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A Human Cell Atlas1–3 should combine high-resolution 
molecular and histological mapping with anatomical and 
functional data. Advances in single-cell and spatial genom-

ics4 opened the way to high-resolution spatial profiles, but each 
of the currently available technologies addresses only some of the 
challenge of resolving entire transcriptomes in space at single-cell 
resolution. On the one hand, sc/snRNA-seq profiles single cells 
transcriptome-wide, from which we can recover cell types5, gene 
expression programs6,7, and developmental relations8,9, but by 
necessity lose direct spatial information. Conversely, spatial tech-
nologies resolve transcriptomes in space, but are limited in either 
gene throughput or spatial resolution. In general, targeted in situ 
technologies (such as in situ sequencing10, multiplexed error-robust 
fluorescence in situ hybridization (MERFISH)11, single-molecule 
FISH (smFISH)12, cyclic-ouroboros smFISH (osmFISH)13, spatially 
resolved transcript amplicon readout mapping (STARmap)14, tar-
geted expansion sequencing15, and sequential FISH (seqFISH�)16) 
are typically limited to hundreds of preselected genes, but adding 
more probes can reduce accuracy for some genes14. Spatial transcrip-
tomics methods (such as Spatial Transcriptomics (ST/Visium)17, 
Slide-seq18, and High Definition Spatial Trascriptomics19) spatially 
barcode entire transcriptomes, but with limited capture rate (and 
substantial ‘dropouts’, which increase at higher resolution19) and 
a spatial resolution larger than a single cell, ranging from 50 �m 
to 100 �m for ST to 10 �m for Slide-seq. In addition, for biologi-
cal interpretation, cellular features would ideally be related to the  

histological or organ scale, which is conventionally done using meth-
ods from computer vision for registration of medical images20,21. 
However, these methods typically require human supervision, such 
as identification of anatomical landmarks in images, preventing the 
complete automation that is desirable for organ-scale mapping.

Computational methods have previously bridged this gap by 
combining single-cell and spatial measurements22–25. These meth-
ods can reconstruct key landmark genes by leveraging local align-
ment in transcriptome space22–24, or hypotheses such as continuity 
in gene expression25. However, intrinsically sparse or granularly dis-
tributed genes are difficult to predict. For measurements at coarse 
spatial resolution, computational methods aim to deconvolve these 
data18,26, by either learning a program dictionary18 or a probability 
distribution of the data26, to infer a cell-type composition within a 
spatial voxel. However, deconvolution is hindered by spatial ‘drop-
outs,’ in which cell types defined by sparse or dim markers are not 
correctly detected27.

Here, we present Tangram, a deep-learning framework to 
address two challenges: learn spatial gene-expression maps 
transcriptome-wide at single-cell resolution, and relate those to 
histological and anatomical information from the same specimens. 
Tangram learns a spatial alignment of sc/snRNA-seq data from a 
reference spatial data of any kind—either fine or coarse grained—
as we demonstrate by spatially mapping snRNA-seq data from 
the isocortex of the adult healthy mouse brain using each of five  
kinds of spatial supports, at different levels of resolution and 

Deep learning and alignment of spatially resolved 
single-cell transcriptomes with Tangram
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Charting an organs’ biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellu-
lar features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, 
but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited 
sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations 
we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, 
including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type 
of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of 
chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomi-
cally integrated spatial map at single-cell resolution of the visual and somatomotor areas.

NatUre MetHOds | VOL 18 | November 2021 | 1352–1362 | www.nature.com/naturemethods1352

mailto:tommaso.biancalani@gmail.com
mailto:aviv.regev.sc@gmail.com
http://orcid.org/0000-0001-9104-9755
http://orcid.org/0000-0003-3305-9220
http://orcid.org/0000-0002-8191-3375
http://orcid.org/0000-0001-8979-5054
http://orcid.org/0000-0002-9753-0635
http://orcid.org/0000-0003-0985-9885
http://orcid.org/0000-0002-9785-7929
http://orcid.org/0000-0001-8200-5056
http://orcid.org/0000-0001-8545-9424
http://orcid.org/0000-0002-6034-7853
http://orcid.org/0000-0002-2794-5165
http://orcid.org/0000-0003-3293-3158
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01264-7&domain=pdf
http://www.nature.com/naturemethods


gene coverage: ISH, smFISH, Visium (Spatial Transcriptomics), 
STARmap and MERFISH. Tangram produces consistent spatial 
maps of cell types and overcomes limitations in throughput or reso-
lution. It corrects low-quality genes, even in high-resolution meth-
ods, provides single-cell resolution for low-resolution methods, and 
provides genome-wide coverage for targeted methods. By mapping 
multimodal single data (simultaneous high-throughput ATAC and 
RNA expression with sequencing (SHARE-seq)28) on spatial sup-
port, Tangram visualizes spatial patterns of chromatin accessibil-
ity and transcription factor motif scores at single-cell resolution. 
Finally, Tangram includes a dedicated new computer vision module 
that leverages histological data, and maps it to anatomical positions 
in an existing Common Coordinate Framework in the brain. If a 
histology image is available, even without any further annotation, 
this module relates all scales, to a single integrated atlas.

Results
Tangram: learning of spatially resolved single-cell transcrip-
tomes by alignment. We developed Tangram, an algorithm that 
uses sc/snRNA-seq data as ‘puzzle pieces’ to align in space to match 
‘the shape’ of the spatial data (Fig. 1a). The input to Tangram is sc/
snRNA-seq data along with spatial profiling data from the same 
region or tissue type, from any currently available spatial method 
(for example MERFISH, smFISH, STARmap, ISH, or Visium), 
requiring only that the two modalities share at least some subset 
of common genes. Intuitively, Tangram first randomly places the 
sc/snRNA-seq profiles in space, then computes an objective func-
tion that mimics the spatial correlation between each gene in the  
sc/snRNA-seq data and in the spatial data. Tangram then rearranges 
the sc/snRNA-seq profiles in space to maximize the total spatial 
correlation across the genes shared by the datasets. When Tangram 
finishes, the mapped sc/snRNA-seq profiles constitute the new spa-
tial data: they now contain all genes at single-cell resolution and 
with spatial position. From the learned mapping function, Tangram 
can (1) expand from a measured subset of genes to genome-wide 
profiles (Fig. 1b); (2) correct low-quality spatial measurements  
(Fig. 1c); (3) map the location of cells of different types (Fig. 1d);  
(4) deconvolve low-resolution measurements to single cells  
(Fig. 1e); and (5) resolve spatial patterns of chromatin accessibility 
at single-cell resolution by aligning multimodal data (Fig. 1e).

Technically, Tangram is based on nonconvex optimization 
(Methods), in which the Tangram optimization function rewards 
the spatial alignment of sc/snRNA-seq data using two similarity 
functions: cell-density distributions are compared using Kullback–
Leibler (KL) divergence, whereas gene expression is assessed 
through cosine similarity. If the sc/snRNA-seq data contain more 
cells than the spatial data (which is the typical case), a filter term 
in the loss function ensures that only the optimal subset of sc/
snRNA-seq observations is selected. The output is a probabilistic 
mapping, namely, a matrix denoting the probability of finding each 
cell from the sc/snRNA-seq data in each voxel of the spatial data. 
From this matrix, we can obtain a deterministic mapping by assign-

ing the most likely sc/snRNA-seq cell to each spatial voxel. Tangram 
does not contain any hyperparameters, maps a hundred thousand 
cells in a few minutes (using a single P100 GPU), and is released as 
PyTorch module.

Tangram maps cells with MERFISH measurements to gener-
ate genome-scale high-resolution expression maps. To apply 
Tangram, we collected 160,000 snRNA-seq profiles using droplet- 
based RNA-seq (10Xv3, see for example ref. 29), as part of the BRAIN 
Initiative Cell Census Network (BICCN), from the primary motor 
area (MOp) of healthy adult mouse brain. Each profile contains the 
expression of about 27,000 genes, and was annotated following the 
recently delineated cell-type taxonomy of neocortical areas30, to 22 
subsets (hereafter, ‘cell types’)31. We first mapped these snRNA-seq 
data with a high-resolution MERFISH dataset of 254 genes, on a 
section segmented to 4,234 cells (Fig. 2). We trained Tangram 
using 253 MERFISH genes (all genes but one were detected in our 
snRNA-seq data). Fifty percent of the aligned profiles were neuro-
nal, with a 6:1 ratio between glutamatergic and GABAergic cells, in 
accordance with their ratios in snRNA-seq.

