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Abstract: The decline of natural pollinators necessitates the development of novel pollination tech-
nologies. In this work, we propose a drone-enabled autonomous pollination system (APS) that
consists of five primary modules: environment sensing, flower perception, path planning, flight con-
trol, and pollination mechanisms. These modules are highly dependent upon each other, with each
module relying on inputs from the other modules. In this paper, we focus on approaches to the flower
perception, path planning, and flight control modules. First, we briefly introduce a flower perception
method from our previous work to create a map of flower locations. With a map of flowers, APS
path planning is defined as a variant of the Travelling Salesman Problem (TSP). Two path planning
approaches are compared based on mixed-integer programming (MIP) and genetic algorithms (GA),
respectively. The GA approach is chosen as the superior approach due to the vast computational
savings with negligible loss of optimality. To accurately follow the generated path for pollination,
we develop a convex optimization approach to the quadrotor flight control problem (QFCP). This
approach solves two convex problems. The first problem is a convexified three degree-of-freedom
QFCP. The solution to this problem is used as an initial guess to the second convex problem, which is
a linearized six degree-of-freedom QFCP. It is found that changing the objective of the second convex
problem to minimize the deviation from the initial guess provides improved physical feasibility and
solutions similar to a general-purpose optimizer. The path planning and flight control approaches
are then tested within a model predictive control (MPC) framework where significant computational
savings and embedded adjustments to uncertainty are observed. Coupling the two modules together
provides a simple demonstration of how the entire APS will operate in practice.

Keywords: unmanned aerial vehicles; autonomous pollination; perception; path planning; trajectory
optimization; flight control; convex optimization

1. Background and Motivation

There has been a decline of bees and other natural pollinators over the last few decades
in the US and around the world. The decline of pollinators has been attributed to a variety
of causes; among these are colony collapse disorder, pesticides, and climate change [1].
There are many possible and hypothesized causes of pollinator decline; regardless of the
cause, however, it poses a major threat to agriculture. The crops that are reliant upon
pollinators are generally fruits, nuts, and many crops grown on trees. The chief crop among
the pollinator dependent is Almonds. The effects of the decline of pollinators at present
manifest in rising prices for these pollinator dependent crops. Almond farmers have felt
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the brunt of this, with the cost of renting a bee colony rising from USD 50 in 2004 to USD
171 in 2017, with each acre of almonds requiring two colonies [1]. If these trends continue,
bee dependent crops could become too expensive or inefficient for farmers to produce and
sell. Eventually, such trends will affect food security around the world.

These alarming trends necessitate the development of alternative pollination tech-
niques. In developing and choosing pollination techniques, the effectiveness, cost, and scal-
ablity of the approaches must be considered. One such technique is manual pollination,
requiring workers to use a brush to spread pollen from one flower to another. This will
clearly be an expensive and labor-intensive process, though it is obviously scalable sup-
posing farmers can access a sufficient pool of low wage laborers. Various other methods
of pollination have been tested such as shaking crops or using fans in greenhouses. Such
methods are often ineffective or not scalable. Thus, robotic or autonomous pollination
techniques are necessary. This topic has been researched and approached in various ways.
These include using a crane to pollinate vanilla and mobile robots for the pollination of
tomatoes and some trees [2]. Many of these are conceptual, not entirely practical, and not
autonomous. Researchers at West Virginia University have developed a wheeled ground
robot called BrambleBee to perform autonomous pollination within a greenhouse [3]. When
ground-based robots are applied in an outdoor field environment, issues arise from the
difficult conditions of the less structured, more rugged environment. Outdoor applications
also struggle with poor and changing lighting conditions, which make flower detection
less reliable [4].

There has also been research into using drones for pollination. These drone systems
often take the form of micro autonomous vehicles (MAV). For example, RoboBees have
been developed at Harvard University. RoboBees are bio-inspired MAVs comparable to the
size of a quarter. They are propelled by flapping wings and at this stage are usually tethered
to a power source. While this is an impressive MAV, it is far from capable of autonomous
pollination, as it is too small to carry a microchip for decision making and is constrained
either by a tether or small solar panel [5,6]. Another attempt at drone-based pollination has
been conducted by the National Institute of Advanced Industrial Science and Technology
in Japan. Researchers attached an ionic liquid gel-coated brush, which could absorb and
deposit pollen grains, to a quadrotor. With this brush-mounted quadrotor, they attempted
with limited success to perform pollination. Pollen collection and pollination was met
with 53% and 37% success respectively. The quadrotor was controlled manually and was
thus not autonomous [7]. These examples of drone pollination are similar to, but far less
ambitious than, the pollination technique proposed in this paper. This paper introduces a
drone-enabled Autonomous Pollination System (APS), which seeks to be fully autonomous,
making decisions onboard with machine vision and autonomous flight control. Such a
system will be highly scalable and effective in meeting the pollination need.

The state-of-the-art in the field of autonomous pollination consists of both ground and
aerial based designs. The latest research comes from China and New Zealand, seeking to
pollinate kiwifruit with a ground robot [8–10], and Iran, seeking to pollinate walnut trees
with quadrotors [11]. Both the research for kiwi and walnut is motivated by the need to
develop a pollination system for a specific fruit or nut. APS seeks to be more generic at this
stage, developing algorithms to fit various tasks common to any pollination mission. Thus,
while the kiwi and walnut research seeks to spray pollen, the research presented in this
paper seeks to develop methods for the broadly defined path planning and flight control
tasks that could then be used for spraying pollen or physical application of the pollen.

2. A Drone-Enabled Autonomous Pollination System

Our proposed APS seeks to use small quadrotors for the task of pollination. Quadro-
tors are an excellent choice for these tasks as they are inexpensive, highly maneuverable,
and can hover. They can also operate effectively both indoors and outdoors. There is also
an obvious similarity between the function of autonomous quadrotor pollinators and bees,
as opposed to other pollination approaches which do not fly.
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APS will be complex. The system will need to identify flowers, fly to them, pollinate,
cooperate with other drones, etc. These steps are best described in a series of modules,
the chief of which are environment sensing, flower perception, path planning, flight control,
and pollination mechanisms (see Figure 1).

Figure 1. APS flowchart and module cooperation.

The APS modules are broadly defined as follows. Environment sensing involves
the system sensing its environment, searching for obstacles and other mission critical
information. Flower perception, following from environment sensing, requires the system
to detect and locate the flowers in the environment and then describes these flowers’
locations as waypoints in a map. Path planning refers to finding the optimal path or
sequence of waypoints (flowers or flower clusters) in which to pollinate. Flight control
refers to the maneuvering of the quadrotor from one waypoint to the next in a closed-loop
manner. Finally, the pollination mechanism is used to physically pollinate the flower.
The pollination mechanism will vary depending on the crop being pollinated.

As stated, one ambition of APS is to make decisions onboard individual quadrotors.
The stated modules are non-trivial computational tasks. Thus, special attention must be
given to the selection and development of highly efficient algorithms if these modules
are to be processed onboard. This makes the tradeoff between solution optimality or
accuracy and computational efficiency of the utmost importance for APS. For example,
if the developers of APS can sacrifice an acceptable degree of accuracy for a notable decrease
in computational cost, that would be the best choice. This tradeoff is a very important point
in the research presented in this paper, which seeks to develop and choose highly efficient
algorithms for completing the tasks required for APS to be successful, focusing primarily
on path planning and flight control, although flower perception will be briefly presented in
the context of perceiving and mapping strawberries from our previous work.

