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ABSTRACT

Fundamental properties of non-switching multichannel communication networks are
studied. We assume optical fiber is used, implying that bandwidth is abundant. Be-
cause of the speed limitations of electronic transmitters and receivers, a concurrency
scheme is needed to exploit the high-bandwidth capability. One could divide the
bandwidth into many frequency channels so that the bandwidth of each channel is
compatible with the transmitters’ and receivers’ speed.

Two obvious ways to establish connectivity between the nodes in a multichannel
network are using switches and using tunable transmitters and receivers. How-
ever, to appreciate when and why these networks are desired, it is essential to first
understand non-switching networks.

A flow model is used to describe the network traffic. The Capacity Assignment
Problem (CAP) deals with mapping the traffic flows between the nodes onto the
channels such that the total numbers of channels, transmitters and receivers (N,
N: and N,, respectively), are minimized. Approaches to this problem include pre-
cise math programming formulation, heuristics and block designs. The inherent
difficulty of the problem is established by relating it to the class of NP-complete
problems. Using lower and upper bounds, it is shown that the trade-off between
N; and N, is strong , but that between these two parameters and N, is weak. Fur-
thermore, NV; and N, are necessarily very large for a high-traffic network with many
nodes. This problem can be alleviated by partitioning the network into a hierarchi-
cal structure. For completeness, the relationship between CAP and access control
schemes is also investigated. On the whole, this work suggests that in studying a
switching or a tuning network, a focus should be on reducing N, and N,.
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Chapter 1

Introduction

1.1 Background

Recent advances in fiber-optic technologies have prompted the use of optical fiber as
an information transmission medium in many modern communication systems. One
of the advantages of optical fiber is its high bandwidth. A key question, however,
is how and to what extent this high bandwidth allows us to design better and more

capable communication systems.

Most traditional communication systems have been designed on the premise that
channel bandwidth is a scarce and expensive resource. A network designer will
therefore concentrate on optimizing the use of the channel, often leaving other
network costs out of consideration. This approach needs to be reassessed in a fiber-
optic system since the costs of peripheral devices, such as transmitters and receivers,
are not negligible compared with that of the channel bandwidth. This is doubly so

in short-distance communication systems where the fiber lengths are likely to be

short.

The ultimate goal of this research is to develop analytical tools and methods that

will help identify and study important issues related to high-bandwidth networks.

14
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Through this work, it is hoped that the fundamental trade-offs between different
network design considerations can be understood more concretely and systemat-
ically. Conceding that an all-encompassing study of the subject is probably not
realistic, we limit the scope of this thesis to a non-switching network for the most
part. Nevertheless, this work serves as a foundation upon which more sophisticated
networks can be studied. Furthermore, it is essential to first understand the sim-
ple non-switching network in order to appreciate the alternatives of switching and

tuning in networks.

The motivation for partitioning the capacity in a fiber-optic network into mul-
tiple frequency channels is that the overall bandwidth of a fiber far exceeds the
bandwidths of practical electronic transmitters and receivers. Concurrency (the
capability of having more than one message in a network simultaneously) is there-
fore desired if the fiber bandwidth is to be more fully utilized [38]. Frequency

multiplexing is simply a straight-forward way of achieving concurrency.

At present, fiber-optic technologies are predominantly applied to long-distance
communication systems. In most of these systems, the fiber is used as a point-to-
point link. Typically, the nodes are far apart and the traffic between two nodes
is very high because of the aggregation of the individual traffic streams from end
users. In other words, each node actually represents a group of users. There have
also been substantial efforts devoted to fiber-optic Local Area Networks (LAN’s)
[31,33,41]. Here, the nodes usually correspond to the actual end-users and they are
located in a small geographical region. In a LAN, the average traffic between two
nodes is comparatively small and the traffic rate viewed over a long time period
is rather bursty, whether the network supports data services or voice services —
two users do not talk to one another constantly throughout the day. The statistical

multiplexing, or aggregation effect which “smooths” out traffic generally does not
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apply to LAN’s.

This thesis focuses on Metropolitan Area Networks (MAN’s) in which the traffic
of a node is the aggregate traffic of many end users. For example, the traffic between
two nodes may correspond to the traffic between two buildings. Specifically, a
metropolitan network here refers to any network within a city limit in which each
node represents, say more than ten end users. Compared with a long-distance
network, the nodes in a MAN are densely populated in a small geographical region.
Compared with a LAN, on the other hand, the system traffic is relatively high, say
on the order of tens to hundreds of gigabits per second. This, of course, assumes
there are services demanding such a high traffic rate in the future. Otherwise, the
motivation for such a wide-band network will be lacking. As in a long-haul network,
many simultaneous services are going on between two nodes in a MAN; thus, there

is some degree of “traffic smoothing” due to aggregation.

1.2 Preliminary Discussion and Problem Statement

1.2.1 Preliminary Discussion

Basically, the capacity assignment problem deals with assigning the capacity in a
non-switching multichannel network to the communicating nodes in order to satisfy
their communication requirements. Here, switching is defined to be the capability
of dynamically directing traffic from one channel to another; this functionality may
resides in a central switch, or in the peripheral nodes, as in a multihop network.
One may think of the network as an extension of the single-channel multiaccess
network. Fig. 1.1 provides a mental picture for such a network; the actual physical

networks may look very different, as long as Fig. 1.1 is its logical equivalent. The
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Node 1 Node 2 ‘ Node N »

Note: Node 1 cannot transmit to Node N

Figure 1.1: A Multidrop Multichannel Network

problem is static in the sense that once a node is given the capability of transmit-
ting (or receiving) on a particular channel, it retains that capability permanently.
For example, if the channels correspond to different frequency bands, being able to
transmit on a channel means having the hardware to do so. An underlying assump-
tion is that the nodes are capable of extracting messages destined to them out of the
information streams passing by. It must be stressed that this selection capability is
fundamentally different from switching since switching is the capability of directing

messages from one channel to another.

Many previous works on “Capacity Assignment” integrate scheduling or access
control results and the capacity assignment problem into a single framework. For
example, the trunk assignment problem in telephone networks [4] deals with the
problem of assigning trunk capacity between two nodes in order to achieve certain
minimum blocking probability, a parameter value readily available from the Erlang

B Formula based on the M/M/m/m queueing discipline. The capacity assignment



18 CHAPTER 1. INTRODUCTION

problem in data communication networks [6,18,22,36] concerns assigning link capac-
ities between nodes to minimize the overall expected delay, which again is a result

obtained by assuming certain queueing discipline.

In this thesis, since the channels are multiaccess rather than point-to-point, and
there is no switching, not only is it necessary to supply enough capacity to accom-
modate the total network traffic, the channel capacities must be assigned to the
nodes in such a way that at least a channel is available for transmission of messages
from one node to another. In Fig. 1.1, for instance, the solution is not acceptable if
there is some traffic from node 1 to node N. One way to achieve full connectivity
trivially is to let every node transmit and receive on all channels. The problem then
reduces to a situation wherein one does not have to worry about the connectivity
issue when dealing with the capacity assignment problem. Such an arrangement
may be too expensive, especially if there is a large number of channels. Therefore
it is desirable to reduce the number of channels a node receives and transmits on.
These numbers will be called the transmittabslity and the recetvability of the node.
Another extreme is to devote an entire channel to each traffic stream from one node
to another, resulting in a network that is logically equivalent to a mesh network.
This solution is undesirable if the traffic between two nodes is very small compared

to the channel capacity.

We assume that the channel capacities are equal and that each channel has
enough capacity to support many services simultaneously. If there is a diversity of
the services with very different service requirements, it is difficult, if not undesirable,
to adopt one common scheduling scheme. To get around this problem at the capacity
assignment level, we assume associated with a channel is an “effective” capacity!

which is lower than the true capacity, or the transmission rate, of the channel —

!To avoid confusion, we emphasize that the capacity here is definitely not the information-theoretic
capacity: an assumption is that the channels are reliable, or the error rates are negligible.
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to account for the overhead needed to achieve the performance requirements of the
services (e.g. blocking probability and delay). Thus, the performance issue will be
neglected in the beginning. How scheduling aspect comes into play will be addressed
in a later chapter after we have understood the capacity assignment problem better.
But, on an intuitive level and from many queueing-theoretic results, keeping the
performance requirements fixed, the effective capacity of a channel approaches the
true channel capacity as we increase the channel capacity. In other words, a large
channel can be used more efficiently than a small one. This is due to the higher
degree of channel sharing, or the implicit statistical multiplexing, between services.

In this limit, the scheduling problem can be justifiably ignored.

To describe the traffic between nodes, a flow model is adopted. If the total traffic
flow assigned to a channel is less than the effective capacity, then we assume the
performance requirements are automatically satisfied by some underlying dynamic
access control or scheduling mechanisms. The effective capacity is assumed to be
the only coupling between the capacity assignment problem and the access control
problem. This is not to say these two problems are independent. In fact, it is
conceivable that capacity assignments of certain structures will lead to a better
performance in scheduling control, and this in turn means the effective capacity
is actually higher than that originally assumed. For illustration, consider a voice
network. If there are more than one alternative channel for the traffic between two
nodes, the blocking probability will be smaller than that of a network with only
one such channel, assuming the same channel load. This means the channels in a 2-
connectivity network can support a higher load, or have a higher effective capacity,
given some fixed blocking probability. Nevertheless, the “independence” assumption
is desired, at least at the preliminary stage, so as to simplify matters. Subsequent

modifications can be included when considering a particular access control scheme.



20 CHAPTER 1. INTRODUCTION

In summary, the flow model is a good model if the following situations apply:

¢ The capacity of a single channel is large enough so that many services are in

progress on the channel at the same time.

¢ Each node actually corresponds to many end users in that messages originating

from it come from many end users.

Then, the traffic of a particular service is just a small part of the overall network
traffic. Furthermore, because of the averaging effect, the aggregate traffic “pouring”
out of a node appears more or less like a constant flow even though the individual
messages may be bursty. Again, if the channel is small, the burstiness of messages
will surface and the scheduling aspect of the network must be taken into account.
With our formulation, this amounts to adjusting the effective channel capacity, and

this can be done quite simply in certain situations, as will be seen in Chapter 7.
1.2.2 Problem Statement

Roughly, the Capacity Assignment Problem (CAP) is the problem of mapping the
traffic flows between N nodes onto the channels such that the total number of
channels N, the system transmittability N; (i.e. the sum of transmittabilities over
all nodes) and the system receivability N, are minimized. Thus, an assumption is
that it is desirable to decrease N,, N; and N,, and some motivating examples will
be discussed in the next section. The physical fiber lengths are not included as a
cost since this will entail considering the actual physical network topologies and
we are more interested in the logical constructs of non-switching networks. A brief

discussion on fiber lengths, however, is given in Chapter 6.

For a more precise definition, let’s first assume a more general cost structure. To

that end, we let the effective capacity of a channel be 1 (or equivalently, all traffic
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() ()T w()

w U U

Figure 1.2: Step Cost Functions

flows are normalized by the effective capacity of a channel) and adopt the following

notation:

AP —  traffic from node p to node g,
zr = total traffic on channel k,

:csf 9 = traffic from node p to node g that is carried on channel k,
C = the set of available channels in the network,

w(z) = cost of having a traffic of z on a channel,

v(z) = cost to a node that transmits a traffic of z on some channel,

v(z) = cost to a node that receives a traffic of z on some channel.

A CAP is the following optimization problem:

win 5 [otan) + o (S + 30 (=)
5.t zk:zﬁ"“) = Ar9) ¥ (p,q),

ze=Y z<1 Vkec. (1.1)
(r.a)

If we are only interested in a linear combination of the total number of channels, the
system transmittability and the system receivability, then w(-), v¢(-) and v, () are all
step functions (see Fig. 1.2) with step sizes w, v; and v, respectively. Except in the
beginning of Chapter 2, these will be the assumed cost functions throughout this

report. Note that |C| is the maximum number of channels available and some of the
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channels may not be assigned any traffic at all in a feasible solution (i.e N, < |C|). In
general, the system parameters, N;, N, and N, cannot be minimized simultaneously.

How they interact with each other is studied in detail in this research.

1.3 Examples of Related Situations
We now discuss a few situations to which the study here applies.

Example 1.1 This example is the motivation behind this study, and as such the
formulation fits naturally into this setting. Consider a high bandwidth network
in which the bandwidth is frequency-divided into many channels, say hundreds of
them. Furthermore, there is no frequency translator within the network and the
transmitters and receivers are not tunable. In this case, a separate physical trans-
mitter(receiver) is needed for the transmission(reception) on a particular channel.
In addition, a traffic flow from one node to another must be assigned to at least
one explicit channel since there is no internal frequency switching; with switching
this is not necessary since traffic transmitted on one channel may be received on
another channel through frequency translation. Thus, the transmittability and the
receivability of a node correspond to the total numbers of transmitters and the
receivers at the node. Given the traffic flows between nodes, can we reduce the
total numbers of channels, transmitters and receivers in the system? This is a mul-
tiobjective optimization problem. One way to approach this problem is to assign
relative weights to the costs of a channel, a transmitter and a receiver. Relating

this to our formulation, these are the step costs of w, v; and v, respectively.

Example 1.2  Suppose the transmitters and receivers are tunable. Then, we

may be able to reduce the numbers of transmitters and receivers at each node
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since a transmitter or a receiver can be shared by several channels. However it is
still desirable to reduce the transmittability and the receivability since they now
correspond to the tunabilities of the transmitters and the receivers, and hardware
that tunes over a smaller number of channels may be cheaper. What is not captured
here is the tuning range, which in practice may be a more important factor than

the absolute number of tunable frequencies.

Example 1.3 The multiple channels are not necessarily frequency-divided chan-
nels. For a Code-Division-Multiaccess (CDMA) system, they correspond to differ-
ent codewords. Recently, there has been much research on optical codes for CDMA
purposes (8,13,20]. A codeword is a string consisting of 0’s and 1’s where a 1 cor-
responds to an optical pulse and a 0 corresponds to the absence of such a pulse.
By minimizing the overlappings of pulses in the codewords, semi-orthogonality is
achieved. The signals at the detection ends are extracted by performing a correla-
tion operation. Optical tapped delay lines have been proposed for the generation
and the detection of codewords and a set of delay lines with unique tap positions is
needed for each codeword. Since the physical lengths of the delay lines are long and
they are likely to be expensive, we would like to reduce the sets of optical delay lines
at each node. This translates to reducing the transmittability and the receivability
in our formulation. Another problem of certain optical CDMA schemes (e.g. those
of [8]) is the limited number of codewords that can be constructed due to the orthog-
onality requirement. Hence, it is desirable to reduce the total number of codewords
required in the system. This is equivalent to reducing the number of channels in our
formulation. In short, reducing the transmittability and the receivability of a node
corresponds to reducing the number of codewords to be generated and detected by
the node, and reducing the number of channels corresponds to reducing the size of

the set of codewords in the whole system.
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1.4 Overview

Fig. 1.3 shows how the different chapters of this thesis are interrelated. An arrow

from A to B means the discussions in A lead to the discussions in B.

Chapter 2 shows how to solve CAP ezactly as a multicommodity network flow
problem, which can be formulated as a mixed integer linear program. The resulting
size of the problem is large and a fast algorithm is not available. This leads us to

suspect that CAP is a difficult algorithmic problem in general.

In Chapter 3, we study the relationship between CAP and other optimization
problems. Some simple theorems and false conjectures are presented to familiarize
the reader with the problem. This chapter is concluded with a proof showing that
CAP is indeed an intractable problem in that it is NP-hard. It is therefore unlikely
to be fruitful to attempt to solve CAP exactly.

Chapter 4 explores heuristics that look for suboptimal CAP solutions. Various
lower bounds and upper bounds on the system parameters are obtained; and the
trade-offs between the parameters are studied based on these bounds. Essentially,
there is a strong fundamental trade-off between the system transmittability and the
system receivability. The number of channels, on the other hand, is largely deter-
mined by the system traffic and is independent of these two parameters. We also
show that when the total system traffic is large but the individual traffic between
any two nodes is small, simple heuristics yield very good solutions approaching
those of an exact method. Ironically, in this limit, the system transmittability and
receivability also necessarily become very large; and this is a fundamental property
of a non-switching network. General rules of thumb on how to devise good heuris-
tics are also discussed. The chapter is concluded with a discussion on solving an

n-connectivity CAP, a version of CAP in which there must be at least n alternative



1.4. OVERVIEW

Solving CAP

Ch 2: Math
Programming
Approach

Y

Ch 3: Intractability

of CAP
Y
__|Ch 6: Hierarchical | Ch 4: Heuristics, _ | Ch 5: Block
Networks N Upper o Designs
Bounds
and
| [Ch 7: Access B Lower
Control D Bounds
Y
»|Ch 8: Conclusion <

Figure 1.3: Logical Relationship between Different Chapters of Thesis



26 CHAPTER 1. INTRODUCTION

channels for the traffic from one node to another.

In Chapter 5, the combinatorial study of Block Designs is related to a version
of CAP with more symmetry requirements. For example, one of the additional
constraints is that the transmittable channels and the receivable channels of a node
must be the same. Another constraint is that the number of channels on which
two nodes may communicate is the same for all node-pairs. It is shown that under
the two additional constraints, the number of channels is bounded below by the
number of nodes regardless of the actual traffic requirements. This may not be
desirable if the system traffic is small, but the only way to avoid this situation is
to drop at least one of the constraints. An implication is that any access control
scheme that depends on (or assumes) the two constraints may lead to poor channel
utilization. As will be established more concretely, poor channel utilization results

in poor transmitter and receiver utilization.

A way to reduce the system transmittability and receivability is to introduce
hierarchical structures into the network. Based on a logical definition of hierarchical
networks, we show how this can be accomplished in Chapter 6. Intuitive arguments
explaining the results are also presented and they point to some directions for further
research. Basically, the reduction of system transmittability and receivability is
brought about by the implicit introduction of switching in a hierarchical network; a
hierarchical network can be considered as a type of distributed switching network.
Thus, a function of switching is to decrease the transmitter and receiver costs at
the peripheries of the network. Indeed, it can be shown that hierarchical structures
can reduce the system transmittability and receivability very significantly when
the total system traffic is very large and the individual traffic between two nodes
is small. This is also the situation in which the two parameters get very big in

a non-switching network. A conclusion is that switching, whether implemented
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distributedly, as in a hierarchical network, or centrally, is desirable under such a

condition.

Chapter 7 is devoted to the study of the interaction between access control and
CAP. The implications for the system parameters is investigated based on various
analytical access control models. The results support our claim that the flow model
is a good model and that scheduling effects can be ignored in a large channel situ-
ation. If the channel capacity is small, a counter-intuitive result is that the system
transmittability and receivability actually decreases as we increase the network’s
connectivity (or the number of channels for the traffic from one node to another).
In this situation, for some fixed performance requirements, we actually need fewer
channels, fewer transmitters and fewer receivers if we increase the connectivity re-

quirements. There seems to be no obvious engineering trade-off.

Chapter 8 concludes this thesis by exploring the implications of the results for
fiber-optic networks. The chapter also summarizes the insights gained from this
work and discusses a few topics that call for further research. An especially in-
téresting topic is the study of the trade-off between the amount of switching in a
network and the system transmittability and receivability. Preliminary discussions
on the approaches to these problems and some important issues to be addressed are

also presented.



Chapter 2

Mathematical Programming Approach

The capacity assignment problem can be formulated formally as a nonlinear-cost
Multicommodity Network Flow Problem (MNFP) [37]. We will show that the size
of the resulting problem is very large; therefore, unless the exact optimal solﬁtion
is required, it is not an attractive method. However, this is the only method that

finds the optimal solution in this work.

2.1 Formulation

An example where there are four nodes and two channels is depicted in Fig. 2.1.
As shown, there are three stages of arcs. The first stage and the third stage model
the transmittability and receivability cost. The middle stage models the cost corre-
sponding to the total traffic flow on each channel. The arcs here correspond to the
channels in the communication network. Each communication node is represented
by two multicommodity-network nodes, one on the transmitting side and one on

the receiving side.

