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ARTICLE

Three-dimensional spatial transcriptomics
uncovers cell type localizations in the human
rheumatoid arthritis synovium
Sanja Vickovic 1,2,3,4✉, Denis Schapiro 1,5,6,13, Konstantin Carlberg 7,13, Britta Lötstedt1,7,13,

Ludvig Larsson 7,13, Franziska Hildebrandt8, Marina Korotkova9,10, Aase H. Hensvold9,10, Anca I. Catrina9,10,

Peter K. Sorger 5, Vivianne Malmström 9,10, Aviv Regev 1,11,12 & Patrik L. Ståhl 7

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic

recruitment and expansion of multiple cell types that interact in multifaceted ways within a

localized area. Rheumatoid arthritis synovium has primarily been studied either by immu-

nostaining or by molecular profiling after tissue homogenization. Here, we use Spatial

Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a

transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial

inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific

localization patterns at and around organized structures of infiltrating leukocyte cells in the

synovium. Combining morphological features and high-throughput spatially resolved tran-

scriptomics may be able to provide higher statistical power and more insights into monitoring

disease severity and treatment-specific responses in seropositive and seronegative rheu-

matoid arthritis.
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Rheumatoid arthritis (RA) is a chronic autoimmune disease
that primarily affects the joints. It consists of two broad
subsets, seropositive and seronegative. Seropositive RA,

comprising two-thirds of patients, who often exhibit more severe
symptoms, is a classical autoimmune disease defined by the presence
of rheumatoid factor (RF) or anti-citrullinated protein antibodies
(ACPA)1. RA pathogenesis involves complex interactions between
fibroblasts and cells of the innate and adaptive immune systems that
lead to the imbalanced secretion of pro- and anti-inflammatory
cytokines2. Studies of RA pathology have reported markers for an
activated synovial fibroblast state3,4, while others revealed the con-
tribution of adaptive immune responses in response to the pro-
duction of specific cytokines5–7. Activation and expansion of
fibroblasts in the synovial lining also contribute to changes in the
extracellular matrix, further contributing to bone and cartilage
destruction8. Current existing therapies, mainly targeting the
immune cell components, can reduce symptoms and progression,
but only ~60% of patients respond adequately to these treatments9.

Regions within sites of inflammation are filled with local
accumulations of infiltrating leukocytes that form more or less
organized structures. Such aggregates histologically resemble
secondary lymphoid organs (SLOs) and are often termed tertiary
lymphoid organs (TLOs)10. Patients with large and developed
TLOs have been reported to respond more poorly to existing
therapies11, but this is a topic of discussion in the field12,13.
Recently, single-cell RNA-Seq studies have uncovered additional
fibroblast and immune cell types and states associated with RA
and TLOs14,15. However, the spatial organization of these cells
and their impact on TLO pathogenesis in RA remains unknown.

We have previously developed Spatial Transcriptomics16–18 (ST), a
method for high-throughput transcriptome profiling that retains
spatial information in tissues16. In ST, transcriptomes are barcoded
directly from frozen tissue sections. Tissue sections are placed on a
glass slide covered with 1000–2000 features, each carrying a uniquely
barcoded poly(d)T capture sequence enabling spatial mRNA capture.
Tissue sections are then stained with Hematoxylin and Eosin (H&E)
and imaged by transmitted light microscopy, followed by gentle
permeabilization, mRNA capture on the poly(d)T probes, and RNA-
Seq. Analysis of the resulting data provides a direct link between
histology and RNA-Seq.

Here we used ST to spatially profile synovial tissues from ser-
opositive and seronegative RA patients. To address the genomic
variability and profile the TLO structures, we have studied gene
expression as localized and three-dimensional (3D) views. We report
the resulting gene expression signatures, spatial clusters, morpho-
logical features, and cell type composition changes at the sites of
synovial inflammation. This provides a 3D, high-throughput tran-
scriptomic view of rheumatoid arthritis-affected synovial biopsies.

Results
3D spatial profiling of RA synovia. To study the spatial orga-
nization in RA, we profiled 27 tissue sections and a total of 17,117
tissue spots by ST (“Methods”) collected from seropositive
(RF+ACPA+, n= 3) and seronegative (RF−ACPA−, n= 3) RA
patients at the time of joint replacement (Fig. 1, Supplementary
Table 1). We optimized the technology for the tissue with the
specific characteristics of synovia (“Methods,” Supplementary
Fig. 1), collected profiles from consecutive sections, and aligned
and interpolated the data to create a 3D view within each biopsy
(“Methods,” Fig. 1). This 3D sampling approach spanned larger
distances creating an exploratory multidimensional view of an RA
synovial tissue biopsy.