2.1. Flower Perception

Flower perception provides the input to the path planning module, which in turn
provides the input to the flight control module. The flower perception procedure described
in this paper uses Region-based Convolutional Neural Networks (R-CNN) to detect flowers
and leverages the development of orthoimages to create a map and waypoints of the flower
locations. Neural nets are a very popular field of study. R-CNN is a technique used in
computer vision to deal with multiple objects in a single frame [12]. Orthoimages are
geometrically corrected images that can then be used as a to-scale map [13]. The output
of the flower perception module are waypoints that are the input to the path planning
module. The flower perception approach has been discussed in detail in our previous work
in [14] and will be briefly summarized in Section 3.

2.2. Path Planning

UAV path planning is a popular topic of research due to the growing adoption of
UAVs for a wide variety of applications. In general, path planning seeks to find a path
for the UAV or other agent that is feasible and will meet the mission requirements. For
example, a popular UAV application is search and rescue. In this context, path planning
would involve guiding a swarm of drones through the search area in paths that cover
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the most possible ground in the fastest fashion. Path planning problems often can be
formulated as optimization problems. One example of this is the flying sidekick travelling
salesman problem (FSTSP) that has been developed for drone-assisted parcel delivery [15].
This problem seeks to use drones in tandem with delivery trucks to minimize delivery trip
cost, and the path of both the truck and drone are optimized. Collision avoidance may be
integrated into such applications. One method in which path planning can incorporate
collision avoidance in complex environments is to generate a flight corridor, defining
a simplified region that the path can be optimized within [16]. One attraction of this
approach is that there are methods of ensuring such regions are convex, which could be
highly effective if it were coupled with the convex optimization flight control method
developed in this paper.

Path planning for APS seeks to find the optimal sequence of waypoints (i.e., flowers
or flower clusters) that the UAV will visit. The problem can be formulated as a travel-
ling salesman problem (TSP), which is a classic and well-studied problem in computer
science [17]. For crops that lie close to the ground in rows, like strawberries, a 2D TSP
approach is sufficient to solve the path planning problem. Other crops will be notably more
complicated. For example, APS path planning in an almond grove will necessarily be a
3D TSP, and there will be many tree branches and trunks, necessitating a strong collision
avoidance effort. This paper addresses the crops that can be assumed as a 2D TSP. Two
possible approaches to the TSP are tested, mixed-integer programming (MIP) and genetic
algorithms (GA) [18–20]. MIP is a technique built upon mathematical programming that
has the capability to constrain some variables to integers [18]. The MIP family of methods
also includes mixed-integer linear programming (MILP) and mixed-integer convex pro-
gramming (MICP). These methods rely upon strong linear and convex solvers to perform
procedures producing integer solutions. GA is a biologically inspired algorithm that is
based on the idea of natural selection and relies heavily on stochastic processes to optimize
the path [20]. These approaches provide a few relative strengths and weaknesses, and the
choosing of one over the other for APS will require certain tradeoffs. For APS, which
seeks to perform most of the modules described in Section 2 and Figure 1 with an onboard
computer, this choice will hinge upon computational efficiency and global vs. local search
capabilities that will be explored in Section 4.

2.3. Flight Control

The methods for the quadrotor flight control problem (QFCP) fit into two main cat-
egories, learning-based and model-based. Learning-based flight control relies on flight
data to train the flight controller. Three representative methods in this category are fuzzy
logic, human-based learning, and neural networks. The data required to train the flight
controller for these methods may be derived from flights involving a pilot or previous
trials of the system. Model-based flight control relies on a model of the aircraft to derive a
series of controls to be applied. Some examples of this approach are feedback linearization,
proportional integral derivative (PID), and model predictive control (MPC). Feedback
linearization relies on the transformation of nonlinear dynamics into a coordinate system
where the dynamics are linear. The control problem is then solved in this linear space and
inverted back to the true coordinate frame. PID control is a closed-loop control method that
relies on measuring the error between the actual state and the desired state, and applies
controls proportional to this error, its derivative, and its integral. MPC works by solving
the optimal control problem of the aircraft over a future horizon and applying the resulting
controls [21]. One issue with solving the QFCP using MPC is that the system is highly
nonlinear, which leads to difficulties as the problem must be solvable in real time to be
useful for live flight control.

One approach to dealing with the nonlinearity of the QFCP is to reformulate the
problem into a convex optimization problem. Convex optimization is the optimization of
convex functions over convex sets [22]. This set of mathematical optimization problems
is alluring for a few reasons. The local minima of a convex function over a convex set are
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the global minima. Convex problems are a broad set of possible problems including linear,
quadratic, second order conic, semi-definite, and other problems. There are highly efficient
means of solving convex problems, and many nonconvex problems can be manipulated
into an equivalent convex form [23]. The QFCP considered in this paper is highly nonlinear,
nonconvex but with some manipulation, it can be convexified and solved efficiently with
convex optimization.

There are various methods and approaches to convexify a nonconvex problem. These
often involve relaxation, change of variables, and some form of linearization. Relaxing a
constraint is often employed when dealing with an equality constraint defining a set that
forms a shell. Relaxation means to “relax” the equality into an inequality, thus redefining
the set defined by the constraint as a convex hull. The constraint will then become convex,
but care must be taken that the optimal solution still resides on the exterior of the hull,
the original shell. There are many opportunities to perform a change of variables, defin-
ing a new variable, that can convexify a constraint. Often this takes the form of taking
a nonconvex constraint or objective, finding a relationship between existing variables,
and defining a variable based on that relationship. Finally, linearization refers to assuming
that a nonlinear relationship is approximately linear over some range, thus convexifying
the relationship [24,25].

More recently, sequential convex programming (SCP) further extends the usefulness
of convexification. SCP provides a framework to solve a sequence of convex problems that
will converge to the solution to an original, nonconvex problem. This is useful when a
problem is highly nonconvex and the previously discussed approaches to convexify it do
not lead to an equivalent problem. SCP can thus be used. A simplified, convex sub-problem
is defined and solved based on an initial guess. The solution to this first iteration is used as
the initial guess for a second iteration. This process is repeated until the change in state
variables from one iteration to the next is smaller than some tolerance. The benefits of SCP
are evident when thinking of a linearization. Linearization of a nonlinear function can be
highly accurate, but only over a small region. SCP provides a framework to solve such a
linearized problem repeatedly over small regions, thus iterating towards the optimum [24].

Some research has been performed to solve the QFCP using convex optimization.
Much of this work has come from the Institute for Dynamic Systems and Control at ETH
Zurich. These researchers decoupled the axes of QFCP by formulating the problem in
terms of jerk, thus convexifying the problem [26]. This group has also used SCP to solve for
collision-free trajectories for a swarm of quadrotors [27]. Collision-free trajectory generation
and swarm or multi-agent path planning are popular applications of convex optimization
and SCP in the context of quadrotors [28]. A novel convex-optimization-based approach
is proposed in this paper to address the QFCP for APS applications as will be detailed in
Section 5.

2.4. Model Predictive Control

In order to apply the proposed path planning and flight control methods for a live APS
mission, we will implement both modules within a receding-horizon control framework.
Specifically, the path planning and flight control algorithms presented will be coupled
together using an MPC framework. MPC is a popular, receding-horizon, closed-loop control
framework. MPC seeks to model and solve the optimal control problem for the system over
a horizon and implements the beginning of the optimal control sequence before generating
a new sequence. The amount of time between re-generations of the control sequence is
often referred to as the time horizon. Thus, the optimal control sequence is generated
every time the time horizon is reached throughout the flight [29]. There are a few major
benefits of MPC. First, MPC allows for robust control of the system because the framework’s
design enables it to adjust to unforeseen deviations from the expected behavior, and the
control problems are solved repeatedly throughout the mission. In addition, the framework
reduces the computational cost of control, as optimizing over a set horizon reduces the size
of the control problem.
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As a popular control framework, MPC has been applied to quadrotors [30]. The re-
searchers at ETH Zurich discussed previously used the framework with their convexified
flight control method [26]. One of the discussed benefits of the framework is the adaptive
nature of the framework. This contrasts with other control frameworks which may generate
a reference trajectory at the beginning of a mission, and track this reference for the entirety
of the flight. Some researchers have found that, though MPC eliminates the necessity
of a reference trajectory in this sense, it can be effectively used as a reference tracking
control method. In this paper, we will make a novel use of MPC by implementing the path
planning and flight control algorithms within the MPC framework to enable practical APS
applications as will be discussed in Section 6.

