerned, the "most important" properties of the Witch

of Agnesi are shared with the osculating parabola, Eg. (2.20).

So, in terms of the osculating parabola, a "Modified

Nitch of Agnesi" wave shape can be defined:

{les nt + e) y for [nl &lt;J2md
N= Ngan)=2-Bloy)= (3.39)

\ h for IZmd &lt;|nl&lt; L/23

See Figure 13.

In the following analysis, h = 2.0. Eg. (3.39) has the prop-

arties:

~
Lom
gt? = Qi (O) (3.40)



nl i

and

d = radius of curvature of N max (3) at y= 0. (3.41)

Egs. (3.40) and (3.41) are identical to Egs. (2.15) and (2.16),

respectively, for the Witch of Agnesi shape; therefore € and

d for the modified Witch of Agnesi wave are directly comparable

to € and d for the Witch of Agnesi wave.

The value of "m" in Eg. (3.39) is selected so that two

conditions are satisfied:

R== y For || &lt; J2md

(ie, for B &lt; BLE) (3.42)

and

‘rom Eg.

2) &lt;&lt;t
(2.9), it is

m = 0.4

seen that a suitable value for m is:

(3.43)

(3.44)

so long as € is constrained to satisfy:

= &lt; ~ O.135 (3.45)

[f Egs. (3.44) and (3.45) are satisfied, then Egs. (3.42)

and (3.43) are also satisfactorily satisfied.

A useful assumption is that:
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j, &lt;&lt;
. 1

3 2 2 a2
5 (3.46)

which is satisfied for most reasonable values of L and d when

Eg. (3.45) is satisfied.

Substituting Eg. (3.39) into Egs. (3.25), (3.26), and

(3.27), subject to the conditions of Egs. (3.42), (3.43), and

(3.46), and substituting the expressions thus obtained into

Eg. (3.28), gives the following relation:

Q _ - op, c*

fe © { wn (557%

End(yoam)
(3.47)

Using Eq. (3.44), Eg. (3.47) becomes:

wR) (YR) 33.9) 4”

IL 1];
(3.48)

Eqs. (3.47) and (3.48) are valid only for tubes which are cir-

cular in cross-section when not squeezed.

The most significant feature of Eg. (3.47) is that the co-

. Soa ro .

ocfficient of (Gack) is independent of m and L. This says

that the contribution of §p to Q is dependent upon the geometry



near the origin (z = 0), i.e., upon € and d, but is not de-

oendent upon the geometry elsewhere, i.e., upon m and L.

If Egs. (3.42), (3.43), and (3.46) are satisfied, then

the coefficient of GevA) in Eg. (3.47) should be very nearly

equal to (ro) in Eq. (3.28) for the Witch of Agnesi wave

shape. That is, it should be true, for the Witch of Agnesi

wave shape, Eg. (2.19) - subject to the constraints of Egs.

(3.45) and (3.46) - that

1 ~ 2 5/2

GES 3.279% 7 (33.9) 4%
(3.49

L

Eg. (3.49) can be checked by numerically computing (—),
4F©

as outlined in Section 3.3B, for particular values of €, 4d, L

and nex, with h = 2.0, and comparing the value thus obtained

with the value given by Eg. (3.49). See Table 2.



i. BLOOD DAMAGE CHARACTERISTICS

4.1 Criteria for Index of Hemolysis

As discussed in the Introduction (Section 1.3), a conven-

ient measure of blood damage is the Index of Hemolysis (I.H.)

defined:

mg. Hb released into plasma
[.H. = [350 mI. of blood pumped ] (4 C1)

where Hb = Hemoglobin (from ruptured red blood cells).

P. L. Blackshear, et al, on the basis of their own ex-

periments and the experiments of other investigators, report:

that the I.H. for blood flow through small-diameter tubes

of circular cross-section is independent of the flow rate, Q,

through the tubes. On the basis of other experiments, in

which blood was subjected to high turbulent shears far from

any solid surfaces, Blackshear, et al, report! that blood

can withstand very high shear rates (~10°/sec) without hemol

ysis when walls are absent; such is not the case when walls

are nearby. They conclude that the hemolysis which occurs

when blood flows through tubes at moderate shear rates is a

wall-related phenomenon. The data which they report for hemol-

ysis in tubes is shown in Figure 14. In this figure, points

5 and 6 merely confirm that, in a given experiment with the

rube radius fixed, I.H. is independent of flow rate. Points

1, 2, 3, and 4 indicate that I.H. is approximately propor-

tional to a reciprocal power of the tube radius, R.,:



 3k,-

IH ec ~ (33) or (72) (1.2)

Blackshear, et al., obtained the relation

7)LH. (RT (4.3)

from the following arguments. There is a diffusion flux

of red cells toward the wall. A certain fraction of the

red cells which reach the wall are hemolyzed. The flux

is characterized by a "diffusion" coefficient, D; this

coefficient, D, is assumed to be proportional to the aver-

age shear rate in the flow, in order to satisfy the require-

ment that the I.H. be independent of the volume flow rate.

In fact these arguments imply that the rate of hemolysis is

proportional to the product of the average shear rate and

the wall area and should vield

BecrRZ) (4.4)

rather than Eg. (4.3).

[t is interesting to note that Eg. (4.4) may also be

obtained from different physical arguments which are as

Follows:
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1) Red-cell destruction (i.e., hemolysis)

takes place at the wall.

ii) Because of (i), the amount of hemolysis

(mg of Hb released) should be directly pro-

portional to the wall area, i.e., to the pro-

duct of the wall perimeter (2 TR.) and the

-ube length (AX).

iii) I.H., being the number of mg of Hb re-

leased per 100 ml of blood pumped, should

be inversely proportional to the volume flow

rate (Q) of blood through the tube, other

things being equal.

