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Abstract

With the advent of artificial intelligence (AI) in business operations of various indus-
tries in recent decades, manufacturing firms are embracing intelligent, data-driven
methods of making their processes more efficient. In particular, AI-driven automa-
tion of computer numerically controlled (CNC) programming, the process by which
cutting tool and operation parameters governing CNC machines are determined, has
potential to yield dramatic benefits to machining companies. Within the context
of Midwest-based machining firm Orizon, two approaches to programming automa-
tion were developed. Geometry Rule-based Automation of Programming (GRAP) is a
rule-based system with the ability to recognize hole and pocket features and automat-
ically create an associated program, albeit suboptimal. Deep Learning for Automated
Tool Selection (DLATS) is a machine learning algorithm with the ability to select the
appropriate cutting tool for a hole drilling process with 32% accuracy, which is over
300 times better than random selection. Motivation, results, and implementation
findings for both GRAP and DLATS are presented.
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Chapter 1

Introduction

1.1 Problem Statement

Large aerospace and defense systems companies (e.g., Lockheed Martin, Northrop

Grumman, Spirit, etc.) rely heavily on suppliers to produce components and assem-

blies which are integrated into an end product. For example, the Lockheed Martin

F35, a military combat aircraft, is built with parts sourced from various suppliers

[1]; one key supplier to the F35 platform is Orizon AeroStructures, a manufacturing

company that fabricates and assembles airframes. While under contract, Orizon is

obligated to supply airframe assemblies at a rate commensurate to Lockheed Martin’s

F35 production rate.

In order to optimize the production process to supply assemblies at the appro-

priate rate, Orizon must invest in its upfront development with non-recurring engi-

neering (NRE) process costs prior to production. This process, referred to as on-

boarding, involves engineering investment to reduce the cycle time for parts in pro-

duction—specifically, Orizon fabricates large metallic parts using computer numeric

controlled (CNC) machines. Onboarding includes developing a CNC program (i.e.,

line-by-line instructions for tool choices, tooling paths, machine parameters, etc.) to

operate the machine, designing workholding fixturing to secure the part while on the

machine, and testing the program and workholding to ensure that, in a production

mode, the process can meet cycle time and quality requirements.
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A natural trade-off exists between upfront investment in an optimized machining

process and rapid development of a suboptimal process: in contrast to Orizon, a man-

ufacturing firm can immediately bring a part into production without an optimized

machining process. Ultimately, this rapid development approach results in longer cy-

cle times, failure to meet quality requirements, and reliance on skilled machinists to

make real-time process adjustments. This approach may be justifiable if investment

in the development process meaningfully reduces profit margins for low-volume parts.

Orizon typically agrees to high-volume contracts and consequently maximizes profit

margins with notable investments in NRE.

Perhaps the most significant NRE cost is CNC programming (hereafter referred

to as programming or NC programming). On a part number basis, programming may

take up to 2,000 hours, equating to a cost of roughly $100k per part number. While

programming cost negatively impacts Orizon’s achievable profit margin, the large

amount of labor hours required to program a part also prohibits optimal resource al-

location and thus reduces velocity of parts to customer delivery. Were Orizon able to

reduce the average number of programming hours per part, the company’s program-

ming resources could be more effectively used to onboard more parts per programming

hour; such an improvement would justify a pursuit to capture a larger, more diverse

customer portfolio and invest in a proportional number of machining assets to achieve

revenue and earnings growth. As a result, automation of the programming process is

a key business need for Orizon.

1.1.1 Overview of Contents

This study presents methods of automating programming with the motivation of re-

ducing labor costs and improving product velocity through the onboarding process

within the context of Orizon. Section 1.2 introduces basic considerations and defi-

nitions for CNC machining and the programming process; Section 1.3 discusses the

onboarding process and programming as an integral part of that process; Section

1.4 presents financial data motivating the desire to reduce onboarding and program-

ming time; and Section 1.5 contains contemporary industry practices and academic

14



research related to programming automation.

Chapter 2 presents Geometry Rule-Based Automation of Programming (GRAP), a

nascent artificial intelligence (AI) system for automatically creating programs; Chap-

ter 3 introduces Deep Learning for Automated Tool Selection (DLATS), a machine

learning (ML) algorithm for automatically selecting cutting tools (an integral part of

the programming process, see Section 1.2); Chapter 4 compares GRAP and DLATS;

and Chapter 5 discusses implications of the results herein on future developments

towards programming automation.

1.2 CNC Machining and Programming

Orizon is a premier manufacturer of structural assemblies composing various aerospace

platforms, but most notably aircraft. These assemblies are typically made of large,

metallic components that maintain much of the structural integrity of the fully-

assembled aerospace system. To manufacture these assemblies, Orizon first machines

(i.e., cuts) stock material on a CNC machine to produce parts with the desired ge-

ometrical tolerance requirements specified by their customers. These parts vary in

size, complexity, and material type, but typically require a few hours of machining

time. Many of the parts Orizon machines are highly complex, requiring a substantial

engineering effort to program the machine to cut the part within quality requirements

(i.e., geometrical tolerances) and acceptable cycle times. More information describing

these processes is contained in Sections 1.2.1 and 1.3.

Parts are machined at one of three machine shops then delivered to a central

facility responsible for processing and building the parts into the assemblies required

by the customers. Final assemblies are then shipped to the customers for integration

into the target higher-level assembly.

1.2.1 Computer-aided Machining Workflow Definitions

Computerization of manufacturing workflows since the 1950s has largely defined the

state of machining processes today [2, 3, 4]. Computer-aided design (CAD) soft-
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ware allows engineers to develop a 3-D digital representation of a desired part to be

fabricated. A common CAD file type is the STEP, or .stp, file, which is a method

to represent and exchange product manufacturing information governed by standard

ISO 10303 [5]. Such CAD files are key inputs to the computer-aided manufacturing

(CAM) process, which is the process to define and execute manufacturing instructions

to fabricate a given part. CAM software allows users to create, test, and verify CNC

programs, which define the step-by-step commands for CNC machines to fabricate a

desired end part. CNC machines most commonly use G-code, a CNC programming

language, to define cutting tool selection, cutting tool feed rate, spindle position,

and spindle speed. G-codes are created by processing a cutter source location, or

.cls, file defining similar program inputs: cutting tool parameters, position, feed rate,

and speed. A key difference between the G-code and .cls file is that the latter con-

tains information on the cutting tool parameters (e.g., diameter, length, etc.); these

parameters are central to the CNC program development process.

A typical machining process flow is shown in Figure 1-1. In Orizon’s case, CAD

files describing the desired product are generated and delivered by the customer.

While these CAD files can be delivered in various formats, Orizon often converts

CAD files to .stp format due to its universal compatibility. CAM software packages

(e.g., NX and CATIA) are then used as an interface to select and visualize cutting

tools, paths, and other operation parameters. CAM software generates the .cls file,

which is verified in a cutting simulation software (e.g., VERICUT); this verification

process ensures there are no major errors with the program (e.g., tool collisions with

machinery, etc.). After the CNC program is verified, it is run through a post-processor

to develop G-code, which is the language that can be interpreted by the CNC machine.

At this point, the CNC machine has all the program data required to fabricate the

customer’s desired part.

16



Figure 1-1: A typical process to machine a part specified by a CAD model and other
customer requirements includes the use of CAM software to develop and rework the
program.

1.3 Onboarding and Programming

1.3.1 Onboarding as a Process

Production optimization and commitment to quality are the main factors differen-

tiating Orizon from competitors in its manufacturing process. Orizon achieves this

differentiation with its part onboarding process, which is the workflow required to

take a customer requirement (i.e., CAD file and governing drawings) and begin full

production on that specific part. A map of Orizon’s onboarding process is shown in

Figure 1-2.

Engineering activities in the beginning of the onboarding process, including pro-

gram planning, program creation, and workholding fixture design and fabrication, are

perhaps the most notable differentiators for Orizon. Because high volume production

work statements are typical, Orizon can optimize EBITDA margins by reducing cycle

times and direct labor costs. An investment in NRE to create the optimal production

plan and workholding fixture eliminates the need for machine technician labor and

reduces quality issues. While some machine shops require a technician to monitor a

single machine and adjust machine parameters and workholding in real time, Orizon

often requires only a single technician to monitor multiple machines with no real-

time adjustments necessary; such adjustments are unnecessary as a result of highly-

engineered machine programs and workholding fixturing. Similarly, a commitment to
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Figure 1-2: Orizon’s onboarding process is differentiated with a substantial investment
in NRE to reduce cycle time and improve part yield.
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designing and fabricating suitable workholding fixtures ensures repeatable processes

such that variation in quality output is minimized. This upfront engineering detail is

verified in the handshake process, which requires 10 parts be fabricated within cycle

time and quality (i.e., dimensional tolerance) constraints. With the handshake com-

plete, Orizon proceeds to full production with confidence in its machining process,

which is largely defined by the NC program and workholding fixture specific to the

part required by the customer.

Such a highly-engineered onboarding process to optimize and verify manufactur-

ing production requires a substantial initial investment in engineering time and labor.

This investment varies with the complexity of the part; while simple parts can be put

into production in a few weeks or a month, complex parts often require 6 to 12

months. Since complex parts command high prices, Orizon can optimize its EBITDA

margin by agreeing to contracts primarily for such parts. By automating the engi-

neering activities in the onboarding process, Orizon can maintain its high standard

of optimized, quality production while maximizing its EBITDA margin.

The research herein focuses primarily on methods to automate the NC program-

ming process, which is described in more detail in Section 1.3.2.

1.3.2 Programming as a Process

After Orizon signs a contract to produce a given part, a few activities are kicked off

in parallel. Orizon’s lead engineers first deliberate to produce a programming kit,

which contains a rough outline of how the part will be fabricated on the machine;

typically, a programming kit will contain cutting tool choices and major machine

operations. Necessary inputs to the programming kit scheme include the raw material

definition (material composition, dimensions, and fabrication method) as well as any

workholding or manufacturing tooling design. This programming kit scheme is handed

off to a programmer, who uses NX or CATIA to develop the program.

Proper selection of cutting tools is critical to the programming process. Consider

a simple thru hole drilling operation, which often uses a tool called a twist drill (see

Figure 1-3). Some relevant parameters a programmer must consider when selecting

19



the appropriate twist drill include the following:

• Diameter: the outer diameter of the drill should be equal to the hole diameter

(allowing for some tolerance specified by the customer).

• Flute/cutting length: the cutting length should be sufficient to drill the required

depth, but be as short as possible to avoid tool chatter.

• Number of flutes: flutes are grooves in a cutting tool that allow for chip forma-

tion and removal; the number of flutes (in combination with other parameters)

controls the removal rate of material, which should be determined based on the

operation, workpiece material, and machine parameters.

• Point angle: the angle of the drill at its tip should vary depending on the

material of the work piece and machine parameters.

• Material: the material of the drill should vary depending on the material of the

workpiece and machine parameters.

Given the cutting tool definition provided in the programming kit, a programmer

will search Orizon’s database to find the appropriate cutting tool part number; if

Orizon does not already own that tool, the programmer will manually enter tooling

data to the appropriate database and work with the relevant procurement personnel

to acquire the tool. Note that Orizon currently maintains tooling databases for each

site; furthermore, within each site, there is a separate file containing the relevant

tooling data for each of NX, CATIA, and VERICUT. As a result, programmers must

maintain tooling data and select the cutting tool with the appropriate parameters

or risk a costly downstream escape; if, for example, a programmer selects a cutter

with longer flute length than intended, the fabricated part may end up having a

defect. While program verification steps are in place to mitigate production defects,

maintenance of Orizon’s cutting tool data via a centralized database would serve to

reduce rework in downstream process steps caused by improper tooling selection.