3. Flower Perception

The flower perception module provides a map of waypoints or flower locations as the
input to the path planning module. This section describes the experiment that demonstrates
how these maps can be generated using machine vision and orthoimages. These results are
derived from our previous work in [14].

Quadrotor images of strawberry cultivars in Citra, Florida were acquired biweekly
around 10:30 am–12:30 pm in November and December 2018. Two different flying heights,
2 m and 3 m, were used for the image acquisition (see Figure 2). A common practice of drone
imaging was that there should be at least 70% frontal overlap and 60% side overlap between
consecutive images to ensure success in building orthoimages. On average, the drone took
185 images and 25 min to cover the whole field at 3 m height, and 479 images and 40 min
to cover the field at 2 m height. Images were collected on cloudy and sunny days in order
to train the deep learning model in variable lighting conditions. After finishing image
acquisition using the drone, the true number of flowers and fruit was manually counted in
the field and the data were used for model validation.

Figure 2. 3 m height images (left) and 2 m height images (right).

Orthoimages were generated using the collected images with the software Pix4D®

to help create a flower distribution map. Orthoimages are a set of aerial photos which
have been stitched together and geometrically rectified to account for distortions during
image capture [13]. An orthoimage could be used to measure true distances and accurately
represent the Earth’s surface. With the help of orthoimages, it was simple to localize flowers
and build distribution maps. An example of the generated orthoimage is shown in Figure 3.
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Figure 3. The generated orthoimage of the strawberry field.

Deep learning models based on Faster R-CNN were trained using part of the image
data from the 2017–2018 season [12]. The models were trained to detect not only flowers
but also immature and mature fruit. The first step in implementing Faster R-CNN was to
create the training data. Thus, orthoimages were split into small rectangle, and flowers
and fruit were manually labeled using the open-source labeling tool. A total of 12,526
images were labeled, among which 80% were used for training and 20% were used for
model testing.

The detection results were compared with manually counted numbers. Figure 4 shows
an example of the results of detecting flowers and immature and mature fruits. For flower
detection, approximately 92% precision was achieved using the trained Faster R-CNN
model. This accuracy is less than but comparable to the 96% precision that the previously
discussed kiwifruit pollination researchers achieved using YOLOv4 [9]. Thus, this result is
competitive with the current state-of-the-art in flower perception for pollination. It is also
notable that the kiwifruit researchers identified flowers in a more localized sense whereas
our research seeks to locate these flowers relative to the row they are in. This distinction is
indicative of how the APS flower perception module is providing a direct input to the path
planning module. Table 1 shows the data collected in three different days and the accuracy
of the model in counting the number of flowers [14].

Figure 4. Row image with flowers, immature, and mature fruits labeled for model training.

Table 1. The comparison between the number of flowers counted manually and that counted by the
deep learning model.

Date Manual Count Image Count Deep Learning TP FP FN Occlusion Precision

15 November 2018 1098 961 1021 934 87 27 12.5% 91.5%
29 November 2018 672 584 609 565 44 19 13.1% 92.7%
13 December 2018 438 375 379 347 34 28 14.4% 91.6%

From this process, a series of waypoints corresponding to the locations of flowers
or flower clusters are produced. These waypoints will serve as the input into the path
planning algorithms discussed in the following section.

4. Path Planning

The path planning module seeks to solve the TSP associated with APS. The TSP in a
classic sense is, given a list of cities, find the shortest route to pass through each city once
and then return to the present location [17]. The parallel between the TSP and the APS path
planning problem is clear. Instead of a list of cities, the agent, drone, or salesman is now
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attempting to pass through each flower location or waypoint once. Instead of returning
to the original location, the agent now will seek to end at the other side of the row of
strawberries or another crop.

Two approaches, MIP and GA, have been applied to the TSP associated with the pro-
posed APS. This section seeks to decide which of these two approaches is more appropriate
for the needs of APS, as APS will be required to perform many computationally expensive
tasks onboard. Special care must be taken in algorithm selection, when available, to create
a system that will function effectively for the pollination mission.

Suppose that a list of N waypoints is given and enumerated as {W1, ..., WN}, which
is the output of the flower perception module of APS. Both stated approaches require the
formation of a matrix D, where elements Di,j is the distance from location i to location
j. Note that when using pure Euclidean norm distances, D is symmetric. A sequence of
waypoints can be expressed in two ways. One is as a list of the waypoints in the order of
the path, S. For example, one possible such list is S = {W2, W3, WN , WN−1, ..., W1}, stating
that the agent first goes to location two, then three, then location N, and so on. This list
S can also be expressed as a matrix X ∈ RN×N where Xi,j = 1 if the agent travels from
location i to location j, and Xi,j = 0 otherwise. One can easily convert a list S into the matrix
of form X and the converse. Thus, with the goal being to minimize total distance travelled,
the objective function of the TSP can be stated as:

min
N

∑
i=1

N

∑
j=1,j 6=i

Di,jXi,j (1)

This objective function is used by both the MIP and GA approaches.
Various MIP formulations for the TSP have been developed. The classic formulation

was developed by Miller, Tucker, and Zemlin (MTZ) [19], which is the formulation used
in this paper. There is extensive literature about the MTZ formulation and more recent
formulations, and the reader is directed to read further on these topics in [18–20]. The basic
MTZ formulation is:

min
N

∑
i=1

N

∑
j=1,j 6=i

Di,jXi,j (2)

Subject to:

N

∑
i=1,j 6=i

Xi,j = 1 (j = 1, ..., N) (3)

N

∑
j=1,j 6=i

Xi,j = 1 (i = 1, ..., N) (4)

ui − uj + NXi,j ≤ N − 1, (2 ≤ i 6= j ≤ N) (5)

1 ≤ ui ≤ N − 1, (2 ≤ i ≤ N) (6)

where Xi,j are 1 or 0 as stated previously and ui are integers. The addition of the constraints
containing ui are to enforce that no subtours occur. Subtours refer to instances of self-
contained loops that can arise from the use of the matrix X.

The GA approach is different. The idea behind the algorithm is to generate random
permutations of the waypoints, called chromosomes. These chromosomes are the “par-
ents”. The parents are randomly mutated in various ways, and the performance of this
new, mutated set of chromosomes is assessed. The best of this new set is taken as the
new set of parents. This process is done iteratively with the set of chromosomes at each
iteration being called the population [19]. This is inspired by biology and natural selection.
For APS, the most important parameters of these algorithms are population size and num-
ber of iterations or generations. Readers are directed to [19] for further reading about the
GA approach.
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Both the MIP and GA are popular approaches to the TSP, and thus there are many
“off the shelf”, open-source implementations available. For this research, a MATLAB TSP
MIP tutorial was modified for the APS path planning problem [31]. Similarly, a GA TSP
implementation was downloaded from MATLAB’s community, MATLAB Central [32].
However, applications of these algorithms to drone-enabled APS are novel. Figure 5 gives
an example of these approaches at work. The top shows the raw flower locations in blue,
and a start (red) and end (green) point. The bottom shows the optimal path. Note that
only one solution is shown. GA and MIP will theoretically converge to the same solution,
but some tradeoffs regarding their convergence and computation time will be discussed.

Figure 5. Flower locations (Top) and optimal path (Bottom).