To reveal the spatial distribution of cell types, we combined the 
learned probabilistic mapping with the cell-type annotations in the 
snRNA-seq data, and obtained a spatial probability distribution for 
each cell type (Fig. 2a). Glutamatergic cells showed distinct corti-
cal layer patterns of neuronal subpopulations, whereas most, but 
not all, non-neuronal cells and GABAergic neurons are granularly 
distributed, as expected. Exceptions included non-neuronal VLMC 
cells (strongly localized in the first layer) and GABAergic Vip and 
Lamp5 cells, which appeared to be more concentrated toward the 
upper layers. To verify that these distributions were not an arti-
fact of our probabilistic approach, we also visualized the cell-type 
assignment from the deterministic mapping (that is, only the most 
likely cell is assigned to each spatial location) and observed similar 
patterns (Fig. 2b).

The learned Tangram model predicted spatial expression pat-
terns well, as demonstrated by a leave-one-out analysis (Methods). 
As an evaluation score, we computed the spatial correlation between 
each gene’s real measurement and the predicted spatial pattern of 
that gene by the learned model. Overall, 75% of the 253 MERFISH 
genes are predicted with a correlation of �40% (Fig. 2d). To interpret 
these spatial correlations, we chose nine genes with varied scores and 
visually compared the predicted spatial patterns with the MERFISH 
measurements (Fig. 2c). Importantly, the spatial patterns had good 
qualitative agreement for a broad range of spatial correlation values. 
For example, the prediction for Tcap (40% correlation) is in good 
accordance with its measurement. This is because when spatial reso-
lution is at the single-cell level, correlation is highly sensitive to noise 
in gene expression or its measurement, such that a somewhat lower 
correlation does not imply qualitative disagreement. This phenom-
enon is especially evident in very sparse genes (such as Muc20): the 
sparse pattern is recapitulated, but the specific single-cell locations 
are not precise, which may reflect the true nature of these patterns.

Fig. 1 | Tangram learns spatial transcriptome-wide patterns at single-cell resolution from sc/snRNA-seq data and corresponding spatial data.  
a, Overview. sc/snRNA-seq data and spatial data, collected from the same tissue, are spatially aligned by comparing gene expression of their shared 
genes. b–f, Tangram use cases. b, Generating genome-wide spatial patterns from gene signature data. Predicted expression patterns (color bar, normalized 
mRNA counts, see Methods) for each of three genes not included in an input smFISH dataset are validated against their corresponding images from 
the Allen ISH atlas (bottom). c, Correction of low-quality data for spatially measured genes. Predicted (top) and measured (bottom, by Visium) 
expression patterns (color bar, normalized mRNA counts, see Methods) of four known markers, the correct localization of which is missing in direct 
Visium measurements but recovered in the predicted patterns. d, Cell-type localization. Spatial distribution of cell types defined by snRNA-seq (legend) 
mapped on a smFISH brain slide. e, Single-cell deconvolution of lower-resolution Spatial Transcriptomics. Predicted single cells (colored dots, legend) in 
each Visium voxel (gray circle) based on snRNA-seq data mapped onto a Visium slide. f, Spatially resolved chromatin patterns. Predicted spatial gene 
expression (top, color bar, normalized mRNA counts, see Methods) and chromatin accessibility (bottom; color bar, normalized ATAC peak counts, see 
Methods) by mapping the RNA component of SHARE-seq data to a MERFISH slide.
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Mapping snRNA-seq data on MERFISH increases gene through-
put to 27,000 genes, which we validated for 11 selected genes with 
available ISH data in the Allen ISH dataset (Fig. 2e). Some genes 

exhibit strong, localized, patterns in striking similarity to those in 
the Allen images (Kcnh5, Nos1ap, Erbb4, Atp2b4, Celf2, Crispld1). 
For other genes, the signal in the Allen ISH image is very dim  
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Fig. 2 | Tangram maps cells with high-resolution MERFISH measurements and expands them to genome scale. a, Probabilistic mapping of snRNA-seq 
data on MERFISH data. Probability of mapping (color bar) of each cell subset (gray label) in each of three major categories. Bottom right, schematic of 
key layers. b, Deterministic mapping. MERFISH slide with segmented cells (dot) colored by the cell-type annotation of the most likely snRNA-seq profile 
mapped on that position by Tangram (legend). c,d, Predicted expression of test genes. c, Measured (top) and Tangram-predicted (bottom) expression (color 
bar signifies fluorescence at top and normalized mRNA counts at bottom, see Methods) of select test gene (gray labels) with different extents of spatial 
correlation (bottom arrow, %) between measured and predicted patterns. d, Cumulative distribution function (CDF) of spatial correlation (x axis) between 
predicted and measured patterns for test genes. Dashed line: 75% of test genes are predicted with spatial correlation �40%. e, Predicted expression of test 
genes. Tangram-predicted (bottom) expression (top; color bar, normalized mRNA counts, see Methods) and corresponding ISH images from the Allen Brain 
Atlas (bottom) for 11 genes not measured by MERFISH. f, Correction of low-quality spatial measurements. MERIFSH measured (top), Tangram-predicted 
(middle) and Allen Brain Atlas ISH, for genes where predicted patterns differ from MERFISH measurement but match direct inspection of Allen ISH images 
(color bar, normalized mRNA counts, see Methods).

NatUre MetHOds | VOL 18 | November 2021 | 1352–1362 | www.nature.com/naturemethods 1355

http://www.nature.com/naturemethods


compared with our predictions (Esrrg, Cdh4, Adamts3, Htr4, Prkg1), 
but a close inspection reveals agreement as well. This suggests that 
Tangram can reveal spatial patterns for genes with low expression, 
as we will further demonstrate below (with Visium data). Notably, 
we obtained similar results when we predicted withheld genes that 
were measured by MERFISH but had relatively lower quality, pos-
sibly because of less optimal oligonucleotide probes used for these 
genes: the model predictions were consistent with ISH data, sug-
gesting that the model can ‘correct’ lower quality signal (Fig. 2f).

Accurate correction of transcripts measured with STARmap. To 
further investigate Tangram’s correction of low-quality in situ tran-
scripts, we analyzed a STARmap dataset14, in which 1,020 genes are 
measured in 972 cells in a mouse brain slice from the visual area 
(VISp). We mapped 11,759 SMART-Seq2 (ref. 30) snRNA-seq pro-
files from the VISp area using 995 training genes present in both 
STARmap and snRNA-seq data.

Inspecting cell-type distributions from either probabilistic  
(Fig. 3a) or deterministic (Fig. 3b) mapping (Methods), we confirmed  
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that cell-type patterns are consistent with those obtained with 
MERFISH from the motor area (Fig. 2a,b). Despite a minor 
cell-type annotation difference between the VISp and MOp 
snRNA-seq datasets, our model provides robust mapping. For 
example, while only the VISp (but not MOp) snRNA-seq data-
set has an annotated glutamatergic L4 (layer four) cell subset, the 
model successfully revealed L4 in the MOp data (Fig. 3a) from pre-
dicting its marker genes (for example, Kcnh5 in Figs. 2e and 3e).  
Finally, the STARmap dataset also contains subcortical tissue 
(defined as cells below the L6b layer), which allows us to further 
validate predictions by observing an expected subcortical concen-
tration of oligodendrocytes (Fig. 3a).

Remarkably, Tangram not only predicted expression for genes 
that were not measured by STARmap, but effectively corrected 
the spatial expression of low-quality genes (Fig. 3c–e), as com-
pared with the performance of Allen Brain Atlas (http://atlas.
brain-map.org/atlas?atlas�1) ISH. First, when holding out each 
individual STARmap gene from the training, the predicted expres-
sion was typically consistent with direct measurements (Fig. 3c). 
Interestingly, for some genes, our predicted localized patterns 
were not observed in measurements, especially for lower quality 
genes (Fig. 3d). Remarkably, in these cases, the predicted pattern  
agreed well with images from the Allen Brain ISH Atlas (Fig. 3d), 
confirming the accuracy of our predictions, and Tangram’s ability 
to correct gene expression of low-quality data. Finally, Tangram 
correctly predicted the expression of genes that were not measured 
by STARmap, including markers of cortical layers (Tenm3, Cdh12, 
Kcng1, Igf2) or subcortical tissue (Opalin and Enpp6), as assessed by 
their consistency with the Allen Brain ISH Atlas (Fig. 3e).

Single-cell deconvolution and histological data incorporation 
with Spatial Transcriptomics. Next, we focused on the decon-
volution challenge in the context of lower resolution Spatial 
Transcriptomics (Visium) data measuring 31,053 genes within 
50-�m-diameter circular spots in 3 mouse coronal brain slices 
(Fig. 4). This was followed by an H&E stain of the slice (section 
1), spanning about 160 circular spots on a region of interest (ROI). 
Single cells are visible in the stained images, so we segmented cells 
(Methods) to directly estimate cell number within each spot, and 
counted 939 cells overall.

