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Abstract

A unified approach to the automatic generation cf near-optimal finite element
meshes both for two-dimensional and three-dimensional analysis is presented.
The procedure is composed of , firstly, an initial mesh construction and, secondly,
the h-version of adaptive refinement based on an error analysis. For the initial
mesh construction in two-dimensional analysis, a robust triangulation scheme is
developed, in which triangular elements are generated from the outside
boundaries. For three-dimensional applications, a new volume triangulation
scheme is developed by employing the same concept, but now tetrahedral
elements are generated from the outside surfaces. The adaptive refinement
process has been implemented for two-dimensional applications. For this process,
an error indicator is introduced with a relaxation factor to obtain efficient
solutions.  This indicator can be employed in two-dimensional and three-
dimensional analysis. The solution processes have been implemented using a data
structure with a view toward use of a solid modeler. Examples of mesh generation
in two-dimensional and three-dimensional analyses are presented and self-adaptive
mesh improvements are given for two-dimensional applications. These example
solutions demonstrate that a near-optimal mesh for a given accuracy of solution
can be obtained in 2 to 3 steps of iterative refinement.

Thesis Supervisor: Professor Klaus-Jurgen Bathe
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Due to the increased use of CAD systems, especially finite element
analysis, much research effort has been focussed during the last decade on
automatizing finite element analysis procedures. For linear analysis, the major
problem is the automatic construction of optimal finite element meshes. The
concept of an optimal mesh can be described in several ways. We consider the
optimal mesh as the one which gives a solution of a given accuracy with the
minimum total cost. Since it is not easy, in practice, to construct an optimal mesh
accurately, we will consider a near-optimal mesh instead. In our discussion, a
near-optimal mesh refers to an efficient mesh that is very close to an optimal

mesh.

There are, in general, three different approaches to obtain an optimal
mesh. The first approach [1-4], referred to the r-version, improves the quality of
the finite element solution by considering the nodal coordinates as unknowns in
the appropriate energy functional for a fixed mesh topology. Iterative procedures
are commonly employed for the required minimization in this approach, but the
amount of computational effort is so great that the same accuracy of solution could
be obtained with a very fine mesh at less expense. Moreover, if not enough

elements are used, the required accuracy cannot be achieved.

The second approach increases the accuracy of the finite element
solution by grid enrichment techniques. Here, based on a-posteriori error criteria,

the number of mesh degrees of freedom is increased. The two key issues in the
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application of this approach are the criterion used for mesh refinement and the
method of grid enrichment employed. In order to obtain efficient error criteria,

much research effort [5-14] has been directed on this subject.

As a grid enrichment method, the h-version method is more widely
adopted than the p-version because of the simplicity involved in the actual
implementation. In the A-version of refinement [5-9], the total number of elements
is increased by reducing the element size where the error measure exceeds a given
error tolerance. In the p-version of refinement [15-17], the element sizes remain

fixed and the degree of polynomial interpolation functions is increased.

Using the grid enrichment techniques, the analyst can obtain a
solution within a given accuracy. However, the amount of grid enrichment per
cycle is, in practice, limited and the grid enrichment procedure is constrained to
the initial mesh configuration. Consequently, the final result of the process may

be a less efficient mesh than possible.

The third approach, referred to as the remeshing method, allows for
greater refinement in a single cycle than do the above procedures by remeshing the
entire domain using the particular solution parameters obtained from an initial
analysis, see for example Turke [18-19], Shephard and co-workers [20], and

Ladeveze and Leguillon [21].

Turke [18] pointed out that several solution parameters such as
isostatics, isoenergetics, isobars of maximum shear stress, and contours of
constant displacement can be used as guidelines in constructing near-optimal
meshes. Among these parameters, the one of particular interest is the

isoenergetics, the contours of constant strain energy density, as suggested by

Oliveria [22] and Shephard [23].
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In this method, the new mesh in each cycle is not constrained to the
previous mesh configuration, but the definition of a new mesh could be more time-
consuming than using a selective refinement method, and there is no guarantee

that the new mesh yields a solution within a given accuracy.

Therefore, the desirable approach to obtain a near-optimal mesh
would be to combine an efficient initial mesh construction and the h-version of
refinement method. By using a combined method, we can construct a near-

optimal mesh in 2 to 3 steps of total solution processes.

We note that the methods discussed above have so far only been
applied in two-dimensional analysis. In the case of three-dimensional analysis,
only a limited number of algorithms have been developed for the volume
triangulation. In these algorithms, only the geometric subdivision of an object has
been of concern and the effectiveness of the mesh configuration was not

considered.

For the automatic mesh generation, triangular elements are widely
adopted in two-dimensional analysis, while tetrahedral elements are employed in
three-dimensional analysis, because of their flexibility to fit into any arbitrary

analysis domain.

Our goal in this thesis is to construct a near-optimal mesh for a given
accuracy of solution in 2 to 3 steps of the total solution process by combining an
efficient initial mesh construction and the h-version of adaptive refinement
method. For this purpose, the automatic mesh generation scheme required for an
initial mesh construction, both in two-dimensional and three-dimensional analysis,
should be robust and satisfy the following conditions as much as possible:

1. The user should be able to control the local mesh density in any part
of the analysis domain.
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2. The elements should be as close as possible to equilateral triangles in
two-dimensional analysis or equilateral tetrahedra in three-
dimensional analysis.

3. The concept of the algorithm should be applicable both for two-
dimensional and three-dimensional problems.

4. The algorithm should be economical with respect to both human
effort and computer time.

An extensive review of two-dimensional mesh generation schemes
has been given by Thacker [24]. The following schemes are available.
I. Methods based on generating internal nodes throughout the domain

using a random number generator and construct triangular elements
using tesellation operators.[25-28 |

2. Methods based on partitioning of the domain into convex subregions
and recursively subdividing the subregions down to the element
level.[29-30]

3. Spatial discretization methods using modified quadtree encoding
techniques.[31-33]

4. Methods generating triangular elements inward from the outside
boundary with key nodes on it.[|34-36]

Of the four schemes listed above, the 3rd and 4th scheme hold the
best possibility of satisfying the above conditions for being a good mesh
generation scheme. However, in the 3rd scheme, the control of local mesh density
is not as flexible as for the 4th scheme, while in the 4th scheme, ill-concitioned
elements are occasionally generated and the extension to three-dimensional

analysis is not available.

In the case of three-dimensional mesh generation, only a limited
number of algorithms have been developed. As summarized by Shephard [37], the
approaches used for automatic mesh generation for three-dimensional solids

include:



1. Volume triangulation of a set of points placed on the surface and
inside the object.[38-39]

2. Recursive subdivision of the object down to the element level.[40]

3. Spatial enumeration by employing modified octree encoding
techniques.{41-43]

4. Paring topologically simple volumes from the object one at a
time.[44-45]

The first three approaches employ the same concepts of the ones in
two-dimensional case. The 4th approach is similar to the 4th one in the two-
dimensional case because it starts from the outside boundary , but it differs

because the user cannot assign the local mesh density in this case.

In the first approach, the placement of nodal points on the surface and
inside the object is a very complicated task, and thus it is not suitable for general
three-dimensional applications in practice. The 2nd and 4th approaches are not
appropriate for graded mesh generations and the resulting meshes can be ill-
conditioned. Among the above approaches, the 3rd approach has shown, so far,
the best possibility of satisfying the conditions mentioned above. However, it
would be desirable if an algorithm, which employs the concept of the 4th approach
in two-dimensional analysis, were developed for three-dimensional analysis, in

order to satisfy the above conditions as much as possible.

Our contribution in this thesis is to develop a synthesized mesh
generator which constructs near-optimal meshes for a given accuracy of solution
both in two-dimensional and three-dimensional linear elastic finite element

analysis.

Specifically, the entire process from constructing the initial mesh to
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the adaptive refinement process has been developed for two-dimensional analysis.
For three-dimensional analysis, the initial mesh construction and the error analysis
have been developed. To obtain the initial mesh, a robust triangulation scheme
employing the 4th approach is developed for two-dimensional analysis and a new

volume triangulation scheme is developed by employing the same concept.

As for the adaptive refinement process, an error indicator is proposed,
which is a variation of theoretical error indicators suggested by Babuska and et
al..[5-9] The indicator is based on our numerical observations to obtain the
maximum accuracy of solution during the refinement process. The A-version of
grid enrichment scheme is employed for the refinement process, in which each

element is subdivided into four subelements by halving the element size.

In order to implement the initial mesh construction from a solid
modeler and the refinement process, a data structure called dissembled winged-
edgel/face data siructure is designed, which employs the concepts of the winged-

edge data structure commonly used in CAD/CAM systems [46-48].

Throughout the thesis, only quadratic elements are considered
because of their ¢ffectiveness in the analysis. They are 6-node triangular elements

and 8-node quadrilateral elements and 10-node tetrahedral elements.

In the following chapters, we present the algorithms we have

developed for near-optimal mesh generation and example solutions.

In chapter 2, we consider the two-dimensional problem, which
includes the initial mesh construction and the adaptive refinement process for 6-

node triangular elements and 8-node quadrilateral elements.

In chapter 3, three-dimensional problems are considered, which
includes the initial mesh construction and the error analysis. The adaptive

refinement process for three-dimensional problems is not included in the thesis.
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In chapter 4, we present the example solutions which show the
effective use of our algorithms developed for near-optimal mesh constructions.

Finally, Chapter 5 presents the conclusions of the thesis and

recommendations for future work.
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Chapter 2

Mesh Generation for Two-Dimensional Problems

2.1 Overall Procedures for Near-Optimal Mesh Generation

The schematic diagram for our near-optimal mesh generation for two-
dimensional problems is shown in Figure 2-1. As shown in Figure 2-1, the near-
optimal mesh construction schemes for 6-node triangular elements and 8-node
quadrilateral elements are different at the initial mesh construction stage. For 6-
node triangular elements, the whole process from the construction of the initial
mesh using the solid modeler to the adaptive refinement process based on our
error analysis can be handled automatically. However, in the case of 8-node
quadrilateral elements, the initial mesh should be input manually and only the
adaptive refinement process is performed automatically. The adaptive refinement
process in Figure 2-1 can be considered to equalize the error indicators throughout
the analysis domain by refining the element where the error indicator exceeds the

given error tolerance.

All the above procedures are implemented in a computer program
AMESH, which is composed of AMESH-I and AMESH-II. AMESH-I is
designed to construct the initial mesh using the solid modeler input for triangular
elements, and AMESH-II is designed to perform the adaptive refinement process

both for 6-node and 8-node elements.

The solid modeler used in AMESH-I is of boundary representation
type and it will be necessary to use an interfacing program to prepare the input
data for AMESH-I if an external solid modeler (either CSG or B-REP type) is to
be linked to AMESH-I directly.
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Figure 2-1: Near-optimal mesh generation process for 2-D problems
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The solid modeler in AMESH-I is designed to store the minimum
amount of data required for mesh generation and only to include the systein with
straight lines and circular arcs. Hence, there is no redundant information stored
and the data to be stored can be easily input by the user or extracted from the

external solid modeler if used.

As already pointed out in Chapter.1, since the meshes that are
constructed during the adaptive refinemeat process are restraint to be "contained"
in the initial mesh and the grid enrichment is limited to 4 times per each original
element, a start-up solution (i.e., starting with a new mesh) may be required to
obtain the given accuracy of solution if an initial mesh is very coarse. Compared
with the adaptive refinement process in which ADINA-IN [49], ADINA [50] and
AMESH-II are used in every iteration, the total cost required for AMESH-I is
much less, because only geometric considerations are involved. Hence,
sometimes it is more efficient to reconstruct the initial mesh rather than to perform
the adaptive refinement process several times, even while the refinement process

has already been started.

Therefore, the primary goal of this mesh generation process is to
construct the initial mesh as close as possible to an optimal mesh for the required
accuracy of solution. Here the users’ experience and other general guidelines need
be used in order not to perform the adaptive refinement process more than 2 to 3

times.
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2.2 Mesh Generation and Adaptive Refinement Process for 6-Node

Triangular Elements

2.2.1 Triangulation Process

The proposed scheme for automatic triangulation is a modified
version of Sadek’s algorithm [35]. In this section, the detailed description of the
modified Sadek algorithm is given, pointing out what modifications have been
made to the original algorithm and why such modifications have been made. The
basic strategy of the method is as follows : To begin, key nodes are placed around
the boundary considering the desired local mesh density and ordered in the
counter-clockwise direction to form a loop-boundary so that the unmeshed region
lies to the left as w. travel along a loop-boundary. Given a certain domain with a
number of nodes around its boundary, triangular elements are generated from the
outside boundary toward inside by cutting the corner nodes of the boundary as
shown in Figure 2-2. If an analysis domain has a complex shape, it is
recommended, in our scheme, that the entire domain be subdivided into near
convex subdomains, in otder to construct well-conditioned triangular elements.

The reason for this restriction is explained later in this chapter.

Since the best form of triangular elements in finite element analysis is
known to be the equilateral element, the resulting mesh will be generated as close
as possible to have equilateral triangles. Hence, the number of triangular clements

"i"

that can be generated at a node "i" with a boundary angle ¢, is taken as the nearest

integer of ¢,/r/3 so that the triangle is as equilateral as possible.

In Sadek’s algorithm, a corner node is defined as the one at which the
boundary angle is net equal to 180°. According to this definition, a corner node

includes the case when the boundary angle is greater than 180° as well as the case
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i)

iii) iv)

Figure 2-2: Example of triangulation process
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less than 180°, which implies that the basic operations that construct the elements
at a comer node should be designed to generate from one element up to six

elements. But the details of these operations are not shown in his work.

At the initial stage of mesh generation when many of the boundary
angles are still 180°, the above comer node may make sense, but as the
triangulation process proceeds, the resulting boundary angles are not usually 180°,
so almost all of the loop-boundary nodes are comer nodes. In such a case, there is

no reason to continue with the 180° as a criterion for a comer node.

Our triangulation scheme can be considered to generate elements by
trimming or digging a key node in a loop-boundary to reduce the number of key
nodes and if the number of key nodes reaches three, the triangulation process is
finished. In that sense, in order to construct well-conditioned elements, at least
two basic operations are needed. One is to generate one element by rrimming a
well-conditioned key node and the other is to generate two elements by digging
into a loop-boundary at a key ncde, which is to promote producing well-

conditioned key nodes.

Therefore, two basic operations (Type-1 and Type-2 operation) are
designed in our scheme and the corner nodes for these operations that can generate
one or two elements at a key node, can have a maximum boundary angle of 150°.
The comer nodes for :hese operations are type-1 and type-2 corner node
respectively. In addition, one more operation (Type-0) is designed to complete the
triangulation process, which constructs the last two elements when the number of

key nodes reaches four.

The Type-1 operation, as shown in Figure 2-3, is designed to generate

one element by trimming one type-1 key node which satisfies certain conditions
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that are described later in this chapter, in order to construct well-conditioned

elements.

In Sadek’s algorithm, the user is supposed to input the criteria for
type-1 node decision and the details are not explained. However, to our
experience, this criterion is one of the key issues in the triangulation process.
Many of the existing triangulation schemes [34][36] use the boundary angle as a
criterion for type-1 node decision such as ¢, < 85° or ¢; £ 90°. But our
experience shows that in addition to the boundary angle, the size of adjacent edges
and the effects of the Type-1 operation on the loop-boundary should all be
considered as criteria for type-1 node decision. The resulting heuristic criteria are

described later in this chapter.

