


2.
MULTIPLE-FREQUENCY ANTENNA ARRAYS

by
TERRENCE ALBERT LENAHAN

4 i

Submitted to the Department of Electrical Engineering on May 28
in partial fulfillment of the requirements for the degree of Master
of Science in Electrical Engineering.

A study is made of a novel type of antenna array exci-
tation for possible use in radar and sonar systems, The array
excitations are unusual in that some or all the individual radia-
tors of the array have an excitation completely different in fre-
quency content from other radiator excitations. The broad class
of antenna arrays having excitations of this type are called
"multiple frequency arrays'.

By applying techniques of Fourier analysis, an expression
is derived for the radiated energy distribution from the general
one-dimensional multiple frequency array. Next the corresponding
receiving array is defined and a receiving situation is constructed.
This leads to an expression of the receiving characteristics of an
array for which there is a certain equivalence with the radiation
distribution of a transmitting array. In this way it is shown that
arrays may be discussed independent of whether they transmit or re-
ceive energy.

Once the general relationship is established between the
array excitation and the radiation distribution, the relationship
is analyzed in terms of directivity and range resolution. Here
directivity is measured by the ratio of the total broadside energy
to the total emitted energy. Range resolution is measured by the
localization of the pulse emitted in the broadside direction. It
is found that the multiple frequency array never makes full use of
the directive potential of their array length, and in some cases
they are non-directive arrays. The exact amount of directivity
loss and a statement of joint angular-radial resolution for multiple
frequency arrays is found in general terms.

Two processing techniques were examined in which the mul-
tiple frequency array might be used. The first, the time-integration
process makes use of a set of multiple frequency arrays to achieve
a system with joint angular and radial resolution capability. Opera-
tional speed is sacrificed in this technique and it is shown that
speed cannot be regained efficiently by electronic scanning schemes.
The second processing technique introduces the concept of a two-
dimensional correlation for achieving joint range-angle resolution
capability from a non-directive multiple frequency array. The sacri-
fice here is equipment complexity arising from implementation of the
two-dimensional correlator. This sacrifice is accentuated when
Doppler effects are considered.
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Use upper signs when the angle is po-itive and lower signs
when is negative.

Recall from chapter two that the factor A appears on recep-
tion whereas ¥) appears in the pattern on transmission.
Therefore on measurement of the pattern this factor cancels.

It was pointed out by L. J. Chu that implementation of the
multiple frequency arrays will be hampered by mutual coup-
ling effects which cannot be filtered out on transmission.
This necessitates the use of shielding which otherwise
could have been avoided.

There has been electronic-scan receivers devised which by
using FM signals avoid the necessity for time varying time
delays. The efficient use of this scheme with the time
integration scheme would invalidate this statement. This
aspect has not been studied.
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CHAPTER 1

INTRODUCTION

An antenna array consists of a set of elements geomet-

rically placed for either transmitting or receiving energy in

some desired fashion. There are many features of an array,

such as the type of elements, the location of the elements,

and the network connecting the elements. For a transmitting

array in this paper, the primary concern will be the excitation

of each element. This excitation will be represented as a time

function which depends on the element in question, For a re-

ceiving array in the paper, the primary concern will be the con-

nections between the receiving elements. The network connections

will be represented as a set of independent linear filters fol-

lowing each receiving element, The output of each filter will

be attached to some summing device such that the output will

be the sum of all the filter outputs.

Specifically, the excitations will be discussed in terms

of the energy distribution radiated into space. For receiving

arrays a point source emitting an impulse function will be postu-

lated to exist in space. In such a case the output of the filter

integrator can be written in terms of the impulse response of the

filters and the location of the point source. On reception this

integrator output will be the quantity of interest in this paper.

The quantity may be thought of as the overall impulse response

of the array with the point source location being a parameter.

Some assumptions will be made about the arrays



in this paper applying to transmit arrays and receiving arrays,

First, the arrays will extend in one dimension over a straight

line. Second, the elements comprising the array will be as-

sumed to be non-directive., Finally the elements will be as-

sumed to be very closely spaced. The first assumption results in

a geometric simplification. The radiation distribution from a

transmitting array will depend on only two position coordinates,

as will the impulse response of a receiving array. The latter

two assumptions allow an array to be approximated by a line,

which on transmission will be a line source and on reception will

be a continuum of filters. Thus some time functions continuously

defined along the array will represent the excitation current.

This may be written a (x,t) when Xx is the array coordinate and t

is the time. Also some time function b(x,t) will represent the

impulse response of the filter following the receiving element

situated at the array position x. This formulation incidentally

is a generalization of the excitation or filtering of an array of

discrete elements. On transmission for instance, the excitation

of a discrete array can be written,  a(x,t)= 2 Sv =%g) S(t)

where XX, is the a element location, $¢(X) i” the corresponding

excitation, and §(x) is the delta function.

Considering first transmitting arrays, a conventional

array is defined as one having :.: a similar excitation, within

an amplitude and phase factor, at each point of the array line.

In general terms when a(x,t) is the excitation function, there

will exist, for the conventional array, functions d(x) and c(t)



such that a(x,t) = d(x) c(t). Here d(X) represents the array

illumination or amplitude and phase distribution over the array

line; and c(t) is the modulation or the signal exciting each

array point. In practice such an excitation is obtained by

passing the signal c(t) through amplifiers having the gain,

d(x). The amplifier outputs lead to the corresponding array

points.

This paper concerns arrays which for different array

points have different excitations. These are the excitations

which cannot be separated into the product of a time function

and an illumination function. The class of arrays having such

excitations will be called "multiple frequency arrays". For

receiving arrays the distinction between multiple frequency

and conventional arrays is made in terms of the impulse re-

sponse of the filters following each receiving element. If

b(x1,t) represents this set of impulse responses, the con-

ventional receiving array is one where b(xl,t) = e(xl) f(t) for

some functions e and f£f. The multiple frequency receiving array

is one having a filter function b(x1,t) which cannot be written

as the product of independent functions of time and array posi-

tion. Again this non-separability of the function b(x1t) means

that the impulse response of at least two filters is different.

The original motication for studying the multiple fre-

quency array arose in a radar and sonar application. The re-

quirements of these systems is that targets or reflectors be

reliably detected, located, and resolved in the presence of inter-
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fering noise. Except in unusual circumstances, as discussed

in Chapter 6, these requirements dictate that the

(1) Propagated energy be concentrated in a small angular

interval,

Propagated energy be concentrated at auy ga.ven t.me

in a small radial interval.

Impulse response energy of the r 7 ving array be con-

(2)

centrated in a small interval of angles.

Impulse response energy of the receiving array be con-

centrated in a small interval of ranges.

Numbers (1) and (3) concern the directivity of transmitting and

receiving arrays, respectively. Numbers (2) and (4) concern the

respective range resolving capabilities of transmitting and re-

ceiving arrays. Taken together these conditions concern the joint

range-angle resolution of a system.

In the particular application it was desired to transmit

very high energy and wide band signals, at the same time achieving

requirements (1) and (2). The multiple frequency array whose exci-

tation spectrum is illustrated in figure la was suggested. Since

the spectrum of the pulse, propagated in the broadside direction,

consists of the excitation frequency content, a simple means of

fourier synthesizing the broadside pulse was presented by such an

example. Thus the multiple frequency array of figure la can achieve

an arbitrary broadside pulse, despite radiator or transmitter bandwidt:

limitations; whereas the conventional array will be affected by such

limitations. It was felt that such bandwidth limitations may apply

for high energy excitations. The disadvantage of using the array
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excitation of figure la is a lack of directivity. This will

be shown in chapters 3 and 4.