In comparing these two approaches in the context of a drone-enabled APS, the most
important aspects are computational efficiency and global vs. local search capabilities.
As previously discussed, APS needs to be able to perform multiple functions in real time:
sensing, perception, path planning, and flight control. This necessitates that the path
planning, and other tasks, need to be very efficiently performed to be effective. Similarly,
APS does not necessarily require a perfect, global solution to the path planning problem.
A “good enough” path planning solution with sufficiently faster computation time is
preferable to a perfect, global solution if that solution is computationally expensive.

There is a significant tradeoff between global and local search capabilities between
the GA and MIP approaches. The GA approach has excellent global search capabilities,
approaching the optimal solution very quickly, but it is not guaranteed to converge to the
true optimal solution. This shortfall in local search capabilities is a product of the stochastic
nature of the GA. Simultaneously, MIP is guaranteed to reach the optimal solution, but its
poor global search capabilities manifest in longer runtimes.

The question then arises, how close to the optimal solution is “good enough” for
APS? Such a parameter could be tuned depending on real life use of APS; this analysis
assumes that a GA solution with an objective function value within 15% of the optimal,
MIP solution would be sufficient for APS. With this assumption, a test was done to compare
the computation time of GA and MIP. A set of random waypoints was generated within a
10 × 100 m2 rectangle, simulating a random row of some crop. The number of waypoints
or nodes was set, and the optimal path was found with MIP. Then, four different GA
configurations with varying population sizes were run to reach within 15% of the solution
found by MIP. Figure 6 shows the results.
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Figure 6. Runtime comparison between MIP and four GA configurations.

Clearly, GA reaches a sufficient solution much faster than MIP converges to the optimal
path. In fact, the most efficient GA configuration converges two orders of magnitude faster
than MIP. The slowest GA configuration is generally one order of magnitude faster than
MIP. It is also notable from Figure 6 that smaller GA population sizes provide faster
convergence. The minimum possible population size is four due to the structure of the
algorithm. Furthermore, it is important to realize that the GA results of Figure 6 had
the luxury of the known optimal path. This allowed the algorithm to be terminated
upon reaching the specified accuracy relative to the optimal path. If the APS is running
live, it will not know the optimal path, and thus could not terminate upon reaching the
desired convergence.

Fortunately, there is a reliable relationship between the required GA iterations, number
of nodes, and GA runtime. A series of tests were conducted, generating random simulated
crop rows as discussed previously with a range of number of nodes ranging from four to
150. The MIP solution was found, and then GA with population size four was run four
different times, terminating upon reaching 15% of the MIP solution. Note that every new
use of the GA generates a new, random initial population. Thus, each run of the GA is
unique. A curve fit of this data yields that the required number of iterations IGA is a simple
function of the number of nodes Nnode as shown below:

IGA ≈ 0.9 ∗ N2
node + 25 (7)

In general, it is best to buffer this slightly, as Equation (7) is a simple curve fit. Adding
10–15% to IGA will ensure the desired accuracy is attained with minimal runtime. Figure 7
summarizes these results. With this relationship in hand, the GA algorithm is ready for use
in APS. It has been shown that the GA is far more practical for meeting the specific needs
of APS, as the vast speedup in computation time comes at the cost of a relatively small
sacrifice in solution optimality. This is preferred for APS to ensure all the computational
tasks required for the pollination mission can be successfully completed onboard. It is
worth mentioning that constraints such as the endurance of the drone should be considered
and tailored path planning algorithms need to be developed in the future to facilitate more
practical solutions.
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Figure 7. GA required iterations and resulting runtime.

5. Flight Control

APS flight control seeks to solve the QFCP. Specifically, the six degree-of-freedom
(6-DoF) QFCP seeks to control the quadrotor’s position in terms of Cartesian positions, x,
y, z, and orientations based on Euler angles, φ, θ, ψ. This paper makes use of the general
formulation proposed by Lia et al. [33], which requires the following state and control
variables:

X =
[
x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇

]T (8)

U =
[
u1, u2, u3, u4

]T (9)

where the control variables, ui, are a linear transformation of the forces from each individual
motor, Fi: 

u1
u2
u3
u4

 =


1 1 1 1
0 −1 0 −1
−1 0 1 0
1 −1 1 −1




F1
F2
F3
F4

 (10)

In the simplest sense, the dynamics of this system can be stated as Ẋ = F(X, U, t) at
some time t ∈ [t0, t f ]. For the 6-DoF problem, ignoring wind or drag, this function would
be defined as:

Ẋ = F(X, U, t) =



ẋ
ẏ
ż
φ̇
θ̇
ψ̇

u1(sin ψ sin φ+cos ψ sin θ cos φ)
m

u1(− cos ψ sin φ+sin ψ sin θ cos φ)
m

u1(cos θ cos φ)
m − g

lu3
Ix

lu2
Iy

lu3
Iz



(11)

This can be equivalently expressed in the state-space form as follows:

Ẋ = F(X, U, t) = f (X) + B(X)U (12)
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where

f (X) =



ẋ
ẏ
ż
φ̇
θ̇
ψ̇
0
0
−g
0
0
0



, B(X) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

sin ψ sin φ+cos ψ sin θ cos φ
m 0 0 0

− cos ψ sin φ+sin ψ sin θ cos φ
m 0 0 0

cos θ cos φ
m 0 0 0
0 0 l

Ix
0

0 l
Iy

0 0

0 0 0 l
Iz


This can be further separated as:

Ẋ = F(X, U, t) = AX + B(X)U + g∗ (13)

where AX + g∗ = f (X) with

A =

[
06×6 diag(1, 1, 1, 1, 1, 1)
06×6 06×6

]
,

g∗ =
[
0 0 0 0 0 0 0 0 −g 0 0 0

]T

Figure 8 provides a map of how these variables are related through the dynamics.
Notice the distinction between the position chain and orientation chain and how they are
coupled. In Figure 8, it can be seen that u2, u3, u4 affect φ̇, θ̇, ψ̇, which affect φ, θ, ψ. This
is the orientation chain. The orientation chain feeds into the position chain as u1 and φ,
θ, ψ drive velocity, which drives position, x, y, z. Maintaining the coupling of these two
chains is essential to maintaining the physics of any modeling of the real world based upon
this formulation.

Figure 8. Dynamics propagation flowchart.

5.1. Problem Statement

The QFCP in its simplest sense seeks to control a quadrotor such that it will fly from one
position to another, for example, from A to B. To apply optimization to solve this problem,
the state and control variables are required to be physically feasible and meet the flight
requirements. An optimization approach also allows the user to find a solution maximizing
or minimizing some objective aside from the basic movement from A to B. This could be
obvious objectives such as minimizing control effort or flight time, but the optimization
approach allows for great flexibility in defining an objective. The proposed QFCP approach
seeks to minimize control effort. Thus in the most general sense, the problem is formulated
as follows.
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Problem 1.

min J =
∫ t f

t0

u2
1dt (14)

Subject to:

Ẋ = F(X, U, t) = AX + B(X)U + g∗

X(t0) = X0, U(t0) = U0

X(t f ) = X f , U(t f ) = U f

Umin ≤ U(t) ≤ Umax for t ∈ [t0, t f ]

Note that this problem formulation ignores collision avoidance.
To numerically solve this problem, we choose to discretize the problem using some

integration rule. Suppose that the time interval t ∈ [t0, t f ] is uniformly discretized into

N + 1 points, ti ∈ {t0, ..., t f }. Thus, there are N discrete time steps of size δt =
t f−t0

N .
This paper applies a trapezoidal integration across this mesh, but a Runge–Kutta or Euler
integration would also be suitable. Trapezoidal integration takes the following form.