With the appropriate cutting tool data uploaded to the CAM environments, a

programmer can develop the machine operations that cut the input raw material
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Figure 1-3: A twist drill has several parameters describing its geometry that a pro-
grammer must consider when selecting the proper tool [6].
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to the desired dimensions. For example, if drilling a simple thru hole in a part,

a programmer will select the appropriate tool, the corresponding geometry in the

CAD model, and the parameters that govern how the hole is drilled. Some of these

parameters for a simple drilling process include the following:

• Feed rate: the velocity at which the cutter is advanced towards the part, often

measured in inches per revolution (IPR).

• Spindle speed: the frequency with which the cutter spins, often measured in

revolutions per minute (RPM).

• Tool path: the location of the cutting tool in all machine axes over time, which

controls how the part is cut.

Note that there are several other parameters a programmer can use to customize

a drilling operation. Ultimately, most operations can be pared down to a cutting

tool choice, feed rate, spindle speed, and tool path. While NX and CATIA can

automatically generate tool paths given certain inputs, developing the operations in

the CAM environment can be tedious; a particularly complex part might require 1000

or more operations, each of which takes 30 minutes to program.

Once the program is fully defined, Orizon can simulate the program and verify

the program does not result in any part defects or machine issues with VERICUT,

a software program providing a digital twin environment for the machining process.

If VERICUT simulation reveals any issues with the program, the program can be re-

worked in NX or CATIA ; in the absence of any issues, a first article will be fabricated

in the physical machining environment planned for production.

Notably, Orizon uses a feedback loop to iterate and improve the program after

monitoring the first article as it is machined. This process, referred to as develop-

ment, involves the creation of a proofing log as the part is run on the machine. The

proofing log captures problematic aspects of the machining program an experienced

engineer can sense using visual or audio feedback. For example, the initial tool selec-

tion, path, feed rate, and speed might cause the tool to chatter on the surface of the
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Figure 1-4: Programming is a key part of the onboarding process. Steps indicated by
*** are most time consuming and often result in onboarding bottlenecks.

part; this behavior is highly undesirable and is often identified by a particular sound.

Since such behavior might risk gouging or otherwise damaging the part, a program-

mer will edit the relevant program parameters to mitigate tool chatter. Similarly, a

programmer can edit the program to ensure the machining cycle time is within the re-

quirement agreed to by the customer and satisfy the customer handshake agreement.

The development process and feedback loop are therefore critical to optimizing the

machining process and ensuring quality constraints are satisfied. Figure 1-4 outlines

the programming process.
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1.4 Onboarding Performance

Essential to improving the onboarding process is defining and measuring the key

performance indicators (KPIs) such that effects of process changes can be quantified.

Consequently, Orizon enterprise resource planning (ERP) data was collected and

analyzed to determine the number of hours spent on the programming and overall

onboarding processes on a part basis. The accuracy of this data depends on the

system each site utilizes to collect ERP data; though Orizon uses SyteLine across

all sites, the manner in which SyteLine is used differs between sites. Furthermore,

since Orizon focused primarily on achieving revenue growth and recovering from the

COVID economic downturn, managers did not focus on ensuring labor data was

captured throughout Orizon’s tenure.

Nonetheless, onboarding and programming hours collected from SyteLine data

were aggregated by part number. A histogram of these data for one manufacturing

site is shown in Figure 1-5. At this particular site, a vast majority of programming

jobs require less than 500 hours, or roughly 12 weeks. However, there are a few jobs

for particularly complex parts requiring thousands of hours. Note that these data

represent only a subset of all of Orizon’s parts, but are included herein to demonstrate

an estimate of the typical programming time and distribution thereof.

Another key consideration to understand Orizon’s onboarding performance is the

anticipated effect programming automation has on reducing direct labor costs as well

as increasing sales. A given part requires a certain direct labor cost related to the

number of hours the programmer must spend to create the program; by automat-

ing programming, Orizon can reduce the typical cost associated with each part and

therefore improve its margin. A more pronounced impact of programming automa-

tion is related to the improved sales Orizon can achieve since programmers are a

bottlenecked resource. By efficiently producing parts, programmers can focus on new

work streams which Orizon would otherwise not be able to produce. Indeed, Ori-

zon often refuses to quote customer requests for work as a result of the bottlenecked

programming resources; such a hindrance therefore clearly impacts the company’s
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Figure 1-5: Histograms showing the programming hours required for all parts from
one location. Plots show all parts (top) and parts requiring programming time less
than or equal to 500 hours (bottom).
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prospects for revenue growth. Further note that Orizon typically onboards hundreds

of parts per year, thereby creating substantial demand for programming jobs and the

resulting need to automate programming. The financial impact of these cost savings

and increased sales is shown in Table 1.1 and Figure 1-6.



Table 1.1: Table 1: Financial impact of programming automation.

% Automation Hours saved Cost savings ($mm) Sales per programming hour ($) Increased sales ($mm)
0 0 0 579 0
10 10,000 0.43 643 6.43
20 20,000 0.86 724 14.47
30 30,000 1.29 827 24.81
40 40,000 1.72 965 38.60
50 50,000 2.15 1,158 57.90
60 60,000 2.58 1,447 86.84
70 70,000 3.01 1,930 135.09
80 80,000 3.44 2,895 231.59
90 90,000 3.87 5,790 521.07
99 99,000 4.26 57,896 5,731.74

Note: The results above are calculated assuming a conservative $58mm annual sales for machining sites, 50 programmer heads
working 2,000 hours per year, and that programmers remain a bottleneck resource regardless of automation.



Figure 1-6: Programming automation results in both a reduction in costs and, more
impactfully, an increase in EBITDA from improved sales. Note that a margin of 20%
is assumed.

At 50% automation, cost savings of more than $2mm and increased sales of nearly

$58mm are achievable. At an assumed gross margin of 20%, the combined EBITDA

increase of these cost savings and increased sales is nearly $14mm. Furthermore,

while cost savings are a linear function of the extent of programming automation, the

efficiency of programming hours improves dramatically as programming automation

is realized. Therefore, assuming programming remains a bottlenecked resource, sales

per programming hour and, as a result, overall sales can increase substantially with

programming automation. While it is likely that other process steps (e.g., workhold-

ing fixture design and fabrication or machine capacity) would become bottlenecks as

the extent of programming automation is improved, subsequent investments can be

easily supported with the potential to considerably increase revenues.

Motivated by these operational efficiency and financial gains, Orizon and other

machine shops seek to improve their programming processes to reduce time. Though

there may be methods to improve the average programming cycle time with invest-

ments in labor resources or similar means, this research focuses on technical means

to reduce programming time via automation. Prior to presenting novel approaches

28



of programming automation in subsequent chapters, Section 1.5 discusses current

research relevant to the automation task under consideration. Indeed, while 50%

programming automation or better may demonstrably improve the financial perfor-

mance of a company like Orizon, a discussion on whether such a figure is achievable

and the method by which it can be achieved follows.

1.5 Review of Current Methods

Integral to the Industry 4.0 concept is the use of digitized data for inclusion in machine

learning and broader artificial intelligence algorithms to automate human cognitive

processes; in particular, the automation of programming can be considered in two

phases: (1) analysis of CAD files for geometrical attributes that inform (2) CAM pro-

grams governing cutting tool and operation parameter selection [7]. Current program-

ming automation methods can therefore be broken down into two broad categories

aligned with these two phases: feature recognition and operation prediction.

1.5.1 Feature Recognition

A common method of analyzing a part described in a CAD file is to break down the

part into its constituent features, such as holes, pockets, and various other types [8].

Note that each of these broad categories of features describes several distinct feature

types; for example, simple thru holes, counterbores, and countersinks are all distinct

types of holes. A programmer must understand the geometry of these features in

order to select the appropriate operation parameters to fabricate the required feature

geometry. As a result, feature recognition—the cognitive process of identifying and

collecting geometrical data describing the features composing a part—is a critical

underpinning to programming automation.

Commercially-available software contains feature recognition technology, but the

number of unique features that can be recognized is limited and the technology fails

to recognize those with complex geometries [9, 10, 11, 12, 13, 14]. Consequently, while

popular CAM software providers such as NX and CATIA make feature recognition
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capabilities available to programmers, such capabilities are often not used. This espe-

cially holds true for aerospace parts, which typically contain highly complex features

unrecognizable by CAM product offerings. For competitive reasons, these CAM soft-

ware providers do not publicly disclose their feature recognition methods; however,

given the following state of academic research in feature recognition, it is unlikely

that advanced techniques in academia are used to identify features.

Feature recognition methods utilize one or a combination of multiple of the fol-

lowing approaches: syntactic patterns, graph-based, hint-based, logic rule-based, and

artificial neural networks (ANNs); of those five methods, graph-based and ANN tech-

niques are still being explored [15, 16]. Studies of graph-based methods show promise

to identify features in complex parts, but only on a simplified subset of parts. Re-

search into the use of ANNs indicate that features can be classified from a supervised

dataset of voxelized CAD files and convolutional neural networks (CNNs) with accu-

racies of at least 96% [17]. Additionally, encoding features into a vector of integers

for use in an ANN has been shown to yield greater than 96% feature classification

accuracy [18]. Despite their high accuracies, these approaches and others [19, 20,

21, 22] demonstrate success only on a simplified subset of parts and therefore require

further development before they can be successfully implemented in a commercially

available software designed to recognize machining features in all types of complex

parts.

1.5.2 Operation Prediction

Once the features constituting a part and the geometrical attributes defining those

features are known, a programmer can determine the operation parameters and cor-

responding cutting tools to fabricate that part. The determination of those operation

and cutting tool parameters by an automated system is referred to herein as operation

prediction.

Given the clear benefits discussed in Section 1.4, some CAM software providers

have created products that predict operations in addition to feature recognition tech-

nology. NX offers a feature-based machining (FBM) package, which allows a user
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to create a set of rules to apply operation parameters to recognized or defined fea-

tures [23]. FBM is the tool used to implement the rule-based approach presented in

Chapter 2. In their study of applying FBM at a machine shop, Kruuser et al. report

that programming time can be reduced by roughly 20% and programming for about

95% of holes can be fully automated [24]. Some developers also build CAM software

add-ons that automatically populate operation parameters based on user-specified

criteria in a similar method to that employed by NX FBM [25]. A detailed discussion

of the application of these rule-based systems follows in Chapter 2.