The question arises whether another type of multiple

frequency array can achieve joint angular and radial resolution.

Another question that arises is whether some appropriate pro-

cessing scheme exists which can utilize the multiple frequency

array of figure la to obtain good joint angular and radial reso-

lution. The purpose of this thesis is to examine these two ques-

tions in detail.

The organization of the paper falls into three parts.

The first is a derivation of the radiation distribution for the

general excitation a(x,t). The impulse response of the receiving

array with filter function b(y,t) is also derived here. The im-

portant point of the second derivation states that the joint angle-

range resolution of a receiving array depends on b(y,t) in the

same way as Joint transmission resolution depends on the excita~

tion function a(x,t). The second part of the paper formulates

the joint resolution characteristics for an arbitrary multiple

frequency array. In Chapter 4 a measure of antenna directivity

and of range resolution capability are formulated. Then the

relation hetween these two measures is derived in terms of the

excitation function a(x,t). The derived relation implies that

given a total output bandwidth and a fixed array length, a con-

ventional array achieves the greatest joint resolution capability.

The multiple frequency array, consequently always has worse

directivity. Figure 1b and lc show the frequency content of some

arbitrary multiple frequency arrays for which the results in
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Chapter4apply. In particular the results show quantita-

tively just how much directivity is lost for each array.

Processing techniques which circumvent the directi-

vity problems of multiple frequency arrays form the subject

of the final part. The first technique, called the time-

integration process, utilizes a combination of multiple fre-

quency arrays. These arrays are picked so that when com-

bined by this process they cause the effect of a wide-band

conventional array. It is found that a set of monochromatic

conventional arrays combined in the same way introduces two

interesting contrasts, For only the conventional arrays, RF

phase is important; but these arrays are more amenableto

electronic pattern rotation. The second technique is based

on a transformation of what is called the two-way pattern.

The two-way pattern is usually the final processed signal of

a radar system, It is found that use of the transformation

results in a system of good joint resolution when an array ex-

citation of the type in figure la is used, The drawback of the

system is the necessary equipment complexity for realizing the

transformation. This drawback becomes worse still when doppler

effects are considered, as shown in the sixth and seventh chapter.
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CHAPTER 2

PATTERN DERIVATIONS

The expression for an antenna excitation over the Xy

plane will be a(x,y,t) where for any point (x,y), the time

function a(x,y,t) has finite energy. From this excitation it

is desired to find, as a function of location and time, the

radiated energy intensity. This is done by extending a result

of Silver's to find the radiation field or pattern. The squared

modulus of the pattern proportional to the radiated energy dis-

tribution.

Considering the aperture P to be in the Xy plane,

Silver's result concerns the single frequency excitation, F(x,

y) edvot, ‘He found that Lhe resulting radiated field can be

written,1(2.2)v= Be §§ Fix,%) (cos0 4 45°85) @} Tob ime
The geometry of the situation is expressed by the spherical co-

ordinates (R,$,0) and the rectangular coordinates. (x,y,z) shown

in figure #2. Other symbols include the time t, the propagation

velocity c, and the phase factor i,.S which can be taken to be

constant, (2) In arriving at (2.1) three approximations were

made.

l. Linear and uniform polarization.

2. Excitation wavelength aperture dimensions.

3. Far field, R&gt;» aperture dimensions.

None of these restrict the application of (2.1) in this paper.

The frequency content of the excitation a(x,y,t) is

given by its Fourier transform, which is written
[2d .

| =Jwt

2.2) Ay.wY = Jag e477
__
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Isolating one spectral component in the excitation spectrum,

pone can apply Silver's result to give the spectral density of

the radiation field for that component. Thus

= (( C080 + B 1, Wel Ye ¢; :
(23) VU (Wwe) § pea Jw, e &lt; Aly, wy et a SMOLCERY + dont, dy
Since superposition is valid the total radiation field is

RY) VU = OT dw Eroote { i: Jlt-1.)) V § Uw) eo = Ty ), yw Abe,Y,w) e 3 A yds

#here

R X \ .
(2.5) Ta C C ng Cos $ z nO Sw ¢
After inverting the order of integration in @.4), the interior

actually is the inverse transform of the quantity jw A(x,y,w) co Ty
° 3)

This is Ft AY T= Tay) . Thus an equivalent expression

for the radis “ion field from the e~" sftion a(x,y,t) is

 »¥ Cos CC"
GweR J) oF &gt;%y wg) Andy

For facility in manipulation, the full generality of

aby

(2.6) will not be used, and only one dimensional arrays will be

considered, This means that the excitation is written,

2.7) AlX,4,T) = ok F) SLY
and the radiation field outside the YZ plane can be deduced

from symmetry, so the angle o is set to zero. The resulting field

expression is cb P WERT
v +Cos0 0 C. ag *BACOS®QO 2 gx. t-T\dy = peed WAGWE aie2.9 V= oo § SOT Tax = Se) JRA, dn

-® ~o0-P

where

=RR_ Xa2.9) MW = &lt; — =Sno

The case of the two-c.mensional aperture can be handled as a

straight forward extension of the one-dimensional case for any
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of the topics in the paper.

The field expression in (2.8) may be interpreted

physically as a sum of aperture pointsources appropriately

delayed and regulated by the energy propation factor 0

and the obliquity factor B® ¥(C0S® . The time derivative indi-

cates the transformation from aperture excitations into fields

in space. On reception the opposite effect occurs, for then

the effective area varies as the reciprocal of the squared fre-

quency with respect to power received. (4) Therefore when many

frequencies are present, the incoming field pulse is actually

integrated,

“r‘,ics of the receiving array depend upon

this integration effect as will be shown. Suppose that the

receiver filters are given by a(x,t) and postulate a point

field source at (Ry,0,) emitting a delta function. By (2.8),

this field corresponds to the point source current excitationCu.(W)§(R-R 04

where U-1(t) is the unit step (wan= § Senet) (Note that the
obliquity factor does not arise for a point source). Now recip-

rocity can be applied; for the process of transmission is recip-

procal, within a time derivative, to the process of reception.

On transmission the current excitation a(x,t) can be achieved

by exciting by a delta function, filters having the impulse re-

sponse a(x,t) leading to point x. On reception the delta-function

The chal

current excitation is applied to some arbitrary point in space,

which before was used for measuring purposes. The received sig-

nal is measured at the same place the transmitter is excited.
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Suppose the transmission field at (Ry,9,) is U, then
2

the induced current on the measuring point is cf JH) at . By
-%0

integratorreciprocity the received signal from the filter
t |

for the unit step will be crf und .
= «a0

function pointfield Source the receiver signal will be, by (2.8)

0 + _ (B+ cose)C § (a 1-7 dxdl(2.1 ) U — 4TrR Jo , 3 x

This will be named the received field.

Thus for a delta-

It should be noted that when currents are measured in

the radiation field the derivative in (2.8) will disappear.

Also when a delta-function point current source is postulated

on reception, the time integral in (2.10) will disappear.

