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On J-unitary matrix polynomials
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Abstract. An efficient method for construction of J-unitary matrix polynomials
is proposed, associated with companion matrix functions the last row of which is
a polynomial in 1/t. The method relies on Wiener-Hopf factorization theory and
stems from recently developed J-spectral factorization algorithm for certain Hermitian
matrix functions.

In memory of Nikolai Karapetiants, an outstanding mathematician and
a noble person, on the 80th anniversary of his birthday

1. Introduction

Matrix spectral factorization method developed in [7, 8, 3] reveals important prop-
erties of unitary matrix functions of the following special structure,

(1.1) U(t) =




u11(t) u12(t) · · · u1m(t)
u21(t) u22(t) · · · u2m(t)

...
...

...
...

um−1,1(t) um−1,2(t) · · · um−1,m(t)

um1(t) um2(t) · · · umm(t)



, uij ∈ P+

N ,

which play a crucial role in the method. Here P+
N := {

∑N

k=0 αkt
k : αk ∈ C} is the set

of polynomials of degree ≤ N . The matrix functions (1.1) we consider are unitary on
the unit circle T := {t ∈ C : |t| = 1},

U(t)U∗(t) = Im, t ∈ T,

and they have the determinant equal to 1,

(1.2) detU(t) = 1.

It turnes out that these matrices are closely related to the so called wavelet matrices
[9], and complete parametrization of such matrices in terms of coordinates in the
Euclidian space C(m−1)N is given in [2]. In particular, it is proved in [2] that there is
one-to-one correspondence between the unitary matrix functions (1.1) satisfying (1.2),

(1.3) U(1) = Im,
1
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and

(1.4)

m∑

k=1

|umk(0)| > 0,

and companion matrix functions

(1.5) F (t) =




1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ1(t) ζ2(t) ζ3(t) · · · ζm−1(t) 1



, ζk ∈ P−

N ,

where P−
N := {

∑N

k=1 αkt
−k : αk ∈ C}. This bijective correspondence is reflected in the

fact that

(1.6) F−1(t) =




1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

−ζ1(t) −ζ2(t) −ζ3(t) · · · −ζm−1(t) 1




is the first factor in the right Wiener-Hopf factorization of (1.1). Namely,

F (t)U(t) = Φ+(t)⇐⇒ U(t) = F−1(t)Φ+(t),

where Φ+ ∈ (P+
N )

m×m, i.e. the entries of m×m matrix Φ+ are from P+
N .

It is explicitly described in [2] how to construct U(t) for the given matrix function
(1.5) and how to construct F (t) for the given unitary matrix function (1.1). If we
multiply the last row of (1.1) by tN , we get a unitary (for |z| = 1) matrix polynomial

(1.7) A(z) = diag(1, 1, . . . , 1, zN)U(z) =
N∑

k=0

Akz
k, Ak ∈ Cm×m, z ∈ C,

of rank m, order N and degree N . Since

(1.8) A(z)Ã(z) = Im for each z ∈ C\{0},
where Ã(z) =

∑N

k=0A
∗
kz

−k, the polynomial detA(z) is the monomial czd, where |c| =
1, and d is called the degree of A. Since we have a natural bijection

(1.9) A(z)←→ U(t),

the above mentioned one-to-one map F (t) ←→ U(t) parametrizes also the class of
unitary matrix polynomials (1.7) such that detA(z) = zN , A(1) = Im, and at least
one entry in the last row of AN does not vanish.

In[4], the first steps have been made towards the generalization of the above men-
tioned matrix spectral factorization method to the J-spectral factorization of Her-
mitian matrices. This generalization is achieved by observing that J-unitary matrix

2            
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functions of structure (1.1) play a similar important role in the proposed J-spectral
factorization method.

Throughout the paper, J is a diagonal matrix

(1.10) J = diag(j1, j2, . . . , jm−1, 1)

where each jk is either positive or negative 1 (without lose of generality we assume
that jm is always equal to 1). A matrix U is called J-unitary if UJU∗ = J , and a
matrix function U(t) is called J-unitary if

U(t)JU∗(t) = J, t ∈ T.