Before dwelling into further details, a subtle point needs clarification. That is,

the number of channels is fixed at the outset in this approach. One may argue that

28
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Transmitting Side Receiving Side

A(‘v') —>
v (2(i,5))

A(S,-) — ]

2(20) —>

A(lv‘) —> —>A(':1)
Stage 1 Stage 2 Stage 3

Direction of arcs is from left to right.
A(pv') H {A(qu) V q # p}
A(‘ﬂ) . {A(qu) Y p # q}

Figure 2.1: Multicommodity Network Flow Model of CAP

in practice there is always a natural limit on |C| and we may simply set |C| at this
limit when solving the MNFP. This natural limit may be overly large compared
with N, the actual number of channels with non-zero flows in the final solution.
This unnecessarily increases the size of the MNFP.! This can be compromised by
fixing |C| at a value higher than the total system traffic, say IC| = X () Ara) 4§
where 6 > 1. If there are unoccupied channels in the final solution then the solution
after eliminating the unused channels will be accepted. Otherwise, we increase the
value of |C| and solve the multicommodity flow problem again. This solution may
not be optimal with respect to the original CAP. In other words, there exist cost
functions such that although there are unused channels in the solution of the MNFP
for some fixed |C|, by increasing [C| further we obtain a lower-cost solution without

any idle channel. However, based on the heuristic studies in Chapter 4, when the

'Recall that we are interested in a high bandwidth environment where the bandwidth of the
communication medium is much higher than the system traffic.
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individual node-to-node traffic flows are small relative to the capacity of a single
channel and the cost functions are the step costs as shown in Fig. 1.2, the optimal

N, should not be too much greater than the total system traffic.

In this chapter, the word “nodes” is used to refer to both the communication
nodes and the multicommodity network’s nodes. Where their distinction is not
implicit by context, the explicit terminologies will be used. In Fig. 2.1, the trans-
mitting aspect of communication node 4 is represented by node ¢ and the receiving
aspect by node . For exactness, one may define two functions, f;(p) and f,(p),
which map communication node p to a node on the transmitting side and a node on

the receiving side respectively. The inverse mappings will be denoted by it and

f71. Thus, f(4) =1, f,(4) =l and £71(5) = £71()) = 4.

Corresponding to each ordered communication node-pair, say (p,q), there is a
flow of A9, Identifying the flows into a terminal node on the receiving side as a
single commodity type, we have a total of N commodities, where N is the number
of communication nodes. The notation (-,q) denotes the commodity destined for

communication node g.

Let a:é"g)) be the flow of commodity (-,q) along the directed arc (¢,7). If the

effective channel capacity is 1 then without loss of generality, the aggregate flow
Tay)= ). a:g'g)) <1 V(1,5). (2.1)
v ('rq)

Referring to Fig. 2.1, by necessity, the aggregate flow on each and every arc does not
exceed 1 if the aggregate flow on every channel, or every Stage 2’s arc, is constrained
by 1. Therefore, generalizing the constraint to all the arcs as above does not change

the problem.

In addition to Constraint (2.1), each commodity must satisfy the conservation



2.1. FORMULATION 31

of flows into and out of a node, that is,

AU if § = source node of commodity (-, q);

> (-‘Bg.g - xf,'g) =1 — X, AlP9) if { = sink node of commodity (-, 9); (2.2)

2
0 otherwise.

Let x(9) = (zg,gg) (i.e. a vector consisting of all the arc flows of commodity (-, g))
and let A be the node-arc incidence matrix of the network and d(%) be the vector
obtained from the right-hand side of (2.2). Finally,lete = (1 1 ...)T and N

be the number of nodes in the communication network. We can write the above

constraints in vector form as

IxOY 4+ x4 IxOM 4 Is=e

Ax('ll) = d('ll)
Ax(':z) = d('vz)
Ax(':N) = d(':N)

x>0 V(,q). (23)

where s is a vector of slack variables and I is the unit matrix. We wish to minimize
the total cost,

ex) = > wl(ze))+ Y vlzen)+ Y wlzas) (2-4)

(5.9)€S: (5.5)€Ss (5.5)€S2
where
x = x4 x0B 4 4 xOtN)
-1 42 N
(g = zEc’.j; + -"-'f.-.,-g Tt z{'.".)),

S, = the set of arcs belonging to stage n in Fig. 2.1.

If the cost is linear, then the structures in (2.3) and (2.4) suggest that the linear
program can be tackled by the Dantzig-Wolfe Decomposition Method.[7,10,30]
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Here, we are interested in situations where v;(z(; ;)), v-(2; ;)) and w(z; ;) are step
functions, as depicted in Fig. 1.2. The problem can be transformed into a Mixed
Integer Linear Program (MILP) [7,9,30] that can be solved by the branch-and-
bound method in which a sequence of LP’s is solved [27]. For such a formulation,
we introduce an integer quantity 0 < y; ;) < 1 on arc (¢,7): yu ;) is 1 if and only if

z(; ;) = 1. This is equivalent to the constraint

Y(i5) = Z(i,5) (2.5)

Z(i5) > O implies y(; j) = 1 since z(; j) cannot be greater than 1 and y; ;) must be an
integer value. The converse, z(;,;) = 0 implies y(; ;) = 0 is guaranteed by considering
the new cost function,
c(,¥) = X wyant X vyt D wyes) (2-6)
(‘.J‘)ESI (",J)Ess ("lj)esﬂ

where y = (y(;,;)); if 2(;,;) = O then to minimize cost, Y(i,j) = 0 since vy, v,,w > 0.

2.2 Size of Problem

Let’s consider the size of the first relaxed LP in the branch-and-bound method
of MILP. As written in (2.3), there are many redundant variables and constraints
which must be excluded from analysis if we are only interested in the “inherent” size
of the problem. For instance, in Fig. 2.1, the traffic terminating in node m does not
flow through node ! and arc (k,!) at all. This is not reflected in (2.3) since there we
unnecessarily include the variables zEkB and use the node-arc incidence matrix of
the whole network to describe the conservation of flows into the nodes. To calculate
the total number of non-redundant constraints, we note from (2.1) that there are
altogether |C|(2V + 1) arc flow constraints. From (2.2), there are N(2|C|+ N + 1)

node conservation equations since each commodity may pass through at most 2|C|+
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N +1 nodes. The integer variables y result in another 4N|C|+2|C| constraints (i.e.
twice the number of arcs in the multicommodity network since z(;;) < yu;) < 1).
Hence, the total number of constraints, other than the nonnegativity constraints of

x and y, and the integer constraints of y, is
Neon = |C|(8N +3) + N(N +1). (2.7
Enumerating the variables in a similar way, we get
Nyar = |C|(N? + 4N +1). (2.8)

Here, Nys, does not include the slack variables required to put the problem in
standard form. From above, we see that even with a CAP of moderate size, the
dimensions of the resulting mathematical program are rather large. For instance,
N =100 and |C| = 20 results in a problem with N,,, = 26160 and N,,, — 208020.
Coupled with the fact that this is an MILP, it is clear that the problem as formulated

is quite formidable.

We also lack a closed form solution, and consequently, it is difficult to study
the relationships and the trade-offs between the different parameters. Furthermore,
the mathematical formulation may not represent the physical situation precisely.
It could be that the costs cannot be conveniently expressed as simple functions, or

even worse they may not be known exactly.

In Chapter 4, we will investigate CAP through heuristic approaches. Although
the resulting solutions may not be optimal according to the criteria defined in this
chapter, the steps taken toward finding a good solution give us some insights into
the “feasible region” of the problem. This in turn allows us to study the trade-offs

between the system parameters.



Chapter 3

Intractability of CAP

This chapter addresses the question of whether CAP is inherently difficult. In par-
ticular, we would like to relate CAP to the class of NP-complete combinatorial
problems [30]. A crucial question is whether formulating CAP as a mixed integer
linear program as in the preceding chapter is unnecessarily complicating the prob-
lem, since MILP is NP-hard. Is it possible that the symmetry of CAP, as shown by
the corresponding multicommodity flow network, lends itself to easier algorithms?
It will be shown that CAP is indeed intractable in terms of its algorithmic com-

plexity.

3.1 Relationship between CAP and Other Problems

It is clear that CAP cannot be formulated as a convex nonlinear program because
of the step cost functions. Furthermore, because of the drastic discontinuity of the
cost functions, one cannot even hope to approximate the solution by solving, say,
several easier linear programs. Hence, looking at it from the traditional nonlinear
programming’s point of view may not be very fruitful. On the other hand, the

general CAP is not strictly combinatorial in nature since there are uncountably

34
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infinite number of feasible solutions. For instance, a new solution can be obtained
by exchanging infinitesimal amounts of traffic between two channels. It is therefore
difficult to relate this problem with known combinatorial optimization problems

directly. Nevertheless, two different directions can be explored:

1. Study a restricted but combinatorial version of CAP. Specifically, we can im-
pose an additional requirement that AP for each (p,q) must be carried on
one and only one channel in its entirety. An assumption here is that A(P?) < 1,
and this will be justified later in this chapter. This version of CAP will be
called Non-Splitting Traffic CAP (NSTCAP) and the original version Splitting
Traffic CAP (STCAP). Since any solution to an instance of NSTCAP is also a
solution to the corresponding STCAP version, the optimal cost of the STCAP
is bounded above by that of the NSTCAP. A criticism about this approach is
that the optimal solution of one may not be readily transformed to that of the
other. Nevertheless, establishing the intractability of NSTCAP may give us
some insights into the complexity of STCAP. Furthermore, a good solution to

one version may be modified to yield a good solution to the other.

2. Attempt to combinatorialize the problem by concentrating only on a subset
consisting of a finite or countably infinite number of feasible solutions. It
is known that a linear program in general may have an infinite number of
solutions. However, if the program is feasible and bounded, there is an optimal
solution among the finite number of basic feasible solutions. In this respect,
LP can be considered as a combinatorial problem. A key question is whether

there is an analogous situation in CAP.

The author has not found a finite or countably infinite subset of feasible solutions
which is guaranteed to have an optimal solution. Therefore, this chapter will be de-

voted mainly to Approach 1, as far as a concrete statement about the intractability
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of CAP is concerned.

There are a few properties that can be identified with special cases of STCAP

and they are stated as theorems in the next section.

3.2 Basic Properties of CAP and False Conjectures

If only one of the step costs is nonzero, an optimal solution can be found trivially.

Theorem 3.1 There is a feasible solution to CAP such that N, = [)\] where A =
Zipa) AP,

Comment: Since the total system traffic is A and the capacity of a channel is 1, the
minimum number of channels required is bounded from below by N, = [A]. The
above theorem states that this bound can be achieved and therefore the minimum
number of channels required depends only on the total traffic volume. Furthermore,

if v¢,v, = 0 and w > 0, the solution is also optimal.

Proof: A trivial solution that achieves the bound is to simply let all the nodes
transmit and receive on all the [A] channels. For each traffic type, say (p,q), a

fraction of A(49) /[A] traffic volume is assigned to each and every one of the channels.

a

Theorem 3.2 There is a feasible solution to CAP with N, = >p [Eq ,\(P'q)'l.

Comment: Since the total traffic originating from node p is 2q A(®9) the minimum
number of transmitters, or transmittability, node p requires is [T, A?»?)] because

each transmitter can output a unit of traffic at most. The above theorem simply
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states that the lower bound of the overall system can be achieved. The solution is

optimal if w,v, = 0,v; > 0.

Proof: A trivial solution is to assign [3, A(P9)] exclusive channels to the traffic
originating from each node p. A fraction of A(P9)/ [T, AP9)] of each traffic (p,q) is
assigned to each and every one of the channel. All nodes can receive on all channels

in the network.

0

Theorem 3.3 There is a feasible solution to CAP such that N, = >0, AlPa)],

Proof: By symmetry, similar to the previous proof.

Corollary 3.1 From Theorems 3.1, 3.2 and 3.3, min N;, min N, > min N,.

The above proofs construct trivial solutions. These solutions are not unique
in achieving the lower bounds. For example, it is possible to reduce N, while
maintaining the values of N; in the proof of Theorem 3.2, as will be shown in the

next chapter.

Theorem 3.4 There is an optimal solution to CAP such that given any pair of

traffic types, say (p,q) and (r,s), they co-exist on at most one channel.

Proof: Suppose traffic (p,q) and traffic (r,s) co-exist on channel { and channel
7. Let p;A®P9) (0 < p; < 1) and ;M) (0 < 0; < 1) be the fractions of traffic
(P, q) and traffic (r,s) assigned to channel ¢ respectively. Without loss of generality,
assume p;A(P9) < (1 — g;)A(") (i.e. traffic (r,s) on channel j is equal to or greater

than traffic (p, q) on channel 7). To obtain a potentially better solution, shift the
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traffic flow p;A(P9) from channel ¢ to channel J and in its place, an amount of p; A(P:9)
of traffic (r,s) is moved from channel j to channel ;. N, remains the same, N;
decreases if there is no traffic originating from node p remaining on channel i after
the above operation (i.e. (p,q) is the only traffic of type (p,-) on channel i in the
beginning), and similarly N, decreases if there is no traffic terminating in node ¢
remaining on channel :. In all cases, the system cost does not increase. Performing
the above procedure over all traffic types co-existing on more than one channel, we

obtain a solution which is no worse than what we start out with.

a

Theorem 3.4 narrows down the “interesting” solution space somewhat. However,
the number of feasible solutions in this solution space is still uncountably infinite.
Furthermore, it is not clear how we can devise a scheme for improving a solution
within this solution space. The following conjectures attempt to narrow down the

interesting solution space further, but they are false.

False Conjecture 3.1 If A?9) < 1 for all (p, q) then there ezxists an optimal solu-

tion such that AP for each (p, q) ts carried on one and only one channel

Comment: This conjecture essentially says that solving STCAP is equivalent to

solving NSTCAP. It is not surprising that it is not true.

Counterexample: Suppose v;,v, = 0 and w > 0. Consider the case where there
are three nodes and traffic from one node to another is uniform with value 2/3.
The objective is to minimize the number of channels used. It is 2/3 x 6 = 4 from

Theorem 3.1. Without traffic splitting, 6 channels are required.
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A(2:1) 2(2:3)

M)
@ O
AB1) A(3.2)
@ O

Unoccupied arcs are not shown, i.e. the number of arcs on the
transmitting side is the transmittability and the number of arcs

on the receiving side is the receivability.

Figure 3.1: Nlustration of the Counterexample to False Conjecture 3.2.

False Conjecture 3.2 There ezists an optimal solution such that N. = [A].

Comment: The above attempts to strengthen the statement in Theorem 3.1.

Counterexample: Consider a network consisting of three nodes and having cost

functions, v,,w = 0 and v; > 0. In addition, the traffic flows are

A(1'2) = % A(2,1) = 31,
A3 = 3 AL — L
A(23) = L A2 — L

An optimal solution is one with the minimum transmittability, and from Theo-
rem 3.2 this is 4. An optimal solution is given in Fig. 3.1. It is a routine exercise to
verify that in order to put all the traffic onto [A] = 3 channels, the transmittability

must increase.
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Definition 3.1 Consider instances of CAP where there exists (p, q) such that A(P9) >
1. It is natural to propose the following residual method for solving the problems:
For every (p,gq) where A(P9) > 1, n{ra) = |A®9)| channels are assigned exclusively
to this traffic. Consequently, the residual traffic, NP9 = \(p9) _ |A(P9) ], is smaller
than 1. We may then proceed with solving a residual CAP in which MN®9 < 1
for all (p,q). The best solution obtained with this method will be called a residual

solution.

Using the residual method is the “mathematical” justification for assuming A9 < 1
in CAP. In the following, we will argue that this is a good method. However, it

may not yield an optimal solution in general (see False Conjecture 3.3).

Definition 3.2 In a pseudo-residual method, for every (p,q) where AlP9) > 1,
n(P9) < n(P9) channels are “filled” up exclusively by traffic (p,q) (i.e. the num-
ber of exclusive channels may not equal to nﬁ"'“)). We then proceed to solve the
pseudo-residual CAP based on the residual traffic, N9 — y\(pa) n(P9), with the
requirement that no additional channel be entirely filled up by a single type of traf-
fic (i.e. zﬁ,’ 9 < 1 for every additional channel k). The best solution obtained with

this restriction is called a pseudo-residual solution.

Definition 3.3 Pseudo-Residual Solution(CAP) A is of a higher order than Pseudo-
Residual Solution(CAP) B if there exists (p,q), A% > 1 such that n®? > n&?
(i.e. n(P9 of A is greater than that of B) and n§?) > n{) for all (¢,7) # (p,q) and
A69) > 1,

From the above definition, it is clear that the highest-order pseudo-residual solution

is the residual solution. Also, two solutions do not necessarily have any natural
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ordering, e.g. nff'q) > ng"q),ng") < ng"); this is not essential to the following

discussion.

In principle, the original CAP can be tackled by a decomposition scheme in which
each and every one of the possible pseudo-residual CAP is solved. From the above
definitions, this covers all the solution space of the original CAP. Thus, choosing the
best pseudo-residual solution among all of the solutions yields an optimal solution
to the original CAP. The number of pseudo-residual CAP’s to be solved is

I (1), (3.1)

{(p.g):a (P9 21}

Note that n{P9) can be zero and therefore there are n{P9) + 1 different possible
values for it. Also, the total number of different pseudo-residual CAP’s may be
prohibitively large considering the fact that there is a maximum of N (N —1) terms
in the above product. As a result, it would be nice if we could establish some result
to the effect that it is not essential to solve all the pseudo-residual CAP’s. Let’s
guess that a residual solution is an optimal solution to the original CAP and see if
there is any intuitive argument supporting this conjecture. The following theorem
narrows down the interesting solution space within each pseudo-residual CAP when

the decomposition scheme is used to solve the original CAP.

Theorem 3.5 There ts an optimal solution to CAP such that if 0 < z}," Q) z}-” D <1,
J # k, then xf,p'q) + z;-p’q) <1

Proof: Suppose there is a solution in which z{p ) 4 a:f-" 9 > 1 and without loss of
generality assume z£’ ) > :::;-’ 9 We may attempt to improve the solution as follows:
Transfer an amount (1 — z{P9) of traffic (p,q) from channel j to channel k and in
its place, move all traffic other than (p, ¢) from channel & to channel 5. This can be

done because by hypothesis, 1 — :cs," ) < :BS-’ )| It is easy to check that N¢, N, and N,
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do not increase after the traffic switching (see Fig. 3.2 for an example). Performing
the switching for all k, 7, (p, ¢) such that a:;f ) 4 a:f-p 4 > 1, we obtain a solution no
worse than the original one. Notice that z{™¥ = 1 in the end, and channel k is an

exclusive channel devoted to traffic (p, g).

a

Theorem 3.5 implies that if there is a pseudo-residual CAP that contains a so-
lution optimal with respect to the original CAP, then this pseudo-residual CAP
has a pseudo-residual solution such that there is at most one channel k such that
1> :c;,” ) > 1 /2. This immediately suggests that the amount of traffic splitting is
large if this is a pseudo-residual CAP of a lower order since the residual traffic is
large. Consider the implications for our decomposition scheme. In solving a partic-
ular pseudo-residual CAP, we only need to concentrate on solutions that satisfy the
condition in Theorem 3.5. Consider the residual traffic \'?9) = \(r2) _ n(P9), which
increases as n(P9) decreases. Accordingly, because of the inequality z;,” ) +z_,(,-’"") <1,
X9 is carried on at least 2|N®9| 4 1. As a rule-of-thumb, traffic splitting tends
to increase Ny and N, since this increases the number of channels on which a single
traffic type is carried. Without further information about the traffic distribution,
we conclude that it is probably unlikely to find a pseudo-residual solution that is
better than all the higher-order pseudo-residual solutions, assuming v; and v, are

not negligible relative to w. The steps of the argument are summarized as follows:

1. There is a pseudo-residual CAP containing an optimal solution such that the
residual traffic is split at least 2[/\'(” ) ] +1 ways. We only need to look for solu-
tions of this type when sweeping through the different pseudo-residual CAP’s

in our decomposition scheme.