For radar and sonar applications an expression for a

third type of pattern, known as the "two-way pattern’, is de-

sired. The two-way pattern is a combination of the transmission

and reception patterns which gives the final processed signal in

terms of

1. Transmitting array excitation, a (x,t).

2. Receiving array filters, b(xl,t)

3. Location (R,P) of a reflecting point target.

Assume for mathematical convenience that the transmitter

and receiver are superimposed in the array interval (-p,p). Then

the derivation of the two-way pattern is based on the fact that

for any single frequency, the corresponding two-way pattern is

the product of the transmit and receiver patterns. Thus if

V(wy) is the Pe a fee of the twogway eT Ws, Wo, SoCoS ©» Be ILCOO+By) sn SOY Cadoon G8(2.10) VOW.) = ——_——___"2\AX,w,)€¢ A We ax0 (Uncen? ) °?
where A(X,W) and B(Y,w) are the Fourier transforms of a(x,t) and
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b(y,t) respectively. Notice that the factor jw has canceled

upon multiplication of the patterns. Employing the super-

position principle, one obtains for the total two-way pattern,

when CR,» represents the obliguity and radial factors,
Cyn © tw = AX Jon DVR28500)(2.11) V= { vane He = CIR, JAxmBadwye ry
ed : -od

-¢ dxiydwx
I{ it is desired to express V in terms of a(x,t) and b(x,t),

note that (2.11) is the Fourier transform of the product of two

quantities, Consequently V is the convolution of their Fourier

transforms; so the two-way pattern is the convolution of the

transmit and receive patterns. There will be occasion to use

the two-way pattern after the transmit pattern has been discussed

in some detail.





1Q

CHAPTER 3

SPECIFIC PATTERNS

In this chapter suppose that the excitation function

has the form

(3.1) AX,¥) = Qx) edwmt

which represents those arrays whose radiators are excited by

the single frequency given by w(x). Such a class of excita-

tions has a simplified expression for the radiated field, and

yet it is still general enough to include many different types

of excitations. In particular arrays where w(x) = constant

are conventional arrays, and arrays where w(x) is different

for each x (as in figure la) are the extreme multiple fre-

quency array where no frequency is duplicated in the excita-

tion spectrum.

Substitution of (3.1) into (2.8) yields the radiation

field, . .

en CoS +B 8 Qa QdRon Ct - gRe 3 Sno) ax
+ “mek SKY,

On the basis of the discussion in tbe ~~ -ding chapter the

guantity . v

’ ? W(t - 3 i X sine)
(3.3) Q= § 200 e ax
contains the information of how the excitation affects the

radiation systems, and the time derivative, as in 2.10, cancels

upon measurement of the field. Consequently attention will be

focused on the quantity Q, which will be called the pattern.

The purpose of this chapter is to examine the patterns
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of three different excitations. From the analysis trends will

be pointed out whose generalization will be the subject of the

succeeding chapter.

A. Conventional Array

When W(x) = Wo, some constant, the excitation corres-

ponds to that of a conventional array. The pattern becomes,
® - R ° Ww X .

a. Q = eli 3) FamedBF sing
-P

When a(x) = 1, . : w .

5) 2p” 4-8) nls” sine)5  Q= 2p WF gin©
In either case the pattern has no dependence, other than phase,

on the range R.Q does vary with the angle@® , and in (3.5) the

variation is quite distinctive. For large values of WoP the

great majority of radiated energy lies in an angular distance

of ep about the broadside direction (©=0) . Thus the

angular energy concentration or directivity of this pattern im-

proves without limit as the factor WoP becomes large. For

different angular shaped patterns, different functions G(x) are

required, The contract which can be drawn is to a hypothetical

point source emitting some spectrum b(w). Here there will be

no angular dependence of the radiation field, and the radial

pulse can be arbitrarily specified for the proper function b(w).

B. Linear Frequency Distribution

Suppose for a second example that

— C Rx \(3.6) WX) = We lx ¥Yp (-P4&lt;X&lt;P)

When a(x) = 1, the radiation pattern is given by
Yaw — Xe SIGo Q=§ eel WIeIY = Fre + Wie SB) 3)

This integiw.ion is most easily performed by letting
R-c% We§(3.8) —- Y  e—— S = —— no

A 2S 25M °C S
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Yhen substituting into (3.7) to give aA
: -R ' 2 2 _

A change of variables, § = X % A rings the reduction,: CRY LAR an (Te .

(3.10) Q= @Mett-T) dBA (F77 @285% 4g
AW Lk -R SPN Rah oo

= e? ol &lt; gob S (LoS8S? + ysWBsH) as
. - h Ww

Expressions of the form, dem &amp;t &gt; and § cos? NY
are known as Fresnel integrals which are tabulated functions. (3)

By denoting these, S(u) and C(u), respectively, the final pattern

expression is EY
J, (1-RY OBA I= | ze3.1) Q= ed olt-3) ¢ 218\ clip+n |

x

- ~p\ {RBI — \ x ae 1DCUA-ATEE] 3 ysl EET =§ Sf-pis! 3
The case when B = 0 = @ must be handled separately. Refer to

(3.7), then by setting Q=0 , one obtains for the broadride field
Jw, (4- RY CPo pWeb

(3.12) Q = edWold DJe? SY (- RY Ay
We -§Yy ON We8(r=Rien

O = 2pre Wes (r= Ric
Expressions (3.11) and (3.12) describe completely and exactly

the radiation pattern for the linear frequency distribution case.

An interpretation of the pattern must be based on the

nature of Fresnel integrals which are plotted in figure #3. Both

functions are antisymmetric and hence intersect the origin. They

have a damped oscillatory behavior about the values 1/2 or-1/2.

depending on the argument sign, and they approach these values

for large arguements. The asymptotic forms are given by

3.13) 1 A 1 m——— 2
CY 3 + &lt;r SN 5 ¥

Noo WySX) 2 Tw cos 5
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Pweb
With the assumption that ec = YOW ang $= 2

the pattern has been plotted in figure #4a. The outstanding

feature of the plot is a maximal ridge located on the locus

given by R= ct + Tsong 3 and known as a Limacon., The ridge

is maximal in the sense that for a fixed angle § and time t

the pattern intensity for ranges R off the Limacon is less

than that on the Limacon. Hence the collection of radial

maxima indexed by® may be said to specify the Limacon. In

this respect the plotted example is a good indication of the

general character of (3.11) and (3.12) because such a ridge

appears in the pattern for all values of P,§, and LP

The existence of such a ridge may be deduced from (3.9).

Fixing the angle® and time t, the expression is maximized for

A-= QO, which is just the locus equation for the Limacon. To

find the pattern on the ridge, set A = 0 in (3.11) to give

Ww, (t-R) Mv |3.14) = pede I= [RE| = [Le( Qr 2Pe 218 P* C( = ) + | aB1e%)
The important parameter here is 2\8\ 9% 2PWed) Sin o\

“v tC .

When the parameter equals zero, ie 0=0, Qr has the

maximum value 2pj and large values of the parameter result in

small values of the pattern intensity. The pattern for inter-

mediate values of the parameter is described by the half power

points of the ridge. These points lie within the interval

_ _ Tc — a NG(0=-5us6 + 9%*owes)
This value is verified by first setting Q= nc and observing

that = 7 2.. Then,
~~ .

(3.1 \Qr\ Z 200%|C@R) +30WR)\ &lt; 21T
as a reference to the Fresnel integral tables will show. Thus

the pattern on the Limacon can be arbitrarily localized or peaked
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Examination of the radial pulses in the pattern for

an arbitrary and fixed©and T shows that the total energy

within each pulse is independent of §. Since it just has been

shown that the pulse maxima decrease with increasing , it

follows that the radial pulses must broaden for increasing 0 .

