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Abstract: Neurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s disease (AD),
the prevalence of which is rapidly rising due to an aging world population and westernization of
lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical
trials of therapies against PD and AD have only shown limited success so far. Therefore, research has
extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal–
brain axis as a potential main actor in disease development and progression. Microbiome and
metabolome studies have already revealed important insights into disease mechanisms. Both the
microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and
might thus offer novel, readily available therapeutic options to prevent the onset as well as the
progression of PD and AD. This review summarizes our current knowledge on the interplay between
microbiota, metabolites, and neurodegeneration along the gastrointestinal–brain axis. We further
illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic
modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic
options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate
potential future research directions to fight PD and AD.
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1. The Gastrointestinal–Brain Axis as a Potential Mediator of Microbiome Effects in
Neurodegenerative Diseases

In the last few years, there has been a growing understanding of pathophysiological
cascades and molecular changes involved in the manifestation of neurodegenerative dis-
eases. This is particularly the case for the two most prevalent neurodegenerative diseases
world-wide, i.e., Parkinson’s (PD) and Alzheimer’s disease (AD). However, triggering
factors initiating these pathophysiological cascades, modulating factors influencing disease
progression, as well as early interventional approaches addressing these factors remain
elusive. Although monogenic forms of both PD and AD are known, the majority of cases are
idiopathic with complex and heterogeneous etiological contributions including a multitude
of possible genetic and/or environmental risk factors. Lifestyle factors such as physical
activity and, in particular, diet, may very well constitute modifiable risk factors of PD and
AD manifestation and progression [1,2]. Elucidating these factors is crucially important
due to the enormous increase in PD and AD prevalence, which exceeds the increase that
can be expected from an aging world population alone [3,4].

Based on pathological findings and the clinical observation of a slowly progressing
neurodegenerative process, several phases of PD have been defined [5,6], which are di-
vided into (1) a risk phase, i.e., a phase, in which genetic, environmental, and other factors
contribute to the risk of PD, (2) a preclinical phase characterized by the initiation of pro-
gressive neurodegenerative pathology before any clinical symptoms or signs are evident,
and (3) a prodromal phase defined by the emergence of observable signs or symptoms
of neurodegeneration, including REM sleep behavior disorder (RBD), olfactory loss, au-
tonomic dysfunction, depression (with or without comorbid anxiety), mild motor signs,
and pathological imaging markers of the presynaptic dopaminergic system and the car-
diac sympathetic system. This prodromal phase may precede the (4) clinical motor phase
of PD, characterized by manifest bradykinesia with rest tremor and/or rigidity [7] for
10–20 years [8,9]. In all these PD phases, the onset and progression of motor and non-motor
symptoms can differ tremendously between individuals [10]. Based on this heterogeneity,
clinical and prodromal PD may be classified into subtypes with different pathomechanisms
and patterns of spatial and temporal progression in the central nervous system (CNS) and
peripheral nervous system (PNS) leading to diverse clinical manifestations [11]. For exam-
ple, some clinical features such as early cognitive deficits, RBD, autonomic dysfunction,
and some genetic risk factors are associated with faster progression [12]. Moreover, patients
with RBD exhibit distinct patterns of α-synuclein pathology propagation and might indicate
a body-first subtype rather than a brain-first subtype [13]. In addition, several biological
processes inherent to normal ageing, environmental and life-style issues are relevant to the
progression of PD [14,15].

In AD, an early deposition of amyloid and tau, as hallmarks of the neuropatholog-
ical process in AD, has been shown in the precuneus and posterior cingulate followed
by further accumulation in other cortical regions. This facilitates pathologic spread of
tau from the medial temporal lobes to other cortical regions in AD, suggesting that this
spatial–temporal gradient corresponds to disease progression and different clinical disease
subtypes [16,17]. In AD, as well as “classical” AD, several disease subtypes with charac-
teristic regional patterns of tau pathology have been classified that are characterized by
differences in clinical phenotype, age, disease course, cognitive status, APOE genotype,
and biomarker status. Furthermore, complementing four major subtypes based on the
distribution of tau pathology and brain atrophy (typical, limbic predominant, hippocampal
sparing, and minimal atrophy), several other clinical variants (non-amnestic, corticobasal,
behavioral/dysexecutive, posterior cortical variants, etc.) have been delineated. These dif-
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ferent subtypes and variants of AD are characterized by different patterns of key neuronal
network dysfunction, in particular changes in the default-mode network. However, even in
these subtypes, individual constellations of aforementioned pathologies, disease processes
and their spatial and temporal relevance as well as risk/protective marker profiles may
play a major role and are only partly understood [18–23].

The nervous system of the gastrointestinal (GI) tract, which contains 200–500 million
neurons, is in close exchange with the CNS. This bidirectional communication is often
referred to as the gut–brain axis. However, as it also involves the upper GI tract, including
the mouth and its specific microbial environment, we hereafter use the broader term “GI–
brain axis”. Several modes of communication along the GI-brain axis have been described,
which can be summarized as neurochemical, endocrine, and immune interactions [24].
Yet, the breadth of mechanisms involved in this communication is only poorly under-
stood. A growing body of research now suggests that our microbiota, the diverse and
complex communities of commensal microbes that colonize all our body surface barriers,
play a key role in the GI–brain axis, and may be involved in neurodegenerative diseases.
Closely interconnected with the microbiome is the metabolome, the complete set of small
molecules, called metabolites, which are intermediate or end-products of metabolism.
Their involvement in neurodegenerative diseases currently also attracts wide interest in
the research community.

In this review, we summarize the current knowledge on the association between mi-
crobial imbalance and neurodegeneration as exemplified for PD and AD. Furthermore, we
review state-of-the-art association studies between neurodegeneration and the metabolome
in PD and AD, the role of metabolic modeling in defining molecular pathways underlying
those associations, as well as the potential of both the microbiome and the metabolome as
novel therapeutic targets to treat neurodegeneration [25].

2. From the Microbiome to the Metabolome

Human microbiota are mostly composed of bacteria, but also contain archaea and
microbial eukaryotes, along with their associated viral communities. The collection of
genes encoded by these microbial communities defines the microbiome. Microorganisms
produce diverse molecular compounds that directly influence host metabolism, prime
immune responses, and shape physiology [26]. They also harbor complex surface markers
that engage in direct contact interaction with host receptors or circulating proteins, which
can either trigger anti- or pro-inflammatory responses [26]. As such, endogenous microbes
are suspected to be strong contributors to our health via constant inter-organ interactions,
also including the CNS [27]. However, detailed and mechanistic knowledge about these
signaling pathways is limited, even though progress has been made recently [28]. As
an example, an increasing body of evidence now points to a key role played by short-
chain fatty acids (SCFAs) produced by gut bacteria, such as acetate, propionate, and
butyrate, in long-range communications with the brain [28,29]. SCFAs are produced from
the metabolism of indigestible materials such as complex fibers, contribute to preventing
pathogen invasion, and participate in shaping the immune system [26]. Their downstream
effects on host physiology are very diverse: while acetate is readily absorbed into the
bloodstream and distributed to peripheral tissues, propionate is metabolized by the liver
after absorption [30]. The majority of butyrate, on the other hand, is consumed locally by
colonocytes as a primary fuel source [31]. The interplay between microbial metabolites and
the CNS is further outlined in subsequent sections of this review.