Distinguishing TLO structures in seropositive and ser-
onegative RA. The biopsies from RA joints contain regions where
infiltrating leukocytes (or infiltrates) organize into cell-dense

areas to form TLO aggregates19. We detected TLOs as regions of
high density and distinct cellular topology (“Methods,” Supple-
mentary Fig. 2), where 80% of all manually-annotated infiltrates
were in regions with a cell density score higher than 70% (Sup-
plementary Fig. 3).

We then looked for spatial gene expression differences between
and within infiltrates. In the first seropositive biopsy (RA1,
“Methods”), analysis of spatially variable gene expression patterns
revealed two clusters of infiltrate features in the TLO aggregates
(“Methods,” Supplementary Fig. 4, and Supplementary Data 1)
varying in the expression of multiple genes including CD52,
MS4A1, and FN1 (Supplementary Fig. 5).

Next, this spatial organization generalized by 3D ST profiling
of consecutive sections in all joint-affected seropositive RA
patient biopsies. Using unsupervised clustering of the regions in
the entire RA1 biopsy, we identified four major spatial domains
characterized by distinct spatial gene expression patterns: Cluster
1 included 87% of all annotated RA1 infiltrate data points.
Clusters 2–4 included the remainder and followed radial spatial
patterns at consecutively increasing distances from the infiltrate
Cluster 1 regions and had lower cell density scores (Fig. 2a, b,
Supplementary Fig. 6a, and Supplementary Data 2). In another
seropositive biopsy (RA2), with large infiltrates that spanned
most of the sampled area, unsupervised clustering partitioned the
regions to three major clusters having distinct spatial expression
patterns (Fig. 2c, d and Supplementary Data 2). Again, Cluster 1
corresponded to the infiltrate areas, comprising 90% of regions
annotated by cellular morphology and high cell density, and the
two other clusters formed a radial pattern. Key genes followed
similar patterns to those in the RA1 samples, and included
induction of CD52 and MS4A1 infiltrates (Cluster 1, t test,
Benjamini–Hochberg (BH) adjusted, p ≤ 0.05) and increased
MMP3, FN1, TYROBP, and PRG4 expression in the surrounding
areas (Clusters 2–3, t test, BH adjusted, p ≤ 0.05, Supplementary
Fig. 6b). These infiltrate-specific and region-specific patterns are
further generalized in RA3, a specimen from a patient having
clinical characteristics similar to those of RA1–2 (Fig. 2e, f,
Supplementary Fig. 6c, and Supplementary Data 2).

Additionally, closer examination of intra-infiltrate spatial patterns
distinguished T and B cell-specific variation within the seropositive
TLOs. Lymph node/TLO-associated genes (LTB, CCL19 and
CCL21) and genes associated with B cells, T cells and their cross-
talk (CXCL13, CD52 and MS4A1), were upregulated (t test, BH
adjusted, p ≤ 0.05). To further explore this, we focused our analysis
on intra-infiltrate changes following Infiltrate6 in RA2 (Fig. 2c, left)
to identify TLO-specific spatial regions with distinct co-localization
patterns (Fig. 3). We observed co-expression of CD52 andMS4A1 in
highly localized patterns within TLO aggregates while the
CD52/SIGLEC10 receptor–ligand pair (“Methods”) was contained
to distinct spatial clusters within the TLO sites. Upregulation of
CCL21 and CCL19 (present in 75% of all Cluster 1 features), was
also accompanied with high expression of IL7R in 39% of spatial
measurements (Fig. 3), including matching receptor–ligand inter-
actions with CCR7. While these CCL19HighCCL21High sites were
restricted to the centers, MZB1+XBP1+ sites were spatially overlaid
with the outer rim of the TLO-like structures (Fig. 3). These spatial
gene expression patterns indicated the localized prevalence of
different cell types in the TLOs.

Finally, the TLO marker genes (CD52 and MS4A1) were
significantly higher (t test, BH adjusted, p ≤ 0.05) in the same
cluster denoting the TLO infiltrate structures in seronegative
patient biopsies (RA4-6) (Supplementary Fig. 7, “Methods”)
although the overall expression of these markers was significantly
lower (t test, BH adjusted, p ≤ 0.05) in the seronegative than in
seropositive patients. In seronegative patients, we did not detect
similar gene expression patterns (FN1, MMP3, and PRG4) in the
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areas surrounding the TLO structures. Instead, these genes were
found to be upregulated (t test, BH adjusted, p ≤ 0.05) in the
infiltrates themselves. Gene Ontology (GO) analysis (“Methods”)
corroborated these findings further—all seropositive patients
were dominated by signatures of leukocyte migration, cell
chemotaxis, and humoral immune responses; while the serone-
gative patients reported strong signals of extracellular matrix
disassembly and regulation of cell growth.