Recent academic research demonstrates various methods by which optimization

and machine learning can be applied to the machining industry, including opera-

tion prediction [26]. Klancnik et al. developed a method employing evolutionary,

multi-criterion optimization algorithm NSGA-II to create a program by evaluation

in a simulated environment [27]. Dittrich et al. created a routine utilizing material

removal simulations and machine learning to automatically compensate for tool de-

flections, thereby self-optimizing the tool path in a program [28]. Sharmaa, Chawlaa,

and Rama developed two machine learning algorithms—one using support vector

machines and the other using a restricted boltzmann machine with a deep belief

network—to predict G-code for simple drilling operations with up to 97% accuracy

[29, 30]. Peddireddy et al. used CNNs and transfer learning to predict whether a

part should be machined on a mill and/or on a lathe [31]. While each of these stud-

ies reports innovative methods of determining parameters constituting programs, no

single study reports a full end-to-end automation that can be readily implemented

in practice; moreover, all of these studies focus on simple parts and features relative

to those typical of the aerospace industry. Certainly, one or more of these methods

may be developed further in future work, resulting in improved practicality to the

machining industry.
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Chapter 2

Rule-Based System for Program

Determination

Rule-based systems are a commonly employed method of AI and a natural method-

ology to automate decision making for complex cognitive processes [32]. Indeed, a

set of questions describing the geometrical attributes of a particular feature can be

answered to determine—with some level of accuracy—the appropriate cutting tool

and machining operation for that feature. These questions constitute the set of rules

defining a rule-based system and are intended to mimic the thought process of a

human expert in a fast, highly repeatable computer program. In this chapter, the

applicable set of rules to use in such a rule-based system to automate the decision

making of a human NC programmer is explored and the Geometrical Rule-based

Automation of Programming (GRAP) method is presented.

2.1 Description of GRAP and FBM

In the programming process, a programmer will first analyze all of the features of

a particular part to determine the various feature classes inherent to the part as

well as the attributes defining the geometry of those features. The programmer

will subsequently analyze those feature attributes in order to select the appropriate

tool and operation class needed to cut the part on a feature-by-feature basis. This

33



analysis is composed of learned concepts based on geometrical constraints, physics,

and experience; for example, a programmer may choose between two suitable sets of

cutting tool and machining operation if one set has been successfully demonstrated

in past machining processes.

NX and other CAM software have capabilities to determine both (1) the features

and corresponding geometrical attributes for a part and (2) the tool and operation to

successfully machine a specific feature based on its geometry (henceforth referred to

as feature recognition and tool/operation selection, respectively). These capabilities

are typically limited in applicability due to the large number of possible feature-

tool-operation combinations as well as the difficulty in recognizing features and their

attributes given a raw CAD file. Though limited in applicability with the out-of-the-

box configuration, these capabilities may be governed by customized rules and data

created by programmers and manufacturing engineers.

NX FBM, introduced in Section 1.5, is governed by the NX Machine Knowledge

Editor (MKE), a simple data structure to store user-defined rules and data for pro-

gramming automation. FBM offers NX users a straightforward interface to compose

a set of rules that aid in feature recognition and tool/operation selection. Because

roughly half of Orizon’s programmers use NX to program parts and other CAM

software offerings are not as mature, FBM was selected as the medium to list and

apply the set of rules to automate the NC programmer cognitive processes mentioned

above. FBM and the specific data owned by Orizon and encoded into the MKE are

collectively referred to as GRAP. Note that FBM is limited in its ability to customize

feature recognition rules and the focus herein is to implement a set of tool/operation

selection rules to replicate a human programmer expert decision process.

In practice, the creation of rules and implementation of FBM will follow the

process outlined in Figure 2-1. First, a basic part file containing a simple example of

a common feature will be created. This common feature will be recognized via the

out-of-the-box NX feature recognition software; otherwise, it will not be a candidate

feature for the FBM process. An expert NX programmer will subsequently create the

ideal program for that feature (i.e., a tool will be selected and operation parameters
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Figure 2-1: The FBM process involves creating a simplified part and correspond-
ing operations in NX, which are then encoded into the MKE and tested prior to
application.

specified). This program is then taught, or encoded into, the MKE. Because the

teaching process is highly specific to the attributes defining only the feature from the

simple part file, the MKE rules are edited to ensure general applicability; for example,

for a simple drilling operation, the MKE allows users to use IF statements to specify a

particular diameter or range of diameters to which the tool/operation selection rules

will apply. Once the MKE is updated, an iterative process of testing the rules on

new parts and updating the rules in the MKE is undergone to ensure the rules are

robust and generally applicable. With an acceptable set of tool/operation selection

rules, the FBM process for the particular feature can be used by programmers in

their NX environment. Note that for each new part tested or used in production,

the out-of-the-box feature recognition rules must be able to identify the feature in

said part; if the feature cannot be recognized, then the tool/operation selection rules

cannot be applied.

2.2 Case Studies on Pathfinding Parts

Isolated studies of the FBM process were first implemented with pathfinder parts

prior to testing the process on a typical part Orizon might machine for its customers.
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Figure 2-2: CAD model for FBM1. Simple thru holes are oriented perpendicular to
the top surface of the plate. Hole diameters range from 0.1875 to 0.750.

These pathfinder parts were typically much simpler than a standard Orizon part,

which is highly complex due to its end use in aerospace assemblies. Such an approach

allowed FBM to be understood in a simple, isolated environment prior to wider-scale

implementation.

2.2.1 Pathfinder Part FBM1

The first pathfinder part, FBM1, is a flat plate with simple thru holes of various

diameters ranging from 0.1875 to 0.750 (note: the standard industry convention is

that 0.500 will refer to 0.5 inches, and so on). Figure 2-2 shows a picture of the CAD

file for FBM1.

This initial pathfinder part was chosen because simple thru holes require straight-

forward drilling operations, so the operation could be easily defined as a starting

point to developing GRAP. Additionally, the logic for tool selection requires only two

feature geometrical attributes: the diameter of the hole and the depth of the hole.
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feature class

other STEP1HOLE
𝑑 ≡ STEP1HOLE.diameter; 𝑙 ≡ STEP1HOLE.length

𝑑 is variable 𝑑 is constant

𝑑 ≤ 0.75
TOOL.class = twist drill

TOOL.diameter = 𝑑

TOOL.length ≥ 𝑙

TOOL.point_angle = 130

OP.type = HOLE_MAKING

OP.subtype = DRILLING

𝑑 ≤ 0.5
OP.sfm = 250

OP.ipr = 𝑓(𝑑)

0.5 < 𝑑 ≤ 0.75
OP.sfm = 250

OP.ipr = 𝑓(𝑑)

𝑑 > 0.75

OP.type_1 = HOLE_MAKING

OP.subtype_1 = DRILLING

OP.type_2 = PLANAR_MILL

OP.subtype_2 = HOLE_MILLING

Figure 2-3: Cognitive thought process for choosing a tool and operation parameters
for simple thru hole drilling operations. Tool choice and operation parameters are
dependent on attributes defined by STEP1HOLE, an NX feature class. Note that
aluminum material is assumed and tool material and machine type are ignored.

Using these attributes, a programmer would select the tool and operation according

to the rules shown in Figure 2-3. The intent of GRAP is to automatically apply

the cognitive process shown in Figure 2-3 such that the programming process—in

particular, tool and operation selection—can be rapidly completed.

Given a new part, a programmer will first identify the features inherent to that

part. NX STEP1HOLE feature types, which describe various types of holes including

simple thru holes, will be identified. A programmer will then investigate the diameter

of those features; in particular, if the diameter is constant throughout the length of

the hole, the feature will be a simple thru hole (and not a countersink, counterbore,

or other hole type). If the feature is a simple thru hole, there are three unique
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methods of tool/operation selection that vary with the diameter. If the diameter

is greater than 0.75, a drilling operation will be followed by a milling operation to

complete the hole. Otherwise, a single operation will be used, but the feed rate

varies with diameter: inches per rev (IPR) increases slightly with diameter. However,

because the programmer can determine the diameter and length of the STEP1HOLE

feature in NX, he can determine the necessary tool and operation parameters to

ensure a successful machining job. At this point, the programmer will create an

operation in NX from the necessary operation type and subtype (i.e., the template

used in NX), select the appropriate tool from the library based on the parameters

(i.e., appropriate class, diameter, length, and point angle), and edit the operation

parameters as necessary (i.e., appropriate SFM and IPR). Note that, in this simplified

example, the workpiece material is assumed to be aluminum and the tool material and

machine type are ignored; in general, workpiece material, tool material, and machine

type are important inputs governing the machining process.

The rule-based system capturing the cognitive thought process in Figure 2-3 is

encoded into the MKE. A screenshot showing rules for simple drilling is shown in

Figure 2-4.

FBM utilizes a slightly different logic process than that shown in Figure 2-3. FBM

works backward from "OutputFeatures (mwf.)", the desired end state, to "InputFea-

tures (lwf.)", the feature state prior to any machining operation. FBM logic will

match the desired end state to that identified in the feature recognition process; the

possible starting state may vary, but is assumed to be blank stock for simplicity.

Furthermore, each logic routine—or rule set—references only one "OperationClass

(oper.)", which defines an operation type and subtype, and one "Resources (tool.)",

which defines a tool class. Should the conditions of the more worked feature (mwf),

which is the desired end state, be met, FBM will (1) search for the appropriate tool as

defined by the tool attribute rules and tool class and (2) populate a default operation

template as defined by the associated operation type and subtype with the operation

logic defined within the rule.

In summary, an entire operation can be automatically created from the feature
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Figure 2-4: Screenshot of the MKE for the simple drilling process. This logic mimics
the cognitive thought process outlined in Figure 2-3.

class (e.g., STEP1HOLE) attributes. Indeed, while the manually-created program for

drilling all of the holes in the simple plate requires roughly an hour of time, the FBM

process produced similar results within one minute. A screenshot of the program

FBM automatically created is shown in Figure 2-5.

While the demonstrated time saving for this FBM process is encouraging, there

are a few key issues. Notably, the list of selected tools did not exactly match that

chosen by the programmer. Additionally, the FBM process failed to identify an

appropriate tool for at least one set of holes. The former issue can be attributed to

multiple possible tools meeting the criteria of both the programmer and the FBM

process; with multiple possible solutions, the programmer selected one at random

while FBM produced the shortest tool that met criteria. The latter issue is quite the

opposite: no tool met the conditions for the rule set, so the operation was not created;

the programmer manually created a digital representation in order to complete the

program. Both of these issues highlight the importance of cutting tool database

maintenance as described in Section 1.3.2. Were the cutting tool database up to
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Figure 2-5: Screenshot of the program operations automatically created via FBM
using the rules shown in Figure 2-4. The sidebar on the left lists the various drilling
operations and tools. The tool and drilling operation for one set of holes is rendered
with the CAD model.

date with appropriate tools and devoid of ambiguous tool selections, FBM would

have resulted in a better program. Nonetheless, though the FBM process was proven

achievable on a plate with simple thru holes, scaling FBM to apply to a variety

of complex features typical of Orizon parts proved to be more challenging. These

findings are discussed in Section 2.2.2.

2.2.2 Pathfinder Part FBM2

Due to the large aerospace composition of Orizon’s workload, many of Orizon’s parts

have pockets. Consequently, given the success in automatically applying drilling

operations in pathfinder part FBM1, an FBM process was developed on pathfinder

part FBM2. FBM2, shown in Figure 2-6, is representative of a typical Orizon part and

has several pockets which serve as ideal candidates to prove out a rule set to automate

pocket operations. Additionally, FBM2 has several simple thru holes which could be

used to further test the previously developed FBM drilling process.

Following the process shown in Figure 2-1, simple teach part CAD models and

programs were created; these parts are shown in Figure 2-7. Each part is a type

of pocket—closed-walled or open-walled—that is recognized with out-of-the-box NX
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Figure 2-6: FBM2 part used to demonstrate automation of pocket machining opera-
tions in a complex part.