2.1. Interrogating the Microbiome

Historically, culture-independent methods were used to characterize the diversity and
structure of the microbiota by amplicon sequencing of phylogenetic marker genes (e.g., the
16S rRNA gene) [32]. Amplicon data are usually restricted in taxonomic, genomic, and func-
tional information, limiting our understanding of the differences in microbial features that
may exist between two given microbiomes. Today, deep shotgun metagenomic sequencing
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is used as the gold-standard approach to interrogate microbiomes [33,34]. Combined with
sophisticated computational methods that reconstruct draft genomes [35], identify micro-
bial lineages at the resolution of strains [36,37], or reconstruct gene repertoires [38] with
detailed functional annotations [39], metagenomics provides high-dimensional and com-
plex data that, when used alone or integrated with other -omics data, can reveal insightful
associations between the microbiome and disease phenotypes [40,41].

Microbiome signatures of disease usually exhibit a loss of taxonomic diversity, decrease
in the abundance of microbes that are suspected to be beneficial, and increase in abundance
of potential pathobionts [42]. However, microbiome association studies have suffered
from a lack of replicability across different cohorts [42] concerning the identification of
microbiome features that are associated with disease. Both biological and methodological
aspects contribute to replicability problems, and need to be taken into account in future
GI–brain axis studies. In particular, recent studies showed that inter-individual variability
is high in human microbiome data [43], and that geography can have a larger effect
on microbiome variance than any other disease-relevant human trait, including drugs,
diet, or genetics [44,45]. Therefore, large sample sizes, appropriate geographic (and/or
lifestyle) representation and extensive surveys of metadata are needed to limit the effect
of confounders and to draw reliable conclusions [40]. Importantly, technical protocols
(e.g., to extract microbial DNA) and the choice of experimental or computational tools
can explain more variance in microbiome sequencing results than single host traits [46,47].
Finally, the most recently developed statistical methods aim at accounting for the specific
characteristics of microbiome data [42,48]. Microbiome data, which are count data, are
compositional (quantification data for each taxa are usually in relative, and not absolute
abundance), high-dimensional (hundreds or thousands of microbial taxa are detected
among a given set of samples), sparse (a large fraction of microbial taxa are detectable
only in a subset of samples), and overdispersed (variances of count data are larger than
would be expected under a Poisson model) [48]. Accounting for these data characteristics
helps improving association analyses and promoting cross-study comparisons. Overall,
the microbiome research community needs to embrace experimental and computational
standards that minimize batch effects, increase reproducibility, and promote cross-study
meta-analyses [49].

For both PD and AD, differences in gut microbiome features compared to healthy con-
trols have been observed [50,51]. It has been speculated that differences in the taxonomic
diversity and composition of the GI tract microbiota results in perturbations of metabolic
and immune–microbe interactions, thereby contributing to disease pathology. The causal
role of a disturbed microbial homeostasis on pathogenesis can be supported by fecal micro-
biota transplant (FMT) experiments, in which disease phenotypes could be transferred from
affected individuals to germ-free recipient animals through microbiome transfers alone.
Thus, it has been postulated that dysbiotic changes of the microbiome are an important
contributor to diseases such as inflammatory bowel disease (IBD) [52], PD [53], AD [54],
and aging per se [55]. However, findings of FMT studies that used germ-free animals
have been called into question due to the surprisingly high success rate of microbiome
transfer experiments [56]. As such, mechanisms through which dysbiotic changes of the
microbiome could contribute to disease processes in the host, and neurodegeneration in
particular, are still poorly understood. A disbalanced microbiome could be characterized
by an overabundance of pathogenic bacteria that are capable of releasing molecules, such as
endotoxins, that may induce inflammation and compromise barrier integrity. Alternatively,
perturbations in the quantity, or balance, of SCFAs are also suspected to be involved, as
SCFAs have been shown to be key microbial mediators in the GI–brain axis [28].

2.2. Interrogating the Metabolome

The comprehensive study of the metabolome in a particular biospecimen is the core
goal of metabolomics (Figure 1) [57]. As the metabolome rapidly responds to both endo-
and exogenous stimuli, metabolomics can provide a metabolic “snapshot” or “finger-
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print” of the current state of an organism. It is thus able to offer new insights into the
pathomechanisms underlying human diseases and identify potential therapeutic targets.
Metabolomics studies can be conducted either in an untargeted or a targeted manner.
Untargeted metabolomics tries to maximize the metabolome coverage of an investigated
biospecimen, without any a priori metabolite selection. In contrast, targeted metabolomics
measures a predefined set of metabolites, and often provides absolute quantification of
their concentrations.
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Figure 1. Schematic illustration of the gastrointestinal (GI)–brain axis (red) that could be modulated
via potential therapeutic targets involving indirect (lifestyle/diet) and direct modulation of the
microbiome (orange circle) and metabolome (green circle). Such therapeutic modulation of the
GI-brain axis may represent a promising strategy for the early prevention of neurodegenerative
processes in Parkinson’s and Alzheimer’s disease. Further research and analyses of biosamples
regarding the microbiome and metabolome are needed and facilitated by methodological advances:
sequencing allows the taxonomic and functional characterization of the microbiome (orange arrows)
of stool samples of the gut and biospecimens from various other body sites. Metabolomics (green
arrows) is facilitated by mass spectrometry (left) or nuclear magnetic resonance spectroscopy (right).

Metabolomics measurements in biospecimens are typically conducted by nuclear
magnetic resonance (NMR) spectroscopy or mass spectrometry (MS) (Figure 1). NMR
spectroscopy separates different metabolite signals according to their resonance frequencies
within a magnetic field. MS, in contrast, identifies different metabolites by analyzing their
mass-to-charge ratios. Considering the complex nature of biological samples, the majority
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of MS analysis methods involve prior analyte separation. Hyphenated techniques combine,
e.g., liquid (LC) or gas chromatography (GC) with mass spectrometers. Compounds that
are adequately volatile can be easily analyzed by GC–MS. In GC–MS, the electron impact
ionization source allows neutral molecules to be ionized using an electron beam, and
instantaneously fragments the entering molecules into a characteristic pattern [58–60].
LC–MS generally uses soft ionization techniques that mainly display the molecular ion
species with only a few fragment ions. To overcome the resulting problem of rather poor
information obtained from a single LC–MS run, tandem mass spectrometry (MS/MS) can
be used. LC–MS/MS provides fragments through collision-induced dissociation of the
molecular ions produced [61]. When compared to LC–MS based methods, GC–MS has
advantages of a greater chromatographic resolution, a good retention of small compounds,
and large spectral libraries [62,63]. However, the thermal stability of samples limits the
metabolome coverage by GC-MS. Furthermore, several metabolites require derivatization,
which might produce artifacts [63].