2. Traffic splitting, heuristically, increases N, and N,.
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© ©
a

Traffic Switching

Switch as much traffic (p,q) as possible from channel j to channel k. Traffic other than (p,q) on
channel k is “pushed” onto channel j.

Figure 3.2: Illustration of the Proof of Theorem 3.5



44 CHAPTER 3. INTRACTABILITY OF CAP

3. In looking for this solution, low-order pseudo-residual’s traffic is split more.
Therefore, it is unlikely that a low-order pseudo-residual solution is an optimal

solution or a good solution to the original CAP.

The above argument implies that it is quite likely that there is an optimal residual
solution. Even if a residual solution is not optimal, it is likely to be good, based
on the procedure in the proof of Theorem 3.5. Unfortunately, this statement is not
concrete and we cannot extend our conclusion further to state that the residual CAP
yields an optimal CAP. The steps in our argument are precise except the statement:
“Traffic Splitting suggests large values for N; and N,,” which is not always true as

attested by the counterexample to the following false conjecture.

False Conjecture 3.3 Suppose there erists (p,q) such that A(P9) > 1. The residual
solution is optimal with respect to the original CAP.

Counterexample: Consider a network with N communication nodes and the sizes
of the cost functions are lopsided, w > v, > v, > 0. AP9) = 1 for all P # q except
the following

A(12) = % ALk — g,
Az — % AR — % :
A(B4) — % A3k — % ,

A1) = % A2 = g A6 — %

For the residual method, each traffic (p,q) with A(P?) = 1 is assigned an exclusive
channel in the beginning. Fig. 3.3(a) shows a solution after solving the residual CAP
and Fig. 3.3(b) is a feasible solution of a lower-order pseudo-residual CAP which is
better than the residual solution. To show that the solution given in Fig. 3.3(a) is

indeed the residual solution (i.e. the best solution of the residual CAP), we note
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A(1:2) )(L:k)
O— ()—

@

A@1) AG
A(59)

(a)

A1), 176k

(b)

Figure 3.3: Mlustration of the Counterexample to False Conjecture 3.3.
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from the lopsided cost functions that the optimization problem can be tackled as

follows. First we set the number of channels at jts minimum. In this case, it is

Y. Akd =g (3.2)

{rg):alr0 <1}

Now, we find the minimum transmittability given that the number of channels is 2.
By Theorem 3.2, the minimum transmittability without any restriction is 4, each
source node having a transmittability of 1. However, this can not be done with 2
channels since the values

Z A(Ilq) —

{(Lg:ata <1}

Z A2a)

{(Z,q):k("1)<l}

z A3 —

{392 <1}

z A(J'Q) -

{(5,9):2Gh) <1}

IO ©Old Ol ©|n

(3.3)

cannot be partitioned into two sets, the elements of each summing up to 1. Hence, a
transmittability of at least 5 is needed with only 2 channels. Next, we find the min-
imum receivability given that the number of channels is 2 and the transmittability
is 5. It remains a routine exercise to exhaustively enumerate all the possibilities and
conclude that the minimum receivability with this restriction is indeed 7. Combin-
ing the parameters of the residual solution with the Parameters due to the exclusive

channel assignment in the beginning yields

N® =N(N-1)~7, N® = NN-1)-4, NO=NN-1)-2 (3.4)

The solution in Fig. 3.3(b) is a feasible solution of the pseudo-residual CAP of a
lower order than the residual CAP. In this case, n0*¥) is 0 rather than 1 and therefore
there is one fewer channel assigned in the beginning. Note that A\(:¥) is split equally

3 ways and assigned to all the 3 channels. Furthermore, there is no traffic splitting
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other than this. It is easy to derive the resulting system parameters by combining

the result here with the result due to the assignment in the beginning.
N =N(N-1)-7, N"=N(N-1)-4, NO=N(N-1)—-4 (3.5)
Comparing (3.5) with (3.4), we see that the receivability here is 2 units lower.

O

Despite the counterexample, for the rest of this report, we will assume the resid-
ual method is employed in cases of CAP where there is (p, g) where A(P9) > 1. Hence,
an implicit assumption throughout is that A(P9) < 1 for all (p,q). The justifications

for this approach are listed as follows:

e The argument before False Conjecture 3.3 suggests that a reasonably good
solution can be obtained using the residual method. As will be seen, CAP is
computationally intractable and if a heuristic scheme is to be used, it does not

make sense to insist on exact optimality at this stage.

e The counterexample is artificially contrived to illustrate that the residual method
does not yield an optimum solution in general. Specifically, the traffic distri-
bution is such that there is an “exact fit” of the traffic into the channels in
solution of Fig. 3.3(b). In practice, it is “improbable” such a situation will

occur.

¢ The number of pseudo-residual CAP’s to be solved may simply be formidable,
as suggested by (3.1), even if individual pseudo-residual CAP’s could be solved

easily. As we will see, solving the residual CAP is itself a difficult problem.

e In practice, there may be motivations to devote exclusive channels to a single
type of traffic, should the traffic volume justifies it. The exclusive channels are
essentially point-to-point channels and this tends to simplify the lower-level

control issues.
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Based on the last reason above, we may in fact argue that CAP is not a very
meaningful or significant problem if A(P9) > 1 for a large majority of (p, g) since the
“optimizable part” of the total cost is negligible with respect to the total cost, and
we might as well consider a network in which the capacity is partitioned into many
point-to-point links. It will be shown in the next chapter that when A9 < 1 for
all (p, q), very good heuristic solutions can be obtained. Two intuitive reasons why

this is so are:

1. Each traffic type occupies only a small part of the total available capacity on
a channel and we do not have to split too many traffic types to create a “good

fit”. This implies small N; and N,.

2. The problem of fitting traffic into the channels become easy and very tight
fitting, in which the unassigned capacity on any channel is very small, can be

achieved. This suggests small N.,.

The difficult instances of CAP’s lie between the two extremes described above.
Specifically, an instance of CAP tends to be difficult the if the values of A(P9) are

distributed somewhat uniformly between 0 and 1.
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3.3 CAP is NP-Hard

In this section, we show that CAP in general is an intractable problem. First, we
will show that NSTCAP is intractable by showing special cases of it are equivalent
to the Bin Packing Problem (BPP), which is NP-complete. Since NP-completeness
theory deals with the recognition versions of optimization problems, the following
definitions of the recognition versions of CAP and BPP are given. It can be shown
that for a large number of combinatorial problems, the recognition versions and the

optimization versions are equivalent as far as their complexities are concerned [30].

Definition 3.4 [Recognition Version of CAP] Given the traffic matrix (A7)

and three integers , Ny, N, and N,, , is there a traffic assignment such that N, <

N;,N, <N, and N, < N,?

Definition 3.5 [Recognition Version of BPP] Given an integer m, and n ra-
tional numbers, Ay, Az - -+ An; Ax < 1 for all k, can these numbers be partitioned into

m sets, the elements of each summing up to a value not greater than 1?

For the optimization version of BPP, the objective is to minimize the total number

of partitions.

Theorem 3.6 NSTCAP is NP-complete.

Proof: Many special cases of NSTCAP are equivalent to BPP. For simplicity,
consider a special case of NSTCAP in which v,,w = 0 and v; > 0 and A(»9) = 0
for all (p,q) except when p = i !. The NSTCAP is equivalent to the bin packing
problem with A\, = A(*) for all 1 < k < n. In particular, n = N — 1, m = N,
N, = 00 and N, = oo and the traffic types belonging to the same bin are assigned

to the same channel.
! Alternatively, Zq AlP9) = 1 for all p except p =1 so that 2q A(P9) fitg exactly onto 1 channel.
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To show that the general CAP is intractable, we introduce the following Splitting
Bin Packing Problem (SBPP).

Definition 3.6 [Recognition Version of SBPP] Given an integer v, and n ra-
tional numbers, A1, A3+ Aq; A < 1 for all k. Suppose each ), is allowed to split
into v, numbers such that the sum of the numbers, Y%, Ar, = A4 Is there a way of
splitting the original numbers such that the total number of splittings, >, vy < v

and the resulting numbers can be “bin-packed” into [T, A:] sets?

For the optimization version, the objective is to minimize the total number of split-
tings. Intuitively, if we can obtain a good solution to an instance of the optimization
version BPP, it is easy to obtain a good solution to the corresponding version of
SBPP and vice versa. For example, from a solution to SBPP, we can obtain a so-
lution to the BPP version by considering the packing problem of only the numbers
that have been split up. There should be only a few of such numbers if the solution
is good. An important point to note is that if v =n and m = [k Ax| then SBPP
and BPP are equivalent. In other words, the question of whether there is a packing
with no splitting in SBPP is the same question as whether there is a packing achiev-
ing the lower bound on the number of bins in BPP. Hence, intuitively, SBPP is as
difficult as BPP. In the following, the NP-hardness of SBPP is established through
the transformation of Set Partition Problem (SPP), an NP-complete problem, to
a special case of SBPP. That SBPP is not in the NP Class is due to the fact that
there may not be a concise certificate given a yes instance to SBPP [30]. More pre-
cisely, splitting the input rational numbers may result in real numbers that cannot
be represented conéisely, i.e. an infinite number of bits is required to represent a
general real number. This can be viewed as a consequence of SBPP not being a

strictly combinatorial problem.
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Definition 3.7 [SPP] Let {a1,a2, -+,a,} be a set consisting of n rational num-
bers. Is there a way of partitioning the set into two subsets, S; and S,, such that

Ea;ES; a; = EG;ESQ ai?

Lemma 3.1 SBPP is NP-hard.

Proof: SPP can be transformed to an instance of SBPP as follows: ); = 2q; /¥ ai,

1 < 7 < n. Clearly, there is a solution with no splitting iff there is a solution to

SPP.

Theorem 3.7 CAP is NP-hard.

Proof: Consider the special case where v;,w > v, > 0 and A(P9 = 0 for all (p,q)
except when p = 7. Let’s consider first the implication of this on the optimization
version of CAP. The way to solve the problem is to minimize on N; and N, and then
find the lowest value of N, for which the minimum values of N; and N, are attained.
From Theorem 3.2 and 3.1, the minimum values of N; and N, are [, A6.9)]. The
way to minimize N, is to minimize the traffic splitting required to achieve the
minimum N; and N,. For example, carrying A(")) over 3 channels means node 1
must have a receivability of 3 to access all of the 3 channels (see Fig. 3.4). Itis
therefore desired to avoid traffic splitting. Next, consider the recognition version
where N; and N, are [, A6:9)] and NV, is finite. This is easily shown to be equivalent
to SBPP, following an outline analogous to the proof of Theorem 3.6. Hence, CAP
is NP-hard.
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Figure 3.4: Illustration of Increase in N, due to Splitting: Theorem 3.7

In the above proof, the special case of CAP considered is “relatively easy” be-
cause of the lopsided cost functions. This enables us to decompose the optimization
process into a series of optimization problems; the minimization of N; and N, is fol-
lowed by the minimization of N,. Nonetheless, this special case is already NP-hard.
Hence, one would expect the general CAP to be very difficult. Also, in this chapter,
several attempts have been made to narrow down the the interesting solution space.
These attempts fail in guaranteeing an optimal solution. One would suspect that
some sort of exhaustive enumeration scheme would be needed to locate an optimal
solution. Barring formulating the problem as a MILP, it is not clear how to proceed

with the enumeration since the number of feasible solutions is uncountably infinite.

Given the substantial evidence that it is unlikely to find an exact and polynomial
algorithm to CAP, let alone a closed form expression describing the interactions be-
tween the different parameters, heuristic approaches that yield suboptimal solutions
will be explored in the next chapter. In addition, the trade-offs between the pa-
rameters will be studied based on the results of these approaches. Finally, before

proceeding to the next chapter, it is worth pointing out that even though the con-
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clusion of this chapter is a negative one, the results are nonetheless of theoretical
interest. Furthermore, some of the results and frameworks in this chapter do give
us some insights into how to approach this problem heuristically. In short, this

chapter may be viewed as a stepping stone to the material in the next chapter.



Chapter 4

Heuristic Methods, Upper Bounds and Lower

Bounds

In this chapter, we discuss two heuristic approaches to CAP. In addition, the fun-

damental trade-offs between the system parameters will also be investigated.

The first approach deals with situations in which the step sizes of the cost func-
tions are lopsided; e.g. w > v, > v;. The method to find a good solution can
be decomposed into several steps. For instance, if v, is substantially greater than
the two other costs, then, one possible approach is to first concentrate on solutions
yielding small N;. We then choose among these solutions the solutions that exhibit
small N, assuming w > v,. Finally, a solution with small N, will be chosen. As
will be seen, the result points to a strong trade-off between N, and N, and a weak

dependence between N, and these two parameters.

The trade-off between N; and N, will be studied more formally by setting up a
minimization problem in which the objective function is N;N, and the constraints
are a subset of the constraints of CAP. This gives us a lower bound on N;N, and

reveals the trade-off between the two parameters.

The second approach, which addresses more general cases with arbitrary cost

54
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sizes, is based on identifying desirable mapping patterns of the traffic matrix, an
N x N matrix in which entry (p,q) is A(P9), Here each entry is mapped onto
one or more channels, and we want to identify mapping methods that yield good
solutions. By addressing the uniform traffic case, an upper bound on the optimal
cost will be derived using a simple heuristic. This is an upper bound because the
optimal solution must have at least as good a solution as the heuristic used. We will
also show that in the limit that the total system traffic is large but the individual
traffic between two nodes is small, the ratio between the upper bound and the lower

bound approaches 1. This implies our heuristic yields a very good solution in the

asymptotic limit.

The n-connectivity CAP, in which any two nodes must have at least n alternative

channels for communication, is studied at the end of this chapter.

4.1 Transmittability-Based Approach

In this approach, the main objective is to minimize N;. The secondary objective

is to find the smallest N, and N, possible, given that N, must retain its minimum

value, ¥, [3°, AP2)].

Definition 4.1 A solution is transmittability-based if N, achieves its lower bound,

Y, [ >, ,\(p.q)] .

There are many transmittability-based solutions to an instance of CAP, some achiev-
ing low values of N, and N, while others do not. The trivial solution in the proof of
Theorem 3.2, for example, gives rise to a very large N,. The transmittability-based
solutions with small values of N, and N, will be loosely called good transmittability-

based solutions.
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From the discussions in the preceding chapter, we know that traffic splitting, as
a rule-of-thumb, is likely to increase N; and N,. One may therefore think of first
finding a good solution to the NSTCAP and then modify this solution to get an
even better solution to the original CAP. Note that the solution to the NSTCAP is

already a feasible and, by its non-splitting characteristic, potentially good solution

to the original CAP.

A heuristic to finding a good transmittability-based solution is outlined in Fig. 4.1.
First, we concentrate on achieving the minimum local transmittability [T, Alra)]
for each node p separately. For each node p we solve a bin-packing problem with
Ar = APR) | Tt is not necessary to solve the BPP optimally since by splitting some
of the traffic later, we can always achieve Ny = ¥,[T, A®9)]. One may use some
heuristic method, for example, the First Fit method or choose the best solution out
of those obtained from a group of several methods, say First Fit, Best Fit, First
Fit Decreasing and Best Fit Decreasing [16]. The better the solution found here,
the less splitting is necessary later, and this leads to a smaller value of N,. The
next step is to achieve the minimum local transmittability by splitting the traffic
originating from node p such that the number of splittings is minimized a.nd the
resulting traffic can be packed into the minimum number of channels. Again, the
optimal way of doing this is not obvious and we leave out the exact specification
of this part. For example, one may choose to split only the traffic among the least
tightly-packed channels. In essence, first tackling the BPP and then considering the
splitting problem, as in Steps (1) and (2) in Fig. 4.1 is really one way of approaching
the underlying SBPP. One may also conceive of algorithms in which these two steps
are integrated. After the SBPP for every node p has been solved to satisfaction,
the resulting N, can be further reduced by considering the BPP problem in which

A= 2(p) zf-’ ’q), i.e. as long as their total traffic can be accommodated by only one
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Let A = The set containing
all source nodes.

Yes
Ay

No
(1) (3)
Remove a node p from A. Solve the BBP with Ay = z
Solve the BBP with for all k, i.e. attempt to
A = APF) for all k. reduce the number of
channels by packing

the traffic on different
channels together.

Number of bins

L[5, APk)

‘ Done. )

(2)

Reduce the number of
bins to [}, A(P:F)]
by traffic splitting.

Figure 4.1: A Method for Finding Good Transittability-Based Solutions
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Rl Rz R3 R4 R5

T 0.6 X 06 | 0.8 | 0.5

T | 0.6 | 0.6 X 0.8 | 0.5

Entry (i,7) in the matrix is A(#9),
T, | 06 | 0.6 | 0.8 X 0.5

Ts | 06 | 05| 06 | 0.8 X

Figure 4.2: A Traffic Matrix for the Illustration of Finding a Good Transmittability-Based Solution

channel, we may condense or combine together traffic of several channels.

For illustration, consider the traffic matrix in Fig. 4.2. Step (1) is trivial; each
of the source nodes needs 4 channels, or a transmittability of 4, since this is the
tightest non-splitting packing. Consider node 1 in Step (2). Traffic (1,4) can be
divided into two equal fractions and assigned to the channels occupied by traffic
(1,2) and (1,3). In this way, the local transmittability of node 1 is decreased by 1.
Performing a similar procedure to all the other source nodes, the solution depicted
in Fig. 4.3 is obtained. For Step (3), we note that the channels carrying traffic
(1,5),(2,5),(3,5),(4,5) and (5,2) are only half full. So any two of these traffic
types can be carried on a single channel alone. Combining (1,5) with (2,5) and
(3,5) with (4,5) , N, and N, each decreases by 2. Hence, in the resulting solution,
N, =13, N; =15 and N, = 23.

By symmetry, one may also obtain a “receivability-based” solution using an
analogous method. From the results here alone, the trade-off between N; and N,

can be seen. The intuitive reasoning is simple, and for illustration let’s consider
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Figure 4.3: The Intermediate Solution after Steps (1) and (2) in Fig. 4.1
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the traffic originating from node p, A®) = {A(®4) for all ¢}. In the transmittability-
based approach, we want to concentrate this traffic on as few channels as possible.
Ideally, we do not want to mix the traffic from a different source node onto the
same channels unnecessarily as this may increase the local transmittability of node
p; note that this traffic mixing is done in Step (3) because there it does not matter
anymore as far as V; is concerned. As a result, after Steps (1) and (2), each source
node contributes at least N — 1 to the resulting value of N,. The contribution
would be more if there is traffic splitting. This means N, would be approximately
N(N —1) in the final solution and this could be significantly greater than the lower
bound, }°,[3, A(P9)], if A(P9) is small compared with 1 for all (p,q). The trade-off

between N; and N, will be established more concretely in Section 4.3.

4.2 Channel-Based Approach

The aim here is to minimize N,. After this, we can either optimize on N, or N,.

Definition 4.2 A channel-based solution is a solution in which N, achieves its lower

bound, [¥(, ) Alpa)],

A channel-based solution with small N, as opposed to small N,, can be obtained
by modifying Step (3) of the algorithm for finding a transmittability-based solution.
Instead of solving a BPP, the corresponding SBPP is considered. A crucial question
is how splitting should be done. Again, we may tackle the SBPP by first solving
the BPP and then splitting the traffic in the least tightly-packed channel. Also,
suppose it is decided that the traffic on channel k should be split, then to reduce
N, it is desired to assign traffic, say (p,q), on channel k to another channel which

is already carrying some traffic to node ¢. In other words, it is not necessary to set
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up a new “receiving path” in such an assignment.

We have presented some general ideas on which many different algorithms may
be developed. A significant shortcoming here is the assumption that the costs
are lopsided, so that it is justified to consider the optimization of the different
parameters separately. The main intuition we gain is that despite False Conjecture
3.2, N. does not depend very strongly on the exact traffic distribution so long as
each traffic type is small compared with 1. N, that is a little larger than [A] can
be easily achieved simultaneously with the minimization of either N; or N,. To
see this, consider the fact that minimizing the local transmittability in Step (1) of
Fig. 4.1 requires tight-packing of traffic onto channels, and therefore a low value of
N, is achieved simultaneously. Further, N, = [A] can always be achieved without
too much traffic splitting after an algorithm in which the minimization of N, and
N is considered. Hence, one would expect there is no strong fundamental trade-off

between N, and N; or N,. This will be explored further in the next section.