The Type-2 operation is designed to generate two triangular elements
at a type-2 corner node by introducing a new key node as shown in Figure 2-4. In
our research, an adaptive Type-2 operation has been designed, in which the
position of a new generated key node is adjusted according to the scaling factor, r,
in order to avoid an overlapped region or bottle-neck like region in a loop-
boundary. The implementation of this adaptive operation is also a modification to
the original algorithm. The adaptive Type-2 operation is composed of two steps.
First, a new key node is generated considering the effects of neighbouring nodes
using the method developed by Sadek as shown in Figure 2-5. As a second step,
the new key node position is adjusted according to the scaling factor, r which is
described later in this chapter. Consider the first step of a Type-2 operation at
node 3 in Figure 2-5 b). In order to construct two well-conditioned elements, the
ratio /,/l,; is set to be equal to the ratio /,;//;, i.e., the length /,; is taken as \/12—13

The position A, is determined by the length /,; taken along a line bisecting the

angle ¢;.
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e :Keynodes (A,B,C)
a : Mid-side nodes

Figure 2-3: Example of Type-1 operation

New key node

AN

a
\
\
S

4

e

7
e

C e :Keynodes (A,B,C)

D:
A
|
i
4
I
[}
]
]
a : Mid-side nodes

B

Figure 2-4: Example of Type-2 operation



Figure 2-5: Generation of a new key node [35]
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l /
_2.._ = -2, or I)_:; = \”2,3 (2_1)
3 I3 - j

In order to include the effects from neighbouring nodes such as node
2 and node 4, the same procedure is repeated at these nodes. But if the angle at he
neighbouring node is greater than 210° when more than three elements should be
generated, its effect is not included for brevity. The number of triangular elements
that can be generated at a node "i" with a boundary angle ¢, is taken as the nearest
integer of ¢,/n/3 so that the triangle is as equilateral as possibie. Assume that
angle ¢; at node 2 is 180° and thus three triangles can be constructed. The

condition that makes the three triangles well-conditioned is

hilip = liallyy = I/l
or (2-2)

liy = WNL2 0y and 1y = 31152

Similarly, /,, and ¢,/3 determines the position A,. Another new node
A; can be generated at node 4. In order to choose a unique position, A, for a new
node from these three positions, weighting factors are used. Since the shape of
small elements will be more distorted by using a modified new node, the
weighting factors are taken in the inverse proportion to the size of the resulting

elements, i.e.
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and (2-32)

The actual values of v, w,, w; are taken as

S ! !

w, = 35— WH =-2— , and w3 = 5
l3° Yo lh1=-wo l34%-w
1 1 1
where Wg = — + — + — (2-4)
07 12 2 L2
23 21 34
Therefore,
A = M’IAI + M’2A2 + M’3A3 (2"5)

The next step of an adaptive Type-2 operation is to adjust the key
node position from A to A* using a scaling factor, r as shown in Figure 2-6. The

scaling factor, r, is defined as

1
1 + ifail

. ifail = 0,1,2,.. (2-6)

where ifail is a number that depends upon whether a basic operation could not be
performed. Initially, ifail is set to zero and if no more operation is possible

because of the failure in check processing, ifail is increased by one and so on.

The Type-0 operation is designed to construct the last two elements



-23-

a) r=1 (ifail=0)

b) r=0.5 (ifail=1)

Figure 2-6: Adjustment of a new key node
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when the number of key nodes on the bcundary reaches 4 and the remaining area
is quadrilateral. It can be divided into two triangles by a diagonal. Zienkiewicz
[51] has suggested that a quadrilateral should be divided into two triangles
according to the shorter diagonal for better shape conditioning. But Sadek has
shown that this scheme does not work well in some cases and suggested another
method, in which the subdivision is performed using a factor R as shown in Figure
2-7. Sadek’s scheme works well. However, we can obtain a similar result more
efficiently by using the boundary angles, which are already available, without
calculating the lengths of partitioned diagonals. The one we suggest is that the
division is made according to the diagonal for which the sum of diagonal angles is

larger, see Figure 2-8.

The nodes on the original boundary are considered to be of level equal
to one and the new generated nodes from the original boundary nodes are assigned
to level two and so on. In Sadek’s algorithm, the level concept has been used to
indicate a certain hierarchical order such that a boundary node of level two can be
cut to form elements only after all the boundary nodes of level one have been

removed.

This works well when the aspect ratio of an analysis domain is close
to one. But if the aspect ratio is much larger than one at the beginning, it gets
larger due to the removal of the layer from the boundary, which may result in a
bottle-neck like region in a loop-boundary. Hence, as a modification in our
scheme, the level of a node has been used only to determine the order of the basic
operations among the candidate nodes on the current loop-boundary nodes.
Therefore, conceptually, our scheme is to generate elements by cutting off the
sharp comers (¢; < 150°) from the boundary, while Sadek’s algorithm is

considered to generate elements by removing a boundary layer from the boundary.
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a) ¢, + 04> 01+ 03 D) ¢; + 03 >0, 04

Figure 2-8: Suggested Type-0 operation
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Since only the sharp corners are cut off from a boundary, the concave
boundary nodes can not be removed unless they become convex sharp comer
nodes. Hence, we impose a restriction that near convex subdomains are
recommended in dividing the complex analysis domain to construct well-
conditioned elements. This is especially important when the concave region in the

analysis domain has high local mesh dersity than other regions.

If the element size changes drastically along a loop-boundary, a loop-
boundary may sometimes overlap itself or have a bottle-neck like region, thus
generating an ill-conditioned mesh , or even make iurther operations impossible.
In order to avoid this unstable phenomenon, the following check processing is
designed in our scheme. We call the checking an overlap check and minimum

distance check.

In the overlap check, the new edges of the generated triangular
elements are checked whether any overlaping occurs between these edges and the
remaining loop-boundary edges. As shown in Figure 2-9, in the Type-1 operation,
one new edge is to be tested, while in the Type-2 operation two edges are to be

tested.

Consider a new edge of Type-1 operation in Figure 2-9(a). The
equation of a line which passes through the endpoints, node 1 and node 2, of this

edge is found to be
Yo ¥ + X2y + 12 — Y = 0 (2—7)

where Vai = V2 — vy, el

A. loop-boundary edge with the endpoints a and b, may be expressed

in parametric form as
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X ='.\'a + f‘xba

Yy = Y, + t'.vba (2_8)

where 0<t<1

The intersection points of a new edge and a loop-boundary edge can
be compuied by substituting equation (2-8) into equation (2-7). If ¢ lies in the
range zero to one, an intersection point should again be tested whether it lies
between node | and node 2. All the loop-boundary edges should be tested for
overlaping with a new edge. In the Type-2 operation, the same tests are performed

for two new edges , see Figure 2-9(b).

In the minimum distance check, a new key node of Type-2 operation
is tested whether the new node has enough distance to the remaining loop-
boundary edges 1n order to avoid any bottle-neck like region in the loop-boundary.

The details are shown in Figure 2-10.

The adaptive coefficient, o, used in Figure 2-10, gets smaller to
reduce the minimum distance requirement as the triangulation process proceeds
and no more Type-1 and Type-2 operations are possible because the overlap check

or minimum distance check is not passed.

Because of the successive steps from the boundary toward the inside
of the domain, the triangulation process is a path-dependent one. It has been
observed that the critical issues in this process are how to define type-1 and type-2
corner nodes among the loop-boundary nodes and in which order the basic

operations should be performed. Thus the proposed method in this research has
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dmin > o Average (La,Lb, Lc, Ld)

where o = 05 , ifail=0, 1, 2, ....

1 + ifail

Figure 2-10: Minimuin distance check



-30-

some heuristic rules which have been identified in an effort to imitate human like
reasoning during the triangulation process. The following rules are used to decide
whether a boundary node is a type-1 or type-2 node and the order of basic

operations. As already mentioned, this is also a modification adopted in our

scheme.

1. A type-1 corner node as shown in Figure 2-11 is a loop-boundary
node at which the boundary angle, ¢, is less than 80° ( ,21.8 ) or

95° ( §; < 1.8) depending on the edge length ratio, §;, and the
neighbouring edge length ratios around node i should not be changed
drastically after a Type-1 operation. The computer implementation
of a type-1 node decision is a little more complicated, however
Figure 2-11 shows the basic idea for a type-1 corner node decision.

2. A type-2 comer node is a node for which the boundary angle is less
than or equal to 150°, i.e. suitable for two well-conditioned elements
and is not a type-1 comer node.

3. The Type-1 operation should be performed before the Type-2
operation. Among the same types of operations, the order of
operation is also an important factor especially for Type-2
operations.

4. Type-1 nodes are sorted to decide the order of operations
considering the following factors successively.

e Low level

¢ Small boundary angle, ¢,

* Large edge length ratio, 0,

e Small adjacent edge length, /;

S. Similarly, type-2 nodes are sorted to decide the order of operations
considering the following factors.

e Low level

e Large edge length ratio, 9,

» Small adjacent edge length, /,
e Small boundary angle, ¢,
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! L, Lia

; edge length ratio

before Type-1 operation

Smax =max (81 .8; Di1)

: " after Type-1 operation
(-1)* N ! 1* .
*
NS Smax=max(8i-1*6i)

If ¢; < 60° then type-1 node
Elseif 60° < ¢; < 80° ~ 95° then

if Opay < 1.2 then

if Spugy S 1.5 8y then type-1 node
elseif 1.2 < 8,,,c < 1.5 then

if Smax* < 133,,,, thentype-1 node

else
if 8,0 < 1.28,,4, then type-1 node

endif
Else
Endif

Figure 2-11: Example of Type-1 comer node decision
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After the triangulation process has been completed for a given
subregion domain using the above-mentioned basic operations, the resulting mesh
is finally improved by the application of a smoothing technique. The smoothing
technique adopted in this research is the one suggested by Shephard [23]. In this
technique, interior nodes are placed at the average of the centroid of neighbouring
nodes and the current location. During this process, the boundary nodes that have

been placed by the user remain unchanged. For example,

. | .
‘\new = i(xr(’nrmid + '\nld) (2-9)

, | R
where X centroid = Nzxilnnde’s connected
]

i AX,en — XoglSe  for all the internal nodes,

the smoothing process has converged.

where e = /500

Lsystem

It has been observed thai usually 3-6 iterations in this smoothing

process are enough to converge to a tolerence of L /500.

system
All the above details are summarized in the flow chart of the entire

triangulation procedures as shown in Figure 2-12.

Some examples of the triangulation process developed in this research
are shown in Figure 2-13 to Figure 2-16. Figure 2-13 shows that the mesh can be
improved by using the smoothing process. In Figure 2-14 and 2-15 , complex
domains are divided into near convex subdomains in order to construct well-

conditioned elements.
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Key Node Placement
iFail= ¢, ¢ =150

=5

Select type-1 node

if any no

v

Select typt-2 node

Sort ?; < 0y

¥

Perform on no 0
Type-1 operation ™1 Pcrit = Perit 2

yes

Sort

Y

Perform one

—d» adaptive Type-2

Perform Type-0 Operation
operation

Y

Smoothing Process

ves

if any type-1
node generated?

finished?

: Actually performed

N : no. of Key nodes no

ifail=ifail+1

Figure 2-12: Flow chart of triangulation process
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a) Before smoothing

75 elements

179 nodes

b) After smoothing (6 iterations)

Figure 2-13: Square plate with a central hole
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No. of iterations for smoothing :

Figure 2-14 a): Triangulation on a complex domain
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Figure 2-16 a): Key nodes distribution for a plate with a hole
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After 6 iterations of smoothing :

42 elements, 103 nodes

Figure 2-16 b): Mesh for a plate with a hole with high local mesh density
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The triangulation scheme developed in this research has a certin
directionality in the mesh generation. There are two reasons for this phenomenon.
One reason is due to the counter-clockwise direction in which the key nodes are
ordered. The other reason is that the basic operations are performed one after
another, which changes the loop-boundary conditions after every operation.
Hence, the loop-boundary may not be symmetric during the triangulation process,

although it is symmetric initially.

2.2.2 Error Analysis

Error analysis has been recognized as an essential task in assessing
the quality of finite element solutions and for the adaptive refinement process to
obtain a near-optimal mesh. One key issue in error analysis is how to define a
good error indicator. A good error indicator should satisfy the following
conditions.

1. It should be able to indicate the amount of error involved in the finite
element solutions.

2. It should be computationally fast to calculate compared with the
efforts involved in the analysis itself.

3. It should be easy to implement into an existing code.

Since the pioneering work in the convergence of finite element
discretizations by Strang [52], much research effort has been directed on this
subject during the last decade. Among those who contributed greatly, Babuska
[5-9][11] has paved the way in this field with his works on error estimates and
related mathematical studies. The error indicator given below is not far from those
earlier proposed and is a vanation of a theoretical error indicator, based on our

computational experiences.
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The error in finite element analysis can be taken as any measure
between the exact solution and the finite element solution; we can use the
displacements, stresses, strains as energy to measure the error. Among many
possible error sources, we consider only the discretization error. Since the exact
solutions are not generally known, certain features of the exact solutions must be
used to indicate the error, or the exact solutions need be estimated to compute the
error involved. Therefore, two different approaches are employed in deriving the

error indicators.

One approach is to use that for the exact solution, the error involved
in satisfying the equilibrium equations is zero. Previous works based in this
aporoach include those of Babuska and Rheinboldt [5-7], Zienkiewicz and his
coworkers [8-9], and Itoh and Wilson [10]. When using the equilibrium equations
to obtain an error indicator, two sources of error should be considered: the body
force resicgual error in each element domain and the traction juimnps between
adjacent elements. The computations of body force residuals which involve the
2nd derivatives of displacements and that of traction jumps between adjacent

elements are not straightforward tasks.

Another approach is to estimate the exact solution using a certain
algorithm such as a projection process and compute the error indicators using this
estimator and the finite element solution. This approach has been studied largely
due to the fact that the computation of body force residuals and traction jumps can

be complex tasks [12][21].

In our research, we prefer the former approach, because we do not
want to include any assumption in deriving the error indicators and, in our view,

the computation of body force residuals and traction jumps is manageable.
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Recent works of Babuska [11] show that in case of bilinear elements
the traction jumps along the element boundaries are dominant in the total error,
while in quadratic elements the body force residual error provides the dominant
part. Our experiences with the quadratic elements lead to similar observations as

described below.

Consider the following elasticity problem shown in Figure 2-17. The

equilibrium equation is found to be

Ri=1;+ff=0 in Q (2-10)

For each finite element, two sources of error are written as

where ‘cijFE represents finite element solution anu t; is the exact unknown force

transmitted through the boundary of an element.

Using these two error sources, let us define the body force residual

error, F;Qm. and the traction residual error, Firm , in their force unit as
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Figure 2-17: Equilibrium state of an elastic body

At bt
> &

a - & E
> &

o+t =0

Figure 2-18: Traction jumps between adjacent elements
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Ffnm = jn RFEaQ,, (2-12)

One interesting relationship can be obtained by using t' < divergence

theorem,see Appendix A for the details.

Equation (2-13) shows that the integral of the body force residual

error is equal to that of the traction residual error.

Generally, we cannot compute the traction residual error directly,
because the exact force transmitted through the element boundary, t, is not known.,
Instead, the traction jumps between adjacent elements can be used to estimate the

traction residual error if a proper error allocation algorithm is available.

Consider two adjacent elements a, b in Figure 2-18. The traction
jump, TM;, between two elements a and b is composed of two contributions, 2T;
and PT; such as

ar. + b,

i !