(iv) The amount of red-cell destruction (mg

of Hb released) at the wall should be di-

rectly proportional to the absolute value

»f the shear stress at the wall (zy, )

A mechanism which could account for -- i.e., make plaus-

ible -- point (iv) above, is the following: red cells are

known to adhere to foreign surfaces. If a red cell is



"ripped off" of a surface to which it has adhered, then the

membrane of the red cell is likely to be ruptured and Hb re-

leased into the plasma. The likelihood of a red cell, ad-

hering to the wall of a tube, being "ripped off" of the wall,

should be proportional to the absolute value of the velocity

of fluid near the wall, i.e., proportional to the-absolute value

of the shear stress at the wall (7 a11]

Assuming that the preceding argument [points (i) through

‘iv)] is correct, then the following result is obtained:

_ K(27 Rez): | Zyl)
TH = —— Oo ra ))

where k* is a "constant" of proportionality which could be

a function of blood fragility, temperature, hematocrit, wall

roughness, chemical composition of the wall, etc.

For a steady, fully-developed flow through a straight

tube of circular cross-section and radius, Ros the relevant

flow quantities arel?

WG) = of dp] 5 (4.6)

where W = longitudinal velocity

r = radial coordinate

| Tyan] = | 4 (Zep - 5 dp (4.7)



on. TRr dp
3. 42

- nn Qe
a

(4.8)

Substituting Egs. (4.7) and (4.8) into Eq. (4.5) gives:

 [KE8u
LH R- J

which has the form of Eg. (4.4).

Eg. (4.5), which applies only to the case of a right cir-

cular cylindrical tube, can be generalized to the case of a

constant-perimeter tube having variable elliptic cross-sectional

shapes, a wave-length ), and a time mean flow Q. This general-

ization would be applicable to the model of a peristaltic pump

developed in this paper.

The generalized version of Eq. (4.5) is:

TH =

2

k* (2mR) S | (Twill)yyerage dz”
()

(4. 9)

where |Z, 011) average is the absolute value of the average

mean) shear stress on the wall of the tube at a particular

transverse cross-section in the wave frame.

Before proceeding any further with Eg. (4.9), it is nec-

assary to find analytic expressionsfor(7,11)and for [ (ZT, 17)

AVETANE:
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4.2 Shear Stress on the Wall of the Tube

A. Shear Stress Distribution on the Wall of an Ellip-
tical Cross-SectionI ———- De ———

[n Section 3.2 it was assumed that transverse components

of velocity were negligible. The ultimate result of that as-

sumption was Eg. (3.6) for the dimensionless longitudinal

velocity in the wave frame. Once again making that same as-

sumption, and also assuming that the shear forces due to the

transverse components of velocity are negligible, it follows

then that the shear stress, T, at the wall is:

r gy OWwall Mon | 22 ~A(Vw)) * 1
wall wall =

where n is the local coordinateinthedirection of n, the

(4.10)

it inner normal vector to the wall.

In Appendix 3 it is shown that Eg. (4.10), with the veloc-

ity distribution given in Eg. (3.6) and with the wall shape

given by Ea. (2.3), becomes:

r Tat)- ek {565 - 1)"(ue/K) LAB ARAB B
(4.11)

here

and where

Fo)
-A¢%4+A

(4.12)
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B. Maximum Shear Stress on the Wall of an Elliptical

Cross-Section erm—

Differentiation of Eg. (4.11) with respect to § indicates

-Twall .
“hat an extremum of Ipc/R occurs at §= 0 [i.e., the extre-

mum occurs at (§.n) = (0,0) or at (0,2B)]:

[- Call | 'Foe - 5 . 1) 1
ees B

(4.13)

A consideration of the second derivative of Tall with respect

ro § shows that Eq. (4.13) is a minimum extremum when

F + &lt; O AB
4.143)

and is a maximum extremum when

FAB 4] &gt; 0 (4.14b)

Eq. (4.13) is plotted, for various values of F, in Figure 15.

Figure 16 shows how T 11 at ¥ = 0 varies longitudinally along

a particular wave shape. A significant feature of Figure 16

is that [Ta11l has finite local maxima at A= 0 and at

a non-zero value of ny.

C. Average Shear
Cross-Section

Stress on the Wall of an Elliptical
——

The average shear stress (non-dimensionalized)

1 ATR

| oat = J \ in ) dsbue/pl ~ 2mR J, (upe/R
dveTige

ig:

(4.15)
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where

dS = differential arc length on wall of elliptical cross-

section

i &lt;1
area] = [1 (2) a

wall dx wall (4.16)

Solving Egs. (2.3) and (2.11) for y, differentiating to get

(SG) ", and substituting into Eg. (4.16) gives:dx’Jwall

I EZ ORES
[Fs dx3+ - x? J

iS (4,17

Substituting Egs. (4.17) and (4.11) into Eg. (4.15), and us-

ing Egs. (2.12) and (2.6) gives:
a

[Seal “3B (Eo EE-L)-4tMC/R Javerage 2mR o \AB ax\A* RB? 5B?

“2% -x*(1- bY) 2,X AF-X*? J
into Eg. (4.18):

(4.18)

rs

x = KAu ; dx = RAdu ; a-RA (4.19)

and use the new limits of integration:

1 = | when xX = a

(4.20)
a=0 whenx=0

With substitutions (4.19) and (4.20), Eg. (4.18) becomes:

[LT _(Foe - ga ,1) K (5,4)\Huc/R/average AB (4 21)
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where

Wr, on - 579)2 A 1-u*(L-9/p ooK(BA) = gh) Lol J (4.22)

Eq. (4.22), subject to the constant perimeter condition of

Eq. (2.8), is plotted in Figure 17. Eg. (4.21), subject to

Eg. (2.8) is plotted in Figure 18 for various values of F.

Also plotted in the same figure are comparison plots of Eq.

(4.13).

NOTE: Eg. (4.21) is an approximation to the actual average

shear stress on the tube wall at any given cross-section.

Only the longitudinal component of velocity, w, is known

{itself approximately), so only the component of shear force

due to w can be determined. The averaging performed in Eq.

(4.15) does not introduce any new errors or approximations

into the analysis. Any errors or approximations in Eq. (4.21)

are already implicitly present in Eg. (4.11).

4.3 IndexofHemolysisforSquareWaveShape

Using Egs. (4.9), (2.12) and (3.20), the relation for

[.H. can be expressed:

L
- K2rR?