For deconvolution, we first assigned a discrete number of cells 
to each voxel (matching the number of segmented cells) and then 
performed a deterministic mapping of each of the cells within each 
voxel (Methods) to obtain a cell-type localization prediction at 
single-cell resolution (Fig. 4a). We trained Tangram with a subset of 
the �30,000 genes by selecting 1,237 training genes as the union of 
the top 100 marker genes of each cell type in the primary motor cor-
tex (MOp) snRNA-seq data (using a standard pipeline, Methods) 
that were detected in the Visium profiles. We found that mapped 
cell-type ratios and those from the snRNA-seq data were consis-
tent (Extended Data Fig. 1b). Our mappings were also robust, as 
demonstrated by analysis of two other Visium datasets: a coronal 
section (section 2) consecutive to section 1, and a coronal section 
collected at approximately the same posterior position, which is 
publicly available (section 3) (https://support.10xgenomics.com/
spatial-gene-expression/datasets/1.1.0/V1_Adult_Mouse_Brain?) 
(Extended Data Fig. 1c). Assignment within a voxel is random: the 
model may predict that one microglia cell is contained in a certain 
voxel, but not which cell it is.

Tangram imputation of dropouts in Spatial Transcriptomics. 
Next, we probabilistically mapped the MOp snRNA-seq profiles 
corresponding to the dissected region for all three Visium slices 
(Methods). Tangram’s mapping yielded higher resolution, finely 
localized, cell types (Fig. 4b, Extended Data Fig. 1a). This included 
correct localization of L6b�  glutamatergic neurons, a more concen-

trated presence of Vip�  and Lamp5�  GABAergic neurons in upper 
layers, and positioning of Sst�  and Pvalb�  GABAergic neurons in 
deeper layers and of Meis2�  and Sst� Chodl�  GABAergic neurons 
in rare sparse cell types. In a few cases, there was variation in the 
mapping between independent experiments, which is consistent 
with biological variation. For example, colocalization of cell types 
(for example Sncg�  and Vip�  GABAergic neurons) is detected 
across slices from the same batch (section 1 and section 2) but 
not in section 3; L6 IT cells are more localized in layer 6 in slice 
3; and Vip�  neurons are more uniformly distributed in section 3 
than in section 1 and section 2. These findings are consistent with  
our expectations.

Notably, Tangram correctly predicted spatial expression pat-
terns from the mapped cells, when we withheld those genes in the 
training and then compared them with the Visium measurements 
(Fig. 4c–f). Specifically, we partitioned the genes into 1,237 training 
genes and 29,816 test genes unseen in the learning of the model, 
and used spatial correlation as before (Fig. 4c). The 90th quantile of 
spatial correlation coefficients of training genes is �62%, and 50% 
of the test genes exceeded this threshold (Fig. 4c,d). As the number 
of training genes was reduced from 1,237 to 123, so did the rela-
tive prediction accuracy (Fig. 4d), although it remained substantial. 
Inspection of spatial patterns from select test genes showed that, 
although our predictions always result in a localized pattern in the 
upper layer, agreement against Visium measurements deteriorates 
as the gene is more sparsely detected in the original Visium experi-
ment (Fig. 4e, where sparsity is defined as the fraction of voxels in 
which the gene is undetected).

We hypothesized that this poorer agreement could be due to 
technical ‘dropouts’’ (~15,000 test genes are entirely undetected 
in our Visium datasets). Supporting this hypothesis, there is a 
strong correlation between our prediction scores and data sparsity  
(Fig. 4f): 98% of nonsparse genes (sparsity � 50%) are correctly pre-
dicted by our model (spatial correlation �62% threshold; Fig. 4f, 
region i); only about 70 nonsparse genes were are not well predicted 
(Fig. 4f, region ii). Nonsparse test genes that are not well predicted 
had predicted patterns that were sparser than Visium measure-
ments, suggesting that the disagreement might have been due to 
dropouts in the snRNA-seq data (Fig. 4g). Finally, about 80% of the 
transcriptome measured in Visium was highly sparse (Fig. 4f, region 
iii); the same genes were also too low to be detected by the Allen ISH 
atlas. This raises the possibility that our predictions may provide 
more accurate estimates of the real spatial expression for such genes. 
Supporting this, we compared our predictions with measurements 
for the two genes available in both MERFISH and our sparse genes. 
In both cases, our predicted spatial patterns agreed with MERFISH 
measurements (Fig. 4h).

Notably, Tangram was readily applicable to other brain regions, as 
we have shown by mapping scRNA-seq data from the mouse hypo-
thalamus32 with the hypothalamus in section 1 of our Visium data-
set, identified using our registration pipeline (see below; Extended 
Data Fig. 2a). The resulting predicted cell-type patterns are consis-
tent with expectations (Extended Data Fig. 2b): for instance, epen-
dymal cells and tanycytes are mapped next the third ventricle, and 
GABAergic and glutamatergic neurons form expected32 intricate 
substructures (Extended Data Fig. 2c). Notably, this mapping was 
between data that were imperfectly matched, with scRNA-seq col-
lected from the whole hypothalamus and Visium profiling a single 
coronal slice restricted to a 10-�m-thick posterior, thus containing 
only a subset of cell types of the entire hypothalamus.

Spatial localization of chromatin-accessibility patterns with 
SHARE-seq. We next used Tangram’s successful spatial mapping 
through RNA as a scaffold to map additional molecular profiles with 
no available spatial data, but that were measurable by single-cell 
multi-omics. In particular, we set to map joint single-cell RNA 
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expression and assay for transposase-accessible chromatin with 
sequencing (ATAC-seq) data, which we profiled simultaneously in 
�3,000 cells from whole mouse brain by SHARE-seq28 (detecting 
about 18,000 genes) and annotated as 9 glutamatergic-cell subsets 
(EN, excitatory neurons), 5 GABAergic cell subsets (IN, inhibitory 
neurons), and 5 non-neuronal subsets (A1.E1, MX, NSC, OG1, 
P1)28 (no immune cells were captured, and cortical layer subsets 
were not annotated). We aligned SHARE-seq data to MERFISH 
data using the snRNA-seq component of each profile, then 
transferred the single-nucleus ATAC-seq (snATAC-seq) profile  

of the same cells to space, to visualize inferred spatial patterns of 
chromatin accessibility and transcription factor motif scores at 
single-cell resolution (Fig. 5).

We mapped SHARE-seq data both probabilistically (Fig. 5a) and 
deterministically (Fig. 5b) and obtained cell-type distributions. Our 
mapping reveals that EN01s are localized in layer L2/3, EN04s in 
layer 4, EN07s in layer 5/6, EN05s in layers 5 and 6, and EN02s in 
layer 6. Interestingly, IN02s seems more prominent in layer 6. Also, 
the non-neuronal cell type MX (labeled ‘Unconfirmed’28) appears 
to be concentrated at the bottom left part of the ROI, which does  
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not resemble known patterns of cortical cell types. While the mapping 
is overall consistent, it is less biologically precise than in the previous 
cases, likely owing to the lack of immune cells (missing ‘puzzle pieces’ 
for Tangram) and the fact that the cells were not profiled specifically 
from the cortex.

We used the snRNA-based mapping to infer spatial patterns of 
chromatin accessibility and transcription factor activity (Fig. 5c,d), 
and compared them with spatial expression patterns. In some cases, 
gene expression is higher at a particular cortical layer, but localiza-
tion is not observed in the projected snATAC-seq (as was the case for 
C1ql3, Il1rapl2, and Kcng1). In other cases, the projected snATAC-seq 
forms spatial patterns, even though the corresponding predicted gene 
does not show a spatial pattern (Scgn, Il4ra, and Mrgprx2). In only 
a minority of cases, we observed correlation between snRNA-seq 
and snATAC-seq patterning (Dnase1l3, Egfr, and Elfn1). We simi-
larly visualized inferred spatial patterns of transcription factor motif 
activity scores (identified from the snATAC-seq profile in each cell33) 
(Fig. 5d). Notably, some exhibited a slightly localized pattern (Msc, 

Bhlhe22, and Egr2), even for transcription factors whose predicted 
RNA was neither measured in MERFISH nor in SHARE-seq (for 
example, Tcfeb and Foxl1 (LINE10014)).

Tangram helps detect cell-type patterns conserved across spe-
cies. We next tested how Tangram performs when the input 
scRNA-seq and spatial data are derived from different species 
(Extended Data Fig. 3), which we tested in the brain (human MOp 
snRNA-seq (https://portal.brain-map.org/atlases-and-data/rnaseq/
human-m1-10x) and mouse MOp MERFISH) and kidney (human 
scRNA-seq34 and mouse Visium (https://support.10xgenomics.
com/spatial-gene-expression/datasets/1.1.0/V1_Mouse_Kidney)) 
(Supplementary Material). For brain, we found high concordance 
with same-species mapping for all but two cell types that were 
absent from human snRNA-seq (Extended Data Fig. 3a,b and 
Methods), and good but lower similarity at the level of individual 
genes (Extended Data Fig. 3c). For kidney, the projected cell-type 
maps (Extended Data Fig. 3d,e) correctly capture several structures 
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and colocalization patterns, whereas some immune-cell types did 
not map as well, possibly reflecting lower conservation of markers 
in immune cells.

