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ABSTRACT
Checkpoint blockade immunotherapy (CBT) can induce 
long-term clinical benefits in patients with advanced 
cancer; however, response rates to CBT vary by cancer 
type. Cancers of the skin, lung, and kidney are largely 
responsive to CBT, while cancers of the pancreas, ovary, 
breast, and metastatic lesions to the liver respond poorly. 
The impact of tissue-resident immune cells on antitumor 
immunity is an emerging area of investigation. Recent 
evidence indicates that antitumor immune responses 
and efficacy of CBT depend on the tissue site of the 
tumor lesion. As myeloid cells are predominantly tissue-
resident and can shape tumor-reactive T cell responses, 
it is conceivable that tissue-specific differences in their 
function underlie the tissue-site-dependent variability 
in CBT responses. Understanding the roles of tissue-
specific myeloid cells in antitumor immunity can open 
new avenues for treatment design. In this review, we 
discuss the roles of tissue-specific antigen-presenting 
cells (APCs) in governing antitumor immune responses, 
with a particular focus on the contributions of tissue-
specific dendritic cells. Using the framework of the 
Cancer-Immunity Cycle, we examine the contributions 
of tissue-specific APC in CBT-sensitive and CBT-
resistant carcinomas, highlight how these cells can be 
therapeutically modulated, and identify gaps in knowledge 
that remain to be addressed.

INTRODUCTION
Now approved for over 11 cancer indications, 
checkpoint blockade immunotherapy (CBT) 
can induce durable antitumor immunity in 
patients with advanced cancer.1 However, 
CBT efficacy varies by cancer type. Among 
cancers originating in non-lymphoid tissues, 
CBT achieves best results against malignant 
melanoma1 and lung2 and kidney3 carci-
nomas. However, for other carcinomas, 
including pancreatic cancer,4 non-virally 
induced liver cancer,5 ovarian cancer,6 7 and 
breast cancer,8 9 the fraction of patients that 
benefit from CBT is dishearteningly low. 
Understanding how to extend the benefits of 
this therapy to a larger number of patients is 
of great therapeutic interest.

Several factors influence the sensitivity of 
different tumors to CBT. Tumor-intrinsic 
factors, such as mutational load, oncogenic 
signaling pathways, and antigen presentation 

ability, undoubtedly impact disease progres-
sion and treatment outcomes.10 However, 
tumor-extrinsic factors, such as tissue micro-
environment and composition of tissue-
resident immune cells, can also shape 
antitumor immune responses and sensitivity 
to CBT. Indeed, studies suggest that anti-
tumor immune responses against melanoma 
and non-small-cell lung cancer (NSCLC) 
vary by tissue site of metastasis.11 12 Moreover, 
colorectal and ovarian cancer case reports 
describe interlesion differences in immune 
infiltration.13 14 Within a single patient, non-
responding lesions can evade immune control 
by distinct mechanisms, including exclusion 
or dysfunction (exhaustion) of cytotoxic T 
cells.14 Given that myeloid cells can impact 
antitumor immunity15–18 and the observed 
intertissue diversity of these cells19–21 (tables 1 
and 2), it is conceivable that tissue-specific 
myeloid antigen-presenting cells (APCs) 
play an important role in controlling local 
responses to tumors. Comprising dendritic 
cells (DCs), macrophages, and monocytes, 
myeloid cells can directly influence T cell 
phenotype and function, and ultimately 
promote or suppress antitumor immunity.22 
Therefore, it is critical to understand the 
composition of tissue-resident myeloid cells, 
as they can differentially impact tissue site 
responses to CBT.

In this review, we examine the characteris-
tics and functions of tissue-resident myeloid 
APC in different tumor types with specific 
emphasis on the role of DC in governing 
the strength of local antitumor immune 
responses. We start by reviewing the general 
contributions of myeloid APC to productive 
antitumor immunity in the Cancer-Immunity 
Cycle. We then discuss known tissue-specific 
DC and macrophage subsets and their func-
tions in CBT-sensitive carcinomas, such as 
lung and kidney, as well as CBT-refractive 
carcinomas, such as breast, ovary, pancreas, 
and liver. As the contributions of APC to 
immune responses against melanoma have 
been recently covered,23–26 we focus our 
review on carcinomas that vary in sensitivity 
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to CBT. We also highlight recent advances in our under-
standing of how these cells can be modulated to enhance 
tumor control and identify gaps in knowledge that remain 
to be addressed.

THE ROLE OF MYELOID APC IN THE CANCER-IMMUNITY CYCLE
Our current understanding of the requirements for the 
induction of antitumor immunity is described in the 
Cancer-Immunity Cycle27 (figure 1). The cycle is initiated 

Table 1  Murine DC and macrophage subsets and surface markers in different tissues

Tissue DCs Macrophages References

Lung cDC1: MHC-IIhi, CD11chi, CD26hi, 
CD24+, CD103+, XCR1+

cDC2: MHC-IIhi, CD11chi, F4/80med, 
CD206med/lo, CD26hi, CD24med/hi, 
CD11bhi, CX3CR1+, SIRPα+

moDC: MHC-IImed/hi, CD11chi, 
CD26lo, CD64+, CD24med, CD11bhi, 
SIRPα+, CCR2med, Ly6Chi, CD209ahi, 
CX3CR1medhi/med, CD88med/hi

inf-cDC2: MHC-IIhi, CD11chi, 
CD26hi, CD24med, CD11bhi, Ly6Cmed/

lo, CD209amed/lo

pDC: MHC-IImed/lo, CD11cmed/lo, 
CD24+, Ly6C+, PDCA-1+, Siglec H+, 
B220+

Alveolar macrophage: MHC-IImed/lo, 
CD11chi, CD64+, F4/80+, CD206+, Siglec 
F+, SIRPα+

Interstitial macrophage: MHC-II+, 
CD11b+, CD11clo, CD64+, F4/80+, 
CD206med, SIRPα+