NMR spectroscopy requires very little sample preparation and measurements are
highly reproducible both across time and across different lab facilities [64]. Likewise,
NMR-based metabolomics is rather cheap, since only one internal standard is required to
extract absolutely quantified metabolite concentrations from spectral data. This also facil-
itates absolute metabolite quantification in untargeted NMR metabolomics experiments.
Furthermore, NMR experiments are non-destructive, and biospecimens can be re-used
afterwards. NMR spectroscopy is, however, a rather insensitive analytical technique in
comparison to MS, and acquired spectral data, especially from one-dimensional NMR
experiments, are highly complex. Therefore, metabolite identification and absolute quan-
tification are, to date, still very time-consuming processes, mainly conducted manually and
not yet completely automatized. High spectral metabolite signal overlap can be partially
compensated by two-dimensional NMR experiments, but at the expense of significantly
increased measurement times. Nevertheless, these experiments can also provide further
important structural metabolite information, which can improve the identification and
characterization of unknown compounds.

MS-based approaches have the advantage of high sensitivity and selectivity, as
well as high throughput and depth of coverage. The applicability of direct injection
in metabolomics is extended by advanced instrumentation capable of high-resolution, accu-
rate mass measurements, and tandem MS [65]. Fourier transform—ion cyclotron resonance
mass spectrometers (FT-ICR-MS; Figure 1) are the most advanced mass analyzers in terms
of information content and resolving power, with sub-parts-per-million mass accuracy [66]
and the possibility of direct infusion mass spectrometry, which generates data in only a few
minutes.

The most comprehensive coverage of the metabolome can only be achieved by
a combination of different analytical techniques, e.g., NMR and different MS methods.
Therefore, these techniques should be seen as complementary rather than as competing.
For detailed information on conducting metabolomics experiments, we refer the interested
reader to [57,67–69].

Most metabolome analyses to identify biomarkers for AD and PD are based on cere-
brospinal fluid (CSF) [70] and blood specimens [71], including plasma [72] and serum [73].
As CSF has a more immediate connection to the brain than any other fluid, it directly reflects
its metabolic changes [74]. The collection of blood samples is less invasive, acceptable
for repeated measures, and most closely connected to CSF. Some studies have examined
other biological matrices such as urine [73], feces [75], brain tissue [76], saliva [77], or
sebum [78]. Urine is of great interest for biomarker identification, as it contains most of the
body’s metabolic end products [79] and is therefore able to reflect comprehensive changes
of metabolites in organisms [80]. In addition, urine represents a non-invasive biospecimen
source. The fecal metabolome is also of particular interest since it more directly captures
the complex interactions between the gut microbiome and the host [81].
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3. Microbiome and Microbiome-Linked Metabolome Changes in Neurodegeneration
3.1. Microbiome Changes in Neurodegeneration

Accumulating evidence has underlined the putative involvement of the microbiota
in neurodegenerative disorders in animal models. Alterations of intestinal microbial
communities are observed in most PD mouse models [82]. Interestingly, microbiota
from PD patients exacerbated neuroinflammation and motor dysfunction in germ free
α-synuclein-overexpressing mice, emphasizing the potent detrimental effects of the micro-
biota in PD [83].

To date, most studies on PD-associated microbiota in humans are based on 16S rRNA-
sequencing. Although many studies have identified alterations of fecal microbial diversity
in PD, a high variability is observed in currently published datasets. Recently, several
meta-analyses have attempted to provide a more unified view on microbial alterations
occurring in PD [53,84]. The study by Plassais et al. indicated that microbial alpha-
diversity is not significantly altered in patients with manifest PD or multiple sclerosis in
comparison to healthy controls [84]. However, a second meta-analysis showed increased
alpha-diversity in PD compared to controls, and suggested a link between disease and
changes in the abundance of bacterial species, as well as intestinal inflammation [53]. These
changes include an enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium,
as well as a reduction in the Lachnospiraceae family and Faecalibacterium genus, which
both have been described as SCFA producers. These results were partly confirmed in
a subsequent analysis indicating that increased Akkermansia, some species of which might
possess mucolytic properties reducing gut wall integrity [85], and reduced Roseburia are
consistently found in PD [86]. Importantly, similar microbial changes in the abundance of
SCFA producing taxa have also been reported for prodromal stages and markers of PD [87,
88]. In clinical PD, two longitudinal microbiome studies showed that PD patients with
a more severe worsening of motor symptoms over time (~27 months and 12 months) had
a lower abundance of SCFA producing bacteria (i.e., Prevotella and Barnesiella, respectively)
compared to patients with stable or less severe progression of motor deficits [89,90]. Thus,
for PD as a progressive neurodegenerative disease, the microbiome may play an early
role in the prodromal as well as in more advanced clinical stages of the disease. However,
the functional role(s) of specific microbial taxa for PD and/or AD remain to be further
investigated as evidence on their specific GI–brain axis function(s) for the host and within
complex microbial communities is still scarce.

Microbiota alterations in PD have also been shown using shotgun metagenomic
sequencing, indicating that the frequency of a subset of bacterial genes may allow PD
patients to be distinguished from healthy subjects, as well as from patients with multiple
system atrophy (MSA) or AD [91]. Moreover, a functional metagenomic analysis suggested
differences in the metabolism of SCFA precursors in PD compared to controls [92].

Noteworthy, most studies investigating a potential link between fecal microbiome and
PD have suggested that microbiota-derived SCFA production may be altered in PD [93]. In
particular, a reduction in fecal SCFA concentrations has been observed in PD patients [94],
while the investigation of SCFA levels in serum or plasma have led to more conflicting
results. A first study indicated that SCFA concentrations appear not to be significantly
changed in the serum of PD patients [95], and an additional study indicated that serum
SCFAs may help to distinguish between MSA and PD patients, but not between PD patients
and control subjects [95,96]. On the contrary, more recent studies have reported increased
plasma SCFA concentrations, particularly for acetate and propionate, in PD patients in
comparison to control subjects [97]. Limited availability of SCFAs in the blood due to their
fast metabolization along the GI tract may explain these discrepancies in part.

In AD, gut dysbiosis potentially triggers increased systemic inflammation, which in turn
increases penetrability of the gut mucus barrier and leads to a more transmissible blood–brain–
barrier. Thus, microbiome derived metabolites, such as lipopolysaccharides derived from
bacterial cell walls (astrocyte activation), SCFAs (anti-neuroinflammatory), secondary bile
acids (neurodegenerative), or tryptophan-related metabolites (neuroinflammatory), are more
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likely to reach the brain. A detailed review by Bairamian and colleagues [98] has covered the
role of microbiota in AD more exhaustively. AD-associated dysbiosis comprises an increase
of pro-inflammatory microbes and decrease in anti-inflammatory commensals. Bacteria of
the Firmicutes phylum (including butyrate producers) are reduced in aged individuals [99]
as well as in AD patients [100], and furthermore in the AD mouse models 5xFAD [101] and
P301L [102]. Microglia are brain resident immune cells, which act neuroprotective in the
homeostatic state (M0), but can act pro-inflammatory in a disease-associated microglia
(DAM) state [74,98]. SCFA supplementation rescued an immature microglia phenotype
in germ free mice [103]. Butyrate has been shown to alter microglia states towards the
homeostatic M0 type [104]. Amyloid accumulation in aged humans with or without
dementia was negatively correlated with butyrate and anti-inflammatory IL-10, whereas
acetate, valerate, and proinflammatory cytokines have been positively correlated [105]. In
the APP/PS1 mouse model, a fiber rich diet increased abundance of butyrate producing
taxa, which led to reduced astrocyte activation and improved cognitive function, while
propionate showed deleterious effects [106]. APOE, with the allele e4 being the biggest
genetic risk factor for AD, is involved in the shift of microglia states from homeostatic M0 to
DAM via expression of the neuroinflammation-associated TREM2 gene [107]. Interestingly,
APOE4 carriers have been shown to have reduced levels of Ruminococcaceae, known butyrate
producers, compared to the APOE2/E3 genotype [108], and loss of these bacteria was also
observed in AD patients [100]. It is currently hypothesized that microbiome derived
amyloid proteins (e.g., curli) could induce amyloid-beta or α-synuclein aggregation by
acting as a seed [109]. Additionally, it has been shown that it is possible for α-synuclein
to shuttle from gut to brain via the vagus nerve [110]. Microbial amyloid proteins might
be able to take a similar route [51]. However, it is possible that for each, prodromal PD
and prodromal AD, different subtypes may exist [11] that differ in routes of pathology
and, possibly, the degree and/or nature of the contribution of the (gut) microbiome to the
pathogenesis, increased risk of PD/AD and/or microbiome-dependent modification of
disease progression. Thus, subtype differences in these regards may constitute an important
aspect of heterogeneity between individuals in prodromal and clinical disease stages, and
statistical findings of microbiome-phenotype associations might be stronger and more
robust in specific subtypes.

