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Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown 

that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic 

stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon 

mechanical perturbation of plant leaves appears to be conserved across a large number of species, and 

produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular 

pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling 

waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and 

Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties 

of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we 

introduce for such problems based on a single term logistic function ansatz. The theory is able to describe 

experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave 

velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an 

apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other 

stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. 

The approximate solution may also find use in applied agricultural sensing, facilitating the connection 

between measured waveform and plant physiology. 

Keywords 

 Plant Systemic Stress Signaling 

 Plant Wounding Response 

 ROS Wave 

 Reaction-Diffusion 

 Solitons 

1. Introduction 

As sessile organisms lacking mobile immune cells (Han, 2019), plants must quickly activate acclimation 

and defense responses to abiotic and biotic stresses via rapid cell-to-cell signaling (Fichman and Mittler, 

2020). Such rapid cell-to-cell signaling is interdependently mediated by the ROS wave, Ca2+ wave, 

electrical signaling, and hydraulic signaling (Choi et al., 2017; Gilroy et al., 2014; Johns et al., 2021; Vega-
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Muñoz et al., 2020). These signals are intricately linked to the production of phytohormones, such as 

salicylic acid, jasmonates, abscisic acid, ethylene, and auxins, which are involved in mediating adaptive 

responses to abiotic and biotic stresses (Navarro et al., 2006; Pieterse et al., 2012; Spoel and Dong, 2008; 

Truman et al., 2007). Recently, we demonstrated the use of single-walled carbon nanotube (SWNT) optical 

sensors in plant leaves to measure the spatial and temporal dynamics of the local ROS wave in real-time in 

response to mechanical wounding, heat, light, and pathogen-associated molecular pattern (PAMP)-induced 

stresses (Lew et al., 2020). We found that a characteristic mechanical wounding-induced ROS waveform 

was produced in six different species, and this waveform was distinct from heat, light, and PAMP-induced 

ROS waveforms. In order to better understand the differences between these waveforms, the possible 

specificity encoded within the ROS waveforms for different stresses, and the integration of the ROS wave 

with other signaling pathways, a mathematical theory describing these ROS waveforms is crucial. Herein, 

we develop a reaction-diffusion model based on a system of partial differential equations (PDEs) to describe 

the mechanical wounding ROS waveform and develop a single term logistic function ansatz as an 

approximate solution. This analytic description of the mechanical wound-induced ROS waveform provides 

a simple means for analyzing experimentally measured ROS waveforms across a wide-range of plant 

species. 

ROS are a key class of molecules known to play an integral role in mediating the complex signaling 

pathways involved in abiotic and biotic stress responses (Fichman and Mittler, 2020). During normal plant 

growth, ROS, such as singlet oxygen, superoxide anions, hydroxyl radicals, and hydrogen peroxide (H2O2), 

are continuously produced as metabolic byproducts (Apel and Hirt, 2004; Petrov and Van Breusegem, 

2012). ROS concentrations in subcellular compartments are tightly regulated by ROS scavengers, which 

include enzymes such as superoxide dismutase (SOD), catalase, ascorbate peroxidase, and glutathione 

peroxidase, and nonenzymatic antioxidants such as glutathione, ascorbic acid, flavonoids, tocopherol, 

alkaloids, and carotenoids (Apel and Hirt, 2004). Rapid and precise control of ROS levels is necessary, as 

ROS are involved in a host of signaling activities, such as cell cycle regulation, organogenesis, and stress 
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responses, including programmed cell death under very high concentrations (Huang et al., 2019; Van 

Breusegem et al., 2008). 

When subjected to stress, plants rapidly produce ROS in a process known as oxidative burst. The primary 

source of this ROS is from plasma membrane-associated NADPH oxidases, or respiratory burst oxidase 

homologues (RBOHs). RBOHs catalyze the production of superoxide radicals, which are rapidly 

dismutated to H2O2 by SOD in the apoplast (Apel and Hirt, 2004; Gilroy et al., 2014; Huang et al., 2019; 

Johns et al., 2021; Mittler et al., 2011; Petrov and Van Breusegem, 2012). The initial oxidative burst triggers 

neighboring RBOHs into generating further oxidative bursts, resulting in an autocatalytic ROS wave that 

travels throughout the entire plant (Choi et al., 2017; Gilroy et al., 2014; Johns et al., 2021; Mittler et al., 

2011; Petrov and Van Breusegem, 2012; Vega-Muñoz et al., 2020; Zandalinas and Mittler, 2018). Among 

ROS, H2O2 is of particular interest to researchers, as it has the longest half-life (~1 ms) and can traverse 

cell membranes via aquaporins, allowing it to travel long distances within the plant (Petrov and Van 

Breusegem, 2012). It is thus believed to be a key molecule in systemic responses such as systemic acquired 

resistance, systemic acquired acclimation, systemic wound responses, systemic metabolic responses, and 

systemic developmental responses (Gilroy et al., 2014).  

Although it is evident that the ROS wave is a key component of early systemic stress responses, it remains 

unclear if and how this rapid signal encodes specific information, such as what kind of stress is being 

experienced (Apel and Hirt, 2004; Choi et al., 2017; Fichman and Mittler, 2020; Gilroy et al., 2014; Mittler 

et al., 2011). One way in which specificity could be encoded is in the spatial and temporal dynamics of the 

ROS wave (Choi et al., 2017; Fichman and Mittler, 2020; Mittler et al., 2011), which we have previously 

shown to vary among different stresses (Lew et al., 2020). In particular, the shape of the propagating wave, 

or the waveform, may contain valuable information on the production and degradation dynamics of H2O2, 

providing a link between H2O2 and its concurrent and downstream signaling pathways. Further, as 

Vestergaard et al. describe, the refractory time (i.e., the minimum time between the occurrence of 

discernible signaling events) of the signal is dependent on the rate of H2O2 degradation, which greatly 
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impacts how the H2O2 signal is perceived within the plant (Vestergaard et al., 2012). Thus, a mathematical 

description of the H2O2 waveform is highly desirable. 