Substantial variation in cell composition and spatial organi-
zation in the RA synovium. To further explore the spatial gene
expression patterns and relate these changes to the cellular
composition of RA regions, we used previously published scRNA-
Seq references14,15 to define cell-type-specific signatures, and
scored our spatial regions in each tissue volume (Fig. 4a,
“Methods”). Out of the 16 cell types available in the
references14,15, plasma cells, macrophages, CD55+ fibroblasts,
THY1+ fibroblasts, and specifically HLA-DRAHigh sublining
fibroblasts were found in every analyzed sample and section while
spatial clusters in both patient subsets were dominated by mix-
tures of distinct cell types (Supplementary Fig. 8 and Supple-
mentary Data 3).

In seropositive RA biopsies, macrophage-enriched cell areas
were on average significantly co-localized with higher presence of
CD55+ lining as well as HLA-DRAHigh and CD34+ sublining
fibroblast cells in the whole tissue volume (average Pearson’s R
0.76, p < 0.05, Supplementary Fig. 9a). Additionally, in specific
structures spanning both TLOs and surrounding areas in RA2,
macrophage areas and THY+ fibroblast areas co-occurred with
plasma cell areas (Supplementary Fig. 9b), a trend not observed in
any other seropositive sample in this study. Interestingly, while the
TLO structures in seropositive RA samples were dominated by
both B cells and CD4+ T cells, RA2 was again specific with
significantly higher (t test, BH adjusted, p ≤ 0.05) abundances of
CD8+ T cells and Tph cells. Mapping receptor–ligand interactions
in the TLOs (“Methods”) confirmed that the TLO dynamics in
seropositive samples was supported by complex chemokine
receptor-ligand interactions between the abundant immune cells
present (“Methods,” Fig. 3), while in seronegative samples;
fibronectin, collagen and integrin complexes on different fibro-
blasts dominated the TLO sites (Fig. 4b, c). While fibroblasts in
seropositive patients found in areas surrounding TLOs were
associated with GO processes involved in extracellular matrix
reorganization, cell metabolic processes, chondroitin sulfate
synthesis, and vasculature development; fibroblasts in seronegative

patients, apart from being involved in extracellular matrix
reorganization, were also contributing to aminoglycan processing
and antigen presentation.

In seronegative RA biopsies, no significant levels (t test, BH
adjusted, p ≤ 0.05) of either B or T cell scores were seen in the
tissue volumes. Conversely, DCs were substantially increased in
the infiltrate areas of seronegative RA samples and their
expression was not spatially correlated to plasma cell presence.
This is the opposite of what was observed in all seropositive
patient samples. In RA1, tissue recruitment of DCs in areas
surrounding the infiltrates was associated with a decrease in
plasma cells (Pearson’s R −0.96, p < 0.05). Similar was seen in
RA2, a tissue volume which had the largest TLO-like structures
and most B cells; DCs were few, their abundance significantly
lower (t test, BH adjusted, p ≤ 0.05) as compared to all other
tissue volumes and these DCs were also spatially contained to
plasma cell sparse zones (Pearson’s R −0.89, p < 0.05, Supple-
mentary Fig. 9c). The dendritic cells in seronegative patient tissue
volumes were involved in antigen receptor activation, activation
of immune and T cell signaling, while in seropositive patient
volumes, these cells contributed mostly to apoptotic signaling.

Connecting H&E and spatial transcriptomics reveals unified
spatial clusters of morphological and molecular features.
Connecting morphological data to tissue-specific molecular
profiles20–23 helps translate clinically relevant H&E information24,25

to spatially resolved molecular signatures. We hypothesized that
distinct cellular morphological features would also be reflected in
different ST profiles and in other spatial features, such as cell den-
sity. To explore this, after cell segmentation of the H&E image
accompanying spatial transcriptomics, we clustered the segmented
cells by their morphological features (“Methods,” Fig. 5a) and then
examined their relation to other features from the H&E image and
from ST.

