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A study is made of a novel type of antenna array exci-
tation for possible use in radar and sonar systems., The array
excitations are unusual in that some or all the individual radia-
tors of the array have an excitation completely different in fre-
quency content from other radiator excitations, The broad class
of antenna arrays having excitations of this type are called
"multiple frequency arrays".

By applying techniques of Fourier analysis, an expression
is derived for the radiated energy distribution from the general
one~-dimensional multiple frequency array. Next the corresponding
receiving array is defined and a receiving situation is constructed,
This leads to an expression of the receiving characteristics of an
array for which there is a certain equivalence with the radiation
distribution of a transmitting array. In this way it is shown that
arrays may be discussed independent of whether they transmit or re-
ceive energy.

Once the general relationship is established between the
array excitation and the radiation distribution, the relationship
is analyzed in terms of directivity and range resolution, Here
directivity is measured by the ratio of the total broadside energy
to the total emitted energy. Range resolution is measured by the
localization of the pulse emitted in the broadside direction., It
is found that the multiple frequency array never makes full use of
the directive potential of their array length, and in some cases
they are non-directive arrays. The exact amount of directivity
loss and a statement of joint angular-radial resolution for multiple
frequency arrays is found in general terms,

Two processing techniques were examined in which the mul-
tiple frequency array might be used., The first, the time-integration
process makes use of a set of multiple frequency arrays to achieve
a system with joint angular and radial resolution capability. Opera-
tional speed is sacrificed in this technique and it is shown that
speed cannot be regained efficiently by electronic scanning schemes.
The second processing technique introduces the concept of a two-
dimensional correlation for achieving joint range-angle resolution
capability from a non-directive multiple frequency array. The sacri-
fice here is equipment complexity arising from implementation of the
two-dimensional eorrelator. This sacrifice is accentuated when
Doppler effects are considered.
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* Recall from chapter two that the factor A appears on recep-
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CHAPTER 1

INTRODUCTION

An antenna array consists of a set of elements geomet-
rically placed for either transmitting or receiving energy in
some desired fashion. There are many features of an array,
such as the type of elements, the location of the elements,
and the network connecting the elements. For a transmitting
array in this paper, the primary concern will be the excitation
of each element, This excitation will be represented as a time
function which depends on the element in question., For a re-
ceiving array in the paper, the primary concern will be the con-
nections between the receiving elements., The network connections
will be represented as a set of independent linear filters fol-
lowing each receiving element, The output of each filter will
be attached to some summing device such that the output will
be the sum of all the filter outputs.

Specifically, the excitations will be discussed in terms
of the energy distribution radiated into space. For receiving
arrays a point source emitting an impulse function will be postu-
lated to exist in space. In such a case the output of the filter
integrator can be written in terms of the impulse response of the
filters and the location of the point source. On reception this
integrator output will be the quantity of interest in this paper.
The quantity may be thought of as the overall impulse response
of the array with the point source location being a parameter.

Some assumptions will be made about the arrays



in this paper applying to transmit arrays and receiving arrays,
First, the arrays will extend in one dimension over a straight
line. Second, the elements comprising the array will be as-
sumed to be non-directive., Finally the elements will be as-
sumed to be very closely spaced. The first assumption results in
a geometric simplification. The radiation distribution from a
transmitting array will depend on only two position coordinates,
as will the impulse response of a receiving array. The latter
two assumptions allow an array to be approximated by a line,
which on transmission will be a line source and on reception will
be a continuum of filters. Thus some time functions continuously
defined along the array will represent the excitation current.
This may be written a(x,t) when X is the array coordinate and t
is the time. Also some time function b(xﬂt) will represent the
impulse response of the filter following the receiving element
situated at the array position X, This formulation incidentally
is a generalization of the excitation or filtering of an array of
discrete elements, On transmission for instance, the excitation
of a discrete array can be writtem, a(x,t)= zsu-x“\ S«lt)
where X, 1s the Kﬁ‘ element location, &dﬂ\nis the corresponding
excitation, and §(x) is the delta function.

Considering first transmitting arrays, a conventional
array is defined as one having /' a similar excitation, within
an amplitude and phase factor, at each point of the array line.
In general terms when a(x,t) is the excitation function, there

will exist, for the conventional array, functions d(x) and c(t)



such that a(x,t) = d(x) c(t). Here d(x) represents the array
illumination or amplitude and phase distribution over the array
line; and c(t) is the modulation or the signal exciting each
array point. In practice such an excitation is obtained by
passing the signal c(t) through amplifiers having the gain,
d(x), The amplifier outputs lead to the corresponding array
points,

This paper concerns arrays which for different array
points have different excitations. These are the excitations
which cannot be separated into the product of a time function
and an illumination function. The class of arrays having such
excitations will be called '"multiple frequency arrays"., For
receiving arrays the distinction between multiple frequency
and conventional arrays is made in terms of the impulse re-
sponse of the filters following each receiving element, If
b(xl,t) represents this set of impulse responses, the con~-
ventional receiving array is one where b(xl,t) = e(xl) f(t) for
some functions e and f£f, The multiple frequeqcy receiving array
is one having a filter function b(xl,t) which cannot be written
as the product of independent functions of time and array posi-
tion. Again this non-separability of the function b(x%t) means
that the impulse response of at least two filters is different.

The original motication for studying the multiple fre-
quency array arose in a radar and sonar application, The re-
quirements of these systems is that targets or reflectors be

reliably detected, located, and resolved in the presence of inter-
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fering noise. Except in unusual circumstances, as discussed
in Chapter 6, these requirements dictate that the
(1) Propagated energy be concentrated in a small angular
interval,
(2) Propagated energy be concentrated at any given time
in a small radial interval.
(3) Impulse response energy of the receiving array be con-
centrated in a small interval of angles.
(4) Impulse response energy of the receiving array be con-
centrated in a small interval of ranges.
Numbers (1) and (3) concern the directivity of transmitting and
receiving arrays, respectively, Numbers (2) and (4) concern the
respective range resolving capabilities of transmitting and re-
ceiving arrays. Taken together these conditions concern the joint
range-angle resolution of a system.
In the particular application it was desired to transmit
very high energy and wide band signals, at the same time achieving
requirements (1) and (2). The multiple frequency array whose exci-
tation spectrum is illustrated in figure la was suggested. Since
the spectrum of the pulse, propagated in the broadside direction,
consists of the excitation frequency content, a simple means of
fourier synthesizing the broadside pulse was presented by such an
example. Thus the multiple frequency array of figure la can achieve
an arbitrary broadside pulse, despite radiator or transmitter bandwidth
limitations; whereas the conventional array will be affected by such
limitations., It was felt that such bandwidth limitations may apply

for high energy excitations. The disadvantage of using the array
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excitation of figure la is a lack of directivity. This will
be shown in chapters 3 and 4,

The question arises whether another type of multiple
frequency array can achieve joint angular and radial resolution,
Another question that arises is whether some appropriate pro-
cessing scheme exists which can utilize the multiple frequency
array of figure l1la to obtain good joint angular and radial reso-
lution. The purpose of this thesis is to examine these two ques-
tions in detail.