Figure 2-7: Teach part CAD models used to create standard programs for closed
pockets (left) and two-sided pockets (right).

feature recognition. Closed-walled and open-walled pockets can be recognized under

the NX feature class POCKET_CLOSED and POCKET_OPEN, respectively. The

programs for these parts were created using a standard set of operations for a specific

machining center used in one of Orizon’s three machining facilities. Because the

geometries are highly similar, the standard set of operations is equivalent for each

pocket type. The list of these operations is shown in Table 2.1.

The operations associated with these parts were then taught into the MKE. Note

that the logic for these rules is highly specific relative to the rules for FBM1 shown

in Figure 2-4. A challenge in creating rules for pocket operations is the inability to

devise logic—whether simple or complex—to select the appropriate tool for a given

operation; the large number of variables to consider (e.g., pocket width, depth, length,

wall thickness, etc.) and variability in programmer preferences make devising the

required logic infeasible. Consequently, for each operation, a specific tool reference
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Table 2.1: Standard operations composing the program for the teach parts shown in
Figure 2-7.

Sequence No. Operation Description Tool Reference No.
1 Roughing pocket area M54_A_1B_204_RIP
2 Semi-finish walls M54_A_1B_204_RIP
3 Semi-finish floor M54_A_1B_283_SEMI
4 Finish floor M54_A_1K_355_FLR
5 Semi-finish corner M54_A_1N_152_MM
6 Finish corner M54_A_1N_152_MM
7 Finish walls M54_A_1F_237_WALL

Note: All operations use operation type MILL_CONTOUR and subtype CAVITY_MILL.
All tools are stored in the tool library under tool class 5_PARAMETER_MILL.

number matching that shown in Table 2.1 was hard-coded into the rules. While tool

selection logic is a preferred method, specifying tool reference numbers directly is

a fair approach because a vast majority of pocket operations on a given machining

center will use the same tools and operations.

Subsequent application of those rules on FBM2 had mixed results. The GRAP

workflow resulted in successful, automatic creation of operations for FBM2 pockets;

however, the tool paths populated by the FBM process were suboptimal relative to

the programmer-specified tool paths. The target pocket operation requires roughly

90 seconds of machine time while the tool path created via FBM would take several

minutes. As mentioned in Section 1.2, Orizon leverages the engineering and pro-

gramming teams to create a high-quality machining process with short cycle times.

Therefore an inefficient tool path resulting in a long cycle time is counter to Orizon’s

machining process approach. Additionally, not all pockets could be found via the

NX out-of-the-box feature recognition method, so only two out of eleven pockets had

tools and operation parameters automatically created. The resulting tool path for

the pocket roughing operations in FBM2 is shown in Figure 2-8.

2.3 GRAP Implementation Findings

Despite some drawbacks requiring further development, implementation of GRAP

via NX FBM was a success in that there is a promising method to automate NC
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Figure 2-8: Manually programmed, optimal tool path (left) and automatically created
tool path for FBM2 (right) roughing operation. The suboptimal tool path created
via FBM defines an inefficient cutting method which will result in a longer cycle time
relative to the optimal tool path.

programming using a rule-based AI system. Simple features and related operations

such as drilling thru holes are more easily implemented in GRAP than those that are

more complex, such as machining pockets in 7 steps. The progress from simple to

complex features and operations within a roughly three month time frame suggests

that a more in-depth, focused effort with a full-time, expert programmer will yield a

robust approach to automation.

Indeed, the personnel working to improve GRAP should include an expert pro-

grammer. Rule-based systems are built with the intent to capture expert knowledge;

if instead a novice programmer were to create the rules, there might be some poor

machining practices captured in the rule system. This could lead to inefficient pro-

cesses when an NC program created by GRAP is used in production. Not only should

expert knowledge be employed in the rule system, but processes should be standard-

ized with a set of common rules. Large manufacturing organizations such as Orizon

typically have multiple facilities, each with their unique equipment, protocols, and

process methods. As a result, the best practice developed at one facility might not

be implemented at another due to acceptance of the status quo and failure to com-

municate. A rule system captures the best processes at each site in a logic-based

format that can be readily shared across sites; such a knowledge base can be used to
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document the best, standardized practices of all sites if implemented well.

Similarly, the rule system should be utilized as a means to capture and document

expert knowledge. This protects manufacturing organizations from risk in the event

that key personnel leave the company. Documented knowledge in a rule system

is also an easily-communicated method of training new employees on a particular

process—in this case, programming. Nonetheless, documenting such rules is a difficult

endeavor. As noted in Section 2.2.2, creating the logic to define tool selection for

pocket operations in a robust, scalable method was too difficult, resulting in the

designation of a specific tool reference number for each operation. Difficulties arise

from a difference in approach between expert programmers and the large number of

decision variables to include in rule-based logic.

While determination of a set of robust logic is not necessarily an impossible task,

specific designation of rules (i.e., specifying tool references directly) is a more easily

implemented solution; since 90% or more of pocket operations will involve a stan-

dardized set of tools, specific tool designation will also result in a fairly accurate tool

selection process. The few occurrences that require a non-standard tool can simply

be edited at the discretion of the programmer. This is also true for the operation in

general: results from FBM2 demonstrate that automatically created operations will

often times be suboptimal due to inefficient tool paths or other operation parameters,

which can be edited after automatic population in the NX environment. An impor-

tant facet impacting implementation results from this semi-automated approach to

NC programming. The current GRAP process rules, which result in an unacceptable

program, can be edited or augmented to an acceptable state. Such an approach will

still save a programmer a lot of time. The programming process is tedious and repet-

itive, involving numerous mouse clicks and manual data entry; automatic population

of much of the program content reduces this tedious workload such that programmers

are auditing and correcting tool paths and operation parameters rather than wholly

creating them. This semi-automated approach is a feasible implementation strategy

that can standardize and speed up the programming process. Furthermore, this ap-

proach allows an AI rule-based system to be implemented to reduce programming
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time while a team focuses on developing a more robust set of logic enabling more

complete automation.

A few notable drawbacks of the FBM process are inherent to the NX CAM soft-

ware. Most notably, out-of-the-box feature recognition has poor results; since the

FBM process of automatically selecting tools and operation parameters relies on at-

tributes of the desired features, feature recognition is a basic pillar enabling any AI

approach. Not only do the attributes defining features need to be used in the rule-

based logic, but all features need to be recognized such that tools and operations can

be wholly applied. Given the complexity of aerospace parts, feature recognition needs

to be sufficiently robust such that all features can be recognized in even seemingly

disguised environments.

Additionally, to edit rules in the MKE requires an understanding of a specific

coding language used only in NX. This language is not well documented, precluding

those who wish to use FBM from efficiently writing, debugging, and editing rules.

Furthermore, the data types used by NX are often not sufficient to define a rule in

a desired format. The rule in Figure 2-4 specifies that flute length must be greater

than the depth, when in fact overall tool length should replace flute length. Similarly,

wall thickness of pockets, which are a key programming input, cannot be captured

via NX feature recognition. Though all of the GRAP process discussed herein was

developed using NX FBM, it is conceivable that a stand-alone rule-based system

could be developed; such a system would have robust feature recognition, allow users

to access all data attributes, and use a popular, well-documented coding language.

45



46



Chapter 3

Machine Learning Method for

Program Determination

Similarly to the GRAP rule-based system in Chapter 2, to be consistently integrated

with the workflow required by popular CAM software, an ML algorithm should model

the human cognitive process of analyzing the geometry of a given part and devising

the corresponding program to create that geometry given stock material. An ML

approach to programming automation will differ from GRAP in that ML algorithms

will result in creation of a model with parameters that were learned from previously

created programs. The key motivating factor in investigating such an approach is

that manufacturing firms such as Orizon typically maintain hundreds or thousands

of programs from parts that have already been fabricated; if an ML approach is

successful, such an expansive dataset can be used to train models that predict program

parameters rather than devise a set of rules, which has proven to be a difficult—maybe

impossible—task.

This chapter presents Deep Learning for Automated Tool Selection (DLATS), an

ML algorithm built to analyze geometry of simple holes and select the appropriate

cutting tool. A discussion on implementation findings and implications on scaling

follows.
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3.1 Machine Learning Approach and Results

A novel ML approach was created in concert with NX programming functionality with

the intent to automate a programmer’s decision on (1) tool class and (2) operation

type and subtype. NX allows users to define an operation template, which contains

all the relevant parameters to create an operation as long as a geometrical feature

and tool choice is specified. Because each operation type and subtype is unique to a

template, automated prediction of that type and subtype given input feature geometry

would allow a user to automatically create an operation. Furthermore, a prediction of

tool class reduces the list of possible tools to simplify the selection process. Therefore,

a feasible ML approach would result in a prediction of operation type and subtype as

well as tool class given input data on feature geometric attributes.

An initial approach was created to predict operation class and tool class, but

due to the difficulty in collecting sufficient data (see Section 3.1.1), this approach

was abandoned in favor of an alternative. Because robust data was available mainly

for features of NX type STEP1HOLE, only those features were considered in the

ML approach. Furthermore, since all STEP1HOLE types had essentially identical

operation templates, the approach pivoted to selecting the best tool from among a

library of tools given STEP1HOLE feature geometry attributes. Such an approach is

analogous to popular methods used by large tech companies such as Amazon. With

data describing a user’s shopping history, Amazon utilizes a collaborative filtering

algorithm to provide recommendations on what a user might be inclined to purchase

[33]. By displaying these purchase recommendations in a high visibility area of a

user’s browser, Amazon can potentially increase the likelihood a customer will pur-

chase a particular item, thereby increasing expected revenues. Similarly, if some ML

algorithm is able to recommend a particular tool for a programming job, this recom-

mendation can be automatically populated in the CAM software and thereby reduce

the time-consuming process of tool selection central to program creation. A solution

to this problem—tool prediction given geometrical feature data—is proposed herein.

An outline of this proposed ML process is shown in Figure 3-1. Feature recognition
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Figure 3-1: Overview of approach enabling the use of ML to predict tools from feature
geometry data.

capabilities inherent to NX were used to export feature parameter data describing

geometry (e.g., diameter, depth, etc. for a simple thru hole); these data were then

put into matrix format, with each row containing a vector of geometrical parameters

describing a specific feature. Similarly, corresponding operational data was exported

and organized into a matrix format, where each row contains a vector describing two

tools—the maximum amount of tools needed for operations considered herein.

A learning algorithm was subsequently trained to predict the vectors describing

tools. The parameters comprising the elements of these vectors were then compared

to parameters composing the tool library to select the best tool or tools to machine

the STEP1HOLE feature based on its geometry. Note that DLATS may output an

acceptable tool that is not the exact tool from the sample (indeed, a tool library often

has several unique tools that can adequately perform a specific drilling operation);

however, a successful prediction is defined as selecting the tool defined in the training

sample. Information further detailing this approach appears in the following sections.
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3.1.1 Data Collection and Processing

Because ML algorithms are designed to update parameters based on training data,

the size, robustness, and quality of the dataset substantially impacts the performance

of the algorithm. Consequently, data collection is a key process impacting the success

of any ML approach; the quality of the data collected from programs already created

by Orizon enables any success a tool prediction algorithm might have.

Orizon’s stores of production-quality programs were parsed to collect the neces-

sary feature and tool data. Note that only programs created in NX were used in this

dataset because these were accessible files allowing collection of relevant CAM param-

eters. A Python script was written to parse exported .xml data describing feature

geometries while operation and tool data needed to be manually collected in a .csv

format. Nevertheless, collecting data from these files proved difficult for a number of

reasons.