Cluster1 (RA2), which represents the areas of infiltration, was
enriched in specific H&E-derived cell clusters (Fig. 5b), and those
were, as expected, also regions of high cellular density of small
cells across all samples (Fig. 5c, d). Conversely, Cluster4 (in RA2)
was prevalent in other H&E-defined cell clusters and those were
associated with phenotypically large cell sizes (Fig. 5d), in line
with abundances of larger cell types like macrophages and
fibroblasts in those distinct areas (Fig. 5e, f). Across all sections,
we distinguished quantitative descriptions of cellular morphology
and architecture in TLO areas and related them to single-cell
signatures (viewable in the histoCAT20 extension, “Methods”).

Fig. 1 Sampling and spatial barcoding of rheumatoid arthritis samples. Synovial tissue from two patient groups, seropositive and seronegative RA, were
sampled and the biopsies cryopreserved in OCT compound. The biopsies were cryosectioned and placed on a spatially barcoded microarray. Tissue
sections were H&E stained and the images recorded. While recording histology, positional information of each spatial (x,y) feature was also tracked. Cells
in the tissue were gently permeabilized and mRNA molecules captured on the spatially barcoded poly(d)T capture probes. The cDNA synthesis reaction
was performed on the slide surface and mRNA information copied. Libraries were prepared and pair-end sequenced. The data was processed so that
spatially barcoded expression information and the morphological images were registered and aligned. This resulted in spatial data transformation,
interpolation, and imminent visualization.
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Discussion
Spatially resolved genomic analysis of disease tissue holds pro-
mise for better precision phenotyping of patients and assessment
of treatment responses in a manner that combines established
histopathology with comprehensive molecular profiling. Here, we
created an exploratory 3D spatial gene expression catalog

comprising high-resolution transcriptome-wide volumetric maps
correlated to morphological features. This serves, to the best of
our knowledge, as the first combined morphological, spatial, and
transcriptional blueprint of tissue from autoimmune disease
patients, and spans multiple sections from two clinically relevant
RA subsets.

a
Morphological

annotaiton
Spatial

Clustering

Collagenous
and adipose
tissue Cluster2 Cluster4

Infiltrates
Cluster3Cluster1

log(norm counts)
0 6

Morphological
annotaiton

c
Spatial

Clustering
Infiltrate

Clustering

Cluster2Infiltrates

Cluster3Cluster1

Spatial Clustering Infiltrate Clustering

Cluster3Cluster1

Cluster2 Other annotation

6

IGLL5

COL1A2

PRG4

FN1

MARCO

MS4A1

CCL21

LTB

MMP3

SSR4

PIM2

e

FN1

Morphological
annotaiton

Spatial
Clustering

Infiltrate
Clustering

Cluster2Infiltrates

Cluster3Cluster1

Spatial Clustering Infiltrate Clustering

Cluster3Cluster1

Cluster2 Other annotation

SSR4
COL1A2
HTRA1
VCAM1
LTB
RAC2
CCL19
MS4A1
CXCL13
CD52
PIM2
DERL3
IGLL5
FN1
PRG4
MMP3
TIMP1
CLU

IGLL5

FN1

TIMP1

PIM2

CCL19

DERL3

VCAM1

CLU

PRG4

MMP3

SSR4

HTRA1

MARCO

Other
annotation Cluster2

Infiltrates Cluster3
Cluster1

log(norm counts)
0 4

Other
annotation Cluster2

Infiltrates Cluster3
Cluster1

log(norm counts)
0 4

Other
annotation Cluster2 Cluster4

Infiltrates
Cluster3Cluster1

log(norm counts)
0 4

b

d

f

500µm

500µm

500µm

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03050-3

4 COMMUNICATIONS BIOLOGY |           (2022) 5:129 | https://doi.org/10.1038/s42003-022-03050-3 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 2 Spatial data clustering in seropositive RA. a Morphological annotation, spatial clustering (color code), and FN1 spatial expression (color scale) in
RA1 patient tissue volume. Color-scale denotes normalized gene expression. b Heatmap of RA1 gene expression (color scale) where each column
represents one spatial feature and each row a gene. Spatial features (columns) have been color-coded into two morphological categories (pink; annotated
infiltrates and dark gray; other annotation) and based on their spatial cluster identities as determined in a. Example genes (rows) have been highlighted in
the image. c Morphological annotation, spatial clustering (color code) and infiltrate clustering (color code) in RA2 patient tissue volume. Location of
Infiltrate6 (6) is highlighted in the first section in the RA2 3D volume. d Same as in b denoted for RA2 patient tissue volume. e Same as in c for RA3 patient
tissue volume. f Same as in b denoted for the RA3 patient tissue volume. Scale bars represent 500 µm and are shared between the sections within the
individual patient tissue volume.
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The spatial clusters observed in synovial biopsies were dis-
tributed radially around the infiltrate sub-regions, further con-
firming the uniqueness of signals and cell types present in those
areas, and highlighting the potential role of complex center-based
TLO interactions in these biopsies. GO term analysis (“Methods”)
revealed the spatial cell type organization throughout the 3D TLO
volume transcriptionally connected to genes related to leukocyte
migration, cell chemotaxis, and humoral immune responses in
seropositive tissues, while the seronegative patients exhibited
signals of oxidative stress and receptor-mediated endocytosis.