19–21 67 158

Kidney cDC1: MHC-IIhi, CD11chi, CD26hi, 
CD16med, CD103+, XCR1+

cDC2: MHC-IIhi, CD11chi, CD64med/

lo, F4/80med, CD26hi, CD16hi, 
CD11bhi, CX3CR1+, SIRPα+

moDC: MHC-IImed, CD11clo, 
CD64med, F4/80med, CD16hi, CD11bhi, 
Ly6Chi

pDC: B220+ cells not detected

Kidney macrophage 1: MHC-IIhi, 
CD11cmed, CD64hi, CX3CR1+, F4/80hi, 
CD11blo/med

Kidney macrophage 2: MHC-IIhi, 
CD11cmed, CD64hi, CX3CR1+, F4/80lo/med, 
CD11bhi

19 20 81 159

Pancreas cDC1: MHC-II+, CD11c+, CD103+, 
CD24+

cDC2: MHC-II+, CD11c+, CD11b+ 
CD24+

moDC: MHC-II+, CD11c+. CD24med, 
Ly6Cmed/lo, F4/80+

pDC: CD11c+, PDCA-1+, B220dim, 
Siglec H+

Islet macrophage: MHC-II+, CD11b+, 
CD11c+, F4/80+, CD64+, CD68+, LyzM+, 
CX3CR1+

Stroma CD206+ macrophage: MHC-
IImed, CD11b+, CD11c+, F4/80+, CD64+, 
CD68+, LyzM+, CX3CR1med, CD206+, 
CD301+

Stroma CD206- macrophage: MHCII+, 
CD11b+, CD11c+, F4/80+, CD64+, 
CD68+, LyzM+, CX3CR1med

Pancreas TAM: MHC-II+, CD11b+, 
Ly6Clo/med, F4/80+

71 134 137 138 141 160 161

Liver cDC1: MHC-IIhi, CD11chi, CD26hi, 
CD103+, XCR1+

cDC2/moDC: MHC-IIhi, CD11chi, 
CD26hi, CX3CR1hi, F4/80med, 
CD11b+, SIRPα+

pDC: MHC-IImed/lo, CD11c+, CD317+, 
Ly6C+

Kupffer cell: MHC-II+, CD64+, F4/80hi, 
CD26+, SIRPα+, Ly6Clo, CD11b+

Liver capsular macrophage: MHC-II+, 
CD11clo, CD64+, F4/80+, CD26+, SIRPα+, 
CD14+, CD11b+, CX3CR1hi

19 20 149 162

Ovary/
peritoneal cavity

cDC1: MHC-II+, CD11c+, F4/80lo, 
CD64lo, CD103+, CLEC9A+

cDC2: MHC-II+, CD11c+, F4/80lo, 
CD64lo, CD11b+

moDC: MHC-II+, CD11c+, F4/80med, 
CD64med, CD115+

Large peritoneal macrophage: MHC-
IIlo, F4/80hi, CD64+, CD11bhi, MerTK+

Small peritoneal macrophage: MHC-
II+, F4/80lo, CD11b+, CD226+, RELMa+

121 163 164

Breast cDC1: MHC-II+, F4/80lo, CD24hi, 
CD103+

cDC2: MHC-II+, F4/80lo, CD24hi, 
CD11b+

Breast TAM1: MHC-II+, F4/80hi, CD11bhi

Breast TAM2: MHC-II+, F4/80hi, CD11chi
15 97

cDC, conventional dendritic cell; moDC, monocyte-derived dendritic cell; pDC, plasmacytoid dendritic cell moDC; TAM, tumor-
associated macrophage.
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when myeloid APC, sensing various tumor-derived danger 
signals, infiltrate the tumor microenvironment (TME) 
and capture tumor antigens. These activated APC then 
migrate to the draining lymph nodes to prime tumor-
reactive T cells, and the cycle concludes with T cell 
infiltration into the tumor and T cell-mediated tumor 
destruction.

While monocytes and macrophages contribute to the 
Cancer-Immunity Cycle, early evidence established a role 
for myeloid DC as key initiators of immunity through 
their ability to transport antigens from the periphery to 
lymphoid organs.28 The DC compartment is classified 
into two main lineages: myeloid or conventional DC, 
which comprises cDC1 and cDC2 subsets, and plasma-
cytoid DC (pDC).19 29–31 However, the DC compartment 
is further diversified by the inclusion of monocyte-
derived DC (moDC) subsets, such as the tumor necrosis 
factor-α (TNF-α)/inducible nitric oxide synthase (iNOS)-
producing TiP-DC,32 33 and by the recent identification of 
AXL+ Siglec-6+ (AS)-DC and multiple pre-DC and cDC2 

subtypes.34–36 As the predominant cross-presenting DC 
subset, Batf3-driven CD8α+/CD103+ cDC1 are consid-
ered to be the key mediators of a T cell-inflamed TME, 
carrying out canonical roles of antigen transport and 
cross- priming.37–40 Novel functions for cDC1 have also 
been recently reported. Tumor-residing cDC1 can secrete 
CXCL9 and CXCL10 chemokines to recruit effector T 
cells into the tumor,16 and they can locally restimulate 
effector T cells in the TME.15 While the roles of other 
DC subsets in antitumor immunity are less well-defined, 
recent work suggests that they can also contribute to anti-
tumor immunity. cDC2 are critical for stimulating tumor-
reactive effector CD4+ T cell responses,41 42 and pDC can 
enhance antitumor immune responses via production of 
large amounts of type-I-interferons (type-I-IFNs).43

The Cancer-Immunity Cycle, however, depicts an over-
simplified view of productive antitumor immunity. It 
does not factor in the tissue microenvironment, such as 
tissue-specific myeloid cells, which can skew antitumor 
immune responses (figure  1) and impact CBT efficacy. 