4.3 Traffic-Matrix Mapping Method

The Traffic-Matrix Mapping Method is a more general, and yet simpler, approach
than those discussed previously. Essentially, we map each entry of a traffic matrix,

in which entry (p,q) corresponds to traffic (p,q), to one or more channels. The

quest is to identify good “mapping patterns”.

Mapping an entry onto more than one channel is equivalent to traffic splitting,
and therefore it is to be avoided. But traffic splitting is sometimes necessary, for
example to allow more efficient use of the channels through tight packing. It is also

conceivable that a system in which two nodes may communicate through more than
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Ry R R3 Ry Rs R¢ R; Rs Ry Ryo
1 1 1 1 1 1 1 1 1
Ty | x |9 ) 9 9 9 9 9 9 9
1 1 "1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2|9 X |9 9 9 9 9 ) 9 9
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1 1 1 1 1 1 1 1 1
T3 | o 9 X |9 9 9 9 9 9 9
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4| 4| 4 7 Y | | A | " "
1 1 1 1 1 1 1 1 1 Pq
Ts |9 |5 |9 |5 | x |9 |9 |5 |5 |5
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Figure 4.4: A Transmitter-Based Solution

one channel is desired. Such systems will be discussed later. For now, we consider
only “l-connectivity” problems where there is no need to establish more channels
than necessary to carry traffic from one node to another.

4.3.1 Preliminary Discussion

For simplicity, let’s consider a uniform traffic CAP in which

APD = 4y <1 for all (p,9),p # q.

For N =10 and v = %, the transmitter-based approach will yield the mapping in

Fig. 4.4. The resulting parameters are
Nt = 10, N' = 90, Nc = 10-
Let v, = v; so that the cost is

c= v,(N, + N,-) + UJNc. (4.1)
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Suppose that N, = [A] could be achieved. Then the objective would be to reduce
N; + N,. A solution better than the transmitter-based solution is given in Fig. 4.5.
In this solution, all nodes except node 10 have a local transmittability of 3 and a
local receivability of 4. For example, node 1 transmits on channels 1, 2 and 3 and

receives on channels 1, 4, 7 and 10. The system parameters’ values are

N, =28, N,=39, N.=10.

Comparing the two results, the increase in N; in Fig. 4.5 is more than offset by
a larger decrease in N,. To see the underlying reason, we concentrate on the “local
cost” rather than the overall system cost. Adopting the notations
ap; = channel assigned to traffic (p, ¢), assuming nonsplitting

traffic mapping; otherwise, ap; would be a set of channels,

n®) = total number of traffic types assigned to channel k,
n‘(,"‘,) = total number of traffic types (p,-) assigned to channel k&,
n_(:) = total number of traffic types (-,q) assigned to channel k&,

the local cost of traffic (p, q) is defined as

— 143 Vr
Cra = n(apg) + ng“.n) + n_(‘;pq). (42)

It is easy to see that the system cost is

c= 3 o (4.3)

(p.g):p#q
To simplify the minimization of ¢, one may then concentrate on the minimization of

groups of ¢, separately and in succession. This is an “approximation” since the re-
sulting ¢, for different (p, ¢)’s are interrelated. Consequently, (p, g) considered later
tends to have a higher local cost because of the constraints imposed by the mini-
mization of the local costs of the preceding traffic. Nevertheless, this approximation

is useful in that it makes the problem very easy to tackle .
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Figure 4.5: A Better Solution

Returning to the transmitter-based solution in Fig. 4.4, we see that

ey=g+g+o foral(se,p#a. (44)

Each traffic entry (p, g) shares the same channel and the same transmitter with eight
other traffic types, and it has an exclusive receiver to itself. For the assignment in
Fig. 4.5, the traffic originating from node 10 has the same local cost as in (4.4). All
the other tréﬂic types have a local cost of either w/9+v;/3+v,/3 or w/9+v:/3+v,/2.

For example,

= —4 -4+ —= 4.5
€19 9-i-?.+3 ( )
and
w o v v
= — 4 —4 —. 4.6
=gty (4.6)

If v; = v,, it is easily seen that the local costs in Fig. 4.5 are less than those in

Fig. 4.4.
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It is clear that the key to minimizing the local costs is to find a mapping Qpq
such that sharing of channels, receivers and transmitters is maximized. But sharing
of channels is limited by the finite channel capacity. Two traffic types may share
a transmitter (receiver) only if they are also assigned to the same channel and
they have the same source (destination) node. To increase transmitter sharing and
receiver sharing, we would like to increase nﬁ.‘.'?") and n.(f,',"’) respectively. However,
these are two conflicting objectives since increasing either n,(,','."") or n!%%) increases

the traffic in the assigned channel and the channel can only carry a finite amount

of traffic. More Specifically, we have
ng“N)ns“n) > n(“N) (47)
where

nt(k) = the number of transmitters attached to channel k,

n{¥) = the number of receivers attached to channel k.

Inequality (4.7) is satisfied with equality if
ai; = apg =k <= aj; = a,; = k. (4.8)

The interpretation of (4.8) is that by switching rows and columns in the traffic
matrix, the traffic types assigned to channel k can be arranged so that they are
adjacent to each other and form a rectangular submatrix (see Fig. 4.6 in which the
asterisked entries are assigned to the same channel). It is also obvious why (4.8)
implies a good solution: if (4, 5) and (p, g) are already assigned to channel k, barring
exceeding the channel capacity, we may as well assign (i,q) and (p, j) to channel k

since no extra transmitter or receiver is needed.
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7 q
* *
* *
p * *
: * *

Figure 4.6: An Example of a Rectangular Submatrix Channel Assignment
4.3.2 Lower Bounds and Trade-Offs between Parameters

We now proceed to a more formal study of the trade-off between N; and N,. For
simplicity, let’s consider the uniform traffic case with A("4) = ~ for all (p, g). Further,

let’s assume nonsplitting traffic assignment. We have the following

N, N,
NN, = Ensk)Zn,(."), (4.9)
k=1 k=1
N.
Snl® = N(N-1), (4.10)
k=1
n®) < HJ vk, (4.11)
nn®) > p® vy (4.12)

Equations (4.9) and (4.10) are obtained directly from the definitions of the notation.
Inequality (4.12) is the same as (4.7), and (4.11) simply expresses the finiteness of

the capacity of a channel.

We wish to find a lower bound on N;N,. To do so, one may minimize (4.9)
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subject to Constraints (4.10), (4.11) and (4.12). Since these are only a subset of the
constraints to the original CAP, the resulting lower bound may not be as tight as
possible. But the least we know is that the result is a legitimate lower bound. To
minimize N} N,, let’s first neglect the integrality of ngk), nﬁ") and n(*). This again may
“loosen” the resulting lower bound. One way to show the resulting lower bound
is tight is to present an example which achieves it, and this will indeed be done

after the following analysis. Let’s denote the lower bound by y. The optimization

problem is
N. N,
min y=>, nsk) > n{¥)
N,.,n(k) k=1 k=1
n* n, (k)

s.t. (4.10)

(4.11)

(4.12)

n("),ngk),ns") > 0 and real

N, > 0 and integral. (4.13)

Fixing N., Constraints (4.10) and (4.11) correspond to convex sets while (4.12)
does not. The objective function is neither convex nor concave in the region of
interest. In addition, we have the integer constraint of N,. So, at first sight, the
problem may seem to be quite formidable from the nonlinear programming point of
view [5]. It turns out that the problem is rather easy. As a first step, let’s assume
n*¥)’s and N, are fixed and that (4.10) and (4.11) are satisfied (note: N, must be an
integer not less than N(N —1)/ HJ) By inspection, we know that for optimality,
(4.12) must be satisfied with equality. The problem then becomes |
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S0 9% #)
min, y= kE n Y ng
n, ‘n, =1 k=1

s.t. nn®) = n® vk (4.14)
n,n*) > 0 and real. (4.15)

Define two vectors,
u= ( ny’) , V= (V n®) ’ . (4.16)

We know that

Fafllv(=u®v. (4.17)

It follows that
N, N,
y = Zn(k)z:n(k)
=1
> E‘/ ® (k)]
= LZ \/n(k)], (4.18)
=1

The minimum value of y, [Ef;l \/n(")lz, is obtained when n{®) = n*)d where d is a
constant independent of k. Putting this into (4.14), n® /n(®? = d for all k.

Now we come to the second step of the original problem.

min y= L Vn(k)]
Neyn(®) \/ ue) (k)

s.t. (4.10) and (4.11),
N, > 0 and integral

n(®) > 0 and real. (4.19)

The task now is to minimize w on N, and n(¥) with constraints given by (4.10)

and (4.11). Suppose N, is fixed at an arbitrary large value much greater than
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N(N — 1)4. Since the objective function is concave and the constraints correspond
to a convex set, the optimal solution must lie on the boundary [5], where the actual
number of occupied channels is minimum. Alternatively, the minimum w can be
intuitively obtained with the following straightforward reasoning. The problem is
analogous to filling N (N —1) units of water into containers, each with capacity l_,l—]'J
The cost associated with filling a container with an amount of n(®) water is V(.
Since vn® is a strictly decreasing function of n(®) , the optimal strategy to is use
the minimum number of containers and £l up [N (N-1)/ I_,l, | J of the containers
completely and the remaining one partially 1. Let B be the amount of water in the
partially-filled container. Then,

L

This yields

| (N(N - 1) - ) /[1/7]
vt = [1/7] *Ve
N(N - 1) g
_ 7 ﬂ —

7 Y T

> : (4.21)

since § < |1/v]. Hence, the following theorem is obtained

Theorem 4.1 Consider the uniform traffic CAP

N*(N-1)*
[1/7] ’NJ
> max[N*(N — 1)y, N7 (4.22)

NN,

v

o
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Comment: N? is a lower bound because each node must have at least a transmitter

and a receiver.

Inequality (4.22) reveals the trade-off between N; and N,. To show the tightness
of the bound, it is interesting to note that the mapping in Fig. 4.4 satisfies the
inequality with equality. For the nonuniform traffic case, a simple expression like
this is difficult to come by. Nevertheless, there seems to be no fundamental reason

why this trade-off does not carry over to the nonuniform traffic case.

An interesting question is whether a nonuniform case with the same total traffic
has a lower or a higher lower bound on N;N,. There is no general answer to this
question, as will be seen from the following examples. Since the total traffic is

A= N(N —1)~, (4.22) becomes
NN, > N(N - 1)A. (4.23)

Let’s create a nonuniform traffic situation by shifting all traffic in a uniform traffic
matrix to the upper left-hand square submatrix of dimensions N/2 x N/2 in such
a way that we have a uniform traffic submatrix. In this extreme case, only half
the nodes need to communicate with each other and we essentially have a lower-
dimension problem. Clearly,

N(N-1)

NiN: > 2 2

A (4.24)

and the lower bound is lower than before. Note, however, that N, N, is close to this
lower bound only if tight and “rectangular” packing can be achieved, as in Fig. 4.4
and Fig. 4.5. As the size of the individual traffic entry increases, this becomes more

difficult; and this fact is not reflected in (4.24).

For an example showing the reverse result that a nonuniform traffic case may give

rise to a worse situation, modify the traffic matrix in Fig. 4.4 by shifting the traffic
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A(1:2) to X(®9), It is straight-forward to check that tight and rectangular packing
is impossible and the lower bound in (4.23) cannot be achieved. From the two
examples, we therefore conclude that given a fixed total traffic, there is no general
answer to the question of whether the nonuniform traffic case will have a better

optimal solution than the uniform traffic case.

The above statement, however, does not deter us from looking for some rules of
thumb to deal the nonuniform traffic CAP. Consider the derivation of (4.22), the
uniform traffic characteristic is contained only in (4.11) and this constraint is not
considered until the second step of the derivation in (4.19). For the nonuniform

traffic case, (4.10) can be replaced by
CP
n® <~ (4.25)
Pk

where ¢, is the average value of a traffic entry assigned to channel & (i.e. total

traffic divided by the number of entries). There are two possibilities:

1. ¢ should be more or less uniform across all channel k. One way to achieve
this is to intermix large traffic entries with small traffic entries. The resulting

n*)’’s will also be more or less equal.

2. ¢;; should be as nonuniform as possible. One way to achieve this is to group
traffic of comparable magnitudes together. Depending on the traffic distribu-

tion, the resulting n(*) may vary widely across k.

Suppose tight and rectangular packing (i.e. traffic entries assigned to the same
channel form an approximately rectangular submatrix) is possible in both cases,
which of the above is better in terms of minimizing N,N;? The answer lies in the
objective function of (4.19), SN, vn(®), Note that vn(® is a concave (convex N)
function of n(¥). Using an analogy to the Jensen’s Bound — f(z) < f (z) if f(z)

is a concave function of a random variable z, we can establish that Approach 2 is
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better to Approach 1. Let f(z) = y/z and P[z = n(*)] = 1/N, for all k. Suppose

the set of n(*) is obtained using Approach 2. Then, the objective function

Izvf\/rﬁ = N.f(z)
= < N (4.26)

The right side of the inequality is given approximately by the solution of Approach
1. In general, if the traffic sizes differ widely, so will n(¥) and the solution of
Approach 2 will be much better. It must be stressed that the above argument

assumes rectangular and tight packing can be achieved in both cases.

For a concrete, albeit artificial, example, consider Fig. 4.7. Fig. 4.7(a) is a 63 x 63
matrix with two types of traffic entries. It is made up of repetitions of the 3 x 3
cell shown at the upper-left corner, and for simplicity, we ignore the fact that the
diagonal entries are zero. The shaded entry has value ﬁ and the unshaded one
has value %. Through interchanging of rows and columns (moving all the purely
unshaded rows and columns to the bottom and to the left, respectively), the traffic

matrix can be arranged into the form shown in Fig. 4.7(b). This corresponds to

relabeling of some of the nodes.

In (a) the total traffic of each cell is -;-. A 3 cells x 3 cells arrangement, or 9 X 9
entries, forms a square with total traffic of 1. There are altogether %3,—2 = 49 such

squares, and to each of them we assign a channel. It is clear that nﬁ") = ngk) =9

for all channel k. Hence, N; = N, = 49(9) = 441. Notice that ¢; = sl1 for all k.

In (b), for the 42 x 42 submatrix, we form four 21 x 21 squares and assign a
channel to each of them. It is easy to calculate that the shaded region needs a
transmittability and a receivability of 4(21) = 84. For the unshaded region, we
form forty-five 7 X 7 squares and assign a channel to each of them. Here, the

transmittability or the receivability is 45(7) = 315. Hence, for the whole system,
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- % 63

// /

3
/

77y
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(a) ¢ = g5 for all k

- 42 > 21
) 7/
N/
21

(b) ¢k=$or4lﬁ

Traffic of
shaded entry = ﬁ

Traffic of
unshaded entry =

Note: Picture not drawn to scale.

Figure 4.7: Two Mapping Methods of a Nonuniform Traffic Matrix.
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Ni = N, = 84+ 315 = 399. This is less than that in (a). Notice that here, ¢, = -
for the channels assigned to the shaded squares and ¢, = 41—9 for the channel assigned

to the unshaded squares.

In summary, a good heuristic to CAP should attempt to obtain solutions with

the following characteristics:

e The traffic types assigned to the same channel approximates a rectangular

submatrix.

e The traffic types assigned to the same channel are of comparable sizes.

We now investigate the relation between the dimensions of the rectangular subma-

trices and the costs, v; and v,. Consider the following optimization problem.

N, N,
min v n{® + v, > n{® + wN,
n’("‘) , nsk) k=1 k=1
N.,n(k)
s.t. ng')nsk) >n® v
nl¥) < l Vk
v
N,

N., positive integer

n®,n{¥) n® > 0 and real. (4.27)

This is analogous to the minimization of N;N, as before. To minimize the above
objective function, we first fix N, and n(*¥) and consider the problem

N, N,
v Y n{®) + v, >, n{® + wh,
k=1

min
ﬂgk)ﬂsk) k:l

s.t. nS")ng") > n(*)

2™, n{¥) > 0 and real. (4.28)
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The above can be easily solved and the optimizing parameters are

o= B, )= [ (129
r t

Substituting (4.29) into the objective function, the second step of the optimization

process can be written as

N,
min 2,/v:v¢ »_ Vnl®) + wi,
k=1

Nc,n(k)
5.t n® < L (4.30)
v
N.
Y nl = N(N -1)
k=1

N,, positive integer

n{¥) > 0 and real. (4.31)

This is analogous to the problem in (4.19) and shares the same feature that in the
optimal solution, N, is minimized and there is at most one k where (4.30) is not

satisfied with equality.

Returning to the algorithmic study, the important insight to be gained from the

above analysis is contained in (4.29), from which we obtain

n(¥) v
=2t 4.
ng") Uy ( 32)

In general, (4.32) may not be achieved in the original CAP. Nevertheless, it is a rela-
tionship governing the relative magnitudes of n(") and n( ina good solution. One
may then exploit this fact and try to approximate the relationship when exploring

a heuristic scheme for solving the CAP.

Substituting n{*) = X into (4.29) and summing over all channels, we have
N, = N, /1’;‘/12_*_ [
UVt Vs
Ut
= : 4.33
N, \/ vr\/ \/_ o (4.33)
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the above bounds is solving the problem:
min v N; + v, N, + wN: s.t. NN, > NN — 1)?y, N,> [N(N - 1)5].

The following theorem is obtained.

Theorem 4.2 Consider the uniform traffic CAP. N, 2 [N(N - 1)7] and vy +
v, N, > max[2N(N — 1)\ /v:v,7, (vr + v¢)N].

4.3.3 A Traffic Mapping Heuristic — An Example

We are now ready to explore a traffic-matrix mapping heuristic based on the ideas
developed. The method, outlined in Fig 4.8, Successively maps some traffic in the
traffic matrix to a channel, splitting the traffic entries if necessary. The input to the
algorithm is a traffic matrix A = (ai;) and costs Y+ and v,. It produces a mapped
traffic matrix B, whose component b;; is a set of ordered pairs describing how a;; is
partitioned and assigned to different channels. Specifically, Suppose q;; is split into
n partitions; the size of partition £ is ag-’) . Let c.-(;J be the channel ag-’) is assigned
to. Then b; = {bg’), 1< k<n: bg-’) = (a,(;),c‘(;)),zk a,(;) = a;;}. Obviously,
there is only one ordered pair in b;; if there is no splitting in traffic. Roughly, the
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HEURISTIC TRAFFIC-MATRIX MAPPING METHOD FOR CAP

Input: An N x N traffic matrix A = (a;;),a:5 < 1V ¢,7; v; v,.