[LH = 2eR | (Cail) average 43 (4.23)

(T0211) gverage
oe noted, with regard to Eg. (4.22), that

is given by Eqs. (4.21) and (4.22). It should

(1,1) = 1 (4.24)



and, when B&lt;&lt; 1 and A = 30 that:

~ _T
K(B, 7) = 45 (4.25)

Then, for the geometry of thegquare wave, defined by Eq.

(3.29) and diagramed in Figure 11, with h = 2.0, Eq. (4.23)

hecomes:

IH = ni is (Calyerage, 9h, foe
B-1

vhere the subscript "k" denotes a quantity evaluated in the

~ompressed region of the square wave

Now assume that

Br = =&gt; &lt;&lt; 1 (4.27)

Then, by Egs. (4.21), (4.22), and (4.25) and using Eq. (2.9):

(Bl eragel; = ape = iF ’ 1)
BY Egs. (4.21), (4.22), and (4.24):

— 4puc

(ealierage], - |r + 1]
B-1

Jsing Egs. (4.28) and (4.29), Eg. (4.26) becomes N

IH. = Ko fueR (£212 1] + 2(L-S)|F+1]¢

4.28)

(4.29)

(4.30)
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But from Egs. (3.24) and (4.12):

(7%. - AB)= TR*e (4. 31)

and, from Eg. (3.30) for the square wave, using Egs. (2.9)

and (4.27):

— Q

AB =[1-2 + Ly (4 )
y J

So, substituting Eq. (3.37) [which is valid for the square

vave when Egs. (3.34) and (3.38) are true] and Eg. (4.32)

into Eg. (4.31) gives:

«Fk. Treb= ERY 4 (4.33)

Substituting Eq. (4.33) into (4.30) gives:

IH = eaeR {SRR 7Q Me 1b

2-(L-S)' SpR owe’ Te
we SF

1-

\
(4.34)

hen, assuming

L L&lt; 1 (4.35)

and assuming



SE

E) er L&lt; 4 (4.36)

Bg. (4.34) becomes:

Li = igueloR{pKre (L.-3 ue 14 + 20 5)3 (4.37)

Eg. (4.37) is the relation for I.H. for the square wave shape,

subject to the assumptions of Egs. (4.35) and (4.36).

4.4 Index of Hemolysis for Modified Witch of Agnesi Wave
Shape

The I.H. for the modified Witch of Agnesi wave shape can

be determined by using Eg. (4.23) in conjunction with Egs.

(4.21), (4.22), (3.39) and (2.9). Assuming that Eqs. (3.44)

and (3.45) are valid, then Eg. (2.9) becomes equivalent to

rg. (3.42). Egs. (3.27) and (3.26) then become, respectively

20 = 0.27 gt LE
3/2 L *

} 3Tm
(4.38)

and

pox 32221) age
 5/2 oe
= 3ITm

(4.39)

~vhere 1t has been assumed that



56~

(£)” L&lt;Z 4
(4.40)

2d

|&lt; Lr.&lt;(2 rd?pd”) (4.41)

from Egs. (4.21) and (4.22), with Egs. (3.42), (4.25), and

(3.39), it follows that

(Tem) verage],| = Te. r (4.42)

vhe re

 Pr = pr , rd
(n*+2ed) (n2:2ed) (4.43)

and where the subscript "k" denotes a quantity which is to

be evaluated in the compressed region of the modified Witch

of Agnesi wave shape (i.e., in the region defined by

ln] &lt; JZmd )
Then, for this wave shape, Eq. (4.23) becomes:

X NZma

IH = 1k rueR i rf dn,
(4.44)

pot -[k - zm}



Now, using the assumption of Eg. (3.43) and making the addi-

tional assumption:

F+1] = (F +1) (4.45)

then it can be shown (see Appendix 4) that Eq. (4.44) becomes:
2 11/2

[ges te)rkueR (2 a-SmR 22 A
O 3 2%2 Liz MC 93agin
 1/1 . 3/2 4/50 7

, 4_2 tan Goll +SaB. ce f22 7 MC 23a gia
1/2

LT d — 1 ,8pR 3% 1/2
2273 e ? mc 1r 23/2 41/2

1/2-Td L 4, 1/2 11/4
73 mit Fo = 2 m d ]
It can be shown (see Appendix 5) that, &lt;f

(4.46)

cz. =— mad (ES 1/3oR) £41 (4.47)

then I.H., as given bv Eq -» (4.46) has a minimum value at

E = &amp; ~

typical” set of parameters is:

1.5 x 10° gm/cm sec® ( = 112.5 mm Hg)

1.) cm

26.5 cm/secpay

oa

py

0.05 gm/cm sec

4 0

4 48)

Using the parameters of Eg. (4.48), Eg. (4.47) gives the

salue



—

et

€o = 4.62 x 107° (4.49)

which satisfies the inequality of Eq. (4.47).

From Eq. (4.47) it follows that

3/2 3/2

Speke i= 2(£)1me mr233i Eq (4.50)

Supstitating Eg. (4.50) into Eq. (4.46) gives
[H = (16) mk peR (&gt;a A, _/€\/2
 Q [3-2 | c)

JA _ 2 14 ¢ \3/2 1/23 tan (Gall 12(£) J 7]
1/2 1Td ec \3/271/2

fran Jn [4 +2 (€) |
1/2-Td L 1a . 42 11/2[Fe — na)

The right hand side of Eg. (4.51) is grouped into three terms.

(4.51)

The first of these terms is positive semidefinite (it equals

zero only when (€/ eg) = 1); the second term is positive def-

inite; the third term may be either positive or negative

(though if L is sufficiently large, the term will be posi-

tive), but since it is much smaller in magnitude than the

second term (because Eg. (3.43) must be satisfied) it cannot

influence the sign of I.H. Therefore, I.H., as given by Eq.

(4.51), is positive definite, as required by Eg. (4.9).



If € in Eg. (3.47) is set equal to €, (as given by Eq.