A learned histological, anatomical, and molecular atlas of the 
somatomotor mouse cortex at single-nucleus resolution. To 
demonstrate the integration of molecular and anatomical features, 

MOp1
MOp2/3
MOp5
MOp6a
MOp6b
MOs1
MOs2/3
MOs5
MOs6a
MOs6b
cing
CP
fa
scwm
SSp-m

MOp5
MOp6a
MOp6b
MOs6a
MOs6b
alv
CA2
ccb
cing
scwm
RSPagl1
RSPagl2/3
RSPagl5
RSPagl6a

RSPv6a
RSPv6b
SSp-tr1
SSp-II1
SSp-uI1

SSp-ll2/3
SSp-tr2/3

SSp-ul2/3
SSp-tr4
SSp-II4
SSp-tr5
SSp-II5
SSp-ll6a

SSp-tr6a
SSp-ll6b

Ant ROI

MOp1
MOp2/3
MOp5
MOp6a
MOp6b
MOs6a
MOs6b
ccb
cing
scwm
SSp-ul
SSp-II

Mid ROI Post ROI

Ant ROI Mid ROI Post ROI

A
nt R

O
I

M
id R

O
I

P
ost R

O
I

A
nt R

O
I

M
id R

O
I

P
ost R

O
I

A
nt R

O
I

M
id R

O
I

P
ost R

O
I

L2/3 IT

Astro SMCOligo

Lamp5

Micro-PVM

Vip

VLMC

L5 IT L6 CTL5/6 NP

Endo

L5 ET L6b Sncg Sst Meis2Sst ChodlL6 IT

Peri

Cell

Glutamatergic GABAergic

Non-neuronal

Pvalb

Probability
0 1

Cell Cell

10 �m 10 �m 10 �m

�

�

�

�

Fig. 6 | Tangram mapping of snRNA-seq profiles to histological and anatomical mouse brain atlases. a, ROIs. Nissl-stained images of coronal mouse 
brain slices highlighting the three regions of interest (anterior (left), mid (center), posterior (right)) from which snRNA-seq data from the motor area were 
collected. b,c, The registration pipeline generates anatomical region and cell-density maps. Anatomical region (b, color legend, from the Allen Common 
Coordinate Framework) and cell map (c, color bar, from the Blue Brain Cell Atlas) maps of each of the three dissected ROIs. d, Probabilistic mapping of 
snRNA-seq data on the ROI. Probability of mapping (color bar) of each cell subset (gray label) from each of three major categories within each ROI (rows).

NatUre MetHOds | VOL 18 | November 2021 | 1352–1362 | www.nature.com/naturemethods1360

http://www.nature.com/naturemethods


we developed an additional module in Tangram to connect across 
scales by registering histology/spatial data on an anatomically anno-
tated common coordinate framework (CCF)35, such as the Allen 
CCF for the adult mouse brain36. As an alternative to methods that 
either require supervision or intact tissue, we combine a Siamese 
neural network model (Extended Data Fig. 4) with a semantic 
segmentation algorithm (Extended Data Fig. 5) to produce full 
segmentation masks of anatomical images. The Siamese network 
model learns a latent space that uniformly encodes irrespective of 
technical artifacts in the images (such as ‘holes’ in regions predis-
sected for snRNA-seq). The semantic segmentation model produces 
a segmentation mask that is compatible with the Allen ontology. 
Because we produce a matching mask, we can automatically regis-
ter our and the atlas images without providing corresponding land-
marks (Methods).

We applied Tangram’s anatomical mapping module to the his-
tological images containing the punch section from which we col-
lected the approximately 160,000 snRNA-seq profiles (Fig. 6a). 
Using the registration pipeline above, we precisely located the 
region of dissection on the Allen CCF (Fig. 6b), then queried the 
Allen Mouse Atlas to estimate spatial gene expression at 200-�m 
resolution and the Blue Brain Cell Atlas to compute the expected 
cell density in each spatial voxel (Fig. 6c). We repeated this proce-
dure for the three ROIs, and finally mapped the snRNA-seq profiles 
to their corresponding ROIs. Note that we used the same pipeline 
to select the ROI for mapping snRNA-seq profiles onto the histo-
logical section measured by Spatial Transcriptomics (Fig. 4a), which 
was collected at a posterior close to that of the histological section 
containing the Post ROI (Extended Data Fig. 6). The mapping pre-
dictions for cell types across the three ROIs were self-consistent, 
albeit less accurate than mappings using the higher resolution spa-
tial technologies (Fig. 6d). Cortical layers were successfully recov-
ered across the three ROIs, but L5 ITs and L5/6 NPs display a lower 
level of localization than in the other cases. GABAergic neurons 
predictions are biologically sound, and we observed a more con-
centrated presence of Vip�  and Lamp5�  cells in the upper layers, 
as observed with Visium-based mapping. Non-neuronal predic-
tions did not recover sparse mPVM and overly concentrated Peri, 
Endo, and VLMC cells in the subcortical part. Overall, our mapping 
results confirmed that glutamatergic-cell-type patterning is simpler 
to reconstruct than are sparse, granular, cell-type patterns typical 
of non-neuronal cell types, the latter requiring finer signals from 
modern spatial technologies.

Discussion
Genes in organs are expressed in spatially organized patterns at 
different scales, and understanding these patterns is central to 
unraveling biological function. Spatially resolved transcriptomic 
data provide an opportunity to reveal such patterns, but are cur-
rently limited by spatial resolution or the number of genes that are 
measured, and connecting them to other levels or organization can 
require substantial experimental efforts and expert review. Here, 
we developed a computational framework, Tangram, to harmonize 
sc/snRNA-seq data with in situ, histological, and anatomical data, 
toward a high-resolution, integrated atlas.

Tangram tackles various scenarios by aligning snRNA-seq data 
onto different spatial data, from high-resolution MERFISH and 
STARmap, through mid-resolution Spatial Transcriptomics, and 
to ISH associated with histological and anatomical coordinates. In 
each case, we validated the computational alignments by recovering 
consistent spatial maps of cell types and predicting the expression 
of holdout genes. We applied Tangram primarily in the cortex, but 
it also performs well in the hypothalamus, which has different kinds 
of spatial patterns.

Each spatial-measurement modality benefits from different 
aspects of Tangram: for high-resolution targeted data (smFISH, 

MERFISH, and STARmap), Tangram expands from signature to 
genome-wide patterns; for lower resolution spatial data (Visium), 
Tangram yields single-cell resolution; for datasets with high gene 
throughput but lower accuracy (STARmap and Visium), Tangram 
detects and corrects low-accuracy expression patterns; and for 
multimodal single-cell profiles (SHARE-seq), Tangram uses 
one modality to generate spatial patterns for the other, yielding 
spatial multimodal maps. Finally, histology allows registration 
to the Allen CCF and integration between the cellular and the  
anatomical scale.

With the notable exception of probabilistic cell mapping (Fig. 4b),  
Tangram required knowledge on (segmented) cell numbers to 
perform deconvolution and for mapping on targeted in situ 
data. Tangram assumed that cells are segmented in preprocess-
ing, which we performed here with dedicated external tools 
(for example, ilastik (http://www.ilastik.org) or nucleAIzer37). 
However, in higher-density tissues, such as embryos38 or tumors, 
cell-segmentation methods may not perform as well. Future exten-
sions could jointly learn cell segmentation and mapping, as was 
done in a recently proposed Bayesian method39.

In our analyses, a few hundred marker genes, stratified across cell 
types, sufficed to map the mouse brain cortex transcriptome-wide, 
observing consistent cell-type patterns in all cases. Notably, 
although cell mapping can rely on even fewer genes (that is, 22 
genes in smFISH; Fig. 1b,d), we could not successfully predict 
transcriptome-wide spatial gene expression in that case, in contrast 
to our success with MERFISH (254 genes measured). This sug-
gests that at least a few hundred marker genes could be required 
to comprehensively map the mouse brain cortex, at least for cell 
types. As we expand to other more transient cell states and pro-
grams, the optimal number of marker genes required for mapping 
might also depend on the structure of other gene programs and 
their inter-relations. Tangram can help assess the extent of markers 
needed to capture a response.

Future applications could use Tangram to discern between bio-
logical conditions, leveraging the fact that the Tangram loss func-
tion will converge on a smaller value for matching scRNA-seq and 
spatial datasets. This strategy is compelling in cross-species map-
pings, in which we recovered conserved patterns for most cell types 
and genes (Supplementary Material and Extended Data Fig. 3), or 
in cross modality mapping, such as aligning scRNA-seq data onto 
spatial proteomic data, to assess the impact of translational and 
post-translational effects.