The organization of the paper falls into three parts,
The first is a derivation of the radiation distribution for the
general excitation a(x,t). The impulse response of the receiving
array with filter function b(y,t) is also derived here. The im-
portant point of the second derivation states that the joint angle-
range resolution of a receiving array depends on b(y,t) in the
same way as joint traﬂsmission resolution depends on the excita~-
tion function a(x,t). The second part of the paper formulates
the joint resolution characteristics for an arbitrary multiple
frequency array. In Chapter 4 a measure of antenna directivity
and of range resolution capability are formulated. Then the
relation hetween these two measures is derived in terms of the
excitation function a(x,t). The derived relation implies that
given a total output bandwidth and a fixed array length, a con-
ventional array achieves the greatest joint resolution capability.
The multiple frequency array, consequently always has worse
directivity. Figure 1lb and lc show the frequency content of some

arbitrary multiple frequency arrays for which the results in
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Chapter 4 apply. In particular the results show quantita-

tively just how much directivity is lost for each array.
Processing techniques which circumvent the directi-

vity problems of multiple frequency arrays form the subject

of the final part. The first technique, called the time-

integration process, utilizes a combination of multiple fre-

quency arrays. These arrays are picked so that when com-

bined by this process they cause the effect of a wide-band

conventional array., It is found that a set of monochromatic

conventional arrays combined in the same way introduces two

interesting contrasts., For only the conventional arrays, RF

phase is importantj but these arrays are more amenable to

electronic pattern rotation. The second technique is based

on a transformation of what is called the two-way pattern,

The two-way pattern is usually the final processed signal of

a radar system, It is found that use of the transformation

results in a system of good joint resolution when an array ex-

citation of the type in figure la is used, The drawback of the

system is the necessary equipment complexity for realizing the

transformation. This drawback becomes worse still when doppler

effects are considered, as shown in the sixth and seventh chapter,
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CHAPTER 2

PATTERN DERIVATIONS

The expression for an antenna excitation over the Xy
plane will be a(x,y,t) where for any point (x,y), the time
function a(x,y,t) has finite energy. From this excitation it
is desired to find, as a function of location and time, the
radiated energy intensity. This is done by extending a result
of Silver's to find the radiation field or pattern., The squared
modulus of the patter;:proportional to the radiated energy dis-
tribution.

Considering the aperture P to be in the Xy plane,
Silver's result concerns the single frequency excitation, F(x,

y) eJWOt. He found that the resulting radiated field can be

JwoeiCy - & TW o 4
written, () (2.)u = W) Ss Fix,9) (coso 44q°9) Q)‘% 5‘“90““*‘)‘3\35
»

The geometry of the situation is exXpressed by the spherical co-
ordinates (R’QHQ) and the rectangular coordinates (X,y,z) shown
in figure #2. Other symbols include the time t, the propagation
velocity c, and the phase factor i,.S which can be taken to be
constant.(z) In arriving at (2.1) three approximations were
made,

1. Linear and uniform polarization,

2. Excitation wavelength < aperture dimensions.

3. Far field, R® aperture dimensions,
None of these restrict the application of'(2.1) in this paper,.

The frequency content of the excitation a(x,y,t) is

given by its Fourier transform, which is written

2.2)  Ay.w) = oyt e i
-
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Isolating one spectral component in the excitation spectrum,

one can apply Silver's result to give the spectral density of

the radiation field for that component Thus

(23) Ulwg) = {{ 088+ ® 3y, gl Avygu e T SMOCKCosa + ysingl
v

Ywe R la
Since supefEPsition is valid the total radiation field is
249) U = WY dw o proose §’ \§ BE-)
Y) v SwULm\ e _— ey o M\t,\s,m) e 3 s lgk.‘.“

- ol ? an
where ﬁ{
= 8 _ 51 . . 5

@5) Ty= & - T Sinecosd 2 snesing

After inverting the order of integration im @.4), the interior
actually is the inverse transform of the quantity jw A(x,y,w) e-»“rr“
? 3
. Thig is 5‘..‘0.(%,35'\‘-—"',.3) . Thus an equivalent expression

for the radiation field from the excitation a(x,y,t) is

¥ COS® ?

2.6) 50080 Sg 0L, W 5 — %

U = iy »%) %) &d:s
For facility 1n manipulation, the full generality of

(2.6) will not be used, and only one dimensional arrays will be

considered, This means that the excitation is written,

(2.7) -o.,(x,\é,-\-) = oLy Y) 34y

and the radiation field outside the X2z plane can be deduced

from symmetry, so the angle ¢ is set to zero. The resulting field

expression is oo .
v +C0S0 eawtk-'\;\
$ » COSO 9 e ‘A L} $ Aﬂl“ﬂ Axdw
(2.8) Y= = \ 5:&\%, WX = w X
4me R _?7 uneR s n
where

=R R
(@0 Bl = vEa—sm SO
The case of the two-dimensional aperture can be handled as a

straight forward extension of the one~dimensional case for any
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of the topics in the paper,

The field expression in (2.8) may be interpreted
physically as a sum of aperture pointsources appropriately
delayed and regulated by the energy propation factor 'Gé;“
and the obliquity factor B ¥+C0S0® . The time derivative indi-
cates the transformation from aperture excitations into fields
in space. On receptioﬁ the opposite effect occurs, for then
the effective area vhries as the reciprocal of the squared fre-
quency with respect to power received.(4) Therefore when many
frequencies are present, the incoming field pulse is actually
integrated,

The characteristics of the receiving array depend upon
this integration effect as will be shown, Suppose that the
receiver filters are given by a(x,t) and postulate a point
field source at (Ry,B,) emitting a delta function. By (2.8),
this field corresponds to the point source current exc1tat10n¢&4ﬂ$ﬁ&&m
where U-1(t) is the unit step (\L\\'\\ S Sl’t\&ﬂ (Note that the
obliquity factor does not arise for a point source). Now recip-
rocity can be applied; for the process of transmission is recip-
procal, within a time derivative, to the process of reception.
On transmission the current excitation a(x,t) can be achieved
by exciting by a delta function, filters having the impulse re-
sponse a(x,t) leading to point Xx. On reception the delta-function
current excitation is applied to some arbitrary point in space,
which before was used for measuring purposes. The received sig-

nal is measured at the same place the transmitter is excited.
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Suppose the transmission field at (Ro,0,) is U, then
the induced current on the measuring point is CS“'\]H\ at . By
reciprocity the received signal from the filter integrator
for the unit step will be C‘SA%SU(D\&& . Thus for a delta-

-0 w0
function pointfield sourc% the receiver signal will be, by (2.8)

, (@ +cose)c r
! e ok, - T Y dxa

This will be named the received field.

It should be noted that when currents are measured in
the radiation field the derivative in (2,.8) will disappear.
Also when a delta-function point current source is postulated
on reception, the time integral in (2,10) will disappear,

For radar and sonar applications an expression for a
third type of pattern, known as the '"two-way pattern'", is de-
sired, The two-way pattern is a combination of the transmission
and receﬁtion patterns which gives the final processed signal in
terms of

1. Transmitting array excitation, a(x,t).

2. Receiving array filters, b(x1,t)

3. Location (R,p) of a reflecting point target.

Assume for mathematical convenience that the transmitter
and receiver are superimposed in the array interval (-p,p). Then
the derivation of the two-way pattern is based on the fact that
for any single frequency, the corresponding two-way pattern is
the product of the transmit and receiver patterns., Thus if

