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An approximate solution, as I heard often from Professor
Middlebrook,1 is better than an exact solution. An ideal
approximate solution would also share important features of
the exact solution yet not become messy.

An Euler solution to an ordinary differential equation
(ODE) can succeed on the first count. Compared to an exact
solution, a crude Euler solution can fit on the back of an
envelope while giving physical insight. As an illustration,
here’s the ODE for the fall speed, v, of a rain drop

dv

dt
¼ g� kv2; (1)

where k contains the air density and the drop’s drag coeffi-
cient, mass, and size.

The drop’s terminal speed is vterm ¼
ffiffiffiffiffiffiffiffi
g=k

p
, which gives

the system a time constant s ¼ vterm=g. With the extreme
time step Dt ¼ s, the crude-Euler solution is just two straight
lines (Fig. 1). From them, we see how the true v(t) starts, tan-
gent to the first slanted line, and see that it bends smoothly
underneath the enclosure. However, how much does it bend?
For example, what fraction of vterm has the drop reached after
one time constant?

To find out, we could use Euler with a smaller step size,
say Dt ¼ s=2. We get more algebra and arithmetic (predict-
ing a fraction of 7/8) but without much more insight.

This brute-force approach also ignores a mathematical
intuition: that local information about a function makes a
wobbly pedestal from which to launch a prediction.2 My
favorite, even if the extreme, example is the function
f ðxÞ ¼ e�1=x2

. All its derivatives are zero at x¼ 0, making
the quintessential local analysis, the Taylor series, zero
everywhere. Yet the function still manages to get off the
ground. A less extreme example is f ðxÞ ¼ tan x. Based on its
first three derivatives at zero (f 0ð0Þ ¼ 1; f 00ð0Þ ¼ 0, and

f 000ð0Þ ¼ 2), who could guess that it has diverged by
x ¼ p=2?

The brute-force approach also ignores what we know
physically: that the drop’s acceleration, dv/dt, cannot drop
abruptly at t ¼ s (when it drops from g to 0). Forces are pro-
duced by physical systems, which cannot reconfigure them-
selves infinitely fast. So, neither forces nor accelerations
should change abruptly.

Let us fix these mathematical and physical infelicities. To
avoid clutter, let us work with the nondimensionalized ver-
sion of the ODE, Eq. (1). It is

�v0|{z}
d�v=d�t

¼ 1� �v2; (2)

where the nondimensionalized speed and time are
�v � v=vterm and �t � t=s, respectively. With these variables,
the problematic lumped �v0 is a simple step function (Fig. 2).

Knowing that no physical quantity changes so abruptly,
we can improve our lumping approximation by making �v0

continuous and, to avoid overcomplicating it, also piecewise
straight (Fig. 3).

This revision makes �vð1Þ, the area under the �v0 triangle,
equal to 1/2. Then, we get a revised �v picture incorporating
what we know so far: �vð0Þ ¼ 0, �vð1Þ ¼ 1=2; �v0ð0Þ ¼ 1, and
�v0ð1Þ ¼ 0 (Fig. 4).

However, this figure contradicts itself. The nondimension-
alized ODE, Eq. (2), requires that �v0ð1Þ ¼ 1� �v2ð1Þ, which
is now 3/4. However, the figure shows �v0 reaching zero.
Fortunately, this conflict can be resolved through iteration.

(1) Make �v0 descend linearly from �v0ð0Þ ¼ 1 to the newly
calculated �v0ð1Þ ¼ 3=4 (instead of 0).

(2) Integrate the revised �v0 shape (a trapezoid) to revise
�vð1Þ.

Fig. 1. Fall speed using the extreme lumping approximation where the Euler

step is the time constant (s). The true curve must share the slope at t¼ 0 and

lie below the lumped curve. But where?.

Fig. 2. Acceleration (nondimensionalized) using the extreme lumping

approximation that produced Fig. 1.
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(3) Put �vð1Þ into the ODE to revise �v0ð1Þ, and go to step 1
with the new �v0ð1Þ replacing the 3/4 there.

This feedback loop quickly converges to a consistent �v
and �v0 over the range �t ¼ 0…1. (These �v and �v0 curves will
not be fully consistent; only the exact ODE solution could
be. However, they are more consistent than were the
piecewise-straight v of Fig. 1 and the �v0 of Fig. 2.)

We can short-circuit the loop by finding the iteration’s
fixed point.3 The integration (step 2) takes the averaged slope
and multiplies it by the Euler step, which is D�t ¼ 1, to get
the new �vð1Þ

�v 1ð Þ ¼ 0|{z}
�v 0ð Þ

þ 1|{z}
D�t

�
"

1
z}|{�v 0 0ð Þ

þ 1� �v 1ð Þ2
� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{�v 0 1ð Þ

2

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

averaged slope of �v

: (3)

This self-consistency constraint simplifies to

�vð1Þ2 þ 2�vð1Þ � 2 ¼ 0; (4)

whose solution is �vð1Þ ¼
ffiffiffi
3
p
� 1 � 0:73. So, after one time

constant, the rain drop—or, such is the magic of universal
functions,4 any falling object subject to quadratic drag—has

reached approximately 73% of its terminal speed. The exact
ODE solution, �vexact ¼ tanh �t, gives the fraction as approxi-
mately 76%. In between, our approximated �v curve is a
parabola piece that also closely matches the exact solution
(Fig. 5).

You can test drive this self-consistent lumping method on
the exponential-decay ODE, dy=dx ¼ �y. Even with the
huge Euler step of Dx ¼ 1, the result is reasonable: y ¼ 3�x

for integer values of x, with parabola pieces fitting smoothly
in between. For this ODE, the method, even with such a
huge step, is equivalent e � 3, which might even be too
accurate for the back of an envelope.
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Fig. 3. Smoother acceleration (nondimensionalized). It is still lumped, but

not so discontinuously.

Fig. 4. Fall speed (nondimensionalized) from integrating the smoother

acceleration of Fig. 3.

Fig. 5. Self-consistent fall speed (nondimensionalized). This �v curve has

been extended to include the self-consistent lumping solution for �vð2Þ. The

curve is close to the exact solution (dashed), which is �v ¼ tanh �t and, at
�t ¼ 1, is approximately 0.76.
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