The synovium provides a niche cytokine-rich fibroblast-
dependent environment for maintaining pro-inflammatory B
cells26. These cell-type complexes in TLOs build specific signaling
pathways through their interactions in close proximity. Mapping
receptor-ligand interactions to dissect cell–cell communication
(“Methods”) enabled us to systematically decode some of the cell-
type responses. In our study, we report that in all seropositive
patients, CXCL13 overexpression was significant in the TLOs (t
test, BH adjusted, p ≤ 0.05) and it has previously been shown
overexpression of CXCL13 stimulates recruitment of B cells to the
TLO sites resulting in an additional increase in localized auto-
antibody and cytokine production27. Next, we report that 34% of
these CXCL13 regions in seropositive tissue volumes co-localized

with RASGRP2 overexpression while 47% of regions exhibiting
CXCL13 downregulation were enriched for TYROBP. RASGRP2
had previously been implicated in arthritis development in
murine models28 and TYROBP, also known as DAP12, when in
presence of TREM2 signaling, further antagonizes cytokine
production29. CXCL12/CCL19 expression, on the other hand,
affects the spatial distributions of not only B cells, but also DCs
and plasma cells in TLOs30. Signaling driven by these cytokines
has been previously associated with overexpression of LTA and
LTB, a finding recapitulated in our spatially resolved data. Again,
CXCL12/CCL19 expression in TLOs was significant in ser-
opositive patients while found to be downregulated in ser-
onegative samples (t test, BH adjusted, p ≤ 0.05). Finally, in our
data, CD74 interacts with MIF, COPA, and APP on surfaces of
macrophages and dendritic cells in seropositive TLOs. Upon
binding, MIF activates the CD74/CD44 complex and inhibiting
this pathway has been suggested to have pharmacologic potential
in preventing further joint destruction in RA31.

Finally, fibroblast cells surrounding TLOs have been associated
with the propagation of TLOs and are considered marker features
of lymphoid neogenesis32. The CD55+ fibroblast population was
present in the synovial lining (i.e. outer rim of the tissue) while
THY1+ fibroblast populations were located closer to the TLO
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regions in all seropositive samples. Some key genes present in
these areas were MMP3, FN1, and PRG4. Significantly increased
levels (t test, BH adjusted, p ≤ 0.05) of MMP3 denoted areas high
in extracellular matrix degradation while increasing the levels of
FN1 indicated areas high in transforming growth factor-beta
(TGF beta) secretion. TGF beta and MMP3 are both targets
already used in the clinic for monitoring RA progression as
current or potential therapies due to their known contribution to
joint and cartilage destruction33,34 whereas proteoglycans such as
PRG4, secreted from the synovial fibroblasts, are involved in
cartilage lubrication providing an anti-inflammatory effect35.

Seronegative tissue volumes lacked robust signals of ongoing
adaptive immune responses and were characterized by the
increased presence of DCs. DCs are involved in recruiting pro-
inflammatory immune cells including macrophages, neutrophils,
and monocytes in RA36. Specifically, in the seronegative tissue
volumes, we report that CD55+ and THY+ fibroblasts, including
HLA-DRAHigh populations, as well as macrophages, were sig-
nificantly overexpressed (t test, BH adjusted, p ≤ 0.05) in the TLO
structures; implicating a completely different immunological
drive in the sites of inflammation as compared to spatially
deconvolved disease responses in seropositive tissues. The con-
tribution of these cell-specific signatures was further confirmed by
mapping receptor-ligand interactions in seronegative TLOs where
FN1 binding different integrins (e.g. aVb1) and midkine (MDK)
binding to the low-density lipoprotein receptor 1 (LRP1) pro-
moted a proliferative environment for further production of
matrix-degrading enzymes. Interestingly, the seropositive RA2
tissue with most developed TLO-like structures, apart from sig-
nificantly higher abundances of B cells in the tissue (t test, BH
adjusted, p ≤ 0.05), exhibited a high prevalence of CD34+ sub-
lining fibroblasts and had the lowest abundances of DCs (t test,
BH adjusted, p ≤ 0.05).