(4.47)) ,then Eq. (3.47) becomes:

2G) o (Teel) Sad; wa) (4.52)

So, when the inequality of Eq. (4.47) is satisfied, and when

1/2

0 L&lt;L 1I.
4 3 3)

then Eq. (4.52) gives, approximately:

Qe =€,) = TR*c (4.54)

Substituting €, for € in Eq. (4.51), using Eq. (4.47),

neglecting the (small) third term of Eq. (4.51), and elimina-

ting ¢ by using Eq. (4.54), gives:

21

[He-c) = 27 nk (FRadis2:)3 (4.55)

Eg. (4.55) is an approximate expression for the minimum value

of I.H. obtainable for given values of §p,, d, and 0, for the

modified Witch of Agnesi wave shape. For the "typical" set

of parameters given in Eq. (4.48), Eg. (4.55) becomes

L &lt;H. (e=e, = 4.62 x 1073) = (16.67 I) ke (4.56)
cm sec

The appearance of m in a term [e.g., in certain terms

&gt;f Eqs. (4.46), (4.51), and (4.52)] indicates that details
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of the wave shape, other than € and d, are significant for

that term, so that the modified Witch of Agnesi wave shape

(Figure 13) is not an accurate approximation to the regular

Witch of Agnesi wave shape (Figure 4) for that term. Terms

(and expressions) not involving m are, however, well-approxi-

mated and should be the same for both the modified and regu-

lar Witch of Agnesi wave shapes.

Eqs. (4.46), (4.47), (4.51), and (4.55) indicate that,

for the Witch of Agnesi wave shape, I.H. at first decreases

as € decreases, then passes through a minimum value at &amp; =€ 4s

and then increases indefinitely as €&amp; decreases further. This

behavior of I.H. is to be contrasted with that for the square

wave shape. Eg. (4.37) indicates that, for the square wave,

I.H. decreases linearly with &amp;€ until it becomes equal to a

finite value when &amp; = 0.

In order to make an additional comparison between the

expressions for I.H. for the square and Witch of Agnesi wave

shapes, it is necessary to express d for the Witch of Agnesi

wave in terms of S for the square wave. Figures 11 and 13

suggest that an appropriate relation between d and S is:

»

.dN

77
y.-) C

Nh (4. 57)

Eq. (4.57) is, of course, only a crude approximation. Sub-

stituting Eq. (4.57) into Eg. (4.47) gives an expression for

a quantity which will be designated Eq (8); then letting

ce = &amp;€,(8) in Eq. (4.37), neglecting the term involving the

Factor (L - 8S), and using Eg. (4.54) to eliminate c, yields



. =

=)

IH ~ Kn* [2 i)”21/3 o
(4.58)

Eq. (4.58), while only a crude approximation to I.H. for the

square wave shape when € = €,(S), nonetheless reveals, when

compared with Eq. (4.55) for the Witch of Agnesi shape, that

the I.H. for thesquare shape has a functional dependence

upon Sp,,M,andQwhich is similar to that of the Witch of

Agnesi shape =-- when € = €5~ Ey (8S). Therefore, when oper-

ating in the vicinity of €=€, (for the Witch of Agnesi) or

€ = € (8) (for the square wave), neither the square nor the

Witch of Agnesi shapes should enjoy any particular advantage

over the other shape with regard to the functional character

of the dependence of I.H. upon 8p, ,M, and Q; a relative ad-

vantage may exist, of course, in the absolute magnitude of

[.H., but an advantage will not exist in the type of function-

al dependence.
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5. NECESSARY CONDITIONS FOR VALIDITY OF THEORY

5.1 Inertia-Free Flow

A. Condition for Inertia-Free Flow

The validity of the theory presented in the preceding

sections is dependent upon the validity of the assumption

made in Section 3.2, that the flow is inertia-free - per-

mitting the longitudinal Navier-Stokes equation to be approx-

imated by Eg. (3.1). The full longitudinal Navier-Stokes

aquation for steady flow of a Newtonian fluid in the wave

frame is:

ow OW dW—_— tl LARAS

Uax "Vay "Woz
= =i 2p 2'w , PW |, 2%w5 27 &gt; (555 2y* 9% (5.1)

where » = M/p = kinematic viscosity of the fluid. The iner-

“ia terms (i.e., the left hand side) of Eg. (5.1) may be ne-

yjlected relative to the viscous terms (on the right hand side)

. fF

ow aw | oW
 Yax Voy Won

DW Q%wr 2%Wo[ 2¥ toy * ry
«&lt;&lt;4

(5  , 2)

An order of magnitude analysis shows that the numerator

of the left hand side of Eq. (5.2) is of the order of its

third term, w2¥ : From Figure 20:

The characteristic time is the period required for a

typical fluid particle at the wall to pass from a point im-

nediately in front of the roller to a point directly beneath

Fhe roller. Therefore:
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Characteristic time = 20 ~~ gE

and it follows that cle hardacteristic velocities are:

a. J  ~~ J i

J =u~Rf~c/d

Naveframe longitudinal centerline velocity = wy,

Naverrame longitudinal velocity at wall = ly

(5.3)

(5 4,

(5.5)

(5 6)

(5 » /)

Characteristic lengths for variations in longitudinal

7elocity in the compressed region of the tube:

NX ~RK

Avy ~ e-R

(5.8)

(5 J)

I'ypical longitudinal waveframe velocity =w ~(W,+¢) (5.10)

I'hen using Egs. (5.6), (5.7), and (5.8):

OW ~ (&gt; =)Ox R (5.11)
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and using Egs. (5.6), (5.7), and (5.9):

ow (Ret) (5.12)

But, by the continuity equation

ow = (24 _ ov
DZ 2X 2y

Then, using Egs. (5.5) and (5.8) -

»

ou J.COX (35)

(5.13)

(5.14)

and, using Egs. (5.4) and (5.9).