In the present paper we prove the following

Theorem 1.1. For any matrix function F (t) of the form (1.5), there exists (generically)
a J-unitary matrix function U(t) of the form (1.1), satisfying (1.2), and such that

(1.11) F (t)U(t) ∈ (P+
N)

m×m

holds. The matrix function U(t) satisfies (1.4) and it is unique if we require in addition

(1.3).
Conversely, for each J-unitary matrix function U(t) of the form (1.1) which satisfies

(1.2) and (1.4), there exists a unique matrix function F (t) of the form (1.5) such that

(1.11) holds.

The explicit algorithms which construct U(t) from F (t) and F (t) from U(t) are
described in the following sections, where the exact meaning of the word “generic used
in the theorem is also specified.

Due to the one-to-one correspondence (1.9), Theorem 1.1 gives a description of the
class of J-unitary matrix polynomials (1.7) in terms of the coordinates of the Euclidian
space C(m−1)N . Such description can be used to apply convex optimization methods for
searching specific J-unitary matrix polynomials with additional properties required,
e.g., for construction of quasi-tight framelets [1].

2. Notation and Preliminary Observations

For a matrix A = [Aij ], its transpose is denoted by AT and A∗ = A
T
= [Aji] stands

for the Hermitian conjugate.
The set of J-unitary matrices, UJ (defined in the introduction) is a group. Further-

more, U ∈ UJ =⇒ UT ∈ UJ , since AJB = J =⇒ BJA = J . Indeed, AJB = J =⇒
BJAJB = B =⇒ BJA = J . Note that UJ = U−J , which is the reason why we can
assume without lose of generality that jm = 1 in (1.10). Obviously, every diagonal
matrix D with unimodular diagonal entries belongs to UJ . Also, every permutation
matrix P belongs to UJ ,
(2.1) P J P∗ = J.

If A is a square matrix (function), then Cof(A) denotes the cofactor matrix of A (so
that A−1 = 1

det(A)
Cof(A)T for non-singular matrices) and cof Aij denotes the cofactor

of Aij in the matrix A, i.e. cof Aij = (Cof A)ij .

3            
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Let T be the unit circle in the complex plane and T+ = {z ∈ C : |z| < 1},
T− = {z ∈ C : |z| > 1} ∪ {∞}.We assign the variable t as an argument to functions
with domain T, and the variable z to functions with domain C (or C\{0}). Slightly
abusing the notation, we denote by f(t) not only the value of function f at t, but the
function itself (with corresponding domain). The exact meaning of the notation will
be clear from the context. Also let Ac

ij be the submatrix of A obtained by deleting its
ith row and jth column.

For a set S, let Sm×m stand for the set of m×m matrices with entries in S.
The set of Laurent polynomials with complex coefficients is denoted by P. We

consider the following subsets of P: for M,N ≥ 0, let P{−M,N} := {
∑N

k=−M αkz
k :

αk ∈ C}; for N ≥ 1, PN := P{−N,N}; P+
N := P{0,N}; P−

N := P{−N,−1}; P−
N,0 := P{−N,0};

P+ := ∪N≥1P+
N , P− := ∪N≥1P−

N , P−
0 := ∪N≥1P−

{N,0}. Note that P+
N ∩ P−

N = {0}
according to our notation.

For p(z) =
∑N

k=−M αkz
k ∈ P{−M,N}, let

p̃(z) :=
∑N

k=−M
αkz

−k.

Note that p̃(z) = p(z) for z ∈ T. If

P (z) =

N∑

k=−M

Akz
k = [pij(z)] ∈ (P{−M,N})

m×m, where Ak ∈ Cm×m,

then

P̃ (z) :=

N∑

k=−M

A∗
kz

−k = [p̃ji(z)].