V(w,) is the spectral density of the two-way pattern at W3 Wy, then

(2,10) V(¥ ) = teos e(:\:;;t.\:&fue* Lad S A, w \e;“*‘AXS%“’,N.\C P.T“

where A(X,W) and B(x,w) are the Fourier transforms of a(x, t) and
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b(xﬁt) respectively. Notice that the factor jw has canceled
upon multiplication of the patterns. Employing the super-
position principle, one obtains for the total two-way pattern,

when Q(R,B) represents the obliguity and radial factors,

(2.11) S Voo et ‘“"’ = C(R B\S SS A B wy eV 8 R4 9gin0)
Tt Ax &35‘*‘

If it is desired to express V in terms of a(x,t) and b(x,t),

note that (2.11) is the Fourier transform of the product of two
quantities, Consequently V is the convolution of their Fourier
transforms; so the two-way pattern is the convolution of the
transmit and receive patterns. There will be occasion to use

the two-way pattern after the transmit pattern has been discussed

in some detail,
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CHAPTER 3
SPECIFIC PATTERNS

In this chapter suppose that the excitation function
has the form '
(3.1 A = quy e3Pt
which represents those arrays whose radiators are excited by
the single frequency given by w(x). Such a class of excita~-
tions has a simplified expression for the radiated field, and
yet it is still general enough to include many different types
of excitations. 1In particular arrays where w(x) = constant
are conventional arrays, and arrays where w(x) is different
for each x (as iﬁ figure la) are the extreme multiple fre-
quency array where no frequency is duplicated in the excita-
tion spectrum.,

Substitution of (3.1) into (2.8) yields the radiation

field, . ;
1 cose +% &C e““o““"%"' 2 Sine) g4y
3.2 U= Tjxer, = ‘:-“’

On the basis of the discussion in the proceeding chapter the

quantity, °

3.3 Q=Jawe
4

contains the information of how the excitation affects the

WY - R o Xging) 1

radiation systems, and the time derivative, as in 2,10, cancels
upon measurement of the field, Consequently attention will be
focused on the quantity Q, which will be called the pattern,

The purpose of this chapter is to examine the patterns

18.
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of three different excitations, From the analysis trends will
be pointed out whose generalization will be the subject of the
succeeding chapter,
A. Conventional Array

When W(x) = Wo, some constant, the excitation corres-
ponds to that of a conventlonal array. The pattern becomes,

Gy Q= eti-3) S aw ed B sine

When a(x) = 1, am’k S\ S:\'\\-—&-P 5\"\5)
(3.5) @ = pe e sin e

In either case the pattern has no dependence, other than phase,

on the range R.Q does vary with the angle@® , and in (3.5) the
variation is quite distinctive. For large values of WoP the
great majority of radiated emergy lies in an angular distance
of ﬂm? about the broadside direction (©=0) . Thus the
angular energy concentration or directivity of this pattern im-
proves without limit as the factor WoP becomes large., For
different angular shaped patterns, different functions O(x) are
required, The contract which can be drawn is to a hypothetical
point source emitting some spectrum b(w). Here there will be
no angular dependence of the radiation field, and the radial
pulse can be arbitrarily specified for the proper function b(w).
B. Linear Frequency Distribution

Suppose for a second example that
3.6 wod = We(\x M) (cpixe?)
When a(x) = 1, the radiation pattern is given by
@1 Q= S edWe 1+ Bx/e) (Y - Ric + X7e SN B) b

This integration is most easily performed by letting

=1 ¥ R=cY = Wol
(3.8) A— ‘:’% "'—"""zs\“e . B -—?-6-5\'\0
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4hen substitu%}ng into (3.7) to give 18 AR

o) Q= § W) @aBud+ 2xA + At) oBh Ay
-?

A change of vafiables, S = X ¥ A, brings the reduction,

(5.10) Q= @ING-B) IR (T @d85% 4

it B e AT Y .
D) LB U (ot 4 ysnB) As

\ —exh
Expressions of the form, Sg\“%.\‘&h R and S"\cQs‘%.\.?. Y

° °
are known as Fresnel integrals which are tabulated functions.(s)
By denoting these, S(u) and C(u), respectively, the final pattern

expression is

ap Q= edet-B gt ]’;_v:“ ?_C\(?-\- NEE

%
~CTA- ] < yslep MIET| = S{-p {5_\:%'\]3
The case when B = 0 = @ must be handled separately. Refer to
(3.7), then by setting Q=0 , one obtains for the broadside field,
3.12) Q= edet-1) S:e}“f—’%% X -8 Ay
o= 27 e'a\ug -§) SN We B Y- Rich

We t (= Ru/e)
Expressions (3.11) and (3.12) describe completely and exactly

the radiation pattern for the linear frequency distribution case,
An interpretation of the pattern must be based on the
nature of Fresnel integrals which are plotted in figure #3. Both
functions are antisymmetric and hence intersect the origin., They
have a damped oscillatory behavior about thervalues 1/2 or-l/z.)
depending on the argument sign, and they approach these values

for large arguements. The asymptotic forms are given by
3.13) NN Ly L cnTy2
C) 3 ““S\nax

(=, S R I T2
Sx) = 2 T cos 2‘&
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Pwyd
With the assumption that ¢ = YOWang =0l

the pattern has been plotted in figure #4a. The outstanding
feature of the plot is a maximal ridge located on the locus
given by R= C.‘\'-\-PISS'\‘\G 3 and known as a Limacon. The ridge
is maximal in the sense that for a fixed angle § and time t,
the pattern intensity for ranges R off the Limacon is less
than that on the Limacon. Hence the collection of radial
maxima indexed by® may be said to specify the Limacon. 1In
this respect the plotted example is a good indication of fhe
general character of (3.11) and (3.12) because such a ridge
appears in the pattern for all values of P,§, and W,.

The existence of such a ridge may be deduced from (3.9).
Fixing the angle® and time t, the expression is maximized for
A= 0, which is just the locus equation for the Limacon. To

find the pattern on the ridge, set A = 0 in (3.11) to give

3, (- %) —
(3.14) Q,.=2°P¢ ‘l2\ L CUQ‘B‘F’} Su—_\mz):\
The important parameter here is 2\3\? = 2?\;).&)5\5 o\
When the parameter equals zero, ie o= 0) Q has the

maximum value 2pj and large values of the parameter result in

small values of the pattern intensity. The pattern for inter-

mediate values of the parameter is described by the half power

points of the ridge. These points lie within the interval
e ?\MG y © ?m%

This value is verified by first setting Q=
2\8\¢*
A))

%—{%;S and observing

that 7 2 . Then,

315 \Qr\ T 200F\ ¢ (R) + 350\ < 2°1%

as a reference to the Fresnel integral tables will show. Thus

the pattern on the Limacon can be arbitrarily localized or peaked
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by either increasing the bandwidth, W, 8§, or the array length,
2P,

Examination of the radial pulses in the pattern for
an arbitrary and fixed® and T shows that the total energy
within each pulse is independent of § . Since it just has been
shown that the pulse maxima decrease with increasing® , it
follows that the radial pulses must broaden for increasing O .
A quantitative derivation of this phenomena appears in a more
general context in the next chapter, A qualitative appreciation
of the broadening affect can be gained here by locating two
half-value ridges, where for a fixed angle and time the pat-
tern intensity is half of that on the maximal ridge. It will
be shown that these ridges diverge for increasing angle O ,
which implies that the pulses do broaden., The ridges are lo-
cated on the loci A=2P orf R= & U—;:t PSR
because the corresponding pattern expression there is
619 \Qul = P T ee | CUEER) 7 GUEEEY)|
which is approximately half of Q,, when 2—\3__“\3‘ is not small.
This observation depends on the fact that the Fresnel integrals
vary little for arguments removed from zero. The radial dis-
tance between the two half-value ridges is qo_sh\e , Which
increases as @ increases. Therefore the ridges do diverge and
the radial pulse broadening is shown,