Output: An N X N mapped traffic matrix B = (b;;);
by = {8 : 8 = (0}, ), Ty aff) = a).
begin

77

cci=1;cp:=1; flag:=0; sw:=0; R:=0; C:=§; b;; =@V i,5; (comment: initialization)

6 ok ke e b ke ok o ok o ok o ke ok ke 36 ke e 3k o ke s ok ok ok o ok s ks ok Sk ok ok ke s o Sk ke K ko ke ok ok ok ok o ok ok ok o o ok 3k e 3 e ok o ok ok 3k ok 3 o o 3 ok ok ok

mn: findmax(A, {1,2,---,N}, {1,2,---,N}, r, s ,cp, flag);
if flag=0
then begin
brs :=brs U {(aru cc)}; ars :=0;
cp:=cp—ar; R:=RUr; C:=CuUg;

goto ex:
else if flag= -1
then begin

if cp # 0 then b,, := b,, U {(cp, cc)}; ary := ar, — cp;
cp:=1l;cc:=cc+1; R:=9; C:=0; flag:=0
goto mn: ;
end
else begin

if sw =1 then B := BT; (comment: correct “transposing” before output)

stop;
end

e ok 3 o o ok ok ok o o o ke o ke ok 3 sk o ok e 3 ook ot o e ok o ok o o ok ok ok ol ok ol ol o ke o ok sk B ok o ok ok ol ok o ok e ke ok o o ok o sk ok ok ok 3k o o o ok ok ok ok ok ok ok

ex: if abs[(|R| + 1)v; — |C|v,] < abs[|R|v; — (|C] + 1)v,]
then goto rw:
else goto cl: ;

e ok o ok o ok e ko ok o e o ke o e 3 e 3 e 3 e ke ok b e ko ko ok ok ook ok ok ke ok ke o ok ok ok ok K o ok ok ok ok o ok o ok o ok ok o ok ek o ok e ok o ok ok o ok ok ok ok ok ok

w: begin
findmax(A, R°, C, r, s, cp, flag);
if flag=0
then begin
brs :=byy U {(ars,cc)}; ars := 0;
cp:=cp—ar; R:=RUr;
rwexp: findmax(A, {r}, C, r, s, cp, flag)
if flag=0
then begin
brs = bye U {(aral cc)}; ars :=0;
CD = CP — Gr,;
goto rwexp:;
end
else if flag = —1
then begin

if cp #0 then b,, :=b,, U {(cp,cc)}; ars := arp —
ep:=1lcc:=cc+1; R:=0; C:=0; flag:=0

goto mn:;
end

else begin
flag:=0;

cp;
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goto ex: ;
end
end
else if flag= -1
then begin

if cp # 0 then b, := b,, U {(cp, cc)}; ars := ar, — cp;
cp:=1;cc:=cc+1; R:=0; C:=0; flag:=0
goto mn:;
end
else if flag = 1 then goto cl;;
else begin
R:=9;C :=0; flag :=0;

goto mn:;
end
end
ke 2k e ke e e e e o o ok ok o ke o o e 3 o o ok ok e ok ok s ke s o ok ok s ok ok ok s s o ok o o o 3 o ok ok ok ke ok ok ok ok ok ok ok 3k 3k ok ok ok o ok ok ok ok 3k ok o ke ok ok ok ok
cl: begin (comment: can use the same steps as rw:)
A= AT,
B := BT,

tempset := R; R := C; C := tempset,;
temp := v; vy := vp; v, := temp;

if sw = 0 then sw := 1 else sw := 0;
goto rw:;

end
***********************#**#**i*i****###**********#*********************i****

end

**************************t*****************t*******************************
procedure findmax(A, RI, CI, r, s, cp, flag)
ifa;;=0Vi€eRIl,je€C
then flag:= flag+ 1;
else if (a;; = 0) or (a;; > cp) Vi€ RI,j € CI
then begin
flag := -1;
r,8 := arg max;;{a;; :+ € RI,j € CI}
end
else begin
flag :=0;
r,s := argmax;;{a;; : 1 € RI,j € Cl,a;; < cp};
end

Figure 4.8: A Traffic-Matrix Mapping Heuristic to CAP
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In Fig. 4.8, superscript ¢ denotes the complementary set and superscript T' de-
notes the transpose of a matrix. R is a set consisting of row indices of the traffic al-
ready assigned to cc, the channel whose mapping is currently considered by the algo-
rithm. In other words, R = {¢ : part or the whole of traffic (¢, ) is assigned to cc}.
C is the corresponding set of column indices. Each time some traffic is assigned to

cc, that amount of capacity is deducted from the cp, the remaining capacity of cc.

The procedure “findmax”, which is defined at the end of Fig. 4.8, accepts a
matrix A, sets of row and column indices RI, CI and cp. It attempts to find the
maxa;; : ¢t € RI,j € CI,0 < a;; < cp. If this is successful, flag will be set to 0 and
r,8 will be set to the arguments of such an a;;. However, if all non-zero a;; are
greater than cp, flag will be set to —1. Finally, if all a;; = 0, then 1 will be added
to flag. Each time after “findmax” is used in the main algorithm, flag is tested so

that the appropriate action can be taken.

At any time, the algorithm is in one of four states, three of which are depicted
in Fig. 4.9. The other possible state is the Starting State where the algorithm looks
for an entry as the “base” of a rectangle to be expanded. The base entry chosen is

the largest entry in A allowed by cp. In Fig. 4.8, “mn:” corresponds to the Starting
State.

In the Complete-Rectangle State, all the traffic entries specified by R and C
have already been mapped to either cc or some previously considered channels. We
can either expand the rectangle horizontally by adding a column or vertically by
adding a row. The expansion is determined by approximating (4.32) in Stage “ex:”

in Fig. 4.8. Recall that it is desirable to have v,n,(.") - vgnsk) ~ 0.

Suppose a vertical expansion is desired, we then consider which row is to be

added in Stage “rw:”. This algorithm chooses the row with the largest possible
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rows in R

(a) Complete-Rectangle State.

-

columns in C

(b) Incomplete-Column State.

(c) Incomplete-Row State.

traffic entry with some unassigned (residual) traffic.

traffic entry with traffic assigned to channels other than cc; no residual traffic.

traffic entry with traffic assigned to cc; no residual traffic.

Figure 4.9: Three Possible States in a Traffic-Matrix Mapping Heuristic
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entry allowed by ¢p. A vertical expansion is attempted by calling “findmax” with
RI = R°, the indices not in R, and CI = C, and it is successful when the flag
returned by “findmax” is either 0 or —1. Otherwise, we are forced to consider
horizontal expansion in cl: even though (4.32) dictates otherwise. However, flag
greater than 1 signifies that a horizontal expansion has already been attempted
and failed (note: each failure adds 1 to flag); and therefore neither vertical nor
horizontal expansion is possible. This means a;; =0V ¢ € R or 5 € C. Upon this,
the algorithm goes back to the Starting State in “mn:”, where instead of expanding
an already established rectangle, it looks for a new entry as the base of a new
rectangle to be expanded. Note that cc and cp remain unaltered since there may

still be some unassigned capacity, ¢p, in cc.

Now suppose the vertical expansion is successful with flag = —1. This means
all the traffic entries considered is larger than cp. The algorithm chooses the largest
entry and assigns ¢p of it to cc. The intuitive reason is that the large traffic entry
makes packing difficult and by reducing it here, channel packing will be easier later.
After that, since all capacity in cc has been assigned, the algorithm enters the

Starting State and considers the next channel’s mapping.

If the vertical expansion is successful with a flag = 0 then the maximum entry
a,, is assigned to cc, a,, in A is set to zero, and we enter the Incomplete-Row
State, or the row expansion stage “rwexp:” in Fig. 4.8. The algorithm then tries to
assign all the row entries with row and column indices confined by r and C to cc.
However, since this may exceed cp, it considers the addition of the entries one at
a time starting with the largest. For this purpose, “findmax” is used again. Note
that any new entries added during the row expansion can be considered as enjoying
a “free ride” in that no extra transmitters or receivers are needed because they are

are furnished by traffic already assigned to cc. If the whole row can be added, we
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come to the Complete-Rectangle State again in “ex:”. Otherwise, ¢p is reduced to

zero and the algorithm will be in the Starting State.

Because of the symmetry of the problem, the part of the algorithm that deals
with vertical expansion and row expansion can be used for horizontal expansion
and column expansion after transposing the two matrices A and B, switching R
with C and v; with v,. This is done at “cl:”. To keep track of the these switching
and transposing, a switch sw is used. If sw = 0 then the notations have their usual

meanings, and sw = 1 if columns and rows have been switched.

The algorithm is written in such a way as to ease presentation and it is not very
efficient because of many redundancies. By introducing more data structures, it

can certainly be improved further. These details will be left out here.

The algorithm is polynomial in terms of its computation complexity. To see this,
note that “findmax” is where most of the computation is done and it is O(N?).
Let’s consider the maximum number of times “findmax” can be called from the
main program. Since the algorithm terminates when all entries in A are reduced
to zero, the key is to identify the maximum number of calls to “findmax” before
an entry in A is reduced to zero. If “findmax” returns flag = 0, we know that an
entry in A will be reduced to zero immediately after that. If it returns flag = —1,
a new channel with e¢p = 1 is considered the next time “findmax” is called. Since we
assume a;; < 1 = cp, this next call of “findmax” is guaranteed to reduce an entry
in A to zero if A # 0. The situation is more complicated if flag # 0, or — 1. An
example of the maximum number of times “findmax” will be called before an entry
is reduced to 0 is as follows: The “findmax” at rwexp: returns flag = 1. After that,

flag is set to 0 and the algorithm goes to ex:. A vertical expansion is needed and

the “findmax” immediately after “rw:” returns flag = 1, whereupon we goto cl:.
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The “findmax” immediately after “cl:” returns flag = 2. So we go to “mn:”. The
“findmax” at mn: returns flag = —1. The next “findmax” is guaranteed to reduce
an entry of A to 0. Altogether, “findmax” is called five times. From above, we
deduce a maximum of five calls to “findmax” is needed before an entry is reduced
to 0 and this is independent of N. The number of calls to ‘findmax” is therefore of

order O(N?). Hence, at worst, the algorithm is of order O(N*) since “findmax” is

O(N?).

For illustration, consider the traffic matrix in Fig. 4.10. Fig. 4.11 is the solution
(i.e. the B matrix) generated by the algorithm for v, = v, and Fig. 4.12 is the

solution for v; = 2v,. Notice that some traffic entries in the latter case are split.

One may think of many heuristics of different variations based on the ideas
presented in this section. For example, an improvement to the algorithm above is
to consider the addition of a whole row or a whole column at a time rather than
an entry at a time. For vertical expansion, we may choose the row with the largest
sum of entries rather than the largest entry. By taking a more “global” view, it is
likely that a better solution can be found. The trade-off is that more computation
is necessary. These details will not be pursued further as the main purpose of this

chapter, i.e. to explore general rules for devising heuristics, has been achieved.
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R, R, Rs Ry Rg R R, Rg Ry Ryo
X 0.05 0.03 0.20 | 0.15 0.04 0.08 0.03 0.01 0.09
0.05 X 0.01 0.03 0.02 0.04 | 0.03 0.03 0.01 0.06
0.10 | 0.09 X 0.01 | 0.03 | 0.07 | 0.08 | 0.01 | 0.06 | 0.05
0.20 | 0.03 | 0.10 X 0.03 | 0.06 | 0.09 | 0.07 | 0.13 | 0.09
0.01 | 0.25 | 0.15 | 0.02 X 0.03 | 0.01 | 0.05 | 0.02 | 0.13
0.02 | 0.01 | 0.23 | 0.01 | 0.02 X 0.06 | 0.08 | 0.14 | 0.06
0.03 0.14 | 0.20 0.20 | 0.03 0.06 X 0.07 0.02 0.14
0.09 0.17 | 0.12 0.01 0.04 0.02 0.08 X 0.06 0.14
0.13 0.04 | 0.16 0.04 | 0.21 0.08 0.15 0.03 X 0.01
0.12 0.10 | 0.05 0.18 0.09 0.19 0.09 | 0.01 0.08 X

Figure 4.10: A Traffic-Matrix with 10 Nodes.
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Figure 4.11: The Solution to Fig. 4.10 for v; = v,.
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v = 20,-

N, =44

Nt=23

Figure 4.12: The Solution to Fig. 4.10 for v, = 2v,.
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4.4 Upper Bounds and Asymptotic Behaviors

This section addresses the upper bounds of N;N, and v,N; + v,N, + wN,. Unlike
the study of lower bounds, in order to show the validity of the upper bounds, it is
necessary to present the actual methods that achieve them. We will show that the
differences between the upper and lower bounds are negligible if the system traffic
is large and the individual traffic is small. This means the heuristics used to derive

the upper bounds are very good methods in this asymptotic situation.

For an upper bound on N;N,, two obvious candidates that have the desired

asymptotic characteristic are

NN, < N}N -1y +¢(), (4.34)
N:N, < NYN-1)*v(1+6(v)). (4.35)

€(v) and 6(v) are functions which approach 0 as v goes to 0. It is clear that
(4.34) is a stronger condition than (4.35) since the former means the upper bound
actually approaches the lower bound asymptotically while the latter only implies
the difference between the upper and lower bounds are negligible compared with
the values of the bounds. We will show that while an upper bound as in (4.35)
can be found, it is not possible to achieve (4.34). This is not surprising considering
that the lower bound can be achieved only under perfect packing situation where

all channels are fully filled.

First of all, for a meaningful discussion, it is necessary to specify the functions
€(-), 6(-) and the way ~ approaches 0 more precisely. Consider the trivial case where
N is fixed as vy — 0, but v > 0. The lower bound N?(N — 1)?>y — 0 and only one
channel is needed to support all the traffic. But, N; = N, = N since each node must
have a minimum local transmittability or receivability of 1. Consequently there is

no way the upper bound can come close to N?2(N — 1)?4. Therefore, to avoid the
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trivial single-channel case, we must let N — oo as 4 — 0: there are many ways in

which this can be done, for example, we could fix Ny. As a result, e and 6 must be

functions of both v and N.
Let’s fix the total system traffic
N(N-1)y=k (4.36)

where k& > 3 and it is an integer constant. To show (4.34) is impossible, we identify

a sequence of v, say {v;,7 = 1,2,...}, which approaches 0, and that
NN, > N*(N —1)*y; +¢ (4.37)

where ¢ is a strictly positive constant. In other words, we want to show that for
¥ = "%, a lower bound better than N?(N — 1)%y can be found. Examining the two
lines in (4.22), this is not too difficult a problem if 1 /7 is not an integer value.
Simply look for a sequence {~;} where 1/v; = I; + €, 0 < ¢ < 1 and I; is an integer.
For this purpose, we fix N; = ¢k+2. Then 1/v; = (*k®+3ik +2) [k, giving € = 2/k
and I; = %k + 3. Now, |1/~;] = I; and
NN, > M-y
[1/%]

2 Nz(N - 1)2’1,'(1 + G"T.')

= N*N —1)%y; + 2k (4.38)

Thus, ¢ is 2k, and therefore (4.34) cannot be achieved in general. The argument
considers the nonperfect channel packing situation where 1 /7 is not an integer; i.e.
a channel cannot be fully packed without traffic splitting. It can be shown that
even if 1/; is restricted to be integer value, (4.34) is still not achievable in general.
The details will not be discussed here. The basic idea is to resort to the tighter
bound given by (4.21) and fixing N(N — 1)y + v = k to avoid perfect packing of

the whole system.
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We now try to obtain the less stringent upper bound of (4.35). Let’s first consider

the more general nonuniform traffic situation with the restriction
AP <AV (p,q), (4.39)

i.e. all traffic entries are bounded by A“. Furthermore, v is redefined to be the
average traffic,
_ Lpgpta Alpa)

It is enough to show a heuristic which achieves the upper bound desired.

Consider a transmitter-based heuristic without traffic splitting. For each node P,
we solve the bin-packing problem with A, = A®9 for all ¢ # p. As previously dis-
cussed, traffic entries assigned to the same bin belong to the same channel. Suppose
the First-Fit algorithm for BPP is employed. This heuristic does not put a traffic
entry on a new channel unless the entry is greater than the remaining capacity of
every channel already occupied. Since A(P4) < X%, the resulting solution has at most
a channel with unused capacity greater than or equal to A*. It follows that the local
transmittability required by node p cannot be greater than [¥,.,, A9 /(1 — A%)].

Summing over all nodes yields

o Arpa)
Nt < Z Eqiqip Au ]
p

IA

Caarp AP9
——+1
D s Tas

N(N - 1)y

T TN (4.41)

After solving N BPP as above, we may further reduce N, and N, by packing the
traffic of different channels into one channel (see Section 4.1). Whether this further
optimization is performed, it is easy to see that each node needs a maximum local

receivability of (N — 1) provided A* < 1 and there is no traffic splitting. Thus,

N, < N(N —1). (4.42)
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From (4.41) and (4.42),

1 1
< N}N —1)? 4.
NN, < N*(N — 1)%y 1—A"+(N—1)'7] (4.43)

Comparing the above to (4.35), we see that

1 1

e TRy o

1 (4.44)

Suppose (N —1)*4 > k where 0 < z < 1 and k = constant. Letting A%,y — 0,

1

It i o

and we get the desired result.

Keeping the quantity (N — 1)*y > k implies that the average traffic from a
single source, (N — 1)y — oo, as v — 0. Intuitively, this implies that the channel
with unused capacity greater than A®, if there is one, is negligible relative to the
total number of channels assigned to a source. The second term in (4.41) becomes

negligible and the result follows immediately without detailed analysis.

The above discussion is summarized in the following theorem:

Theorem 4.3 Let v be the average traffic and \* be the mazimum traffic entry.
Suppose (N — 1)*y > k where k is a constant and 0 < z < 1. Then, N;N, <
N?(N —1)%4(1 + 6(X%,~, N,z)) where § — 0 as A%,y — 0.

The argument leading to the above theorem will break down if z > 1. It is not
clear whether there are better heuristics with the desired asymptotic behavior but
less stringent requirements. However, consideration of the simple uniform traffic

situation allows us to enlarge the range of z to 0 < z < 2.

A simple rectangular mapping strategy is used, and it is illustrated in Fig. 4.13.

Notice that the dimensions of a “regular” rectangle is n, x n, whereas the rectangles
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—

Figure 4.13: A Rectangular Traffic-Matrix Mapping Scheme

at the bottom and right edges of the matrix are smaller because of the finite size
of the matrix and that N may not be divisible n; or n,. For node p, the local
transmittability is [ N/n,], corresponding to the total number of rectangles occupied

by traffic of the types (p,-). Similarly, the local receivability of each node is [ N/n,].

N, = N[ﬁ] SN(N+nr>’
n, n,
N, = N [E] <N (N L "‘) . (4.46)
ng ng
For feasibility
1
nn, < —. (4.47)
B
For efficient packing, we require
n(n. + 1)y > 1, (4.48)
(ne+ n,y > 1. (4.49)

The above essentially says that if a row or a column can be added to the regular
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rectangle without exceeding the channel capacity, it should be done. From (4.46),

NN, < N”(N+n,)(N+nr)%
< NN 1) + (re +1)] WV =1)+ (o + 1) g —
Ny Ly 2tmetn, (nt+1)(n'+1)}(450)
= N iy o) T (V-1) (N —1)2 .

where the second line is obtained by substitution from (4.49). Now, the rectangle’s
dimensions n,; and n, are further restricted by the following scheme. Roughly, we
try to obtain “square” assignments. For efficient assignments satisfying (4.48) and
(4.49), an exact Square may not be possible. In such a case, we expand the rows
rather than the columns. More exactly, to determine n¢ and n,, find n such that
n?y < 1and (n+1)*y > 1. Set n, = n, 7t = n+m where m is the largest integer such
that (4.47) is satisfied. Clearly, m < 2 since otherwise (n+1)*y < n(n+ m)y <1,
and the hypothesis that (n 4+ 1)24 > 1 will not be valid. Hence,

n,+22>n; >n,. (4.51)
Using the above in (4.50) yields
1 4+2n,  (n,43)(n, +1)
< N*(N —1)? . .
NN, < N*(N 1)7[1_%7] [1+(N_1)+ -1 (4.52)

Now n? < 1/~ so that

1
<
l-n~y~1- VvV
where §' > 0 as y — 0. Suppose (N —1)% > k for some constant k and 0 < z < 2.
Then n, < (N ~1)%/v/%.

=1+6'() (4.53)

n,

1
-1 < TR (4.54)

which goes to 0 as N — oo, Using these facts in (4.52), we obtain the following

theorem.
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Theorem 4.4 Consider the uniform traffic situation. Suppose (N —1)*v > k where
k is a constant and 0 < z < 2. Then, N;N, < N*(N —1)?q(1 + 6(v,N, z)) where
6—>0as~y—0.

Let’s derive an upper bound for v, N; + v, N, + wN,. A modified version of the
above strategy may be used. It will be shown that in the limit y — 0, N (N —
1)y — oo, the difference between this upper bound and the lower bound derived
previously becomes negligible. The scheme can certainly be improved further to
obtain a tighter bound. The primary aim here, however, is to demonstrate the
desired asymptotic behavior without complicated analysis. The heuristic can also

be used to derive Theorem 4.4 although the resulting bound is not as good.