• Automated collection. NX offers NXOpen, an API allowing users to create

custom macros in order to automate CAM operations. An application was

created in NXOpen to parse program files for feature, operation, and tool data.

However, there was no method to ensure that a given operation and tool sample

could be matched up with the proper feature attributes. While some finished

programs had easily recognizable feature-operation/tool pairs, most programs

did not. Having a method to understand which feature is associated with which

operation(s) and tool(s) is a necessary requirement to enable the supervised

learning method used herein. Additionally, NXOpen required NX .prt files to

be manually opened by a user to allow applications to run. This tedious process

was not much faster than manual data collection. As a result, data was collected

manually and only 109 examples were collected from 10 different parts.

• Feature recognition. Because collecting the appropriate geometry attribute data

requires an NX feature class, feature recognition underlies the data collection

process. If a feature is properly recognized, relevant geometry attributes will

be populated in the exported .xml file, but may not sufficiently describe the
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geometry of interest to the programmer. If a feature is not recognized, a pro-

grammer can create a custom feature, but such a process is cumbersome and

not standardized.

• Feature variety. 90% of the features in the dataset were NX STEP1HOLE

types. Indeed, many parts have several holes drilled into them to aid in assembly

following machining; however, due to the inability to collect a large number of

samples, this dataset is highly skewed towards STEP1HOLE features. Table

3.1 presents information describing the ML data used.

• Program standardization. Program structure can be defined using one of several

unique methods, each of which results in an equivalent program. However, the

structure of the program impacts the way data is organized in NX and therefore

precludes or enables efficient data collection. For example, a programmer can

choose to designate operations and tools under recognized or user-defined fea-

tures; while this structure would aid the data collection process, most programs

are not formatted in such a desirable way. As a result, data collection may be

inefficient or even impossible.

These issues preclude the collection of a large, cleanly formatted dataset and per-

haps explain in part the lack of widespread success in applying ML algorithms to

automatically generate programs. Despite difficulties in parsing NX files, the dataset

described in Table 3.1 was collected. Note that, because of the high proportion of

STEP1HOLE feature types, the tool selection algorithm described herein was refor-

matted to consider only STEP1HOLE features.

To prepare the dataset for training, the raw data was filtered to only STEP1HOLE

feature class types, operation data was removed, and only certain feature and tool

attributes were used. Used attributes were chosen based on physical sense; for ex-

ample, since tool diameters must match hole diameters for drilling operations, hole

diameter is a necessary input for the algorithm. These data were formatted into vec-

tors describing STEP1HOLE geometries (i.e., geometry vector 𝛾 ∈ R25) and vectors

51



Table 3.1: Feature types collected in the ML training data.

Feature Type No. Features

STEP1HOLE 98

POCKET_RECTANGULAR_STRAIGHT 2

BOSS_ROUND_STRAIGHT 1

STEP2HOLE 2

STEP1POCKET 6

TOTAL 109

Note: Geometry, operation, and tool data were collected for 109 features on 10 unique parts.
Of the 109 features (i.e., data samples), 9 samples required 2 tools for the operation; all other
samples required only 1 tool.

describing tool parameters (i.e., tool vector 𝜏 ∈ R9). Figures 3-3 and 3-2 describe 𝛾

and 𝜏 in detail, respectively.

Note that up to two unique tools were considered in the algorithm. This was

accomplished by concatenating two tool vectors by sequence order. Since all elements

composing a vector describing an existing tool are nonnegative, for an operation that

only requires a single tool, the elements describing the second tool were all set to −1.

3.1.2 DNN Regression

A model to calculate an approximate tool vector 𝜏 * ∈ R9 given example pairs 𝛾 and

𝜏 was needed in order to predict the correct tool. A natural choice of model to use

in this scenario was a deep neural network (DNN), which can regress outputs of a

specified length from inputs of an arbitrary length.

The dataset was split into training and test sets, with a test fraction of 33%. A

supervised multi-layer perceptron regressor (i.e., DNN) from scikit-learn was fit to

the training set and a regression score was subsequently calculated on the test set.

An example demonstrating the DNN input and outputs is shown in Figure 3-4. All

optimization routines used in this DNN regressor seek to minimize the squared error

of the model output relative to supervised training example values.
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geometry vector ≡ 𝛾 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐻𝑑

𝐻𝑑

𝐻𝜃𝑏

𝐻𝜃𝑏𝑐

𝐻𝜃𝑏𝑐1

𝐻𝜃𝑏𝑐2

𝐻𝜃𝑡𝑐

𝐻𝜃𝑡𝑐1

𝐻𝜃𝑡𝑐2

𝐻𝑙

𝐻𝑙𝑏

𝐻𝑙𝑡

𝐻𝑙1

𝐻𝑙1𝑏

𝐻𝑙1𝑡

𝐻𝑙𝑏𝑐

𝐻𝑙𝑏𝑐1

𝐻𝑙𝑏𝑐2

𝐻𝑙𝑡𝑐

𝐻𝑙𝑡𝑐1

𝐻𝑙𝑡𝑐2

𝐻𝑑

𝐻𝑑

𝐻𝑑𝑏

𝐻𝑑𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝛾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1875
0.1875
−1
0
0
−1
0
0
−1
1.25

−0.0104
0.0104
−1
−1
−1
0
0
−1
0
0
−1

0.1875
0.1875
−0.0039
0.0039

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐻𝑑 ∈ R ≡ hole diameter,
𝐻𝑑𝑏 ∈ R ≡ lower diameter,
𝐻𝑑𝑡 ∈ R ≡ upper diameter,

𝐻𝑙 ∈ R ≡ hole depth,
𝐻𝑙𝑏 ∈ R ≡ lower depth,
𝐻𝑙𝑡 ∈ R ≡ upper depth,

𝐻𝑙𝑏𝑐 ∈ R ≡ bottom chamfer depth,
𝐻𝑙𝑡𝑐 ∈ R ≡ top chamfer depth,
𝐻𝜃𝑏 ∈ R ≡ bottom hole angle,

𝐻𝜃𝑏𝑐 ∈ R ≡ bottom chamfer angle,
𝐻𝜃𝑡𝑐 ∈ R ≡ top chamfer angle.

Note: 𝛾 contains some redundant elements and likely some with limited bearing on the
final prediction. For example, numerical subscripts indicate additional instances of a similar
element. While these elements could likely be removed in future developments, all potentially
relevant elements were included for the methods presented herein.

Figure 3-2: Definition of geometry vector 𝛾 (left) and a geometry vector example
(right).
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tool vector ≡ 𝜏 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛
𝑇1,𝑑

𝑇1,𝑙

𝑇1,𝑓

𝑇1,𝑛

𝑇2,𝑑

𝑇2,𝑙

𝑇2,𝑓

𝑇2,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑛 ∈

[︀
1, 2

]︀
≡ number of tools,

𝑇1,𝑥, 𝑥 ∈
[︀
𝑑, 𝑙, 𝑓, 𝑛

]︀
≡ parameter 𝑥 of tool 𝑇1,

𝑇2,𝑥, 𝑥 ∈
[︀
𝑑, 𝑙, 𝑓, 𝑛

]︀
≡ parameter 𝑥 of tool 𝑇2,

𝑑 ∈ R ≡ tool diameter,
𝑙 ∈ R ≡ tool overall length,
𝑓 ∈ R ≡ tool flute length,

𝑛 ∈ Z ≡ tool number of flutes.

One tool: 𝜏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.375
1.75
0.5
2
−1
−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Two tools: 𝜏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0.128
0.965
0.787
2
0.5
6
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3-3: Definition of tool vector 𝜏 (top) and tool vector examples for the case of
one tool for drilling operation (bottom left) and the case of two tools for the drilling
operation (bottom right).
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Figure 3-4: Example of DNN using 3 hidden layers of arbitrary sizes 𝑖, 𝑗, and 𝑘.
Geometry vector 𝛾 ∈ R25 is input to the DNN regressor and approximate tool vector
𝜏 * ∈ R9 is the calculated output.

In order to select the best DNN parameters, such as the size of hidden layers,

convergence tolerance, and activation function, a DNN was constructed for each com-

bination of parameters shown in Table 3.2. DNN results were largely insensitive to

activation function choice, but a slight improvement in out-of-sample (OOS) regres-

sion was evident when using LBFGS in favor of SGD. While a tolerance of 1e−4

yielded improved results relative those achievable by a tolerance of 1e−2, a tolerance

of 1e−5 yielded no further improvements.

Hidden layer size had a pronounced effect on the DNN regression results. A subset

of these results for which the optimal DNN parameters were used are shown in Table

3.3.



Table 3.2: Parameters used to construct DNNs.

Parameter Values

Activation function identity, logistic, tanh, ReLU

Convergence tolerance 1e−2, 1e−4, 1e−5

Solver SGD, LBFGS

Hidden layer sizes (25, 25, 25, 25, 25), (100, 100, 100, 100), (100, 100,
100, 100, 100), (1000, 1000, 1000), (1000, 1000, 1000,
1000), (1000, 1000, 1000, 1000, 1000), (25, 100, 100,
25), (1000, 100, 100, 25), (100, 1000, 1000, 100)



Table 3.3: Regression results from various DNN parameters.

Model No. Hidden Layer Sizes OOS 𝑟2 IS 𝑟2 Loss Iterations Parameters

1 (1000, 1000, 1000, 1000, 1000) 0.843 0.946 0.0095 2895 4,039,009

2 (25, 100, 100, 25) 0.841 0.915 0.0098 1571 16,109

3 (1000, 1000, 1000, 1000) 0.826 0.923 0.0134 1459 3,039,009

4 (1000, 1000, 1000) 0.816 0.922 0.0128 1115 2,037,009

5 (100, 1000, 1000, 100) 0.811 0.933 0.0093 2950 1,205,609

6 (25, 25, 25, 25, 25) 0.804 0.912 0.0092 1567 3,484

7 (100, 100, 100, 100, 100) 0.801 0.921 0.011 712 43,909

8 (1000, 100, 100, 25) 0.76 0.909 0.0115 1420 138,959

9 (100, 100, 100, 100) 0.688 0.953 0.0054 2002 33,809

Note: OOS is out-of-sample and IS is in-sample (i.e., test and training samples, respectively). The input layer had 25 units and the
output layer had 9 units.



Unsurprisingly, the best performing model in terms of OOS 𝑟2 is model 1, which

contains the most parameters; with hidden layer sizes of (1000, 1000, 1000, 1000,

1000)—equating to a total number of weight and bias parameters of 4,039,009—the

achievable OOS 𝑟2 is 0.843. However, model 2, which has 16,109 parameters, over 250

times less than that of model 1, has an OOS 𝑟2 of 0.841, equivalent to only a 0.24%

decrease. Furthermore, the difference in the achievable loss between model 1 and 2 is

negligible, model 2 converges in half the number of iterations relative to model 1, and

model 2 has a smaller difference between the IS and OOS 𝑟2, suggesting that model

2 is not overfit. Model 2 therefore provides the best predictive power relative to its

complexity and the time required to build it, as measured by number of parameters

and number of iterations to convergence, respectively. Indeed, a more rigorous tuning

process may yield a model with slightly better parameters, but the analysis presented

herein provides a fair estimate of a robust model.