In prior work, we utilized SWNTs wrapped in single-stranded (GT)15 oligonucleotides to monitor H2O2 

stress-response signaling in plant leaves (Lew et al., 2020). The SWNTs primarily localized on plasma 

membranes and within chloroplasts in the epidermis and mesophyll layers, which is consistent with LEEP 

(lipid exchange envelope penetration) model predictions of nanoparticle localization based on size and zeta 

potential (Lew et al., 2018; Wong et al., 2016). This enabled detection of H2O2 signaling within the apoplast 

and chloroplasts during stress events. The SWNT sensor demonstrated high selectivity for H2O2 compared 

to other ROS and common plant analytes. We measured the local H2O2 waveform in six plant species: 

lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum 

capitatum), sorrel (Rumex acetosa), and Arabidopsis thaliana, and demonstrated a conserved wound-

induced H2O2 signaling pathway in the defense responses of these different species (Lew et al., 2020). All 

waveforms were measured at organ-scale resolution within the stressed leaf at standoff distances. We 

hypothesized that the ROS waveform generated from mechanical wounding can be described by an 

autocatalytic wave propagation model. In the solution to this model, the concentration profile of H2O2 

maintains a consistent traveling waveform for a given constant wave velocity. This type of solution is 

generally known as a soliton and commonly arises in nonlinear PDEs where dispersive effects balance 

nonlinear effects to yield a self-reinforcing traveling wave solution (Lomdahl, 1984). Because solitons arise 

from nonlinear systems, they do not obey the superposition principle, meaning that they preserve their 

speeds and waveforms upon collisions with other waves. The soliton description of the ROS wave thus 

captures the essential nature of autocatalytic ROS wave propagation and suggests a transport mechanism 

for systemic signaling (Mittler et al., 2011). In this work, we develop an approximate analytical solution to 

the governing PDEs describing our proposed model by implementing a change of variables that reduces the 

model to a system of ordinary differential equations (ODEs). In addition to providing a link for analyzing 

the ROS wave and concurrent and downstream signaling pathways, this analytic description may also serve 
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as a starting point for decoding signal specificity within the ROS wave and link measured waveform to 

plant physiology. 

2. Model Formulation 

We propose a one-dimensional reaction-diffusion model to describe ROS wave propagation (Figure 1). In 

our model, H2O2 (species 𝐴) freely diffuses with diffusion coefficient 𝐷 and is autocatalytically produced 

with rate constant k upon reaction with an immobile (membrane-bound) precursor (species 𝑃) such as 

NADPH oxidase following the reaction 

𝐴 + 𝑃
𝑘
→𝐴 + 𝐴. (1) 

The conversion of superoxide radicals produced by NADPH oxidase to H2O2 via SODs is rapid (Klug et 

al., 1972) and thus neglected in our proposed model. We assume that H2O2 then degrades following first-

order kinetics with rate constant kd due to antioxidants within the plant: 

𝐴 
𝑘𝑑
→ 𝐵. (2) 

Here, species 𝐵 is a generic H2O2 degradation product. We assume that the concentration of precursor 

species 𝑃 is initially spatially homogeneous and that 𝑃 does not regenerate on the time scale of H2O2 wave 

propagation. 

Both 𝐴 and 𝑃 vary spatially and temporally within the plant tissue, mapped by quantities specified as 

𝐴(𝑧, 𝑡), 𝑃(𝑧, 𝑡), and 𝐵(𝑧, 𝑡). The corresponding mass balances of each species are then 

𝜕𝐴

𝜕𝑡
= 𝐷

𝜕2𝐴

𝜕𝑧2
+ 𝑘𝐴𝑃 − 𝑘𝑑𝐴, (3) 

𝜕𝑃

𝜕𝑡
= −𝑘𝐴𝑃, (4) 

𝜕𝐵

𝜕𝑡
= 𝑘𝑑𝐴, (5) 
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with initial conditions 

𝐴(𝑧, 𝑡 = 0) = 𝐴0(𝑧), (6) 

𝑃(𝑧, 𝑡 = 0) = 𝑃0, (7) 

𝐵(𝑧, 𝑡 = 0) = 0. (8) 

𝐴0 models the initial concentration of species 𝐴 resulting from the ROS burst upon mechanical wounding 

at 𝑧 = 0, and 𝑃0 is the initial precursor concentration in the plant. Note that Equations 3 and 4 form a 

coupled set of PDEs, whereas Equation 5 can simply be integrated in time once 𝐴 is found to solve for 𝐵. 

 

Figure 1. Schematic of ROS wave propagation model domain. a. H2O2 (red-orange dashed line) is 

autocatalytically generated by plasma membrane-localized NADPH oxidases (blue circles) and travels from 

cell to cell via the apoplast. Here, 𝑧 = 0 marks the wounding location. b. Upon plant wounding, NADPH 

oxidases catalyze superoxide radical formation, and superoxide radicals are converted to H2O2 via 
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superoxide dismutases (SODs). The rapid conversion of superoxide radicals to H2O2 is neglected in our 

model, and H2O2 production is described by an overall reaction rate 𝑘. The H2O2 later degrades to species 

𝐵 following first order kinetics with rate 𝑘𝑑. 

2.1 Non-Dimensionalization 

It is useful to non-dimensionalize the above system of equations to facilitate numerical and analytical 

analysis. A dimensionless distance, 𝑥, and a dimensionless time, 𝜏, are defined by scaling by a diffusion 

length, 𝛿, and a diffusion timescale, 𝑡𝑐, respectively: 

𝑥 =
𝑧

𝛿
, 𝛿 = √

𝐷

𝑘𝑃0
, (9) 

𝜏 =
𝑡

𝑡𝑐
, 𝑡𝑐 =

𝛿2

𝐷
=
1

𝑘𝑃0
. (10) 

The three concentrations are scaled in space and time and normalized by 𝑃0: 

�̅�(𝑥, 𝜏) =
𝐴(𝑧, 𝑡)

𝑃0
, �̅�(𝑥, 𝜏) =

𝑃(𝑧, 𝑡)

𝑃0
, �̅�(𝑥, 𝜏) =

𝐵(𝑧, 𝑡)

𝑃0
. (11) 

The material balances become 

𝜕�̅�

𝜕𝜏
=
𝜕2�̅�

𝜕𝑥2
+ �̅��̅� − 𝛼�̅�, (12) 