3.2. Metabolomic Changes in Neurodegeneration

Several studies already investigated metabolome changes associated with PD (Table 1).
Shao et al. identified several metabolites such as caffeine metabolites and fatty acids that
were significantly decreased in plasma of PD patients compared to healthy controls [111].
Hatano et al. reported caffeine-related metabolites and purine derivatives as significantly
decreased only during the initial stages of PD in the serum of PD patients [112]. Further-
more, increased levels of branched-chain amino acids (BCAAs) were found in patients
with PD [113]. In urine, the levels of leucine and isoleucine were positively correlated with
disease stage in idiopathic PD patients [113]. In line with this finding, milk consumption
(but not fermented milk intake) was associated with increased risk of PD [114,115]. Other
authors however found a negative correlation between plasma BCAAs or essential amino
acids (EAA) and Parkinson’s disease scores [116]. In these patients, whey protein supple-
mentation increased plasma BCAAs and EAAs and led to an increase in plasma reduced
glutathione and a reduction in homocysteine levels at unchanged levels of motor deficits as
indicated by clinical ratings. Furthermore, a dysregulation of metabolites associated with
carnitine metabolism was observed in sebum [78] and plasma [117]. Carnitine-dependent
oxidation of fatty acids is an alternative way of energy production in mitochondria. There-
fore, a disturbance of the carnitine metabolic pathway could be related to the mitochondrial
dysfunction observed in PD [117]. Significantly lower plasma or serum levels of trypto-
phan and kynurenine were reported for PD patients, indicating an involvement of this
particular pathway in PD pathogenesis [72]. In a rotenone-induced rat model of PD, dietary
tryptophan supplementation was shown to protect against rotenone-induced neurotoxicity



Metabolites 2022, 12, 1222 9 of 28

to ameliorate motor deficits, which may be mediated through activating the aromatic
hydrocarbon receptor pathway [118]. Similarly, metabolic profiling of whole blood samples
showed increased levels of leucine in de novo PD patients compared to controls as well as
higher levels of tryptophan metabolites, including kynurenine and xanthurenic acid, in PD
patients compared to controls [71].

Recent studies on metabolomics in AD are summarized in Table 1. Similar to PD, alter-
ations in serum acylcarnitine composition have been reported in incident AD and associated
with cognitive decline [119]. An analysis of feces specimens revealed higher ammonia and
lactic acid concentrations in subjects with dementia [120]. Targeted metabolomics analyses
in serum and brain tissue demonstrated alterations of bile acid metabolism in AD, resulting
in a higher proportion of secondary bile acids in comparison to healthy subjects [121–123].
Bile acids are considered important endocrine and paracrine effectors, directly linking liver
homeostasis and intestinal co-metabolism with the CNS. Multiple studies investigated how
bile acids cross the blood–brain–barrier and how they are involved in signaling circuits,
emphasizing the role of the GI–(liver)–brain axis in AD [124–126]. Intestinal abundance of
the genus Faecalibacterium correlated negatively with disease severity in dementia, which
was confirmed in further studies in AD and PD [93,127,128]. The role of Faecalibacterium
as an important butyrate fermenter with anti-inflammatory effects has already been dis-
cussed for IBD [129]. A multivariable, blood-based metabolite panel might be promising to
differentiate AD patients from controls and other types of dementias [130].

Table 1. Recent metabolomics studies in (a) Parkinson’s and (b) Alzheimer’s disease.

Publication Study Question Analytical
Method Sample Matrix Additional

Measurements Study Population Findings

(a) Parkinson’s disease

[97]

compare fecal and plasma
levels of different SCFA

subtypes in patients with
PD and healthy controls

GC-MS and
LC-MS/MS

feces and
plasma total fecal DNA 96 PD patients and

85 controls

reduced fecal SCFAs and
increased plasma SCFAs observed
in patients with PD and correlated

to the abundance of
pro-inflammatory Clostridiales and
Ruminococcus species and clinical

severity of PD

[131]

characterize metabolite
and lipoprotein profiles of
newly diagnosed de novo

drug-naïve PD patients

NMR serum -

329 subjects
including de novo

drug-naïve PD
patients, PD
patients with

advanced disease
status, and

healthy controls

metabolic differences between
newly diagnosed de novo

drug-naïve PD patients and
healthy controls, which were

more pronounced in male patients
(particularly acetone and

cholesterol); metabolic differences
between de novo drug-naïve PD

patients and advanced PD
patients; metabolic differences
between advanced PD patients

and healthy controls

[132]

clinical relevance of
microbiome and

metabolome alterations
in PD

NMR and
LC-MS feces 16S-sequencing of

fecal microbiota
104 PD patients,

96 control subjects

increased abundance of Bacteroides
fragilis, Lactobacillus acidophilus,
unclassified Megasphaera and

unclassified Gammaproteobacteria;
greatest effect size for NMR-based

metabolome; SCFAs, lipids,
TMAO, ubiquinone and salicylate

concentrations vary in PD
patients; low SCFA levels

correlate with poorer cognition
and low BMI; low butyrate levels

correlate with worse postural
instability-gait disorder scores

[133]

Integration of longitudinal
metabolomics data with

constraint-based modeling
of gut microbial

communities

LC-MS EDTA plasma 16S-sequencing of
fecal microbiota

30 PD patients,
30 control subjects

combined omics-methods suggest
correlation between sulfur

co-metabolism and PD severity;
dopaminergic medication affects

lipidome; levels of taurine
conjugated bile acids correlate

with severity of motor symptoms;
A. muciniphila and B. wadsworthia

are predicted to alter
sulfur metabolism
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Table 1. Cont.