As a simple error allocation algorithm, the traction jump between
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adjacent elements is equally distributed to each element for convenience. For our

numerical use, the two error indicators in the force norm are defined as

Fq = jﬂ Rz + RD124Q, (2-15a)

m

_ 1 2 21
Fr = EJFM(TM), + TM )12 4r, (2-15b)

m

Another common measure is the error in the energy nom,

lel? = J’QeT(BTc Be) dQ (2-16)

where the error, e, is defined as the difference between the exact displacement u

and the approximate solution I

e =u -—1u (2-17)

In the above, the matrix operator B defines the strain € as

€ = Bu (2-18)

and the material matrix C defines the stress as

c = C¢ (2-19)

Babuska and Rheinboldt [6] have proved that there exist constants ky2k; >0 such

that
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ki 82 < |lel|? < k, €2

(2-20)

N N
2= 3vE? = Y, (Cihy?[ R2dQ + C,hmjrﬂdr)

m=| m=]

where R is the residual and J is the inter-element traction jump. In order to see

which term is dominant in equation (2-20) in the case of quadratic elements, we

will consider the following terms.

hm2
= 2 2 -
Eq = __JQM(R), + R2)dQ,, (2-21a)

hm
- TM2 + TM.2 -
Ep = 2—Jr,( M, M_2)dT,, (2-21b)

where h_ is the characteristic length of an element and C is the Young’s modulus.

The above four error indicators in equation (2-15) and (2-21) are non-

dimensionalized with respect to the total external force and the total strain energy

respectively as follows.

Fq
fa, = 7 (2-22a)
external force
Fr
fr, = (2-22b)
external force

and
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Eq
eq = s (2—230)
'" Emral strain energy
Er
er = m (2-23b)

m E

total strain energy

The error indicators in equation (2-22) and (2-23) are computed for
the examples in Figure 2-19 to Figure 2-21. Only 8-node quadrilateral elements

are used for the analysis. The results for the calculation of the error indicators are

summarized in Table 2-1.

One interesting point to notice in Table 2-1 is that the traction jump
error and the body force residual error in the force norm are almost the same in
their magnitudes, while in the energy norm, the body force residual error is the

dominant one.

The residual error in the energy norm is about twice larger than the
traction jump error for the problem in Figure 2-19, while for the problems in
Figure 2-20 and 2-21, the residual term is about 50 - 100 times larger than the
traction jump term. Hence, it can be generalized that the body force residual in the
energy norm is much larger than the traction jump residual, especially for

problems with high stress concentration.

In our numerical tests, the error indicator in the energy norm is found
to be more efficient than the one in the force norm for the adaptive refinement

process.

Therefore, the best choice of the error indicator for an adaptive
refinement process using quadratic elements appear to be the body force residual

in the energy norm as in equation (2-21a).
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Figure 2-19 a): Piate with a hole in tension
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Figure 2-19 b): 11 element model
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Figure 2-20 b): 12 element model




(a) Schematic drawing [61]

Figure 2-21: Pressure vessel problem
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[spoul ;uaWwd[3d §9 (2)




Table 2-1. Comparison of the error indicators

Non-dimensionalized I Non-dimensionalized
(w.r.t.force) (w.r.t.energy)
Traction | Residual Traction Residual
= % fom ZEr =€
A. Structure with a hole
(Figure 2-19)
1) Plane stress (t=1) 1.03 1.21 0.0692 0.14
2) Plane strain 1.10 1.27 0.0829 0.169
3) Axisymmetric 0.49 0.533 0.0202 0.0424
B. Structure with a crack
tip (Figure 2-20)
1) Plane strain 0.959 0.949 0.00777 0.593
2) Plane stress (t=0.01) 0.950 0.902 0.00747 0.506
3) Axisymmetric 0.179 0.172 0.00133 0.13
C. Structure of a vessel
form (Figure 2-21)
1) Axisymmgtric 3.50 4.71 0.00779 0.424
2) Plane strain 4.32 5.86 0.00288 0.148
3) Plane stress (t=0.1) 2.99 4.20 0.00118 0.053
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h 2
M = 5, CRD 4, (2-24)

Using the error indicator in equation (2-24), we observe the following
in terms of efficiency. In most cases, we are interested in the solution of a stress
concentration and the element size in this region should become more rapidly
smaller than in the other regions during the refinement process. This aim in the
refinement is enhanced by introducing the relaxation factor 1/h: we multiply the
above error indicator by 1/h. Namely, this way we scale up the error indicator of
the small sized elements compared with the larger elements, consequently
refinement is more concentrated in the region of the small sized elements. The
result is that better sclutions can be obtained at stress concentrations with little
sacrifice on the overall accuracy. Therefore, the following error indicator will be

used in our discussion,
_ R2 + R2dQ 2-25
T = g, B+ R, (2-25)

where h,, represents the characteristic length of an element, E is Young's
modulus, Ry and R, are the body force residuals, and €, is the volume of an
element. The body force residuals, Ry and R,, for two-dimensional problems are

summarized in Appendix B.

As a reference value, the total strain energy of the system has been

used with the following modification.

U

reference = I

total (2-26)

system

U
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where U is the reference strain energy per unit length, and U, is the

reference

total strain energy of the system, and L is the characteristic length of the

system
system.
As a criterion for further refinement, a non-dimensionalized error

indicator for each element, "m", defined as follows is used,

£ = __n_'_'l____ (2-27)

m
Ureference

The total error indicator of the system is found to be

N
€otal = Zﬁm (2-28)

m=|

Our numerical experiences on this error indicator show that the total
error indicator in equation (2-28) is able to indicate the amount of error involved

in the finite element solutions approximateiy.

2.2.3 Adaptive Refinement

In this research, the h-version of refinement has been adopted as a
grid enrichment method, in which the size of elements is halved by subdividing
each element into four subelements. In order to deal with this refinement process
automatically, a special data structure is developed which stores and updates all
the information about the elements such as the edges and faces and their

connectivity.

Most of the adaptive solvers use the tree-structure for the data
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management [11][53]. In the tree structure, the connectivity data are stored in a
compact form and the subdivision of an element can be made simply by extending
the tree. On the other hand, since the tree structure does not store the redundant
connectivity information, the data management is not a simple task and can only

be achieved by extensive use of up-path and down-path searches.

Therefore, in order to eliminate the need for searching, a boundary
representation data structure with redundant information is designed in our
scheme. The basic idea of the data structure for this purpose is similar to the
winged-edge data structure [47-48], which is widely adopted for boundary
representation solid modelers in CAD/CAM systems. The winged-edge solid
modeler in three dimensional problems stores the data for the faces, edges, and
vertices of an object and their connectivity, while in two dimensional problems it

stores the data for the edges and vertices of a loop.

In our scheme, the concept of an object/loop in a solid modeler is
applied to each finite element, a tetrahedron/triangle respectively. Hence, each
tetrahedron element enclosed by four small faces is considered to be a subobject
and each triangular element enclosed by three small edges is considered to be a
subloop. This modified data structure is called "dissembled winged-edge/face data
structure”, in the sense that it has a winged-edge like data structure for two
dimensional problems and a winged-face like data structure for three dimensional
problems and the original object/loop is considered to be an assemblage of many

subobjects/subloops.

One disadvantage of this data structure is the complexity involved in
changing the connectivity information during the refinement process. But this

difficulty can be overcome by using our pre-designed refinement unit, in which
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the change in connectivity data can be well managed. Another disadvantage can
be the increased storage requirement due to the redundant information.
However,this is not an important problem in practice, because even the increased

storage requirement is still less than that of the finite element analysis itself.

Since the refinement process produces irregular nodes and edges, a
concept not dealt with in previous winged-edge data structures, some new

concepts have been introduced to deal with this problem.

A regular node is defined as an independent node in terms of degrees
of freedom, while an irregular node is defined as a dependent node, the movement
of which is constrained by independent nodes. Here, a regular edge refers to an
edge which is composed of three regular nodes, two end nodes and one mid-side
node, and there is only one element at each side of the edge except the boundary
edges. The boundary edge has one element only on one of its sides. An irregular
edge refers to an edge which includes irregular nodes and there are more than one
element at one side while at the other side there is only one element. The

examples of regular and irregular nodes and edges are shown in Figure 2-22.

The designed data structure stores the connectivity between edges,
nodes, and elements as shown in Figure 2-23, where E is an edge which is an
intersection of two or more triangular elements, N is a node which is an

intersection of three or more edges, EL is an element.

The refinement process is performed using the basic refinement unit
shown in Figure 2-24. During the refinement process, the compatibility conditions
between adjacent elements should also be satisfied by using constraint equations.
Therefore, a constraint equation management, i.e. generating, deleting and

modifying constraints, is not a simple task. But in order to simplify the problem, a
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° regular node

a irregular node
> regular edge
“®*---%  jmegular edge

Figure 2-22: Regular and irregular nodes and edges
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a) Edge connectivity data

' @ | ~®
E)

b) Element connectivity data

-—->

Figure 2-23: Data structure for refinement process
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a) original element b) subdivided elements in

isoparametric coordinates

9 new nodes (N1-N9)
9 new edges (E1-E9)

3 new elements (B-D)

c) subdivided elements in real coordinates

Figure 2-24: Basic refinement unit for a 6-node triangular element
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mid-node is always located at the middle of an edge. In fact, this is not a serious
restriction at all, because generally a quadratic element performs better when all

the mid-nodes are located at the middle of the corresponding edges.

Consider the case shown in Figure 2-25. Each component of
displacement for node 4 and node 5 , 4Ai and 5Ai, can be represented in terms of

the corresponding components of regular nodes, node 1,2 and 3 as follows.

4A

_ I 2
i = Mlo—os'A + Ml o5 %A + h3lo o574,

34, (2-29a)

3
+ h3lp=q5- 74

274 4 3.3a. (2-29b)

If either node 1 or 3 is an irregular node, the above constraint equations should be
modified by substituting the corresponding constraint equations into the above
equations. The case when both node 1 and 3 are irregular nodes are excluded in

our discussion because of the complexity and rare occurrence.

The constraint equation management scheme is designed to deal with
a maximum difference of 2 in the generation level. Thus, up to 4 elements on one
side with respect to one element on the other side are allowed as shown in Figure
2-26. If further refinement is necessary and the difference of generation level is
already 2, the adjacent element is refined first in order to keep the maximum

difference 2.

Consider an example of modifying the constraint equations as siown

in Figure 2-27. The constraint equations before refinement of element A are set
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3 (r=1)

hy =12r(r-1)

hy = 1/2r(r+1)

1 (r=-1)

Figure 2-25: Example of constraint equations

generation level =3

Alevel = 2 (allowed)

generation level = 1

generation level =4,

A level = 3 (not allowed)

generation level = 1

Figure 2-26: Limit of refinement
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constraint eqns 4567809
for nodes

regular nodes

used

traint
constraint eqns 46 79
for nodes

regular nodes

152 283
used

a) after refinement of element A

Figure 2-27: Example of modifying constraint equations
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up for nodes 4, 5, 6, 7, 8, 9 in terms of regular nodes 1, 2, 3. After refinement,
node 5 and node 8 become regular nodes, so the corresponding equations should
be removed and the equations for nodes 4,6 and nodes 7,9 should be modified in

terms of new regular nodes, nodes 1, 5, 2 and nodes 2, 8, 3 respectively.

If a mid-side node is not located at the middle of an original edge, the
newly generated nodes and corresponding constraint equations due to the
refinement should be carefully generated in order to satisfy the compatibility
conditions between neighbouring elements. But this is not included in the thesis.
A typical example of using this scheme would be the case of refining the singular
elements used at the crack tip where the mid-node is iocated at a quarter point of

an edge.

In the case of boundary edge refinement, boundary conditions of new
nodes should also be generated appropriately. The rules employed for generating
the boundary conditions are shown in Figure 2-28. In Figure 2-28, the boundary
conditions for nodes k|, k, are generated by using the given boundary conditions

on nodes 1,2, and 3.

The example of this operation is shown in Figure 2-29. If there is any
pressure load on the refined boundary edge, it should be updated appropriately. In
addition to the above process, all the edge connectivity data should also be

updated.
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y
edge "KE"
X

iD(x)=1 20 /e node 3
iD(y)=0 !

|
. ' iD = 1 ; fixed
iD(x)=1 g>é
iD(y)=1 ! 9 iD=0; free

i

1

: u/nodel

iD(x)=1
iD(y)=0 g)

if ( ID(i,nodel ).eq.0) .or. ID(i.node2).eq.0 ) then

ID(i,k1) =0
else
ID(i,kl) =1
endif
if ( ID(i,node2).eq.0 .or. ID(i,node3).eq.0 ) then
ID(i,k2) =0
else
ID(i,k2) = 1
endif

where 1=x,y,z2

Figure 2-28: Boundary edge refinement
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Figure 2-29: Generation of boundary conditions
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2.3 Adaptive Refinement for 8-Node Quadrilateral Elements

It is generally accepted that 8-node quadrilateral elements are usually
most effective (except in wave propagation using the central difference method
with a lumped mass matrix) [54]. However, such an algorithm to construct an 8-
node element mesh in any arbitrary domain automatically was not implemented,
and a near-optimal mesh can only be obtained in this research through the adaptive

refinement process after the initial mesh has been constructed manually.

An 8-node element is designed to have fixed edge directions and the
edge numbering scheme is shown in Figure 2-30. The initial data structure for the
edge connectivity is automatically set up in the program developed, providing the
edge directions between adjacent elements are correctly assigned as shown in

Figure 2-31.

Similar to the 6-node triangular element case, the basic refinement

unit is designed as shown in Figure 2-32,

The details of the refinement process such as the constraint equation
management, boundary condition updating, pressure loading updating and etc. are

the same as for the 6-node triangular element case described in Chapter 2.2.
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Figure 2-30: Edge numbering scheme
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a) incorrect edge direction

Figure 2-31: Examples of edge direction assignment
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Figure 2-32: Basic refinement unit for a 8-node quadrilateral element
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Chapter 3

Mesh Generation for Three-Dimensional Problems

3.1 Overall Procedures for Near-Optimal Mesh GGeneration

A new mesh generation scheme for three-dimensional problems has
been developed in this research. This scheme is applying the concept of the two-
dimensional triangulation process to three-dimensional problems. The basic
strategy of the volume triangulation process is as follows: After the surface
triangulation process has been completed on the loop-faces of a component,
tetrahedral elements are generated from the outside boundary surface toward the
inside by "cutting” the corner edges of the loop-boundary edges. Since the surface
triangulation is performed using the key nodes on the loop-edges, the desired local
mesh density in the three-dimensional analysis domain can be easily controlled by
the key node placement on the loop-edges, which is a major advantage of our
scheme. In order to construct well-conditioned tetrahedral elements, it is
recommended that a complex analysis domain be subdivided into several near
convex subdomains. Both curved-sided elements and straight-sided elements are
used for mesh generation and the finite element analysis. For these elements, the
mid-side nodes are located at the middle of an edge. Since the error analysis in
three-dimensional problems can be simplified by using tetrahedral elements with
straight edges, only tetrahedral elements with straight edges and their mid-side

nodes located at the middle of an edge are used in this work.

The schematic diagram for a near-optimal mesh generation in three-

dimensional analysis is shown in Figure 3-1. As shown in Figure 3-1, a computer
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Figure 3-1: Near-optimal mesh generation process for 3-D problems
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program AMESH which is composed of AMESH-I and AMESH-II has been
developed. AMESH-I is designed to construct the initial mesh from a solid
modeler and AMESH-II is designed to perform the error analysis. An adaptive
refinement process is not included in AMESH-II yet, however it should be

included to obtain a near-optimal mesh in the future.