Note that P̃ (z) = P ∗(z) for z ∈ T. Furthermore, P̃Q = Q̃P̃ and if P−1(z) ∈
(P{−M,N})

m×m, then (P̃ (z))−1 = P̃−1(z).
The matrix J was defined in the introduction (see (1.10)). A matrix polynomial

U(z) ∈ (P+
N)

m×m is called J-unitary if

(2.2) A(z) J Ã(z) = Ã(z) J A(z) = J for each z ∈ C\{0}.
For

(2.3) A(z) =
N∑

k=0

Akz
k, Ak ∈ Cm×m,

condition (2.2) can be as well expressed in terms of the coefficients:

(2.4)
N∑

k=n

Ak J A
∗
k−n = δn0J, n = 0, 1, . . . , N,

where δ stands for the Kronecker delta.
If AN 6= 0 in (2.3), then we say that the order of A is equal to N .
Note that (2.2) implies that detA(z) = czd, |c| = 1, for some integer d. The latter

is called the degree of the J-unitary matrix.
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Lemma 2.1. (cf.[2], Lemma 1) If (2.3) is a J-unitary matrix polynomial of order N
and degree d, then:

a) d ≥ N ;

b) d = N if and only if rank(A0) = m− 1.

Proof. Due to (2.2), we have

Ã(z) = JA−1(z) J.

Therefore,

(2.5)
N∑

k=0

A∗
kz

−k = J
1

detA(z)

(
CofA(z)

)T
J = cz−d J

(
CofA(z)

)T
J.

Since J
(
CofA(z)

)T
J ∈ (P+)m×m and A∗

N 6= 0 the relation (a) follows.
In order to prove (b), note that rankA0 6= m since A0(JA

∗
N ) = 0 due to (2.4) for

n = N . In addition, we have rank(A0) < m− 1⇐⇒ Cof(A0) = 0 and CofA(z)|z=0 =
Cof(A0). Therefore, it follows from (2.5) that rank(A0) < m−1 is equivalent to d > N .
Hence (b) follows. �

The class of J-unitary matrix polynomials (2.3) which have the order and the degree
equal to N is denoted by AJ(m,N). Since A(z) ∈ AJ(m,N) =⇒ PA(z) ∈ AJ(m,N)
for any permutation matrix P (see (2.1)), and AN 6= 0, we can rearrange the rows, if
necessary, and assume without lose of generality that the last row of AN is nonzero.
The subclass of functions (2.3) from AJ(m,N) for which the last row of AN is not 0
will be denoted by A0

J(m,N).

3. Winer-Hopf factorization

In this section, we briefly review some well-known facts from Wiener-Hopf factor-
ization theory which are used in what follows.

Every P ∈ Pm×m without zeros of its determinant and poles of its entries on T can
be factorized as (see, e.g., [6])

(3.1) P (z) = P+(z)D(z)P−(z),

where P± ∈ (P±)m×m with detP±(z) 6= 0 for z ∈ T± andD(z) = diag(zκ1 , zκ2 , . . . , zκm)
is a diagonal matrix function. The factorization (3.1) is called a left factorization
since the analytic in T+ factor P+ stands on the left. The integers κ1,κ2, . . . ,κm are
called the (left) partial indices of P and they are determined uniquely if we assume
κ1 ≥ κ2 ≥ . . . ≥ κm. If all partial indices are equal to 0, i.e. D = Im, the factorization
has the form

(3.2) P (z) = P+(z)P−(z)

and it is called a canonical factorization. The necessary and sufficient condition for
the existence of canonical factorization is that (see, e.g., [6]) detP has the winding
number equal to zero and

Pu 6∈ (P+)m×1 for each u ∈ (P−)m×1.

5            
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If P ∈ Pm×m
N has a canonical factorization (3.2), then P+ ∈ (P+

N)
m×m and P− ∈

(P−
N,0)

m×m (see [5]). If, in addition, P is symmetric P (z) = P̃ (z), then its Wiener-
Hopf factorization can be represented in J-factorization form (see [10])

(3.3) P (z) = P+(z)JP̃+(z),

and it has a special name: J-spectral factorization. Factorization (3.3) is unique

up to a constant right J-unitary factor. Indeed if P+(z)JP̃+(z) = Q+(z)JQ̃+(z),

then the continuous (on T) function Q−1
+ (t)P+(t) = JQ̃+(t)P̃

−1
+ (t)J can be extended

analytically on C ∪ {∞} and, therefore, it is constant.