5 ~ (=) (5.15)

Substituting Egs. (5.14) and (5.15) into (5.13) gives, when

£ is small:

= ~ (5%)
(5.15b)

Collecting terms, and keeping only the largest term, gives

the numerator of Eg. (5.2):

AW, OW, PW ¢(WatC) ow(u 23 Vay w2¥) ~~ &lt;cdR ~ Wo
(5.16)

Therefore the sum of the three inertial terms 1s of the same



order of magnitude as W o&gt;

B. Calculation of the Reynolds Number

The absolute value of the ratio of the inertia terms

to the viscous terms, at any point in the fluid, is designat-

ed as the Reynolds number at that point. The complete Rey-

nolds number is given by the left hand side of Eg. (5.2).

But, by using Eq. (5.16) and by using the assumption that:

= ee | 22 CRATE0 Zz? ox? t oye | [ wa

it is possible to define an approximate Reynolds number, Re,

which is sufficiently simple to make analytic computations

possible:

ow
WwW 35

Re =
(Zw . TvaX? oy

(5.18)

Jsing Egs. (3.5) and (2.12), Eq. (5.18) becomes:

Re) -[Ee
ow

 Lon
2% 2 nt

(5.19)

The approximate criterion for inertia-free flow is that Re

satisfy:

Re &lt;&lt; | (5.29)
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at every point in the flow, or equivalently, that the maximum

Reynolds number in the flow, Re**, satisfy:

Ro &lt;L 1 (5.21)

Substituting Egs. (3.15) and (3.18) into Eq. (3.6) gives:

(5 22]

"rom Eq. (5.22), straightforward calculation yields on

-he centerline:

C8), ir sh) (5.23)

The Reynolds number has its maximum value (on any arbi-

trary transverse cross-section) at a point close to the cross-

sectional center, (§,n) = (0,B). Substituting Eg. (5.22)

into (5.19) and evaluating at the centerline gives:

| d

2) BaF +AB]F
Rese | 2 [A*+B*][F + AB]

(5.24)

[t is now necessary to find the maximum of (re) with re-
$2

spect to ny 1-8

[Inspection of Eg (5.24) shows that

(Re |R e/v coo
n=R

, when AB —s&gt; ~F' (5.25)
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This singularity in Re is due to the viscous terms going to

zero. Before concluding that Eq. (5.25) says that the iner-

tia forces are important when ABE =~ F, it is necessary to

compare the magnitude of the inertia forces in this part of

the flow with the magnitude of inertia forces elsewhere in

the flow.

When

AB = (-F) &lt;&lt; { (5.26)

hen

= P|
B = x

and, by Eq. (2.9)

As=CL -aB* == 9 9 (ok~1)

(5.27)

(5.28)

(the inequality of (5.26) is true for small € and "typical"

values of §p, and other parameters.)

So, substituting Eg. (5.28) into (5.27) gives:

ga =2F (5.29)

then, using Egs. (5.28) and (5.29):

HE
=-2d-B EE —(— (Ah ~1.) (5.30)
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Substituting Egs. (5.28), (5.29), and (5.30) into Eq. (5.23),

and using the inequality of Eg. (5.26), then gives:

24)=TdWyly.o Fldry
Th vo

en, using Egs . (3.39), (5.28), and (5.26) t, 0 eliminate F

+ uo
(5

and B, Eg. (5.31) becomes:

(@ = -90 €=0 nt+2ed
n=B

=0, if a =0

+0, as fy —&gt; 00

(5.32)

JL]

From Eg. (5.32) it can be shown that the maximum value of Eq.

(5.32) is:

0 22) |ory g-0
n=B

amr

~pm—— 2.ed (5.33)

max

vhich occurs when

{J
= J2ed] (5.34)

Eq. (5.33) is valid only when the conditions given by Eq.

(5.26) are satisfied.

Next, from Egs. (5.16), (3.5), and (2.12):

A) Lo (We te)
27 cde (5.35)
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where, from Egs. (5.22), (3.5), and (5.6):

7
2F, w~

= c(1l + 5) = oc, when |F|&lt; &lt; AB (5.36)

Then, substituting Eq. (5.36) into (5.33) gives:

W ~~ — when&gt; r

Ye ed
0 WwW == |F ha

“  RB (5.37)

Comparing Egs. (5.37) and (5.33) when €«&lt;&lt;1l, it is apparent

that the order of magnitude of "typical" inertia forces,

given by Eg. (5.37), is much greater than the order of magni-

tude of the inertia forces given by Eg. (5.33) in the vicinity

of the cross-section where the conditions of Eg. (5.26) are

met.

The viscous forces are approximately zero when ABE - F

but they are not nearly zero for other values of AB; there-

fore, when AB= ~- F, both viscous and inertia forces are con-

siderably smaller than they are elsewhere in the flow. To

a first approximation, both viscous and inertia forces may

be neglected when ABZ - F; to this degree of approximation,

rg. (5.1) then becomes:

2p = QO
5 (5.38)

which says that there is no significant longitudinal pressure

yradient when AB £ - F. This indicates the existence there



of a stagnation point (or zone) in the lab frame, and a cor-

responding point (or zone) of uniform fluid velocity in the

wave frame.

Eq. (5.38) is obtainable from the inertia-free theory

alone at AB = - F [by using Egs. (3.18), (3.15), (2.6), and

(4.12)] ; therefore, to a first approximation, the presence

of the infinite Reynolds number singularity at AB = - F does

not significantly affect the validity of the inertia-free

theory results.

It is now necessary to find the maximum value of Re

(apart from the large values of Re near the singularity).

Say that the maximum value of Re on the centerline occurs when

},
—

- ha N
7)

=
\ J 4 J)

Then assume that

Pl &lt;&lt; ( AB) .. (5.40)

This assumption will be verified a posteriori.

Then Eg. (5.31) becomes, near n*?*

asyo =
=Bl, ~ -

ne nx*

13 B 4 AF
= (A*+B*]

| =rA

(5.41)

Now for simplicity assume, when n= xk, that the wall

shape 1s given by:



By) =[22% + 2) (5.42)

and that Eg. (5.28) holds,

and make the following simplifying approximations:

rr
ne

he: &lt;&lt; 1

£7) 4 1 whe ~ ¥bd ) when y= 7%

byI n n= rn’

(5.43)

(5.44)

(5.45)

These three assumptions will also be verified a posteriori.