The data for AMESH-I is of boundary representation type and it will
be necessary to use an interfacing program to prepare the input data for AMESH-I
if an external solid modeler (either CSG or B-REP type) is to be linked to
AMESH-I directly. Same examples of the surface triangulation and volume

triangulation process are shown in Figure 3-2 .

3.2 Design of the Winged-Edge/Face Data Structure

An analysis domain in the three-dimensional space can be considered
to be an assembly of subcomponents,v which refer to subdomains obtained by
dividing the entire domain into several regions. In order to construct well-
conditioned tetrahedral elements, near convex subdomains are recommended for

the complete representation of the analysis domain.

A component is called a "loop" and is defined by its outside
boundaries, i.e. loop-faces and loop-edges. A hole surface inside the analysis
domain is also considered to be an outside boundary and an inside boundary does
not exist in our discussion. The hierarchical representation of the data structure
used is shown in Figure 3-3. In Figure 3-3, LP is a component loop enclosed by
loop-faces and LF is a loop-face enclosed by loop-edges in a counter-clockwise
direction. The triangulation process is to subdivide a loop-face into triangles

which become real faces of tetrahedral elements. LE is a loop-edge which is an
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Figure 3-3: Hierarchical representation of the data structure
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intersection of two or more loop-faces and is to be subdivided into edges which
become real edges of 1etrahedral elements. EL is a tetrahedral element, F is a real

face of an element and E is a real edge of an element.

After the completion of the surface triangulation process, a
component loop is described by real faces and edges instead of loop-faces and
loop-edges, so the connectivity information between faces and edges on a

component loop is ready for the volume triangulation process.

Since loop-edges are assigned in a counter-clockwise direction to
form a loop-face, a loop-face has a certain direction vector which is normal to the
loop-face and points outside of a component loop. If the direction vector points
outside of a component, the component has a positive face number and if it points
inside to a component, a negative face number is assigned to the component.
Therefore, the boundary loop-faces of the assembly have positive face numbers
and the internal loop-faces generated by subdividing the assembly into
components have both positive and negative face numbers. Only positive loop-
faces are triangulated and the resulting edge and face connectivity data are stored
for the negative loop-faces of adjacent components. Hence, positive loop-faces
should be assigned to a component which is to be triangulated first and negative
loop-faces should be assigned to a component that is triangulated later. By using
the positive and negative loop-faces at the interface of components, a complex

analysis domain can be easily subdivided into components and be triangulated.

The whole data structure designed is composed of two parts. One part
is for the solid modeler and stores the geometry information of the assembly and
the other is to store the results of the surface and volume triangulation processes.

The solid modeler used in our discussion is designed to store the minimum amount
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of data required for mesh generation and only includes planar and cylindrical
surfaces. The arrays storing the geometric information and the topological

information of the data structure shown in Figure 3-4 are described as follows.

User input information

LPLFACE(ncomp,i) Loop-faces enclosing a component

ex) 1, 2,-3,..
LPLEDGE(ncomp,i) Loop-edges enclosing a component
ILFACE(nface,i) Type of a loop-face (planar, cylindrical)

Type of a cylindrical surface w.r.i. the virtual view
plane (convex, concave)

Number of loop-edges enclosing this loop-face
Pointer to the geometric information of a cylindrical
surface

Type of a loop-face (normal, thin)

LFLEDGE(nface,i) Loop-edges enclosing a loop-face
ex) 1,-2,3, ..
ILEDGE(4,nedge) First node of a loop-edge

Second node of a loop-edge
Pointer to geometry (straight line, circular arc)
Number of actual edges in a loop-edge

ICIR(2,ncir) Center node number
Sign of the angle between the first and second node

(l’-l)

EDRATIO(nedge) Adjacent edge length ratio in the direction of
a loop-edge

Information generated in the program

UVECT(3,nface) X-component of the unit vector of a loop-face
Y-component of the unit vector of a lcop-face
Z-component of the unit vector of a loop-face



CYLIND(2,ncyl)

LOOPNODE(nface)

LOOPEDGE(ncomp,i)

LOOPFACE(ncomp,i)

LPOINT(i)

LFLFACE(2,nface)

INTEDLF(2,nface)

INTNDLF(2,nface)

LESEDGE(2,nedge)

INTNDLE(2,nedge)

IFACE(3,nface)

JFACE(S,nface)

IEDGE(5,nface)
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Radius of a cylidrical surface
Angle of a cylindrical surface

Boundary key node enclosing a current loopboundary
during the surface triangulation process

Actual edges enclosing a component

Actual faces enclosing a component

Flag whether a node is on a current loop-boundary or
not during the surface and volume triangulation

process

First actual face in a loop-face
Last actual face in a loop-face

First actual edge within a loop-face
Last actual edge within a loop-face

First key node within a loop-face
Last key node within a loop-face

First actual edge in a loop-edge
Last actual edge in a loop-edge

First internal node in a loop-edge
Last internal node in a loop-edge

First node of a face
Second node of a face
Third node of a face

First edge of a face

Second edge of a face

Third edge of a face

Positive side element of a face
Negative side element of a face

First node of an edge
Second node of an edge
Third node of an edge
Left face of an edge
Right face of an edge
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JELEM(4,nelem) First face of an element
Second face of an element
Third face of an element
Fourth face of an element

NOD(10,nelem) Nodes ot an element

INTNDOBJ(ncomp,2) First key node inside a component
Last key node inside a component

INTEDOBJ(ncomp,?2) First edge inside a component
Last edge inside a component

INTELOBJ(ncomp,2) First element inside a component
Last element inside a component

The connectivity information in our solid modeler is shown in Figure
3-5. As shown in Figure 3-5, there is no redundant information stored and the data
to be stored can be easily input by the user or extracted from the external solid
modeler if used. The connectivity information after surface and volume

triangulation is shown in Figure 3-6.

Although the adaptive refinement process for tetrahedral elements is
not included in this research, the data structure designed can be easily extended to

cover the refinement process.

3.3 Surface triangulation

Surface triangulation in three-dimensional space can be performed in
three steps. First, a surface with key nodes is transforme i into a view plane where
the view direction is parallel to the surface normal, and then the triangulation
process described in Chapter 2 is performed on this plane. Finally, the
triangulated domain in the view plane is transformed back to the original surface

of the object. The transformation of the data between a three-dimensional space
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LPLFACE(iobj,nf) ]
LPLEDGE(iobj,ne)

ILFACE(3,nf)
SOLID MODELER LFLEDGE(nf,ne)

COR i /LFDATA/
MES UVECT(@3,nf)
GENERATION CYLIND(2,ncyl)

/LPDATA/

ILEDGE(4,ne)
ICIR(2,ncir) /LEDATA/

EDRATIO(ne)

LOOPNODE(nf)
LOOPEDGE(iobj,ne)
LOOPFACE(iobj,nf) /LPDATA/
LPOINT(np)

LFSFACE(2,nf) 7

SURFACE INTEDLF(2,nf)
TRIANGULATION INTNDLEF(2,nf) _
LESEDGE(2,ne) ]
INTNDLE(2,ne) ]

IFACE(3 nsf)
JFACE(S.nsf) | /FDATA/

IEDGE(S,nse) -1 /EDATA/

/LFDATA/

/LEDATA/

JELEM(4,nel)
IFACE(3,nsf) ]

VOLUME JFACE(S,nsf) [FDATA/
TRIANGULATION | INTNDOBI(iobj2) ] -~
INTEDOBI(iobj,2) JOBIDATA/
INTELOBI(iobj,2)

Figure 3-4: Dissembled winged-edge/face data structure
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Figure 3-6: Connectivity information for the surface and volume triangulation
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and a two-dimensional view plane is performed by using the parallel projection
technique [55-56], in which the view direction is parallel to the surface normal and
passes through the origin of the global coordinates. In our discussion, only planar

and cylindrical surfaces are considered.

A planar surface on which the surface normal is uniquely defined can
be transformed to a view plane by using the surface normal vector. The example

of planar surface triangulation is shown in rigure 3-7.

In case of a cylindrical surface for which the surface normal vector is
not uniquely defined, a virtual view plane and the corresponding normal vector are
used for the triangulation. A cylindrical surface can be considered to be a domain
enclosed by two circular loop-edges and two straight loop-edges. Here, a virtual
view plane is defined as the one enclosed by the straight loop-edges and the chords
of circular loop-edges. The surface in this view plane is scaled up by using a scale
factor, s,, in order not to reduce the actual size of the circular loop-edges as shown

in Figure 3-8.

S = Iperimerer (3-1)

,chord

So the resulting surface in the virtual view plane is equivalent to the unfolded strip

of a cylindrical surface.

Once the surface triangulation process has been completed on the
unfolded strip of a cylindrical surface, the resulting mesh is transformed 1o the
cylindrical surface in the view direction as shown in Figure 3-9. Finally, the
triangulated cylindrical surface in the view direction is transformed back to the

original surface of the object.
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Figure 3-7: Planar surface triangulation
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Figure 3-9: Transformation to cylindrical surface in the view direction
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3.4 Volume triangulation

The basic idea of volume triangulation can be considered to be an
extension of suiface triangulation. As is the case of surface triangulation, volume
triangulation starts from the outside boundary toward the inside by removing the
comer edges of a component loop-boundary using certain basic operations. With
the surface triangulation process, all the edges on a loop-boundary are assigned to
be "level one" and as the volume triangulation proceeds, the "icvels” of the new

generated edges are increased by one for each operation.

Since the best form of tetrahedral elements in finite element analysis
can be considered to be equilateral tetrahedra, the resulting elements are generated
as close as possible to equilateral tetrahedra. The desired tetrahedron is shown in

Figure 3-10.

Due to the topological requirements, which will be described later in
this chapter, at least three basic operations are needed to reduce the number of
edges and faces in a loop-boundary and in our scheme, one more basic operation is
designed to construct the last two or three tetrahedral elements. In order to
describe the basic operations, the following definitions are introduced. Consider

an edge, KE, in Figure 3-11.

An edge KE has two adjacent faces, a lert face and a right face, and
four surrounding edges, ell el2erl and er2, in a counter-clockwise direction on
each side of the edge. The adjacent faces of these surrounding edges,
ell el2.erl er2, are F1,F2,F3 and F4 respectively and are called surrounding faces
to an edge KE. An edge angle is a dihedral angle formed by two adjacent faces,

the left face and the right face.
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Figure 3-10: Desired tetrahedral element
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Figure 3-11: Unfolded view around edge KE
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Four basic operations (Type-1A,Type-1B,Type-2,Type-0) are
designed to perform the volume triangulation. Type-1A and Type-1B operations
are designed to generate one element at a time from a loop-boundary and Type-2
operation is designed to generate two elements. Type-0 operation is designed to
construct the last two or three elements in order to complete the volurne

triangulation process.

Topologically, a Type-1A edge is an edge which has one common
surrounding face as shown in Figure 3-12. This is equivalent to the condition that
only three edges meet at one node. However, in order to generate well-
conditioned elements, geometric restrictions are imposed ,ie. the edge angle
should be less than or equal to 120°. A Type-1B edge is an edge for which the
edge angle is less than 85° (8; 2 1.8) or 100° (8. < 1.8) depending on the face area
ratio, §;, and certain conditions are satisfied. Since, the desired element has an
edge angle of 70°,a Type-2 edge where two elements are constructed at a time can

have a maximum edge angle of 175°.

Type-1A operation

A Type-1A operation on a Type-1A edge generates one tetrahedron
by removing three faces, three edges and one key node from a loop-boundary and
generates one new face as shown in Figure 3-13. This operation can be considered
to be trimming process. In this operation, the derivative of Euler’s formula is

satisfied as follows.
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a) F1=F4 or a) F2=F3 or
3 edges meet at node N1

3 edges meet at node N2
Figure 3-12: Type-1A edge

Figure 3-13: Type-1A operation - trimming
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AV — AE + AF = -1 + 3 -2 =0
AV = -1 ; change in number of key nodes
AE = -3 ' change in number of edges

AF = =2 ; change in number of faces

After a Type-1A operation, the number of loop-boundary edges and faces has been
reduced (AE=-3, AV=-1, AF=-2), and the edge angle of the remaning edges El,
E2, E3 have been reduced. In addition, the topological conditions on nodes N1,
N2, N3 have also been changed so that the number of edges connected to these
nodes have been reduced by one. Therefore, this operation can generate new
Type-1A edge around nodes N1, N2, N3, when the number of edges connected to

these nodes reaches three due to this operation.

Type-1B operation

This operation is designed to generate one tetrahedral element at a
Type-1B comer edge as shown in Figure 3-14. This operation can be considered
to be wedging process. In this operation, one edge and two faces have been
removed, and instead one new edge and two new faces have been introduced.

Therefore, the derivative of Euler’s formula is also satisfied as follows.

AV - AE + AF = 0

(AV=0, AE=0, AF=0)

The changes due to this operation are as follows. Geometrically, the edge angles

of surrounding edges ell, el2, erl, er2 have been decreased so that it promotes to
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Figure 3-14: Type-1B operation - wedging

new key node

N1

Figure 3-15: Type-2 operatiun - digging
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generate Type-1A, Type-1B or Type-2 edges. Topologically, for nodes N1 and
N2, the number of edges connected to these nodes has decreased by one due to the
removal of an edge KE, while for nodes N3 and N4, the number of edges has
increased by one due to the introduction of new edge JE. Hence, this operation

can generate new Type-1A edges around nodes N3 and N4.

Type-2 operation

This operation is designed to generate two tetrahedral elements at a
Type-2 comer edge by introducing a new key node as shown in Figure 3-15. This

operation can be considered to be digging process.

In this operation, an edge of interest KE is removed and instead four
new edges El, E2, E3, E4 have been introduced to a loop-boundary , so the
change in the number of edges, AE is +3. Also two adjacent faces, left and right
face, are removed and four new faces are generated, thus the change in the number
of faces, AF is +2. Since a new key node is introduced, the number of key nodes
on a loop-boundary is increased by one. Thus, this operation satisfies the

derivative of Euler’s formula as follows.

AV — AE + AF =1 -3 +2 =0

The geometrical contribution of this operation to the entire volume triangulation
process is to reduce the surrounding edge aﬁgles at ell, el2, erl, er2 so that it
promotes to generate Type-1A, Type-1B and Type-2 edges among the edges
ell,el2,erl and er2. Topologically, the number of edges connected to nodes N3,
N4 is increcased by one, while the number of edges connected to nodes N1, N2

remains unchanged. Thus, the primary goal of this operation is to generate
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Type-1B edges and Type-2 edges by reducing the edge angles. However,
sometimes this operation can generate Typ 1A edges by reducing the edge angle
when an edge has one common surrounding faces and the edge angle is greater

than 120°.

Since the number of edges, faces and nodes of the loop-boundary is
increased by this operation, this operation has adverse effects on the volume
triangulation process, in which the number of edges , faces and nodes is to be
reduced. However, this operation is sometimes necessary to generate Type-1A or

Type-1B edges when no more Type-1A and Type- 1B operation is possible.

A Type-2 operation, in which a ne'v key node is generated, is a more
complicated one than Type-1A and Type-1B operation, in which only the
connectivity information of a loop-boundary need to be changed. A Type-2
operation is designed to be adaptive and is composed of two steps. First a new
key node is generated considering the effects of surrounding faces and edges and
then, the new key node position is adjusted according to the scaling factor, r.
Consider the first step of a Type-2 operation in Figure 3-16. In order to construct
two well-conditioned tetrahedral elements, the height of a new face, / 12 is taken as

Vi 115, the geometric mean of those of adjacent faces with the following conditions,
o -
—_— = = or lio = Vi, (3-2)

Using the height of a new face, the new key node position A; is

determined as the average of the positions, A, and A,,

0A, = %(OAG + 0Ay) (3-3)
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Figure 3-16: Generation of a new key node
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The position A, is dertermined by rotating a vector of length / 12 in the direction

S1-N3 with respect to the axis N1-N2 by the angle of -0/2[55].