Xi+1 = Xi +
t f − t0

2
(Ẋi+1 + Ẋi) (15)

In this way, the original dynamics are expressed as equality constraints, and the
continuous-time Problem 1 is transformed into a numerical optimization problem. What
makes this problem impractical in this general sense is that Equation (13), the dynamics,
are highly nonlinear, nonconvex. While a solution can be found to such problems, it is well
known that general nonlinear optimization is too slow or unstable for real time applications.
This necessitates the convexification of the problem to facilitate the application of more
efficient optimization algorithms. Specifically, if the problem can be reformulated into a
convex optimization problem, highly efficient algorithms such as interior-point methods
can be applied which will enable real time flight control based on this formulation.

5.2. Convex Dynamics

Now, an approach to the convexification of the nonlinear dynamics of the quadrotor
system will be presented. This approach relies on successive linearization. It begins by
breaking the dynamics in Equation (13) down further as

Ẋ = F(X, U, t) = AX + g∗ + BLU + fNL(X, U, t) (16)

with BL being the linear portion of the matrix B(X) mentioned in Equation (13) and
fNL(X, U, t) containing only the nonlinear elements of the dynamics. The difference be-
tween BL and B(X) is that BL is all zeros in the first column, i.e., it does not contain the
nonlinear terms that B(X) does.

Equation (16) is still nonconvex. To convexify it, a dynamic linearization is employed.
Equation (17) shows the dynamic linearization of fNL, which contains the nonconvexity of
the formulation.

fNL(X, U, t) ≈ fNL(X∗, U∗, t) + ∂ fNL
∂X (X∗, U∗, t)(X− X∗) + ∂ fNL

∂U (X∗, U∗, t)(U −U∗) (17)

where X∗ and U∗ are an initial guess or previous iteration solution. Note that the fidelity
of the linearization declines as |X − X∗| and |U − U∗| become larger. Clearly, when
|X − X∗| = 0 and |U − U∗| = 0, the linearization is exact. This fact necessitates that
a trust region be employed, thus limiting the magnitude of change from the initial guess
or previous iteration. The trust-region constraints take the form of |X − X∗| ≤ δX and
|U −U∗| ≤ δU .



Robotics 2022, 11, 144 14 of 32

Combining Equations (16) and (17) yields the following:

Ẋ = F(X, U, t) ≈ AX + g∗ + BLU + fNL(X∗, U∗, t)

+
∂ fNL
∂X

(X∗, U∗, t)(X− X∗) +
∂ fNL
∂U

(X∗, U∗, t)(U −U∗)
(18)

The nonlinear portion, fNL(X, U, t), is defined as:

fNL(X, U, t) =
u1

m



0
0
0
0
0
0

sin ψ sin φ + cos ψ sin θ cos φ
− cos ψ sin φ + sin ψ sin θ cos φ

cos θ cos φ
0
0
0



(19)

The partial derivative of fNL with respect to the state vector X and controls U are
defined as follows:

∂ fNL
∂X (X, U, t) = ...

u1
m

012×3

06×3
sin ψ cos φ− cos ψ sin θ sin φ cos ψ cos θ cos φ cos ψ sin φ− sin ψ
− cos ψ cos φ− sin ψ sin θ sin φ sin ψ cos θ cos φ sin ψ sin φ + cos ψ sin θ cos φ

− cos θ sin φ − sin θ cos φ 0
03×3

012×6

 (20)

∂ fNL
∂U

(X, U, t) =
1
m



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

sin ψ sin φ + cos ψ sin θ cos φ 0 0 0
− cos ψ sin φ + sin ψ sin θ cos φ 0 0 0

cos θ cos φ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(21)

This successive linearization maintains the coupling of the position and orientation
chains. One strength of the convexified dynamics is that the linearization is only applied to
the function fNL. Thus, only the nonlinear terms are affected by the linearization. In fact,
only the variables u1 and φ, θ, and ψ are affected by the linearization. This means that
while X∗ and U∗, the values from an initial guess or previous iteration, are necessary for
the formulation to work, the only variables that must be included in this initial guess or
previous iteration reference are u1 and φ, θ, and ψ. It is also important to note that other
variables are unaffected by linearization and thus a trust region is not necessary for them.
A new, linearized convex problem is obtained as follows.

Problem 2.

min J =
∫ t f

t0

u2
1dt (22)
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Subject to:

Ẋ = AX + g∗ + BLU + fNL(X∗, U∗, t)

+
∂ fNL
∂X

(X∗, U∗, t)(X− X∗) +
∂ fNL
∂U

(X∗, U∗, t)(U −U∗)

X(t0) = X0, U(t0) = U0

X(t f ) = X f , U(t f ) = U f

Umin ≤ U(t) ≤ Umax for t ∈ [t0, t f ]

|X− X∗| ≤ δX , |U −U∗| ≤ δU

Note that δX and δU could be uniform vectors or each variable could be given a
different trust region size based on how it is affected by the linearization. In fact, one only
necessarily requires that,

|[φ, θ, ψ]T − [φ∗, θ∗, ψ∗]T | ≤ 4X (23)

|u1 − u∗1 | ≤ 4U (24)

for4X ∈ R3 and scalar4U .
Problem 2 provides a convexified 6-DoF QFCP, which requires an initial guess or

reference point. Thus, the next step to solve the QFCP will be to find means of providing
a sufficient guess. One possible approach could be to implement an SCP scheme, as the
linearized dynamics are well suited for such an approach. It was found that solving a
simplified, convex, three degree-of-freedom (3-DoF) problem that only accounts for the
position chain and using that solution as the initial guess for Problem 2 works quite well.
The following subsection develops this 3-DoF problem.

5.3. Three Degree-of-Freedom Problem

The 3-DoF QFCP only addresses the position chain of the larger 6-DoF problem. Again,
the only variables necessary for an initial guess are u1 and φ, θ, and ψ, so the primary goal
of the 3-DoF problem is to extract these variables. The simplified problem consists of the
following variables and dynamics. Notice that φ, θ, and ψ are treated as controls in this
formulation.

XS =
[
x y z ẋ ẏ ż

]T (25)

US =
[
u1 φ θ ψ

]T (26)

ẊS = FS(X, U, t) =



ẋ
ẏ
ż

u1(sin ψ sin φ+cos ψ sin θ cos φ)
m

u1(− cos ψ sin φ+sin ψ sin θ cos φ)
m

u1(cos θ cos φ)
m − g


(27)

This new formulation yields the following optimal control problem.

Problem 3.

min J =
∫ t f

t0

u2
1dt (28)

Subject to:

ẊS = FS(XS, US, t)

XS(t0) = XS0, US(t0) = US0

XS(t f ) = XS f , US(t f ) = US f
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USmin ≤ US(t) ≤ USmax for t ∈ [t0, t f ]

The variables in this problem are related as in Figure 9.

Figure 9. Propagation of three degree-of-freedom dynamics.