A quantitative derivation of this phenomena appears in a more

general context in the next chapter. A qualitative appreciation

of the broadening affect can be gained here by locating two

half-value ridges, where for a fixed angle and time the pat-

tern intensityishalfof that on the maximal ridge. It will

be shown that these ridges diverge for increasing angle © a
bs

which implies that the pulses do broaden. The ridges are lo-

cated on the loci A=32P or R= 4 (Ex P) smd

because the corresponding pattern expression there is

G10 \Ql = p {Tee|CLEREY)3SUEEE)
which is approximately half of Q,., when 218\¢¢ is not small.

This observation depends on the fact that the Fresnel integrals

vary little for arguments removed from zero. The radial dis-

tance between the two half-value ridges is YO_SNO , which

increases as @ increases. Therefore the ridges do diverge and

the radial pulse broadening is shown,

Outside the region between the half-value ridges, the

behavior of the pattern may be deduced from the asymptotic forms

of the Fresnel integrals. From expressions,

(3.11) and (3.12), it follows that for large values of R- oY

(3.17) LJ 22 2 dpe\&amp;\ Te, WAZ) TAB We R-ct
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Hence the pattern decreases from its maximum at a rate com-

parable to a= for increasing values of R-¢t + Consequently

a large percentage of the radiated energy lies between the half-

value ridges,

Cc. Symmetric Frequency Distribution

The previous examples representedtheextremesinfre-

quency distributions, with complete frequency duplication along

the array excitation in (A.) and no frequency duplication in (B.)

The symmetric multiple frequency distribution is a compromise be-

tween the two extremes where w(x) =Wy(l + S1x1) for —-P&lt; X&lt;¥P
Thus a band of frequencies is represented and each particular fre-

quency in the excitation appears twice along the array.

Again assume a(x) = 1, then the pattern will be given by

(3.18) Q= feds L(t - B+ Xone) Qy
By expanding the exprc~-ion and changing the irler  %+ion variableiho

one ootatne Foto Ll T-8 + Xone) y, cone
(3.19) Q = o P iWoll + T(r- R- SMe)

rye
Let N= x * Rest , then after using the definitions, (3.8)

and the manipulations of example B, 319) Jecones code TR ia
G20 G = eH TRIO, IA" | e344)
The pattern envelope Dueys, the tnequaiey {acl A
can \QLe |§ ea) «(ed A

‘als are similar to the ones of example B, soThese two inte

expression (3.21) can be interpreted in terms of the results of

Section B.
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The pattern envelope is bounded by the sum of two

patterns respectively having maximal ridges on the loci,

(3.22) R= &lt;X Y y YNip te \i = ems(P+ s) Sind ot A 2

R= - (p= Tysme oc N'=- T

The radial pulses centered about each ridge remain essentially

independent except for small angles ©, Yhe corresponding half

value ridges are separated by 2P SMe whereas the maximal

ridges are separated by 2(P~ Pisme . Therefore, the ridge
values reinforce each other ory on broadside, and the energy

content of the radial pulses will be greatest for that direction,

Again the case where B= 0 must be handled separately.

Setting ©=0 in (3.19) results in WS
: —R\ of _\ 29] - R

(3.23) Q@= 2 @¥WolX 2) qe? v FOr) Ay
“. "WW -R

_ 20 AWeCT- RY Sin Wed (r- B)
— Wes gq Ch — R/)

This broadside pulse is broader by a factor of two compared to

(3.12). Thus this pattern compared to that of example B is more

localized in an angular way, but the broadside pulse is broader

and hence less localized,

On the basis of the examples in this chapter, there seems

to be greater angular localization of the pattern when more fre-

quencies are duplicated along the array ROTA EON, Also the

radial localization of the broadside pulse is greater when a

wider band of frequencies is used. Other excitations with the

form a(x)edV ®t as in figure #4b, could be analyzed to show

similar trends. It is desired, however, to establish a more pre-

cise formulation of pattern directivity and range resolution
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capability. Finally the relation, if any, between these two

qualities is desired for determining the joint angle and range

resolution of an antenna array. This more general subject is

discussed in the next chapter.
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CHAPTER 4

PATTERN DIRECTIVITY

The gain of a conventional array has been used to

indicate the power passing between the antenna and a point

for a given input power; and also it provides a coarse measure

of pattern directivity. When the array has a uniform phase

distribution and an excl tation, a (x) eJWot the gain is defined

(6)aS
2 ¢° 2

(4.1) ¢ = 13. J, 00 0d
- "awnax

Ve

where Ao is the corresponding wavelength. This ratio compares

the maximum power (on broadside) to the total transmitted power.

Hence large gain values indicate a predominance of broadside
All directions

power over the average transmitted power taken over, Conceivably

a high gain antenna pattern could have enough total power out-

side the main beam to exceed the power in the main beam. Such a

pattern appears in figure #5. Therefore gain provides only a

coarse measure of directivity.

Since multiple frequency array patterns have radial as

well as angular ..dependence, a single measure of directivity

for them disregards even more pattern information than before.

Consequently to fill the two previous needs of gain two gain

generalizations have been formulated. The first specifies the

peak power passing between the antenna andefixed point for a

given total input energy. This is called composite gain. The
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second gain provides a coarse measure of pattern directivity,

and so it is called directive gain.

A. Composite Gain

Using (2.8) and the considerations leading to (3.3) the

pattern corresponding to the excitation A(x,w) is defined

R NAN JLT B 4 Xing) 4,4

Assume the phase distribution over the aperture is uniform so

that the maximum pattern strength lies on broadside at R = ct.

In this case Spuposite gain is Jetined,
(4.3) \S $ Ao, dx Ao)

Ge= iE A Peak pattern power
CL AK \ Ax ww otal pattern energy

Note that this formulation has left out the obliguity effect,

which previously resulted in a factor of two, and the factor\

Consequently this form is equally applicable to transmission

and reception, and the numerator is proportional by a factor of

four to the measured peak power.¥*

There is a geometric analog Where 1/Gc represents a cross-

Sectional area of the pattern, Correspondingly, the quantity

J, J hunt og is the total yolune (energy) and
the quantity J Aocrduds || is the maximum height (peak power).
This analog soeves to illustrate the fact thai ihe composite gain

is independent of pattern shape. For example the point source

emitting the spectrum, a(w), and the monochromatic conventional

array with i1luwina tion a (x) both have the composite gain given by

an Go= (AW
¢ 3% AI RAK

The relation between the excitation and composite gain is

clucidated by the example where



(4.5) A(x,w) = E or Zero, depending on X and VW

J S.

Then © Pp sp

4.6) 3.) ARMY dx dw = ey S AX) ax dw
“od ~ -0D2

and so
© ©

| (XW)

4.7 GQ.= CS Ak Ax dw
Teo LP aN

This expression represents the area in the frequency-position

plane for which the excitation is non-zero. Figure #6 illustrates

the situation. When the output bandwidth is B for each position

X, this area is 2PB. This conclusion could also have been

reached by using Schwartz's inequality Mo give,
? *L P xXLa. | {J Ac dx dw 2 298(1AGW™dxdw

3 -P =n B=P =
where now B is the total output bandwidth, This implies

4.99 GG. £298
with equality when A(X,w) = constant for -P £X&amp;° and weB,

This means that the composite gain is maximized, for a certain

bandwidth B and array length 2p, when the excitation is uniform

over these. Therefore, a measure of the affected area in the

frequency-position plane has been constructed where points are

weighted with respect to their relative energy contributions.