4. Proof of the Main Result

In this section, we prove Theorem 1.1, which for convenience of exposition is split
into two statements.

Theorem 4.1. Let matrix function (1.5) be such that F (z) J F̃ (z) has a left J-spectral
factorization

(4.1) F (z) J F̃ (z) = Φ+(z) J Φ̃+(z).

Then there exists a J-unitary matrix function

(4.2) U(z) =




u11(z) u12(z) · · · u1m(z)
u21(z) u22(z) · · · u2m(z)

...
...

...
...

um−1,1(z) um−1,2(z) · · · um−1,m(z)

ũm1(z) ũm2(z) · · · ũmm(z)



, uij ∈ P+

N ,

with the determinant 1,

(4.3) detU(z) = 1, for z ∈ C\{0},
and such that

(4.4) FU ∈ (P+
N)

m×m.

Furthermore, thisrecall matrix function is unique under the additional restriction (1.3),
and the relation (1.4) is also fulfilled.

Remark 4.1. The algorithm for construction of (4.2) will be provided in Section 5.

Proof. As it was mentioned in Section 3, the existence of factorization (4.1) is equiva-

lent to the condition that F (z) J F̃ (z) possesses the canonical factorization, and

(4.5) Φ+ ∈ (P+
N )

m×m.

Since | detΦ+(z)|2 = 1 for z ∈ T, because of (4.1), det Φ+ ∈ P+ and det Φ+(z) 6= 0 for
z ∈ T+, we have that det Φ+(z) = Const. Without loss of generality we can assume
that

(4.6) det Φ+(z) = 1.

6            
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Suppose

(4.7) U(z) = F−1(z)Φ+(z),

where F−1 is determined by (1.6). Then U is J-unitary since

(4.8) U(z) J Ũ(z) = F−1(z)Φ+(z) J Φ̃+(z)F̃−1(z) = F−1(z)F (z) J F̃ (z)F̃−1(z) = J.

Equation (4.3) follows from (4.7), (1.6) and (4.6).
It follows from equations (1.6) and (4.7) that the first m − 1 rows of U and Φ+

coincide. Therefore, by virtue of (4.5),

(4.9) uij = Φ+
ij ∈ P+

N , for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m.

It follows from (4.8) and (4.3) that

(4.10) Ũ = (JUJ)−1 = Cof(JUJ)T ,

which, taking into account (4.9), implies that

Ũmj ∈ P+.

Since we know from the beginning that (4.7) belongs to (PN )
m×m, we conclude that

Ũmj ∈ P+
N .

Therefore, matrix (4.7) has the structure (4.2). In particular, due to (4.10),

(4.11) umj = Cof(JUJ)mj(z), j = 1, 2, . . . , m,

in matrix (4.2).
The relation (1.3) will be satisfied if we consider the matrix U(z)U−1(1) instead of

U(z), which does not change the structure of (4.2), and the uniqueness of U follows
from the uniqueness of J-spectral factorization (4.1).

Because of (4.6), we have

m∑

k=1

Φ+
mk(z) Cof Φ

+
mk(z) = 1,

which implies that

(4.12)
m∑

k=1

|Cof Φ+
mk(0)| > 0.

However, because of (4.9),

(4.13) CofUmk(z) = Cof Φ+
mk, k = 1, 2, . . . , m,

and

(4.14) |Cof(JUJ)mk(z)| = |CofUmk(z)|
since the signs in matrices U, JU, and JUJ can differ only across entire rows and
columns. Therefore, by virtue of (4.11), (4.14), (4.13), and (4.12), the relation (1.4)
holds. �

7            
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Theorem 4.2. For any J-unitary matrix function U of structure (4.2) which satisfies

(4.3) and (1.4), there exists a unique matrix function F of structure (1.5) such that

(4.4) holds.