However, Problem 3 is still nonconvex because of the highly nonlinear dynamics.
A change of variables can be employed to convexify the problem. Specifically, we define
three new variables u5, u6, and u7 as follows:

u5 = u1(sin ψ sin φ + cos ψ sin θ cos φ) (29)

u6 = u1(− cos ψ sin φ + sin ψ sin θ cos φ) (30)

u7 = u1(cos θ cos φ) (31)

These variables are related and dependent as in Equation (32) due to trigonometric
properties:

u2
1 = u2

5 + u2
6 + u2

7 (32)

Note that u5, u6, and u7 are the projections of u1 onto the x, y, and z axes. Reformulat-
ing Problem 3 with these relations yields:

Problem 4.

min J =
∫ t f

t0

[u2
5 + u2

6 + u2
7]dt (33)

Subject to:

ẊP = APXP + BPUP + g∗

XP(t0) = XP0, UP(t0) = UP0

XP(t f ) = XP f , UP(t f ) = UP f

UPmin ≤ UP(t) ≤ UPmax for t ∈ [t0, t f ]

u2
5 + u2

6 + u2
7 ≤ u2

1max

where

AP =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (34)

BP =



0 0 0
0 0 0
0 0 0
1
m 0 0
0 1

m 0
0 0 1

m

 (35)

g∗ =
[
0 0 0 0 0 −g

]T (36)



Robotics 2022, 11, 144 17 of 32

and the state and control vectors

XP =
[
x y z ẋ ẏ ż

]T (37)

UP =
[
u5 u6 u7

]T (38)

This problem will find the minimum control effort of the QFCP in terms of variables
u5, u6, and u7. From these, the orientations φ, θ, and ψ and control u1 can be found
using Equations (29)–(32). Figure 10 demonstrates the propagation of the variables in this
problem, which provides an initial guess that will be used in the full, 6-DoF problem using
the dynamics expressed in Equation (18).

Figure 10. Convexified three degree-of-freedom dynamic propagation.

5.4. Two-Convex-Problem-Approach Discussion

The previous two subsections defined a two-convex-problem approach to the QFCP.
Problem 4, the convexified 3-DoF problem is solved, and the solution to this problem serves
as the initial guess to Problem 2, a 6-DoF problem with linearized dynamics. The solution to
this problem will be a valid flight trajectory with all four controls successfully solved. Even
with small δ, there will be some deviation from the true dynamics. This can lead to some
suboptimal solution behavior, as the linearized system is finding a solution minimizing u1,
and it will necessarily find that solution on the edge of the region that is the trusted region
expressed in Equations (23) and (24) due to the nature of linear functions.

Problem 2 seeks to find the minimum control effort trajectory of the QFCP. Problem 2
takes the solution, or part of the solution, of Problem 4 as an initial guess and only allows
for a certain deviation from that initial guess. In fact, in many cases, Problem 4 will have
already found the minimum control effort trajectory of the QFCP, and Problem 2 will,
in most cases, choose a solution minimizing control effort, but that will likely not be entirely
accurate to the original system dynamics. An alternative is to assume that the solution to
Problem 4 is the correct minimum control effort trajectory of the QFCP and solve Problem 2,
but now minimizing deviation from that optimal trajectory. In a sense, this approach solves
the position chain with Problem 4, and then updates the orientation chain respectively with
the 6-DoF problem. Thus, a new problem can be formulated as follows.

Problem 5.

min J =
∫ t f

t0

[W1([φ, θ, ψ]T − [φ∗, θ∗, ψ∗]T)2 + W2(u1 − u∗1)
2]dt (39)

or

min J =
∫ t f

t0

[W1(X− X∗)2 + W2(U −U∗)2]dt

Subject to:

Ẋ ≈ F(X, U, t) = AX + g∗ + BLU + fNL(X, U, t) fNL(X∗, U∗, t)

+
∂ fNL
∂X

(X∗, U∗, t)(X− X∗) +
∂ fNL
∂U

(X∗, U∗, t)(U −U∗)

X(t0) = X0, U(t0) = U0



Robotics 2022, 11, 144 18 of 32

X(t f ) = X f , U(t f ) = U f

Umin ≤ U(t) ≤ Umax for t ∈ [0, t f ]

|X− X∗| ≤ δX , |U −U∗| ≤ δU

Note that the first objective function formulation only minimizes the deviation of the
variables affected by linearization while the second objective function formulation allows
more flexibility to minimize deviation from the other values of the initial guess.

Problem 5 will provide a physically feasible solution that is as close to the simplified
3-DoF problem (Problem 4) as possible. Thus, two possible convex optimization approaches
have been proposed. Approach 1 is to solve Problem 4 to provide an initial guess to the
convexified Problem 2. Approach 2 is to solve Problem 4 to find an approximate optimal
solution to the position chain of Problem 1, and then update the orientation chain variables
to match this trajectory using Problem 5.

Approach 1 is more intuitive. It is merely a scheme to develop a feasible initial guess
to the convexified Problem 2, and both problems are directly related to Problem 1. It is
possible that this will provide an exact solution to Problem 1, but it is expected that this
procedure will produce an approximate solution, as the linearization will introduce a small
degree of inaccuracy in the physical dynamics. For small δ, this deviation from reality will
be negligible.

Approach 2 is less intuitive. The 3-DoF Problem 4 is solved, and its solution is
assumed to be the correct solution to the position chain of the original minimum control
effort QFCP (Problem 1). The orientation chain is then updated while minimizing deviation
from the true, physical dynamics. The strength of this approach over Approach 1 is that
it will produce solutions that better represent the original dynamics. For this reason,
Approach 2 is chosen as the preferred approach in this paper. Both approaches will produce
an approximate solution to the original QFCP (Problem 1) but Approach 2 will produce a
physically feasible approximate solution.

5.5. Numerical Results

To verify the solutions found through the presented convex optimization approach,
GPOPS-II [34] was applied to solve Problem 1 for comparison. GPOPS was developed at
the University of Florida as commercial general purpose nonlinear optimal control software.
It is a MATLAB compatible tool that can solve a wide range of nonlinear optimal control
problems, including such problems related to quadrotors. GPOPS relies on an adaptive
mesh refinement technique and uses IPOPT or SNOPT to solve the resulting numerical
optimization problems. However, the convergence and computational cost of GPOPS
cannot be predicted when solving large-scale, highly nonconvex problems. In contrast,
the proposed convex optimization approach leads to two convex programs with fixed
step sizes and controllable problem scales that can be efficiently solved using convex
solvers with guarantees on convergence given that the problems are feasible and solutions
exist. However, the methods are still comparable in terms of objective function value and
solution behavior.

The following will demonstrate Approach 2 in a short flight from a position [0.3, 0.4, 1.5]
to the origin given two seconds to reach the final position with 10 nodes and again with
400 nodes. The demonstration assumes a drone with the same parameters as found in
Lai et al. [33]. Thus Ix = Iy = 0.0142 kg·m2 and Iz = 0.0071 kg·m2. The quadrotor has a
mass of 0.56 kg and gravity is 9.81 m/s2. The maximum thrust from each motor is 10 N, so
u1 ∈ [−10, 40] N and u2−4 ∈ [−20, 20] N. The results are shown in Figures 11–28.
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Figure 11. 3-D flight path for convex approach with 10 nodes.

Figure 12. 3-D flight path for convex approach with 400 nodes.

Figure 13. 3-D flight path for GPOPS.
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Figure 14. Optimal control profile for convex approach with 10 nodes.
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Figure 15. Optimal control profile for convex approach with 400 nodes.
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Figure 16. Optimal control profile for GPOPS.
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Figure 17. Position profile for convex approach with 10 nodes.
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Figure 18. Position profile for convex approach with 400 nodes.
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Figure 19. Position profile for GPOPS.
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Figure 20. Orientation profile for convex approach with 10 nodes.
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Figure 21. Orientation profile for convex approach with 400 nodes.
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Figure 22. Orientation profile for GPOPS.
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Figure 23. Velocity profile for convex approach with 10 nodes.

0 0.5 1 1.5 2

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

V
el

o
ci

ty
 (

m
/s

)

Figure 24. Velocity profile for convex approach with 400 nodes.
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Figure 25. Velocity profile for GPOPS.
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Figure 26. Angular velocity profile for convex approach with 10 nodes.
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Figure 27. Angular velocity profile for convex approach with 400 nodes.