8. Directive Gain

When A(x,w) is the excitation of am array, and ame, v-}Y

is the resulting pattern, directive gain is defined,

(4.10) Gy= L\Ge = DM e-g) ~ Broadside energ
5 AGW axdw otal pattern energy

Again the obliguity Factor and the time derivative in the field

expression, (2.8), are neglected, Therefore the numerator in
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(4.10) is proportional to the total measured broadside energy

with a proportionality factor of four. This factor is not

essential for it can just be recalled when necessary.

It is essential to state in what sense directive gain is

a good or useful measure of pattern directivity. For this

purpose the concept of localization and resolution capability

are introduced. Localization, in this paper, concerns the

extent to which energy is distributed, either in space or time.

As a one-dimensional example, when the maximum value and total

energy of a pulse are given, the pulse of greatest localization

is the rectangular pulse, Resolution capability, in this paper,

refers to the facility with which a pulse is distinguished when

a shifted version of the same pulse is added. Thus resolution

may be measured by the distance between the half power points of

a pulse. With the constraints of the previous example, it can

be seen that the rectangular pulse represents almost the worst

resolution situation. Figure #7 shows cases of much better reso-

lution, and indeed, at the expense of localization, the resolu-

tion can be arbitrarily good with the constraints given.

In viewing the pattern QU0,¥- 2) as a set of radial pulses

indexed by the angle © , a function E(8) , can be defined which

gives the total energy in a pulse as a function of the angle. The

maximum value of E(Q) , at Q=0 , is the numerator of (4.10),

and the total pattern energy, which is Te®de » is the denomina-

tor. Hense the quantity 1/Gd may be considered the width of a
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rectangular pulse having height  €(0) and total energy CEervds

so 1/Gg represents the greatest localization of the function

t®) and approximately the worst resolution. Typically

for pattern synthesis, a worst localization of E(®©) could be

specified, and this would then immediately specify a lower bound

requirement for Gd. Also a resolution requirement leads to some

sufficient value of Gd.

On the other hand, no matter how large the directive gain

of a pattern becomes, there is no assurance that

(1) Localization will be adequate

(2) All small energy, big amplitude spots are eliminated.

Such anomalies, if reflected, would confuse a thres-

hold receiver.

Hence directive gain may be useful as a necessary directive con-

dition, but never as a sufficient one. Recourse must always be

made to the pattern to obtain sufficient directivity conditions,

The relation between directive gain and the excitation can

be be elucidated by first considering arrays with unit (no)

gain, Suppose for all frequencies w,

(4.11) AK WY Ake. WW) = O when YaFNg
In words this means that no two array points have any frequency

components in common. By Parseval's Theorem, (8)
0 R\1\2 3% oF 2

@.12) §1Qeo BIR an-By = § |( Asow)y ax dw
- 0D —e) =D o€*\W

Expanding the integral, then applying (4.11), one obtains
Y 2 &lt; 2

(4.13) TAG w) 4x dw S (RW) dwJIA } 4 \ at\ = \ ON ? \ x an
therefore by (4.10)
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for these excitations, Thus the multiple frequency array whose

excitation spectrum has no frequency duplications along the

array propagates an equal amount of energy in all directions

(neglecting the obliguity factor). Note that the shape of the

radial pulses need not be the same for all directions, but the

energy therein is the same. The second example in the preceeding

chapter is such a no-gain multiple frequency array.

Por antenna excitations which do achieve some dir-~tivity,

a relation holds between Gq and the gains of the conventional

arrays comprising the particular excitation. Define the gain of

the w-frequency by
° 2

(4.15) \$ Aewy ax
os

yAAYY Ax

where as usual 2 has been eliminated from (4.1).

and (4.12),

oD tv a
§ Gu§ARG Ax dw
-aD Tt

~ » %

SAGs ax dw
~ed) =?

This implies that directive gain is an average of the various

conventional gains. The average is such that each Gy is weighted

by the total energy transmitted at its particular frequency. When
?

§ \ Ao, wR dx is uniform over w, the directive gain is
=P

just the mean of the Gy. In the previous example Gy,= 1 for each

w, so Gg had to equal 1. For the third example of the preceeding

chapter, directivity was present; and the amount is that of a

dipole since each represented frequency occurs in the excitation

twice along the array. Similarly the directive gain of any mul-
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tiple frequency array can be found as an average gain of its

constituent conventional arrays.

Cc Joint AngularandRadialResolution

The first step in describing joint resolution properties

is to determine the relation between range resolution and the

excitation, As seen in the last chapter the emerging broadside

pulse is narrow when the total excitation bandwidth is large.

Generally, a bandwidth measure indicates range resolution capa-

bility. If bandwidth is defined as the difference between the

highest and lowest frequencies, however, there will be no dis-

tinction between the spectrum whose energy is equally distri-

buted and one whose energy is concentrated into a small part

of the band, This is relevant to range resolution, for the

former example must yield a narrow broadside pulse, and the

latter pulse need not be narrow,

aR oitsctive bandwidth is defined to be
(hy W) dx dw \&amp;\},$ Ay) &amp; 2 — Peak broadside power

®, ° 2 Total broadside ener
S.\S Aw) dx) qe \ 8y

This definition is tha same type as for Gy, for |8e represents
w © 2

the length of the sectangle of height \CS A(x) Ax dw \
2 ~P oN

and total energy TAS A Ck, Ax aw In other words 1/Be re-
Swi «\

presents the greatest localization and nearly the worst reso-

lution of the broadside pulse with antenna excitation A(x,w).

Assuming that A(x,w) is restricted to some bandwidth B,

apply Schwartz's Angin izty to (4.17) vy obtain
Aw(4.18) B. &lt; RAVENS Ix —

v Aw \*

200 Ac x2
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r 2

with equality when the quantity \§ AG) x| is constant
for all w in the band, Thus the effective bandwidth, Be measures

the bandwidth of the broadside pulse taking into account the

relative energy contribution of each frequency component,

From the expressions in (4.17), (4.10) and (4.12), and (4.3)

follows the statement of joint angle and range resolution

(4.19) Gd Be = G,

Hence when the composite gain is specified, a tradeoff between

directivity and range resolution will arise. In that case the

effective bandwidth can only be increased at the expense of

directive gain, and vice versa. For example, the three arrays

of the preceeding chapter have the same composite gain, which is

given by (4.4), and it was pointed out there how directivity and

range resolution were being traded.

In practice the composite gain may or may not be constrained.

When for instance the radiators are each capable of emitting the

desired total output bandwidth and the array length is adequate,

the composite gain has no limitations within the context of the

problem, The design proceedure insures the proper Be by having

each radiator bandwidth equal Be. By having each radiator band

the same, the proper Gd is ensured. Thus such a situation calls

for a conventional array where directivity and range resolution

are separate notions. When the radiator bandwidths are limited

below the desired output bandwidth, a multiple frequency array

excitation, like that in figure #8, is called for. The resulting

pattern will have a loss in directivity according to (4.19), un-





less the total array length is increased. The effective array

length of each frequency is hereby restored to the desired

value, which also restores the composite gain to its desired

value.

On the other hand when the array length is limited, a

multiple frequency array with the same effective bandwidth as

some conventional array makes less efficient use of the poten-

tial directivity in the array. The multiple frequency array

has a smaller Gc in this case, so that the value of Gg is

smaller and hence the directivity is not as good. Therefore,

the multiple frequency array, by reducing the effective array

length corresponding to each frequency, meets a reduction in

directivity compared to the corresponding conventional array.