Instead of approximating “square” assignment as before, we want to obtain rect-

angular assignments where the dimensions n; and n, are related by

—x —. 4.55
el (4.55)
To approximate the relation, we let
ne = [n,ﬁ . (4.56)
Ut

The strategy is to find n, such that n,n, < 1/, n, satisfies (4.56) and n, is as large

as possible. This means

L
n, [nr_r] <
Ut

(4.57)

R ==

(n + 1) [(n, + 1):—:] >

Simplifying the above yields

1 4
(nr +1) > 5? [—1+ ) (4.58)
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Now, (4.46) will still be valid. Using the inequalities and noting from (4.56) that
n—f < ;’- and n; < n,.—f- + 1, we obtain
Nv

n,

Substituting n, from (4.58) yields

Uy /vt
UrN +‘0th_ l_t[ 1+\/4_”L+1J_1(2N+(1+Ut) '7v,.+1)' (4.60)

Ve

err + vtNt S

t
(2N et o /v, + 1) (4.59)

Rearranging the above gives

SNt sz( “)vA_ [, 3+ At /w)ufs,
rNr+ tNt 40' \/uT" \/; 2(N—1)\/’7 ] (4'61)

It is easy to see that the denominator of the first term of the above product is

1 — 6;1(7) where 6; > 0 and 6§, — 0 as ¥ — 0. The second term of the product is
1 + 65(7, N) where 6, — 0 as vy — 0 if (N — 1)y > k, a constant, and 0 < z < 2.

Hence, we conclude that
v, Ny + v: Ny < 20/0,0,AN(N —1)(1 + 6(v, N, 7)) (4.62)

where 6 — 0 as v — 0 so that the difference between the upper bound and the

lower bound becomes insignificant.

For the bound on the channel cost, we have

N] []—V-] = NelV, (4.63)

N, = [— .
€ n, n; N 2
We note from the above that the procedure used to bound N, can actually be used

to obtain a bound for N;N, too. Substituting (4.46) into the above,

N, < m%(N+n')(N+n‘)
< ;)(N+n,.) (N+( vt)+1) (4.64)

ne(n,

Substituting n, from (4.58) and arranging, we get
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=27
A == | O Y.
< L w .

V7

. < . (4.65)
[+ - Va3
Using the same argument as before,
N, < N(N - 1)7(1 + ¢(v,N)) (4.66)

where € — 0 as v — 0 provided (N — 1)y > k for 0 < z < 2. The discussion is

summarized in the following theorem.

Theorem 4.5 Consider the uniform traffic situation. Suppose (N —1)%y > k where
k is a constant and 0 < z < 2. Then, v,N, + v,N; + wN, < 2N(N —1)/voy(1 +
6(7,N)) + wN(N —1)7(1 + €(v, N)) where 6,6 — 0 as v — 0.

The requirement (N — 1)® > k implies the total traffic
N(N-1)y=~(N-1)>*>(N-1)%k — oo

asy — 0. The interpretation of the theorem is that under conditions with large total
traffic but small individual traffic between two nodes, simple heuristics yield very
good results. It seems, at least intuitively, this will hold even for the nonuniform
traffic case. However, the analysis may be much more involved because of the

increase in the “degrees of freedom” of the traffic values.

4.5 CAP with n-Connectivity Requirement

The last subject in this chapter is CAP with n-connectivity (n > 0) requirement.
That is, there are at least n alternative channels for the transmission of each traffic
type. Among the motivations for such an arrangement are reliability, flexibility in

access control, and perhaps an improvement in performance.
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An easy heuristic that deals with this new requirement is as follows. Form a new
traffic matrix by dividing each traffic entry in the original matrix by n;

(p.9)
ywa) _ AP (4.67)

n

We then proceed by applying an algorithm that solves the 1-connectivity problem
on this new traffic matrix: n replicas of the resulting mapping constitute a solution
to the n-connectivity case, with the understanding that the same channel labels
on different copies of the map are actually different channels. This heuristic has
the appeal that A'®% are likely to be small for large n, and therefore the resulting
packing problem of the 1-connectivity problem is easy and a good solution can be

obtained. Thus, the resulting n-connectivity solution must be reasonably good.

Let’s consider the implication of n for N; and N, for the uniform-traffic CAP.

Assuming no traffic splitting, we know from (4.22) that for each individual map
NN, > N*(N —1)*q/n. (4.68)

But for the whole system, N; and N, are n times that given by the above. Hence
NN, > N*(N —1)%nq. (4.69)

Therefore, we should expect in the results obtained, N; (or N,) are roughly pro-
portional to y/n in the large total traffic and small individual traffic limit. If
(N = 1)?4 < n, however, a better bound is n2N? — each node needs at least n

transmitters and n receivers.

Theorem 4.6 Consider the uniform traffic CAP with n-connectivity requirement.

Using the n-replica strategy, N;N, > max[N*(N — 1)n~y,n?N?|.

Comment: Unlike the 1-connectivity case, this bound is scheme dependent. It is

conceivable that other heuristics will yield better bounds.

o e —————— @& e
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A slight modification to the above scheme is as follows. Suppose we use the
1-connectivity heuristic given at the end of Section 4.3 repeatedly to solve the
n-connectivity problem. Notice that for the example in Fig. 4.12, some traffic
entries are split (e.g. traffic (7,2)). As a result, using the above method, these
entries would have 2n accessible channels. It is likely that a better solution can be
obtained by eliminating these redundancies. As before, for the first mapping, we
consider a traffic matrix with entries as in (4.67). However, whenever there is a
split in traffic, instead of keeping it for the same mapping, the remaining traffic will
be “transferred” to the traffic matrix of the subsequent mappings (e.g. divide the
residual traffic equally among the (n—1) subsequent traffic matrices.). Also, the last
channel considered may not be fully packed, as in channel 7 in Fig. 4.12. To make
packing easier in the subsequent mappings, we try to pack this channel completely
by transferring some traffic from the same traffic entries in the subsequent traffic
matrices to the current matrix until this last channel is completely full. Of course,
we have to be careful not to reduce any entry in the subsequent traffic matrices
to zero, else the n-connectivity requirement will not be satisfied. Note that in this
method, a modification of the 1-connectivity heuristic is applied for each resulting
map and a total of n applications are needed. Instead of an O(N*) algorithm as in

the first method, we now have an O(nN*) algorithm.

Yet another scheme is to use a 1-connectivity solution for the original traffic
matrix. In addition, we introduce (n — 1) extra channels on which all nodes can
transmit and receive. It can be easily shown that this yields a better solution if the

total system traffic is much greater than (n — 1).

The above analysis assumes the effective capacity is independent of the mapping
schemes. Chapter 7 reexamines this assumption and shows that it is not always

justified.



Chapter 5

Block Designs

The problem of block designs is a combinatorial problem well studied by mathemati-
cians and papers on the subject can be traced back to the nineteenth century. The
particular form of block designs that are relevant to the study here is the so-called

balanced incomplete block designs and it is defined as follows:

Definition 5.1 A balanced incomplete block design D(N,, N,n.,k,n) is an ar-
rangement of N distinct objects into N, blocks such that each block contains k
distinct objects, each object belongs to n,; blocks and every pair of distinct objects

occurs together in exactly n blocks.

Fig. 5.1 is an example of a block design with N, =7, N=17,n,=3,k=3,n=1.
Section 5.1 relates block designs to CAP. Section 5.2 discusses some known results
of block designs and Section 5.3 shows some applications and extensions of results

to frameworks closer to the original CAP.

5.1 Relating Block Designs to CAP

In terms of CAP, a block corresponds to a channel and an object to a communication
node. The problem can be viewed as a uniform-traffic capacity assignment problem

with the additional constraints:

98
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(1,2,4) (1,5,6)
(2,3,5) (0,2,6)
(3,4,6) (0,1,3)
(0,4,5)

(¢,7,k) = A block containing objects ¢, 7 and k.

Figure 5.1: A Block Design D(7,7,3,3,1).

Constraints 5.1
(a) A node’s transmittable channels are the same as its receivable channels, i.e.
n,¢ corresponds to both node transmittability and node receivability.
(b) All nodes access the same number of channels.
(c) Any two nodes share exactly n common channels (i.e n-connectivity).

(d) Every channel is accessed by the same number of nodes (i.e. k).

Because of the symmetries implied by these constraints, the block design problem is
more akin, but not similar, to the capacity assignment problem with uniform traffic
between nodes. Another way to look at it is that the traffic intensity aspect of CAP

is ignored in the block design formulation.

Consider an instance of CAP with 7 nodes and A(P49) = 1/6 for all (p,q), p # q.
Then the block design in Fig. 5.1 gives a solution with N, = 7, N, = N, = n,N = 21
and there are 3 transmitters and 3 receivers attached to each channel. The total
traffic within a block (channel) is exactly 1. The assignments given in Fig. 5.2,

on the other hand, yield N, = 7, N, = 20, N; = 19, a better solution. This is
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Ry R, Ry Ry Ry Rg¢ R,
1 1 1 1 1 1
T, | x {s 6 6 6 6 6
1 1 2 2 3 3
1 1 1 1 1 1
T2 | s X | & 6 6 6 6
1 1 2 2 3 3
1 1 1 1 1 1
T | & 6 X |® 6 6 6
1 1 2 2 3 3
1 1 1 1 1 1
Ts | 6 6 6 X |5 |%& 6
4 4 4 4 4 4
1 1 1 1 1 1
Ts | 6 6 6 6 X |6 6
5 5 6 6 7 7
1 1 1 1 1 1
Ts | & 6 |6 6 |6 X |6
5 5 6 6 7 7
1 1 1 1 1 1
T | & 6 6 6 6 6 X
5 5 6 6 7 7

Figure 5.2: A CAP Solution Better than that Derived from Fig. 5.1

not surprising since there are more constraints in the block design formulation. On
the other hand, it is conceivable that the symmetries in block designs may lend
themselves to facilitating other aspects of network design. It is also reasonable to
use the block design formulation when the capabilities of transmitting and receiving

on a channel come in a single package, say a transceiver.

The optimization issue of the capacity assignment is not addressed in the block
design problem. This is understandable since CAP-like optimization problems are
not the original motivation for the study of block design. For instance, an intended
application of block designs is the symmetrical arrangement of sets of experiments
in order to diffuse unwanted correlations, as applied in statistics [11]. For our
purpose, we would like to have small values of N, and n,; given some N, n and
the traffic intensity. It is difficult to incorporate the optimization aspect since the
construction of block designs is itself a very difficult problem: only block designs
with certain sets of parameters are known. The emphasis of this chapter will be on

the implications of the additional constraints for the capacity assignment problem.
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5.2 Some Theorems and Known Results

This section discusses some important known mathematical properties of block
designs to prepare for the next section, in which we extend and apply these results
in the framework of CAP. The reader may choose to read the next section first,
and come back to this section only when necessary. Some theorems will be stated
without proofs, but examples and comments will be added to put the meanings into
the proper context. The construction methods of block designs will only be briefly

overviewed here.

The simplest and perhaps the most fundamental relationship between the pa-

rameters (N,, N,n.,k,n) are given in Theorem 5.1.

Theorem 5.1

ch = Nn,.g, (51)

ne(k—1) = n(N-1). (5.2)

Proof: (5.1) counts the total number of the “occurrences” of objects in two
ways. Each block contains k objects and there are N, blocks. Hence, there are
Nk occurrences. Also, each object belongs to n,: blocks and there are N objects.
Hence, there are Nn,; occurrences. (5.2) counts the number of pairs containing a
particular object. The object occurs in n,; blocks and in each of these blocks, it
pairs with (k — 1) other objects. Hence, the number of pairs containing the object
is n,¢(k — 1). But the object occurs n times together with each of the other (N —1)

objects. Hence, the number of pairs containing the object is also n(N — 1).
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Theorem 5.1 implies at most three of the five parameters are free. The fact that
only integral values are allowed further restricts the choice of parameter values.
Also, as will be seen, Theorem 5.1 is necessary but not sufficient for the existence

of a block design.

Theorem 5.2 If n,y > n, then N, > N and n, > k.

Comment: Notice that n,, > n by definition, i.e. two objects cannot be paired
more than n,, times if an object belongs to only n,; blocks. In the case n,; = n, we

have a trivial design in which all the objects belong to every block.

Proof: Define an N x N, incidence matrix A; a;; = 1 if object ¢ belongs to block

J and a;; = 0 otherwise. Let

( nf‘ n e e n \
n n LR n
B=AAT = rt (5.3)
\ n n Nyt y

where the second equality is implied by the definition of block design; i.e. b;j = the

number of blocks in which Objects ¢ and j occurs together. Let

[+ (N=1)n 0 0 0o )
n Ny — N 0 0
C= n 0 nu—n 0 (5.4)
\ n 0 0 Ny —n J

C can be obtained from B by subtracting the first column of B from all the other

columns and then adding all the other rows to the first row. Hence,

det B = det C = (n,t + (N — 1)n) (n,: — n)V 1.

(5.5)
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Since n,; > n, det B # 0. Therefore, rank A > rank AAT =rank B = N, implying
N. > N. By (5.1), n,; > k.

a

We see that the number of channels in the corresponding CAP must be at least the
number of communication nodes, regardless of the total system traffic. This may
not be desirable in low traffic situations. In particular, by removing some of the
symmetry requirements (e.g. allowing different pairs of objects to occur together
different numbers of times, i.e. letting the connectivity > n instead of fixing it), it

is possible to remove the restriction of Theorem 5.2. This will be discussed in the

next section.

Definition 5.2 A symmetric block design D(N,k,n) is a design in which N, = N.

By (5.1), this also means n,; = k.

Theorem 5.3 If D(N,k,n) ezists, then

1. N 1s even implies (k — n) is an integer square;

2. N 1s odd implies there exist integers z,y,z, not all zero, such that

2t = (k —n)z? 4 (—1)3(V-Ypy2,

Proof: Omitted; see [17].

O

Theorem 5.3 applies to symmetric block designs. There are also nonexistence theo-
rems on asymmetric block designs. Basically, they rely on the concept of completion
and embedding. It can be shown that asymmetric block designs can be completed

to form symmetric block designs by adding more object and blocks. If the resulting
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symmetric block designs do not exist, then the corresponding asymmetric designs

do not exist. Thus, Theorem 5.3 is a rather useful result.

Theorem 5.4 Let A be a real nonsingular N x N matriz satisfying either

AAT = (k—n)I+nJ (5.6)
or
ATA = (k- n)I+nJ (5.7)
and esther
AJ =kJ (5.8)
or
JA = kJ, (5.9)

where I 1s the identity matriz and J a matriz with all elements 1’s. Then A satisfies

all four relations and N, k and n satisfy

k(k—1) = n(N — 1). (5.10)

Proof: Omitted; see [17].

O

Basically, Theorem 5.4 implies the dual property of symmetric block design: if the
block labels and node labels are interchanged, a symmetric block design of the same
parameters is obtained; a corollary is that two blocks must have n common nodes.

The theorem is also employed in some block design construction method.

The above theorems all deal with the necessary conditions on block designs.

Other than those of known block designs, there are no general sufficiency tests

Theorem 5.5 The conditions in Theorem 5.1 are necessary and sufficient for a

block design with 4 > k > 2 and any n.
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Proof: Omitted; see [17].

a

Block design construction methods can be categorized into two classes. Direct
construction methods construct block designs in a number of ways, including using
finite fields, finite geometries and finite groups. There are also methods based
on number theory and algorithmic approaches. Indirect methods construct new
designs from known ones. This can either be recursive methods that construct
a larger design based on smaller ones or methods that derive smaller designs by

eliminating a subset of objects or blocks in a larger design.

Perhaps the most elegant and the most general method is the direct construction
method based on finite geometries. In this method, the points and hyperplanes in a
finite geometric construct are mapped in a one-to-one fashion onto the objects and
blocks of a block design. Two objects occur in at least a common block since two
points belong to at least a common hyperplane. Hence, the problem of block designs
is transformed to the problem of constructing finite geometries and identifying the

resulting hyperplanes.

Because of the extensive amount of material, the reader is referred to [17,32] for
further details of Block Designs. A more introductory treatment is given in (34].
Applications of Block Designs on Statistics are discussed in [11]. For a list of known

designs, refer to Appendix I of [17).
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5.3 Application and Extension of Results to CAP

We now apply and extend the results of the preceding section in the context of

CAP.

5.3.1 Traffic Consideration

Consider an instance of CAP with N = 7. If 42y < 1, then the problem is trivial
and we simply assign a single channel to all the nodes. Now if 42y = 6, we can still
assign 6 channels such that each is accessed by all nodes and a traffic type is split
equally among the 6 available channels (i.e. connectivity n = 6). Thus, no capacity
is wasted and n,; = 6. An optimization question is whether we can minimize n,; by
formulating this problem in terms of a block design problem with n = 1. According
to Theorem 5.2, N. > N > 7 so that at least a capacity of 1 will be wasted. Fixing
N, =7 in Theorem 5.1 yields

np(nee — 1) = 6n. (5.11)

Hence, if n = 1 then n,, = 3. In fact, Fig. 5.1 is a block design with the above
parameter values. In general, much channel capacity will be wasted if N(N —1)y <
N since redundant channels must be added for the feasibility of the associated block

design. Note that this is not so with the original CAP.

5.3.2 The Constrainté Responsible for N, > N

Let’s investigate which are the essential constraints among Constraints 5.1 that

result in N, > N. To do so, we first relax each of the four listed constraints.

(i) Drop Constraint 5.1 (a). We must be careful about what the other constraints

mean here. Constraints 5.1 (a), (b) and (c) are redefined as follows:

e Any given node can transmit on n; channels and receive on n, channels.
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Ry, R Ry Ry Rs Rs
1 1 1 1 1
Ty | x |6 6 9 9 B)
1 1 2 2 2
1 1 1 1 1
T | & X |8 9 9 9
1 1 2 2 2
1 1 1 1 1
Ts | & 6 X |9 9 o
1 1 2 2 2
1 1 1 1 1
Ty | o 9 o X |6 6
3 3 3 4 4
1 1 1 1 1
Ts |9 |9 |5 |&6 x | &
3 3 3 4 4
1 1 1 1 1
Ts | o 9 9 6 6 x
3 3 3 4 4

Ne=4,N=6,n,=ny =2, k, =k =3, n=1.

Figure 5.3: An Example in whcih Transmittable Channels Different from Receivable Channels and
N, < N.

¢ Given any pair of nodes, say p and g, there are exactly n channels on which p

can transmit and ¢ can receive.

e There are exactly k; nodes which can transmit and k, nodes which can receive

on any given channel.

We claim that the above constraints do not imply N, > N. It suffices to give the

example in Fig 5.3.

(ii) Drop Constraint 5.1 (c). Instead we require any pair of nodes to have at least,
rather than exactly, n common accessible channels. It is easy to show that N. > N
is not true anymore even if we keep the other constraints. Consider a case with
N.=3, N=6,n, =2,k =4and n > 1. An example satisfying the above
specifications is as follows: (0,1,2,3), (2,3,4,5), (0,1,4,5). We see that there are
two common channels between nodes 0 and 1, between nodes 2 and 3, and between
nodes 4 and 5. However, there is only a common channel between nodes from

different pairs as grouped above. Also, note that N > N..
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(iii) Drop Constraint 5.1 (b). Instead of n,;, node ¢ can access ng) channel. If all
the other constraints are kept, (5.2) becomes n®(k —1) = n(N —1) for all 7 (recall
that this is the number of pair occurrences that include node ¢). Consequently, ng?
is the same for all ¢ and dropping this constraint without dropping at least another

constraint does not relax the problem at all.

(iv) Drop Constraint 5.1 (d). Let k() denote the number of nodes belonging to
channel j. If we keep all the other constraints, we see from the proof of Theorem 5.2
that N, > N will still hold since the proof is independent of the assumption that

k() is the same for all j.

(v) We see that cases (iii) and (iv) above do not relax the requirement N, > N.
Suppose we combine the two cases. In other words, we drop Constraints 5.1 (b)
and (d) together. It can be shown that N. is still > N. For clarity of presentation,

this will be stated in a theorem and proved thereafter.