-—,
08, = ON, + N3, (3-4a)
—
—
- NINZ
where e =
IN\N,|
— —> —>
04, = 05, + §A, (3-4b)
-—’
= 0§, + 112-[COS(—%)--;2 + sin(—%)-?lx?z]
—_
> _ 5N
where €y =
MUK

Similarly, the position A is determined by rotating a vector of length / 12 in the

direction S2-N4 with respect to the axis N1-N2 by the angle of 0/2 as follows.
. N _ _
—> - 2 -
= ON] + (N1N4-el)e1

e d —> —

—>
= 0§, + 112-[003(%)-:”3 + sin(%)--e’l X?.%]

—_—
— SZN4
where €3 =
[SoN4l

In order to include the effects of surrounding edges and faces, the



-100-

same procedure is repeated at the surrounding edges, ell, el2, erl and er2, to
obtain the candidate positions, A,, A3, A4 and As respectively.

The number of tetrahedral elements that can be generated at an edge
"i" with an edge angle ¢, is taken as the nearest integer of 9,/70° so that the
tetrahedra are as equilateral as possible. In our scheme, if a surrounding edge
angle is greater than 245° when more than three elements should be generated, the
effect of this edge is neglected for convenience. If the surrounding edge angle is
less than or equal to 175° when two elements are generated, the new key node is
generated using the same procedures as above. If the surrounding edge angle is
between 175° and 245°, the new key node is generated as shown in Figure 3-17.

In order to construct three well-conditioned elements, the height of a new face l;is

taken as

= 32, (3-6)

The new key node position A, is obtained as the weighted average of
the positions A, and A such as

—
OA;, =

i

— -
(2-0A, + OAp) (3-7)

GO e

The position of A, is determined as,
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surrounding
face A left or right

face

Figure 3-17: New key node position from a surrounding edge
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—— ——p ~—t
oC’ = OA + AC’ (3-8a)
= OA + (AC-¢)¢]
—
. - AB
where e = ——
|AB|
—> — —
OA, = 0C" + C'Aa (3--8b)

-
= OC’ + Ii'[COS(—%)'ZJ + Siﬂ(—%)'?l X?ZI

—
- c'c
where e =
B |CC|

Similarly, the position of A, is determined as,

- el -—> — -

OD' = OA + AD’ = OA + (AD-¢;)¢; (3-9a)
—> — —

OAb = OD’ + D,Ab ( 3—9b )

—y
= OD" + 1,.-[cos(3§‘l‘)-é'3 + sin(%‘?.‘)-z’lxa]

—_—

- D'D

where €3 = ——
: |D'D|

After obtaining five positions for a new key node from an edge of
interest and four surrounding edges, the weighting factors are used to determine a
unique position of a new key node. Since the shape of small elements will be
more distorted by using a modified new node, the weighting factors are taken in

inverse proportions to the area of each new face as shown in Figure 3-18.

After obtaining the new key node position A, the next step of an
adaptive Type-2 operation is to adjust the key node position from A to A* using a

scaling factor r, as shown in Figure 3-19. The scaling factor, r, is defined as
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w,-ocl,i=1,2’ , S
Si
Let w;, = 1
S, M’O
3, 1 1 1 1
where wg = Y- = (- + — + + =)
2 i St 5 Ss

OA = M’I'OAl + M’2'0A2

+ M’3'0A3 + M'4‘0A4 + M’5‘0A5

Figure 3-18: Key node position using the weighting factors



-104-

Nnew
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Sﬁnew = —(-)—lzlmid + r e NmidNnew
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Nne ®
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N1
(ifail=0,r=1) (ifail=1,r=1/2) (ifail=2,r=1/3)

Figure 3-19: Adjustment of a new key node position
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I |
= , fail = 0,1,2,. -1
" Tv Yar (3-10)

where ifail is a number of failure in performing any basic operation, Initially, ifail
is set to zero and if no more basic operation is possible because of failure in check

process, ifail is increased by one and so on.

Type-0 operation

The Type-0 operation is designed to construct the last two or three
elements when the number of edges in a loop-boundary reaches 9. With these 9
edges, two kinds of polyhedron (loop-boundary) are possible and the

corresponding mesh constructions are shown in Figure 3-20.

As shown in Figure 3-20, the Type-0 operation is a combination of
Type-1A and Type-1B operation. Therefore, it also satisfies the derivative of
Euler’s formula. However, in order to avoid any overlapping between elements a
special operation is needed to complete the tetrahedronization. This is acheived

by the Type-0 operation.

If the surface triangulation on a component has been performed
correctly, the resulting polyhedron with V key nodes, E edges and F faces will

satisfy the following Euler's formula,

V-FE+ F =2 (3~11)

After the surface triangulation process, the resulting polyhedron will
have a large number of faces, edges and nodes and the volume triangulation is to

reduce the number of faces, edges and nodes by using basic operations and finally
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N2

NA,NB ; 3 edges meet at this node

a) Two element construction NA

N1

NA

N1

b) Three element construction N2

Figure 3-20: Type-0 operation
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to get one tetrahedron (V=4, E=6, F=4). Since all the basic operations satisfy the
derivative of Euler's formula, the resulting polyhedron after each operation will
also satisfy Euler's formula. Among the basic operations, only the Type-1A
operation contributes to reducing the number of faces, edges and nodes (AV=-1,
AE=-3, AF=-2), so enough number of Type-1A operations should be performed to
complete the volume triangulation process. Type-1B operation(AV=0, AE=0,
AF=0) is performed to generate Type-1A edges when no more Type-1A edges are
available. The Type-2 operation(AV=1, AE=3, AF=2) is performed to generate a
Type-1B operation when either Type-1B or Type-1A edge is not available. Since
this operation increases the number of faces, edges and nodes of a loop-boundary,
one more Type-1A operation will be necessary to compensate for this adverse
effect if one Type-2 operation is performed. Therefore at least three basic
operations (Type-1A, Type-1B, Type-2) are required for the volume triangulation
process. Starting from an initial polyhedron, the volume triangulation process can
always be completed by using these basic operations, providing that there is no
overlapping of loop-boundary edges and faces during the volume triangulation
process. In order to avoid any overlapping or bottle-neck like region, check

processings are designed for our volume triangulation process.

The check processing is necessary during the volume triangulation
process for an overlap check and minimum distance check. In case of the overlap
check, the new faces of the generated tetrahedral elements are checked whether
any overlapping occurs between these faces and the remaining loop-boundary
faces. In the actual computer implementation, it is easier to check the overlapping
between new faces and the remaining loop-boundary edges rather than to check
between new faces and the remaining loop-boundary faces. Hence, the overlap

check in our discussion is to test whether the remaining loop-boundary edges
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pierce the new generated faces of each operation. Consider the overlap check in
Figure 3-21, which is to test whether a loop-boundary edge, a-b, pierces a new
face, 1-2-3. The following procedures are used for the overlap check.

1. Check whether the coordinate ranges of line a-b oberlap with those

of a new face 1-2-3. If any overlapping occurs, go to step-2.

2. Calculate the piercing point between an edge a-b and the plane
containing a new face 1-2-3 as follows. The equation of a plane
containing a new face 1-2-3 is found to be

Z = Ax + By + C (3-12)

1
where A = 5(213)’23 - )’13323)

B = —%(313123 — X13723)
C =z - Ax; - By,
D = x13¥23 — ¥y13%23

and X3 = X — X3, el

The equation of a line connecting nodes a and b is expressed in
parametric form as

X = Xq + I'Xba

y = ya + t«vba (3_13)
z = Za + t Zba
where 0<t<1

Thus the piercing point can be found by substuting equation (3-13)
into equation (3-12).
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new element

Figure 3-21: Overlap check

P'(x' p,y p)orP( §1,§2,83)

Figure 3-22: Area coordinates of a piercing point



-110-

z,—Ax,-By -C
r = 2 a -a (3-14)
AXpy + B-yp, — 24,

If ¢ does not lie in the range zero to one, the piercing point is not
valid, so go to step-1 with the next available loop-boundary edge.
The piercing point is obtained as

Xp = X t X,
Yp = Yo * 'Ypg (3-15)
Zp = Za + f'Zba

. Check whether a piercing point, p, is contained within a new face
1-2-3 by using the area coordinates of a triangle[57]). To begin,
transform the piercing point, p, and the nodes 1,2 and 3 into a view
plane S-T, in which the view direction is parallel to the surface
normal vector of a new face 1-2-3 as shown in Figure 3-22. The
area coordinates of a piercing point are calculated as follows.

1 11 18T

o= | x x x3|& (3-16)
Yp oYy Yill&s

or

g, , RY3-% Y B X 1

G =3 | BN-x% W K || % (3-17)
Cs X\Y2- %Y V2 Xp Yp

where D'= X,3¥53 - Y13X 53

If min[§;, §y, {3] and max[{;, {,, {3] both lie in the range zero to
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one, the piercing point is contained within the triangle, i.e. a loop-
boundary edge pierces a new generated face. Therefore, the overlap
check fails in this operation.

4.1f an edge lies in the same plane containing a new face, area
coordinates are used for in and out test of nodes a and b w.r.t. a new
face and a loop-boundary edge a-b is also tested for the intersection
with the edges of a new face as shown in Figure 3-23.

For the overlap check, one new face is tested in Type-1A operation
and two new faces are tested in Type-1B operation and four new faces are tested

in Type-2 operation.

In the case of the minimum distance check, a new key node is tested
whether it has enough distance to the remaining loop-boundary faces in order to
construct well-conditioned elements. The distance from a new key node to a loop-
boundary face can be checked by transforming a new key node into a view plane
of a loop-boundary face, in which the view direction is parallel to the surface
normal of the face and comparing the relative depths in the view direction as
shown in Figure 3-24. The minimum distance requirement to a loop-boundary
face changes according to a parameter, ifail, used in adaptive Type-2 operation.
As shown in Figure 3-10, the height of an equilateral tetrahedron is represented as
a function of the face area ( h = 1.24VA ). Initially, the minimum distance to a
loop-boundary face is set approximately to a half of the height, 4, of an assumed
desired tetrahedron and a parameter, ifail, is introduced to adjust this disiance as

follows.
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1 1
2
2Q 2Gb
3 3

a) Both points inside (fails) b) One point inside, one point outside
(fails)
1 1
a
a
b ’\‘ b
2 2
(fails) 3 (passes) 3

c) Both points outside

Figure 3-23: Intersection test in overlap check

Nnew 5

dmin A Nnew

dmin

> oo S, T
C B cC A

R (view direction) R

Z é
=
——————,

Figure 3-24: Minimum distance check
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min = 13:;1:'1\/2 (3-18)
ifail = 0 ; d,;,, = 0.6VA (=048h)
ifail = 1 ; d,;,, = 03VA (=024h)
ifail = 2 ; d,,. = 02VA (=0.16h)
and etc.

Similar to the case of surface triangulation process, the key issues in
volume triangulation process are i) how to define Type-1A, Type-1B and Type-2
comer edges among the loop-boundary edges and ii) in which order the basic
operations should be performed. The following heuristic rules are used in our

discussion.

1. A Type-1A edge is an edge which has one common surrounding face
as shown in Figure 3-12, which is equivalent to the condition that
three edges meet at one node, and the edge angle is less than or equal
to 120°.

2. A Type-1B corner edge is a loop-boundary edge where there is no
common surrounding face, i.e. more than four edges meet at one
node, and the edge angle is less than 85° (§; 2 1.8) or 100° (§; < 1.8)
depending on the face area ratio , §; and the surrounding face area
ratios do not change drastically due to the Type-1B operation as
shown in Figure 3-25. In addition, the new generated edge due to
Type-1B operation should not be an existing edge in order to avoid
splitting a loop-boundary domain into two subdomains as shown in
Figure 3-26. And the new generated edge should not be in any face
of a loop-boundary in order to avoid overlapping between a new
edge and the exisiting edges as shown in Figure 3-27. In Figure
3-27, if a Type-1B operation is performed on an edge, KE, the new
generated edge N3-N4 overlaps with the existing edge N1-NS. This
is a typical case when no more Type-1A or Type-1B operation is
possible on all 9 edges, so Type-2 operation which generates a new
key node inside a loop-boundary is necessary.




-114-

N2
edge "i"
AL AR
§; =max ( —— ,—— ):arearatio
N3 | > N4 AR AL
A ,AR :areas of adjacent faces
N1
N3 N3
N2
N1
N4
before operation; after operation;
8 old=max(8;,82,83,84,85) 8 new=max(3,".8," 85,8, 85 )

If ¢; < 60° then type-1B edge
Elseif 60° < ¢; < 85° ~ 100° then
if 8,4 < 1.2 then
if 8, < 1.78,,, then type-1B edge
elseif 1.2 <8,;< 1.5 then
if 8,00 < 1.30,4 then type-1B edge

else
if 8,0 S 1.28,,, then type-1B edge
endif
Else
Endif

Figure 3-25: Type-1B edge decision
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existing edge

Figure 3-26: Example of an existing edge

9 candidate edges (o)

Figure 3-27: Example of overlapping edges in Type-1B operation
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3. A Type-2 comer edge is an edge which is neither Type-1A edge nor
Type-1B edge and the edge angle is less than 175°, suitable for
generating two well-conditioned elements.

4. Among different types of operation, the order of operation is
determined as follows.

e Type-1A operation
e Type-1B operation
e Type-2 operation

5. Among the same types of operations, the order of operation is also
an important factor especially in the case of Type-2 operation.

6. Type-1A and Type-1B edges are sorted to decide the order of
operations considering the following factors successively.

e Low level

 Small edge angle, ¢,

e Small adjacent face area, A,

o Large adjacent face area ratio,

7. Type-2 edges are sorted to decide the order of operations considering
the following factors successively.

e Low level
* Large adjacent face area ratio, 9,
e Small adjacent face area, A;

* Small edge angle, ¢,

After the volume triangulation process has been completed for a given
component, a subregion domain, the resulting mesh is finally improved by the
application of the smoothing technique described in Chapter 2. It also has been
observed that usually 5 to 10 iterations are enough to converge to a given tolerance

of 1/500 Lsys,em (characteristic length of the system).

All the above details are summarized in the flow chart of the entire
volume triangulation procedures shown in Figure 3-28. An example of the

volume triangulation scheme developed in this research is shown in Figure 3-29 to
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Surface Triangulation

yes
< Nedge=9
no
Select Type-1A edge
L , yes
Perform Type-0 if any - !
operation
* Select Type-1B ed Y
Smoothing ect “ype-7H edge Perform one
Process Type-1A operation
if an
Y yes > [ 4
STOP no S‘;"
Select Type-2 edge Perform one .
Type-1B operation
. yes
if any & ¥
sort
no ‘
"Errqr" ...NO m{)re Perform one
operation possible Adaptive Type-2
operation

Cx

Figure 3-28: Flow chart of the volume triangulation process
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Figure 3-33. In Figure 3-29 a) we consider a cylinder with the loop-faces and
loop-edges defined for the mesh generation. The example of the input data is

shown in Figure 3-29 b) and the mesh is obtained as in Figure 3-29 c).