Table 2  Human DC and macrophage subsets and surface markers in different tissues

Tissue DCs Macrophages References

Lung cDC1: HLA-DR+, CD11c+, CADM1+, 
CD26+, CLA+, CD226+, CD49dmed, 
BDCA3+

cDC2/moDC: HLA-DR+, CD11c+, 
CLA+, CD49dhi, CD2med, BDCA1+, 
CD11b+, SIRPα+, CD1a+

pDC: HLA-DR+, CD49d+, CLA+, 
CD123+

Alveolar macrophage: SSChi, HLA-
DR+, CD206+, CD14lo, CD11c+, CD11b+, 
BDCA3+, CD64med, CD43+

Interstitial macrophage 1: HLA-DRlo, 
CD206+, CD36+

Interstitial macrophage 2: HLA-DR+, 
CD206+, CD36lo

19 165–167

Kidney cDC1: HLA-DR+, CD11c+, BDCA3+

cDC2/moDC: HLA-DR+, CD11clo, 
CD11b+, BDCA1+, DC-SIGN+

pDC: HLA-DR+, CD11b+, BDCA2+

Kidney macrophage 1: HLA-DR+, 
CD11b+, BDCA3+, DC-SIGN+

Kidney macrophage 2: CD14+, 
CD16med, CD68+, 25F9+

86

Pancreas cDC1: HLA-DR+, FLT3+, BDCA3+

cDC2: HLA-DR+, FLT3+, BDCA1+

pDC: BDCA-2+, CD123+

Pancreas TAM: HLA-DRmed/hi, CD163+, 
CD68+, CD206+, CD14+, CSF1R+

137 141 161 168

Liver cDC1: HLA-DR+, CD14lo, CD16lo, 
CD11cmed, BDCA3+, CLEC9A+

cDC2: HLA-DR+, CD14lo, CD16lo, 
CD11chi, BDCA1+

pDC: HLA-DR+, CD14lo, CD16lo, 
CD11clo, CD123+

Kupffer cell: HLA-DR+, CD68+, CD16+, 
CD14med, CX3CR1+, CD163+, CD206med

165 169–171

Ovary/
ascites

Myeloid DC/moDC: HLA-DR+, 
BDCA1+

pDC: HLA-DR+, CD4+, CD123+, 
BDCA2+

Peritoneal monocyte/macrophage: (1) 
HLA-DR+, CD14hi, CD16-; (2) HLA-DR+, 
CD14hi, CD16+; (3) HLA-DR+, CD14hi, 
CD16hi

117 118 172 173

Breast cDC1: HLA-DR+, CD11c+, BDCA3hi, 
CLEC9A+, XCR1+, BTLA+

cDC2: HLA-DR+, CD11c+, CD11b+, 
BDCA1+, BDCA3-/lo, SIRPα+

pDC: HLA-DR+, CD123+, CD11b+, 
SIRPα+,
BTLA-/lo

Breast TAM1: HLA-DR+, CSFR1+, 
CD68+, CD163+

Breast TAM2: HLA-DR+, CSFR1+, 
CD68+, CD163+, SIGLEC1+

Breast TAM3: HLA-DR+, CSFR1+, 
CD68+, SIGLEC1+

98 174

cDC, conventional dendritic cell; moDC, monocyte-derived dendritic cell; pDC, plasmacytoid dendritic cell; TAM, tumor-associated 
macrophage.
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Supporting this notion, the environmental context of the 
tissue can induce tissue-specific DC and macrophages 
that dampen antitumor immune responses and promote 
an immunosuppressive TME.44 45 Known mechanisms for 
tumor tissue-induced rewiring of APC responses include 
tumor-intrinsic signaling pathways, such as IFNγ, MAPK, 
Wnt/β-catenin, and COX-2, which can directly compro-
mise DC function or lead to DC exclusion from the TME, 
thereby enabling immune escape and impairing CBT effi-
cacy.18 46–50 In the absence of tumor, healthy skin tissue 
can condition DC to express an IFNγ-dependent homeo-
static program that is enriched in tolerance-related 
genes.50 51 This microenvironment-dependent plasticity 
of the myeloid compartment highlights the importance 
of considering the contribution of tissue-specific APC to 
antitumor immune responses.

Understanding the functional nuances of tissue-specific 
APC will inform development of novel cancer immuno-
therapies. Several DC-based vaccination approaches 
are currently being developed to restore functional 
DC responses in the contexts of cancer and viral infec-
tions.52 These DC-targeted therapies have the potential 
to enhance responses to CBT, given that DC are directly 
involved in the molecular interactions targeted by CBT: 
DC can suppress T cell function via CTLA-4 engagement,53 
and recent work has identified DC-specific Programmed 
Death Ligand 1 (PD-L1) as a critical regulator of T cell-
driven immunity.54 Broader strategies to directly modu-
late the tumor myeloid compartment provide additional 
therapeutic opportunities.55 56 Thus, dissecting the 
contributions of tissue-specific myeloid cells to antitumor 
immunity will enlighten our understanding of tumor 

type-specific sensitivity to CBT and enable us to harness 
the potential of these cells in new therapies.

MYELOID APC IN CBT-SENSITIVE CARCINOMAS
Non-small cell lung cancer
NSCLC responds to anti-PD-1 (nivolumab) and anti-
CTLA-4 (ipilimumab) combination CBT, with an objec-
tive response rate of 33%.2 Given that the most common 
cause of lung cancer is tobacco smoke, it is thought that 
the resulting high mutational burden is the main driver of 
response.57 However, while tumor-intrinsic characteristics 
such as mutational load can impact lung cancer progres-
sion and immune detection, activated APC need to be 
present in the tissue to initiate and facilitate a productive 
antitumor response (reviewed in the study by Kopf et al58).