Proof. Because of (1.4), there exists n ≤ m such that umn(0) 6= 0. Define functions

(4.15) ζi(z) := ji

[
ũin(z)

umn(z)

]−
, i = 1, 2, . . . , m− 1,

where [ · ]− stands for the projection operator:
[

∞∑

k=−N

ckz
k

]−
=

−1∑

k=−N

ckz
k,

and 1
umn(z)

is understood as its formal series expansion in a neighborhood of 0. Note

that we need only the first N + 1 coefficients of this expansion in order to compute
(4.15).

Define the matrix function F by (1.5) and let us prove that (4.4) holds. To this end,
we need only to check that the entries of the last row of the product FU,

(4.16)

m−1∑

i=1

ζi(z)uij(z) + ũmj(z), j = 1, 2, . . . , m,

belong to P+
N . Because of the definition (4.15), we know that the functions in (4.16)

belong to PN . In addition, for 1 ≤ j ≤ m, we have

m−1∑

i=1

ζi(z)uij(z) + ũmj(z) =

m−1∑

i=1

ji

(
ũin(z)

umn(z)
−
[
ũin(z)

umn(z)

]+)
uij(z) + ũmj(z) =

1

umn(z)

(
m−1∑

i=1

jiũin(z)uij(z) + umn(z)ũmj(z)

)
−

m−1∑

i=1

ji

[
ũin(z)

umn(z)

]+
uij(z) =

jnδnj
umn(z)

−
m−1∑

i=1

ji

[
ũin(z)

umn(z)

]+
uij(z).

The latter expression is analytic in a neighborhood of 0 which yields that (4.16) belongs
to PN ∩ P+ = P+

N . Thus (4.4) holds.
Let us now show the uniqueness of the desired F (z). Suppose

(4.17) F (z)U(z) = Φ+(z) ∈ (P+
N)

m×m and F1(z)U(z) = Φ+
1 (z) ∈ (P+

N)
m×m,

where F1(z) has the same form (1.5) with the last row [ζ ′1(z), ζ
′
2(z), . . . , ζ

′
m−1(z), 1],

ζ ′i ∈ P−
N , i = 1, 2, . . . , m− 1. Since det Φ+(z) = 1, we have

(4.18) (Φ+)−1(z) ∈ (P+)m×m.

It follows from (4.17) and (4.18) that

F1(z)F
−1(z) = Φ+

1 (z)(Φ
+)−1(z) ∈ (P+)m×m.

8            
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Hence, the last row of the above product [ζ ′1−ζ1, ζ ′2−ζ2, . . . , ζ ′m−1−ζm−1, 1] ∈ (P+)1×m,
which implies that ζ ′i − ζi = 0, i = 1, 2, . . . , m− 1 since these functions belong to P−

N

which has a trivial intersection with P+. �

Remark 4.2. Theorems 4.1 and 4.2 deliver one-to-one correspondence between the

matrix functions (1.5) for which J-spectral factorization (4.1) exists and the class

A0
J(m,N) defined in the end of Section 2.

5. The Algorithm for Constructing J-Unitary Matrix Polynomials

In this section we provide an algorithm for constructing J-unitary matrix function
(4.3) for a given matrix function (1.5). Consider the following system of conditions:

(5.1)





ζ1xm − j1 · x̃1 ∈ P+,

ζ2xm − j2 · x̃2 ∈ P+,

· · ·
ζm−1xm − jm−1 · x̃m−1 ∈ P+,

ζ1x1 + ζ2x2 + . . .+ ζm−1xm−1 + x̃m ∈ P+,

where ζi ∈ P−
N , i = 1, 2, . . . , m− 1, are the entries of F in (1.5).

definition 5.1. We say that a vector function

u =
(
u1, u2, . . . , um−1, ũm

)T
, where ui ∈ P+

N for each i = 1, 2, . . . , m,

is a solution of (5.1) if and only if all the conditions in (5.1) are satisfied whenever

xi = uk, i = 1, 2, . . . , m.

Remark 5.1. Note that the set of solutions of (5.1) is a linear subspace of (PN)
m×1.

Lemma 5.1. Let

u =
(
u1, u2, . . . , ũm

)T
and v =

(
v1, v2, . . . , ṽm

)T

be two (possibly identical) solutions of the system (5.1). Then

(5.2)

m−1∑

k=1

jkukṽk + ũmvm = const .