𝜕�̅�

𝜕𝜏
= −�̅��̅�, (13) 

𝜕�̅�

𝜕𝜏
= 𝛼�̅�, (14) 

where the rate of H2O2 decay is scaled accordingly: 

𝛼 =
𝑘𝑑
𝑘𝑃0

. (15) 
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Note that 𝛼 ≥ 0. The initial conditions are also scaled accordingly: 

�̅�(𝑥, 𝜏 = 0) = �̅�0(𝑥) =
𝐴0(𝑧)

𝑃0
, (16) 

�̅�(𝑥, 𝜏 = 0) = 1, (17) 

�̅�(𝑥, 𝜏 = 0) = 0. (18) 

2.2 Translation to the Lagrangian Frame 

Equations 3 and 4 and their non-dimensionalized forms from Equations 12 and 13 have been previously 

investigated to model the spatial spread of rabies among foxes (Källén et al., 1985). In this prior work, it 

was demonstrated that traveling wave solutions exist under certain conditions, as described below. 

To look for traveling wave solutions, it is useful to move to a frame of reference relative to the wave itself, 

defined by 𝜂 = 𝑥 − 𝑐𝜏 . This enables us to seek a traveling wave solution of the form �̅�(𝑥, 𝜏) =

𝑓(𝑥 − 𝑐𝜏) = 𝑓(𝜂), �̅�(𝑥, 𝜏) = 𝑔(𝑥 − 𝑐𝜏) = 𝑔(𝜂), and �̅�(𝑥, 𝜏) = ℎ(𝑥 − 𝑐𝜏) = ℎ(𝜂). Here, 𝑐 is the constant 

wave speed of the traveling wave solution. This transforms Equations 12-14 into the system of ODEs 

−𝑐𝑓′ = 𝑓′′ + 𝑓𝑔 − 𝛼𝑓, (19) 

𝑐𝑔′ = 𝑓𝑔, (20) 

𝑐ℎ′ = −𝛼𝑓, (21) 

with boundary conditions 

𝑓(±∞) = 0, 𝑔(∞) = 1, ℎ(∞) = 0. (22) 

Again, note that Equations 19 and 20 form a coupled set of ODEs, whereas Equation 21 can simply be 

integrated once 𝑓 is found to solve for ℎ. 

We look for traveling wave solutions which are bounded and positive in (−∞,∞). When 0 ≤ 𝛼 < 1, 

Källén proved that such solutions exist for 𝑓 and 𝑔, governed by the system of ODEs given by Equations 
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19 and 20 (Källén, 1984). In the boundary case of 𝛼 = 0, the boundary conditions are slightly different 

since H2O2 does not degrade (see Equation 40 in Section 3.1). When 𝛼 > 1, which is equivalent to 𝑘𝑑 >

𝑘𝑃0, H2O2 decays faster than it is produced and a wave cannot persist. When 𝛼 = 1, which is equivalent to 

𝑘𝑑 = 𝑘𝑃0, H2O2 decays at the same rate at which it is produced, so any traveling wave solution for 𝐴 would 

have to be constant. To satisfy the boundary conditions, 𝐴 must be uniformly zero, meaning that a positive 

traveling wave solution does not exist. A more detailed analysis and proof that the traveling wave solutions 

exist if and only if 𝛼 < 1 was demonstrated by Källén (Källén, 1984). The remainder of this work will 

focus exclusively on 𝛼 ∈ [0,1).  

Since 𝑓 and 𝑔 are positive everywhere, it is clear from Equation 20 that 𝑔 is increasing. This means that 

the limit 𝑔(−∞) =  𝛾𝑔 exists and satisfies 0 ≤  𝛾𝑔 < 1, and that 𝛾𝑔 < 𝑔(𝜂) < 1 for all 𝜂. It can further be 

shown that 𝛾𝑔 = 0  when 𝛼 = 0  and 𝛾𝑔 > 0  when 0 < 𝛼 < 1  (see Supplementary Information for 

details). 

To see the existence of a positive and bounded solution to Equation 21 for ℎ when 0 < 𝛼 < 1, we rearrange 

Equations 20 and 21: 

𝑓 =
𝑐

𝑔
𝑔′ = −

𝑐

𝛼
ℎ′. (23) 

Integrating Equation 23 and evaluating the integration constant to be 0 from the boundary conditions at 

𝜂 → ∞ yields a relationship between ℎ and 𝑔: 

ℎ = −𝛼 ln 𝑔 . (24) 

ℎ is thus positive and bounded, since 0 < 𝛾𝑔 < 𝑔 < 1, proving the existence of the desired traveling wave 

solution. Additionally, one can use Equation 24 with Equation 29 from Section 2.3 to derive that ℎ(−∞) =

1 − 𝛾𝑔. 
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The above boundary conditions indicate that there is no 𝑓 before and after the reaction wave occurs (𝜂 →

±∞). 𝛾𝑔 ∈ (0, 1) represents a constant residual amount of 𝑔 that remains unconsumed after the wave has 

passed (𝜂 → −∞). When the degradation parameter 𝛼 is low, 𝑓 continues to react with 𝑔 until 𝑔 is (nearly) 

completely consumed. 𝛾𝑔 becomes larger with increasing 𝛼, as 𝑓 is rapidly consumed without completely 

reacting all 𝑔. There is no ℎ present before the reaction wave. Any 𝑓 that was produced during the wave is 

eventually converted to ℎ, yielding the value for ℎ(−∞ ).  

It can also be shown that the concentration profiles do not change before and after the wave has passed for 

all species (see Supplementary Information for details): 

𝑓′(±∞) = 𝑔′(±∞) = ℎ′(±∞) = 0. (25) 

We note that the equations do not have unique solutions based on our boundary conditions at 𝜂 → ±∞, as 

the traveling wave solutions translate along 𝜂 arbitrarily. In this work, we find an approximate solution to 

Equations 19-21 which describes the shape of the waveform, and we utilize the translational invariance of 

the waveform to compare numerical and approximate solutions. 