In the context of respiratory virus infection, the stimu-
latory capacity of lung DC subsets can induce protective 
immunity. Lung cDC1 effectively cross-present viral anti-
gens, transport antigens to the draining lymph node, acti-
vate CD8+ T cells, induce their trafficking to the infection 
site, and promote prolonged survival of T cells in the lung 
tissue.59–64 Interestingly, at baseline lung cDC1 are consid-
erably more long-lived than their counterparts in other 
non-lymphoid tissues.20 Later in the course of infection, 
lung cDC2 become the dominant CD8+ T cell-stimulating 
subset, inducing central memory and resident memory 
cells.63 65 66 A more granular view of the cDC2 compart-
ment suggests that it comprises a mixture of subsets, 
including the traditional cDC2, which can migrate to the 
lymph node and preferentially stimulate CD4+ T cells, 
and a novel inflammatory cDC2 population (inf-cDC2), 

Figure 1  Tissue-specific myeloid cell composition impacts antitumor immunity. Left, Productive antitumor immunity depends 
on the presence of stimulatory myeloid cells, such as cDC1, in the TME. cDC1 contributes to several critical functions, such 
as cross-presentation, antigen transport to the lymph node, T cell priming, and T cell recruitment, to drive tumor-reactive T cell 
responses. Right, Dysfunctional antitumor immunity can arise from tumors that are predominantly infiltrated by suppressive 
myeloid cells, such as M2 TAM and functionally impaired DC. cDC, conventional DC; DC, dendritic cell; pDC, plasmacytoid DC; 
TAM, tumor-associated macrophage; TME, tumor microenvironment.
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which appears in the context of respiratory viral infection 
and allergy.67 Intriguingly, inf-cDC2 can acquire cDC1 
characteristics in a type-I-IFN-dependent manner and 
become capable of optimally priming CD4+ and CD8+ T 
cells.67 The infected lung also contains moDC, which are 
non-migratory and are poor activators of CD4+ or CD8+ T 
cells, compared with cDC.67 Additionally, lung pDC can 
produce large amounts of type-I-IFN in response to infec-
tion with pneumonia virus of mice, inducing a proinflam-
matory antiviral response.68

Although the immune-stimulatory potential of lung 
DC can have protective effects in cancer, the lung TME 
inhibits their antitumor functions (figure 2), and efforts 
are underway to test the efficacy of combining a DC-based 
vaccine with CBT.69 The protective role of cDC1 is clearly 
illustrated in studies of mouse models of lung adeno-
carcinoma: increasing lung cDC1 number results in 
a reduced tumor burden, while deleting them causes 
a lack of CD8+ T cell infiltration and increased tumor 
progression.70 71 The presence of a cDC1 gene signature 
is also associated with better outcomes in patients with 
lung adenocarcinoma.15 48 However, human lung tumors 
contain a reduced proportion of cDC1 compared with 
healthy tissues, suggesting tumor exclusion.72 In addition 
to affecting DC numbers, lung tumors in both mice and 
humans can also modulate DC-stimulatory capacity, by 
inducing a regulatory phenotype characterized by expres-
sion of T-helper 2 (TH2) response genes.70 These regula-
tory DC are capable of both inducing differentiation of 
naive CD4+ T cells into FoxP3+ regulatory T (Treg) cells 

and activating antigen-specific CD8+ T cells.70 Intrigu-
ingly, administration of interleukin 4 (IL-4) blocking 
antibodies to lung tumor-bearing mice reprograms these 
DC toward a more stimulatory phenotype, characterized 
by increased IL-12 production and enhanced ability to 
activate naive antigen-specific CD8+ and CD4+ T cells.70 
Further research is needed to determine whether this 
regulatory DC subset is related to the ‘activated’ CCR7+ 
DC subset previously observed in mouse and human lung 
adenocarcinoma samples73 and/or the inf-cDC2 charac-
terized in the virally infected lung.67 Furthermore, pDC 
become more abundant and immunosuppressive in 
human lung tumors compared with healthy tissue,74 and 
pDC ablation can improve responses to TLR9-agonist 
therapy in mouse models of lung cancer.75 Importantly, 
single-cell RNA-sequencing analysis of mouse and human 
lung adenocarcinoma samples suggests that DC subsets 
are highly conserved between mice and humans,73 high-
lighting the relevance of using preclinical models in the 
study of lung cancer.

In contrast to DC, the role of lung macrophages in 
lung cancer is less understood. Alveolar macrophages 
(AM) comprise 90%–95% of cellular content in the air 
space of alveoli and can perform both tolerogenic and 
inflammatory functions.58 However, unlike cDC, AM are 
ineffective at activating T cells directly due to their low 
expression of costimulatory molecules.76 Interestingly, on 
exposure to bacteria, AM can rapidly phagocytose them 
and traffic to the lymph node.77 The significance of this 
is unclear, but an intriguing possibility might be that AM 

Figure 2  The myeloid immune microenvironment varies depending on the tissue site of tumor origin. CBT-resistant carcinomas 
(pancreas, liver, ovary, and breast) are generally heavily infiltrated by suppressive myeloid cells, such as TAM and tolerogenic 
DC subsets, while stimulatory cDC1 are scarce and prone to becoming dysfunctional. CBT-sensitive carcinomas (lung, kidney) 
similarly harbor suppressive TAM and inhibitory DC, but they also contain protective stimulatory cDC1. The balance of immune-
potentiating and immunosuppressive myeloid cells at each tissue site impacts antitumor immunity responses and sensitivity to 
CBT. CBT, checkpoint blockade immunotherapy; cDC, conventional DC; DC, dendritic cell; moDC, monocyte-derived DC; pDC, 
plasmacytoid DC; TAM, tumor-associated macrophage.
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transfer foreign antigens to lymph node-resident DC. In 
the context of cancer, lung macrophages are suggested 
to be skewed to the protumorigenic M2-like phenotype 
(figure  2).73 Beyond AM, multiple other macrophage 
subsets were identified in lung adenocarcinoma, some of 
which appear to be species-specific.73 The roles of these 
distinct macrophage subsets in lung cancer remain to be 
elucidated.