Figure #9 illustrates this comparison.

The rest of the paper concerns some sacrifices which can be

made in various systems to overcome the directivity problem,

In each case the system involves a change of emphasis from the

antenna pattern to some other quantity where the tradeoff of

(4.19) is deemphasized. In chapter 5.this quantity is a com-

bination of patterns, and in chapter 6, this quantity is a trans-

formation of a pattern.
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CHAPTER 5

TIME - INTEGRATION PROCESS

The time-integration process is a technique which

facilitates the use of high energy or wide band antenna excita-

tions. The fundamental idea behind the method is a decompo-

sition into small subsets of the total energy or bandwidth to

be transmitted, whereupon these small subsets are excited separa-

tely in time. As examples these subsets may be smaller power

levels or smaller frequency bands of the excitation, The re-

ceiver of the system collects the various transmitted energy

packets (which may or may not have been reflected as incom-

munication), then by appropriate delays the packets can be com-

bined into their original form. By linearity the final combined

result will be identical to that had all the subsets been trans-

mitted simultaneously. Hence the scheme is a spreading of the

total energy or bandwidth to be transmitted over time which there-

by reduces the power or bandwidth requirements of the radiators.

In particular the time-integration process will be ap-

plied to give the result of a wide-band conventional array by

the use of monochromatic conventional arrays or no-gain multiple

frequency arrays. In either case bandwidth limitations of the

individual radiators are avoided since any radiator emits only

one frequency at a time. The purpose of this chapter is to de-

scribe the time integration process and to show the relative

advantages of either type of array.
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Suppose for this chapter that the arrays consist of

discrete radiators, each of which emit discrete frequency com-

ponents, Let these frequency components be given by

5.1) We= wei BY -nenen
and let the corresponding amplitude and phase of the excitation

and filter be apm and bay respectively. The mh radiator posi-

tion and the i filter position are given by

(5.2) Xm=Td AWD  Xg=%0 Mim Re WN
where d is the element separation for the transmitting and re-

ceiving arrays and Wed is the frequency spacing. By (2.11) the

two-way pattern for the system is ] X x!
NM Mn yw ¥-"2 mYASn = % — Swng

(5.3) V - CR) 3. SS. Om Pro © C
-N -M -W

As the first illustration of the time integration pro-

cess, suppose only one frequency component of the excitation is

emitted at a given time. Once all the possible reflected re-

turns are back from one component, the next is excited, and so

on until all components have been excited. The return from the

ath component is
l

, Rr Xm XQ o
S Win Lt = 32 The Sng]
 wm

where tp = t - (N +0) and Y is the time between various compo-

nent excitations. Delaying Vn by (N + 1 - n)'¥ then summing over

n yields

5.5 ZV=Vir— @usa)
n
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This is the two-way pattern of a conventional array with band-

width 2Wo8. In order to obtain ‘this result, however, it was neces-

sary to account for the RF phase of the returns, Such implemen-

tation is impractical.

Upon applying the time-integration process to multiple

frequency arrays, the RF phase of the returns becomes unimportant.

Basically this follows from the joint range and angle variation

of their pattern. Define the set of excitations as follows:

Each frequency component of (56.1) is transmitted for

each member array. They by letting M = N above, a single and

different frequency is emitted by each radiator in each member

array. Therefore each member array is a no-gain multiple fre-

quency array. To distinguish the members, there is the require-

ment that no frequency component appear at the same radiator for

two different members of the set. A member of such a. set, in-

dexed by the parameter J , is shown in figure #10.

Suppose first that the receiver undergoes a time-integration

process alsoysuch that an array at any time is matched to the trans-

mitting array. This means that a given element will accept only

the return contribution from the corresponding radiating element,

Other contributions can be eliminated on a frequency.discrimination

basis. Intuitively such a receiver wastes power return, compared

to the previous system. Mathematically, azyb,; Will be zero when

m#$ 1, so that the two-wav pattern, within a delay, is

(5.6) VE) — CROSS Anbar eH eR + Homing|
nN wm
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This expression indicates a loss in directivity and a loss in

power, by virtue of the fewer number of terms involved. Con-

sequently, this system has lirited or no application to radar

Dr sonar.

A second possible receiver is a wide band conventional

array, which receives the entire reflected bandwidth at each

radiator. The result of applying the time-intesration process

here can be shown to be the two way pattern of (5.5). Thus, a

set of no-gain . multiple frequency arrays can be combined with

a wide band conventional receiver to yield the two-way pattern

of a conventional system.* In some applications, however, the

necessity for having a conventional receiver may be a disadvan-

tage. This is shown next.

Pattern Rotation

The pattern expression is R X ot y
= op -D x L&amp;sMD dw¢.n QOI-B = { {hog ed Te Ye dx hr

when A(x,w) is the excitation spectrum. The pattern Qe-8est- RY

is said to be the rotated version of QS, 2) and is given

approximately by o0 . ‘ Ri Xs:
 Ry 2 N CAs) &amp;0 3nE 2° STS)
) -.P

Thus in order to rotate the pattern Q (transmit or receive) by Oo,
\WX

the phase distribution SOT Nb, is appended to the excita-

tion (or filter) A(x,w). In the time domain the new excitation

becomes a(x,t- X sw Be ). 9) Rotation of the two-way pattern re-

ws

quires a similar change in both excitation and filtering functions.
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For scanning the quantity ©, will vary with time; so

time varying time delays are required for electronic scanning.

This operation is difficult to perform in practice, except in

the case where A(x,w) is a narrow-band function. Then a time

delay is equivalent to a phase shift which is much easier to

implement. For example, the arrays of chapter 3 are amenable to

electronic rotation since each element operates at a single fre-

quency.

In the light of these remarks, it follows that when

electronic scanning is preferred to mechanical scanning, the time

integration process is more efficient for a set of conventional

arrays rather than a set of multiple frequency arrays. The latter

required the use of a wide band conventional receiver, whose pat-

tern would be difficult to rotate electronically.”



10

CHAPTER 6

AMBIGUITY FUNCTION

As opposed to the time integration process where a set

of transmission patterns are combined, this chapter concerns a

pattern transformation, which is known as the "ambiguity function"10

Attention is placed on the no-gain multiple frequency array here,

for this is an extreme array. The two principle results for these

arrays are

(1)

(2)

The ambiguity function, for some such arrays can

be arbitrarily localized in each of its two degrees

of freedom.

The localization can be realized in practice as if

the ambiguity function,with Rand©as the two degrees

of freedom,were the actual radiation pattern. Thus

a physical realizable processing technique exists

which brings out joint directive and range locali-

zation although the pattern of no-gain multiple fre-

quency arrays has poor directivity.

As a first step in the proof of these assertions, the

ambiguity function corresponding to the pattern QR ,0 ) is defined

as os

(6.1) $ (BR, A®) i Re§ SRR (R+ AR, 6x AO) 40 4R
In a sense this quantity indicates the maximum joint resolution

PasSible from a pattern Q (R,§). From the expression,

6.2 §§ QRS — QR IR, 0+ 20 d8dR = 2(E-F(R,10)
where E is the total pattern energy, it is seen that the ambiguity
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function measures and represents the degree of pattern difference

as a function of separation. This is important for resolution

because returned signals are distinguished in relation to their

difference. When Q(MR,N\®) is small (6.2) shows that the pat-

tern QR, is almost independent of its shifted version,

QR» ARO AOD . Consequently the return of a target at

the point (R, © ) is theoreticallv distinguishable from a return

originating from the point (R= AR © + NO ). Conversely, when

DAR, MO) is large, Q(R\®) and QIRY AR,0+Ad)aresimi-
lar, hence not as easily distinguished in noise. For instance,

0,0) =v is a maximum; the integrated difference in

(6.2) is then zero. For resolution, the ideal ambiguity function

has become small for small separations AR and AQ .