Then Eg. (5.41) becomes:

=e) ~
I Re/» €-0 a.
~ n= ny = z

F &amp;Gy-Zp)
mt ~

14 (% _ a n*) o (5.46
ny = n}Y )

Taking the derivative of Eg. (5.46) with respect to ny, equat-

ing the derivative to zero at Ny = &gt;&gt;, and using Eg. (5.45),

gives an approximate expression for xx:
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X¥% ~~ sm a i/.ay ha d* ~ (1.232) d"&gt;

Substituting Ea. (5.47) into (5.46) then Jlves:

Re = [Re 0 _

Rese  \Re/p)
n=B
 = 7h

&amp;

(5.47)

(5.48)

Ni. re

y= (0.161)Ja [1 ~ (0.675) €] (5.49)

Eg. (5.48) is subject to the assumptions of Egs. (5.17),

(5.43), (5.40), (5.44), and (5.45). Eg. (5.47) is a conse-

quence of these assumptions. Substituting Eg. (5.47) into

Egs. (5.40), (5.44) ,and (5.45) gives, respectively:

|F| &lt;&lt; [(0.541) +(0.570)¢7]

(0.379)E &lt;&lt; 1

(0.0207) &lt;&lt; 1

(5.50)

(5.51)

(5 52)

Thus inequalities (5.40) and (5.43)-(5.45) are satisfied for

c&lt;¢ 10%

C. Conditions for Low Reynolds Number

Now it is possible to obtain the relations defining the



conditions under which the low Reynolds number condition is

satisfied. Combining Egs. (4.12), (3.24), and (3.28) gives:

i= [Spy 1 _ 6°(MCR) 4F° oe !(5 ) )
 J)

Re** is the maximum Reynolds number on the centerline,

except near the singularity. The inertia-free solution is

expected to be valid if Re**&lt;£ 1. This condition then deter-

mines an upper bound for the flow rate which, on using Egs.

(5.48), (5.53), and (3.28), is written as (for Re** = 1):
” AT 9 - 3 A1

rRou (AB-&amp;) = &lt;TR? AB-Gp, 7
F LF

LoL) me -Fe
For the modified Witch of Agnesi wave shape, (1/4F°) is given

(5.54)

by Eg. (3.49), and the other coefficients are:

£) = z&amp;= + 0(¢€%) (5.55)

a

B= [1-Emd orm) (5.56)

Substituting Egs. (3.49), (5.55), and (5.56) into Eg. (5.54)

gives (with m = 0.4 and €&lt;&lt;1):
— ~ 1/2 R 4%*

Q = {13.63 1-60) 42]. Bd,max = $(13.63)[1 (60) d= |- 2d
Ss[om —(0.0051%) Sp R*e¢*/2

7 i

(5.57)

A



If the additional condition is imposed that the value of

&amp; be such as to minimize I.H., i.e., that€=€,, if Eq. (4.53)

is assumed to be true (which will usually be a fairly good

approximation) and if c¢ is eliminated by using Eq. (4.54),

then Eg. (5.57) becomes:

_ 3 41/ 3
Quay = 20) ~

aE

"OY example, if the parameter values are chosen to be:

(5.58)

1.0 cm

:

Ps =

)

U

L.5 x 10° gm/cm sec? (=112.5 mm Hg)

0.05 cm?/sec

0.05 gm/cm sec

(5.59)

then Eg. (5.58) gives:

Qax = 42.2 em3/sec (5.60)

Qe as given by Eg. (5.58), is strongly dependent upon R

GR"0), but is only weakly dependent upon 3p, (Quaip,"
and is practically independent of d (Q_~v ay.

5.2 Continuous Fluid

Fa. (3.1) is valid only if the fluid is continuous - i.e..

only if the size of any solid particles in the fluid is small

relative to the length scale of the macroscopic flow motion.

Blood contains a variety of particle-like elements, the most



important of which are the red cells, which are typically shap-

ed as biconcave discs with a mean diameter of about 8 microns

and a maximum thickness of about 2 microns.” In order for

Eq. (3.1) to be applicable to flow of blood through a peris-

taltic pump, it is necessary to require that the smallest nat-

ural length scale of the pump be much greater than 8 microns.

That is, require:

2 - 8 microns = 8 x 10” *cm

For example, if R = l cm, then Eq. (5.61) requires:

8 x 107% ~ i

(5.61)

(5.62)

Eg. (5.61) is particularly applicabletoEgs. (4.47) and (5.58).
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6. SUMMARY AND CONCLUSIONS

In this paper, an extensive mathematical model of peris-

taltic-type (primarily roller-type) blood pumps has been de-

veloped. Analytic and numerical results were obtained by

making certain simplifying geometric and boundary condition

approximations and by making certain additional dynamical and

physical approximations (e.g., inertia-free flow; negligible

longitudinal gradients of longitudinal fluid velocity; and

Newtonian fluid.).

Significant results include:

(1) The determination of the analytic linear relation-

ship between pressure rise per wave length and volume flow

rate ($P, vs. Q) in pumping; see Egs. (3.28), (3.37), and

(3.47).

(ii) The development of a criterion giving the form of

the analytic relationship between the Index of Hemolysis (I.H.)

and the dynamic and geometric pump parameters.

(iii) This criterion was applied to the cases of pumps

having the square and modified Witch of Agnesi wave shape ge-

ometries; see Egs. (4.9), (4.37), and (4.46) .

(iv) Determination of an optimum setting of the degree

of occlusion to minimize the Index of Hemolysis (as given

by the hemolysis criterion) for the Witch of Agnesi wave

shape; see Egs. (4.47) and (4.55).

(v) Determination of the range of validity of the the-

ory under the ‘amertia-free flow and continuous fluid hypo-

theses.