Outside the region between the half-value ridges, the
behavior of the pattern may be deduced from the asymptotic forms
of the Fresnel integrals, From expressions,

(3.11) and (3.12), it follows that for large values of R-¢X

(3.17) P et ST - ube 1
\Q\ £ \\:a\ WARE = AWl WeE f-ct

I
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Hence the pattern decreases from its maximum at a rate com-
parable to é;é% for increasing values of‘R—Cf s+ Consequently
a large percentage of the radiated energy lies between the half-

value ridges,

C. Symmetric Frequency Distribution

The previous examples represented the extremes in fre-
quency distributions, with complete frequency duplication along
the array excitation in (A.) and no frequency duplication in (B.)
The symmetric multiple frequency distribution is a compromise be-
tween the two extremes where w(x) =Wy(l + %[xn for —-P< X< ¥P.
Thus a band of frequencies is represented and each particular fre-
quency in the excitation appears twice along the array,

Again assume a(x) = 1, then the pattern will be given by
3.18) Q= S:e"“““* Lt - R+ Xging) Ay
By expanding the expression and changing the integration variable,

one obtains

(3.19) Q= S@_w°w|r PR X 2 Sne) dx

.\_S Q)‘Ue&\ i ?X)('\‘ R -= S\T\G\ dx
0 d Tl (ol
Lt A= 28 ¥ 2gine ’

and the manipulations of example B, (3. 19) becomes | I ?-\A_ ‘
f\

The pattern envelope obeys the 1nequality

3.21) \Q| £ \S () &) \S;" ¥®Y &5\

These two integrals are similar to the ones of example B, so

then after using the definitions, (3.8)

expression (3.21) can be interpreted in terms of the results of

Section B,
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The pattern envelope is bounded by the sum of two

patterns respectively having maximal ridges on the loci,
L R“—f-c."f-\-&?-\r%)s'ma or f\='-;
- F I _
e d—-“’-\-%\smb oc P\—"'%

The radial pulses centered about each ridge remain essentially
independent except for small angles @O, Yhe corresponding half
value ridges are separated by ‘Z?S'\na whereas the maximal
ridges are separated by 2(P+ P\sn\d . Therefore, the ridge
values reinforce each other onfi on broadside, and the energy
content of the radial pulses will be greatest for that direction,
Again the case where D=0 must be handled separately.

Setting ©=0 in (3.19) results :i,n-\M S
(3.23 Q. = Re¥NelT~ P S‘:ea = R By Ly

= ¢ e.)\ﬁo\'\" %'\ S.\“uamii (-:;F—-%gl 2
This broadside pulse is broader by : é%btor o;-two compared to
(3.12) . Thus this pattern compared to that of example B is more
localized in an angular way, but the broadside pulse is broader
and hence less localized,

On the basis of the examples in this chapter, there seems
to be greater angular localization of the pattern when more fre-
quencies are duplicated along the array excitation., Also the
radial localization of the broadside pulse is greater when a
wider band of frequencies is used, Other excitations with the

form a(x)ejw(x)t

, as in figure #4b, could be analyzed to show
similar trends., It is desired, however, to establish a more pre-

cise formulation of pattern diréctivity and range resolution
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capability. Finally the relation, if any, between these two
qualities is desired for determining the joint angle and range
resolution of an antenna array. This more general subject is

discussed in the next chapter.

25.
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CHAPTER 4
PATTERN DIRECTIVITY

The gain of a conventional array has been used to
indicate the power passing between the antenna and a point
for a given input power; and also it provides a coarse measure
of pattern directivity. When the array has a uniform phase

distribution and an excitation, a(x)ed"Ot the gain is defined

(6)
as
2 ¢© 2
= S_?&m ax)\
(4.1) = :
8 Vo) \2 Ax
e

where ko is the corresponding wavelength, This ratio compares
the maximum power (on broadside) to the total transmitted power.
Hence large gain values indicate a predominance of broadside

All directions
power over the average transmitted power taken overy Conceivably
a high gain antenna pattern could have enough total power out-
side the main beam to exceed the power in the main beam, Such a
pattern appears in figure #5. Therefore gain provides only a
coarse measure of directivity.

Since multiple frequency array patterns have radial as
well as angular . dependence, a single measure of directivity
for them disregards even more pattern information than before.
Consequently to fill the two previous needs of gain two gain
generalizations have been formulated, The first specifies the
peak power passing between the antenna andefixed point for a

given total input energy. This is called composite gain. The
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second gain provides a coarse measure of pattern directivity,

and so it is called directive gain.

A, Composite Gain

Using (2.8) and the considerations leading to (3.3) the
pattern corresponding to the excitation A(x,w) is defined
R Jid OG- R 4 Xging) A
4.2) Q8,3-8\ = Swg?’\“‘“‘“ e = v esnel Ay dw
Assume the phase distribution over the aperture is uniform so
that the maXximum pattern strength lies on broadside at R = ct,.

In this case COmp081te gain is defined,

(4.3) \%S P \&té-*—”\

= - -® ~N _Peak pattern power
c gb S? \ A W\\"AK Total pattern energy
Note that this formulatlon has left out the obliguity effect,

which previously resulted in a factor of two, and the factor )\
Consequently this form is equally applicable to transmission
and reception, and the numerator is proportional by a factor of
four to the measured peak power.¥*

There is a geometric analog where 1/Gc represents a cross-

sectional area of the pattern., Correspondingly, the quantity

2 o)
S:S \P‘“' U‘“\ &xd is the total volume (energy) and
the quantlty \g§ P\(x m)&x@\ the maximum height (peak power),

This analog serves to illustrate the fact that the composite gain
is independent of pattern shape. For example the point source
emitting the spectrum, a(w), and the monochromatic conventional

array with 111um1nation a(x) both have the composite gain given by

(4.4) G, = \S oy Ax\*

Vo) R AX
The relation between the excitation and composite gain is

elucidated by the example where
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(4.5) A(x,w) = E or Zero, depending on X and W .
Then

o P el R

(2

.6 Y S VAT axdw = €Y § Axe axde

-0 -V ~o0 -@
and so ®

- Alx,w)

R o

This expression represents the area in the frequency-position
plane for which the excitation is non-zero. Figure #6 illustrates
the situation. When the output bandwidth is B for each position

X, this area is 2PB. This conclusion could also have been

reached by using Schwartz's inequality (7)to give,
¢ L r 2
.8 | T Ao dx dw\® 2 298 (T 1AW ™ dxdw
L e B2 =
where now B is the total output bandwidth, This implies

.99 G £ 2P8°

with equality when A(x,w) = constant for -P £X&Y7 and weB,
This means that the composite gain is maximized, for a certain
bandwidth B and array length 2p, when the excitation is uniform
over these, Therefore, a measure of the affected area in the
frequency-position plane has been constructed where points are

weighted with respect to their relative ehergy contributions.

B. Directive Gain

When A(x,w) is the excitation of an array, and CL(B;*-gE\

is the resulting pattern, directive gain is defined,
- B\ e
(4.10) C"A:— S:\Q&Q‘-\' 'E)\ l“- %) ™~ Broadside energy

ceipmpeSymn

v — Total pattern ener
S S RGO WY \R ax 4w P ey
Again the obliguity factor and the time derivative in the field

expression, (2.8), are neglected., Therefore the numerator in
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(4.10) is proportional to the total measured broadside energy
with a proportionality factor of four, This factor is not
essential for it can just be recalled when necessary.