Publication Study Question Analytical
Method Sample Matrix Additional

Measurements Study Population Findings

[134]

alterations in gut
microbiota might be

accompanied by altered
concentrations of amino

acids, leading to PD

LC-MS, GC-MS feces 16S-sequencing of
fecal microbiota

PD patients and
healthy controls

greater abundance of Alistipes,
Rikenellaceae_RC9_gut_group,

Bifidobacterium, Parabacteroides,
while Faecalibacterium was

decreased in PD feces specimens;
fecal BCAAs and aromatic amino

acids concentrations were
significantly reduced in PD

patients compared to controls

[135]
finding a cause-effect
relationship between

intestinal dysbiosis and PD
GC-MS feces 16S-sequencing of

fecal microbiota
64 PD patients,

51 control subjects

alteration of fecal metabolome
regarding lipids, amino acids,

vitamins, cadaverine,
ethanolamine and hydroxy

propionic acid; severe
metabolomic alterations correlate
with abundance of bacteria from

the Lachnospiraceae family

[136] identification of early
biomarkers for PD FT-ICR-MS CSF - 31 patients,

95 control subjects

243 metabolites were found to be
affected in PD; 15 metabolites are

predicted to be the main
biological contributors; network
analysis showed connection to

Krebs-Cycle, possibly displaying
mitochondrial dysfunction

[137]

Integrative metabolic
modeling to identify roles
of gut microbiota in host

metabolism contributing to
PD pathophysiology

LC-MS serum -

31 early-stage
L-DOPA-naïve PD
male individuals,

28 matched controls

functional analysis reveals
increased microbial capability to
degrade mucin and host glycans

in PD; personalized
community-level metabolic
modeling reveals microbial

contribution to folate deficiency
and hyperhomocysteinemia

observed in patients with PD;
decreased capacity to produce

SCFAs by Bacteroides and
Prevotella species observed

[111]

untargeted metabolomics
approach to investigate

metabolic changes
associated with PD

LC-MS plasma -

223 PD, 169 healthy
controls,

68 neurological
disease controls

significant reductions in fatty
acids and caffeine metabolites,

elevation of bile acids; metabolite
PD panel with 4 biomarker

candidates: FFA10:0, FFA12:0,
indolelactic acid and

phenylacetyl-glutamine

[78]

investigating sebum as
potential diagnostic tool

for PD; identify PD
biomarkers in sebum

LC-MS sebum -
80 drug-naïve PD,
138 medicated PD,
56 healthy controls

10 metabolites present in samples
of drug-naïve and treated PD

patients associated with carnitine
pathway and sphingolipid

metabolism pathway

[71]

compare metabolomic
profiles of whole blood

obtained from treated PD
patients, de-novo PD

patients and controls, and
study perturbations

correlated with disease
duration, disease stage and

motor impairment

GC-MS blood -
16 de-novo PD,
84 treated PD,

42 healthy controls

most prominent differences in
butanoic acid and glutamic acid

[138]
identify distinct

volatiles-associated
signature of PD

GC-MS sebum - 43 PD,
21 healthy controls

altered levels of perillic aldehyde,
hippuric acid, eicosane, and
octadecanal in PD specimens

[117]
characterization of

metabolic patterns in PD
plasma specimens

LC-MS plasma - 28 PD,
18 healthy controls

17 significantly altered
metabolites associated with

glycerol phospholipid
metabolism, carnitine metabolism,
bile acid biosynthesis and tyrosine

biosynthesis

[72]

identify candidate
metabolic biomarker(s)
and pathomechanistic

pathway(s) of PD

LC-MS plasma -

discovery cohort
including 82 PD,

82 healthy controls;
validation cohort
including 118 PD,
22 Huntington’s

Disease,
47 healthy controls

dopamine and
putrescine/ornithine ratio

upregulated in PD,
octadecadienylcarnitine C18:2,
asymmetric dimethylarginine,
tryptophan, and kynurenine

downregulated in PD
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Table 1. Cont.

Publication Study Question Analytical
Method Sample Matrix Additional

Measurements Study Population Findings

[113]

urinary metabolic profiling
of idiopathic PD patients at

three stages and normal
control subjects

GC-MS, LC-MS urine - 92 PD,
65 healthy controls

18 differential metabolites
associated with BCAA

metabolism and steroid hormone
biosynthesis

[93]

identify associations
between intestinal

microbiome, intestinal
digestive function, and
influence of systemic

microbial metabolites on
PD

LC-MS feces, serum - 197 PD,
103 healthy controls

different intestinal microbiome
composition in PD patients, with

increased abundance of
Akkermansia and Bifidobacterium

and decreased abundance of
Faecalibacterium and

Lachnospiraceae; intestinal
microbiome in PD patients had

reduced capacity of carbohydrate
fermentation and butyrate

synthesis and showed increased
proteolytic fermentation

(b) Alzheimer’s disease

[121] investigate role of bile acid
composition in AD LC-MS serum -

1464 subjects
(370 cognitively

normal, 284 early
MCI,

505 late MCI,
305 AD patients)

in AD, cholic acid levels as a
primary bile acid are significantly

decreased and levels of the
secondary bile acid deoxycholic

acid are increased; levels of
deoxycholic acid conjugated with

taurine and glycine are also
increased

[127]
investigating the metabolic
output of gut microbiome

dysbiosis in AD
LC-MS feces 16S-sequencing of

fecal microbiota
21 patients,

44 control subjects

in AD, 15 gut bacterial genera
appear to be altered, 7 of those

genera are associated with
different series of metabolites;

combination of bacterial genera
Faecalibacterium and Pseudomonas,
combined with 4 metabolites was
able to discriminate between AD

patients and controls

[120]

identify the relationship
between

microbiome-associated
metabolites and dementia

LC, ion chro-
matography,

GC-MS
feces

classification of
fecal bacteria by

T-RFLP

82 control subjects,
25 patients

fecal ammonium and lactic acid
were identified as markers for

dementia

[128]
identify key microbial taxa

that participate in the
gut-brain axis

CE-FTMS mouse brain 16S-sequencing of
fecal microbiota

21 control subjects,
15 patients with

MCI, 7 AD patients

Faecalibacterium prausnitzii was
identified to participate in the

gut-brain axis as its abundance
decreased in patients with MCI,

correlating with cognitive scores;
oral treatment of GMO mice with

Aβ-induced cognitive
impairment with F. prausnitzii

improved cognitive impairment
and altered metabolic profile in

brain tissue specimens

[123]

connecting bile acid
profiles with standard

biomarkers of AD
progression

LC-MS serum

imaging of brain
atrophy with

MRI, assessment
of β-amyloid and
tau deposits with

PET

305 control subjects,
98 subjective

memory complaint
patients, 284 early

MCI patients,
505 late MCI

patients, 305 AD
patients

different bile acid profiles
associated with Aβ1-42 in CSF

and with p-Tau181 in CSF

[122]
metabolomic profiling of
bile acids in serum and

brain of AD patients
LC-MS serum and

brain tissue

metabolomic
analysis of serum

and brain
samples were

also performed in
mice

10 AD patients,
10 healthy subjects

serum levels of cholic acid in AD
patients decreased; concentration

of taurocholic acid reduced in
brain tissue

[119]
identification of novel

biomarkers for improved
risk prediction in AD

LC-MS
serum and
brain tissue

(post mortem)

follow-up
analysis of serum
metabolome after

4.5 years

serum: 97 patients
with MCI,

433 healthy subjects;
brain (post mortem):