Renal cell carcinoma
Renal cell carcinoma (RCC) is highly responsive to anti-
PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab) combi-
nation CBT, with an objective response rate of 42%.3 
Compared with other cancers types, RCC has the highest 
number of insertion/deletion mutations, which are 
considered immunogenic78 and correlate with sensitivity 
to anti-PD-1 therapy in patients with advanced RCC.79 
The responsiveness of RCC to CBT implies that renal 
APC must be largely stimulatory. However, as a filtration 
organ, the kidney concentrates a large number of anti-
gens and must maintain a careful balance between toler-
ance and immunity.

Renal DC appear to have both proinflammatory and 
anti-inflammatory roles, which are context specific 
(recently reviewed in the study by Kurts et al80). Among 
resident DC subsets, renal CD103+ cDC1 are a minor 
population that exhibits the maximal antigen presen-
tation capacity.81 At baseline, these cells express high 
levels of CCR7 and CD86, can stimulate CD8+ T cells, and 
induce differentiation of T-helper 1 (TH1) cells.81 82 At 
the same time, renal cDC1 act to prevent excess inflam-
mation in the tissue by maintaining IL-10-producing 
Treg cells83 and inhibiting neutrophil recruitment.84 The 
dominant renal DC subset is CD11b+ cDC2, which express 
high levels of Major Histocompartibility Complex Class-II 
(MHC-II) and C-C Chemokine Receptor Type 7 (CCR7), 
preferentially prime CD4+ T cells and can induce a high 
proportion of Treg cells.81 82 84 These cells can be proin-
flammatory, as a large number of cDC2 appear to migrate 
to the lymph node during systemic LPS administration,81 
and cDC2 can recruit neutrophils during nephrotoxin 
serum-induced kidney injury.84 pDC were not detected in 
the mouse kidney.81 85 In the human kidney, cDC1, cDC2, 
and pDC were identified.86

Although the presence of the DC signature in tumors 
correlates with sensitivity to CBT in patients with kidney 
cancer,87 the RCC TME can skew renal myeloid DC and 
pDC toward an immature state rendering them incapable 
of migrating to the draining lymph node88 (figure 2). In 
culture, RCC cells release vascular endothelial growth 
factor (VEGF) and IL-6, which can inhibit the ability of 
DC to stimulate T cells.89 Furthermore, treatment with 
RCC-conditioned media can cause DC to downregulate 
expression of costimulatory molecules and production of 
IL12p70 and upregulate secretion of TGF-β and IL-10.90 
Interstitial immature CD209+ DC from tumor samples of 
patients with clear cell RCC (ccRCC) secrete high levels of 
matrix metalloproteinase 9, reduce TH1 cell recruitment, 

and their frequency correlates with advanced tumor 
stages.91 Further studies are needed to clarify the roles of 
distinct DC subsets in kidney cancer.

Macrophages in the RCC TME are abundant, highly 
heterogeneous and largely protumorigenic (figure  2). 
Mass cytometry analysis of human ccRCC samples 
revealed 17 major tumor-associated macrophage (TAM) 
populations, among which the CD38+CD204+CD206− 
subset correlated with immunosuppression.92 Mecha-
nistically, TAM can secrete IL-23, which causes Treg cell 
proliferation, and thus promotes ccRCC tumor immune 
evasion.93 IL-23 blockade results in prolonged survival 
of tumor-bearing mice and might be a promising thera-
peutic target in RCC.93 ccRCC induces M2-polarization of 
kidney macrophages, causing them to convert T cells to an 
immunosuppressive phenotype, characterized by expres-
sion of PD-1 and TIM-3, and production of IL-10.94 The 
presence of M2-associated transcripts in tumor samples 
was associated with reduced ccRCC survival.94

MYELOID APC IN CBT-RESISTANT CARCINOMAS
Invasive breast carcinoma
The responsiveness of invasive breast carcinoma to CBT 
is generally low and varies by subtype.8 Triple-negative 
breast cancer (TNBC) has thus far demonstrated the most 
promising outcomes with CBT.8 In fact, the combination 
of anti-PD-L1 (atezolizumab) with chemotherapeutic nab-
paclitaxel was recently approved for treating metastatic 
TNBC with an objective response rate of 39%,9 whereas 
anti-PD-L1 monotherapy only resulted in a 10% objective 
response rate.8 The more common endocrine receptor 
(ER)-positive/human epidermal growth factor receptor 2 
(HER2)-negative and ER-negative/HER2-positive breast 
cancer subtypes are less responsive to single-agent CBT, 
and efforts are underway to evaluate various combina-
tion therapies.8 9 While the poor response rate is asso-
ciated with the low mutational load of breast cancers,95 
the myeloid cell microenvironment of breast cancer also 
contributes to the aggressiveness of the disease.96

The contribution of DC subsets in breast cancer is 
complex, as they have both stimulatory and suppressive 
roles in the antitumor immune response (figure  2). In 
a mouse model of spontaneous breast cancer, CD103+ 
cDC1 and CD11b+ cDC2 subsets exhibited vastly different 
cytokine and functional profiles.15 cDC1 expressed high 
levels of the immune-stimulatory cytokine IL-12,15 which 
is associated with improved chemotherapy responses in 
human breast cancer.15 97 Compared with other myeloid 
cell types assessed, cDC1 were found to be superior stimu-
lators of both naive and effector CD8+ T cells.15 In human 
breast cancers, CD141+ cDC1 could selectively produce 
type-III-IFNs, which drove a TH1 microenvironment 
via increased secretion of IL-12p70, IFNγ, CXCL9, and 
CXCL10.98 Consistent with this finding, a high infiltra-
tion of cDC1 in tumors correlated with better outcomes 
in patients with breast cancer.15 98 However, as cDC1 are a 
rare cell type in breast cancer,15 their immune-stimulatory 
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contributions are often outweighed by the immune-
inhibitory functions of other, more abundant, DC subsets 
and myeloid cells. In murine breast cancer, CD11b+ cDC2 
predominantly produced the immunosuppressive cyto-
kine IL-10 and could only weakly stimulate T cells.15 In 
another study, a subset of human breast tumor-infiltrating 
DC that expressed OX40L could drive the development 
of an inflammatory TH2 microenvironment,99 which is 
associated with poor prognosis in the clinic.100 Breast 
tumor-infiltrating pDC exhibited impaired IFNα produc-
tion and induced the expansion of Treg cells,101 and their 
presence correlated with poor prognosis in patients.102 
Furthermore, human breast cancer cells can express 
CTLA-4 and suppress DC maturation and function,103 
thus contributing to the immunosuppressive environ-
ment. A better understanding of the specific functional 
contributions of DC subsets in breast cancer is needed 
to identify ways of modulating the tumor immune micro-
environment to achieve improved therapeutic outcomes.