2.3 Stability Analysis 

The case of stable wave generation has been considered previously for the system of PDEs from Equations 

12-13 and the corresponding system of ODEs from Equations 19-20. Several researchers have derived 

stability criteria for the resulting propagating waves by analyzing linear stability about fixed points (Källén, 

1984; Källén et al., 1985; Kot, 2001). Their analysis is recapped here for 0 < 𝛼 < 1. First, the fixed points 

of the system are identified. Plugging in the expression for 𝑓 in terms of 𝑔 and 𝑔′ from Equation 23 into 

Equation 19 yields 

−𝑐𝑓′ = 𝑓′′ + 𝑐𝑔′ −
𝛼𝑐

𝑔
𝑔′ = 𝑓′′ + 𝑐𝑔′ − 𝛼𝑐(ln𝑔)′. (26) 

Integrating and evaluating the 𝜂 → ∞ limit (before the wave) yields an integration constant equal to 𝑐: 
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𝑐 = 𝑓′ + 𝑐𝑓 + 𝑐𝑔 − 𝛼𝑐 ln𝑔 . (27) 

Next, evaluating the 𝜂 → −∞ limit (after the wave has passed) yields 

𝑐 = 𝑐𝛾𝑔 − 𝛼𝑐 ln 𝛾𝑔 . (28) 

Equation 28 can be simplified to yield an expression for 𝛼 in terms of 𝛾𝑔, which can be used to solve for 

𝛾𝑔: 

𝛼 =
𝛾𝑔 − 1

ln 𝛾𝑔
=
𝑘𝑑
𝑘𝑃0

. (29) 

Next, Equations 20 and 27 are rearranged: 

𝑔′ =
1

𝑐
𝑓𝑔, (30) 

𝑓′ = 𝑐(1 + 𝛼 ln 𝑔 − 𝑓 − 𝑔). (31) 

From Equation 30, the zero-growth isoclines for 𝑔 are found by setting 𝑔′ = 0 and are given by 𝑔 = 0 and 

𝑓 = 0. Similarly, from Equation 31, the zero-growth isocline for 𝑓 is given by 

𝑓 = 𝛼 ln𝑔 − 𝑔 + 1. (32) 

From the phase plane, the fixed points (𝑔, 𝑓) = (1, 0) and (𝛾𝑔, 0) can be identified from the intersections 

of the zero-growth isoclines for 𝑓 and 𝑔 (Figure 2a). These correspond to the pre-wave and post-wave 

equilibria. The Jacobian matrix for Equations 30 and 31 is 

𝑱 = [

𝑓

𝑐

𝑔

𝑐

−𝑐 +
𝛼𝑐

𝑔
−𝑐
] . (33) 

Plugging in the fixed point (𝛾𝑔, 0) into Equation 33 and solving for the eigenvalues yields 
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𝜆 =
−𝑐 ± √𝑐2 − 4(𝛾𝑔 − 𝛼)

2
. (34)

 

This corresponds to a saddle point, as the eigenvalues are real and have opposite signs (since 𝛾𝑔 < 𝛼, see 

Supplementary Information for details). Similarly, plugging in the fixed point (1, 0) into Equation 33 

and solving for the eigenvalues yields 

𝜆 =
−𝑐 ±√𝑐2 − 4(1 − 𝛼)

2
. (35) 

When 𝑐 < 2√1 − 𝛼, the fixed point is a stable focus because the eigenvalues are complex with negative 

real parts. When 𝑐 ≥ 2√1 − 𝛼, the fixed point is a stable node because the eigenvalues are real and negative. 

A heteroclinic connection cannot be made between the saddle point and stable focus without having an 

unphysical negative concentration of 𝑓  (for example, Figure 2b). However, a positive heteroclinic 

connection can be made between the saddle point and stable node (for example, Figure 2c). Therefore, the 

minimum wave speed is governed by 

𝑐 ≥ 2√1 − 𝛼. (36) 

A similar analysis can be conducted to show that Equation 36 also holds for 𝛼 = 0 (see Supplementary 

Information and Figure S1 for details). 
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Figure 2. Phase portraits illustrating minimum wave speed requirement for a traveling wave solution 

for 𝟎 < 𝜶 < 𝟏. a. The zero-growth isoclines for 𝑓 and g from setting Equations 30 and 31 equal to zero. 

The marked points denote the two equilibria (𝑔, 𝑓) = (1, 0)  and (𝛾𝑔 , 0) , before and after the wave, 

respectively. b. When the wave speed 𝑐 is below the minimum possible value for a given dimensionless 

degradation rate parameter 𝛼, as determined by the equality in Equation 36, the saddle-focus connection 

implies unphysical negative concentrations of 𝑓. c. When the wave speed satisfies Equation 36, the saddle-

node connection is positive. 

2.4 Numerical Simulation 

Equations 12-14 were numerically simulated in MATLAB using method of lines, where spatial derivatives 

were approximated using finite volume method (with cell width 0.004), and the adaptive stiff ODE solver 

ode15s was used to integrate in time. In addition to the initial conditions given by Equations 16-18, the 

following boundary conditions were employed: 

𝜕�̅�

𝜕𝑥
(𝑥 = 0, 𝜏) = 0, (37) 

�̅�(𝑥 = 𝐿, 𝜏) = 0, (38) 

where [0, 𝐿] is the specified spatial domain. These boundary conditions represent no flux from the left 

boundary and a concentration of zero for species �̅� at the right boundary, as 𝐿 is set large enough that the 

wave never touches the right boundary. The initial condition �̅�0(𝑥) resulting from the ROS burst upon 

mechanical wounding (Equation 16) was modeled by setting �̅� = 10−3 in the cell at 𝑥 = 0, and setting �̅� =

0 otherwise for 𝜏 = 0.  

We observed the minimum possible wave speed governed by the equality in Equation 36 in our numerical 

simulations of the PDEs (Equations 12-14) for sharp initial disturbances (Figure 3a-b), as expected (Källén, 

1984). Indeed, Källén proved that if the initial condition �̅�(𝑥, 𝜏 = 0) = �̅�0(𝑥) for the PDE has bounded 

support and the solution �̅�(𝑥, 𝜏) takes the form of a travelling wave for large 𝜏, then the travelling wave 
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must travel with the minimum speed 𝑐 = 2√1 − 𝛼 . This information was used when converting to 

dimensional form for comparison to experimental data (see Section 3.3). In this work, we develop 

approximate analytical solutions to the model PDE system (converted to an ODE system via change of 

variables) for constant wave speeds, using the positive minimum wave speed 𝑐 = 2√1 − 𝛼. 