It is essential to state in what sense directive gain is
a good or useful measure of pattern directivity. For this
purpose the concept of localization and resolution capability
are introduced. Localization, in this paper, concerns the
extent to which energy is distributed, either in space or time,

As a one-dimensional example, when the maximum value and total
energy of a pulse are given, the pulse of greatest localization
is the rectangular pulse. Resolution capability, in this paper,
refers to the facility with which a pulse is distinguished when
a shifted version of the same pulse is added. Thus resolution
may be measured by the distance between the half power points of
a pulse. With the constraints of the previous example, it can
be seen that the rectangular pulse represents almost the worst
resolution situation. Figure #7 shows cases of much better reso-
lution, and indeed, at the expense of localization, the resolu-
tion can be arbitrarily good with the constraints given,

In viewing the pattern Q_LQ,‘T—%\ as a set of radial pulses
indexed by the angle © , a function E (@) , can be defined which
gives the total energy in a pulse as a function of the angle, The
maximum value of E(¢) , at Q=0 , is the numerator of (4.10),
and the total pattern energy, which is S:EL&M\B , is the denomina-

tor. Hense the quantity 1/Gd may be considered the width of a
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rectangular pulse having height €(0) and total energygE(g\&e
so 1/Gy represents the greatest localization of the funékion
t® and approximately the worst resolution. Typically
for pattern synthesis, a worst localization of E(®) could bé
specified, and this would then immediately specify a lower bound
requirement for Gd. Also a resolution requirement leads to some
sufficient value of Gd.
On the other hand, no matter how large the directive gain
of a pattern becomes, there is no assurance that
(1) Localization will be adequate
(2) All small energy, big amplitude spots are eliminated,
Such anomalies, if reflected, would confuse a thres-
hold receiver,
Hence directive gain may be useful as a necessary directive con-
dition, but never as a sufficient one. Recourse must always be
made to the pattern to obtain sufficient directivity conditions,
The relation between directive gain and the excitation can
be be elucidated by first considering arrays with unit (no)
gain, Suppose for all frequencies w,
(4.11) P\LX.‘\)O\ [\QA-;.\W\ = O W\'\e'\ Y2 Nq
In words this means that no two array points have any frequency
components in common., By Parseval's Theorem (8)
(4.12) S\Qm T- BV ag-BY = S \g A A\ d“‘*
S -p
Expandlng the integral, then applying (4 11), one obtains
(4.13) \S ACK, WY Ax\ 3_5.‘9 = g \ \{\u..,\n\\ Ax %3‘_
therefore by (4 10)
(4.14) Ggq = 1
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for these excitations, Thus the multiple frequency array whose
excitation spectrum has no frequency duplications along the
array propagates an equal amount of energy in all directions
(neglecting the obliguity factor). Note that the shape of tﬁe
radial pulses need not be the same for all directions, but the
energy therein is the same. The second example in the preceeding
chapter is such a no-gain multiple frequency array.

For antenna excitations which do achieve some directivity,
a relation holds between Gqg and the gains of the conventional
arrays comprising the particular excitation. Define the gain of

the w-frequency by
3 2
(4.1 ~ \S_rl\(x,m\ Ax\

S: \ P\OL-,\B\ \‘2 AK

where as usual '% has been eliminated from (4.1).

Hence by (4.10) and (4.12),

sjfecty
ot C 6o § ARGHWIT dxdw
e 51 ot

Gy =

wly \'d 2
S § VROGuN &k dw
—al) -ur
This implies that directive gain is an average of the various
conventional gains., The average is such that each Gy is weighted
by the total energy transmitted at its particular frequency. When

\'s

S \P\Lx)w\\aéx is uniform over w, the directive gain is

-P
just the mean of the Gy. In the previous example Gy= 1 for each
w, so Gg had to equal 1. For the third example of the preceeding
chapter, diréctivity was present; and the amount is that of a

dipole since each represented frequency occurs in the excitation

twice along the array. Similarly the directive gain of any mul-
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tiple frequency array can be found as an average gain of its

constituent conventional arrays,

C. Joint Angular and Radial Resolution

The first step in describing joint resolution properties
is to determine the relation between range resolution and the
excitation., As seen in the last chapter the emerging broadside
pulse is narrow when the total excitation bandwidth is large.
Generally, a bandwidth measure indicates range resolution capa-
bility. If bandwidth is defined as the difference between the
highest and lowest frequencies, however, there will be no dis-
tinction between the spectrum whose energy is equally distri-
buted and one whose energy is concentrated into a small part
of the band., This is relevant to range resolution, for the
former example must yield a narrow broadside pulse, and the
latter pulse need not be narrow,

Instead, an effectlve bandwidth is defined to be
h, W) dx QW \&
\S S Ao, & \ Peak broadside power

- 2 Total broadside ener
S \S Ay dx 32 i
This definition is thg same type as for Gd, for \IBQ represents

(4.17) Be =

the length of the rectangle of height \g P\h&,“ﬂ c\x Am\"*

- -
and total energy S\S l\\*\“ﬂ&‘&\ A“) In other words I/Be re-

presents the greatest locallzation and nearly the worst reso-
lution of the broadside pulse with antenna excitation A(x,w).
Assuming that A(x,w) is restricted to some bandwidth B,

apply Schwartz's inequality to (4.17) to obtain

y \S& A& W) dx aw \

(4.18) Be < = ]
B\SBS.? Ak W) X ‘%-?“\
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¥ 2

with equality when the quantity \S ?P\(K,UO\ AX\ is constant
for all w in the band. Thus the effective bandwidth, Be measures
the bandwidth of the broadside pulse taking into account thg
relative energy contribution of each frequency component,

From the expressions in (4.17), (4.10) and (4.12), and (4.3)
follows the statement of joint angle and range resolution
(4.19) Gd Be = G,
Hence when the composite gain is specified, a tradeoff between
directivity and range resolution will arise, 1In that case the
effective bandwidth can only be increased at the expense of
directive gain, and vice versa. For example, the three arrays
of the preceeding chapter have the same composite gain, which is
given by (4.4), and it was pointed out there how directivity and
range resolution were being traded.

In practice the composite gain may or may not be constrained,
When for instance the radiators are each capable of emitting the
desired total output bandwidth and the array length is adequate,
the composite gain has no limitations within the context of the
problem. The design proceedure insures the proper Be by having
each radiator bandwidth equal Be. By having each radiator band
the same, the proper Gd is ensured, Thus such a situation calls
for a conventional array where directivity and range resolution
are separate notions, When the radiator bandwidths are limited
below the desired output bandwidth, a multiple frequency array
excitation, like that in figure #8, is called for, The resulting

pattern will have a loss in directivity according to (4.19), un-
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less the total array length is increased. The effective array
length of each frequency is hereby restored to the desired
value, which also restores the composite gain to its desired
value,

On the other hand when the array length is limited, a
multiple frequency array with the same effective bandwidth as
some conventional array makes less efficient use of the poten-
tial directivity in the array. The multiple frequency array
has a smaller G in this case, so that the value of Gg is
smaller and hence the directivity is not as good. Therefore,
the multiple frequency array, by reducing the effective array,
length corresponding to each frequency, meets a reduction in
directivity compared to the corresponding conventional array.
Figure #9 illustrates this comparison.