Proof. Substituting the functions v in the first m − 1 conditions and the functions u
in the last condition of (5.1), and then multiplying the first m−1 conditions by u and
the last condition by vm, we get





ζ1vmu1 − j1 · ṽ1u1 ∈ P+,

ζ2vmu2 − j2 · ṽ2u2 ∈ P+,

· · ·
ζm−1vmum−1 − jm−1 · ṽm−1um−1 ∈ P+,

ζ1u1vm + . . .+ ζm−1um−1vm + jmũmvm ∈ P+.
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Subtracting the first m− 1 conditions from the last condition in the latter system, we
get

(5.3)

(
m−1∑

k=1

jkukṽk + ũmvm

)
∈ P+.

We can interchange the roles of u and v in the above discussion to derive in a similar
manner that

m−1∑

k=1

jkvkũk + ṽmum ∈ P+.

Consequently, the function in (5.2) belongs to P+ ∩ P−
0 , which implies (5.2). �

We construct m linearly independent solutions of (5.1). Namely, we rewrite (5.1) in
equivalent form of linear system of equations. Let in (5.1)

(5.4) ζi(z) =

N∑

n=1

γinz
−n, i = 1, 2, . . . , m− 1

and

(5.5) xi(z) =
N∑

n=0

ainz
n, i = 1, 2, . . . , m,

Equating all the coefficients of the non-positive powers of z of the functions in the
left-hand side of (5.1) with zero, except for the free term of the qth function which we
set equal to 1, we arrive at the following system of algebraic equations in the block
matrix form, which we denote by Sq:

(5.6) Sq :=





Γ1Xm − j1X1 = 0,

Γ2Xm − j2X2 = 0,

ΓqXm − jqXq = 1,

Γm−1Xm − jm−1Xm−1 = 0,

Γ1X1 + . . .+ Γm−1Xm−1 +Xm = 0

Here the following notation is used:

Γi =




γi0 γi1 γi2 · · · γi,N−1 γiN
γi1 γi2 γi3 · · · γiN 0
γi2 γi3 γi4 · · · 0 0
· · · · · · · ·
γiN 0 0 · · · 0 0



, i = 1, 2, . . . , m− 1,(5.7)

Xi = (ai0, ai1, . . . , aiN)
T , i = 1, 2, . . . , m (see (5.5)),

0 = (0, 0, . . . , 0)T ∈ C(N+1)×1, and 1 = (1, 0, 0, . . . , 0)T ∈ C(N+1)×1.
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Determining Xi, i = 1, 2, . . . , m− 1, from the first m− 1 equations of (5.6),

(5.8) Xi = ji
(
Γi Xm − δiq 1

)
,

i = 1, 2, . . . , m− 1, and then substituting them in the last equation of (5.6), we get

(5.9) j1Γ1 Γ1 Xm + j2Γ2 Γ2 Xm + · · · + jm−1Γm−1 Γm−1 Xm +Xm = jqΓq 1

(it is assumed that the right-hand side is equal to 1 when q = m) or, equivalently,

(5.10) (j1Γ1 Γ
∗
1 ++ . . .+ jm−1Γm−1 Γ

∗
m−1 + jmIN+1)Xm = jq Γq 1

(we used Γ∗ in place of Γ because ΓT = Γ). For each q = 1, 2, . . . , m, (5.10) is a linear
system of N+1 equations with N +1 unknowns. This system (5.10) and consequently
(5.6) has the unique solution for each q = 1, 2, . . . , m if and only if

(5.11) det∆ 6= 0,

where

(5.12) ∆ =
∑m−1

k=1
jkΓkΓ

∗
k + IN+1 .

We will assume that (5.11) holds. Finding Xm from (5.10) and then determining
X1, X2, . . . , Xm−1 from (5.8), we get the unique solution of Sq. To indicate its depen-
dence on q, we denote the solution of Sq by (Xq

1 , X
q
2 , . . . , X

q
m−1, X

q
m),

(5.13) Xq
i := (aqi0, a

q
i1, . . . , a

q
iN )

T , i = 1, 2, . . . , m,

so that if we construct a matrix function V ,

(5.14) V =




v11 v12 · · · v1m
v21 v22 · · · v2m
...