Whereas the overall contribution of the DC compart-
ment to antitumor immunity in breast cancer is not 
clear-cut, the presence of TAM in breast cancer is 
correlated with poor outcomes104 (figure 2). As the most 
abundant leukocyte population in mammary tumors,105 
breast TAM directly contribute to tumorigenesis by 
inducing a breast cancer stem cell state, facilitating tumor 
invasion and metastasis, and promoting angiogenesis.106 
Breast TAM can also locally suppress antitumor cyto-
toxic T cell responses by secreting immune-dampening 
molecules such as IL-10,15 97 arginase-1,107 and iNOS108 to 
impair T cell activity. Preventing TAM recruitment with 
a CSF1R-signaling antagonist had synergistic effects with 
chemotherapy treatment in a mouse model of breast 
cancer, resulting in improved survival outcomes.109

Ovarian carcinoma
Ovarian cancer has a high rate of mortality due to its silent 
onset, rapid metastasis, and advanced stage at the time of 
diagnosis.110 Metastatic ovarian cancer is characterized 
by ascites and tumor implants in the peritoneal cavity.111 
Unfortunately, results of several single-agent CBT clinical 
trials in ovarian cancer are discouraging, with objective 
response rates of 6%–15%.7 As a result, there are no 
FDA-approved checkpoint inhibitors for ovarian cancer 
beyond the use of anti-PD-1 (pembrolizumab) for micro-
satellite instability-high tumors.7 However, compared with 
monotherapy CBT, dual blockade treatment of anti-PD-1 
(nivolumab) and anti-CTLA-4 (ipilimumab) has shown 
more promising results in the clinic.112 Understanding 
the contribution of myeloid cells as immune-stimulatory 
or immunosuppressive cell types can facilitate the rational 
design of additional combination treatments.

The presence of mature DC in human ovarian carci-
nomas correlates with a T cell-inflamed TME and 
improved survival outcomes.113 In patients with human 
ovarian cancer, tumor expression of B7-H4 and CXCL17 
is associated with increased infiltration of mature APC 
and a proinflammatory TME.114 However, during tumor 

development, stimulatory DC function can be impacted 
by the TME to become dysfunctional or immunosup-
pressive (figure 2). In a mouse model of ovarian cancer, 
DC induced T cell proliferation at early time points of 
tumor growth; however, by late time points, DC failed to 
stimulate T cell expansion and further suppressed the 
stimulatory function of adjacent immunocompetent DC 
via production of arginase-1, decreased expression of 
MHC-II and CD40, and increased expression of PD-L1.115 
In line with these observations, early DC depletion could 
accelerate tumor progression, while late DC depletion 
delayed tumor progression.115 Similarly, DC isolated from 
ovarian tumors and ascites at late time points were immu-
nosuppressive and expressed high levels of the inhibitory 
molecules PD-L1 and PD-1.116 While PD-L1 on DC damp-
ened T cell activation, activation of the PD-1 receptor on 
DC caused them to produce immune regulatory cytokines 
and prevented the upregulation of costimulatory markers 
CD80 and CD86.116

The studies discussed thus far focused on pan-CD11c+ 
cells and do not delineate the contributions of specific 
DC subsets to antitumor immunity. While more work is 
needed to define the roles of cDC1 versus cDC2 in ovarian 
cancer, the contributions of pDC are better understood. 
In patients with human ovarian cancer, pDC are abun-
dant117 and exhibit a tolerogenic phenotype (figure 2). 
pDC in ascites were found to induce tumor angiogen-
esis via production of TNF-α and IL-8,118 and they could 
trigger the activation and expansion of ICOS+ FoxP3+ Treg 
cells.119 Beyond pDC, in primary ovarian tumors, myeloid 
DC recruit immunosuppressive Treg cells into the tumor 
by producing CCL22.120 Additionally, a population of 
inflammatory DC with a suppressive phenotype driven by 
Satb1 was described in the TME of different models of 
ovarian cancer.121

The ovarian TME can also actively suppress antitumor 
immune responses. The constitutive activation of fatty 
acid synthase in ovarian cancer cells led to lipid accumula-
tion in tumor-infiltrating DC, which impaired their ability 
to present antigens and prime T cells.122 Ovarian cancer 
cells can also release extracellular vesicles containing argi-
nase-1 that are internalized by lymphoid DC, resulting in 
impaired T cell activation.123 While the expression of the 
TH1-type chemokines, CXCL9 and CXCL10, has been 
identified to be a strong predictor of improved survival of 
patients with ovarian cancer,124 ovarian cancer cells can 
epigenetically silence their own production of CXCL9 
and CXCL10 to actively dampen T cell infiltration.125 
Furthermore, ovarian tumor-derived VEGF-A, IL-10, and 
PGE-2 could also induce FasL expression on endothelial 
cells to selectively kill effector CD8+ T cells.126 Given that 
cDC1 are a good source of CXCL9 and CXCL10 and can 
stimulate T cells, strategies to increase their numbers 
or enhance their function could potentially boost anti-
tumor immune responses against ovarian cancer. Indeed, 
the antitumor efficacy of Poly (ADP-ribose) polymerase 
(PARP) inhibition in Brca-1-deficient ovarian cancer was 
found to be dependent on STING activation of APC, 
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including DC.127 Further studies are needed to clarify the 
roles of distinct DC subsets in ovarian cancer progression.