Thé rest of the paper concerns some sacrifices which can be
made in various systems to overcome the directivity problem,

In each case the system involves a change of emphasis from the
antenna pattern to some other quantity where the tradeoff of
(4.19) is deemphasized. 1In chapter 5,this quantity is a com-
bination of patterns, and in chapter 6, this quantity is a trans-

formation of a pattern.
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CHAPTER 5

TIME - INTEGRATION PROCESS

The time—integration‘process is a technique which
facilitates the use of high energy or wide band antenna excita-
tions., The fundamental idea behind the method is a decompo-
sition into'small subsets of the total energy or bandwidth to
be transmitted, whereupon these small subsets are excited separa-
tely in time. As examples these subsets may be smaller power
levels or smaller frequency bands of the excitation. The re-
ceiver of the system collects the various transmitted energy
packets (which may or may not have been reflected as incom-
munication), then by appropriate delays the packets can be com-
bined into their original form. By linearity the final combined
result will be identical to that had all the subsets been trans-
mitted simultaneously. Hence the scheme is a spreading of the
total energy or bandwidth to be transmitted over time which there~
by reduces the power or bandwidth requirements of the radiators,

In particular the time-integration process will be ap-
plied to give the result of a wide~band conventional array by
the use of monochromatic conventional arrays or no-gain multiple
frequency arrays. In either case bandwidth limitations of the
individual radiators are avoided since any radiator emits only
one frequency at a time. The purpose of this chapter is to de-
scribe the time integration process and to show the relative

advantages of either type of array,



Suppose for this chapter that the arrays consist of
discrete radiators, each of which emit discrete frequency com-
ponents, Let these frequency components be given by
(5.1) W= W\ '—‘é\ “N&£nN&N
and let the corresponding amplitude and phase of the excitation

.

and filter be Apm and b“‘ respectively. The mT’ radiator posi-

tion and the lﬂ" filter position are given by

(5.2) Xm=Tad MWD %g=3 -~Mim Re W

where d is the element separation for the transmitting and re-
ceiving arrays and “’-—g is the frequency spacing. By (2.11) the

two-way pattern for the system is

i
NN WAL —2R | X ¥ Xy o
(5.3) V - CtR\O) i‘ 2 2 &'\N\b‘\le} '\‘. e ¥ & g\\'\ﬁl

N -M -WN
As the first illustration of the time integration pro-
cess, suppose only one frequency component of the excitation is
emitted at a given time. Once all the possible reflected re-
turns are back from one component, the next is exeited, and so
on until all components have been excited. The return from the

n‘“" component is 0

\Won [t -2 + Amt e g
5.4\ = ARN T Qg g €7 plings St Sl
W A

where ty =t - {ﬂ-tﬁrr and % is the time between various compo-

36.

nent excitations, Delaying Va by (N4 1 - n)¥ then summing over

n yields

6.5 2V = V- @u+4)7Y)
n
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This is the two-~way pattern of a conventional array with band-
width 2WoB. In order to obtain this result, however, it was neces-
sary to account for the RF phase of the returns, Such implemen-
tation is impractical.

Upon applying the time-integration process to multiple
frequency arrays, the RF phase of the returns becomes unimportant.
Basically this follows from the joint range and angle variation
of their pattern, Define the set of excitations as follows:

Each frequency component of (5.1) is transmitted for
each member array., They by letting M = N above, a single and
different frequency is emitted by each radiator in each member
array. Therefore each member‘array is a no-gain multiple fre-
quency array. To distinguish the members, there is the require-
ment that no frequency component appear at the same radiator for
two different members of the set. A member of such a. set, in-
dexed by the parameter]f , is shown in figure #10,

Suppose first that the receiver undergoes a time-integration
process alsoysuch that an array at any time is matched to the trans-
mitting array. This means that a given element will accept only
the return contribution from the corresponding radiating element,
Other contributions can be eliminated on a frequency discrimination
basis. Intuitively such a receiver wastes power return, compared
to the previous system. Mathematically, agmb,; Will be zero when

mza 1, so that the two-way pattern, within a delay, is

X — 2R . Vew =
5O ey = (RIS S Ayt T + 32 3m0]
" om
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This expression indicates a loss in directivity and a loss in
power, by virtue of the fewer number of terms involved. Con-
sequently, this system has limited or no application to radar
or sonar,

A second possible receiver is a wide band conventional
array, which receives the entire reflected bandwidth at each
radiator. The result of applying the time-integration process
here can be shown to be the two way pattern of (5.5). Thus, a
set of no-gain Mmultiple frequency arrays can be combined with
a wide band conventional receiver to yield the two-way pattern
of a conventional system.* In some applications, however, the
necessity for having a conventional receiver may be a disadvan-
tage, This is shown next,

Pattern Rotation

The pattern expre551on is

when A (x, w) is the ex01tat10n spectrum, The pattern (Q(O- Bo) - c.)
is said to be the rotated version of C{QB;&"ggw and is given
approximately by

5.8 QUO-06:t-B) X 3 S Acgey & 0TS

Thus in order to rotate the pattern Q (transmit or receive) by eb)

a8, pn('\‘— +Xsine)

the phase distribution e)_s\“a“ is appended to the excita-
tion (or filter) A&x,w). In the time domain the new excitation
becomes a(x,t- -’-‘c—.s'm B ). (9) Rotation of the two-way pattern re-

quires a similar change in both excitation and filtering functions.

PR

S
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For scanning the quantity Oy will vary with time; so
time varying time delays are required for electronic scanning,
This operation is difficult to perform in practice, except in
the case where A(x,w) is a narrow-band function. Then a time
delay is equivalent to a phase shift which is much easier to
implement. For example, the arrays of chapter 3 are amenable to
electronic rotation since each element operates at a single fre-
quency.,

In the light of these remarks, it follows that when
electronic scanning is preferred to mechanical scanniﬁg, the time
integration process is more efficient for a set of conventional
arrays rather than a set of multiple frequency arrays. The latter
required the use of a wide band conventional receiver, whose pat-

tern would be difficult to rotate electronically.*
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CHAPTER 6

AMBIGUITY FUNCTION

As opposed to the time integration process where a set
of transmission patterns are combined, this chapter concerns a
pattern transformation, which is known as the "ambiguity function"lo
Attention is placed on the no-gain multiple frequency array here,
for this is an extreme array. The two principle results for these
arrays are

(1) The ambiguity function, for some such arrays can
be arbitrarily localized in each of its two degrees
of freedom,

(2) The localization can be realized in practice as if
the ambiguity function,with Rand © as the two degrees
of freedom,were the actual radiation pattern, Thus
a physical realiz#ble processing technique exists
which brings out joint directive and range locali-
zation although the pattern of no-gain multiple fre-
quency arrays has poor directivity.

As a first step in the proof of these assertions, the
ambiguity function corresponding to the pattern Q(R,® ) is defined
as ©® I
6.1 PR = Re §Q_QR,B\Q:‘UR* AR, 8+ A®) 40 4R
In a sense this quantity i;sgé;tes the maximum joint resolution
possiblg,fzgm a pattern Q (R, ). From the expression,

(6.2) Sbsa | QRS — QR AR 0+ A0 d8dR = 2 (E-BOR, M)

where E is the total pattern energy, it is seen that the ambiguity
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function measures and represents the degree of pattern difference
as a function of separation. This is important for resolution
because returned signals are distinguished in relation to their
difference., When Eana\bgD is small (6.2) shows that the pat-
tern Q(R,®) is almost independent of its shifted version,
QLQ* 5«“39‘* [&Bﬁ . Consequently the return of a target at
the point (R, O ) is theoretically distinguishable from a return
originating from the point (R~ AR ®© 2« A® ). Conversely, when
Q(hﬂ()bb\ is large, QU(R\®) and QRY AR, 0+ \®) are simi-
lar, hence not as easily distinguished in noise. For instance,

§_(0,°3 == is a maximum; the integrated difference in
(6.2) is then zero. For resolution, the ideal ambiguity function
has become small for small separations AR and N .