0 0.5 1 1.5 2

Time (s)

-3

-2

-1

0

1

2

3

4

A
n
g
u
la

r 
V

el
o
ci

ty
 (

ra
d
/s

)

Figure 28. Angular velocity profile for GPOPS.
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Figures 11–13 show the 3-D trajectories of the three simulated cases (i.e., 10-node
convex, 400-node convex, and GPOPS). The resulting trajectories are characterized as being
almost a straight line from start to finish and quickly accelerating and decelerating. This is
similar to a “bang-off-bang” trajectory. GPOPS provides similar solutions to the two convex
approach solutions, though the effect of the adaptive mesh is clear. The GPOPS solution
contains 453 nodes, as opposed to 10 and 400 nodes that were used for the convex approach.
As a result, one observes that the solutions with more nodes appear continuous relative
to the convex approach with 10 nodes. Similarly, it is observed that the convex approach
solution with 400 nodes is similar to the GPOPS solution in almost every regard. Thus,
the 400 node solution shows that the proposed convex approach converges to practically
the same solution as an accepted, but more computationally efficient, method of control
than GPOPS.

Though GPOPS and the 400 node convex solution are similar, the 10 node convex
approach solution is less obviously similar to the GPOPS solution. The position and velocity
profiles are very similar as shown in Figures 17–19 and 23–25, respectively. Similarities are
also present in the orientation profiles in Figures 20–22 with φ and θ rising and dropping
to similar magnitudes in the solution from GPOPS and that from the proposed approach
with 10 nodes. The angular velocity profiles in Figures 26–28 are less obviously similar to
the GPOPS solution. Similarly, the control profile for the 10 node convex solution shown
in Figure 14 has a similar u1 solution to the GPOPS and 400 node solutions as shown
in Figures 15 and 16, respectively, but controls u2 − u4 are very different. The 10 node
solution for u2 − u4 is oscillatory while to other two solutions are strongly characteristics
of the “bang-off-bang” trajectory. The strong difference between the behavior of the
10 node solution and the other two solutions is a product of the number of nodes and the
inner workings of the approaches such as the discretization method (trapezoidal rule vs.
collocation), optimization algorithm (nonlinear programming vs. convex optimization), etc.

All three solutions have similar objective function values. The convex approach with
10 nodes provides a minimal control effort objective function value of 62.69 N2s. GPOPS
and the 400 node solutions have objective values of 61.52 N2s and 61.55 N2s respectively.
The small deviations among these solutions is a result of integration over different number
of nodes and different step sizes.

The strength of the proposed convex approach is its computation time. The convex
approach with 10 nodes reached this solution in 0.65 s. GPOPS simultaneously took 9.72 s.
This is a speedup of 15x. The convex approach with 400 nodes took 21.015 s. While this
is more than twice as long as GPOPS, the convex approach will never be run with so
many nodes in practice. As previously stated, flight controllers can only send and receive
commands with some maximum frequency, making large numbers of nodes impractical
for live flight. The 400 node test is only presented to show the nearly exact result as GPOPS.
These simulations were performed using MATLAB on a Lenovo IdeaPad Flex with an Intel
CORE i5 8th Gen processor.

The speed and parameter control that the convex approach provides make it well
suited for online applications. The step size, number of nodes, and desired state can be
specified, and a solution taking into account the highly nonlinear dynamics of the system
can be generated in a short time. For APS, this reduces the cost of flight control on the
processor, thus allowing more computation power for the rest of the system.

One very important consideration in the use of the proposed convex approach is the
number of nodes. In many missions, a smaller number of nodes (e.g., 5 to 20) will be more
practical, and it has been shown that with many nodes, the convex approach will provide a
solution that is quite similar to GPOPS. Due to the structure of the two convex optimization
problems, the proposed approach will always fail if 6 or 12 nodes are used. If 6 nodes are
used, the 3-DoF problem will be infeasible, and thus the 6-DoF problem will fail without a
feasible initial guess. Similarly, if 12 nodes are used, the 6-DoF problem will be infeasible.
This issue can be easily overcome by simply using a different number of nodes, as, if the
problem is feasible, 5, 7, 11, and 13 nodes will provide feasible solutions. In the next section,
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the convex approach will be used within an MPC framework. In doing this, there were
inevitably scenarios when the framework would naturally use 6 or 12 nodes. In these
situations, the number of time steps of controls applied was momentarily modified to skip
over the infeasible numbers of nodes.

The method also requires that at least five nodes be used in most cases. This is simply
due to the fact that the first and last nodes are usually fixed to the start and end position.
Thus if only two nodes are used, the optimization problem will obviously be infeasible.
If three or four nodes are used, there generally is not enough flexibility in the one or two free
nodes to provide a feasible solution. The effects of the number of nodes on the feasibility of
the resulting convex problems and the performance of the developed convex optimization
approach need to be further investigated in the future.

In addition, the convex approach does not currently incorporate collision avoidance.
Collision avoidance constraints are nonconvex and thus create new difficulties to convexify
the problem. The authors define two scenarios for collision avoidance, sparse environment
collision avoidance and local collision avoidance. Sparse environment collision avoidance
refers to avoiding obstacles in a generally open space, like flying through a building or
avoiding large obstacles. This form of collision avoidance can be easily incorporated into
path planning. This can be done by defining convex flight corridors or convex ducts during
path planning that can be used as convex constraints in the resulting flight control problems.
For example, if the quadrotor needs to fly through a doorway, a convex shape can be easily
defined to constrain the flight of the quadrotor to fly safely through the door with the
proposed convex approach. It is noted that while this can be easily done from a flight
control and path planning perspective, it creates new machine vision tasks that must be
addressed to provide the necessary information for this procedure.

Local collision avoidance refers to scenarios where convex flight corridors cannot be
easily defined and is more difficult to incorporate, as it will need to be directly integrated
into the flight control algorithm. For example, APS will require a drone flying around
the plants that it is pollinating to reach flowers on the other side. In such cases, it will
not be possible to define a convex shape for the drone to fly within. Thus, the nonconvex
collision avoidance constraints will need to be incorporated into the flight controller. These
constraints are not incorporated within the convex approach proposed in this paper; how-
ever, similar approaches have been successfully implemented by other researchers. One
approach that is promising is the use of SCP by [28] to gradually incorporate the collision
avoidance constraints into the optimization problem. It is our plan to extend our proposed
APS and the developed convex approach to address pollination problems under collision
avoidance constraints in the future.

The most comparable research to the proposed approach is Mueller and D’Andrea’s
work [26]. The proposed approach solves a 6-DoF QFCP, which has many solution methods,
but there are few examples of the problem being convexified and solved as in this paper.
Mueller and D’Andrea were able to convexify the problem by reformulating the dynamics
in terms of jerk and thus decoupling the axes and convexifying the problem. This contrasts
with our proposed approach which solves the QFCP more directly in that the original prob-
lem formulation is maintained, though an initial guess is found using a 3-DoF formulation.
These different convexifications will provide different results. Mueller and D’Andrea’s jerk
reformulation will result in different solution spaces than the use of the 3-DoF initial guess
proposed in this paper. Much further research is necessary to determine the performance
differences of these two approaches to convexification, though it is certain that the reliability
and speed of the convexified problem is inherent to both solution methods.

6. Model Predictive Control

In order to apply the presented path planning and flight control algorithms for real-
world pollination missions, we implement these algorithms online within a receding-
horizon framework. MPC is the chosen framework for the task and it provides great
flexibility for APS. MPC is a closed-loop control framework that incorporates a moving
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time horizon. This approach has a few benefits. By solving the control problem over a
finite period or horizon, a smaller problem is solved, reducing computation time. Simulta-
neously, by resolving the control problem at intervals, the system adjusts for deviations
from the previously solved problem. This embeds corrections to the system directly into
the framework.

For APS, path planning and flight control must be coupled together through MPC for
mission execution. MPC can also be applied to path planning and flight control separately.
In this section, MPC applied to path planning and flight control individually will be
presented first and then the APS implementation of them will be discussed.