...
...

...
vm−1,1 vm−1,2 · · · vm−1,m

ṽm1 ṽm2 · · · ṽmm



,

by letting (see (5.13))

(5.15) vij(z) =

N∑

n=0

ajinz
n, 1 ≤ i, j ≤ m,

then the columns of (5.14) are solutions of the system (5.1). Hence, due to the last
equation in (5.1),

(5.16) FV ∈ (P+
N)

m×m

and, by virtue of Lemma 5.1,

(5.17) Ṽ (z) J V (z) = C,

where C is a constant Hermitian matrix with signature J .
Let us show also that the determinant of V is constant.

It follows from (1.5) and (5.16) that

(5.18) det V ∈ P+.
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Since the columns of (5.14) are solutions of (5.1), the direct computations show that

(5.19) (F−1)TJṼ =




ψ+
11 ψ+

12 · · · ψ+
1m

...
...

...
...

ψ+
m−1,1 ψ+

m−1,2 · · · ψ+
m−1,m

vm1 vm2 · · · vmm



,

where ψ+
ik = −ζivmk+ jiṽik. In addition, due to the choice of the right hand side vector

in (5.6), we have

(5.20) ψ+
ik(0) = −δik, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ m.

Since the right hand side of (5.19) belongs to (P+)m×m, we have

(5.21) det Ṽ ∈ P+.

Relations (5.18) and (5.21) imply that det V ∈ P+ ∩ P−
0 . Hence, it is constant:

(5.22) det V (z) = c.

If we denote the right-hand matrix in (5.19) by Ψ+, then it follows from (5.22) that
detΨ+(z) = Const and hence

detΨ(z) = detΨ(0).

It now follows from (5.20) that

detΨ+(0) = (−1)m−1vmm(0).

Recall from (5.9)–(5.12) that vmm(0) is the 0th term of the solution of the equation

(5.23) ∆X = 1,

where 1 = (1, 0, 0, . . . , 0)T ∈ C(N+1)×1, i.e. if the solution of (5.23) isX = (x0, x1, . . . , xN)
T ,

then x0 = vmm(0).
Since x0 = ∆0/∆, where ∆0 is the N ×N submatrix of ∆ obtained by deleteing its

first row and column,

(5.24) ∆0 = ∆c
11,

we get

(5.25) det V (z) = c 6= 0⇐⇒ det∆0 6= 0.

The following simple example shows that (5.25) does not always hold.
Example. If m = 2, J = diag(−1, 1), and

(5.26) Γ =




0
√
α
√
α√

α
√
α 0√

α 0 0


 ,
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where α is a root of the equation x2 − 3x + 1 = 0, then det∆ 6= 0 and det∆0 = 0,
where ∆ is defined by (5.12) and ∆0 is defined by (5.24). Indeed

−ΓΓ∗ + I3 = −



2α− 1 α 0
α 2α− 1 α
0 α α− 1




and det∆0 =

∣∣∣∣
2α− 1 α
α α− 1

∣∣∣∣ = α2 − 3α + 1 = 0. Note that corresponding to (5.26)

matrix function F is

F (z) =

(
1 0√

α(z−1 + z−2) 1

)
.

We proceed with the construction of U by the algorithm under the additional restric-
tion (5.25), since, as it is proved in Theorem 5.1 below, the desired J-unitary matrix
U does not otherwise exist.

Suppose

(5.27) U(z) = V (z)V −1(1)

(the matrix V −1(1) exists since V ∗(1)JV (1) = C and | detC| = | det V (1)|2 = |c|2 6= 0

because of (5.25)). Then (5.27) is J-unitary since Ũ(z)JU(z) is equal to

Ṽ −1(1)Ṽ (z)JV (z)V −1(1) = (Ṽ (1))−1CV −1(1) = (Ṽ (1))−1Ṽ (1)JV (1)V −1(1) = J.