Definition 5.3 A relazed block design D,(N., N,n) is an arrangement of N distinct
objects into N, blocks such that every pair of distinct objects occurs together in

exactly n blocks.

As in the previous cases, nS’,) will denote the number of blocks containing object 2

and k() will denote the number of objects block ¢ contains.

Theorem 5.8 In a relazed block design, unless every block contains all the objects,

N. > N.

Proof: Suppose there exists ¢ such that n,(.';) = n. Then all other nodes also occur
in the n channels in which object ¢ occurs. In particular, any j # ¢ and k # ¢ also
occur together n times in these n blocks. This is the trivial design in which every

single block contains all the objects. Therefore we require nﬁ';) > n for all ¢. Define
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an N x N, incidence matrix A; a;; = 1 if object ¢ belongs to block 5 and a;; = 0

otherwise. Let

(s n e n)
@ ...
B=AAT=| " nf‘ . " . (5.12)
L n = ng”)j

Using the same argument as in the proof of Theorem 5.1, it suffices to show det B #

0. Let

(2D n—n® n—n® ... p_n®)
n nS‘)—n 0 0
Cn = n 0 n,(.?)—n 0 . (5.13)
\ n 0 0 ngv)—nJ

CnN can be obtained from B by subtracting the first column of B from all the other
columns and therefore their determinants are equal. We will prove by induction
that det Cy > 0. Assume det Cny_3 > 0 and it is easy to show by direct verification
that det C3 and det Cs are greater than 0. Expanding the determinant of Cn about

the last row, we have

n — n,(.:) n— nsi) n— n&}) n— ng)
nSf) -n 0 e 0 0
()™ 0o a2 -n ... 0 0 |[+(-1)*(n{Y)—n)|Cn_4|.
0 0 - n¥V_n o

(5.14)
The second term above is positive by hypothesis. Expanding the first term about

the last column yields

()Y (=1)"n(n — n{) (P —n)--- (0 — n), (5.15)
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which is also positive. Hence, det Cy > 0.

O

As shown above, the requirement N, > N in the block design formulation of CAP
is due entirely to the combination of Constraints 5.1 (a) and (c) only. In particular,
even in practical situation where the transmittable channels of a node are the éame
as its receivable channels, it is not necessary to have a larger number of channels
than the number of nodes, as long as we do not insist on exactly n common channels

between any pair of nodes.

On the other hand, one can easily think of situations in which exact connec-
tivity is desired. An example is a multichannel broadcast system in which the
messages originating from a node are broadcast to the other nodes by transmitting
the messages on all its accessible channels. Suppose it is desired, because of some
underlying access scheme, that there is one and only one channel through which
a message can travel from one node to another. Barring letting all nodes access
all channels, this cannot be done if a transmitter and a receiver comes in a single
package as a transceiver operating on a single channel, and the number of available

channels is less than the number of nodes.

5.3.3 A Lower Bound on (Nn,)?

Let’s try to obtain a relationship similar to (4.22) for the block design approach.
Suppose 7 is the traffic from one node to another. two nodes share n common
channels. Then the traffic between any two nodes within a single common channel

is v/n, if it is divided evenly among the n channels. Therefore, the total traffic

carried on a channel is

k(k — 1)% <1. (5.16)
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Substituting k with the value obtained from (5.2) yields

% (n_,,(N —1)+ 1) (%(N _ 1)) . (5.17)

A lower bound on n,; as shown below can be obtained from the above, and it is

Mg > ¥ + \l ('7(N )) + ny(NV — 1)2. (5.18)

2

The number of transmitter (or receivers) in the system is Nn,; and

(Nny) > m (1 + ,/1 + %" ’ (5.19)

> N(N —1)y/n7, (5.20)

where the second inequality is obtained by discarding the two 1’s on the right side

of the first inequality. Letting n = 1, we obtain
(Nn.)? > N*(N —1)%. (5.21)

Comparing this to (4.22), we note that the inequality in (4.22) has been replaced
by a strict inequality. This is not surprising since the block design formulation
involves more constraints. Also, (5.20) is a close approximation to (5.19) if n/~ is
large relative to 1. This means high connectivity or low individual traffic. Note that
n/y > 1 so that (5.19) is at most (1 + 1/5)/2 or approximately 1.618 times (5.20).
This factor will be even smaller if v < 1. So, under a perfect fitting condition
when (5.16) is satisfied with equality (this is not a trivial condition that can be
achieved easily), (5.19) is satisfied with equality; and we would expect the number
of transmitters and receivers required by the block design approach to be not too
much larger than that given by the heuristic traffic matrix mapping approach using
“square” mapping. Of course, this assumes the cost of a transmitter is roughly the

same as the cost of a receiver.
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5.3.4 Solving CAP Using a Block Design: An Example

We now consider using the block design approach to solve an instance of CAP.
Suppose v = 1/7, N = 20 and the required n is 1. From (5.16), the largest possible
k is 3. However, given the above values of N, k, n, (5.2) or n,(k — 1) = n(N — 1)
will not yield an integer n,;. To solve this problem, a fictitious node is introduced
so that N = 21. The resulting n,; is 10. Finally, we look up a table of block
designs to see if a design with the above parameters is available. According to
Appendix I of [17], a solution is [0, 1,13] mod 21, [0,4,10] mod 21, [0, 16, 19] mod 21
and [0,7,14] mod 21 period 7. In other words, the design is given by [(0 + n) mod
21, (1+n) mod 21, (13+n) mod 21], [(0+n) mod 21, (4+n) mod 21, (10+n) mod 21],
[(0 + n) mod 21, (16 + n) mod 21, (19 + n) mod 21] for n = 0,1,...,21 and [(0 +
3m) mod 21, (7 4 3m) mod 21, (14 + 3m) mod 21] for m = 0,1,2,3. A solution to
the original CAP is obtained by eliminating the fictitious node, say node 21, from
the design. There are altogether 70 blocks. Since n,; = 10, the resulting N, or N,
is 20n,; = 200.

5.3.5 Existence of Block Designs: Examples

We now consider the existence problem of symmetric block designs. First, let’s see
whether a symmetric block design with N, = N = 56, n = 1 exists. Using (5.1)
and (5.2), we have k(k — 1) = 55. But for integer k, k(k — 1) is even. Therefore,

the block design does not exist.

Now suppose N. = N = 56 but n = 2. Using Theorem 5.1 again, k(k — 1) = 110
giving k = 11. (k —n) = (k —2) = 9 is an integer square, and this satisfies the nec-
essary condition in Theorem 5.3. Therefore, it is possible, though not guaranteed,

that such a design exists.

Consider N. = N = 211 and n = 1. Theorem 5.1 yields £k = 15. Applying
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Theorem 5.3, a necessary condition for the existence of such a design is that integers
z,y, 2, not all zero, satisfying

22 + y? = 1417 (5.22)
can be found. This is not possible and it can be seen as follows. Since the right
side of (5.22) is even, z and y must be either both odd or both even. Consider the
fact that z can be either even or odd, we have four cases altogether. If z,y and z
are all even, say z = 2z, y = 2¢/, z = 22. Substituting into (5.22) and canceling
out the factor of 4, we obtain an equation of the same form. Doing this repeatedly

will finally yield an equation in which not all z, y and z are even. So, it is enough

to consider just the three other cases.

(i) = odd, y even, z even.
Let y = 2y', z = 22'. Equation (5.22) becomes 2'* + y'* = %z’. The left side of the

equation must be an integer but the right side cannot be since z? is odd.

(ii) y odd, = odd.
Let 2=22'4+1,y =2y +1 and z = 22’ 4+ 6 where § = 1 if z is odd and 0 otherwise.
Substituting into (5.22) and arranging yields

7 1
2y + 2y = 14(2 + 26) + 56 -5 (5.23)
The left side is always even. If § = 0, the right side is not an integer. If § = 1, the

right side is odd.

Hence, the block design is not possible. The above argument can be generalized
to show that there is no symmetric block design with parameter values, n = 1,
k = 4k'+ 3 for all k' odd. Note that N is determined by k(k —1) = n(N — 1) and it

is not a free parameter once k is specified. Furthermore, for n odd, N is also odd.



Chapter 6

Hierarchical Networks

This chapter concerns the introduction of hierarchical structures into the multi-
channel networks. We will not consider the constraints imposed by the block design
formulation further. A logical description of hierarchical networks will be given.
The purpose here is not to identify a fundamental definition that covers a wide
range of hierarchical networks described in literature. Rather, the emphasis is on
a simple definition that is relevant to the study here. In particular, the goal here
is to show that it is possible to reduce N; and N, by adopting certain hierarchical

structures.

6.1 Description of Hierarchical Networks

Thus far, the discussions in the preceding chapters have been limited to the network
structure depicted in Fig. 6.1(a). Here, all nodes are “tapping” onto a network
without any internal switches. Fig. 6.1(b) and (c) are networks of higher hierarchical
orders. In the pictures, a rectangle represents a nonswitching subnetwork and a
circle represents a communication node. A line is drawn between a node and a

subnetwork if the node can receive and transmit on the subnetwork directly, and

114
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the node is said to belong to the subnetwork. Further, the nodes belonging to the
same subnetwork can communicate with each other using the subnetwork alone.

The collection of such nodes will be called a group.

Communication between subnetworks is achieved via bridges, the darkened cir-
cles in the figures. As with nodes, a line is drawn between a bridge and a subnetwork
if it can transmit and receive on the subnetwork, and bridges with lines drawn to
the same subnetwork can communicate directly through the subnetwork. Consider
the level-1 subnetwork in Fig. 6.1(b). As far as it is concerned, the bridges are
like communication nodes, although the traffic to and from a bridge is actually the
aggregate traffic of many nodes at the level 0. Hence, the corresponding CAP at
level 1 is exactly the same as that we discussed before and the traffic entries in the
traffic matrix will simply be the inter-group traffic. The traffic in a subnetwork
at level O consists of both intra-group traffic and inter-group traffic. Traffic with
destinations outside the group will be directed to a bridge. Thus, if there are m
nodes in a group, an (m+1) x (m+ 1) traffic matrix will be needed to describe the

traffic in the subnetwork.

Fig. 6.1(c) is simply a higher order hierarchical network. The relationships be-
tween the entities are implicit from the above discussion. In general, a node can be
referred to as a level-0 node and a bridge at level n as a level-n node since the dis-
tinction between nodes and bridges is not important as far as CAP is concerned. For
the sake of a more Precise definition, the following outline can be used to determine

the levels of the entities in a network.
® We assume the level-0 nodes are known, implicit or predetermined.
® The level of a subnetwork is specified by the lowest level node connected to it.

e The level of a node, not at level 0, is 1 plus the level of the lowest level
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A Switchless Network —

.\
ANode—> 1O (@ ®

(a) Order-0 Hierarchy

Level 1
A Bridge —» /./ + \.\
Tt Level 0
(b) Order-1 Hierarchy
Level 2
* o o Level 1
Level 0

(c) Order-2 Hierarchy

Figure 6.1: Hierarchical Networks of Different Orders
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Figure 6.2: The Levels of the Entities of a Network

subnetwork connected to it.

e The order of a network is determined by the highest order subnetwork of the

network.

Fig. 6.2 is an example of the application of the above procedure.

The hierarchical networks in Fig. 6.1 are the only type that will be studied.
Here, there is a unique path between two entities: the path can be identified with
the set of entities that a message passes through when traveling from one entity to
another. Further, a level-n node (n # 0) always connects a level-(n — 1) subnetwork
and a level-n subnetwork. A level-n subnetwork, except the one at the top level,
is “sandwiched” between some level-n nodes and a level-(n + 1) node. Among
the hierarchical structures that will be excluded from the study here are those
similar to the network in Fig. 6.2, where two subnetworks of the same level may be
connected via a bridge only. Yet another case is where there may be more than a

path between two nodes. For example, a node may belong to two different groups.
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The hierarchical networks in Fig. 6.1 are chosen because of their simplicity and the
vague notion that they are the pure hierarchical networks. Obviously, when there
are many paths between two entities, the network will look more like a mesh network
than a hierarchical network. Note that the single-path feature of the hierarchical
networks does not imply there is only one communication “route” between two
nodes. A subnetwork can be an n-connectivity subnetwork so that a message has

n alternative routes when passing through it.

In the following study, attention will be further restricted to the order-1 hierar-
chy depicted in Fig. 6.1(b). The results can be easily generalized to higher order
networks. Since different subnetworks are isolated by bridges, the CAP’s at differ-
ent subnetworks can be tackled independently once the traffic matrices are known.
In addition, given the system traffic matrix describing the flows between the N
communication nodes, it is easy to derive the corresponding traffic matrices of the
subnetworks. To see this, consider the leftmost level-0 subnetwork in Fig. 6.1(b).
The bridge directly above it will be labeled b,. If ()\(”'9)) is the system traffic matrix,

then the traffic matrix of this subnetwork, say (X'®?), is obtained as follows:

Alpa) if p,g € {1,2,...,m},
NCD = L SN A6 i p=1b, g€ (L,2,...,m}, (6.1)
TN i1 AP ifg=0b), pe{1,2,... ,m}.
The traffic matrices for the other subnetworks at level 0 are obtained similarly, i.e.

the inter-group traffic is aggregated at the bridge above a subnetwork.

Let g denote the number of groups in the system, and label the bridges from left
to right, b1,bz,...,b;. Then the traffic matrix of the level-1 subnetwork, (A*(""’)), is
simply given by

) ._,\(m) V i#£j5
PRUCED I R 225 (6.2)

0 otherwise,
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where G; is the set of nodes in group t.

Let’s define a hierarchical grouping as the process whereby the N nodes in an
order-0 hierarchy are partitioned into groups, and bridges as well as subnetworks are
introduced so that an order-1 hierarchy is obtained. Since the bridges can be viewed
simply as nodes, once the traffic matrix is obtained, the CAP formulation at the
level-1 subnetwork is exactly the same as that of an order-0 hierarchy. Furthermore,
treating the level-1 subnetwork as a level-0 one, a hierarchical grouping on it yields
an overall order-2 hierarchical network. In this way, different hierarchies are said to
be separated by a sequence of hierarchical groupings. In addition, the results of a
single hierarchical grouping, e.g. N, 1, N;, N, |, remain the same even for a sequence
of hierarchical groupings, as long as the a priori conditions are the same throughout.

This is the justification for limiting our attention to the order-1 hierarchy.

6.2 The Parameter Values of Hierarchical Networks

What are the effects of hierarchical groupings on the parameters, N;, N, and N,?
Obviously there are many ways a hierarchy can be introduced, and the effects will
vary accordingly. A more specific question is whether there is a hierarchical grouping

method which yields lower parameter values.

It is not practical to consider all the possible hierarchical grouping arrangements
because of the large number of them. To determine the number of possible arrange-
ments, consider the problem of partitioning N nodes into g groups, each having at
least a node. Let fy(g) be the number of ways N distinct nodes can be partitioned

into less than or equal to g distinct groups. Since there are g ways of assigning a
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group to each node,

fn(g) =g".
Let hn(g) be the number of ways N distinct nodes can be partitioned into exactly
g distinct groups, i.e. each group has at least a node. Then,

fn(g) = hfl (f) ha(g — 9).

=0

Using the fact Ay (1) = 1, hn(g) can be found recursively using the above expression.
Since the exact labels assigned to the groups are not important in our problem, the
number of ways the N nodes can be partitioned into exactly g groups, each having
at least a node is hy(g)/g!. It follows that the total number of ways a hierarchical

grouping can be achieved in an N-nodes system is

i hn(g)
g=1 g!
For N = 10, this number is 115,464 and one would expect it to grow exponentially

with N.

To simplify analysis, we consider the uniform traffic CAP in this chapter. At-
tention will also be restricted to partitions where the total intra-traffic within each
group is not greater than 1. Scheme 1 below has the asymptotic behavior that N,
(or N,) is a negligible fraction of N(N — 1),/ when N(N — 1)y > 1 and v < 1.
Since N(N — 1),/7 is a lower bound on }(N; + N,) (and /NN, ) of the original
network, this implies there is a hierarchical grouping method which reduces N; and

N, significantly.

SCHEME 1
Part 1: Partitioning the Nodes

1. Determine m where
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(m+1)*y > 1. (6.3)

If N < m, no hierarchical grouping will be needed since all traffic can fit into a
single channel and N; = N, = N, which is absolutely the minimum achievable

value: every node needs at least a transmitter and a receiver.

2. The nodes are partitioned into g groups where

g= [g] < % 41 (6.4)

(g9 — 1) groups, called the regular groups, will have m nodes each. One group,

called the special group, will have m, = N — (g — 1)m nodes.

There are three CAP’s to solve; and the corresponding traffic matrices are given
in Fig. 6.3. Since their traffic matrices are similar, the regular groups can use the
same CAP solution, with the understanding that channels in different copies of the
solution are distinct. There are also a CAP for the special group and a CAP for

the level-1 subnetwork.
Part 2: Solving the CAP’s

1. Solving the level-1 CAP — Each nondiagonal entry is either mZ2y (i.e. traffic
from a regular group to another) or mm,y (i.e. traffic from a regular group the
special group or vice versa), and neither exceeds 1. Simply assign a channel
to each traffic entry. Superscripting the corresponding parameters with *, we

have

N =N; =N/ =g(g—1). (6.5)

2. Solving the level-0 CAP’s — Step (a) and (b) below outlines a method for
solving the CAP of a regular group. The strategy for the special group is

similar after replacing m with m,.
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(a) The total intra-group traffic within a regular group is m(m—1)y < 1. If
m = 1, there is no intra-group traffic and no channel needs be assigned.

Otherwise, an explicit channel is assigned.
Nt'ntra =1 N;‘ntra _ Nt'ntra =m (6 6)
c = 4 = 4¥y = . .

(b) An intergroup traffic entry is (N —m)~. This may be more than 1. Simply
assign [(IV — m)~] explicit channels to each of these entries. Since there

are altogether 2m entries,
N;'nter — N:ntcr = N::nter = 2m|’(N _ m)'ﬂ (6.7)

(c) Since there are (g — 1) regular groups, the parameters associated with the

regular groups are given by (g — 1) times the sum of (6.6) and (6.7).

N% < (9-1){1+2m[(N —m)4]},
N =N < (9—1){m+2m[(N —m)y]}. (6.8)

The inequalities above are satisfied with equality if m > 1.

(d) Using the same strategy for the special group,
N = {1+2m,[(N —m,)},
N =N = {m, +2m,[(N - m)q]} (6-9)
the inequalities are satisfied with equality if m, > 1.
The parameters of the whole system is given by
N, = N+ N[* + N**

< 99 =1+ (9 - 1) {1+2m[(N = m)7]} + {1 + 2m,[(N — m,)]},

(6.10)
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2
I
2
|

N; + N{* + N{* = N} + N;* + Ny
< 9(g—1) + (9 - {m+2m[(N — m)v]} + {m, + 2m,[(N — m,)]}.

(6.11)

The above are satisfied with equality iff m,m, > 1.

O

We now show that when N(N — 1)y >> 1 and v < 1, N; and N, of the hierarchical
network is a negligible fraction of N(N — 1),/7. Using (6.4) and

m,

IN
3

[(N—m)y],[(N —m,)y] < Ny+1, (6.12)
Inequality (6.11) can be simplified to

Nior N, < (£+1)£+(£+1) {m +2m(N~v +1)}
m m  \m

(= +D(E+2mNy+3))
NN -DyA

Substituting the two inequalities of (6.3) and rearranging,

Nior N, < (N(N—l)\/'_y')( il 1) (N:ﬁ +2(N’7+%))(6.14)

= N(N -1)/x

(6.13)

1—\/'7+ﬁ (N-1) " (N-1)y
The above is a product of three terms. The first term is the lower bound of -:;(Nt +N,)
(or v/N:N;) of an ordinary network. If N > 1 and v < 1, the second term and the
third term can be approximated by \/7 + 1/N and 3 + 3/(N — 1)~, respectively.

The product of these two terms are therefore approximately

3 3 3
Wt Rt oD T N -y




6.2. THE PARAMETER VALUES OF HIERARCHICAL NETWORKS 125

which tends to 0 as v — 0 and (N — 1)y — oco. Hence, we conclude that in the
limit that the total traffic is very large and the individual traffic small, IV; is a small

fraction of that of an ordinary network.