6.1. Path Planning MPC

A simulation of the GA path planning algorithm within an MPC framework has been
performed to demonstrate the benefits of MPC. A set of random waypoints was generated
within a 10× 100 m2 rectangle, simulating a random row of some crop. 100 waypoints
were generated for the test. MPC uses a receding time horizon and a distance horizon for
computational efficiency. In the context of APS, that means that MPC will only predict
and optimize the sequence of flowers within some distance of the quadrotor and for some
short time. In the small rectangle that was generated for this demonstration, a 60 s time
horizon and 20 m distance horizon were used. Figure 29 shows four distinct instants during
the simulation.

Figure 29. Path planning MPC demonstration with waypoints in blue and drone path in red. Snap-
shots at the start, 30%, 60%, and 80% through the simulation from top to bottom.

In Figure 29, the blue circles represent the waypoints or flowers. The red line represents
the optimal path found through GA. There is a large red dot that represents where the
drone is currently located. This is usually the left most point. The top frame of Figure 29 is
the initiation of the simulation. Each successive frame is a snapshot of the MPC path plan
at a given time. Notice that the path ignores all waypoints 20 m beyond the current location
and any waypoints it has already visited. The drone is assumed to just continue to the end
of the row when it reaches this point. By only dealing with the waypoints that are within a
short distance of the drone, MPC greatly reduces computation time at each path update.

Calling back to the relative performance of GA and MIP, performing this simulation
four times using both MIP and GA provided more insight into the computational time
savings of GA. Over the four simulations, GA averaged 0.7621 s of path planning com-
putation while MIP averaged 6.741 s. MIP took, on average, almost nine times longer
to compute during the simulation. MIP also had much more variation in computation
time. GA computation time had a standard deviation of 0.035 s over the four tests. MIP’s
standard deviation was 7.327 s. This variation is 4.6% of average computation time of GA
as opposed to 108.7% of computation time for MIP. The computation cost savings and
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consistency provided by GA came at the cost of an 8.13% increase in total distance travelled
on average over the four tests. If this was a live flight test, clearly GA would be much
preferred due to the huge computational savings and reliability with only a relatively small
increase in total distance travelled.

6.2. Flight Control MPC

The implementation of MPC for flight control is slightly different. For this implemen-
tation, the goal is to generate controls to maneuver the quadrotor to its destination. This
is done in a shrinking horizon sense. Shrinking horizon refers to generating a series of
controls over some number of time steps, n, implementing the first few, m, of these controls,
and then generating a new series of controls over the remaining n− m timesteps. This
process is repeated until the target is reached or perhaps there are just a few timesteps
remaining and some procedure is initiated.

Figure 30 demonstrates this framework using the same flight scenario as described in
the flight control section, but now with a small wind blowing in the positive y direction.
The quadrotor begins at position [0.3, 0.4, 1.5] and generates a series of controls to fly
to the origin. This is the tallest trajectory in the figure. The first two of these controls
are implemented. The wind is not incorporated into the optimization model, so these
commands result in a position that is further in the y direction than anticipated. A new
command sequence is generated to adjust, and the process is repeated five times.

Figure 30. Flight control MPC demonstration with wind.

The corrective behavior of the MPC framework is clear from this demonstration.
The controls adjust to the fact that the quadrotor is not in the previously predicted posi-
tion. These embedded adjustments increase the likelihood of a successful mission under
inevitable uncertainties and disturbances in real-world implementation.

6.3. APS MPC

Finally, the flight control and path planning algorithms were coupled together within
MPC. This implementation simply used the path planning MPC from Section 6.1 and the
flight control MPC from Section 6.2 in tandem. This simply means that the path planning
MPC generates a list of destinations that the flight control then flies to. In truth, this is
actually two separate implementations of MPC; one of these implementations operates
within the other. Figure 31 shows how these two MPC implementations interlace.
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Figure 31. Coupled MPC implementation.

Figure 31 demonstrates how the flight controller, in red, uses an independent MPC
implementation within the larger, coupled MPC, in blue. Both MPC implementations
receive a goal and current state as input and provide a control sequence as their output.
The difference between them is that the coupled MPC goal input is to reach each waypoint
or flower. The flight control MPC goal is to reach the next waypoint or flower in the list,
the desired state or location. The flight control MPC will update at a much faster frequency
than the coupled MPC, i.e., it will have a much smaller time horizon. For example, the flight
control MPC may update the control sequence every second, while the coupled MPC may
only update every minute, as the flight controller should be given time to reach the desired
location, the next waypoint in the optimal path. Figures 32–34 show three snapshots of the
APS MPC in action.

Figure 32 shows the start of the simulation. At this point, the quadrotor has not moved
yet, but the path planning module has assessed the flower locations (red circles) within its
horizon. A path has been defined and passed on to the flight control module. This path is
visualized with the red line connecting some of the dots. Figure 33 shows a snapshot of
after the algorithm has run for a few seconds. The flight path of the quadrotor is show in a
series of points, and it is seen that the quadrotor has reached three of the flower locations.
More flower locations have come into the horizon of the path planning module and have
thus been added to the path. Figure 34 shows a final snapshot of after the algorithm has
run for another few seconds. It is seen that more of the flowers have been pollinated and
more locations added to the path.

Figure 32. APS MPC starting point snapshot.
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Figure 33. APS MPC snapshot two.

Figure 34. APS MPC snapshot three.

MPC is a flexible framework that can allow for many different implementations. In this
implementation, the flight controller was given two seconds for each flower-to-flower flight
with a time step of 0.2 s and a time horizon of 0.4 s, meaning that two time steps of control
output were implemented before regenerating controls. At the start and every time a flower
was reached, the path planning algorithm was re-run with a horizon of 0.5 m.

7. Conclusions

In this paper, we propose a drone-enabled autonomous pollination system (APS)
consisting of five primary modules: environment sensing, flower perception, path plan-
ning, flight control, and pollination mechanisms. Highly efficient algorithms have been
developed and demonstrated for the flower perception, path planning, and flight control
modules. First, flower perception based on orthoimages of the crop fields was briefly
discussed. R-CNN was used to detect flowers within orthoimages and create a map of
flower locations, which was passed on to the path planning module. Second, two so-
lution methods, MIP and GA, were tested for APS path planning, and GA was found
to be much better suited for the task. Third, a convex optimization-based flight control
method was developed and numerically demonstrated. This convex approach to the QFCP
minimum control effort relies on solving two convex problems. The first convex problem is
a convexified 3-DoF formulation that solves the position chain of the QFCP and provides
an initial guess for the second problem, which is a linearized version of the full 6-DoF
QFCP. This approach was demonstrated and compared to the solution provided by GPOPS.
It was observed that with a large number of nodes, the proposed approach provides a
similar solution to that generated by GPOPS. The solution was found to generate a solution
15 times faster than GPOPS when solving with 10 nodes. This speedup and the control
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over the number of nodes in the trajectory make the convex approach highly practical for
generating controls that can be used for flight control.

Furthermore, an MPC implementation of the path planning and flight control modules
was demonstrated, and then simulations were performed that coupled the two modules
together as they would be in an APS mission. The path planning MPC simulation further
demonstrated the merits of GA over MIP. GA was 23x faster than MIP with negligible
effects on total distance travelled. The flight control MPC simulation demonstrated the
corrective aspects of the MPC framework, with the trajectories updating accordingly as
the wind gust moved the quadrotor away from its expected location. These two MPC
implementations were coupled together in a final demonstration of a true APS mission.
Flower locations were generated, path planning developed an optimal sequence of these
locations, and flight control successfully generated controls and trajectories to maneuver
through the locations.
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