When multimodal single-cell profiling data are available, but only 
one modality is available in the spatial scaffold, Tangram can use it 
to resolve spatial patterns of the other modality, as we demonstrated 
using SHARE-seq data to predict spatial patterns for scATAC-seq 
data. This approach can be adopted with other multimodal single-cell 
methods (for example, cellular indexing of transcriptomes and epit-
opes by sequencing40 and Patch-seq41) or with independently mea-
sured single-cell modalities integrated in a common latent space24,42,43. 
This is particularity intriguing in cases for which there is no assay for 
spatially resolving data of a certain modality. For example, chromatin 
accessibility could not be spatially resolved at the single-cell level until  
very recently44.

Finally, although our work focused on the mouse brain, Tangram 
is applicable to other organs, as well as disease tissue. For full inte-
gration across scales, Tangram’s registration pipeline requires a CCF, 
which is currently available for a few organs, and is most advanced 
for the mouse brain36. However, efforts are underway to construct 
analogous reference maps for different organs35, toward the con-
struction of cell atlases of all organs in mice and humans.

Online content
Any methods, additional references, Nature Research reporting  
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Methods
Tangram mapping algorithm. Introduction. We use the index i for cells (that is, 
snRNA-seq data), k for genes, and j for spatial voxels (circular spots, pucks, etc.). 
Our goal is to learn a spatial alignment for the cells, organized as a matrix S with 
dimensions �O�D�F�M�M�T� �O�H�F�O�F�T, where ncells is the number of single cells and ngenes is the 
number of genes, such that �4�J�L� �� is the expression level of gene k in cell i.  
In order to map, we voxelize the spatial volume at the �nest possible resolution 
(which depends on the mapping case, for example 200 �m when mapping with the 
Allen Brain Atlas, individual cells when mapping with MERFISH, and so on), and 
index the voxels in an arbitrary one-dimensional fashion. We then introduce two 
quantities: the �O�W�P�Y�F�M�T� �O�H�F�O�F�T gene-expression matrix G, where �( �K�L� �� denotes 
the expression of gene k in voxel j (we do not assume that G and S measure gene 
expression using the same unit of measures), and a �O�W�P�Y�F�M-long vector ��E of cell 

densities, where �� � �E�K� �� is the cell density in voxel j, and 
�O�W�P�Y�F�M�

�K
�E�K� ����

We aim to learn a mapping matrix M with dimension �O�D�F�M�M�T� �O�W�P�Y�F�M�T, such  
that �. �J�K� �� is the probability of cell i of being in voxel j. Therefore, we require 
a probability constraint 

�O�W�P�Y�F�M�

�K
�. �J�K� ��. Our mapping strategy is probabilistic, 

perform a soft assignment. From the mapping matrix M, we further define two 
quantities: MTS, the spatial gene expression as predicted by the mapping matrix, 

and the vector ��N with components �N�K�
�O�D�F�M�M�T�

�J
�. �J�K���O�D�F�M�M�T for the predicted cell 

density in voxel j. Finally, we define the softmax function along the voxel axis for 
any given matrix ��.  (with dimensions �O�D�F�M�M�T� �O�W�P�Y�F�M�T). The resulting matrix M  
has elements:

�. �J�K� �T�P�G�U�N�B�Y� ��. � �J�K�
�F��. �J�K

� �O�W�P�Y�F�M�T
�M �F��. �J�M

��

By applying the softmax, we ensure that �� � �. �J�K� �� and 
�O�W�P�Y�F�M�

�K
�. �J�K� ��.

Mapping algorithm. To learn the mapping matrix, we minimize the following 
objective function with respect to ��.  (note that in the objective we use 
�. � �T�P�G�U�N�B�Y� ��. � ):
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where KL indicates the Kullback–Leibler divergence, cossim is the cosine  
similarity function, and * indicates matrix slicing. The first term is the density 
term: we enforce that the learned density distribution is as similar as possible  
to the expected density. The second term is the gene/voxel expression term:  
it enforces that the predicted expression for each gene over the voxels is 
proportional to the expected gene expression over the voxels. The third term  
is the voxel/gene expression term: for each voxel, the predicted gene expression 
needs to be proportional to the expected gene expression. Optionally,  
we can also activate an entropy regularizer to minimize the entropy of  
the spatial distribution of each cell, to ensure that the spatial probabilities  
of each cell are peaked over a narrow portion of space. (In practice, we did  
not need to use this feature, as all probabilities were peaked in all cases  
analyzed in this study).

Minimization is obtained via gradient-based optimization using the  
PyTorch library.

Using the objective (1), Tangram maps all sc/snRNA-seq profiles onto  
space. If the number of sc/snRNA-seq profiles is higher than the known  
number of cells in the spatial data, Tangram can instead filter the sc/snRNA-seq 
profiles and learn the optimal subset of sc/snRNA-seq profiles that best explains 
the spatial data. The latter approach is explained next.

Mapping with a filter. We introduce a filter vector ��G of dimension ncells so that  
cell i can either be mapped (fi � 1) or not mapped (fi � 0). To filter, we multiply 
each row of the single-cell matrix, �4�J�
� �
 and each row of mapping matrix, �. �J�
� �
  
by fi, as shown below in the new objective. The filter values fi are learned  
during training, in order to retain the cells that best explain the spatial data.  
To explicitly promote Boolean values (that is, 0s or 1s) in the filter values,  
we add a filter regularizer in the objective. To enforce the total number of filtered 
cells, we introduce a count term: a soft constraint in the objective that promotes 
a number of mapped cells in the filter equal to �O�U�B�S�H�F�U�@�D�F�M�M�T. With this in mind, we 
formally define the objective. We define a real vector ���G of dimension ncells and 
define �G�J� �����G�J� , where we apply the sigmoid function � to ensure that �� � �G�J� ��. 
We then define �4�G� �E�J�B�H���G� � �4 and �. �G� �E�J�B�H���G� � �. , namely, the filtered 
versions of the single cell matrix and the mapping matrix, respectively. We also 

define ��N�G, a vector with components �N�G
�K�

�O�D�F�M�M�T�

�J
�. �G��

�O�D�F�M�M�T�

�J
�G�J, as the predicted 

density of filtered cells in voxel j. The objective function, which we minimize 

with respect to ��.  and 
��
��G, is:
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The fourth term corresponds to the entropy regularizer, and the last two terms 
correspond to the count term and the filter regularizer, respectively.

Annotations transfer. The output of the mapping algorithm is the learned mapping 
matrix M (with, optionally, the learned filter ��G). Once the mapping outcome is 
computed, any kind of annotation can be transferred from the sc/snRNA-seq  
data onto space.

We define A as the annotation matrix with dimensions �O�D�F�M�M�T� �O�B�O�O�P�U�B�U�J�P�O�T, 
where �O�B�O�O�P�U�B�U�J�P�O�T is the number of different annotations characterizing single 
cells (for example, genes, cell types, or any other modality). If annotations are 
categorical values (such as cell types), we one-hot encode them over multiple 
columns in A. Annotations in space are retrieved by computing:

�"�U�S�B�O�T�G� �. �5�"�


or, if the filter has also been learned, via:

�"�G
�U�S�B�O�T�G� �. �5� �E�J�B�H

�
��G
�

� �"� ��

The computed matrix �"�U�S�B�O�T�G has dimensions �O�W�P�Y�F�M� �O�B�O�O�P�U�B�U�J�P�O�T, and therefore 
denotes the annotations in space.

Cell-type calling. When A describes cell types, �"�U�S�B�O�T�G describes the probabilistic 
counts for each cell type in each cell voxel. This corresponds to probabilistic 
mapping and can be interpreted as the mixture of cell types that best explain 
the in situ gene expression. When the technology allows for single-cell spatial 
resolution, voxels correspond to single cells in space. In this case, probabilistic 
mapping can be seen as an unnormalized probability distribution over cell types 
for the voxel or cell. As a consequence, for technologies with single-cell spatial 
resolution, we can define a deterministic mapping as the mapping assigning the 
most likely cell type in this distribution to each spatial cell.

Mapping spatial data from targeted technologies. smFISH (Fig. 1), MERFISH  
(Fig. 2), and STARMap (Fig. 3) allow for single-cell spatial resolution; therefore,  
the number of spatial voxels needs to be equal to the number of cells. As 
snRNA-seq profiles are typically more numerous than are MERFISH voxels, 
we can use the mapping with the learned filter, namely, Eq. (2). In this case, 
�O�U�B�S�H�F�U�@�D�F�M�M�T� �O�W�P�Y�F�M and the expected density ��E is uniform and equal to �E�K� ��

�O�W�P�Y�F�M
 for 

all j. This enforces that each cell is mapped to one voxel only and vice versa. If the 
number of available single cells is lower than the number of spatial spots, we can 
instead map with Eq. (1), using the same constant density ��E.