Combining morphological features and high-throughput spa-
tial signatures could aid in clinical diagnosis and overall disease
management of RA. Although there have been advances in
obtaining multiplex protein measurements in situ37–42, these rely
on using predefined sets of cell type markers in cyclic immu-
nostaining, in situ sequencing barcoding schemes, and use of
expensive machinery unavailable at broad scales. ST technology is
compatible with conventional histological staining, has fast
turnaround times, and a user-friendly laboratory set-up. While
mining ST data is currently limited to deconvolution algorithms
using reference scRNA-Seq data, future clinical studies using
high-definition spatially resolved transcriptomics43 may be able
to provide higher statistical power and more insights into mon-
itoring disease severity and treatment-specific responses in ser-
opositive and seronegative rheumatoid arthritis.

Methods
Patient information and sample collection. Synovial tissue biopsies from knee or
hip joints were obtained during orthopedic replacement surgery. Additional patient
information can be found in Supplementary Table 1. Ethical approvals were
granted by the Ethics Committee of Karolinska University Hospital (2009/1262-31/
3) and patients gave their informed written consent to participate in the study. The
biopsies were snap frozen in isopentane prechilled with liquid nitrogen within
15 min of collection and kept at −80 °C until embedding in OCT (Sakura, The
Netherlands) and sectioning could be performed.

Spatial Transcriptomics reactions. Tissues were cryosectioned at 7 µm thickness.
Each section was carefully handled inside a cryotome (CryoStar NX70, Thermo
Fisher Scientific, Life Technologies, Paisley, UK) and placed onto an individual
array without any direct contact between the array surface and the cryotome to
avoid contamination. All sections were placed in the same fashion onto individual
arrays. RA1 sections were sectioned at 21 µm distance from each other while the
RA2–6 sections were consecutives. The whole slide was then warmed for 1 min at
37 °C and immediately fixed for 10 min at room temperature (RT) in a 2% for-
maldehyde solution (1:20 37% formaldehyde acquired from Sigma-Aldrich, Mis-
souri, USA in 1× PBS pH 7.4). The sections were dried with isopropanol and

stained with hematoxylin and eosin (H&E). To ensure proper staining, the dried
sections were incubated for 7 min with hematoxylin (Mayer’s solution, Sigma-
Aldrich, MO, USA) followed by 2 min in bluing buffer (DAKO, Agilent, California,
USA) and 10 s in eosin Y (1:20 in slightly acidic pH 6 Tris). To record both
morphological and positional information, each tissue area was imaged at ×20
resolution (Olympus, Japan) individually with a Metafer system (MetaSystems,
Germany). Image stitching was performed using VSide software provided by
MetaSystems. The Spatial Transcriptomics protocol was carried out17,45,46. Briefly,
after imaging, individual sections were mildly digested for 20 min with 14 U of
collagenase I in Hank’s balanced salt solution (Life Technologies, Paisley, UK)
followed by a gentle wash with 0.1× saline-sodium citrate buffer (SSC) and 8 min
incubation with pepsin purified from porcine gastric mucosa diluted in 0.1 M HCl.
Both reactions were performed at 37 °C while the slide was kept in an ArrayIT (CA,
USA) hybridization cassette to ensure reaction separation between the sections.
This was followed by another gentle wash and then cDNA synthesis17,45,46. All
reactions performed on the array surface after the digestion steps have been sup-
plemented with 0.2× bovine serum albumin. After cDNA synthesis and tissue
removal (1 h 25% beta-mercaptoethanol diluted in RNeasy lysis buffer followed by
1 h 10% proteinase K diluted in proteinase K buffer; both at 56 °C), cDNA was
released from the array surface for 3 h17,45,46. This material served in the following
library preparation steps. Following first-strand cDNA synthesis, second strand was
made by nicking the RNA templates and then extending and copying the cDNA
strand using DNA polymerase I17,45,46. The reaction was terminated with EDTA
and this as well as all the following reactions were performed using an optimized
library preparation protocol on a Magnatrix 8000+ (Nordiag, Sweden) pipetting
station17,45,46. DNA hybrids were end repaired using T4 DNA polymerase and
in vitro transcription reaction was performed to amplify the repaired fragments
and was supplemented with an RNase inhibitor17,45,46. The amplified RNAs were
then transcribed into cDNAs again after an Illumina adapter being directionally
ligated to the 3’ ends of the amplified RNA molecules17,45,46. cDNAs were indexed
for TruSeq LT Illumina sequencing using KAPA HotStart Hifi Ready-Mix (Roche,
Switzerland)17,45,46. The short fragments and dimers in the finished libraries were
removed17,45,46 and the libraries diluted to 4 pM for pair-end sequencing on either
the Nextseq500 Illumina (RA1–2), NovaSeq 6000 (RA3–5) and HiSeq 2000
(RA6) instruments.