Of course, (4.4) holds because of (5.16) and (5.27). The structure of the matrix
function (5.14) is preserved, and detU(z) = detU(1) = 1, so that (4.3) holds. Thus
U is the desired matrix because of the uniqueness of J-spectral factorization presented
in Section 3.

Theorem 5.1. Let F be a matrix function (1.5), and define matrices Γi i = 1, 2, . . . , m−
1, ∆, and ∆0 according to (5.4), (5.7), (5.12), and (5.24). Suppose det∆ 6= 0 and

det∆0 = 0. Then the canonical J-spectral factorization of F , i.e. the representation

(4.1), does not exist.

First we prove the following

Lemma 5.2. Let F and U be as in Theorem 4.1. Then the columns of U,

(5.28) Uk = (u1k, u2k, . . . , um−1, k, ũmk)
T , k = 1, 2, . . . , m,

are solutions of the system (5.1).

Proof. The last equation in (5.1) holds automatically because of (4.4).
Suppose

(5.29) F (z)U(z) = Φ+(z)

where Φ+ ∈ (P+
N)

m×m. Since U−1(z) = JŨ(z) J and det Φ+(z) = 1, the equation
(5.29) implies

JŨ(z) JF−1(z) = (Cof Φ+)
T .

Hence,

(5.30) JŨ(z) JF−1(z) ∈ (P+)m×m.
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Writing the left-hand side product in (5.30) explicitly, we get that



ũ11 ũ21 . . . ũm−1, 1 um1

ũ12 ũ22 . . . ũm−1, 2 um2
...

...
...

...
...

ũ1m ũ2m . . . ũm−1,m umm







j1 0 . . . 0 0
0 j2 . . . 0 0
...

...
...

...
0 0 . . . jm−1 0
0 0 . . . 0 1







1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
−ζ1 −ζ2 · · · −ζm−1 1




belongs to (P+)m×m, which shows that (5.28) are solutions of (5.1). �

Proof of Theorem 5.1. For the sake of contradiction, let us assume that factoriza-
tion (4.1) exists. Then, by virtue of Theorem 4.1, there exists (4.2) such that (4.4)
holds, and by virtue of Lemma 5.2, the columns (5.28) are the solutions of (5.1).
Consequently, for each q = 1, 2, . . . , m, the vectors constructed from the coefficients of
Uq = (u1q, u2q, . . . , um−1, q, ũmq)

T

Xq
i = (αq

i0, α
q
i1, . . . , α

q
iN)

T , where uiq =
∑N

k=0
αq
ikz

k,

will be solutions of the following system of linear equations (cf. (5.6))

S′
q :=





Γ1Xm − j1X1 = Bq1,

Γ2Xm − j2X2 = Bq2,
...

Γm−1Xm − jm−1Xm−1 = Bq,m−1,

Γ1X1 + . . .+ Γm−1Xm−1 +Xm = Bqm

,

where each Bqi has the form

Bqi = (bqi, 0, 0, . . . , 0)
T ∈ C(N+1)×1.

We can consider Sq as m(N +1)×m(N +1) linear system of equations (with unknown
X = (XT

1 , X
T
2 , . . . , X

T
m−1, X

T
m)

T ). It is clear that since ∆X = b has a unique solution

for each b ∈ C(N+1)×1, the system Sq will also be non-singular. Consequently, since the
columns of the matrix (5.14) constructed by the algorithm are solutions of the system
(5.1), and the corresponding vectors

Xj
i = (αj

i0, α
j
i1, . . . , α

j
iN)

T

(see (5.15)) are solutions of (5.6) with the standard right-hand side vectors, we will
have

Uk = (u1k, u2k, . . . , um−1, k, ũmk)
T =

N∑

i=1

bqiVi.

This implies that U(z) = V (z)B for some B ∈ Cm×m which is impossible since
detU(z) = 1 and det V (z) = 0. We arrive at a contradiction. �

Remark 5.2. It is natural to ask if the condition (5.11) necessary for the existence

of J-spectral factorization (4.1). Presently, we do not know the answer.
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