While relative performance of the models guides the decision of the most appro-

priate parameters, absolute performance of the model with respect to selecting the

appropriate tools determines whether the model is practical in application. Because

the models investigated result in regressed elements of a vector of length 9, said vector

must be post-processed in order to select the appropriate tool from among a tool li-

brary. This tool selection methodology is discussed in Section 3.1.3. Though an OOS

𝑟2 of 0.841 indicates strong predictive power, the ultimate metric guiding absolute

performance is tool selection accuracy.

3.1.3 Tool Selection

Because the outputs of the DNN regressor are not necessarily tools that exist in the

programmer’s tool library, these outputs must be compared with existent tools in

order to suggest a useful selection. With an OOS 𝑟2 of 0.841, the DNN regressor

in model 2 should output tool vectors that contain elements closely matching those

of the training example. However, these elements will not exactly match those of

the training example because of the regressed output; consequently, the following

method was created to take a tool vector and find the closest match in a library of
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Table 3.4: Selection of the best tools from the calculation of the modified Euclidean
distances, 𝛿1 and 𝛿2, for 𝜏 *−1 =

[︀
2, 0.122, 0.593, 0.386, 2, 0.526, 5.916, 0.978, 2

]︀
. This

process results in prediction of A30281.P.H.M.K.N.S for tool 𝑇1 and A30288 for tool
𝑇2 from 𝜏 *.

Tool Ref. 𝑇𝑑 𝑇𝑙 𝑇𝑓 𝑇𝑛 𝛿1 𝛿2

A30281.P.H.M.K.N.S 0.125 0.414 0.414 2 0.581 21.603

A30706 0.125 0.414 0.414 2 0.581 21.603

A30254.N 0.098 0.623 0.433 2 0.779 21.594

A30288 0.500 6.000 1.000 2 20.953 0.867

A40288 0.500 6.000 1.000 2 20.953 0.867

A30340.N 0.625 5.000 0.750 2 21.179 4.326

𝛿1 =
√︀

𝑤1(𝜏*2 − 𝑇𝑑)2 + 𝑤2(𝜏*3 − 𝑇𝑙)2 + 𝑤3(𝜏*4 − 𝑇𝑓 )2 + 𝑤4(𝜏*5 − 𝑇𝑛)2

𝛿2 =
√︀

𝑤1(𝜏*6 − 𝑇𝑑)2 + 𝑤2(𝜏*7 − 𝑇𝑙)2 + 𝑤3(𝜏*8 − 𝑇𝑓 )2 + 𝑤4(𝜏*9 − 𝑇𝑛)2

where 𝑇𝑥, 𝑥 ∈
[︁
𝑑, 𝑙, 𝑓, 𝑛

]︁
≡ parameter 𝑥 of tool 𝑇 ,

𝑤1 = 1000,
𝑤2 = 10,

𝑤3 = 10, and
𝑤4 = 1.

tools: a weighted Euclidean distance between the output tool vector and the tool

vector of each tool in the library was calculated; the tool with the smallest distance

was subsequently chosen as the classified tool. The algorithm defining this method

was modified to accept the 𝑛 tools from the library with the smallest distance to the

DNN regressor tool vector output. An example demonstrating this method is shown

in Table 3.4 and the corresponding accuracy results are shown in Table 3.5.

Note that the weights mentioned in Table 3.4 were chosen only roughly and purely

based on managerial sense: 𝑤1, the weight corresponding to the diameter of the tool,

has a high value because tool diameter must match hole diameter within a specified

tolerance; 𝑤2 and 𝑤3, corresponding to the tool length and flute length, respectively,

have mid-sized values because each length is a relevant parameter, but can vary to a

greater extent than the diameter; 𝑤4, corresponding to the number of flutes, has the

smallest value, but is still nonzero because many different flute configurations can be

used successfully assuming diameter, length, and flute length are sufficient.
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Table 3.5: Tool selection accuracy results for select models from Table 3.3.

Model No. 𝛼𝑇1
(𝑛 = 1) 𝛼𝑇1

(𝑛 = 3) 𝛼𝑇2
(𝑛 = 1) 𝛼𝑇2

(𝑛 = 3)

1 0.226 0.323 0.355 0.355

2 0.161 0.161 0.323 0.323

Note: 𝛼𝑇1
(𝑛 = 1) refers to the accuracy of correctly selecting the library tool corresponding

to the first tool vector with the smallest Euclidean distance. 𝛼𝑇2
(𝑛 = 3) refers to the

accuracy of correctly selecting the library tool corresponding to the second tool vector within
the set of 3 tool vectors with smallest Euclidean distances.

The best accuracy achievable for the first tool is 0.323, indicating that there is

a roughly 32% chance the selection methodology will have the correct tool within

the top three results. Such an accuracy is far too low and the ML process discussed

herein needs to be improved before it can be useful in application. However, despite

the low accuracy, these results are promising: the probability of randomly selecting

the correct tool from a library of 974 unique tools is 1/974, or 0.10%; the ML method

discussed herein is therefore about 314 times better than random chance. With

modest improvements, tool selection accuracy could feasibly improve dramatically,

especially given that the results herein were achieved from a severely limited dataset.

3.2 DLATS Implementation Findings

In seemingly contradictory fashion, results discussed in Section 3.1 suggest that the

novel DLATS approach presented herein has reasonable predictive power, yet poor

accuracy in selecting the correct tool for a given STEP1HOLE feature. Model 2

achieved an OOS 𝑟2 of 0.841 with only 109 data points; while it is possible that

such strong predictive power was achievable only because the DNN model was overfit

to the data available, it is certainly plausible that the predictive power will only

become stronger as the training dataset is augmented and complete with more sample

variability. A dataset with roughly 100,000 samples—an increase of sample size on

the order of 1,000 times—would surely be more appropriate for the ML task at hand.

Nonetheless, such strong DNN regression does not guarantee the appropriate tool
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is selected. Indeed, the applicability of this ML approach is only useful insofar as

high tool selection accuracy is achievable. Were DLATS as documented herein imple-

mented in the programming workflow, the appropriate tool would appear in the top 3

results in only ∼32% of occurrences. While the DLATS suggestion would sometimes

be correct and thereby marginally reduce tool selection time, the programmer would

most likely need to manually select a tool rather than use one of the options provided

by the automated ML system. Furthermore, only tools for STEP1HOLE features

would be used, thereby severely limiting the usefulness of such an automated ML

system.

Though limited in practical application in its current state, this ML methodology

brings to light a completely novel approach to CAM automation, which might be iter-

atively improved to a state that would provide valuable benefits to the programming

workflow. The novel features of this ML approach include the following:

• Tool selection approach. While many people may acknowledge that AI and ML

can be increasingly applied in industrial settings, practitioners often have dif-

ficulty developing concrete approaches of applying such technology. Existing

methods of applying ML in the machining industry do not offer algorithms to

be readily used in business applications (see Section 1.5). The research herein

establishes a method and algorithm using actual programming data to intelli-

gently and automatically select one or more options from among a library of

tools. This approach, though modified from the initial intent, has useful prac-

tical application: a time-consuming aspect of any programming job is selecting

and loading the appropriate tools into the CAM environment. The selection

process can be automated using the ML approach herein, while the loading

process can be automated with simple scripts utilizing CAM API macros such

as NXOpen for NX.

• Utilization of available data. The ML algorithm presented herein selects the

correct tool with far better than random accuracy using only data from previ-

ously created programs; all model parameters were calculated using supervised
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training pairs as input. This finding unifies ML with the CNC machining in-

dustry: it is possible to build an ML algorithm with some degree of predictive

accuracy that only requires previously-created programs as a training input.

Subsequent improvements may feasibly yield an ML algorithm that utilizes

vast amounts of existing program data to predict the correct tools—or other

operational parameters—with high accuracy.

• Supervised geometry-tool pair approach. No other documented approach con-

siders feature geometry in vector format as input to a DNN in order to predict

the associated tool attributes in vector format in a supervised learning method.

Geometry vector 𝛾 and tool vector 𝜏 were designated with the intent of eas-

ily defining an input-output pair to be used with supervised learning. Such a

designation is not only a unique approach, but simplifies and standardizes the

data to a format that can be easily used in various ML approaches, including,

but not limited to, DNN regression. Given the success of this approach with

only a limited data set, an improved tool selection accuracy with a more com-

prehensive dataset may be sufficient to convince leaders of CAM software and

processes to reconsider the format in which data is stored; if stored in a for-

mat that can be more readily translated to 𝛾 and 𝜏 supervised learning pairs

or an equivalent, issues with data collection and formatting may be mitigated,

ultimately resulting in ML algorithms with high tool accuracies. The ultimate

format in which data is represented can critically impact the success of results

for complex ML processes and even enable high accuracy models trained with

only a few samples [34].

Though this paper establishes the aforementioned useful ML implementation con-

siderations for use in the CNC machining industry, many improvements will be re-

quired before any ML algorithm—whether that defined herein or otherwise—will be

readily useful. The following necessary improvements are specific to the approach

defined herein.

• Data. As for many ML algorithms, data is a key process input and therefore
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needs to be abundant and cleanly formatted in order to ensure success. As

discussed in Section 3.1.1, relevant data from programs were difficult to collect:

programs did not include operational parameters in a format that was easily

extractable and paired with feature geometries; a variety of feature types were

not available in the programs collected; and no method existed to collect a large

enough sample size in an automated fashion. However, with a concerted and

targeted effort to parse program files, a large, cleanly formatted dataset can

feasibly be collected.

• ML model choice. A DNN regressor model was chosen because it is a straight-

forward method of supervised learning allowing prediction of output vector 𝜏

from input vector 𝛾. However, this model is not necessarily the best choice;

SVRs, random forests, KNN regression, and other types of models may yield

better predictive results. Though a discussion of various model types is not in-

cluded herein, because of the simple input-output pair data format, the success

of these models can be easily investigated and compared to the results achieved

using the DNN regressor model.

• Tool selection algorithm. The weighted Euclidean distance approach may not

be a sufficiently robust method of tool selection; in addition, the specific weights

used in the calculation methodology (see Table 3.4) may not be the optimal

weights yielding the best OOS tool selection accuracy. Perhaps an improvement

in the tool selection methodology would better utilize the high performance of

the DNN regressor model and subsequently improve the tool selection accuracy.

A detailed study of this method is not included herein.

• Elements of 𝛾 and 𝜏 . Section 3.1.1 mentions that the specific elements used in

𝛾 and 𝜏 were selected based on physical sense—meaning that elements describe

physical quantities that a programmer might be expected to use when creating

a program. For example, a programmer cannot select the appropriate tool for a

simple drilling operation without knowledge of the diameter and length of the

hole to be drilled. Therefore, at a minimum, 𝛾 is required to have two elements:
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one describing hole diameter and the other describing hole length. However, NX

STEP1HOLE feature types have a rich list of attributes beyond hole diameter

and length. A more rigorous investigation into the appropriate constituent ele-

ments of 𝛾 may indicate that more descriptive, physically-grounded attributes

are required in order to improve tool prediction accuracies. Similarly, 𝜏 may

be more easily predicted if it contained more elements than those used herein.

This research is limited to applications via NX and the attributes defined for

STEP1HOLES and other feature types; with a more comprehensive set of fea-

ture attributes, 𝛾 and 𝜏 vectors may be more descriptive and yield improved

predictive results.

• Feature complexity. The ML method developed herein focuses solely on STEP1HOLE

feature types. Machine shops will typically be exposed to a more comprehen-

sive set of feature types; consequently, the usefulness of this method is limited.