Labeling spatial gene activity. Sectioning, staining, imaging, and tissue digestion
steps were repeated as described in the “Spatial Transcriptomics reactions” section.
Next, cDNA synthesis was performed by supplementing the reaction with 25 µm
Cy3-dCTPs17,45,46. Tissue sections were completely digested on the array surface
following cDNA synthesis and the surface was then imaged with an Agilent
(California, USA) G2505C microarray scanner system at 532 nm wavelength. The
H&E image and Cy3-image, the latter marking spatial gene activity, were overlaid
to inspect the signal-to-noise ratio under and outside the tissue section area.

Statistics and reproducibility
Study design. To ensure the use of an appropriate study design, we performed
power analysis44 to inform sample collection. First, we modeled our spatial data
taking into consideration (i) the number of patients per study group; (ii) the
number of replicate tissue sections per patient, and (iii) the number of replicate
spatially annotated niches per each profiled spatial transcriptomics section. Using
these covariates, we built a linear mixed model to simulate power analysis estimates
using accurate Monte Carlo sampling needed to reach at least 80% saturation; a
cut-off that is standard in the power field and assures that the effects listed in our
study are real. Using a generalized mixed model for our data allowed us to account
for the analysis of continuous counts and spatial non-independence. The power
analysis suggested that sampling at least 3 patients in 4 replicate sections and at
least 80 spatial spots per condition, would provide sufficient power to the study.

Data mapping, annotation, and filtering. Data were pre-processed using a recently
published pipeline (v0.8.5)47. Raw sequencing reads were demultiplexed using
CASAVA according to the TruSeq LT index information. The forward read con-
tained 28–30 nt; 18 nt spatial barcode followed by a semi-randomized 9 nt unique
molecular identifier (UMI) (RA1–2) or randomized UMI (7 nts, RA3–6), while the
reverse read contained the at least 50 nt transcript information. The first five bases
in the reverse read were hard trimmed and then the rest of the read was quality
trimmed based on the Burrows-Wheeler aligner. Trimmed reads were mapped to
the human genome reference (GRCh38) using STAR48. Mapped reads were
annotated based on Ensembl’s v79 information and then paired with their forward
read, UMI-filtered with a Hamming distance of 2 and counted using HTseq-
count49. Quality control statistics were computed as the number of paired reads per
spatial barcode, the number of UMI counts per spatial barcode, and the number of
unique gene counts per spatial barcode. Data were normalized per biopsy using a
linear regression approach50 with a mean gene cut-off per ST spot prior to nor-
malization (minimal size= 200).

Image registration, alignment, and visualization. Images were randomly down-
sampled to approximately the same image size per patient biopsy. In the RA1
biopsy, all sections were also cropped to contain approximately the same tissue
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areas. Image background was removed using scikit-image (v0.17.2)51 before
registering the sections using SCALED_ROTATION (biopsies RA1 and RA2) and
RIGID_BODY (biopsies RA3, RA4, RA5, and RA6) from PyStackReg (v0.2.2)52.
All of the following data processing was performed in R (v.4.0.1). As the spatially
resolved data are of the restricted resolution, the data were interpolated using the
akima package (v0.6-2.1) over the tissue section area to aid in data visualization.

Single-cell segmentation. Single-cell segmentation was performed by combining
Ilastik (v1.3.2)53 and CellProfiler (v3.1.8)54. Random forest classification imple-
mented in Ilastik was used to train three distinct classes (nuclei, membrane, and
background) to enable the prediction and export of probability maps. CellProfiler
was then used to segment those exported probability maps to create labeled single
cell masks for downstream analysis. ST spots with no detected nuclei were removed
from further analysis (Supplementary Notes 1 and 2).

Coupling single-cell topology to ST data. ST 100 µm barcoded area locations were
used to crop areas of 200 × 200 pixels from the corresponding H&E images. These
cropped and segmented images were imported into histoCAT20 for single-cell
quantification and spatial analysis. ST-based phenotypic clusters were matched to
the single-cell data as well as the manual infiltrate annotations. Each image was
saved as an individual interactive session for histoCAT loading.