For fitting to experimental concentration versus time data (Section 3.3), 𝛼 was used as a fitting parameter. 

When comparing numerical simulations with experimental data and analytical approximations, fully 

developed waveforms from numerical simulations were used (i.e., �̅�, �̅�, and �̅� versus 𝜏 were selected for a 

specific value of 𝑥 such that the imposed boundary conditions in 𝑥 did not confound the simulated wave 

profile). We chose �̅� (𝑥 =
𝐿

2
, 𝜏) , �̅� (𝑥 =

𝐿

2
, 𝜏) , and �̅� (𝑥 =

𝐿

2
, 𝜏)  for all comparisons of numerical 

simulations with experimental data and analytical approximations (see example waveforms in Figure 3c-

f). 
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Figure 3. Numerically simulated traveling wave solutions to the governing PDEs. Numerical 

simulations of Equations 12-14 using initial conditions from Equations 16-18 and boundary conditions from 

Equations 37 and 38 for a few different values of the dimensionless degradation rate 𝛼. a, b. 2-dimensional 

projections of �̅�(𝑥, 𝜏) for 𝛼 = 0 and 𝛼 = 0.3. The white lines highlight the contour lines at half of the 

amplitude. Away from the 𝑥 = 0  boundary, the wave travels at speed 𝑐  governed by the equality in 

Equation 36, as demonstrated by the slope of the traveling wave region. c-f. Representative fully developed 

waveforms obtained from �̅� (𝑥 =
𝐿

2
, 𝜏), �̅� (𝑥 =

𝐿

2
, 𝜏), and �̅� (𝑥 =

𝐿

2
, 𝜏) were plotted as a function of 𝜂 =

𝑥 − 𝑐𝜏, illustrating the distinct waveforms that arise for different values of 𝛼.  

3. Development of Approximate Analytical Solution 

A central question of this work is how the underlying H2O2 waveform in different plant species resulting 

from mechanical stress differs in subtle aspects, including the second moment of the asymmetric peak, 

despite being the product of H2O2 reaction and diffusion from a conserved biochemical stress signaling 

mechanism. Hence, an analytical solution can link the functional description of the waveform to underlying 

biochemical parameters that may vary from plant to plant. 

We analyze two cases: one in which 𝑓 does not degrade (𝛼 = 0), and also the full system of equations (0 <

𝛼 < 1). The former case should be testable by using plant mutations which limit or exclude the production 

of catalases or certain peroxidases in the plant. The latter case applies to observed signaling waveforms in 

wildtype plants, according to the experimental results reported in Lew et al. (Lew et al., 2020). 

We propose that an approximate solution can be derived starting from a single term logistic function with 

two or three parameters for the 𝛼 = 0 and 0 < 𝛼 < 1 cases, respectively. The logistic function has been 

shown to be useful in the construction of exact solutions for many nonlinear PDEs (Kudryashov, 2015). 

These solutions are constructed by taking the nonlinear ODE obtained from the original PDE and comparing 

the form of the ODE with “standard” nonlinear differential equations derived from the Riccati equation 

(𝑦′ = 𝜃2𝑦
2 + 𝜃1𝑦 + 𝜃0, where 𝜃2, 𝜃1, and 𝜃0 are arbitrary constants) with known solutions in the form of 
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logistic functions. More recently, an ansatz of the form 𝑤(𝜂) = ∑ 𝜃𝑖𝑧
𝑖(𝜂)𝑁

𝑖=0  with constants 𝜃𝑖 and 𝑧𝑖(𝜂) 

as powers of a generalized logistic function has been successfully applied in constructing exact solutions 

to the dual-mode nonlinear Schrödinger’s equation with Kerr law and dual power law nonlinearities (Pinar 

et al., 2020). Thus, the logistic function and its generalizations have great utility as tools for solving some 

nonlinear PDEs. Here, we take an approach similar to that of Abrahamson et al., in which we construct an 

approximate solution starting from a single term logistic function (Abrahamson and Strano, 2010). For the 

two-parameter logistic function, we employ the functional form 

𝑢(𝜂) = (1 + 𝑄0ⅇ
𝑠0𝜂)−1 Q0⁄ . (39) 

𝑄0 is a parameter that affects the position of the logistic curve along the 𝜂 axis and its asymmetry, and 𝑠0 

is a parameter that affects the direction and growth rate of the logistic curve (Figure 4). The third parameter 

in the 0 < 𝛼 < 1 case is more intuitive and described in Section 3.2. Because derivatives of the starting 

logistic function can be evaluated analytically, derived relationships between the coupled concentration 

species can be utilized to formulate closed-form functional solutions for all concentration profiles. This 

method is in part motivated by its simplicity and ease of application for the broader research community. 

The validity of our approximations is confirmed by agreement with numerical solutions. 
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Figure 4. Effects of changing logistic function parameters (Equation 39). a. As 𝑄0 increases, the logistic 

curve becomes more asymmetric. The characteristic logistic curve shape is lost when 𝑄0 ≤ 0, and is 

therefore not plotted here. In this plot, 𝑠0 is fixed at 0.4907, the value from the 𝛼 = 0 case in Section 3.1. 

b. 𝑠0 affects the direction and growth rate of the curve. Note that the curves are not symmetric about their 

midpoints. In this plot, 𝑄0 is fixed at 0.6006, the value from the 𝛼 = 0 case in Section 3.1. 

3.1 𝜶 = 𝟎 

First, we consider the simplified case in which there is no degradation of 𝑓 (i.e., 𝛼 = 0, 𝑐 = 2). We focus 

on 𝑓 and 𝑔 (Equations 19 (with 𝛼 = 0) and 20), as ℎ is never produced in this scenario.  