28 AD patients,
32 patients with
MCI, 52 healthy

subjects

peripheral and systemic
metabolome appears to have
minor overlaps; three serum
acetylcarnitines identified as

negative predictors for incident
AD and cognitive decline; another

13 metabolites were found as
predictors for longitudinal change

in cognition



Metabolites 2022, 12, 1222 12 of 28

4. Metabolic Modeling of the Gut–Brain-Axis
4.1. Constraint-Based Metabolic Modelling

A major challenge for microbiome-based approaches especially in neurodegeneration
is to deduce molecular mechanisms through which the microbiome could drive disease
processes from associations between microbiome composition and disease phenotypes.
This is due to the immense complexity of different microbiomes often comprising hun-
dreds to thousands of species with a genetic markup about 150 times larger than that
of the host [139,140]. It is further complicated by the large number of factors influenc-
ing microbiome composition, which makes it often impossible to distinguish whether
changes in microbiome composition are caused by a disease or are causally involved in
its pathogenesis [141,142]. One way to alleviate this problem is the utilization of mecha-
nistic modeling approaches that allow to translate changes in microbiome composition
to the potential change in the underlying molecular function of the microbiome [143,144].
One particularly important approach in this regard is constraint-based metabolic modeling
that represents individual bacterial taxa as well as the host by their respective metabolic
networks [143,144]. Taking into account the nutritional environment of the microbial
community, these approaches then use the metabolic networks of the individual species
together with an optimization approach to predict metabolic activities in individual species,
metabolic exchanges between species, and metabolic exchanges with the host (Figure 2A).
Importantly, these approaches can incorporate compositional information and other types
of molecular data such as transcriptomic, proteomic, or metabolomic data, to provide
hypotheses about the functional consequences of observed differences in microbiome
composition [145–147].

Major approaches that are employed in this context are community flux balance anal-
ysis [148], individual-based modeling of microbiome metabolism [149], and whole-body
modeling [150]. Community flux balance analysis combines the metabolic networks of
individual species into a common compartment and optimizes the total amount of bacte-
rial biomass produced by the entire community [148] (Figure 2B). This method assumes
that bacterial species are using their metabolic networks such that the entire community
produces the highest amount of bacterial biomass possible and hence assumes some in-
trinsic cooperation in the organization of metabolic fluxes between species. In contrast,
individual-based modeling approaches such as BacArena that are also able to account for
temporal dynamics, optimize the metabolic networks of bacterial species individually [149]
(Figure 2C). As a consequence, metabolic interactions in BacArena mostly arise from one
bacterial species excreting a product that it does not metabolize further which is taken
up by another species that has that capability. In contrast, whole-body modeling aims to
build integrated metabolic networks of the host and the metabolic networks of microbial
species [150] (Figure 2D). These models allow tracing metabolic pathways connecting host
and microbiota and thereby are able to propose molecular metabolic pathways through
which the microbiome could influence disease processes in the host. Hence, whole-body
modeling is able to explicitly model also metabolic interactions along the gastrointestinal–
brain axis.

An additional important feature of these modeling approaches is that they enable
the prediction of the outcome of perturbations. Hence, they are able to predict specific
interventions such as supplementation of nutrients or probiotics that counteract disease-
associated microbiome functions and therefore could be an essential component in the
rational design of microbiome-based therapies counteracting neurodegeneration.
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Figure 2. Microbial community modeling approaches. Circles correspond to metabolites, arrows
to reactions. Shapes indicate exchanged metabolites. (A) General modeling approach. Genomes of
bacterial species are translated into their corresponding metabolic network models. Additionally,
information on the nutritional environment of the community is added (e.g., reported dietary uptake
of a study participant). Subsequently, metabolic activities in individual bacterial species and metabolic
exchanges between them can be predicted. (B) Community flux balance analysis. Bacterial metabolic
networks are combined into a community level metabolic network and it is assumed that bacteria
optimize their respective metabolic networks for most efficient community growth. (C) Individual-
based modeling of microbial communities. Individual bacterial metabolic networks are simulated in
a grid-like environment over time. Metabolic interactions occur as part of the secretion/consumption
of metabolites by individual bacteria and diffusion of metabolites between grid cells. (D) Whole-
body modeling. Metabolic networks of individual bacteria are joined with metabolic networks
representing individual host tissues. Metabolic exchanges between bacteria and colon occur via
a luminal compartment, metabolic exchanges between host tissues are mediated by the blood stream.

4.2. Microbial Community Modeling Yields Insights into Neurodegenerative Disease-Associated
Changes in Microbiome Metabolic Activity

Constraint-based microbial community modeling approaches have already seen an
application in a large number of different disease contexts, particularly IBD [151,152],
type 2 diabetes [153], and PD [137,154]. In the context of IBD, community flux balance
analysis was used to assess disease-associated changes in predicted metabolic activities
of the microbiome and propose specific metabolic interventions that could counteract
these changes [151]. In this study, particular changes in microbial sulfur metabolism
were observed which is well in line with metabolomic observations [155]. Moreover, in
another study, profound differences in ecological interactions within the microbiome that
were predictive of anti-inflammatory therapy success were observed [152]. An interesting
link to potential microbiome-based therapeutic approaches was drawn in a recent study
investigating the contribution of the microbiome to the therapeutic effect of the anti-diabetic
drug metformin [153]. It was found that in the roundworm Caenorhabditis elegans, the effect
of metformin was mediated by bacterial production of the potential neurotransmitter
agmatine. Using microbial community modeling on the gut microbiome of type 2 diabetic
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patients demonstrated also an increased capacity to produce agmatine in humans taking
metformin. Interestingly, agmatine has previously been shown to have a neuroprotective
effect in PD [156] as well as in AD [157]. Microbial production of agmatine upon metformin
exposure could hence contribute to observed beneficial effects of metformin in AD [158]
and PD [159]. In the context of PD, microbial community modeling was used to assess
changes in gut microbiome metabolic capacity tied to disease severity [159]. It was found
that sulfur-containing compounds such as cysteine-glycine and methionine showed an
association with PD. Similarly, another study identified differences in metabolic capacities
of individual microbial species that showed an association with PD [137], which were
reflected in serum metabolomics data. Interestingly, in the same study, changes in microbial
sulfur metabolism were observed.

5. The Microbiome as Therapeutic Target in Neurodegenerative Diseases

The emerging role of the microbiome as a potential driver of neurodegenerative diseases
opens up new possibilities for targeted, causal therapies. In this context, two fundamentally
different approaches to target the microbiome emerge. The first approach are changes in
lifestyle that would largely constitute a therapeutic strategy without relevant adverse side-
effects or safety concerns, but with high demands regarding personal initiative and adherence.
The second therapeutic strategy entails the direct modulation of microbiome composition
either through targeted modulation of the abundance of microbial species of interest or
a complete replacement of the microbiome through fecal transplants.