The potential value of this work lies in its reduction
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of qualitatively well-understood phenomena (e.g., pressure

rise vs. flow during pumping) to analytic form, and in its

extension of analytic investigation to phenomena which were

previously unexplained or only poorly understood (e.g., the

phenomenon of hemolysis in roller pumps, and the phenomenon

of an optimum degree of occlusion for minimizing the hemoly-

51s index.)
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APPENDIX 1

Derivation of the Value of I.H. for the Normal

Heart and Circulatory System

[see Section 1.3]
The average lifespan of a red blood cell is 120 days

under normal &lt;n vivo conditions (Ref. 19, pp. 118-119).

Whole blood contains an average of 15 grams of hemoglobin

per 100 ml (Ref. 19, p. 111). The average blood volume of

a normal adult is about 5000 ml (Ref. 19, p. 419). Average

cardiac output is about 5000 ml/min (Ref. 19, p. 265). 5000

ml of blood is hemolyzed in 120 days. Therefore:

X
1 min mg. Hb released

(£500 ml. Sumoed’ ~ 0.0868 (155 ml. blood Sumoed’

0 J EL.D.

APPENDIX 2

Derivation of Eg. (2.9)

Nriting Eg. (2.4) in dimensionless form (using Eq. (2.6)

and the definition of KR = P/omr ) gives:

7/2 AB .. 2 ay _ A-B*
27 = up [1- (AE) Sin w] Ww = tp-E(EE) (A 2.1)

Now a numerical procedure is developed for computing

A as a function of B.

Jefine:
2 2

p= (AB, ‘A 2.2)
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Then, by Eg. (A 2.1),

RL
2E (D)

And, by Eq. (A 2.2) ¥

-

Ka {1-p)t/2. A(D)

(A 2.3)

(A 2.4)

Very accurate numerical formulas for E(D) exist

(e.g., see Ref. 20). Table 1 was constructed by choosing

different values of D and then using Egs. (A 2.3) and

(A 2.4) to get corresponding values of A and B.

For small values of B, A is expressible as a

Maclaurin series in B:

A =A) 5 p+ 44df 4) B”

4Bl;., ht _&amp; (A 2.5)

[t is easy to show, by differentiating Eq. (A 2.1)

with respect to A, that

a Ne,Bs, (A 2.6)

and it is evident thac

A(0) = = (A 2.7)



-Q0-

|The author was unable to analytically evaluate

Therefore, defin.  mn t

1 a‘a = ~~
- — =

2! 482

d*A
759, JB:=0O

(A 2.8)

Eg. (A 2.5) becomes

AES - JL -B* + O(B?) (A 2.9)

“or small B8, Eg. (A 2.9) gives

« Z £ 3B*
(A 2.10)

Values of ol , as computed by Eq. (A 2.10) - using the

tabulated values of A and B (which are accurate only to 5

or 6 significant digits) - are listed in Table 1. Taking

into account roundoff error and the effect of B getting

large, 1t is easily seen that a reasonable range. in

which the actual value of the constant A should lie, is:

D.s =  od = p

[A 2.11)

This establishes Eg. (2.9).

O.E.D.
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APPENDIX 3

Derivation of Eq. (4.11)

For simplicity, it will be assumed that m , the unit

inner normal vector to the wall, has no z-component, so that:

Neglecting the

n = (n, ’ Ny)

z component of Yw gives:

ow ow)Vw =(5% 2 OV

CA

(A

2)

3.2)

[The preceding two assumptions, and the assumption

that shear forces due to transverse components of velocity

are negligible, will be approximately correct whenever

2 is sufficiently small everywhere along the tube. |

From Egs. (2.3) and (2.11), the equation of the tube

wall is:

2 2
J(x,y) = ts + lyb) - 1] =

a b

) (A 3.3)

where the z-dependence of "a" and "b" is neglected. Then:

(mem)=~VT = [Fr XE]
va X\2 | (y-b\2]1/26) + (52)

From Egs. (3.5), (3.6), (2.12), and (2.6), the longitudinal

velocity is: |

3.4)



2

AS  SC _R dp ap Leb); (A 3.5)SAE Ph vn Lhe
so that Eg. (A 3.2) becomes:

Vw = arb 1 dp x y-b@-b) Ru dn [ a* » 337] (A 3.6)

Substituting Egs. (A 3.6) and (A 3.4) into Eg. (4.10), and

ising Eas. (2.12) and (2.6) gives:

% _n21iA

_ A’B* dp rr ErCall = A*B* dn | A (A 3.7)

on the wall at (¥,n ). But on the wall, the relation

§, 0-8
A* B*

"A 3.8)

holds. Also, from Eg. (3.17):

AB dp) = 44 [AER ](5 dry (A 3.9)

So, substituting Egs. (A 3.8), (A 3.9), and (4.12) into

(A 3.7), gives Eg. (4.11) as the desired approximate ex-

pression for the shear stress distribution on the wall.

n.E.D.

APPENDIX 4

Derivation of Ea. (4.46)

It is first necessary to determine the sign of the



J 7

quantity r, defined by Eg. (4.43). rr = 0 when

402 J2d(CEF-¢€)

[t follows from sg. (4.43) that

&amp; (n,=0) £O

(A 4.1)

(A 4.2)

if and only if

F) = (A 4.3)

Using Egs. (5.53) and (5.55), it is easy to see that

Eq. (A 4.3) is satisfied whenever Egs. (4.40)and (4.41)

are true; therefore Eq. (A 4.2) is true. It then follows

that:

Sd r yo Jamd
| |r] day -1-2§ rdn :\ r dn

0 0 0
(A 4.4)

Finally then, Eq. (4.44), with substitutions from Egs.

(A 4.4), (A 4.1), (4.38), (4.39), (5.53), and (4.45),

becomes Eg. (4.46) ,as desired.

J .D.

APPENDIX 5

Derivation of Eg. (4.47)

The objective is to find the value of € at which I.H.,

AS given bv Ea. (4.46), has its minimum value. Define:



-Q4a

 IU = $p,R)[3MC mm, (A 5.1)

from which it follows that:

3/2 1,

Sp, R), _ m2 :. wu
ME e’%

(A 5.2)

“1

je 4 __d*”ip REC worm
Substituting Egs. (A 5.1), (A 5.2), and (A 5.3) into Eq.