The boundary conditions are slightly different than previously described in Equation 22: 

𝑓(−∞ ) = 1, 𝑓(∞) = 0, 𝑔(∞) = 1. (40) 

As discussed in Section 2.2, the limit 𝑔(−∞) = 𝛾𝑔  exists and equals 0  in this case. These boundary 

conditions indicate that there is no 𝑓 before the reaction wave occurs (𝜂 → ∞). After the wave has passed 

(𝜂 → −∞), all 𝑔 has been converted into 𝑓. 

Again, it can be shown that the concentration profiles do not change before and after the wave has passed 

for all species (see Supplementary Information for details): 

𝑓′(±∞) = 𝑔′(±∞) = 0. (41)

A combined overall mass balance can be derived by plugging Equation 20 into Equation 19 with 𝛼 = 0: 

−𝑐𝑓′ = 𝑓′′ + 𝑐𝑔′. (42) 

Another useful expression can be derived by integrating Equation 42 and evaluating the limit as 𝜂 → ∞, 

which yields an integration constant equal to −𝑐: 

−𝑐𝑓 = 𝑓′ + 𝑐𝑔 − 𝑐. (43) 

Rearranging this equation yields a relationship between 𝑓 and 𝑔: 
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𝑔 =
𝑐 − 𝑐𝑓 − 𝑓′

𝑐
. (44) 

With guidance from the numerical solution (Figure 3), we seek solutions to the coupled ODEs starting 

from a two-parameter logistic function description of 𝑓: 

𝑓(𝜂) = (1 + 𝑄0ⅇ
𝑠0𝜂)−1 Q0⁄ , (45) 

with parameters 𝑄0 and 𝑠0 as described earlier (Figure 4). From Equation 44, a functional form for 𝑔 

may then be derived: 

𝑔(𝜂) = 1 +
−𝑐 + (𝑠0 − 𝑐𝑄0)ⅇ

𝑠0𝜂

𝑐(1 + 𝑄0ⅇ
𝑠0𝜂) 1+1/𝑄0

. (46) 

With these functional descriptions of 𝑓 and 𝑔, we next seek to derive self-consistent expressions to describe 

the parameters 𝑄0 and 𝑠0. Specifically, we choose to derive expressions that exactly satisfy Equations 19 

and 20 at the points 𝜂 = 0 and 𝜂 =
1

𝑠0
. In doing so, we assume that the parameters 𝑄0  and 𝑠0 may be 

approximated as constants independent of 𝜂. These points were selected to be in the dynamic region of the 

wave (in between the boundary condition values) and to yield relatively simple expressions. This 

assumption is later validated by the agreement of the analytical approximations to the numerical solutions. 

Plugging in the functional forms (Equations 45 and 46) into the governing equation for 𝑓 (Equation 19) and 

evaluating at 𝜂 = 0 and 𝜂 =
1

𝑠0
 yields the following equations, respectively: 

𝑠0 =
𝑐(1 + 𝑄0) + 𝑐(1 + 𝑄0)

1/𝑄0(−1 − 𝑄0)

1 − 𝑐2(1 + 𝑄0)
1/𝑄0

, (47) 

1 −
𝑐𝑠0ⅇ

1 + 𝑄0ⅇ
+
𝑠0
2ⅇ(−1 + ⅇ)

(1 + 𝑄0ⅇ)
2
−
𝑐 + 𝑐𝑄0ⅇ − 𝑠0ⅇ

𝑐(1 + 𝑄0ⅇ)
1+

1
𝑄0

= 0. (48) 

Equations 47 and 48 can be solved simultaneously to yield parameter values 𝑄0 = 0.6006  and 𝑠0 =

0.4907. The functional forms demonstrate agreement with the numerical solution (Figure 5): 
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Figure 5. Comparison of analytical approximation to numerical simulation for 𝜶 = 𝟎 (no decay of 

H2O2). Analytical approximations were derived starting from a two-parameter logistic function description 

of 𝑓 (H2O2). a. Analytical approximations (solid lines; Equations 45 and 46, with parameter values 𝑄0 =

0.6006 and 𝑠0 = 0.4907 described by Equations 47 and 48, and 𝑐 = 2 from the equality in Equation 36) 

are plotted with numerical solutions (circle markers; Equations 12 (with 𝛼 = 0) and 13, with initial 

conditions from Equations 16 and 17 and boundary conditions from Equations 37 and 38). b. The residuals 

for 𝑓  and 𝑔  (precursor species) compared to their corresponding numerical solutions, given by 

𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − �̅�𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 (red) and 𝑔𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − �̅�𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 (blue), are plotted against 𝜂. 

This description of the 𝛼 = 0 case provides a simple functional form that decouples H2O2 production 

dynamics from degradation dynamics, and may find use in the analysis of H2O2 waveforms measured in 

plant mutants with limited H2O2-degrading antioxidant capacity. 

3.2 𝟎 < 𝜶 < 𝟏 

We now consider the full system of ODEs, which includes the degradation of 𝑓, given by Equations 19-21 

with boundary conditions as stated in Equation 22. Based on the boundary conditions, we note that the 
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profile of 𝑓 can no longer be described by the same logistic function used in the 𝛼 = 0 case. Thus, a new 

approach must be taken. We first recall the expressions that link the concentration profiles of each species: 

𝑓 is related to 𝑔 and ℎ by Equation 23, and ℎ and 𝑔 are related by Equation 24. With guidance from the 

numerical solution (Figure 3), we seek solutions to the coupled ODEs starting from a three-parameter 

logistic function description of ℎ, noting from Equation 24 that 𝑔 is described as the log-logistic of ℎ and 

from Equation 23 that 𝑓 is described as the derivative of the logistic function describing ℎ. From the post-

wave (𝜂 → −∞) boundary conditions in Equation 22, we also see that the logistic expression for ℎ must 

include an offset to account for the non-zero 𝜂 → −∞ asymptote. This offset is captured in the third 

parameter 𝑔(−∞) =  𝛾𝑔. We thus seek solutions using the following functional forms: 

ℎ =
 𝛾𝑔 − 1

(1 +  𝑄ⅇ𝑠𝜂)1/𝑄
+ 1 − 𝛾𝑔, (49) 

𝑔 = ⅇ𝑥𝑝 [
1

𝛼
(

 1 − 𝛾𝑔
(1 +  𝑄ⅇ𝑠𝜂)1/𝑄

+ 𝛾𝑔 − 1)] , (50) 

𝑓 =
 𝑐𝑠ⅇ𝑠𝜂(𝛾𝑔 − 1)(1 +  𝑄ⅇ

𝑠𝜂)
−
(1+𝑄)
𝑄

𝛼
. (51)

 

The three parameters 𝛾𝑔, 𝑄, and 𝑠 affect the shape of the waveform as described earlier (Figure 4) and are 

constant for a given wave speed (defined by 𝛼 in Equation 36).  