Now consider excitations of the form a (2) ed" (Xt where

w(x) never assumes the same value more than once over the arraw,

The pattern is given by ] .

6.3) QR) = Tan ed 0 % Esme)

Substitution of this quantity {ite (6.1) results in Ra Fac
(6.4) BARDS) = Re Ras rNaon ALK) Sa ene)

 0 y 300) BHR 2 LNCS 0)
e Sd;&amp;

Interchange of the integration order and calcuvla’ion of the R-inte-

ration yield .

gration yields Mn Pp 2 JW AR y REY svn \&amp;-28)
(6.5) PARAD)=Re) \ Nord € cg © ?

oS -TD
— wn (Ha BD)= \, TS

' = WK) — WH) andQ } 8 Lean -waal yo _ of :i elsince

WFWORD when VY
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Sno + 2) —sne- Y= acoso sm
aN

6.6) § eb de = TITY
where RECN is the zero order Bessel::function, one obtii.ns

the final result, .

© YAR 3 AWAX Ab
6.0 BURL = Reamylacat ed &lt; SWE| Ax

For the ambiguity function a measure of localization

in AS can be defined with the same meaning that directive

gain has for angular localiz=tion in the pattern. Thus let
ad

LIT UROHT AMR
mmm— ~—

\ QuN ON 22ST ADR,MOV AAR
ambiguity constant; then the ambiguity constantbe called the

can be taken as analogous to the CE aR en on
of (6.7) into (6.8), then use of yee N= MDI AR = TR

results in v

(6.9) HW = Sp low dx
= NATUS WE RUX gin pol dx Ns

This is the ambiguity constant of the no-gain multiple frequency

array, given by the excitation ax)edVx)t, Since, except for

zero argument, the zero-order Bessel function is always less than

one, HH? Al even though Gy= A. . Also since the Bessel func-

tion approaches zero for large arguments, H becomes arbitrarily

large as either the array length, 2P, or the frequencies, w(x) be-

come large. Thus, at least in theory, the angular resolution

pill

capability of no-gain multiple frequency arrays can be made

arbitrarily good.
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The range resolution capability is indicated by

setting AD=0 Ww (67) . Then

6.10) FARO) = Re 2W §1a00V¢ Ta Ax
which is analogoustothebrosdside pulse of the pattern, By

inspection of expression (3.3), it is seen that (6.10) has the

same general form as its corresponding broadside pulse. Conse-

quently the requirement for fine range resolution is the same as

before, namely, high total bandwidth over the array. As before the

total:'bandwidth:is: independent of the individual.radiator out put:

bandwidths. ivi. ou This requirement can be satis-

fied by merely extending the array length. It follows from this

and the consideration of the ambiguity constant that OD (AR,AS

can be made arbitrarily localized in Afand AR.

Implementation
Suppose that point targets exist at the points (Rn,0n)

for n=1. 2, . . ., N, From (2.11) it is seen that the two-way

pattern has the form V (o,1- RR ): so the received signal is

given by N
— | 2Rn)

6.11) SN= PALL -L
%

Incorporating the second degree of freedom, pattern rotation,

the received signal will depend on the amount of pattern rota-

tion, This may be written as
N— —~ 2Rw

(6.12) S(t, a) - 2 Von &lt; Yr 2Rn)
The quantity of interest is the two dimensional correlation

function given by

(6.13) PAOARY= § § Viae- 0, 1-2) seen dds
© Je

Bw, cand A _2Rn&gt; SIN (het, 1-2) Vga A= EEN
Aa=\ OO “un



where Nd and AR are arbitrarily specified.

Suppose that the two-way pattern VOI-2R) is the

combined effect of a transmitter with excitation a 0d T

describing a no-gain multiple frequency array, and a wide-band

non-directive receiver. Suppose the filters following the array

points are given by b(y) for all frequencies transmitted.

Then by (2.11) }

| wo (t- 2R 4 X*Yo;
(6.14) Y(0,¥— RY = Coes awe! C =&gt; SQ) Ardy

Y ]

? LOE— 2B 4 X Sine\ ared &lt;r TINY,
-9

———

F

where
v VW gy ©

(6.15) AX)=AX) Y pepe? &lt;M du
is just some function of xX, This is valid since the receiver

pattern is assumed non-directive., Therefore by (6.3)

6.16)  V(O,¥- 2) = QR,
By using (6.16) and (6.1) one obtains for (6.13)

6.17) TAO, AR) = S.as - 6 ,2(AR-RAY)
which is the desired result.

This result means that for such a system, each point

target will ultimately produce in the received signal the am-

biguity function centered about the point (sf,t) corresponding

to the target location, It was shown previously that the no-gain

multiple frequency array ambiguity function can be made arbitrarily

localized about its maximum value. For these situations the various

"ambiguity returns" can be distinguished in noise for any separa-

tions which are not small. Hence an operation has been shown which



derives the full theoretical resolution indicated by a particu-

lar ambiguity function.

To determine the practicality of the system a close

examination of its constituents is necessary. The main consti-

tuents are a no-gain multiple frequency array transmitter, a

non-directive receiver, and a two-dimensional correlator. Al-

though there will be mutual coupling on transmission both the

transmit and receive arrays can be built without unusual prob-

lems. In fact, as noted before, the implementation of electronic

pattern rotation is greatly facilitated by the use of these arrays.

It may seem, secondly, that the system will waste energy since it

utilizes non-directive arrays. This, however, is false. Any

target, regardless of its location and pattern rotation x, re-

flects the same amount of transmitted energy since the pattern is

non-directive. Likewise, on reception each return is accepted

with the same weighting regardless of its origination because

again the pattern is non-directive. Hence there is no chance to

waste energy on transmission or reception. It is true that for

several targets the received signal will be unintelligible;

nevertheless a means has been devised above to unscramble the

received signal.

The major difficulty arises in instrumenting the two-

dimensional correlator of (6.13). One proposed solution was to

use optical processing techniques. Here the signal return

is initially converted into a two-dimensional film having the

same amplitude variation as s(x,t). A masking film having the

amplitude of the known pattern VO. x- RY can be superimposed
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for multiplication, and integrations can be performed by

lenses. 11 The scanning of the mask which accounts for the

various values of AR and AB in (6.13) can be performed mechan=

ically, Of course in practice the rotation parameterocantake

on only discrete values, so that results will be approximate.

To a good approximation, however, the final result will be a

new film having the same amplitude variation as "CAR,DO)

A pictorial representation of the process is given in figure #11.

Another technique uses straight forward electronic processing,

which, however, requires a great deal of computation. Figure #12

outlines this technique,

In either case the implementation is involved and com-

die

plex, This complexity is the main sacrifice for obtaining the

increased resolution capability of the ambiguity function. As

shown in the next chapter, this problem is compounded when the

targets are non-stationary.
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CHAPTER 7

DOPPLER EFFECTS

This final chapter describes the effect of radial target

velocity on the pattern and the ambiguity function of an array.