5.1. Changes in Lifestyle: Diet and Exercise

As discussed, diet is one of the strongest factors influencing microbiome composi-
tion [160]. For neurodegenerative diseases, a variety of animal and observational studies
have indicated beneficial effects of different forms of diet and nutritional habits. Of particu-
lar interest is the Mediterranean diet, which is associated with a decreased risk for PD and
AD [161]. Parts of the neuroprotective or anti-inflammatory effects of the Mediterranean
diet could be mediated by the microbiome [162]. One important aspect of this diet is the
increased intake of fibers, which forms a direct link to microbially produced SCFAs [30].
Apart from effects on the intestinal and endocrinological system, SCFAs have been associ-
ated with positive effects on immunologic functions, including modulation of microglia and
T-cell function in the ENS and CNS [163]. However, their specific role in neurodegenerative
diseases remains somewhat convoluted [25]. Another important constituent of the Mediter-
ranean diet are secondary plant compounds such as polyphenoles. Around 90–95% of total
polyphenol intake may accumulate in the large intestine, where they become available for
fermentation by the gut microbiota. Polyphenols and their degradation products (e.g., hy-
droxybenzoic acids) have been reported to inhibit the formation of α-synuclein misfolded
aggregates, reduce mitochondrial dysfunction-induced oxidative stress, and inflammatory
responses [164,165]. In contrast, the Western diet, including highly-processed, high-fat,
and high-sugar foods, has been associated with pro-inflammatory properties, which have
been linked to AD pathology and an increased risk for PD [166], with parts of these effects
seemingly mediated by the microbiome [167]. The ketogenic diet has also been considered
for its potential health benefits in neurological diseases, including PD, for which rodent
models indicate that effects might be mediated by the gut microbiome [168].

Results from cohort studies and meta-analyses that focus on single food items such as
dairy products and alcohol or single nutrients such as calcium, antioxidants, B-vitamins,
and n-6 or n-3 polyunsaturated fatty acids have shown inconsistent results (for a review
see [169]). Since diet is a multidimensional exposure of components with different health
effects, a diet intervention based on an individual’s dietary patterns might have more
favorable effects if it alters intake of multiple foods that may lead to a combination of
many smaller effect sizes [170]. On the other hand, health effects of dietary patterns
may depend on genetic risk alleles such as the APOE4 genotype as well as on the gut
microbiome. Compared to vegans, omnivores produce significantly higher levels of the
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atherosclerosis-promoting trimethylamine-N-oxide (TMAO) after eating a protein-rich
meal because several bacterial taxa that form the TMAO precursor trimethylamine have
been reported to be more abundant in omnivores than in vegans [171]. The Nutrition
for Dementia Prevention Working Group recently proposed a roadmap for future studies
in nutrition and dementia prevention [170]. According to their recommendations, diets
should be designed based on multiple neuroprotective dietary or nutrient components
that can be applied in interventional trials. In addition, smaller personalized trials should
be performed that consider genetics, omics, microbiome, and nutrient exposures and are
guided by biomarkers that reflect brain functions.

Another important aspect of lifestyle as a therapeutic option for targeting the micro-
biome is exercise, which was shown to decrease the risk for neurodegeneration, induce
neurorestorative and neuroprotective effects, and modulate disease progression in animal
and human observational studies [172,173]. In this respect, a variety of rodent model
studies revealed alterations of the gut microbiome following different forms of exercise,
in interaction with, but also independently from dietary changes [174,175]. Similar effects
have been observed in human studies, with alterations of microbial diversity observed in
athletes and following different forms of exercise [176]. However, clinical interventional
studies linking exercise-induced changes in the microbiome and direct health benefits in
neurodegenerative diseases are still missing. Additionally, especially for PD, the interaction
between exercise effects on gut motility and changes in the intestinal flora should be further
elucidated.

Taken together, evidence from human studies confirming a direct link between lifestyle
changes, microbiome alterations, and clinical benefits in neurodegenerative diseases are
still needed. Moreover, while the potential therapeutic role of SCFAs needs to be clarified,
available studies strongly support positive effects of a high-fiber, Mediterranean diet, and
regular exercise, which should be mechanistically further elucidated to specifically advise
them as low-risk therapeutic options for neurodegenerative diseases.

5.2. Prebiotics and Probiotics

Following accumulating evidence of a prominent role of the GI-brain axis in neurode-
generative diseases, researchers and patients placed high hopes in the use of prebiotics
(nutrients supporting beneficial microbial strains), probiotics (beneficial strains) or combi-
nations thereof referred to as synbiotics, to target the microbiome. In this respect the use
of prebiotics has a high overlap to positively rated foods from dietary studies. Important
prebiotics include fructooligosaccharides (FOS), galactooligosaccharides (GOS), polyun-
saturated fatty acids (PUFA), and plant polyphenols. For neurodegenerative diseases,
especially the neuroprotective, anti-inflammatory, and antioxidative effects of polyphenols
and PUFAs have been described [164,177]. So far, a variety of animal and human studies
have examined behavioral and neuropsychiatric effects of prebiotics, including effects on
anxiety, depression, and memory function [178,179]. In AD mouse models, prebiotics such
as plant polyphenols and oligosaccharides have been linked to an improvement of cognitive
function and modulation of amyloid or tau pathology, in association with microbiome di-
versity and metabolism [180]. In contrast, very limited studies have been performed for PD,
examining mainly the role of prebiotics (and probiotics) on constipation in clinical PD [181].
A first interventional, monocentric, open-label clinical trial RESISTA-PD (NCT02784145)
that aimed at altering fecal SCFAs by an 8-week prebiotic intervention with resistant starch
(RS) could demonstrate that in PD patients treated with RS, fecal butyrate concentrations
increased significantly and fecal calprotectin concentrations dropped significantly after
8 weeks of RS therapy and that this prebiotic approach is safe and well-tolerated in PD [182].
Larger, blinded studies evaluating clinical outcome parameters are needed to substantiate
this observation. Concerning probiotics, various animal and few human studies have
shown behavioral and neuropsychiatric effects including effects on cognitive function or
fatigue [183,184]. Accordingly, first interventional studies in AD and PD have been con-
ducted, showing potential clinical benefits of microbiome alterations [185,186]. In summary,
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despite great interest in the use of prebiotics and probiotics to target microbiome-associated
disease progression in neurodegeneration and first promising results, evidence from clinical
studies is not sufficient, yet, for an official medical recommendation to use probiotics or
prebiotics in AD or PD.

5.3. Antibiotics

The other route besides proliferation promotion with pre- and probiotics is the sup-
pression of invasive or overabundant species through antibiotics. The treatment with
broad-spectrum antibiotics is considered to have severe microbiome-related side effects
such as microbiome dysbiosis [187]. For example, such a treatment has decreased the
survival rates of patients with cancer [188] indicating the role of homeostasis for the overall
health of a patient. In addition, intake of antibiotic medication has been suggested to
increase PD risk in healthy individuals [189]. Therefore, caution is warranted with more
general antibiotic treatments, while more targeted antibiotic interventions might be more
promising. For instance, the overabundance of specific species can trigger the release of
inflammatory mediators in AD patients, e.g., Helicobacter pylori [190]. Even viral infections
such as herpes simplex virus (HSV) type 1 have been identified as possible risk factors
in AD [191]. Antibiotic targeting of individual species inside the microbiome could cut
feedback loops and synergistic effects important for the modulation of the overarching
disease. For chronic peptic ulcers, this has already been implemented for a long time by
specifically targeting H. pylori [192]. Another example is the treatment of Clostridioides
difficile infections (CDI), where the switch from a broad-spectrum antibiotic to a specifi-
cally targeting, microbiome-sparing antibiotic could reduce CDI recurrence levels by 60%
compared to the standard clinical therapy [193].