For the MERFISH case, we mapped 58,022 10Xv3 snRNA-seq profiles in 4,951 
spatial spots. From the 26,944 genes in the snRNA-seq data, we selected 1,408 
marker genes as the top 100 marker genes stratified across the 22 cell types. We 
mapped using the intersection between these marker genes and the 254 MERFISH 
genes, which corresponded to 253 genes. For the leave-one-out validation strategy, 
we partitioned the genes into 252 training genes and a single test gene (unseen in 
the learning of the model), and repeated the training 253 times, each time leaving 
out a different gene, to obtain a prediction for each gene.

For the smFISH case, we mapped 11,759 SMART-Seq2 snRNA-seq profiles in 
4,840 spatial spots. In this case, 40,056 transcripts are measured in the snRNA-seq 
data. Only 22 genes were measured in smFISH, all of which were also present in 
the snRNA-seq data. Therefore, we used all 22 genes for mapping.

For the STARmap case, we used the same snRNA-seq data as for smFISH, 
which we mapped on 1,550 spatial spots. We took the intersection of 995 genes 
between the 1,020 STARmap transcripts and the 40,056 transcripts in the 
snRNA-seq data. We used these 995 genes for mapping.

The algorithm converges after 1,200 epochs in all the experiments. Tangram’s 
mapping output is always probabilistic. For deterministic mapping, we start  
from a probabilistic mapping and then choose the highest probability cell in each 
spatial voxel.

Mapping Visium data. We began by identifying the Post ROI on the Visium 
histological image using our registration pipeline (below). Next, we segmented 
the cells within the ROI using the software ilastik (https://www.ilastik.org). We 
then built the density vector ��E, by computing the cell density inside each voxel 
(that is, Visium circle, as in Fig. 1e). We mapped using the objective described 
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in Eq. (1). Mapping yields the matrix M, which we used to generate probability 
maps for the cell types within the ROI. To deconvolve, we mapped using Eq. (2), to 
constrain the expected number of cells in each Visium voxel. Specifically, we used 
�O�U�B�S�H�F�U�@�D�F�M�M�T� �O�T�F�H, where �O�T�F�H is the total number of segmented cells in the Visium 
ROI, to enforce that only a subset of cells is actually mapped. The count term 
combined with the density term led to the expected number of mapped cells in 
each Visium voxel. After training, we assigned the types of the cells mapped within 
each voxel randomly to specific segmented cells within that voxel.

For probabilistic mapping on Visium data, we ran the optimizer for 300 epochs 
to reach convergence. At the end, more than 99% of cells were assigned to an 
individual voxel with probability greater than 50%. For deterministic mapping in 
deconvolution, we trained the optimizer for 6,000 epochs to reach convergence. 
At the end, more than 99% of cells were assigned to an individual voxel with 
probability greater than 50%. For the section 1 dataset, the number of cells filtered 
( �G�J�� ������) was 880 (89% of segmented cells). Segmented cells for which there was 
no filtered mapped cell are not shown in the figures.

For both probabilistic and deterministic mapping, we used 58,022 10Xv3 
snRNA-seq profiles for 162, 161, and 134 spatial spots, respectively, in section 1, 
section 2, and section 3. Among the 26,944 transcripts in the snRNA-seq data, 
1,408 marker genes were selected. We mapped using the intersection of these genes 
with Visium genes (31,053), corresponding to 1,408 genes.

Finally, cell segmentation is required for the method for deconvolving Visium 
data. However, Tangram does not require cell segmentations for obtaining 
probability maps of cell types (Fig. 4b) or correcting gene expression (Fig. 4e). 
Tangram does not currently perform cell segmentation, for which we used 
pre-existing tools, such as ilastik (http://www.ilastik.org). and nucleAIzer37. Both 
tools were used to segment the histological images of our Visium dataset, and final 
segmentation was obtained by merging the results from the two methods.

Mapping Allen atlas data. We used 58,022 10Xv3 snRNA-seq data for 83, 38, and 43 
spatial spots, respectively, in the anterior, mi,d and posterior ROIs. Among 26,944 
transcripts in the snRNA-seq data, 1,408 marker genes were selected. We mapped 
using the intersection between these genes with Allen atlas genes measured 
coronally (overall, 4,345 genes); the intersection corresponds to 750 genes. The 
algorithm converged after 150 epochs.

Data collection—snRNA-seq data and histological images. Mouse experiments. 
Mice were group housed with a 12-hour light–dark schedule and allowed to 
acclimate to their housing environment for 2 weeks post-arrival. All procedures 
involving animals at MIT were conducted in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals under 
protocol number 1115-111-18 and were approved by the Massachusetts Institute of 
Technology Committee on Animal Care. All procedures involving animals at the 
Broad Institute were conducted in accordance with the US National Institutes  
of Health Guide for the Care and Use of Laboratory Animals under protocol 
number 0120-09-16.

Brain preparation prior to anatomical dissection and snRNA-seq. At 60 days of age, 
C57BL/6J mice (50% males, 50% females) were anesthetized by administration of 
isoflurane in a gas chamber, with a flow of 3% isoflurane for 1 minute. Anesthesia 
was confirmed by checking for a negative tail pinch response. Animals were  
moved to a dissection tray and anesthesia was prolonged via a nose cone 
through which 3% isoflurane flowed for the duration of the procedure. 
Transcardial perfusions were performed with ice-cold pH 7.4 HEPES buffer 
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 
7.5 mM MgCl2, and 2.5 mM KCl to remove blood from the brain and other 
organs sampled. The brain was removed immediately and frozen for 3 minutes 
in liquid nitrogen vapor and moved to long-term storage at –80 °C. A 
detailed protocol is available at protocols.io (https://www.protocols.io/view/
fresh-frozen-mouse-brain-preparation-for-single-nu-bcbrism6).

Generation of MOp dissectates and snRNA-seq data. Frozen mouse brains were 
securely mounted by the cerebellum onto cryostat chucks with OCT embedding 
compound such that the entire anterior half, including the primary motor 
cortex (MOp), was left exposed and thermally unperturbed. Dissection of 3 
consecutive 500-�m anterior–posterior (A–P) spans of the MOp was performed 
by hand in the cryostat using an ophthalmic microscalpel (Feather safety Razor 
no. P-715) precooled to –20 °C and donning 4� surgical loupes. Each 500-�m 
step was accomplished by advancing the cryostat (Leica CM3050S) 100 �m 5 
times in trimming mode and cutting out each dissectate 100 �m at a time. This 
stepwise approach serves to ameliorate disruption of the brain tissue surface 
that occurs with large steps. Each excised tissue dissectate pool was placed into 
a precooled 0.25-ml PCR tube using precooled forceps and stored at –80°C. In 
order to assess dissection accuracy, 10-�m coronal registration sections were 
taken at each of the 500-�m A–P dissection junctions and imaged following Nissl 
staining. Nuclei were extracted from the frozen tissue dissectates using gentle, 
detergent-based dissociation, according to a protocol (https://www.protocols.
io/view/frozen-tissue-nuclei-extraction-bbseinbe) adapted from one generously 
provided by the McCarroll lab, and loaded into the 10x Chromium V3 system 

(10x Genomics). Reverse transcription and library generation were performed 
according to the manufacturer’s protocol.

Analysis of sc/snRNA-seq data. All sc/snRNA-seq datasets were analyzed using the 
scanpy package45. All data were preprocessed via the following steps: we removed 
cells with high mitochondrial gene content and normalized the data to correct for 
library size. The resulting snRNA-seq data were ready to be mapped with Tangram. 
To compute marker genes, we applied a computational pipeline described in 
the tutorial of the scanpy package46 (https://scanpy-tutorials.readthedocs.io/
en/latest/pbmc3k.html). Briefly, we applied the function �G� �Y� � �M�P�H� �� � �Y�  to 
the normalized counts, and standardized gene expression. Next, we performed 
principal components analysis and retained the first 50 principal components 
of the gene expression matrix and computed a k-nearest neighbor (k-NN) 
graph using the Euclidean distance in expression space. All cell types in the sc/
snRNA-seq data were preannotated, and we verified via a UMAP plot showing 
that cells with the pre-existing annotations form distinct clusters in transcriptome 
space (results shown for MOp snRNA-seq in mouse; Extended Data Fig. 7a). We 
then identified differentially expressed marker genes by a statistical t-test (the 
top two genes for each cell type for the MOp snRNA-seq in mouse are shown in 
Extended Data Fig. 7b). In mapping onto spatial transcriptomic data, we chose the 
top 100 marker genes for each cell type, which overall sums up to ~1,000 genes. 
We chose not to map using the entire transcriptome, as several genes in Visium 
data are not high quality (for example, because of dropouts), and it would not be 
beneficial to add those genes to the training set. Also, by leaving out a large part of 
the transcriptome, we have a convenient test set of genes. Finally, nonmarker genes 
fluctuate in their basal signal and would not contribute to mapping.