Before becoming useful in practice, this method will need to be expanded to

include a few repetitive features, such as pockets, wall tops, mold lines, and

undercuts in addition to holes.

Important to the evaluation of this ML approach is the tool accuracy calculation.

Tool accuracy judges whether the tool prediction matches that used in the program;

however, it is possible that the ML algorithm output might suggest a tool that suffi-

ciently accomplishes the programming job—or suggests a better tool than that used

by the programmer. Tool accuracy might be improved by considering not whether

the exact tool reference number is predicted, but whether the parameters of the tool

are sufficient to complete the drilling process as intended. Such a determination, how-

ever, is likely too complex: a set of rules similar to the rule-based system discussed

in Section 2 would need to be created in order to evaluate whether the parameters of

a specific tool could be sufficient. Because it is feasible that, with an improved ML

algorithm, predicted tools will be sufficient to complete a programming job, but not

match those create by the programmer, a system will need to be devised in order to

verify whether the elements of 𝜏 or its equivalent are sufficient.
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Indeed, this ML approach can only create value if implemented at scale within

Orizon. Implementation at scale requires moving from the bench-top algorithm to a

system that is used nearly ubiquitously by programmers. Tool accuracy will need to

be improved prior to full-scale implementation; as a result, continued research into the

approach with the intent to correct the improvements mentioned above is a required

next step. The software in which this algorithm is embedded also largely impacts the

success of implementing ML—whether the algorithm discussed herein or otherwise—

at scale within Orizon. Such a software system must (1) provide a clean and abundant

source of data to feed the algorithm; (2) deliver the algorithm to the users (i.e.,

programmers) in an interface that is easy to use (otherwise, programmers will less

likely adopt this new ML method); and (3) allow modularity such that improvements

to the algorithm can be made in quick fashion. A commitment to implementing ML

at scale therefore requires a commensurate investment in this software infrastructure,

which can be difficult if personnel experienced in such systems are not available.

An equally important consideration to scaling is algorithmic robustness, meaning

the success with which it can be applied in different environments. For example, Ori-

zon is composed of three major machine shops, each of which has multiple machining

centers. These machining centers have different operating parameters and cutting

tools; as a result, the specific operation and tool used to cut a pocket in one machin-

ing center may vary from that used to cut the same feature in a different machining

center. While some of these process deviations are required due to the hardware at

hand, much of the deviation results from the nature of the company; Orizon was built

partially through acquisition of different machine shops, each with its unique set of

people, processes, and tools. Orizon management has undergone concerted efforts to

reduce such deviations and consequently simplify the programming process. Insertion

of an advanced technology such as ML into the process may complicate matters, but

might also help standardize processes: at any given time, the ML model will out-

put the same cutting tool suggestion for the same input feature geometry attributes.

Where processes must differ between machining centers, a separate algorithm, specific

to a machining center, can be easily trained. Therefore, while it is possible to build a
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robust set of ML algorithms that standardize programming processes, doing so while

simultaneously building a supporting software infrastructure might prove to be an

arduous task.

Therein lies the crux of the decision faced by management: though an investment

in a high-tech ML approach has the potential to fundamentally and dramatically

improve the programming process to reduce overhead costs and product velocity to

market, such a technology may fail and requires support by a software infrastructure

beyond the firm’s core capability to machine and assemble complex aerostructure

assemblies. To a limited extent, the research herein increases the probability of success

in implementing ML, which makes the investment more favorable; nonetheless, such

a high-stakes managerial decision necessitates a more detailed analysis to determine

whether the potential financial gains and strategic positioning are in favor of the

company.
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Chapter 4

Comparison of Approaches to

Programming Automation

Two general approaches to programming automation are presented herein. GRAP

utilizes a rule-based system in order to select the appropriate tool and operation

parameters given a CAD file with defined feature geometries. DLATS involves an

ML algorithm that selects a drilling cutter from among a library of tools based on

geometrical attributes of the hole to be drilled. This chapter compares each of these

approaches.

Important to note for this comparison is the stage of development for each ap-

proach. GRAP and DLATS are both in a bench-top phase of development, meaning

that further research is required to improve their governing rules and algorithms until

acceptable results are achieved. Therefore, it is possible that improvements may result

in one approach becoming more favorable than the other at a later date; nonetheless,

this evaluation is written under the current understanding of each approach.

Further note that there are different inputs and outputs specific to each approach.

GRAP is built entirely in the NX environment and consequently has the ability to

parse entire CAD models for relevant geometrical features (to the extent those fea-

tures can be recognized). As an output, GRAP will produce a complete (though not

necessarily correct) program, including cutting tool designations and operation pa-

rameters. In contrast, DLATS requires exported data describing geometrical features

67



as an input and provides 𝑛 cutting tool recommendations as an output. GRAP there-

fore provides a more complete automation process that is more readily implemented

because it already exists in the NX environment. However, due to the issues stem-

ming from creating a rich set of rules, GRAP is not easily customizable relative to the

software infrastructure a manufacturer would need to build to integrate DLATS into

the programming workflow. These inputs and outputs, a key consideration relevant

to the following comparison, are the most significant differentiators of GRAP and

DLATS.

While it is feasible that the results produced by GRAP or DLATS can be used

in some semi-automated fashion to reduce programming time, the usefulness of those

results improves with accuracy. Consequently, the accuracies of GRAP and DLATS

are an important point of comparison. The accuracy achievable by DLATS is well un-

derstood: at best, tool selection accuracy is 32% for tool 𝑇1 and 36% for tool 𝑇2. This

means that, more often than not, a programmer using DLATS will have to manually

choose the appropriate tool, unless accuracy is improved. GRAP accuracy is more

nuanced: there is some accuracy of feature recognition, measuring the success with

which a given feature type is recognized, and operation prediction, measuring whether

the correct operation was automatically created in the program. Feature recognition

accuracy in GRAP varies significantly by part and feature; 100% of STEP1HOLE

features were recognized in FBM1 whereas 2/11, or 18%, of pockets in FBM2 were

recognized. Indeed, the accuracy of pocket feature recognition could be improved by

continuously teaching new feature geometries into the rule base, but feature recogni-

tion should be robust in implementation. As a result, feature recognition accuracy

is low. Operation accuracy is also unfavorable; none of the automatically-created

tool paths in FBM2 was identical to those created by the programmer. Though it is

possible to edit the programs created by GRAP, the accuracies of feature recognition

and program creation need to be improved. At the current phase of development,

both GRAP and DLATS require programmer intervention in order to finalize the

program. However, GRAP only needs minor modifications to ensure the correct op-

erational parameters are used in program creation. Therefore, with the usefulness
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of each approach limited by the capabilities of feature recognition, the operation ap-

plication accuracy of GRAP will likely outpace the cutter tool selection accuracy of

DLATS in later phases of development.

Because the purpose of automation in this context is to reduce the time a program-

mer spends creating a useful program, the speed at which either GRAP or DLATS

produces an output is another relevant point of comparison. Without the support-

ing software infrastructure that enables DLATS, the speed with which this approach

provides cutting tool recommendations cannot be determined. However, it is feasible

to assume that the recommendation will be near-instant: the parameters of the DNN

regressor are all pre-trained and the algorithm needs only to calculate output vector

𝜏 * and the corresponding 𝑛 tool recommendations from a library of only roughly

1000 tools. Depending on the supporting infrastructure that enables programmer

use, these simple calculations may be augmented with additional software routines

that reduce overall speed. Despite its integration to the NX environment, analysis

of the entire CAD model, and output of a complete program, GRAP takes less than

one minute to recognize features and produce corresponding programs. Though this

is slightly slower than the time achievable by DLATS, each process can be considered

near-instant relative to the timescale of a typical programming job, which typically

requires 40 to 1000 hours. If each method matures to a level enabling accurate cre-

ation of complete programs, reducing speed to sub-minute timescales may become a

concern warranting further investigation.

The larger system of which GRAP and DLATS must be a part not only affects

the speed of program creation, but the ease of implementing either approach at scale.

As previously mentioned, a supporting software infrastructure will need to be built

such that DLATS can be integrated into the programming workflow. Such an infras-

tructure will need to integrate with popular CAM software such as NX or CATIA.

While possible with available software development kits, this requires a concerted

effort of software engineers and application developers, both of which are not typical

employees for a manufacturing firm like Orizon. GRAP, because it exists entirely

within NX, is more easily implemented, but still has some relevant hurdles. The
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rules defining feature recognition and operation application, which are written in a

custom NX programming language, need to be controlled and maintained by an ex-

pert NX user. NX users are typically more familiar with the programming interface

than the computer programming language required to customize the rules. NX does

provide a user interface that allows rules to be taught and controlled in the environ-

ment familiar to the NX programmer, but customizing rules—which is required to

build a robust system—requires using the custom language, which is poorly docu-

mented. Nonetheless, GRAP is more readily implementable than DLATS because it

is currently available and supported within NX.

Another important implementation consideration is scalability: each method has

been developed only on a bench-top scale, an environment substantially different from

the target production scale. Production scale is defined as full implementation in the

programming workflow at each manufacturing facility for a given manufacturing firm.

Notably, each manufacturing firm may maintain a unique set of tools and operational

parameters to produce an equivalent feature; consequently, successful achievement

of production scale will ensure the ability to maintain heritage processes, but also

assist in unifying the manufacturing firm to a common set of practices such that

programming is simplified. A tool selection and operation application scheme can

be defined via rules in GRAP and consequently held as the standard to machine

a particular feature; in addition, these rules can be copied and edited should any

variations be needed (i.e., heritage processes differ between manufacturing facilities).

A designated expert at each site can maintain the rules constituting GRAP in order

to ensure feature recognition and operation application processes are best employed.

Because DLATS is a machine-learned model, there are no rules that need to be

updated. Rather, the model will be trained with the specified input data and will

provide a consistent, standard cutting tool selection for an input feature geometry.

While this serves to unify the processes among various manufacturing facilities in the

same firm, separate ML models can be easily maintained such that each facility has

its unique process, if desired. Therefore it is feasible that both GRAP and DLATS

can be implemented in a production scale.
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In contrast to a rule-based approach, an ML approach enables the analysis of

previously created program data to develop a model that predicts program parame-

ters given input feature geometry. Because ML models evolve with the dataset used

to train their parameters, a model that predicts program parameters can be trained

with a data warehouse of previously created programs; such a model can also be

fine-tuned by only using optimal program processes in the training set. This enables

a company such as Orizon, which has developed several hundred programs over its

tenure, to utilize the work performed by programmers in a more efficient manner:

programs are used not only to fabricate parts, but to train a predictive model to

improve programming efficiency. A rule-based system such as GRAP requires con-

tinuous maintenance to ensure the constituent rules appropriately capture training

methodologies and can only indirectly and narrowly utilize the previously created

programs through the experts that create the rules.

An additional advantage of ML is that complex mathematical formulations can

be replicated using learning techniques such as DNNs. A rule-based system requires

an expert to determine a comprehensive set of simple formulas that, when considered

in full, result in a highly complex decision process and mathematical formulation.

Given the appropriate training data, ML algorithms can learn such a complex decision

process, thereby eliminating the need to create an entire set of rules, which can be

an arduous and sometimes impossible task. Indeed, in the development of GRAP,

rules could not be created to automate a seemingly simple process such as pocket

machining because programmers could not agree on the best machining method and

there were too many intricacies and nuances in the programmer’s cognitive process.