Phenotyping cell-type calling. We used PhenoGraph55 with the code provided at
https://github.com/jacoblevine/PhenoGraph to define phenotypic groups (PG)
based on the morphological single-cell readouts. We used histoCAT20 to extract
mean marker expression as well as morphological features from the single-cell
mask. The default setting (30 nearest neighbors) was used to define 25 distinct
phenotypic groups using a fixed seed for the Louvain method (random seed: 2).

Spatially resolved data analysis. To cluster regions, most variable genes were first
selected50. Briefly, all of the gene counts were first divided by the size factor, i.e., the
number of counts in each spot. Then, we computed the mean and coefficient of
variation for each gene in all the spatial spots generated per patient sample. Gene
with the highest test statistics, i.e., genes with the largest difference between the
squared coefficient of variation and the median were selected as those that are the
most variable in the data. For patient samples RA1–6, the following numbers of
topmost variable genes were chosen respectively: 2000; 2000; 500; 100; 500, and 100.
Principal component analysis (PCA) was performed on the subsampled and nor-
malized region × gene expression matrices, followed by two-dimensional t-sto-
chastic neighbor embedding (tSNE)56. The initial number of PCA dimensions used
in tSNE was determined using a permutation test at 5% false discovery rate (FDR).
Hierarchical clustering (R stats v4.0.1) was done on the first three tSNE components
to determine the number of individual clusters present in the whole tissue volume
using the ward.D2 approach followed by differential expression analysis using a
likelihood ratio test57. For patient samples RA1-6, the following numbers of clusters
were predefined in spatial clustering: 4; 3, 3; 4; 4; 4; and the following number of
clusters were predefined during the hierarchical clustering of the infiltrate regions: 2;
3, 3, 3, 2, 3. DE genes between the clusters were called as differentially expressed18 if
satisfying the following criteria: p < 0.001 and log-ratio >0.5.

Single-cell signatures. Single-cell type signatures were downloaded from Stephenson
et al.14 and Zhang et al.15, and the top 200 markers ml were kept for each cell type l
with the following criteria: average log fold change >1 and FDR < 5%. A total of 16
cell types were present in the references. ST matrix is defined as region × gene
matrix for a total of i regions and j genes. To score each cell type cl;r assignment per
each individual spatial feature Si;j, the normalized ST matrix was first subset for ml

if more than 3 ml genes for each Si;j were present; creating a R × Kmatrix. Then, we
computed the correlation coefficient over each Si;j for each pair of genes (j, k) and a
total of R regions such that:

Xj ¼
1
R
∑
R

r¼1
Xj;r ; j ¼ ½1;K� ð1Þ

Covj;k ¼
1
R
∑
R

r¼1
ðXj;r � XjÞðXk;r � XkÞ; k ¼ ½1;K� ð2Þ

Corrj;k ¼
Covj;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Covj;jCovk;k
p ð3Þ

A gene-to-gene co-expression score was considered valid if Corrj;k > 0 and these
genes M were used in all further analysis. Now, the spatial matrix was subset to
create a R ×M matrix used in the cell typing task and a cell-type expression score
cl;r for each gene expression value Ym;r was calculated:

cl;r ¼ ∑
M

m¼1
Ym;r ð4Þ

The cell-type assignment cl;r was then scaled between the different cell types
present in all the regions:

cmax ¼ maxrcl;r ; ð5Þ

Cl;r ¼
cl;r
cmax

ð6Þ
To represent proportions of cell types in each region, we finally scaled the data

by the cumulative cell-type score calculated for the region such that:

csum ¼ ∑
R

r¼1
Cl;r ; l ¼ ½1; 16� ð7Þ

Cl;r ¼
Cl;r

csum
ð8Þ

Cl;r represented the approximated contribution of each cell type l in each region
r. The gene signatures M were also tested for functional enrichment with Gene
Ontology terms with PANTHER58. We reported all terms at 5% FDR. In order to
predict responses between cell types, we mapped our spatially deconvolved data for
each spatial region to a CellPhoneDB59 receptor-ligand repository. We reported all
terms with positive log mean expression ratios >0.1 and p < 0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data are available at NCBI’s Sequence Read Archive under accession
PRJNA794338. All processed data are available at the Single Cell Portal (https://portals.
broadinstitute.org/single_cell/study/SCP1414/). Volumetric expression heatmaps can be
viewed interactively using an RShiny application (https://spatialtranscriptomics3d.
shinyapps.io/3DSeTH/).

Code availability
All code has been deposited to Zenodo (https://doi.org/10.5281/zenodo.5806371).
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