We used normalized quantities to visualize gene expression via mRNA counts 
(Figs. 1b,c,f, 2c,e,f, 3c–e, 4e,g,h, and 5c,d), gene expression via fluorescence (Figs. 
2c,f, 3c, 4h, and 5c) chromatin accessibility via ATAC peak counts (Fig. 1c,f), and 
transcription factor activity via z-scores (Fig. 5d). Normalization is performed by 
rescaling the colorbar in each image, so that the minimum (and maximum) value 
of the image correspond to the color with minimum (and maximum) value in the 
colorbar. This is the default behavior of the plotting functions of the Python library 
matplotlib (https://matplotlib.org), which we used throughout the manuscript.

Data collection—Visium. Mice. All mouse work was performed in accordance 
with the Institutional Animal Care and Use Committees (IACUC) and relevant 
guidelines at the Broad Institute, with protocol IACUC 0147-02-17.

Tissue processing. Fresh-frozen wild-type C57BL/6 whole mouse brain was 
embedded in OCT (TissueTek Sakura) and cryo sectioned at 10-�m thickness at 
–20°C. Tissue sections were placed in 6.5-mm squared capture areas on precooled 
Visium Tissue Optimization slides (3000394, 10x Genomics) and Visium Spatial 
Gene Expression slides (2000233, 10x Genomics) and were adhered by warming 
the backside of the slides and placed at –80 °C for up to 3 days.

Visium spatial gene expression library generation. The tissue optimization 
sample slide and spatial gene expression slide were processed according to 
the manufacturer’s protocols. Briefly, tissue sections were warmed to 37°C for 
1 minute and fixed for 30 minutes in ice-cold methanol, followed by 1 minute of 
incubation in isopropanol at room temperature. Tissues were then H&E-stained 
according to the protocol. Morphology brightfield images were taken with a 
Zeiss Axio microscope with the Metafer slide-scanning platform (Metasystems) 
with a �10 objective. For the tissue optimization slide fluorescent images, a 
TRITC filter and �10 resolution were used. Images were joined together with 
the VSlide software (Metasystems) and exported as tiff files. To optimize tissue 
permeabilization time, 6 different time points with 3-minute increments were 
tested on the tissue optimization sample slide. Twelve minutes of permeabilization 
was used for the spatial gene-expression slide. RNA released from the tissue was 
converted to complementary DNA by priming to the spatial barcoded primers 
on the glass via reverse transcription in the presence of template-switching 
oligonucleotide, to generate full-length, spatially barcoded, unique molecular 
identifier (UMI)-containing complementary DNA. Subsequently, following 
second-strand synthesis, a denaturation step released the cDNA, followed by PCR 
amplification. Finally, sequencing-ready, indexed spatial gene-expression libraries 
were constructed. Two of the libraries were pooled together and sequenced on a 
NextSeq 500/550 High output kit at 1.8 pM concentration. The sequencing settings 
were: read 1, 28 cycles; read 2, 91 cycles; index 1, 8 cycles.

MOp Visium raw read processing. Raw FASTQ files generated by Illumina’s 
BCL2FASTQ conversion and the histology H&E images were provided as input 
to the SpaceRanger software (10x Genomics) version 1.1.0, available at https://
support.10xgenomics.com/spatial-gene-expression/software/downloads/latest. 
Sequencing reads were mapped to the mm10 reference mouse genome using 
STARv2.5 mapping as part of SpaceRanger suite. Spatial barcodes were assigned 
by SpaceRanger to the barcoded spatial spots and aligned with the tissue image 
with the aid of the fiducial frames. Barcodes/UMI and genes were counted for the 
individual spots to generate an output matrix of gene expression per spot that was 
used as input for downstream data analysis.
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MOp MERFISH data preprocessing. We preprocessed the MERFISH to remove 
subcortical cells. To identify subcortical cells, we identify cells overly expressing 
Nxph4 (a marker gene of L6b region) and fit those cells with a square-root 
polynomial. All cells below the fit were considered subcortical and were removed.

Image datasets for registration pipeline. To locate ROIs, we used images of 
Nissl-stained coronal mouse brain slices collected in the Macosko lab. To train and 
test the models presented in Fig. 6 and Extended Data Figs. 4 and 5, we used the 
following public image datasets:

�t�� (dataset avg): 1,320 images or segmentation masks of coronal slices from 
the average template of the Allen adult mouse brain atlas at resolution of 
10 �m (available at http://download.alleninstitute.org/informatics-archive/
current-release/mouse_ccf/average_template/slice_images/).

�t�� (dataset ara): 1,320 images or segmentation masks of coronal slices from  
the Nissl template of the Allen adult mouse brain atlas at resolution of  
10 �m (available at http://download.alleninstitute.org/informatics-archive/
current-release/mouse_ccf/ara_nissl/).

�t�� (dataset p56c): 132 images or segmentation masks of coronal slices from the 
Allen P56 coronal reference atlas (available at https://mouse.brain-map.org/ 
experiment/thumbnails/100048576?image_type�atlas).

�t�� (dataset p56d): 504 images of coronal slices from the Allen Development  
Atlas P56 (available at http://help.brain-map.org/display/atlasviewer/ 
Allen�Developing�Mouse �Brain�Atlas ).

�t�� (dataset brainmaps): 111 images of coronal slices from Nissl-stained  
BrainMaps atlas (ID: 43) (available at http://brainmaps.org/index.php? 
action�viewslides&datid�43), and 87 images of coronal slices from 
Nissl-stained BrainMaps atlas (ID: 38) (available at http://brainmaps.org/
index.php?action�viewslides&datid�38).

�t�� (dataset ish): 30 images of coronal slices from the Allen ISH Data (available  
at https://mouse.brain-map.org/search/index).

Siamese network model for depth calling. Building on methods for face recognition, 
we taught a latent space on mouse brain images using a Siamese network model 
(Extended Data Fig. 4a). We trained the model (below) so that each image was 
encoded according to salient anatomical landmarks, whereas technical properties 
such as illumination or staining were factored out. The learned latent space 
displayed a one-dimensional manifold structure, where the ‘head’ of the manifold 
contains images from the olfactory bulb, and the ‘tail’ contains images from 
cerebellum (Extended Data Fig. 4b). The model predicted the image from the 
Allen CCF at the same coronal depth of our histological image. We validated the 
predictions by checking consistency across the entire training set (Extended Data 
Fig. 4c), and by expert visual inspection (Extended Data Fig. 4d). We then used the 
trained model to retrieve the image from the Allen CCF onto which we registered 
our histological image.

We used datasets avg, ara, p56c, and p56d for training. Training images were 
resized to 224 � 224 and casted to numerical type float32. Pixel values were 
rescaled between zero and one, prior to training. All images were augmented 
using the imgaug (https://github.com/aleju/imgaug) library. We used numerical 
coordinates as training labels, indicating the spatial coronal depth (that is, 
posterior) of each mouse brain image on a scale of 10 �m. For the avg and ara 
datasets, labels were readily available from their tensor coordinates. Labels for 
the p56c and p56d datasets were also readily obtained using the AllenSDK API 
(https://allensdk.readthedocs.io/en/latest/). Dataset brainmaps and ish were 
manually annotated and used as test sets.

In designing the Siamese network model, we used a DenseNet169 encoder 
pretrained on the ImageNet dataset and open-sourced through Keras Applications. 
We finetuned the encoder by training the last convolutional layer. We added two 
fully connected layers on top of the encoder in order to map the extracted features 
to our 512-dimensional latent space. A last fully connected layer was used to map 
the latent space to the model output as represented in Extended Data Fig. 4. All 
fully connected layers were trained.

A training sample consisted of two random images from the annotated 
datasets. The difference in spatial depth coordinates between the two images, 
denoted by ��E�J, was used as the label. For example, if the first image was at posterior 
(depth) 500 �m and the second at a posterior 700 �m, the corresponding label 
would be ��E�J� ������. We used as penalty the mean-squared error between the spatial 
depth difference predicted by our network di, and the labels ��E�J:

�.�4�&� �E�
��E� �
��
�/

�/�

�J� ��

� �E�J� ��E�J�
���


where N indicates the number of training samples. We trained the model for 50 
epochs using 18,000 image pairs per epoch, partitioned to batches of 16 images.

Semantic segmentation model for anatomical region calling. The goal of the semantic 
segmentation model is to generate a custom mask for our images using the 
same color scheme adopted by the Allen ontology. For this, we applied semantic 
segmentation, and segmented five classes in our histological image (Extended 

Data Fig. 5a): background, cortex, cerebellum, white matter, and other gray matter. 
Because the training set is scarce, as described below, we adopted a combination of 
transfer learning and heavy augmentation during training (Extended Data Fig. 5b) 
and validated it by inspecting predictions on test atlases (Extended Data Fig. 5d). 
Finally, we combined segmentation with the Siamese model described above, to 
obtain a fully automated registration pipeline (Extended Data Fig. 5c), leveraging 
the fact that registering two masks (one on the Allen image and one on the image 
of our sample) is a simpler problem than registering the two images directly.