Still, in addition to interfering with the biochemical pathways of the pathogens,
solid-state structural mechanisms could be proposed as well. Specifically antibiotic, but
biocompatible particles such as zinc oxide micro-tetrapods [194] have already been em-
ployed to facilitate an immune response against HSV [195–198]. In this case, instead of a
classic pharmaceutical effect through the release of zinc ions, the structural effect of binding
virion glycoprotein groups to designed surface oxygen vacancies is used. For HSV, the
experimental evidence elucidated the mechanism: a capturing of the nanoscopic virion
to the microscopic tetrapodal zinc oxide surface was observed. Thus, the tetrapods acted
as a virostatic platform. From there, antigen-presenting cells identified the immobilized
viruses and thus triggered the immune system via the CD4/CD8 signaling pathway against
herpes simplex viruses in a mouse model. As herpes simplex is one risk factor for AD, such
a therapy could also reduce the overall AD risk.

This solid-state structural strategy is also applicable for bacteria. Structural differences
cause differences in the antibacterial efficacy [195–197]. By using specific binding elements
on top of the micro crystals, these can be tailored even more for a microbiome-sparing
antibiotic targeting. By chemically altering the surface structure of the tetrapodal zinc
oxide particles, the binding specificity towards other proteins for simultaneously anti-
and prebiotic purposes could be achieved [195–197]. Such a combined approach may
significantly impact the species in the microbiome as well as break negative and enhance
positive feedback towards homeostasis.

5.4. Fecal Transplants

The possibility to alter the microbiome via fecal transplants (fecal microbiota trans-
plantation, FMT) from healthy individuals has gained attention as a potential therapeutic
option in neurodegenerative diseases. Fecal transplants are an evidence-based and recom-
mended treatment for recurrent CDI [199,200]. Additionally, FMT has been increasingly
discussed as a therapeutic option for other gastrointestinal disorders, particularly IBD
and constipation [201–203]. Moreover, mouse models have revealed effects of FMT on
neurobehavior [204,205] and on immunological pathways [205,206]. Regarding neurode-
generative diseases, several mouse model studies investigated effects of FMT on dysbiosis,
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protein accumulation, inflammation and clinical impairment. In PD, FMT treatments in the
rotenone rodent model restored gut dysbiosis, inhibited neuroinflammation and improved
gastrointestinal and motor dysfunction [207,208]. Similar results for the modulation of gut
microbiome and neuroinflammation have been seen for the AD mouse model, in which
FMT additionally reduced amyloid-ß and tau pathology, accompanied by improvements of
cognitive function [209,210]. However, so far only few case reports and small case series
have observed positive effects of FMT in patients with PD, demonstrating primarily an
improvement of (severe) constipation as well as effects on small intestine bacterial over-
growth (SIBO) and motor impairment [211–213]. A double-blind, placebo-controlled study
to evaluate effects of FMT in PD is currently in progress [214]. In AD, two case reports
described a considerable improvement of cognitive function in AD patients with comorbid
CDI following FMT treatment [215,216]. Unfortunately, a planned clinical trial has been
terminated due to the detection of SARS-CoV-2 in the feces [217], revealing the major limita-
tion of this treatment. Taken together, the existing data on the effect of FMT on PD and AD
patients are too limited to support a broader application of FMT in these two diseases [218].
Moreover, the most promising route of administration (nasogastric/-duodenal or rectal)
has to be investigated in the future.

5.5. Medication

Apart from the well-known effects of antibiotics on the microbiome [219], a multitude
of studies showed that other drug classes, including antidiabetics (metformin), psychiatric
medication (antidepressants), or proton pump inhibitors influence the gut microbiome [153,
220,221]. In turn, the effects of patient medication can be compromised by gut microbiota
metabolization as shown for L-dopa in PD [222]. However, further studies are needed to
determine whether specific medication can be used to yield microbiome-mediated positive
effects on neurodegenerative diseases.

Taken together, the microbiome is an interesting therapeutic target, especially con-
sidering the possibility of easily applicable low-risk interventional therapies. However,
it has to be taken into account that most of the microbiome studies in AD and PD have
been conducted in the clinical phase of the diseases, with the goal of disease modifica-
tion. Causal treatment, however, should directly target underlying pathomechanisms
occuring in the prodromal/preclinical phases of neurodegeneration, which, in terms of
microbiome alterations, have yet to be elucidated. So far, the evidence for a medical use of
probiotics/prebiotics or FMT is not sufficient, especially considering rare but possible side-
effects or adverse reactions of these treatments. However, considering the wide-ranging
beneficial effects of a healthy lifestyle, recommendations on diet and exercise, potentially
influencing microbiome-driven pathology in PD and AD, should be further explored.

6. Summary and Future Research Perspectives

Both PD and AD, the two most common neurodegenerative diseases, have been
associated with substantial changes in the microbiome and metabolome composition in
comparison to healthy individuals. Nevertheless, the prognostic value of these changes for
early disease diagnosis and prognosis, most particularly in the prodromal disease phases,
still needs to be determined in large-scale, prospective multi-omics studies. On the other
hand, both the microbiome and the metabolome might offer novel therapeutic targets for
effective disease treatment. This, however, requires a deep, systematic understanding of
the underlying disease pathomechanisms to improve patient outcomes and minimize side-
effects. A systems-wide understanding of the GI–brain axis covering not only individual
organs and/or biocompartments, but comprising the whole organism, would potentially
facilitate these insights. Systems medicine and systems biological modeling approaches
of host-microbiome interactions represent key tools in achieving such a systematic under-
standing. On the sampling side, however, both microbiome and metabolome analyses in
PD and AD have been limited to individual organs and mainly standard biospecimens
such as feces and blood. The additional multi-omics investigation of other biospecimens
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such as saliva and CSF might, in particular, offer novel insights into the link between the
oral microbiome, the GI–brain axis, and neurodegeneration. Many options to actively
change the microbiome and metabolome composition are already available, most impor-
tantly dietary interventions and lifestyle changes. However, their downstream effects on
neurodegeneration still need to be explored. With respect to the long prodromal phases of
PD and AD, a major focus should be set on affordable and low-threshold interventions.

Finally, systematic comparisons of microbiome and metabolome changes across differ-
ent neurodegenerative diseases both cross-sectionally and longitudinally are still lacking.
An extension of these systematic comparisons to other diseases, in which neurodegen-
eration contributes to disease progression and symptoms, such as multiple sclerosis or
Huntington’s disease, might unveil disease-overarching pathomechanisms of neurode-
generation. In fact, profound microbiome and metabolome changes have already been
reported in both multiple sclerosis [223,224], which is in addition to the inflammatory
pathophysiology characterized by profound neurodegeneration, and Huntington’s dis-
ease [225]. Thus, deeply phenotyped multi-cohort studies as well as clinical trials including
several distinct neurodegenerative diseases such as PD, AD, multiple sclerosis, and/or
rarer neurodegenerative diseases such as Huntington’s disease might pave the way to
a deeper mechanistic understanding of neurodegeneration and uncover novel therapeutic
strategies to fight this global pandemic.
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