Since only straight-sided tetrahedral elements are employed for this
mesh generation, the curved surface of the cylinder is not accurately modeled,
which results in 6.5 % error in the volume. We also see that after the smoothing
process, the minimum dihedral angle in the mesh has increased from 18.2° to
31.0°. The total number of elements constructed is 279, which compares well with
the estimated number, Ngginae = 314, obtained by assuming a relatively small

size of e¢lement as a reference.

Another example is considered for the mesh generation, namely the
example of a cube as shown in Figure 3-30. The number of elements in the cube
is 92, which is within an estimated range (Nestimate = 72 - 162), and the minimum
dihedral angle in the mesh is obtained as 42.9° after smoothing. Hence, we see

that our mesh generation algorithm works very well in this example.

Graded meshes are also constructed in Figure 3-31 and Figure 3-32
for the same cube, which show reasonable results. The minimum dihedral angle in
the mesh is obtained as small as 9.7° due to the drastic change in the element size

assigned as an input.

However, if we consider a fine mesh construction as shown in Figure
3-33, the result is not quite as satisfactory as that of the coarse mesh in Figure
3-30. The number of elements constructed is 829, more than the estimated value,
Nestimae = 750, obtained by assuming a small size element. The minimum

dihedral angle after smoothing is 19.8°.

Therefore, the suggested algorithm works very well for a relatively



: (=

Volume = 9.42

Figure 3-29 a): Cylinder with loop-faces and loop-edges
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Input data for mesh generation of a cylinder

Figure 3-29 b)
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V= 0.03

estimate =314)
xkXx BEFORE GMOOTHING i IOKJ = 1
MIN VOL = 0.010 EL NO = 225 CHARACT. LENG = 0.4346
MAX V0L = 0.069 EL NO = 84 CHARACT. LENG = 0.837
AUG VOL = 0.032 TOT vOL = 0.881E+01
MIN ANGLF = 18.2 EL NO = 212
¥X SMOOTHING HAS CONVERGED ¢ NO. OF ITERATION = 6
Xx% AFTER SMOOTHING 3 IOBRJ = 1
MIN VOL = 0.013 EL NO = 273 CHARACT. LENG = 0.477
MAX VOL = 0.0685 EL NO = 183 CHARACT. LENG = 0.822
AUG V0L = 0.032 TOT vOoL = 0.881E+01
MIN ANGIE = 31.0 EL NO = 35
NUMEL = 279
NUMNF = §34
NUMFACE = 626
NUMEDG = 439

Figure 3-29 c): 279 element mesh for a cylinder
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xkx HBEFORE SMOOTHING # IOKJ

1

MIN VOL = 1,326 EL NO = 69 CHARACT., LENG = 2,241
MAX VOL = 5.758 EL NO = 90 CHARACT. LENG = 3.5856
AVG VOL = 2,348 TOT vOL = 0.216E+03
MIN ANGLE = 28.2 EL NO = 44
% SMOOTHING HAS CONVERGED ¢ NO. OF ITERATION = 6
xx% AFTER SMOOTHING i IOEJ = 1
MIN VOL = 1.333 EL NO = 1 CHARACT. LENG = 2.245
MAX VOL = 4,520 EL NO = 90 CHARACT. LENG = 3,371
AVG WOL = 2,348 TOT vOL = 0.,216E+403
MIN ANGLE = 42.9 FL NO = 36
NUMEL = 92
NIJMNF = 221
MUMFACE = 220
NUMEDG = 174

Figure 3-30: Uniform coarse mesh for a cube



-123-

¥%x% EEFORE SMOOTHING IOEJ =
MIN vOL = 0.022 EL NO =
MAX VOL = J5.993 EL NO =
AVUG oL = 0,753 TOT vOL
MIN AaNGIE = 21.6 EL NO =
% SHO0THIMG HAS CONVERGED ¢ NO.
kX% AFTHR SMOOTHING # IOERJ =
mIN V0L = 0,022 EL NO =
MAY VoL = 5,993 EL NO =
ave vl o= 0.733 TOT vOL
MIN ANGLE = 31.1 EL NO =
MUMEL = 287
HIUMNE = 537
NUMFACE = 637
MUMEDG = 443

1

S  CHARACT. LENG
284  CHARACT. LENG
= 0.216E403

258

OF ITERATION =

1

S  CHARACT. LENG
284  CHARACT. LENG
= 0,216E403

63

Figure 3-31: Graded mesh-1 for a cube
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% ¢ DEFORE SMOOTHING 7 IOBJ = !
Mis VDL = D.002 EL NO = % CHARACT . | ENG = 0,269
Max VoL = 18.000 EL NCO = 3z CHARACT . LENG = 9.344
alG o ogaL = 14,149 TOT vOoL = 0.216C+03
MIN ANGLE = 7.1 EL. NO = 120

¥% SMGOTHIMG HAS CONVERGED ¢ NO. ITERATION = 10

kx¥ SFTER SMOOTHING 3 ICQRJ = 1
mIM 0oL = 0.002 EL NO = 5 CHARACT, LENG = 0,265
A VL o= 18,000 EL NGO o= 32 CHARACT, LENG = 50344
uGoveL s 1.14% TOT VoL = 0.216E403
MIN ANGED = 7,7 ElL. NO = 123

MUME L = 188
NHIMNE = 354
NUMYACE = 415
NUMEDNG = 290

Figure 3-32: Graded mesh-2 for a cube
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Figure 3-33: Fine uniform mesh for a cube
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coarse mesh generation, but for a fine mesh generation the result is not as

satistactory.

3.5 Error Analysis

An error analysis for three-dimensional problems, i.e. a computation
of error indicators, has been implemented in our research, although an adaptive
refinement process is not included. The error indicator used in two-dimensional

problems is written for three-dimensional problems as follows,

h
Ny = f'"j (R + R2 + RD)dV (3.19)

As a reference value, the total strain energy of the system has been

used with the following modification,

U
rotal

Ureference - (3-20)
system

where Ureference + reference strain energy per unit

length
Uiptar + total strain energy of the system
Loystem + characteristic length of the system

As a criterion for further refinement , a non-dimensionalized error
indicator of each element defined as follows could be used,

£ = ._M__ (3-21)

m
Ureference
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The total error indicator of the system is found to be

N
Eotal = z Em (3-22)

m=|

The equilibrium equations for three-dimensional problems are

a0, . dT,., ot
R.= X.\+ l)+ M+f:\,=0

x ox ay 0z
oT,,. oG, ot

R,o= - 4 W 4 2 4 f =0 (3-23)
YT T oy ;"

oT., oT., 00..
R.= 22+ 2+ _Z+f =0

[58] as
Oxx 1 T3 T Exx
\I
Oy TXV I 1 Eyy
6, | _EO-v vy e,
= (+v)(1-2v) | 1=V IV 1-2v
Txy 2(1-v) Txy
1-2v
T Y
v 2(1-v) ye
Tzx 1-2v Yux
A - 21-v) JdL

(3-24)
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Using the equations (3-23) and (3-24) and the strain-displacement
relationships, the residuals are obtained as summarized in Appendix B.
By the chain rule, the relationship in Table 3-1 is obtained and is used to calculate
the second derivative operators 0%/dx2, 02/dy2, 8%/0z2, 9%/dxdy, 92/dydz and
02/3zdx. When computing the error indicators by Gauss integration, the residuals
should be calculated at every integration point of each element. Hence, the
equations in Table 3-1 must be used at every integration point of each element. In
order to reduce the amount of computations involved, only straight-sided
tetrahedra with mid-side nodes located at the middle of their edges are used in the
error analysis. In this case, the Jacobian matrix J is constant and the computation

in Table 3-1is considerably simplified.

Consider a 10-node tetrahedral element and the corresponding
interpolation functions as shown in Figure 3-34.[58]
If we consider a straight-sided tetrahedral element with mid-side nodes located at
the middle of their edges, the derivatives of the interpolation functions are
obtained as shown in Table 3-2, and the J matrix is constant through the element,

as follows.

0 J 0
] = J“ 3x3 [ “]3x3
J 0 J
L 2l_j 6x3 [ J22]6x6_j | [ 22:]6;@_‘

(3-25)

|

where
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hy = (1-r-s-t)(1-2r-2s-2t)

h2 = r(-1+2r)
h3= s(-142s)
h4= t(-1+2t)
hs = 4r(1-r-s-t)
hé= 4rs

h7= 4s(1-r-s-t)
hs= 4rt

h9 = 4st

hio = 4t(1-r-s-t)

Figure 3-34: Interpolation functions for a 10-node tetrahedral element [58]
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2

Z T 2X'rY‘r
2 .

Z s 2X sYs
2

Z 2X Y1

AGVA

2YsZ,s

PA (VA

27 Xr

27sXs

27, Xt

ZrZs X oYs+X,sYr YrZstY sZr X 1Zs+XsZrp

ZsZy X sYa+XYs YsZi+YZs X sZi+XZs

ZaZr X cYi+XYr YiZu+Y 1 Zs X tZ1+X0Zr

Therefore, the simplified relationships are obtained as

— 27

or 2

a2

852

The second derivatives of the interpolation function A,(r,s,t) in Table 3-2 show that

J 5, =const

—_

dyoz
a2

0z0x

(3-26)



-134-

the second derivatives of the displacement, a, with respect to the isoparametric

coordinates are constant throughout the element such as

2 d2h.
0~ !
—a = Z_ai = 4(a; +a,-2a5) = constant
or- T~ or2
and etc.

Since the left-hand side of the equation in Table 3-2 is constant
throughout the element, the second derivatives of the displacements with respect
to the real coordinates are also constant throughout the element and can be
obtained by using the Gauss elimination once for each element. Therefore, the
residuals are constant throughout the element and can be computed exactly

without using numerical integration.
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Chapter 4

Sample Solutions

We present some examples that demonstrate the effective use of our
algorithm for near-optimal mesh generation. There is no unique way in
constructing the near-optimal meshes. If we have enough information about the
problem already, we migh* be able to construct a near-optimal mesh within a given
accuracy of solution in one step by controlling the key node density carefully on a
loop-boundary. Otherwise, we may need to construct a coarse mesh and perform
the adaptive refinement process several times. However, in general, the desirable
way would be to construct an initial mesh as close as possible to a near-optimal

mesh and limit the number of refinement iterations to about 2 to 3 iterations.

The following examples are presented in the order in which the basic
algorithms are described in Chapters 2 and 3. Therefore, two dimensional
problems using the triangular elements and the quadrilateral elements are

considered first and then three dimensional problems are considered.

In the example (4-1), two different error indicators are employed for
the refinement process in order to compare the efficiency of the error indicators :
one uses the energy norm without a relaxation factor as in equation (2-24), and the
other uses the energy norm with a relaxation factor as in equation (2-25). In all
the other examples, the error indicator with the relaxation factor is used for the

error analysis.
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4.1 Two-Dimensional Application

4.1.1 Examples Using Triangular Elements

Three examples are considered for the use of the 6-node triangular
element. This element is equivalent to the degenerated 8-node quadrilateral
element with the isotropic correction in ADINA [50]. The examples are chosen to
solve a problem in axisymmetric, plane stress and plane strain conditions,

respectively.

(Example 4-1) Analysis of an Axisymmetric Pressure Vessel

The first example concerns the analysis of the axisymmetric pressure
vessel shown in Figure 2-21(a). The goal of the analysis is to determine the stress
distribution due to the internal pressure loading on the "line of stress output"

shown in Figure 2-21(b).

This problem was first considered in a paper by Floyd [59] and more
rigorous analyses have been performed by Sussman and Bathe [60-61]. In their
paper, Sussman and Bathe have constructed a near-optimal mesh with 181 eight-
node elements to obtain a resonable accuracy of solution. The mesh constructed is
shown in Figure 4-1 and the graphs of the principal stresses along the line of
interest are shown in Figure 4.2. These results compare farely well with the

photoelastic results [59].

Two different error indicators are used to compare the efficiency of
these indicators in the refinement process. For this purpose an initial coarse mesh

is constructed using the program AMESH-1. In order to construct an initial mesh
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[ ]

(b) Detail of mesh

Figure 4-1: continued
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100
80+
a-Elements above line
o 60 o-Elements below line

Figure 4-2 a): Maximum in-plane principal stress for 181 element mesh [61]
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60 r
4 -Elements above line
O -Elements below line
40+
%
(psi)
20F

Figure 4-2 b): Minimum in-plane pricipal stress for 181 element mesh [61]
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with well conditioned elements, the analysis domain is subdivided into four near-

convex subdomains as shown in Figure 4-3.

The triangulation algorithm automatically constructed the 104
triangular element mesh shown in Figure 4-4. For this mesh, the stresses are
computed at the nodal points and the principal stress distributions on the "line of

stress output” are shown in Figure 4.5.

The figure shows the stresses calculated from the elements above the
line of interest and from the elements below that line. The results in Figure 4-5
show large stress discontinuities between adjacent elements, which means that the

mesh is not satistactory.

If we use the error indicator with the relaxation factor, //h, (see
equation (2-25)) for the adaptive refinement process, a 281 element mesh is
obtained in 2 steps (104 element — 236 element — 281 element) within a given
error tolerance (€,gjerance = 0-02), see the Figure 4-6. The stress output results for
the 281 elernent mesh are shown in Figure 4-7. These reults compare favorably

with the results by Sussman and Bathe and other experimental results [59-61].

Here the error indicator used does not have a direct relationship with
the actual stress error involved. If we use the error indicator in the energy norm as
in equation (2-24) with Etlolerance = 0.0004 for the adaptive refinement process, a
278 element mesh is obtained in 2 steps (104 elements — 266 elements — 278
elements), see Figure 4-8. In this case, the error tolerance is chosen (t:"wlemnce =
0.0004) to generate a similar number of elements (281 elements) after 2 steps of
refinement in order to compare the efficiencies of the two different error

indicators.

The stress output results for this analysis are siiown in Figure 4-9,
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Figure 4-5 a): Maximum in-plane principal stress for 104 element mesh
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Figure 4-6 b): Detail of 281 element mesh



-148-

(e}
o
8’ -
0'1 7
(psi) & 4
=
[0
o a-Elements above line
g " o -Elements below line
O
(en)
O
o
<t
o
[en}
o‘ oma
N
(en]
S T
o
5.40 5.60 5.80 6.00
Y ( in)

Figure 4-7 a): Maximum in-plane principal stress for 281 element mesh
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Figure 4-7 b): Minimum in-plane principal stress for 281 element mesh
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Figure 4-9 a): Maximum in-plane principal stress for 278 element mesh
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Figure 4-9 b): Minimum in-plane principal stress for 278 element mesh
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which are not as satisfactory as the ones obtained for the 281 element mesh in

Figure 4-7.

By compaiing the 281 element mesh in Figure 4-6 and the 278
element mesh , we can see that in the 281 element mesh, the refinement is more
concentrated at the stress concentration. However, the total strain energy in the

281 element mesh is less than that of the 278 element mesh.

The reason is due to the relaxation factor, 1/h, employed in the error
indicator in equation (2-25). This relaxation factor is employed so that the
refinement is more concentrated in the region of the small size elements, which
results in better solutions at the stress concentration with little sacrifice on the
overall accuracy. Therefore, from now on, we will use the error indicator with the

relaxation factor in equation (2-25) for the adaptive refinement process.

If we have enough information about the problem already, such as the
distribution of the error indicator throughout the mesh, or the region and the
strength of the stress concentration, we might be able to reduce the number of

refinement iterations by starting with a fine initial mesh.