(4.46), yields: , i,

IH = flu) = [texfeekck,4"oo ’ 1/2

3 Q ‘

Tr [2 BE “2 tantZr. 144]3.73/2 -Ul- 2 7 tan 31/2 {+U

iT [1+ u]%) + 16plipek23/2 OD
1/2.\ ~-md L 1/2 1/2. q4/{ ZL + 7 - 27" md ol

Differentiating Eq. (A 5.4) with respect to e

chain rule gives:

ory _ |oflew, 9fle,u) au
oe ge ou Je

"by the

where, by Eq. (A 5.1)

au _ Sp,"R 3¢' _3u
JE ne 25 ge — 2 Ee

(A 5.3)

(A 5.4)

(A 5.5)

(A 5.6)
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Substituting Egs. (A 5.4) and (A 5.6) into Eg. (A 5.5)

vields:

1/
2H _ _ 2 K‘ucR 4 Cutt) Pf 6 tu)
2¢ 3 ir Q £32 (+4) (A 5.7)

where

6lu) = {gu (8 UD)"

[4 - 2am [10a] - 4 (w-2)4
By inspection, a root of Gu) is

u =u, = 2

(A 5.8)

(A 5.9)

Substituting Eq. (A 5.9) into (A 5.1) yields Eg. (4.47) as

the value of € which makes o(1.0) se equal to zero.

Figure 19 confirms that the extremum of I.H. at

f = €, 1s indeed a minimum ( and not a maximum).

D.E.D.
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TABLE 1

Computed Values of A = A(B)

0.00000x10°
1.11131x10"2
1.92360 "

2.93669

3.99902

4.95671
6.06495

6.99715

7.81628

3.23326

3.86291

1.10102x10"1
1.20431

1.29893

1.38666

1.50798

1.88157

2.99061

4.08369

5.32051

5.96070

6.92908

7.95269

3.09262

3.99999 =n

A
accurate

A
approx

1.57079 1.60000

1.57056 1.59771

1.57017 1.59596 1.66

1.56946 1.59370 1.53

1.56848 1.59121 1.44

1.56741 1.58888 1.37

1.56595 1.58608 1.31
1.56457 1.58363 1.27

1.56323 1.58142 1.24

1.56068 1.57744 1.19

1.55945 1.57562 1.17

1.55706 1.57221 1.13

1.55475 1.56904 l.11

1.55251 1.56606 1.08
1.55033 1.56322 1.06

1.54716 1.55920 1.04

1.53629 1.54603 0.97

1.49530 1.50042 0.84
1.44380 1.44639 0.76
1.37375 1.37482 0.70

1.33285 1.33347 0.67

1.26507 1.26526 0.64

1.18551 1.18550 0.61

1.08677 1.08678 0.59

9.99999x10 Tt 1.00000 0.57

(-5.01x10"0)
+1.80

B and Accurate computed by method of Appendix 2.

A approx computed from B by use of Eg. (2.8).
X computed by using B and Accurate in Eg. (A 2.10).



TABLE 2

Computed Values of Pressure-Flow Coefficients
Pe 0 0 o AR ory L 1/4F G°/F AB 1/4F2

-
a

-

~

.0001

.001

.01
1

.0001

.001

.01
1

.0001

.001
01
.1

.0001

.001

.01
1

.0001

.001
01
1

1.0 1.0 .0001 8.0 20.
1.0 1.0 .001 8.0 20.
1.0 1.0 .01 8.0 20.
1.0 1.0 . 1 8.0 20.

20.
20.
20.
20.

1.04E-12
3.28E-10
1.04E-7
3.22E-5

1.06E-4
1.06E-3
1.05E-2
1.08E-1

.6323

.6327

.6359

.6683

1.04E-12
3.29E-10
1.04E-7
3.29E-5

20.
20.
20.
20.

2.94E-12
9.29E-10
2.94E-7
8.86E-5

1.06E-4
1.06E-3
1.06E~-2
1.18E-1

.8376

.8377

.8392

. 8545

2,95E-12
9.32E~-10
2.95E-7
9.32E-5

80.
80.
80.
80.

1.04E-12
3.28E-10
1.04E-7
3.17E-5

1.06E-4
1.06E-3
1.06E-2
l1.21E-1

.9081

.9082

.2090
9171

1.04E-12
3.29E-10
1.04E-7
3.29E-5

80.
80.
80.
80.

2.94E-12
9.29E-10
2.93E-7
8.50E-5

1.06E-4
1.06E-3
1.07E-2
l.54E-1

.9594

.9594

.9598

.9636

.4479

.4483

.4514

.4828

2.95E-12
9.32E-10
2.95E-7
9.32E-5

1.04E-12
3.29E~-10
1.04E~-7
3.29E-5

20.
20.
20.
20.

1.04E-12
3.28E-10
1.04E-7
3.10E-5

1.06E-4
1.06E-3
1.06E-2
l1.13E-1

2.94E-12
9.29E-10
2.93E~-7
8.32E-5

1.06E-4 .5810
1.06E~3 .5811
1.07E-2 .5827
1.32E-1 .5982

2.95E-12
9.32E-10
2.95E-7
9.32E-5

o /mo

G /Fp

1.05E-4
1.05E-3
1.05E-2
1.05E-1

1.05E-4
1.05E-3
1.05E-2
1.05E-1

1.05E-4
1.05E-3
1.05E-2
1.05E~1

1.05E~4
1.05E-3
1.05E-2
1.05E-1

1.05E-4
1.05E-3
1.05E-2
l1.05E~-1

1.05E-4
1.05E-3
1.05E-2
1.05E-1

AB
m

«7735
«7735
+7735
. 7735

.9199

.9199

.9199

.9199

.9434

.9434

.9434

.9434

.9800

.9800

.9800

.9800

«7735
«7735
«7735
. 7735

.9199

.9199

.9199

.9199

 ~~ -
—

Subscript "m" on column heading denotes "modified Witch of Agnesi" formulae used to com-
pute numerical values. Columns without "m"'s were computed by numerical integration.
Accuracy of numerical integration: 2 in least significant decimal place of all above.
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