Now consider excitations of the form a(x)ejw(x)t wheré

w(x) never assumes the same value more thanm once over the array.
The pattern is given by
(6.3) QRS = S:qu
Substitution of this quantity into (6.1) results in

~R4X
(6.4) PARDS) = R Sd?&'lAe RO Aky €3 PO -E Jtee)

= 3T _bmmet-— N R *‘sm(e-s A&)
Sy

eibbbﬁﬁ)t*-— Eé-*-%:SW\Ef)<&x

Interchange of the integration order and calculation of the R-inte-
WYX :

— (B Q@Sl
X

R —W O
i Seh el ﬂAp\ g\,mﬁ \UQ&S} and
wWaNF UOQL-..\ when \,¥ Xz . Using the facts that

gration yields

QO AR
6.5) PAR,N®) = Re_g &\o&m\ é'w 'S 63‘

Ax A
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S+ ) —swie- B2) = Acsso 5w l‘% it
(6.6) S b Ny — ax PECN

where :Stﬁe is the zero order Bessel :function, one obtains

\&m_ q\nuqx (N
(6.7) Ethaxbaﬁ = R.e_'.mS \oCa ej’ So\_ A‘\AX

For the ambiguity functlon a measure of localization

the final result,

in A\ can be defined with the same meaning that directive

gain has for angular localization in the pattern. Thus let

@8 T\ & AR, OF AAR
ASTTABOR M AMRARS

be called the ambiguity constantj; then the ambiguity constant

can be taken as analogous to the dzrectlve gain, Substitution
AR s
of (6.7) into (6.8), then use of Sc_a' ‘_LDCA\\ \D(*t\_sébR %Qt 7\_’)

results in

6.9 \\ S \ OO\ <.\.x

WSW %? \oo ! _5 (RN g A@Ax AAS

This is the amblgu1ty constant of the no-gain multiple frequency

array, given by the excitation a(x)er(x)t. Since, except for
zero argument, the zero-order Bessel function is always less than
one, HZ 4 even though GA=1 . Also since the Bessel func-
tion approaches zero for large arguments, H becomes arbitrarily
large as either the array length, 2P, or the frequencies, w(x) be-
come large. Thus, at least in theory, the angular resolution
capability of no-gain multiple frequency arrays can be made

arbitrarily good.
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The range resolution capability is indicated by
setting AD=O0 W (67) . Then
X
(6.10)  §(AR,O) = Re 2W S?\O\m\" X

which is analogous to the broadside pulse of the pattern. By

a\n(ﬂ\ ‘{1A

inspection of expression (3.3), it is seen that (6.10) has the

same general form as its corresponding broadside pulse. Conse-
quently the requirement for fine range resolution is the same as
before, namely, high total bandwidth over the array. As before the
total bandwidth is independent of the individual radiator out put:
bandwidthswic i ove o ¢ ‘»< v, This requirement can be satis-
fied by merely extending the array length. It follows from this
and the consideration of the ambiguity constant that EELNR3553

can be made arbitrarily localized in Njand AR.

Implementation

Suppose that point targets exist at the points (Rn,On)
for n =1, 2, . . ., N. From (2,11) it is seen that the two-way
pattern has the form V (a)ﬂ“'%? ); so the received signal is
given by

e sh= Sy 2

Incorporating the second degree of freedom, pattern rotation,
the received signal will depend on the amount of pattern rota-
tion. This may be written as

6.12) S o) = S.Vlﬁn'-* & — 28m)

The quantity of interest is the two dimensional correlation

function given by s 10

(6.13)  P(AS,ARY= § S\l‘(m—&-,‘\-")—%?‘)s&\,ﬂwf\&&

O e
= 3 T TV he-o, T- 2BV (a5 ) dldw

=\ 9 T
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where N\§ and AR are arbitrarily specified.

Suppose that the two-way pattern V(Q{"(*g-c—?) ~ is the
combined effect of a transmitter with excitation ao(‘me,}m“ﬁ -
describing a no-gain multiple frequency array, and a wide-band
non-directive receiver. Suppose the filters following the array

points are given by b(y) for all frequencies transmitted,

Then by (2.11) 4
W
—-Y d
P ' ~- 2R, X smo
§ AR NTR T P R

"l
=

- R . BN -
WT- 22 4 ——93“\& ol

where
v YR G S m©
(6.15) A= A, S_?\'Pk‘g\ﬁb faro A‘és

is just some function of x, This is valid since the receiver
pattern is assumed non-directive, Therefore by (6.3)

- 2R\
6.16)  NO,¥- L) = Q2R,®)

By using (6.16) and (6.1) one obtains for (6.13)

.11 LMD, AR) = {;‘_“\Qme - 6., 2{AR-Ra))
which is the desired result,

This result means that for such a system, each point
target will ultimately produce in the received signal the am-
biguity function centered about the point (ef,t) corresponding
to the target location, It was shown previously that the no-gain
multiple frequency array ambiguity function can be made arbitrarily

localized about its maximum value, For these situations the various

"ambiguity returns" can be distinguished in noise for any separa-

tions which are not small. Hence an operation has been shown which
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derives the full theoretical resolution indicated by a particu-
lar ambiguity function,

To determine the practicality of the system a close
examination of its constituents is necessary. The main consti-
tuents are a no-gain multiple frequency array transmitter, a
non-directive receiver, and a two~dimensional correlator. Al-
though there will be mutual coupling on transmission both the
transmit and receive arrays can be built without unusual prob-
lems. In fact, as noted before, the implementation of electronic
pattern rotation is greatly facilitated by the use of these arrays.
It may seem, secondly, that the system will waste energy since it
utilizes non-directive arrays. This, however, is false. Any
target, regardless of its location and pattern rotation x, re-
flects the same amount of transmitted energy since the pattern is
non-directive. Likewise, on reception each return is accepted
with the same weighting regardless of its origination because
again the pattern is non-directive. Hence there is no chance to
waste energy on transmission or reception., It is true that for
several targets the received signal will be unintelligible;
nevertheless a means has been devised above to unscramble the
received signal,

The major difficulty arises in instrumenting the two-
dimensional correlator of (6.13). One proposed solution was to
use optical processing techniques., Y\ere the signal return
is initially converted into a two-~dimensional film having the
same amplitude variation as s(x,t). A masking film having the

amplitude of the known pattern V(e,”f‘%\ can be superimposed
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for multiplication, and integrations can be performed by
lenses.ll The scanning of the mask which accounts for the
various values of AR and A®B in (6.13) can be performed mechan-
ically, Of course in practice the rotation parameter « can take
on only discrete values, so that results will be approximate,
To a good approximation,.hOWever, the final result will be a
new film having the same amplitude variation as (([AR,A®) .
A pictorial representation of the process is given in figure #11.
Another technique uses straight forward electronic processing,
which, however, requires a great deal of computation. Figure #12
outlines this technique, —
In either case the implementation is involved and com-
plex, This complexity is the main sacrifice for obtaining the
increased resolution capability of the ambiguity function. As

shown in the next chapter, this problem is compounded when the

targets are non-stationmary.
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CHAPTER 7

POPPLER EFFECTS

This final chapter describes the effect of radial target
velocity on the pattern and the ambiguity function of an array.
The results are based on the doppler effect which states that
a reflector moving with velocity v reflects qn ingoing signal
aed¥t as aedV (H'%)t for any frequency w. If the ingoing signal
is given by
(7.1) A= SP\L\D\

~the effect will be a transformatlon into_the new signal,

WL+ KT
(7.2) AW = SN‘”\@ t\?‘ _ g"ht_ls vt &m
o |+
where k = % . Hence the original spectrum A(w) changes to F“J*v)

T+ W
upon reflection off the moving reflector. Since k is always

o0t dw
Zn

small this may be approximated by deﬂ[\*“i&.