We next derive self-consistent expressions for each parameter to complete the description of the H2O2 wave 

described by the model for constant wave speeds. An expression for 𝛾𝑔 in terms of 𝛼 was already derived 

and is given by Equation 29. For 𝑄 and 𝑠, we choose to derive expressions that exactly satisfy Equations 

19-21 at the point 𝜂 = 0. We again assume that these parameters are constants independent of 𝜂. 

Equations 50 and 51 were directly plugged into Equation 19 and evaluated at 𝜂 = 0, yielding an expression 

for 𝑠 in terms of 𝛼, 𝛾𝑔, and 𝑄: 
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𝑠 = −√(1 + 𝑄)(𝛾𝑔
1−(1+𝑄)

−
1
𝑄
− 𝛼) , 𝛼 < 𝛾𝑔

1−(1+𝑄)
−
1
𝑄
. (52) 

Here, the inequality ensures that all parameters take on real values. The sign of Equation 52 was chosen 

with guidance from the numerical solutions (Figures 3 and 4), as we expect 𝑠 < 0. Because both 𝑄 and 𝑠 

are unknown, one more equation is necessary to develop a complete description. This was derived by first 

plugging in Equations 20 and 21 into Equation 19: 

−𝑐𝑓′ = 𝑓′′ + 𝑐𝑔′ + 𝑐ℎ′. (53) 

Integrating and evaluating the 𝜂 → ∞ limit (before the wave) yields an integration constant equal to 𝑐: 

𝑐 = 𝑓′ + 𝑐(𝑓 + 𝑔 + ℎ). (54) 

Evaluating Equation 54 at 𝜂 = 0, noting that 𝑓′(0) = 0, yields 

𝑓(0) + 𝑔(0) + ℎ(0) = 1. (55) 

Plugging in Equations 49-51 into Equation 55 and simplifying yields 

𝛾𝑔 =
𝛾𝑔 − 1

(1 + 𝑄)
1
𝑄

[
𝑐𝑠

𝛼(1 + 𝑄)
+ 1] + 𝛾𝑔

1−(1+𝑄)
−
1
𝑄
. (56) 

Equation 52 can be plugged into this expression to yield an expression for 𝑄 in terms of 𝛼 and 𝛾𝑔: 

𝛾𝑔 =
𝛾𝑔 − 1

(1 + 𝑄)
1
𝑄

[
 
 
 
 
 
−𝑐√(1 + 𝑄)(𝛾𝑔

1−(1+𝑄)
−
1
𝑄
− 𝛼)

𝛼(1 + 𝑄)
+ 1

]
 
 
 
 
 

+ 𝛾𝑔
1−(1+𝑄)

−
1
𝑄
, 𝛼 < 𝛾𝑔

1−(1+𝑄)
−
1
𝑄
. (57) 

For a given 𝛼 ∈ (0, 1), Equation 29 can be solved for 𝛾𝑔 , then Equation 57 can be solved for 𝑄, and 

Equation 52 can be used to calculate 𝑠. The residual between our analytic description and numerical 

solution is plotted for the example case 𝛼 = 0.3 (Figure 6). Although not trivial, the residual between our 
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analytic description and numerical solution is of the same order as the residual between the model and 

experimental data shown in Section 3.3, indicating the suitability of our analytical approximation for 

describing experimental data. The analytic descriptions demonstrate agreement with the numerical 

solutions across a broad range of 𝛼 values (Figure 7):  

 

Figure 6. Comparison of analytical approximation to numerical simulation for 𝜶 = 𝟎. 𝟑. Analytical 

approximations were derived starting from a three-parameter logistic function description of ℎ  (H2O2 

degradation product) for 𝛼 = 0.3 as a sample case for the 0 < 𝛼 < 1 solutions (where 𝑓 (H2O2) degrades). 

a. Analytical approximations (solid lines; Equations 49-51, with parameter values 𝛾𝑔 = 0.0409, 𝑄 =

3.9189, and 𝑠 = −0.4638 described by Equations 29, 52, and 57, and 𝑐 = 1.6733 from the equality in 

Equation 36) are plotted with numerical solutions (circle markers; Equations 12-14, with initial conditions 

from Equations 16-18 and boundary conditions from Equations 37 and 38). b. The residuals for 𝑓, 𝑔 

(precursor species), and ℎ compared to their corresponding numerical solutions, given by 𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 −

�̅�𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  (red), 𝑔𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − �̅�𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  (blue), and ℎ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − �̅�𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  (purple), are plotted 

against 𝜂. 
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Figure 7. Comparison of analytical approximations to numerical simulations for 𝟎 < 𝜶 < 𝟏 . 

Analytical approximations (solid lines; Equations 49-51, with parameters 𝛾𝑔 , 𝑄 , and 𝑠  described by 

Equations 29, 52, and 57, and 𝑐 calculated from the equality in Equation 36) are plotted with numerical 

solutions (circle markers; Equations 12-14, with initial conditions from Equations 16-18 and boundary 

conditions from Equations 37 and 38) for varying dimensionless degradation rates (𝛼) for a. 𝑓 (H2O2 

concentration), b. 𝑔 (precursor concentration), and c. ℎ (degradation product concentration) as a function 

of the traveling wave coordinate 𝜂. Analytical approximations were derived starting from a three-parameter 

logistic function to describe ℎ. Darker hues correspond to higher 𝛼 values. 
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We note that the solution becomes qualitatively inaccurate for very high (> 0.99) and very low (< 0.04) 

𝛼 values. In the case of low 𝛼, Equation 29 becomes difficult to solve numerically for 𝛾𝑔, and the error 

propagates into the rest of the solution. The problem can be slightly mitigated by employing the variable 

transformation 𝛾𝑔 = ⅇ
𝜁, where 𝜁 ∈ (−∞, 0). Equation 29 is then rewritten as 𝛼 =

𝑒𝜁−1

𝜁
 and 𝜁 can be solved 

to determine 𝛾𝑔. The solution can then accurately describe concentration profiles down to 𝛼 = 0.01 and 

slightly lower. To our knowledge, this range of 𝛼  values appears to be suitable for describing 

experimentally observed data. Our analytical approximation can be easily applied to analyze experimentally 

measured ROS waveforms in wildtype plants, as discussed in Section 3.3. 