To train the semantic segmentation model, we used datasets avg, ara, and 
p56c as training sets, since masks were available. Training images were resized 
to 512�512 and casted to type float32. Pixel values were rescaled between 
zero and one. As labels, we used superimposable segmentation masks with the 
same dimension as the training images. Each mask was one-hot encoded into 
a 5-channel tensor to annotate each pixel into five different classes (Extended 
Data Fig. 5): background (black), cortex (green), cerebellum (yellow), other 
gray matter (gray), and white matter (brown). We used colors consistent with 
the Allen ontology to facilitate registration. For the avg and ara datasets, we 
used masks from the Allen CCFv3 ontology 2017 (available at http://download.
alleninstitute.org/informatics-archive/current-release/mouse_ccf/annotation/
ccf_2017/annotation_10.nrrd). For the p56c dataset, we downloaded the SVG 
masks from the Allen Institute website, and rendered them into images using the 
library released in this study, which builds on Cairo SVG (https://cairosvg.org). 
Both images and masks were augmented using the same pipeline adopted for the 
Siamese model. In transforming the masks, we ensured that the one-hot structure 
was preserved in the masks after augmentation.

We used a semantic segmentation model from the Tensorflow Keras version 
of the segmentation_models library (https://github.com/qubvel/segmentation_
models). Specifically, we chose a U-NET architecture with a ResNet50 backbone. 
All weights have been randomly initialized following the He scheme, with the 
exception of the ResNet50 encoder which was pretrained on ImageNet. The model 
was trained to optimize the superposition of the cross entropy and Jaccard index 
(that is, intersection-over-union). The loss function is defined as:

�-� �H�
 �Q� � � �H� �M�P�H� �Q� �
�Q� �H

�Q� �H
��

Where ga is the ground truth image and p is the corresponding model prediction. 
The model last unit employs a softmax activation function, thus outputting the 
probability of each pixel to be in each of the five classes. By applying an argmax 
function, we assign each pixel to its most probable class. Finally, we relied on 
test-time augmentation to increase model performances: each test image was 
augmented 12 times, and final predictions were deaugmented and averaged.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
smFISH data, Visium VISp data, MERFISH VISp data and Smart-Seq2 VISp 
snRNA-seq data are available at http://github.com/spacetx-spacejam/data. 
MERFISH MOp data are available at the Brain Image Library (https://doi.
brainimagelibrary.org/doi/10.35077/g.21). SHARE-seq dataset are available 
(GSE140203). The STARmap dataset is publicly available at ref. 14. All other 
data are available at: https://console.cloud.google.com/storage/browser/
tommaso-brain-data.

Code availability
Tangram code is available at https://github.com/broadinstitute/Tangram, along 
with the datasets used to generate Fig. 1.
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Extended Data Fig. 1 | Mapping results on Visium data are consistent across three datasets. a. Consistent probabilistic maps across models trained 
from replicate datasets. Probability of mapping (color bar) of each cell subset (gray label) from each of 3 major categories in models trained separately 
from three Visium sections (rows). Section I is the same shown in Fig. 3b. b,c. Consistent deconvolution across models trained from replicate datasets. 
b. Fraction of cells (y axis) of each cell type (x axis) obtained after deconvolution with models trained separately by each of three Visium sections and in 
snRNA-seq. c. Predicted single cells (colored dots, legend) in each Visium voxel (grey circle) based on snRNA-seq data mapped onto Visium section 2 
(left) and section 3 (right) (compare to Fig. 3b). Cell assignment within a voxel is random with respect to the specific segmented cell.
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Extended Data Fig. 2 | Tangram reveals structural organization in the mouse hypothalamus. a. Registration pipeline identifies hypothalamus ROI on 
Visium section. Nissl-stained image of Section 1 from the Visium dataset (as in Fig. 4), marked with the hypothalamus ROI (light green) identified by our 
registration pipeline. b. Probabilistic mapping of whole mouse hypothalamus snRNA-seq32 to Visium hypothalamus ROI. Probability of mapping (color 
bar) of each cell type (grey labels; annotations as in32) to the Visium hypothalamus ROI. c. Probabilistic maps recover neuronal sub-structures in the 
hypothalamus. Probability of mapping (color bar) of each inhibitory (GABA labels) and excitatory (Glu labels) neuron subsets. Annotations follow32.
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Extended Data Fig. 3 | Cross-species mapping of human sc/snRNA-seq to mouse spatial data in brain and kidney. a-c. Cross species probabilistic 
mapping between human primary motor cortex (MOp) snRNA-Seq, and mouse MOp MERFISH. a. Agreement in cell type patterning in human-mouse 
and mouse-mouse mapping. Probability of mapping (color bar) of each cell type (columns) in the cross species case (row label ‘Human’) versus the 
within-species case (row label ‘Mouse’; probability maps as in Fig. 2a). b. Quantitative comparison of cell type patterns between cross and within species 
mappings. Cosine similarity (blue dots) of cross-species and within-species probability maps for each cell type (labels). c. Similarities and differences of 
individual gene maps between cross and within species mappings. Gene expression (color bar, normalized mRNA counts, Methods) for various genes 
(horizontal labels) for the cross-species mapping (row label ‘Human’) and the within-species mapping (row label ‘Mouse’). d,e. Cross species probabilistic 
mapping between human kidney scRNA-Seq and mouse kidney Visium. d. Hematoxillin&Eosin (H&E)-stained image of a coronal section of mouse kidney 
on a Visium slide. e. Probability of mapping (color bar) of each human kidney cell type on the mouse Visium section.
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Extended Data Fig. 4 | A Siamese network model learns a similarity metric for brain sections based on anatomical landmarks in mouse brain images. a. 
Schematic of neural network architecture. A pair of images is fed to two convolutional encoders, which encode them into a 512-dimensional latent space. 
The image pair is labeled by the spatial coordinate (i.e., coronal depth) difference between the two images. b. The learned latent space is a 1D-manifold 
ordered by spatial coordinates. UMAP plot of the encoded training images from individual atlases (legend) colored by spatial depth (color bar). Insets 
illustrate four anatomically similar images from three different atlases and a test image. c. Prediction of spatial coordinates for a test image. c. Predicted 
spatial coordinate distance (y axis) between a test image (inset, left panel) and each image of the training set obtained at different spatial coordinates (x 
axis). Dashed orange line: ��B�Y� �C� fit via mean square error minimization ��B� � ��������� 
 � C� ����� . The minimum of the fit is the predicted spatial coordinate 
(associated image is in the inset, right panel). d. Examples of model predictions (right) on test images (left) from the Macosko lab (first column; 
Methods), BrainMaps atlas (second column) and Allen ISH dataset (third and fourth columns).
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Extended Data Fig. 5 | Anatomical region calling via semantic segmentation. a. Neural network model used for semantic segmentation. A U-net model 
is trained on mouse brain images from Allen atlas (left) to recognize five different classes on a mouse brain image (color legend, right). b. Augmentation 
pipeline. Each image undergoes a series of stochastic transformations including affine displacements, dropouts and color shifts (Methods). Four training 
samples are shown. c. Schematic of registration strategy. A segmentation mask of an experimental image is produced (I), the mask of each atlas image is 
extracted in parallel (II), the two masks are registered to each other (III); and finally the learned transformation is used to register the original images (IV). 
d. Prediction examples. Test images (left) and their predicted anatomical region calls (right).
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Extended Data Fig. 6 | Post ROIs registration of Visium histology to the Allen Brain Atlas. a. Histological image input. Nissl-stained mouse brain images 
used to map the Post ROI on the Allen Atlas (top; as in Fig. 6a) and on Visium (bottom; as in Fig. 4a). b. Mask registration. Histological images from (a) 
overlaid with the anatomical masks of matching region in the Allen CCFv3. Color legend for anatomical regions as in the Allen Brain Atlas). c. Post ROI. 
Sections (as in a) with anatomical labels (as in b) with the post ROI (light green area) identified on the Allen CCFv3 anatomical masks, as a result of 
registration.
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Extended Data Fig. 7 | Mouse motor cortex cell subsets based on snRNA-seq. a. Cell clusters. UMAP embedding (Methods) of snRNA-seq profiles 
(dot) colored post hoc by cell type clusters (color legends with abbreviations; complete name in Extended Data Table 1). b. Cell subset specific markers. 
Distribution of normalized expression level (z-scores of logarithmic counts, color: median expression; Methods) for the two top marker genes (columns, 
bottom) of each cell type (rows; columns, top).
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