Taking the transmission pattern to mean the reflected
signal as a function of reflector location, the expression accoun-
ting for doppler effects may be written
1.3) G_LB-\' R\ S{P\Y_X (=¥ ‘Se}\ﬂk"f*-—--\- S\Y\B)Axam
This applies only to transm1831on patterns since the receivers
experience no doppler effects, and hence their pattern form is
unchanged. Therefore the two-way pattern for the filter function
B(x,w) can be written
(7.4) \Ka_\. R\ ?A.UD SS ALY, W= K3) B wyes b\ut‘r—-'-}B X*Xsmalm
As long as the effectlve bandW1dths of the receiver filters are

large enough to accept the frequency shifted returns, directivity
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and range localization are unchanged by doppler effects. The
amount of frequency duplication and the bandwidth of A(x,w) are
the same in (7.4). Also the method derived for pattern rota-
tion is still valid.

Finallfiﬁs desired to find the effect of target velocity
on the system of the preceeding chapter. In that case A(x,w) =
a (x) $iw-woa\ so that
(7.5 AGWA-KN = A BTWA-K) — W\
Therefore, after using (6.14), (7.4), and (7.5), the two-way pat-
tern is written
LA V@{\"'z&\ S&mé\nmmmﬂ R, X sm95 Ay
Assuming for 51mp11c1ty there is a target at (0,0), the operation

of (6.13) becomes for D=0,
.1 V(R0 = Re § 4R S Ae&\o\m\o\(m

"B‘“(M\Q‘f Qua\ }smev_ WAIGLY :;m; )
e

gfmot\\mm& ~3RY

Having performed the R and 69 A:i.ntr::gratlons
y 3 ¢
(7.8) ¥ \bR‘Q)\ = O RQ. {3 \\CL (m %\m\\k\_& Q) _mub}é J;Y\-Dulwlu-\

The delta function establishes a relation between the variables ‘xl

-

<3
of integration, x, and X,, which can be written

(7.9) = -Yu, = "‘L W)

8 a) v
when wl(y) is the inverse function of w(x). Note that such an
inverse exists for no-gain multiple frequency arrays since no

frequency is duplicated along the array. Using (7.9) there re-

sults M \AR

@10 TURG= Mfe Jamalifol el < T\ (SRl

Comparing this result with (6.10) (when k = 0), two
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observations can be made, First, the factor of the Bessel
function has an attenuating effect on the pulse. Second, the

factor Q&&U&X is zero for some interval of X within the inter-

minimum w(x)
I+ Kk

smaller than any w(x); consequently f(x,) lies outside the inter-

will be

val JR?N . If for instance k is positive,

val (-P,P) and a(f(x,) = O since a(x) = 0 for .\x\.> P. When

the entire interval of integration is not used, the bandwidth
corresponding to the factor eJ"(X) BR jg diminished. As has been
demonstrated, fhis bandwidth loss is equivalent to a loss in range
resolution,

This provides sufficient information to conclude that the
system of chapter 6 has been distorted by doppler effects, The
extent of this distortion as a function of k is still an open
guestion since the mathematics becomes involved, Presumably,
however, directive distortion occurs also. To compensate for
the distortion it is possible to have numerous doppler channels
so that a given return is correlated with the proper doppler
shifted pattern. The number of channels required depends on the
doppler resolution desired and the ambiguity distortion which will
be tolerated. This solution to the problem, of course, compounds

the problem of equipment complexity which was discussed in chapter 6.
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CHAPTER 8
SUMMARY

The utility of multiple frequency arrays, as discussed
in this paper, has been determined for three types of radar sys-
tems. The first is the usual type of system requiring directive
and very localized energy emission from the arrﬁy. The relation
between the excitation (or filtering) function and the relative
joint satisfaction of these two requirements appeared in expres-
sion (4.19). Prior to stating that expression, the directive gain
was shown to be a measure of pattern directivity, and the effec-
tive bandwidth, a measure of pattern range localization, The
fundamental statement (4.19) established the gain-bandwidth
product, In the case of a conventional array the product was
separable; this means that here directivity and range resolution
are independent entities, limited, if at all, independently.

In the case of a multiple frequency array the gain-bandwidth
product was a single entity, constrained by the composite gain.
The composite gain was shown to measure the frequency-position
area in the excitation spectra. Therefore an antenna excitation
with a certain total output bandwidth and array length, has the
greatest gain-bandwidth product for a conventional array. Such
an array excitation uses the entire output bandwidth at each array
point, so its consequent composite gain is largest.

Physically, it is more natural to constrain the band-

width of the individual radiators than it is to constrain the ef-
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fective length of each frequency component in the excitation,
This consideration leads to another point of view. Suppose first
there is a constraint on the overall length of a multiple fre-
quency array. As shown in (4.16) the directivity of the array

is an average of the directivities of the constituent monochroma-
tic conventional arrays., Since the effective length of each con-
stituent is less than that of the entire array, a directivity
reduction is implied. The conventional array, on the other hand,
is composed of monochromatic conventional arrays each having the
same effective length. Thus, here no directivity reduction is in-
volved; so in the context of these two considerations it behooves
one to use the conventional array.

Now suppose the excitation bandwidths at each array point
is constrained below some desired output bandwidth. A multiple
frequency array will enable the desired output bandwidth to be
reached, though as before the effective array length will be less
than the actual length., Finally when the constraint of a fixed
array length is dropped, the effective length or gain of the ar-
ray can be achiéved by extending the array. The practicality of
these constraints will depend on the actual application.

The second system to be considered was the time-~integration
process employing discrete arrays., Here a set of no-gain multiple
frequency array were combined in such a way to produce the two-way
pattern of a wide-band conventional array. The great advantage of

using multiple frequency arrays rather than monochromatic conven-
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tional arrays is the possibility of using an envelope detector
on reception, For a set of conventional arrays the RF phase
would matter; for the multiple frequency array it would not
matter., The relative disadvantage in using the system was the
difficulty of implementing an electronic scanning scheme on
reception, though no such problem existed on transmission,.

The final system made use of a type of correlation
processing to achieve joint angular and radial resolution from
a no-gain multiple frequency array. The process could just as
welf:g;en applied to the conventional array, and sample cal-
culations show that the joint resolution would be better. The
unique feature of the multiple frequency array in this applica-
tion is the very low bandwidth output from each individual radia-
tor, If for instance a monochromatic conventional array were used
instead, no radial resolution would be possible; whereas the mul-
tiple frequency array ambiguity function can achieve arbitrarily
good joint resolution. The advantage in having excitations con-
sisting of a single frequency at each radiator appears as the
great facility in instrumenting pattern rotation schemes. The
major problem for the system was the complexity in the implemen-
tation of a two-dimensional correlator.

Two unexplored questions arise. First, can simplifica-
tions in the ambiguity systems be obtained through the use of
multiple frequency arrays having some directive gain? Second, can
acceptable degrees of doppler resolution, together with range and

angle resolution be obtained with the "ambiguity function” system?
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