Using the experiences obtained from the above analysis, a fine initial
mesh is constructed by 221 elements as shown in Figure 4-10. For this 221
element mesh, the adaptive refinement is performed with the same error tolerance
(€o1erance = 0-02) and a 281 element mesh is obtained in one step, see the Figure
4-11. The stress output results for the 281 element mesh in Figure 4,12 show that
better results can be obtained in only one step of refinement, if previous
experiences are used in constructing a fine initial mesh. Therfore, the 281 element
mesh in Figure 4-11 can be considered as a near-optimal mesh to this problem for

the error tolerance, €iolerance = 0.02.
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Figure 4-12 a): Maximum in-plane principal stress for 281 element mesh
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Figure 4-12 b): Minimum in-plane principal stress for 281 element mesh
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(Example 4-2) Analysis of a Thick Circular Cylinder un.... Internal Pressure
(Plane Strain)

As a plane strain problem, we consider a thick cylinder under internal
pressure as shown in Figure 4-13. The goal of this analysis is to determine the
stress distribution along the line A-A’. The analytical solution for this problem is

available in reference [62].

Two different initial meshes are constructed to get a near-optimal
mesh, one coarse mesh and one fine mesh. Using the symmetry condition, only
one quarter of a cylinder is considered. The coarse initial mesh with 17 elements
is shown in Figure 4.14. In this coarse mesh, all the internal nodes are relocated
after triangulation to keep the symmetry in order to see whether the adaptive
refinement process gives symmetric results. Namely, our triangulation scheme
can usually construct an almost symmetric mesh if the initial loop-boundary is
symmetric, but not an exactly symmetric mesh. The reason is due to the

directionality in our triangulation scheme described in Chapter.2.

The minimum principal stress output for this 17 element mesh along
the line A-A’ is shown in Figure 4-15, which does not compare well with the

analytical solution.

To obtain good results, the error tolerance is set to €olerance = 0-002
and the resulting 227 element mesh by the adaptive refinement process is obtained
in 3 steps (17 elements — 68 elements — 155 elements — 227 elements), see
Figure 4-16. As shown in Figure 4.16, the resulting mesh is also exactly
symmetric. The Oyy distribution along the line A-A’ is shown in Figure 4.17,

which compares well with the analytical solution.
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Inner radius = 0.5 m
Outer radius =2 m

Internal pressure
=100 MPa

E=207x 10 MPa
v =03

Plane strain conditions in x-direction

Figure 4-13: Thick cylinder under internal pressure
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Figure 4-14 a): key nodes distribution for a coarse mesh generation
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Total strain energy : 0.132614 x 10° N-m

€rotal = 6,22

Figure 4-14 b): Coarse starting mesh with 17 elements
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Figure 4-15: Oyy distribution along the line A-A’ for 17 element mesh
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Total strain energy : 0.134696 x 10° N-m
€total - 0-09
€tolerance 0.0002

( 17 el -> 68 el --» 155 el - 227 el )

Figure 4-16: Final 239 element mesh after 3 steps of refinement
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Figure 4-17: Oyy distribution along the line A-A’ for 239 elem~nt mesh



-168-

As a fine initial mesh, the 150 element mesh shown in Figure 4-13 is
constructed. Using the same error tolerance, € = 0.002, a 198 element mesh is
obtained in | step (150 elements — 198 elements) as shown in Figure 4.19. The
Oyy distribution along the line A-A’ is shown in Figure 4.20, which also compares
favorably with the analytical solution. As expected in this example also, starting

with a fine initial mesh mesh gives a more efficient mesh with less iterations.

(Example 4-3) Analysis of a Plate With Multiple Holes in Tension
(Plane Stress)

As a plane stress problem, we consider the analysis of a plate with
two holes in tension as shown in Figure 2.15. The goal of this analysis is to
determine the stress distribution on the "lines of stress output”, A-A’ and B-B’.
Since the analytical solution for this problem is not available, the stress
discontinuities between adjacent elements is considered to determine the stress

error involved in the solution.

The analysis domain is subdivided into 3 subdomains, see Figure
2-15, and a coarse initial mesh with 198 elements is constructed automatically as
shown in Figure 4-21. The Cyy distributions along the lines of interest, A-A' and
B-B’ are shown in Figure 4.22. The results in Figure 4.22 show that large
discontinuities occur at the region of stress concentration, which means that the

results are not satisfactory.

In order to obtain better results, the adaptive refinement is performed
with an error tolerance, €,jerance = 0.02, and a 381 element model is obtained in 3
steps (198 elements — 303 elements — 375 elements — 381 elements) as shown

in Figure 4-23.
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Figure 4-18 a): Key nodes distribution for a fine mesh generation
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Total strain energy : 0.134806 x 10° N-m

= 0.10
= 0.0002

€total

€tolerance

( 150 el ->» 198 el )

Figure 4-19 : Final 198 element mesh after one step of refinement
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Figure 4-20: Oyy distribution along the line A-A’ for 198 element mesh
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rgy : 0.814892 x 10° N-m

= 5.35

total

Figure 4-21 b): Coarse starting mesh with 198 elements
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® : Elements at the left side of line A-A’
A : Elements at the right side of line A-A’
® 1+ : Elements at the left side of line B-B’
®
© | X : Elements at the right side of line B-B’
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Figure 4-22: Oyy distribution along the lines A-A’ and B-B’
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Here the third step of refinement may not be necessary, because only
one element is refined in the third step. The stress output results for the 381
element mesh are shown in Figure 4-24, which show that the accuracy of solution
has been improved significantly compared with the case of the 198 element mesh.
If a more accurate solution is required, the adaptive refinement process should be

performed further by reducing the tolerance of the error.

As a fine initial mesh, the 429 element mesh constructed in Figure
2-15 is employed for the analysis. By using the same error tolerance, € jerance =
0.02, a 495 element mesh is obtained in one step of the refinement (429 elements
— 495 elements) as shown in Figure 4.25. The stress output results for this mesh

are shown in Figure 4-26.

4.1.2 Examples Using Quadrilateral Elements

For the problems using 8-node quadrilateral elements, only the
adaptive refinement process is implemented in our program. Hence the complete
initial mesh should be input by the user, and then the adaptive refinement process

is performed automatically by the program.

(Example 4-4) Analysis of an Axisymmetric Pressure Vessel

In this example, we consider again the analysis of an axisymmetric
pressure vessel in Figure 2-21. The starting mesh with 69 eight-node quadrilateral
elements shown in Figure 2-21 is employed for the adaptive refinement process.
By using an error tolerance, €jerance = 0-03, the final mesh with 165 elements is
obtained in 3 steps (69 element — 117element — 156 element — 165 element)

as shown in Figure 4-27. This mesh compares well with the one by Sussman and
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Figure 4-24: Oyy distribution along the lines A-A’ and B-B’
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Figure 4-26: Oyy distribution along the lines A-A’ and B-B’



-181-

Juswautjal Jo sdajs ¢ Ialye ysaul JUSWI[d G9T [eutd (8 LTV arn3i

( L® 591 <=~ |d 9G1 ==- [3 /I <-- 13 69 )

£0°0 = 30UR43 03

601 = L8303

UL-3ql , 0T X 612862°0 ¢ ABJaud utea3s (3ol




-182-

Figure 4-27 b): Detail of 165 element mesh
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Bathe in Figure 4-1. The stress output results on the line of interest shown in
Figure 4-28 show satisfactory results. Therefore we see that the adagpiive
refinement process using 8-node quadrilateral element is also very useful in

constructing a near-optimal mesh.

(Example 4-5) Analysis of a Tensile Specimen With an Edge Crack

This example is to verify the performance of our adaptive refinement
process using 8-node quadrilateral elements in linear elastic fracture mechanics
analysis. We consider a tensile specimen with an edge crack, as shown in Figure
2-20, which is one of the verification examples in reference [63]. The goal of this
analysis is to determine the stress intensity factor, K; for the given geometry and

load conditions.

The analytical solution for K is as follows:

K, = —F ¢ (4-1)
(1-v2)
and
-dIl
G = ———
dA
where G = energy release rate
E = Young's modulus

v = Poisson’s ratio
dA = change in crack area

IT = rotal potential energy

The analytical value given in reference [64] is K; = 531.7.
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Figure 4-28 a): Maximum in-plane principal stress for 165 element inesh
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Figure 4-28 b): Minimum in-plane principal stress for 165 element mesh
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The strain energy release rate at the crcak tip node is obtained as (4]

at
G = - o7 (4-2)
ox;< !
where x;€ is the coordinate of the crack tip nodal point, ;¢ is the component of the
unit vector in the direction of crack propagation, and t is the specimen thickness.
Ths ADINA numerical solution gives the value of dr/dx,¢ and thus we can

calculate G and K.

Initially, a 12 element model shown in Figure 2-20 is used for the
analysis and the error indicators computed are shown in Figure 4-29. The results
in Figure 4-29 show that the values of the error indicator around the crack tip node
are large. The stress intensity factor, K; for 12 element model is obtained as
455.4. In order to obtain a better solution, the adaptive refinement process is
performed using an error tolerance, &glerance = 0.02. After five steps of
refinement process (12 element — 24 element — 4. element — 60element —
78 element — 96 element), the resulting mesh with 96 elements is constructed as
shown in Figure 4-30. In this example, the adaptive refinement is stopped after
five steps, although in some elements the error indicators are still larger than the

given tolerance.

The results of the error analysis for the first refined mesh, are shown
in Figure 4-31, and the results for the meshes used in the refinement procses are

summarized in Table 4-1.

One interesting point to note is that the error indicators around the
crack tip do not decrease , instead they slightly increase during the refinement

process, while in the other region they decrease rapidly.
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Figure 4-29: Results of the error analysis for 12 element mesh
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€tolerance ~ 0.02

(12el -> 24 el --» 42 1 - 60 el --» 78 el -+ 96 el )

Figure 4-30: 96 element mesh: 96 element mesh after 5 steps of refinement
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Figure 4-31: Error analysis for 24 eiement mesh after the first refinement
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Table 4-1. K| values for various meshes

element element

A B
crack tip
number of
K, £, €4
elements
12 455.4 142 0.81
24 482.8 1.69 (.96
42 497.2 1.81 1.04
60 504.2 1.86 1.07
78 507.7 1.88 1.09
96 509.4 1.89 1.10

Exact 531.7
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The stress intensity factor obtained with the 96 element mesh is 509.4.
Here the convergence rate of K; to the analytical solution seems to be slow,

because the singular elements [58] are not employed.

4.2 Three-Dimensisnal Applicatien

In this section, two examples are considered in order to test the
validity of our three-dimensional mesh generation and error analysis scheme. One
example is similar to a conventional two-dimensional problem, a thin plate with a

hole in tension, and the other is a general three-dimensional problem, a block with

a cylinder.

For the three-dimensional analysis using ADINA, the 20-node
degenerated solid element is used, which is equivalent to a 10-node tetrahedral
element. 3 x 3 Gauss integration is employed for the analysis and the stresses are

computed directly at the nodal points.

(Example 4-6) Analysis of a Thin Plate with a Cylindrical Hole

In this example, a thin plate with a hole in tension as shown in Figure
4-32 is analyzed by using the three-dimensional tetrahedral elements. This

problem is usually modeled as a two-dimensional plane stress problem.

The goal of this analysis is to determine the stress concentration factor
on the line A-A’. The stress concentration factor for this problem in plane stress
condition falls around 3.4 [65], although the exact analytical value is not available

due to the finite width of the plate in the directions of x and y.

Three different meshes are constructed by considering one quarter of
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E = 207000 MPa
V=03

R=02m

L=W=2m , t=0.1 m
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Figure 4-32: Thin plate with a hole in tension
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the analysis domain due to symmetry. To begin, the meshes are constructed only
with the straight-sided elements. The first mesh is a uniform coarse mesh with 39
elements as shown in Figure 4-33. The analysis results are shown in Figure 4-34,
As shown in Figure 4-34, the maximum stresses are obtained in the element 8 as
expected, where the stress concentration occurs and the average stress
concentration factor on the line A-A’ is obtained as 2.06. The largest error
indicators are obtained in the elements - 6, 8, 18, which indicate where refinement

1S necessary.

The second mesh with 180 elements is a uniform finer mesh than the
first one as shown in Figure 4-35. For this mesh, the maximum stresses are
obtained in the element 10, and the average stress concentration factor along A-A’
is obtained as 2.75. The largest error indicators are obtained in the element 10
(€19 = 0.16), 38 (g3 = 0.076), 37 (€37 = 0.035), which show where the refinement

is necessary.

The third mesh is a graded mesh constructed with 108 elements as
shown in Figure 4-36. The maximum stresses are obtained in the element 2, and
the average stress concentration factor along A-A’ is obtained as 3.73, which is
larger than the value in the two-dimensional problem. The largest error indicators

are obtained in the element 29 (g,9 = 0.066), and 28 (55 = 0.033).

The resuits from the above three meshes are summarized in Table 4-2.
As shown in Table 4-2, a graded mesh has the largest strain energy and the least
total error indicator, although less elements (108 elements) are used than the mesh

with 180 elements. This shows the efficiency of the mesh employed.

However, since only the straight-sided tetrahedral elements are
employed in these analyses, the cylindrical surface of a hole is not accurately

modeled, which will affect the accuracy of the solution.
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Table 4-2. The stress concentration factors
for the meshes with straight-sided elements.

. Average Stress  Totg) Total
Strain Energy Concentration  youme  Error
N-m Factor 3 Indicator
along A-A’ m € otal
39 elements 0.258x10" 2.06 0.0980  0.96
4
180 elements 0.264x10 2.75 0.0972 0.39
108 elements 0.266x10" 3.64 0.0970  0.38
Reference
Value
(2-D plane 3.4
stress condition)
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In order to model the cylindrical surface of a hole more accurately,
curved-sided elements are again employed for the same meshes as above, in which
only the mid-side nodes on the cylindrical surface are relocated to fall on the
cylindrical surface. The corresponding meshes constructed are shown in Figure
4-37 to Figure 4-39 and the results of the analyses are summarized in Table 4-3.
In Table 4-3, we see that the results are improved by using a fine mesh or a graded
mesh. The average stress concentration factor obtained by the 108 element model
is 3.43, which compares well with the reference value obtained in the two-

dimensional analysis.

(Example 4-7) Analysis of a cylinder attached to a block

As a general three-dimensional problem, we consider a cylinder
attached to a block under two loading conditions, i.e., bending and torsion as
shown in Figure 4-40. For the analysis of this problem, three different meshes are
constructed, ranging from a coarse one to a fine one. In order to construct each
mesh with well-conditioned elements, the analysis object is subdivided into

convex subobjects especially at the region of high local mesh density.

For a coarse mesh construction, the analysis object is subdivided into
three convex subobjects as shown in Figure 4-41, while for a fine mesh

construction it is subdivided into six subobjects as shown in Figure 4-42.

As a result of the volume triangulation for every subobject, three
different meshes are constructed with 514 elements, 1003 elements, and 1568

elements as shown in Figure 4-43, Figure 4-44, and Figure 4-45 respectively.

In Figure 4-43, object-1 and object-2 are originally same with each
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Table 4-3. The stress concentration factors
for the meshes with curved-sided elements.