The results are based on the doppler effect which states that

a reflector moving with velocity v reflects qn ingoing signal

aed¥t as aelV A+¥ot for any frequency w. If the ingoing signal

is given by _ " wot on
a. am = {Awe Ty

the effect will be a Tt A into_the Lg signal,
7.2) alw=§ Awe? i = (AGS dT du

Se Yo \+ RK 2% Ww
where k = . Hence the original spectrum A(w) changes to Alii)

upon reflection off the moving reflector. Since k is atvags

small this may be approximated by Aw - KY) .

Taking the transmission pattern to mean the reflected

signal as a function of reflector location, the expression accoun-

ting for doppler effects may be written | ol —R \ % chad)
7.9 QO-Ry= STAY, Grow)eTet ase ag
This applies only to ne Sission patterns since the receivers an

experience no doppler effects, and hence their pattern form is

unchanged. Therefore the two-way pattern for the filter function

B(y,W) can be written ? /
: AR | Xa Xo

_R\ — dwSg _ wr=3FXxXing)a. Vio;r-$y = $8 SALE,wa-16)BedunedFE TE
As long as the effective bandwidths of the receiver filters are

large enough to accept the frequency shifted returns, directivity
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and range localization are unchanged by doppler effects. The

amount of frequency duplication and the bandwidth of A(x,w) are

the same in (7.4). Also the method derived for pattern rota-

tion is still valid.

Finally is desired to find the effect of target velocity

on the system of the preceeding chapter. In that case A(x,w) =

a (x) Jlw- wal so that

(7.5) A{WA-KN = 0S TWA-KY = Wd\
Therefore, after using (6.14), (7.4), and (7.5), the two-way pat-

tern is written r . C YL Kt 2R. X &lt;. NWKY (4 -eBhis Asn)
6) NOF-28)=(aed ct dx
Assuming for simple iy there is a trrget at (0,0), the oncration

of (6.13) becomes for D=0, v JW NG RY2% FH -

a1 T(OR,0) = Re Tar{do{ornate e &lt;
-0D o

~T Tin alKIWOAKY 3,000-\0 (A —R:AR sno - 2"
 00) AR) ot © CAEN

Having performed the R and © integrations, ‘
A O% WOR

(7.8) T(BROY = TM Re. Roskraton We woe &lt; Joe
The delta function establishes a relation between the variables -Yaw

c.

ev

of integration, Xx, and Xg, ‘which can be written

@.9 f= foa = w'lwea
when wi(y) is the inverse function of w(x). Note that such an

inverse exists for no-gain multiple frequency arrays since no

frequency is duplicated along the array. Using (7.9) there re-

sults v | WOOAR(7.10) FARO) = AN Re \ ax) ol foal 2 &lt; TD (Sen- Xx
Comparing this rod lt with (6.10) (when k = 0) two
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observations can be made. First, the factor of the Bessel

function has an attenuating effect on the pulse. Second, the

factor a]$00) is zero for some interval of Xx within the inter-

val (-RP) . If for instance k is positive, ZIRIRURWX) yp pe

smaller than any w(x); consequently f (x4) lies outside the inter-

val (-P,P) and a (f(xg) = 0 since a(x) = 0 for .\x\.&gt; P. When

the entire interval of integration is not used, the bandwidth

corresponding to the factor eJV (x) BR jg diminished. As has been

demonstrated, this bandwidth loss is equivalent to a loss in range

resolution.

This provides sufficient information to conclude that the

system of chapter 6 has been distorted by doppler effects. The

extent of this distortion as a function of k is still an open

question since the mathematics becomes involved. Presumably,

however, directive distortion occurs also. To compensate for

the distortion it is possible to have PUETONS doppler channels

so that a given return is correlated with the proper doppler

shifted pattern. The number of channels required depends on the

doppler resolution desired and the ambiguity distortion which will

be tolerated. This solution to the problem, of course, compounds

the problem of equipment complexity which was discussed in chapter 6
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CHAPTER 8

SUMMARY

The utility of multiple frequency arrays, as discussed

in this paper, has been determined for three types of radar sys-

tems. The first is the usual type of system requiring directive

and very localized energy emission from the array. The relation

between the excitation (or filtering) function and the relative

joint satisfaction of these two requirements appeared in expres-

sion (4.19). Prior to stating that expression,thedirectivegain

was shown to be a measure of pattern directivity, and the effec-

tive bandwidth, a measure of pattern range localization. The

fundamental statement (4.19) established the gain-bandwidth

product. In the case of a conventional array the product was

separable; this means that here directivity and range resolution

are independent entities, limited, if at all, independently.

In the case of a multiple frequency array the gain-bandwidtl

product was a single entity, constrained by the composite gain.

The composite gain was shown to measure the frequency-position

area in the excitation spectra. Therefore an antenna excitation

with a certain total output bandwidth and array length, has the

greatest gain-bandwidth product for a conventional array. Such

an array excitation uses the entire output bandwidth at each array

point, so its consequent composite gain is largest.

Physically, it is more natural to constrain the band-

width of the individual radiators than it is to constrain the ef-



1

fective length of each frequency component in the excitation.

This consideration leads to another point of view, Suppose first

there is a constraint on the overall length of a multiple fre-

quency array. As shown in (4.16) the directivity of the array

is an average of the directivities of the constituent monochroma-

tic conventional arrays. Since the effective length of each con-

stituent is less than that of the entire array, a directivity

reduction is implied. The conventional array, on the other hand,

is composed of monochromatic conventional arrays each having the

same effective length. Thus, here no directivity reduction is in-

volved; so in the context of these two considerations it behooves

one to use the conventional array.

Now suppose the excitation bandwidths at each array point

is constrained below some desired output bandwidth. A multiple

frequency array will enable the desired output bandwidth to be

reached, though as before the effective array length will be less

than the actual length. Finally when the constraint of a fixed

array length is dropped, the effective length or gain of the ar-

ray can be achieved by extending the array. The practicality of

these constraints will depend on the actual application.

The second system to be considered was the time-integration

process employing discrete arrays. Here a set of no-gain multiple

frequency array were combined in such a way to produce the two-way

pattern of a wide-band conventional array. The great advantage of

using multiple frequency arrays rather than monochromatic conven-
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tional arrays is the possibility of using an envelope detector

on reception, For a set of conventional arrays the RF phase

would matter; for the multiple frequency array it would not

matter. The relative disadvantage in using the system was the

difficulty of implementing an electronic scanning scheme on

reception, though no such problem existed on transmission.

The final system made use of a type of correlation

processing to achieve joint angular and radial resolution from

a no-gain multiple frequency array. The process could just as

voll mec applied to the conventional array, and sample cal-

culations show that the joint resolution would be better. The

anique feature of the multiple frequency array in this applica-

tion is the very low bandwidth output from each individual radia-

tor. If for instance a monochromatic conventional array were used

instead, no radial resolution would be possible; whereas the mul-

tiple frequency array ambiguity function can achieve arbitrarily

good joint resolution, The advantage in having excitations con-

sisting of a single frequency at each radiator appears as the

great facility in instrumenting pattern rotation schemes. The

major problem for the system was the complexity in the implemen-

tation of a two-dimensional correlator.

Two unexplored questions arise. First, can simplifica-

tions in the ambiguity systems be obtained through the use of

multiple frequency arrays having some directive gain? Second, can

acceptable degrees of doppler resolution, together with range and

angle resolution be obtained with the "ambiguity function" system?
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