There are certain straight-forward processes, however, for which a simple rule con-

straint can perform more favorably than an ML prediction. Consider the selection of

a cutting tool in the DLATS algorithm; the diameter of the tool should match that

of the hole. A rule can quite easily be devised to ensure this particular constraint

is satisfied (see Figure 2-3). The same is not true for DLATS: instead of directly

specifying a constraint for the tool diameter, the algorithm trains the DNN regressor

parameters in order to create a prediction 𝜏 * with elements 𝑇1,𝑑 and 𝑇2,𝑑 that closely
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Table 4.1: Errors in tool diameter prediction from DLATS test samples.

Tool (𝑇1 or 𝑇2) 𝑑 (actual) 𝑑* (predicted) |𝑑− 𝑑*|

𝑇1 0.1280 0.1216 0.0064

𝑇1 0.2010 0.2105 0.0095

𝑇1 0.7500 0.5369 0.2131

𝑇2 0.5000 0.5258 0.0258

𝑇2 0.3750 0.3041 0.0709

Note: Data shown from test sample only. |𝑑 − 𝑑*| had a mean of 0.0360 and standard
deviation of 0.0378 for 31 total 𝑇1 test samples. For 2 𝑇2 samples, the mean and standard
deviation were 0.0483 and 0.0225, respectively.

approximate the elements of 𝛾 describing hole diameter. The DNN regressor "learns"

that tool diameter should match hole diameter because the aforementioned elements

of 𝜏 * should be close in value to the associated elements of 𝛾, as governed by mini-

mizing loss between 𝜏 * and 𝜏 . As shown in Table 4.1, the average error in 𝑑 for 𝑇1

was 0.0360, meaning that the predicted tool diameter will differ from the actual tool

diameter by 0.036 inches on average. Tolerances on simple drilling processes should

typically be within 0.002 inches.

Should variations of DLATS or other ML algorithms demonstrate success in cor-

rectly learning such rule constraints (i.e., due to better data and predictive models),

it is conceivable that those algorithms could be improved to learn more complex con-

straints that cannot be easily created in a rule-based system such as GRAP. This is

a major advantage of pursuing an ML approach such as DLATS in favor of a rule-

based approach such as GRAP: given access to large datasets, computational speed,

and the appropriate algorithms, complex programming rules ought to be learned, not

specified. Otherwise, complexity will preclude the number of useful rules to be used

in programming automation and, consequently, the jump from automating simple

programs such as hole drilling operations to more complex programs such as pocket

machining will not be made.

A rule-based system such as GRAP can be readily implemented and produces an

output which is integrated into the NX environment, thus demonstrating some ap-
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plicability to the ultimate goal of program automation in its current developmental

state. However, the benefits of ML—that complex processes can be learned from

stores of program data and applied on new geometries instantly—outweigh the draw-

backs that tilt favor towards a rule-based approach. Though both approaches can

be carried forward, this analysis suggests that an ML approach will yield a more

intelligent, adaptable, and robust means of program automation in years to come.

Below are some concerns of an ML approach and corresponding mitigating factors as

evident in the analysis of DLATS.

• Limited capability and low accuracy. DLATS only outputs a suggested tool for

a simple drilling operation and therefore has limited utility in a production

environment. With further development, this capability can be extended; a

team of data scientists internal to a manufacturing firm can continue to develop

sound algorithmic approaches to augment ongoing academic research.

• Data availability and software infrastructure. Lack of clean data is a well doc-

umented flaw to DLATS, yet a relatively minimal concern to GRAP. However,

a concerted effort to create a robust data architecture will mitigate this concern

as manufacturing firms bolster their IT departments with the skillsets required

to realize an Industry 4.0 vision. These IT personnel will not only create the

necessary data architecture, but the supporting software applications that de-

liver the result of an ML model such as DLATS to the programmer in the

appropriate environment.

• Explainability. Many ML algorithms, especially DNNs, are criticized as black

boxes offering minimal insight into how results are obtained. Rule-based sys-

tems, on the other hand, have results that can explained in the context of a

simple decision tree. In recent years, there has been a dramatic increase in the

number of studies focused on explainable artificial intelligence, including DNNs

[35]. While the research herein does not include an investigation into how the

DLATS algorithm might be explained, the recent focus in explainability serves
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as a potential mitigating factor to this problem for future ML developments

related to CNC machining.

• Easily fooled. Some ML algorithms can be easily fooled, meaning slight pertur-

bations in an ML input can lead to dramatically different outputs, often of low

accuracy [36, 37]. Because this effect is dependent on the data representation

and algorithm employed, a detailed study of future ML developments related to

CNC machining can be conducted to determine the extent to which this issue

might affect applications.

74



Chapter 5

Conclusions and Future Work

Orizon, and presumably most other manufacturing organizations, have long recog-

nized the potential to realize efficiency gains with programming automation via re-

duced overhead expenses and increased revenue per programming hour. However, the

numerous challenges presented in Chapters 2, 3, and 4 demonstrate the difficulty of

implementing a reliable AI solution to the problem of automating programming. The

difficulties evident in this research can be summarized into a few major hurdles: pro-

cesses and CAM software packages used by the machining industry preclude efficient

collection of relevant data and integration of AI applications; the skillsets inherent to

machine shops largely differ from those required to build a useful software-based AI

application; and the CAD geometries and associated machining processes are highly

complex, making full automation a major challenge.

A useful comparison to the problem of automating programming is autonomous

vehicles, particularly the pursuit to develop, produce, and sell self-driving cars to be

used by the typical American consumer. Autonomous vehicles have been in develop-

ment for decades, but have only just recently made breakthroughs due to availability

of data, improvements in computing power, and advances in AI algorithms enabled by

increased investment in the space; despite these improvements, no fully autonomous

car is currently available for purchase by the common consumer and use on regular

roads [38, 39]. This inability to develop such an autonomous vehicle is arguably the

result of the complexity of the problem at hand: an AI algorithm must have the
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ability to predict the correct response (e.g., steer, brake, accelerate, etc.) to an infi-

nite combination of environmental inputs (e.g., stop signs, turn signals, pedestrians,

etc.) with near-perfect accuracy. If not, the technology for self-driving cars would

likely not be adopted due to safety issues. Similarly, the problem of programming

automation using AI is highly complex. There are infinitely many combinations of

CAD geometries in addition to an infinite number of methods to machine a given ge-

ometry. Indeed, the problem of programming automation is arguably more complex

than that of autonomous vehicles since there are a limited number of actions a car

can take in response to its environment. Nonetheless, each process is highly complex

and the inability of a focused development to produce reliable self-driving cars to date

perhaps explains the similar lack of success in programming automation.

The available labor skillsets in the automobile and machining industries also re-

veal an interesting point of comparison. The advent of AI systems in automobiles

requires that the industry’s skillsets shift to include software engineers, data scien-

tists and engineers, and AI experts, which will presumably be a significant aid in

the ongoing progress of autonomous vehicles to a fully-deployed state [40, 39]. Such

a shift in skillsets and targeted investment in AI technology has not yet gained the

same momentum in the machining industry; however, if the automobile industry is

any indication, including the appropriate skillsets in AI projects in the machining

industry can lead to similar developmental strides enabled by efforts to improve data

collection and create a software infrastructure allowing integration of AI algorithms

into the programming workflow.

Additionally, the approach to autonomous vehicles varies greatly between automo-

tive companies such as Tesla and GM. Tesla’s Autopilot utilizes cameras and radar,

whereas GM’s Super Cruise uses LIDAR for driver assistance; each approach is semi-

automated as the automobile manufacturers seek to develop a fully-autonomous sys-

tem [41]. The semi-automated approach of these companies can be useful inspiration

for those seeking to automate programming: rather than slow progress towards a

fully-automated solution, perhaps incremental developments to automate some pro-

gramming processes utilizing unique approaches, then improving from those processes
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further to increase the level of automation, may prove to be a more useful means to

obtain a compelling solution.

Regardless of the approach, the research herein presents two methods of program-

ming automation that may dramatically improve machine industry operations with a

concerted and continued development. The following sections discuss feature recog-

nition, a fundamental building block of programming automation, and other AI/ML

methods to be considered moving forward.

5.1 Feature Recognition

The analogy comparing programming automation to autonomous vehicles can be

extended further to demonstrate the importance of feature recognition. Autonomous

vehicles require robust computer vision in order to categorize road obstacles (e.g.,

stop signs, speed bumps, etc.), which subsequently affect the appropriate response of

the vehicle [38]. Similarly, a programming automation algorithm must first analyze a

CAD file for geometric features and collect data on their attributes. This is a crucial

step in the process: an input describing the geometry of a feature, such as 𝛾 defined

in Chapter 3, enables a supervised learning approach which mirrors the cognitive

process of a human programmer. Without the ability to fully decompose a CAD

file into a matrix defining features and their corresponding attributes, there is no

method—whether driven by a rule-based or ML system—that allows for automatic

selection of tools and creation of operations. A robust feature recognition capability

would serve not only as a backbone to programming automation, but it would also

greatly assist in other analyses performed by machine shops, such as quoting prices

and machining cycle times.

Consequently, feature recognition should be a near-term focus of those seeking to

build an intelligent programming automation solution. While some solutions exist

on the market and in academic research (see Section 1.5), no method sophisticated

enough to replicate a human programmer cognitive process exists. Given the lack of

success in creating a complete solution with rule-based approaches, recent advances

77



in deep learning might be the most promising path forward, especially given recent

advances in computer vision in a variety of applications.

5.2 Other AI/ML Methods for Consideration

DLATS is one method of utilizing ML to automate programming: tool selection for

hole drilling operations. However, there are a number of additional approaches that

might have greater success; some of these are listed below.

• Tool selection variations. DLATS was chosen because tool selection is an in-

tegral part to the programming process. However, it was limited to only hole

drilling operations; expansion of the training dataset to include other operation

types may improve the accuracy with which tools can be selected. Further-

more, it is possible that an encoding of library reference numbers—rather than

tool parameters formatted into a vector—can improve accuracy, given sufficient

data.

• Prediction of operation parameters. Operation parameters can be predicted in

a multitude of ways. The feed, speed, and other parameters dictating machine

movement can be associated to feature geometry and tool data such that said

parameters can be regressed from a predictive model. Additionally, a set of com-

mon operation templates, which contain specified operation parameters, can be

created and a predictive algorithm can select from among that set. For a useful

programming automation solution, a routine to predict operation parameters

must be developed. Indeed, the research by Sharmaa, Chawlaa, and Rama

demonstrated a method to predict G-code for simple drilling operations with

up to 97% accuracy [29, 30].

• NLP to create G-code. Given the recent advances in natural language process-

ing (NLP) to create human language models such as GPT-3 [42], it is feasible

that G-code, or its associated .cls file, can be predicted directly from the CAD
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.stp file. G-code, .cls files, and .stp files are simply line-by-line instructions spec-

ifying either the machine parameters or feature geometries. Human language

models might inspire a method to consider these instructions as a language to

serve as a basis for some NLP technique.

• Program optimization. A significant portion of the NRE process in program

development involves iterative trials to ensure a sufficiently efficient process.

As a result, some optimization routine to analyze created programs and asso-

ciated machine performance to select the optimal tool and cutting conditions

could dramatically save effective programming time. Such a routine could in-

terface with a programming automation solution, improving the automated,

suboptimal program.
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