3.3 Application to Experimental Data 

After deriving satisfactory approximate solutions to the governing system of ODEs, the functional 

descriptions must be transformed back into dimensional space to fit the model to experimental data. To 

achieve this, we consider a few key characteristics of the waveform shape: the amplitude, the full-width-

at-half-maximum (FWHM), and the time at which the concentration reaches its maximum (Figure 8a). The 

amplitude is defined as the maximum concentration, and the FWHM is defined as the time between 

amplitude midpoints. To apply our model, we first tabulated parameter values for 0.01 ≤ 𝛼 ≤ 0.99 in 

increments of 0.01 to generate solutions for a wide range of possible wave speeds (Supplemental Data). 

We then match the amplitude, FWHM, and peak location of the model solutions to the experimental data 

by vertical stretching, horizontal stretching, and horizontal translation. The stretching factors directly 

correspond to the scaling factors used for non-dimensionalizing the governing equations (Equations 9-11). 

The horizontal stretching factor is negative to account for the opposite signs of time and 𝜂. 

The data in Lew et al., to the best of our knowledge, contains the only selective, high resolution 

measurements of the full endogenous H2O2 waveforms for different species and genetic mutants in the 

literature, made possible by the SWNT nanosensors (Lew et al., 2020). Using this data, we demonstrate 

that our model can successfully describe the local H2O2 waveform observed after mechanical wounding for 
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a variety of plant species (Figure 8b-g, data in Supplemental Data). When fitting the model to the data, 

we attempt to capture the most important features describing the shape of the asymmetric wave peak by 

selecting only the data points greater than or equal to 20% of the amplitude (light magenta data points in 

Figure 8b-g). In doing so, we avoid overfitting the model to the pre- and post-wave data. We find that 

changing this region of interest to select data points greater than or equal to 5-50% of the amplitude does 

not affect the results drastically (the best fit 𝛼 parameter varies by 0.02 at most for the data shown in Figure 

8b-g). To determine the best fit 𝛼 value, we calculate the sum of least squares around the region of interest 

as described above for all tabulated model solutions for 0.01 ≤ 𝛼 ≤ 0.99 and select the 𝛼 value with the 

lowest sum. We find that the unique H2O2 waveforms observed in different plant species can be captured 

in our model by different values of 𝛼 and dimensionless traveling wave velocities, which suggests that 

different plant species have different innate capacities for producing and degrading H2O2. We previously 

showed that these H2O2 wave velocities for each species are comparable to corresponding electrical 

signaling velocities for most species (Lew et al., 2020). Although the overall mechanical wound-induced 

H2O2 stress signaling mechanism appears to be conserved, there are subtle differences among different 

species that may be related to evolutionary adaptations of each species to their native environments (Ani 

Akpinar et al., 2012; Thaler et al., 2012).  
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Figure 8. Model fitting to experimental data. Experimental data was collected in Lew et al. for H2O2 

concentration in leaves after mechanical wounding with sharp forceps across the leaf midrib near the leaf 

tip at a fixed position in the leaf approximately 1 cm away from infiltrated sensors (Lew et al., 2020). 𝑛 =

8 independent biological samples were measured for each species. a. The dimensionless model (Equation 
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51) was fit to experimental data by matching the amplitudes, full-widths-at-half-maximum (FWHM), and 

peak locations of the data. A horizontal reflection was also implemented to account for the opposite signs 

of time and 𝜂. 𝛼, the dimensionless degradation rate, was used as a fitting parameter. b-g. The model 

adequately describes the H2O2 waveform observed across several different species. We present a few 

representative cases here. Only the light magenta data points labeled “Fitted Region” were used for fitting 

the model. A residual plot of [𝐻2𝑂2]𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 − [𝐻2𝑂2]𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 is shown underneath each fit. 

The blue points in the residual plots correspond to the “Fitted Region” points. Different species appear to 

share a common wave signaling mechanism with differences in waveforms primarily captured by 

differences in the degradation rate 𝛼. 

4. Conclusion 

In this work, we have built upon our previously proposed reaction-diffusion model for mechanical wound-

induced H2O2 stress signaling in plants by deriving an approximate analytical solution to the governing 

PDEs (converted to a system of ODEs via a change of variables). This solution yields a simple functional 

form to describe the local traveling H2O2 waveform at a given constant wave velocity. Our model describes 

the autocatalytic production of H2O2 with Fickian diffusion and first-order degradation. The precursor 

species is an immobile, membrane-bound protein such as NADPH oxidase. We non-dimensionalize the 

governing PDEs and convert them into ODEs using a traveling wave coordinate to combine space and time. 

We then employ a two or three parameter single term logistic function to describe one of the concentration 

profiles and derive relationships between each chemical species to develop functional form descriptions of 

them. We choose to satisfy the governing ODEs at specific points to derive equations for each parameter 

that can be solved self-consistently and validate our approach by comparison with numerical solutions. 

Finally, we apply the model to experimental data. We show that our model can be easily applied to 

experimental data and captures the essential features of the mechanical wound-induced H2O2 stress 

signaling waveform and its subtle differences among different plant species. The H2O2 wave signaling 

mechanism appears to be shared by different plant species, with differences in waveforms captured by 
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varying degradation rates (𝛼 ) that correspond to varying wave velocities. Overall, our mathematical 

description of this waveform paves the way for linking systemic H2O2 stress signaling to its concurrent and 

downstream pathways, and can provide insights into the specificity that may be encoded within the H2O2 

stress signal. 
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