: Average Stress
Strain Energy Concentration
N-m Factor
alnng A-A’
4
39 element 0.264x10 2.27
(uniform)
180 element 0.266x104 2.78
(uniform)
4
108 element 0.267x10 3.43
(graded)
Reference
Value
( 2-D plane
stress condition ) 3.4
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Figure 4-40: Cylinder attached to a block
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Object - 2

Object - 1

Object - 3

Figure 4-41: Subdivisions for a coarse mesh construction
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Object - 2

Object - 1

Object - 4

i

Object - 6
Ojject - 5

Object - 3

Figure 4-42: Subdivisions for a fine mesh construction
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Object - 1

Figure 4-43 a): Detail of mesh generation for 514 element model
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6 = 14.0

minymum

Figure 4-43 b): 514 element mesh with straight-sided elements
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Object - 3 Object - 4

Object - 5 Object - 6

Figure 4-44 a): Detail of mesh generation for 1003 element model
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minimum = 14.8

8

Figure 4-44 b): 1003 element mesh with straight-sided elements
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Object - 1

Object - 5 Object - 6

Figure 4-45 a): Detail of mesh generation for 1568 element model
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= 8.1°
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Figure 4-45 b): 1568 element mesh with straight-sided elements
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other. However, the surface triangulation process does not generate exactly
symmetric triangles on the surface due to the directionality involved in the
algorithm, which will affect the volume triangulation process. Hence, the
resulting meshes in object-1 and object-2 are different from each other and the

same phenomena occur in the cases in Figure 4-44 and Figure 4-45.

As shown in Figure 4-43 to Figure 4-45, our mesh generation scheme
works well, although in the case of the 1568 element mesh the minimum dihedral
angle is 6,,;, = 8.1°, which indicates that highly distorted elements are also

generated.

The bending analysis for the meshes are performed as shown in
Figure 4-46 and the results are summarized in Table 4-4. Notice that the total
strain energy in the system decreases as more elements are employed, which
contradicts finite element theory. The reason is due to the difference in the
volume of the cylinder modeled by the different number of elements. Since only
straight-sided elements are employed, the mesh with more elements in the cylinder
results in a larger volume. Therefore, the stiffness of a fine mesh with 1568
elements is the largest among the three, which results in the smallest displacement

at the tip.

Therefore, in a strict sense, the results are not directly comparable
with each other. However, the stress outputs of the analyses compare reasonably

with those of simple beam theory.

The results of the error analyses are shown in Figure 4-47. In the case
of the 514 element mesh and the 1003 element mesh, the largest errors occur in the
regions A, B, and C - in this order - where the mesh refinement is necessary. On

the other hand, the largest errors in the 1568 element mesh occur in the regions A,
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XY, Z fixed

P = 2000 1bf

|

Y, Z fixed ¢ * .

-

Y fixed \

v

Figure 4-46: Loading conditions for bending analysis
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REGION A

Largest errors obtained in the order :

1st 2nd 3rd

514 elements; A B
1003 elements; A B

1568 elements; A C B

Figure 4-47: Error distribution in the bending analysis
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C, and B - in this new order - due to the small size of elements employed at the

region B.

Since the tetrahedral element with only planar faces cannot accurately
describe the curved surfaces of the cylinder, the tetrahedral element with curved

faces should be employed for general three-dimensional analysis.

Hence the meshes considered already above are constructed again, but
with curved sides in the tetrahedral elements to model the cylinder more
accurately as shown in Figure 4-48, Figure 4-49, and Figure 4-50, respectively.
The same bending analyses are performed for these meshes and the results are
summarized in Table 4-5. The error analyses are not performed because only the
element with planar faces is considered in our error analysis. The results in Table
4-5 show that the total strain energy increases as more elements are used, and the
stress output at node O compares well with the one by beam theory. Therefore,

using the elements with curved faces in the cylinder gives better resuits,

For the torsional analysis, the system under a twisting moment at one
end of the cylinder as shown in Figure 4-51 is considered. In order to simulate the
twisting moment, equivalent nodal forces are applied at one end of the cylinder,
see the Figure 4-51. The equivalent nodal forces are obtained for the mesh with
curved-sided elements, and thus are not exactly equivalent forces in the mesh with

straight-sided elements.

The torsional analyses for the meshes with straight-sided elements in
Figure 4-43 to Figure 4-45 are performed and the results are summarized in Table
4-6. In Table 4-6, we sec¢ again the contradictory results that the total strain
energy in the system decreases as more elements are employed. The reason is also

due to the difference in the volume of the cylinder.
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Figure 4-48: 514 element mesh with curved-sided elements
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Figure 4-49: 1003 element mesh with curved-sided elements
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Figure 4-50: 1568 element mesh with curved-sided elements
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Table 4-5. Results of the bending analysis
(mesh with curved-sided elements)

s
P
—
o ¥
T S : displacement at the tip
1
Total No.
of elements | Total strain  Displacement Distance of O A\:Jeraget gf
energy 5 yyat,
(No. of 1 %deviation
element (Ibf- in) (in) (in) (beam theory)
in cylinder)
514 elements 23.3 .0.233x10 " 10 429.0
(194 el.) 5.3%
1 (407.5)
1003 elements 23.9 -0.239x10 8.57 459.4
(259 el.) 5.2%
iy (436.6)
1568 elements 24.6 -0.246x10 7.5 480.4
(322 el.) 4.8%
(458.4)
Beam
bending -1
theory -0.175x10
(cylinder
only)
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face-T

M=60000 Ibf-in

—Py

A I

a) boundary conditions for torsionai analysis

face-T face-T

To ™9

T o =1000 Ibf | ™, =750 Ibf

i) 1003 element model

i) 514 element model and 1568 element model

b) Equivalent nodal forces

Figure 4-51: Loading conditions for torsional analysis
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Table 4-6. Results of the torsional analysis
(mesh with straight-sided elements)

D}

.

ofT (e)lt::n’:ﬁis Volume Total strain Total pistance of O Average of
in cylinder energy error 1 txyat O
(No. of 3 f ;némhr i) (psi)
_ element (in ) (It -in) total (%deviation)
in cylinder)
514 elements 2021.4 96.83 12.98 10 399.8
(194 el.) (30.8%)
1003 elements 2121.3 87.80 13.81 8.57 377.9
(259 el.) (23.6%)
1568 elements 2134.2 87.08 14.54 7.5 378.9
(322 el.) (24%)
Exact 2356
Beam
torsion 305.6
theory
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The results of error analyses are shown in Figure 4-52, in which the
largest errors occur in the regions A and B, in this order. The largest error in the
region A might be due to the applied loads in this region, which are not equivalent
forces for the mesh with straight-sided elements. However, the large error in

region B shows where refinement is necessary.

In order to obtain better results, the mesh with curved-sided elements
in Figure 4-48 to Figure 4-50 are employed for the same torsional analyses and the
results are summarized in Table 4-7. As shown in Table 4-7, the total strain
energy in the system increases as more elements are employed and the stress
outputs at node O compare well with the one by the beam torsion theory.
Therefore, by using the mesh with curved-sided elements, reasonable results are

obtained.

From the above results, we see that for general three-dimensional
application the tetrahedral element which includes curved faces should be
employed. In addition, we see that the error indicators used in our scheme give
reasonable results and are applicable for the adaptive refinement process in the
future. Although the error analysis for the element with curved faces is not
included in our discussion, it can be implemented by using the procedures

described in section 3.5.

Since the tetrahedral elements with curved faces are only used at the
curved surface of the original system, the number of curved elements is relatively
small compared with the total number of elements in the system. Therefore, it is
probably best to implement two different procedures for the calculation of the
same error indicator : one for elements with planar faces and the other for

elements with curved faces.
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X,Y,Z FIXED

Largest errors obtained in the order :

Ist 2nd

S
514 elements; A
1003 elements; A

A

n
B
B8
1568 elements; B

Figure 4-52: Error distribution in the torsional analysis
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Table 4-7. Results of the torsional analysis.
(mesh with curved-sided elements)

=
z
L] A
o)
—p— M >y
X
Total No. Average of
of elements Total strain Distance of O Txy atO
(No. of energy 1 (psi)
elements (bt - in) (in) %deviation
in cylinder) (beam theory)
514 elements 71.55 10 320.6
(194 el.) 4.9%
(305.6)
1003 alemunts 71.75 8.57 319.5
(259 el.) 4.6%
(305.6)
1568 elements 72.16 7.5 319.1
(322 el.) 4.4%

(305.6)
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Chapter

Conclusions and Recommendations

We have presented a unified approach to the automatic generation of
near-optimal finite element meshes both for two-dimensional and three-
dimensional analysis. The proposed approach is composed of an efficient initial

mesh construction and the h-version of self-adaptive refinement process.

For two-dimensional analysis, the whole procedures from an initial
mesh construction to the self-adaptive refinement have been developed, while for
three-dimensional analysis only an initial mesh construction and the error analysis
are included. The self-adaptive refinement process for three-dimensional analysis
is not included in the thesis. Ho'wever, three-dimensional works conducted in the
thesis provide the basis for self-adaptive refinement scheme as was proposed for

two-dimensional analysis.

For an initial mesh construction, in two-dimensional analysis, a robust
triangulation scheme has been developed, in which triangular elements are

generated from the boundaries based on the key nodes which the user has to input.

With the suggested triangulation scheme, we are abie to construct
meshes with well-conditioned elements, unless we assign unrealistic key node
distributions. However, since the triangulation scheme is sensitive to the key node
positions, we may somtimes need to construct the mesh several times by changing
the key node positions in order to obtain a better mesh. But this is not a serious
restriction, because the amount of computation involved in the triangulation

process is usually very small compared with that in the finite element analysis.
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As a criterion for further refinement, an error indicator which employs
the body force residuals in the energy norm with a relaxation factor is found to be
most efficient for meshes with quadratic elements because better solutions can be
obtained at stress concentrations with little sacrifice on the overall accuracy. The
direct relationship between the actual accuracy of solution and a given tolerance of
an error indicator is not identified in this research. Instead the error indicators
computed are used as references for further refinement and the total error indicator

indicates the error involved in the solution indirectly.

The adaptive refinement process for 8-node quadrilateral element is
also found to be useful in obtaining a near-optimal mesh, if an initial mesh is

prepared manually.

In the case of three-dimensional analysis, a new volume triangulation
scheme is developed. The new scheme is obtained by employing the same
concept of the surface triangulation scheme to three-dimensional problems. In this
scheme, the user has to place the key nodes on the edges of an object and the
program preceeds tiiangulation of the surfaces and the tetrahedronization of the
volumes. The amount of computation involved in the velume triangulation is
found to be very small compared with the one required for the finite element
analysis. The topological and geometrical properties of the basic operations are

examined in order to ensure that the algorithm converges.

The suggested volume triangulation scheme works reasonably well
for a rather coarse mesh construction, while for a fine mesh construction some ill-
conditioned elements may be generated. The reasons are largely due to the
heuristic rules and the check processings employed in this scheme. Therefore
further improvements will be necessary in the algorithm in order to obtain meshes

with well-conditioned elements even for fine meshes.
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Due to the directionality involved in the surface triangulation, which
affects the volume triangulation process, the resulting meshes for symmetric
subobjects may not be symmetric. Therefore, the capability of copying the

resulting mesh of one part to other symmetric parts might be useful in the future.

In the example solutions persented, we see that curved-sided elements
should be used both for two-dimensional and three-dimensional analysis in order
to obtain reliable results. The error analysis for the tetrahedral element with
curved-sided faces should be included as is described in section 3-5 and the self-
adaptive refinement process should be included in the future. In implementing the
error indicator, it is probably best to employ two different procedures for the same

error indicator : one for elements with straight-sided faces and the other with

curved faces.

In order to cope with the initial mesh construction through a solid
modeler and the refinement process automatically, a special data structure, named
"dissembled winged-edgelface data structure” is developed. The new data
structure has a winged-edge like data structure for two-dimensional problems and
has a winged-face like data structure for three-dimensional problems and the
original object/loop is considered to be an assemblage of many
subobjects/subloops. The complexity involved in updating the connectivity
information during the refinement process can be overcome by employing pre-
designed refinement units. By using this boundary representation data structure,

the data management can be easily handled without extensive use of searches.

All the above procedures consider only systems with straight lines and
circular arcs in the two-dimensional case, and planar and cylindrical surfaces in

the three-dimensional case. For general applications, additional curves and
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surfaces should also be included in the future. For two-dimensional applications,
additional curves may be included without much difficulty, but for three-
dimensional applications it is still a challenge to include other surfaces, such as
quadratic or composite surfaces ,due to the difficulties involved in the

triangulation of these surfaces.

In a practical CAD environment, a complex object is frequently input
by digitizing the nodes on the surfaces. In this case, if the surfaces of an object are
triangulated manually and the results are input by a digitizer, the suggested
volume triangulation scheme can also be used for the mesh generation. This is
another possibility for the practical application of our volume triangulation

scheme.
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Appendix A
Relationship between F;m and F;I'm

For each finite element, the two sources of error are written as,

FE _ . FE B
R; = T J+]’i #= 0

TFE = ©FEn. - 1. 2 0

In section 2.2.2 the body force residual error, Finm and the traction

residual error, Firm in the force unit are defined as

Ffm = jﬂ RFEdQ,

Flm = jr TFE4T,,

- By using the Gauss divergence theorem for the following terms such

as,
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FE 4Q = | ©.FEndrlr
IQ_TU Jottm 'L.. iy Mdlm

J.rmt,-jnjdl“m = J'er,.j 49,

we obtain the following relationship between FiQm and Firm

Ffnm = jn RFE4Q,, = Jn(’c,-jFEJ+f,-B)de

FE B
T,/ dl", + 2 dQ
er if "j m jn”:f' m

jr(r,.jFEnj—r,.)drm + jr t,dT,, + jnf,.Bde
= Fln . B
FIm + J'rntunjdl“m + Iﬂmf, dQ,,

= F‘.rm + Jn(t + f'_B)de

ijJ
= F ~rm

!

Therefore,
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Appendix B

Formulas for Residuals

Plane strain
< E(1-v) % E_
v = . * '
Yo (L+v)(1=2v) 932 2(1+V) 372
E 0%
* 2(1+Vv)(1-2v) 9yoz t
E(1-v) % E %

R. = + .
- (1+Vv)(1-2v) 572 2(1+vV) gy2

E ' d2u

" 2(1 +v)(1-2v) ayaz * fz

Plane stress

_E .a2u+ E d%u
Yo 1-v2 9y2 2(1+v) 522

E _82v
2(1-v) dyo:

_ _E _82v+ E _aZv
To1=v2 922 2A1+V) gy2

+fy

N E 0%
21-v) 3v0:

+ f
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Axisymmetric

- _EG-v) % E
Y (14v)(1=2v) 332 2(1+V) ;2

N E 0%
2(1+v)(1-2v) 9yo:

E(1-v) 1 Qz_{ _u
(1+v)(1=-2v) y gy y) *

R E(l1-v) &  _E %
z (L+v)(1-2v) 552 2(1+V) 9y2

+ E .aZu + E 10u
2(1 +v)(1-2v) dyoz 2(1+v)(1=-2v) yoz

E__1dv
2(1+v) yoy

+ f

Three-dimension

_ __EQ-v) du
x (1+Vv)(1=-2v) gx2

2, )
. Ev (8 Vo, 8214)
(L+v)(1-2v) oxdy  oxoz

E 9% + 92u N o%v 2w

+
2(1+ V)(ay2 0z2  0xdy  Oxdz

) + [y
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_ E(-v) 9%
Y (T+v)(1-2v) gy2

2 2.,
. Ev (au + 0“u
(14+v)(1~-2v) 9xdy  dyoz

: 2,0 2

E % + b Lt + on + 0%u

2(1+v) (ax2 dz2  dydz  Oxdy

) + f,

R - _ E(-v) &w
LI+ v)(1=2v) 372

N Ev (azu N d%v
(I+v)(1-2v) oxdz  dyoz

E (a?-w . 02w . 02u N 0%
2(1+v) 9x2  9y?  Oxdz  0dydz

)

) + f;