The tolerogenic nature of peritoneal macrophages 
(PM) also promotes aggressive spread of ovarian cancer 
(figure 2). PM comprise over 30% of all cells in the peri-
toneal cavity.128 They are highly plastic and depending 
on the cytokines and growth factors present in the TME, 
they can be skewed toward an inflammatory M1-like state 
or an immunosuppressive M2-like state.111 Studies have 
shown that high amounts of CSF1 secreted by ovarian 
cancer cells can cause PM to differentiate into CD206+ M2 
TAM.129 The resulting increase in the M2/M1 phenotype 
ratio of TAM has been shown to correlate with decreased 
survival in patients with ovarian cancer.129 Furthermore, 
PM can assist cancer cell metastasis by contributing to 
the formation of tumor-derived multicellular aggregates 
in the peritoneal fluid.130 PM depletion can reduce both 
tumor burden and metastasis in a model of ovarian 
cancer.131 Studies are also ongoing to develop therapeu-
tics to re-polarize M2 TAM into M1 TAM to promote a 
more proinflammatory TME.111

Pancreatic ductal adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is the 
most prevalent form of pancreatic cancer and is the 
fourth leading cause of cancer-related deaths in the 
world.132 133 Radiation and chemotherapy are minimally 
effective against PDAC, and surgical resection is the only 
curative treatment.132 However, as most cases of pancre-
atic cancer are detected only at the locally advanced or 
metastatic stages, complete surgical resection is often 
impossible. Furthermore in the clinic, PDAC has been 
shown to be non-responsive to monotherapy CBT, 
although efforts are underway to evaluate responses with 
combination immunotherapies.133 Due to late detection 
and limited treatment options, the 5-year survival rate of 
pancreatic cancer is dismal, less than 5%.132 133

CD103+ cDC1 and CD11b+ DC comprise the two main 
subsets of tissue-resident DC in the pancreatic islets in 
both steady state and inflammatory contexts.134 Islet 
CD103+ DC are migratory and can prime T cells in the 
draining lymph nodes with β cell-derived antigens.134 135 
In contrast, while CD11b+ DC/moDC can efficiently take 
up antigen, they have a low capacity to activate T cells, and 
therefore, appear more related to macrophages by func-
tion.134 CD11b+ DC/moDC greatly outnumber CD103+ 
DC at steady state, and the balance of activities of these 
two subsets determines whether tolerance or inflamma-
tion is induced.134

However, DC are poorly infiltrated in human PDAC 
and, if present, have been reported to be spatially 
restricted to the tumor margin.136 Consistent with this 
observation, cDC were also reported to be rare in the 
KPC murine model of PDAC.71 The few tumor-infiltrating 
cDC1 expressed low levels of costimulatory markers and 
were weakly stimulatory in ex vivo coculture assays with 
T cells.71 The scarcity of cDC1 in PDAC is likely a conse-
quence of an active immune evasion mechanism by the 

tumor. PDAC-secreted granulocyte colony-stimulating 
factor caused downregulation of the transcription factor 
IRF8 that is necessary for cDC1 development.137 The 
resultant decrease in numbers of cDC1 progenitors and 
cDC1s in the bone marrow and peripheral blood impaired 
antitumor CD8+ T cell responses. DC that do infiltrate 
(typically CD11b+) PDAC tumors are often immature 
and functionally impaired or are immunosuppressive in 
nature. In an orthotopic mouse model of PDAC, IL-23-
producing and TGF-β-producing CD11b+ DC comprised 
the greatest fraction of tumor-infiltrating DC.138 This DC 
population induced the differentiation of tolerogenic 
FoxP3neg CD4+ T cells that produced IL-10, IL-17, and 
IFNγ and promoted tumor outgrowth. Depleting these 
immunosuppressive DC resulted in decreased tumor 
burden. FoxP3+ Treg cells can also engage with DC in the 
PDAC TME, resulting in suppression of DC function via 
downregulation of MHC-II expression and costimulatory 
molecules CD40 and CD86 over time.139 The combina-
tion of Flt3L treatment with a CD40 or STING agonist 
could overcome the deficiency of mature, functional cDC 
in PDAC tumors and promoted a TH1 microenvironment 
that resulted in antitumor immunity.71

While stimulatory DC are scarce in PDAC, TAM are 
highly abundant, comprising one of the dominant immu-
nosuppressive myeloid populations in PDAC tumors140 
(figure  2). PDAC TAM generally correlate with poor 
prognosis and perform immune-inhibitory functions.141 
Embryonic-derived resident TAM in PDAC secrete profi-
brotic factors and have reduced surface expression of 
MHC-II molecules, reflecting an impaired ability to stim-
ulate T cell responses.141 Given their protumorigenic 
association, the inhibition or targeted depletion of TAM 
in PDAC has proven to be effective in controlling tumor 
burden and reducing the development of high-grade inva-
sive tumors, largely by reprogramming the PDAC tumor 
stroma to be more proinflammatory and enhancing adap-
tive immune responses.141 142

Liver metastasis
Liver is one of the most permissive organs for metastasis, 
and as such, the majority of liver lesions are secondary 
metastatic tumors.143 (Primary hepatocellular carcinoma 
will not be discussed here due to its viral etiology: hepa-
titis B and C virus infections are responsible for over 
75% of cases143.) Liver metastases respond poorly to 
CBT, and their presence correlates with reduced therapy 
effectiveness in patients with melanoma and NSCLC.5 
CBT resistance of liver metastases is not surprising given 
the tolerogenic microenvironment of the liver, needed 
to avoid excessive tissue injury from continuous expo-
sure to nutrients and microbial antigens from the gut. 
Tolerance is established by liver-resident cells via many 
mechanisms, including production of IL-10 and TGF-β, 
induction of Treg cells, inhibition of CD8+ T cell priming, 
and direct engulfment and degradation of autoreactive 
T cells.144 145 Although liver APC comprise both conven-
tional and unconventional cell types, we will only discuss 
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DC and macrophages here (for a comprehensive review 
of liver APC refer to study by Horst et al144 and Knolle145).

Due to the tolerogenic microenvironment, at base-
line, liver DC are predominantly functionally immature. 
Compared with immature blood DC, liver DC secrete high 
levels of IL-10 and low levels of IL-12, are poor antigen 
presenters and weak stimulators of CD4+ T cells, can 
polarize TH2 cell differentiation, and induce Treg cells.146 
Liver stromal cells promote differentiation of DC progen-
itors into a tolerogenic DC subset, which is capable of 
secreting IL-10 and PGE-2, inhibiting activation of naive 
T cells and inducing apoptosis of activated T cells.147 
Characterization of steady state DC reveals the pres-
ence of CD103+ cDC1, CD11b+ cDC2, and pDC subsets 
in both mouse and human livers.148–150 At baseline, liver 
cDC1 express lower levels of PD-L1 compared with cDC2, 
suggesting that they might be less inhibitory.148 Studies of 
pDC suggest that this subset is more tolerogenic in the 
liver than in the spleen, as liver pDC express higher levels 
of PD-L1, lower levels of CD80 and CD86, and produce 
more IL-10 and less IL-12p70.151 Interestingly, stratifying 
liver DC based on lipid content suggests that low-lipid DC 
are tolerogenic and induce Treg cells, while high-lipid DC 
are immune-stimulatory and can activate CD8+ T cells, 
Natural Killer (NK) cells, and Natural Killer T (NKT) 
cells, implying that DC maturation in the liver can be 
metabolically regulated.152

Liver metastases become enriched in immunosuppres-
sive DC. In a preclinical model of metastatic pancreatic 
cancer, CD11b+ moDC were found to accumulate at 
liver metastases and promote tumorigenesis by secreting 
IL-6, TNF-α, and CCL2, upregulating PD-L1, PD-L2, and 
ICOS-L and thus supporting Treg cell expansion.153 Both 
selective depletion of these inhibitory DC and PD-L2 
blockade can reverse Treg-mediated metastatic progres-
sion by inducing CD8+ T cell responses.153 In patients 
with liver metastases from colorectal cancer, pDC infil-
trate tumors, upregulate ICOS-L, and thereby induce 
accumulation of IL-10-producing CD4+FoxP3neg suppres-
sive T cells.154 Further research is needed to elucidate the 
specific contribution of each hepatic DC subset to CBT 
resistance of liver metastases.

Kupffer cells (KC) are the most abundant subtype 
among tissue-resident macrophages both in the liver 
and in the whole body and are largely immunosuppres-
sive.144 145 While KC on their own are capable of effec-
tively priming naive CD8+ T cells locally in the liver, the 
presence of viral antigen-presenting hepatocytes tolerizes 
their stimulatory capacity.155 The resulting CD8+ T cells 
proliferate but exhibit dysfunction, as they produce low 
levels of IFNγ and display poor effector functions.155 More-
over, KC can promote the formation of a premetastatic 
niche for pancreatic cancer, by taking up tumor-derived 
exosomes and inducing TGF-β and increased fibronectin 
production in hepatic stellate cells, thereby priming the 
liver for metastasis.156 In a study focused on colorectal 
liver metastases, CCR5 blockade induced TAM repolariza-
tion characterized by reduced matrix metalloproteinase 

secretion, increased IFNα production, and led to protec-
tive antitumor effects in patients.157

CONCLUSION
Tissue-specific DC and macrophages can dominantly 
impact antitumor immunity and influence responses to 
CBT and other therapies. While it is impossible to make 
absolute statements, we can define overarching patterns 
observed from surveying the tissue-specific myeloid 
composition of CBT-sensitive and CBT-refractive carci-
nomas (figure 2; tables 1–2).

The major DC subsets, namely cDC1, cDC2, and pDC, 
vary in their degree of infiltration in different tumors. 
Although the functions of these DC subsets are largely 
context-dependent, the role of cDC1 across carcinomas 
is most clearly defined: they are the primary inducers of 
protective antigen-specific CD8+ T cell responses. The 
functions of cDC2/moDC and pDC can also be stim-
ulatory, but in the TME, they are often skewed toward 
tolerance, as observed in lung, breast, and pancreatic 
cancer models. Tumors that are highly infiltrated with 
stimulatory DC (such as NSCLC) are generally associ-
ated with a T cell-inflamed TME and improved treatment 
outcomes when compared with those that are poorly infil-
trated (such as PDAC). However, exclusion or functional 
suppression of stimulatory DC is a common mechanism of 
immune evasion by the tumor. Consequently, treatment 
strategies to boost DC numbers and stimulatory capacity 
can result in decreased tumor burden even in an immune 
desert like PDAC. While the phenotypes of DC subsets 
are largely conserved between different tumors types, 
certain functional DC characteristics are tissue-specific, 
such as the substantial level of baseline tolerance of liver 
DC. This observation warrants a deeper investigation into 
the tissue-specific differences in DC function, in order 
to allow for the successful development of restimulation 
strategies for DC residing at distinct tissue sites.

In contrast to rare DC, TAM are abundant in all tumor 
types examined. They exhibit tissue-specific plasticity, and 
their stimulatory (M1-like) or suppressive (M2-like) func-
tion depends on environmental signals. In all six carci-
nomas, however, TAM appear to be immunosuppressive, 
protumorigenic, and associated with poor outcomes. 
TAM depletion, functional inhibition, or repolarization 
led to improved outcomes in several preclinical models 
spanning multiple cancer types and has translational 
implications.

In summary, modulation of the myeloid APC compart-
ment has the potential to boost antitumor immunity. 
Studies of tissue-specific DC and macrophages will 
uncover novel ways to remodel the myeloid compartment 
and provide new avenues to overcome the limitations of 
currently available treatments.
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