More generally, v, and v; may not be equal. The transmitting and receiving cost
is
velNt + 0. N, < (v +v)(N(V — 1)/)o(v,N), (6.15)

where 0 — 0 in the limit concerned. For ordinary networks,

‘UtNg + U,-N,- 2 2\/v,v,(N(N - 1)\/’7). (6.16)

The requirement for (6.15) < (6.16) is more stringent since v, + v, > 2./v,v;, with
equality iff vy = v;. Nevertheless, the asymptotic result, (6.15) < (6.16) if (N —
1)’y > 1 and v < 1, is valid since ¢ < 1. The theorem below summarizes the

result.

Theorem 6.1 Consider the uniform traffic situation. There ezxists a hierarchical
grouping method which yields v, N, + v,N; < 2y/veo,N(N — 1), /A[e(v, N, v,,v1)]. If
v, v, #0, thene - 0asy— 0, (N —1)*y - oo

It is easy to see that a similar asymptotic result, N, < N (N — 1)v cannot be

obtained. In fact, a consequence of the hierarchical grouping is that N, T.

Theorem 8.2 Consider N, = N resulting from solving the CAP’s of a hierarchi-
cal network using any arbitrary scheme. There ezists a solution to the CAP of the

corresponding ordinary network with N, < N,

Comment: The theorem is valid even for non-uniform traffic situation.

Proof: We show how to obtain the solution to the ordinary network based on the

hierarchical network’s solution. Consider the level-1 subnetwork. Each entry in the
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traffic matrix is the aggregate traffic of many entries in the ordinary network. The
channel assigned to an entry here will be assigned to the corresponding entries in
the ordinary network. That is, if p € G, ¢ € G}, the channel assigned to Traffic
(p,g) in the ordinary network is the same as that assigned to traffic (b;,b,) in the
hierarchical network. NV, does not increase (even though N; and N, do). This leaves
us with only the intra-group traffic at level-0. Unlike in the hierarchical networks,
we do not need to worry about the inter-group traffic entries here since it has been
taken care of above. For a mental image, this means we do not have to worry about
the last row and the last column in Fig. 6.3(a) and (b). Certainly, we can transfer
the mappings of the hierarchical network to the ordinary network here. That is,
channel assigned to traffic (p,q), p and ¢ in the same group, is the same for both
the hierarchical network and the ordinary network. N, does not increase. Further,
any channel assigned only to inter-group traffic at the level-0 subnetworks of the

hierarchical network can be deleted. In this case, N, |.

O

Let’s illustrate Theorem 6.1 when v, = v; with some calculated data. Scheme 2
below is an improvement on Scheme 1, and it has the same asymptotic character-
istics. Scheme 1 was used to derive Theorem 6.1 because it is simpler analytically.
Again, we assume the uniform traffic case. The graphs in Fig. 6.4 are the results of

Scheme 2.

SCHEME 2

Stép 2(b), Part 2 of Scheme 1 is modified :

e Consider an entry in the last column and the last row of Fig. 6.3. If o; = (N —
m)y > 1, |01] channels are assigned explicitly to this entry. The “residual”

value of the entry is 0] = 07 — |0y ].
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Figure 6.4: N, of Hierarchical Networks.
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e Calculate |%-|. Partition the entries in the last column into groups of o]
1 1
entries, with the possibility that at most a group may have fewer these entries.

Each group is assigned a channel. Do the same thing for the last column.

e The parameter values result from the two steps above are:
tnter __ m
IVc = 2m|_01J +2 [—I-l/o_”]
N{™" or Ni™er = 2m|oy| +m[d}] + [ Loj] , (6.17)

a

The values of N; using Scheme 2 for N = 50,100 and 200 are plotted in Fig. 6.4.
The dash lines are the lower bounds on %(Ng + N,) of an ordinary network; and
these lower bounds are not always achievable. Notice that for each graph, there is a
region over which the hierarchical network yields better results. To the left of this

region, v is not small enough, and to the right, N(N — 1)~ is not large enough.

As N increases, the region of improvement also increases. It must be stressed
that the “actual” regions of improvement for hierarchical networks may be even
larger than those obtained here. First, there may be better schemes than Scheme
2. Second, the lower bounds are not always achievable in an ordinary network. In
general, however, there are regions where Scheme 2’s solution is not as good as that

of an ordinary network.

We now present two simple examples where Scheme 2 fails to reduce N, + N, as
compared to to that of an ordinary network. Here, instead of using the lower bound,
we must actually present assignments for the ordinary network which give better
results. First consider an extreme case with 4 = 1, N = 3. A level-0 subnetwork has
a 2x 2 traffic matrix, in which the nondiagonal entries are both 2. Each nondiagonal

entry in the level-1 traffic matrix is 1 and the dimensions of the matrix is 3 x 3.
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But this is the same traffic matrix as that of the ordinary network. In addition, we
have three 2 X 2 matrices at level-0 to deal with. Obviously, N; + N, is larger for
the hierarchical network.

Next, consider a case where N(N — 1) is too small. Let v = £, N = 10. Solve
the CAP of the ordinary network as follows. The traffic matrix consists of four 5 x 5
submatrices, one for each conner, i.e. the top-left, the top-right, the bottom-left and
the bottom-right. The total traffic of each of these submatrix does not exceed 1. A
channel is assigned to each of them. This yields N; + N, = 40. For the hierarchical
network, using the notations in Fig. 6.3, m =5, 0y = 03 = %, g=2,miy=o03=1.
From (6.5), Ny + N; = 2. From (6.6), Nj™"® = Ni"r% = 5. From (6.17), N/ =
Ninter = 6. Hence, N;+ N, = N} + N} +2(Nfrire 4 Nintra) 4 2(Njrter 4 Ninter) — 48,

The contribution of this study is the demonstration of the possibility of decreas-
ing N: and N, through a hierarchical grouping. There may be better hierarchical

schemes yet to be found.

In the two schemes presented, the entries of the level-1 traffic matrix have values
close to 1. Therefore, another application of hierarchical grouping on the level-1
subnetwork is unlikely to reduce N; or N, further. Suppose we have a nonuniform
traffic situation where nodes can be divided into groups such that traffic between
nodes of the same group is dense but not between nodes of different groups. This
is likely to be a common practical situation, for example where the traffic between
nearby nodes is large but that between far-away nodes is small. Then, it is natural
to logically group the nodes accordingly in our hierarchical network. At the level-1
subnetwork, since the traffic between groups is small, the entries of the resulting
level-1 traffic matrix may be small enough so that applying hierarchical grouping

here will decrease N; and N, further.
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6.3 Hierarchical Networks — A Qualitative Discussion

In the previous sections, we showed that the introduction of a hierarchical structure
may reduce N; and N,. Parameter N, , however, tends to increase (or at least
nondecreasing) in general. What does this imply about the cost of a fiber-based
network? This section discusses some of the relevant issues qualitatively. Because of
the qualitative nature of the discussion, some parts may be vague and there may be
unknown exceptions to some of the claims here. Further research, which is beyond

the scope of this work, will be necessary in order to substantiate the claims more

concretely.

First of all, the total amount of fiber in a network and the magnitude of N, are
two different aspects of the network. By multiplexing all the channels onto a single
fiber, other than the additional bridges, the physical topologies of a hierarchical
network can be the same as any ordinary network. For both types of networks,
the physical topology can be a bus, a ring, a hierarchical structure made up of a
connection of several buses, etc. For instance, when the logical hierarchical network
is physically implemented as a multidrop bus, a bridge is simply another node
tapping onto this bus. All the logical subnetworks are embedded in the same bus.
Thus, a message from one node to a node in a different group first travels to the
bridge belonging to the source node’s level-0 subnetwork. This bridge then redirects
the message back to the same physical medium, but on a different logical channel
of the level-1 subnetwork. The message then travels through another bridge and is
redirected back to the channel before reaching the destination node. Indeed, this is
a multihop network in which a message hops from node to node in order to reach

its destination.

When the product of N, and the channel capacity exceeds the total capacity
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afforded by a fiber, more than one fiber will be needed. But this does not necessarily
translate to larger total fiber length. It is possible to have a physical hierarchical
network where the subnetworks are physically isolated. So, if the channels are
frequency channels, the same frequencies can be used on different subnetworks since
they are isolated through the use of bridges. This means a physical hierarchical
network can afford a larger N, than an ordinary network. Furthermore, we do not

need parallel fibers running along each other.

To complete the above argument, we show the total fiber length of a physical
hierarchical network can be made to be close to that of an ordinary network in
certain situations. Suppose there are groups of nodes such that the nodes within
each group are physically close together, but the distances between groups ére large.
To provide a mental image to the following discussion, the reader may picture the
ordinary network as a ring threading through all the nodes in the system. The
discussion applies to many networks, however. The total fiber length comnsists of
two parts: the fibers running between different groups and the fibers within groups.
To obtain the desired physical hierarchical network, consider an arbitrary group of
nodes. We do not change the physical topology connecting the nodes within the
group. There are inter-group fibers connecting this topology with the “outside”
portion of the network at several points. We “break” the fibers just before these
connection points, bring the open ends together to a bridge near these open ends.
From this bridge, we make connections back to the broken points. Doing the same
thing over all groups of nodes, we then have a physical hierarchical network. The
added fiber length is only a small fraction of the original network since the added
length for each connection is only a small fraction of the inter-group fiber. This is
because the bridge is close to the connection points and the groups are far apart. If

the ordinary network we start out with is a ring, the resulting hierarchical network
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consists of many “small” rings, one for each group. One of the nodes of each ring is
actually the bridge of the subnetwork. In addition, there is a “large” ring connecting

all these bridges, and this is the level-1 subnetwork.

Next, we consider the complexity issues. Because of the larger N., the access
control problem of a hierarchical network may be more complex, since it is necessary
to keep track of more channels. Each individual subnetwork, however, has an eas-
ier access control problem because of the smaller number of channels. Additional
complexity is also introduced at the bridges. Intuitively, N, and N; are large in
an ordinary network because of the absence of switches. In fact, the bridges of a
hierarchical network function partly as switches. Consider three nodes 1, J and k
in three different groups. traffic (¢,5) and (7, k) both go to the same bridge belong-
ing to the subnetwork of 7, and there is no distinction between these two types of
traffic at the subnetwork. The two different traffic types, however, may have been
assigned to two different channels at level-1. Therefore, the bridge must distinguish
between them and transmits them on the correct channels. Similar situation occurs
when the traffic from another group travels to node i. But what is described above
is exactly the function of a switch! On hindsight, therefore, it is not difficult to

understand why a hierarchical network may have smaller values of N; and N,.

More research into quantifying the fundamental control complexity and switch-
ing complexity of a network is necessary for more meaningful comparison. For this
purpose, we may need to further specify the underlying classes of access control,
which we have left out in the network model of this research to avoid losing gener-
ality. These issues will not be studied here. The next chapter, however, will relate
CAP to some access control schemes so as to illustrate the meaning of “capacity”

as used here.



Chapter 7

Access Control and CAP

This chapter investigates the relationship between CAP and Access Control. A
node cannot transmit on an accessible channel arbitrarily since this may result in
conflicts with other nodes accessing the channel at the same time. Therefore, a con-
trol scheme is needed to coordinate or schedule the use of channels. For efficiency,
the control scheme is usually dynamic and based on the immediate demand. This is
different from CAP because CAP is a static problem and the traffic is the average
traffic. In fact, if the traffic varies widely from time to time, instead of the average
traffic, the worst-case traffic must be used in CAP. We assume the temporal varia-
tions of traffic input is not too big that it can be modeled as a stationary stochastic

process.

We ignored the access control aspect of the problem in formulating CAP so as
to simplify matters. The “effective” capacity of a channel is lower than the channel
transmission rate in order that certain predefined performance requirements are
satisfied. This notion will be made more concrete in this chapter. In so doing,
we also show that the effective capacity may vary according to the connectivity in
a network. Consequently, the expression obtained from solving the n-connectivity

problem, where we assumed the effective channel capacity is independent of n,
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Figure 7.1: Channel Access Structure of an n-connectivity CAP solution

needs to be modified. A perhaps counter-intuitive result is that under certain

circumstances, N, N; can be reduced by increasing the connectivity.

In this chapter, we consider the simple heuristic scheme (see Chapter 4) for solv-
ing the n-connectivity CAP: the 1-connectivity problem with traffic entry APa) —
M) /7 is solved without any further traffic splitting, and n replicas of this solution
is taken to be the solution to the n-connectivity CAP. Fig. 7.1 shows the structure
of the corresponding channel access model. Each source represents the traffic of
many node-pairs, and in this simple CAP solution, the channels accessed by dif-
ferent sources are nonoverlapping. We will consider a few simple access control
schemes. More realistic and sophisticated frameworks than those presented is cer-
tainly possible. The aim here, however, is to illustrate qualitatively the interaction

between Access Control and CAP without complicated analysis.
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7.1 Access Control Models

7.1.1 A Time-Multiplexed Circuit-Switched System

Consider a circuit-switched system in which there is only one type of messages,
say voice. Suppose each channel in our network is further time-divided into m
smaller channels, called minichannels, each capable of carrying a single service.

The performance requirement is that the blocking probability [4] must not exceed

P,.

Although A(P9) has been divided and assigned to n separate channels, this is for
solving the CAP only. This does not mean the access control mechanism will divide
the incoming services between two nodes into n equal portions and transmit them
on n separate channels without first looking at the network state. For example, it
might be better to assign a service to the currently least congested channel among
the n alternatives. Immediately, we see the potential of increasing the effective

capacity with large n.

For the circuit-switched system, a service has at least nm minichannels for trans-
mission. For simplicity, let’s assume this is exactly nm for all services. Now, fur-
ther assume a service is blocked if and only if all the nm minichannels are already
occupied.! Implicitly, there is a central controller for scheduling and controlling
the admission of a service and that it has perfect information about the network
state. Also, we ignore the overheads incurred in setting up a circuit, that is, one
may assume there is a separate logical or physical control network for carrying the

control signals.

Suppose the arrivals of services are independent and Poisson distributed with ar-

'One can think of a number of control mechanisms with this feature, e.g. the n accessible channels
are given n different priorities and a service searches from the highest priority channel to the lowest
priority channel in looking for an unoccupied channel.
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rival rate per channel A (number of arrivals per second per channel). Let the service
duration be exponentially distributed, averaging 1/u (secs). As far as the blocking
probability of a service is concerned, what we have is an M/M/nm/nm queue with

arrival rate nA and average service duration 1/u. The blocking probability is? [23]

(nd/w)™
() 5 Y

=0 41

Pyock = (71)

Fig. 7.2 shows the graphs of Py, versus the load p = A/my, for m = 50 and
n=11to 5.

The performance requirement is specified by the blocking probability, P,. One
can then define the effective capacity of a channel to be Ag;), the A at which
Pyock = P, in (7.1).2 Hence, if 0(P9) is the arrival rate of traffic (p,q), then the
normalized traffic is AP9) = g(p9)/ Ag:). Note from Fig. 7.2 that Ag? increases with
n. Consequently, the normalized traffic decreases with n. This is not taken into

account when solving the n-connectivity CAP in Section 4.5!

Let the load per channel be pg:) = Ap,/mu. The normalized channel throughput
or utility is

1-R)p <1 vV n (7.2)

We see that given some P, < 1, pj(;:) is bounded.

In Section 4.5, assuming the simple scheme for uniform n-connectivity CAP, we

showed that for the uniform-traffic n-connectivity CAP,
N,.N; > N*(N — 1)*n. (7.3)

Solutions close to this bound are achievable in the asymptotic case where N (N —

1)y > 1 and 4 < 1. In the following, we assume this situation and that the
2Strictly speaking, this formula is insensitive to the exponential service duration and it is valid
for the more general M/G/nm/nm queue [19)].
$An alternative definition is effective capacity = Ag:) /B X tranmission rate of channel (bits per
sec). That is, this is the effective capacity expressed in bits per second.
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inequality is more or less satisfied with equality. Now, taking the access control

into account, we have

N,N; =~ N*(N —1)%n4", (7.4)

where

(1) (1)
(n) _ 7'Pp,
v )

, (7.5)
Pp,

and it decreases as n increases. For illustration, consider Fig. 7.2. For P, = 0.01,
since pg,) = 0.758 and p(™ < 100/99 from (7.2), ppb)/p(l) is less than 2 for all n.
Hence, ny(™ for n > 2 is larger than (!, and the qualitative result that IV;N, is
larger for n > 1 still holds although it is not as large as in the unmodified model of
Section 4.5. We also see from the graph that p( ") increases more and more slowly

as n increases.

What if we have a low-load operating point? This will be the case if the perfor-
mance requirement is very stringent (i.e. P, us small) or if the channel size is small
(i.e. m is small). In particular, if pﬁ,‘) < 1, can it be that N;N, actually decreases
with n for a range of n? This seems unlikely because pg:) / pgb) must increase faster
than n in that range. Moreover, it would be surprising since this means N,.N; can
be reduced by increasing the connectivity in the network. But this is exactly what
happens when pg:) is small enough! To show this, we need to derive a situation

where ny(" < (n — 1)4(*-1) or equivalently, AV 0> AP /(n —1).
Py Py

Define a new variable

A
m_A
b n
Equation (7.1) becomes
(n?8")/u)™"

Pblock - (nm)' E”m (ﬂzg(") !“l' (7.6)

=0
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For the (n — 1)-connectivity case,
(n = 1280 /) """
n—1)m ((n— (n—1) /)i °
(n = 1)m)! £z (==

We want to show for some blocking probability requirement, P,, it is possible that

Pblock = (77)

B increases as n increases. One way to do this is to equate the right-sides of (7.6)
and (7.7) find a condition leading to (™ > g("-1)_ Since the resulting expression
is complicated, the following alternative approach is used. Instead of fixing Pyock,
we fix (™ = pg*-1) = g for some B initially. Label the resulting Pyock’s, P},’;Zk
and P,,(,:,';l), respectively. If we can show that under certain circumstances, P,,(,';Zk <
P,,(,';c_kl), then we are done. Specifically, fix the blocking probability requirement
P, = PN, B remains the same, ie. B-Y = 8. Since P, < P, for
B = B, in order to make the probabilities equal, we must increase the input rate

of the n-connectivity case to Ag;); and this means (") = g increases to some greater

A", Hence, if P7), = P{"-P = P, then g™ > gln-1),

We now show PN, < P&Y for some fixed 8 in (7.6) and (7.7) if B/mu <
(1—1)*"/(n—1). Since the summation series of the denominator of (7.6) is strictly
greater that of (7.7), P{"), < P{"2D if

(=t ()™ (= 10)"

(nm)! w -

This is easily reduced to

((n - 1)m)!] =g (1-3) (1)

(nm)! p~ (n—1)2"
Now, [((n — 1)m)!/(nm)!]/™ < 1/(n — 1)m. Therefore, the above condition is
satisfied if the following is
— 1)2n
B -
mp~ (n—1)

n> 2. (7.9)
Alternatively,

("_1) 1 2n—1
pp, < |(1-— " ; n>2. (7.10)
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Note that the larger the n, the more difficult it is to meet this requirement since
the right side is small and the left side is larger. In fact, if pg:_l) is large enough, as
in the example of Fig. 7.2, it is possible that the condition cannot be met at all for
all n > 2. Also, (7.10) is an over-specification of the required condition since there
is some simplification in the analysis. So the exact condition is less stringent and

has a higher right side. Suppose the exact condition is available. Let this condition

be

g
o < O, ). (7.11)

In principle we can determine the range of n in which 8(®) increases with n, some-
what clumsily, as follows. For some blocking probability requirement Py, calculate
BM). Substitute 8 = (V) and n = 2 in (7.11) and see if the condition is met. If
it is, there will be an improvement by increasing n to 2. Fix Pyoex = Py, n = 2
and calculate 8(?), which is guaranteed to be greater than 8(1). Next, substitute
=8P andn=3in (7.11) and see if the condition is met. Keep doing this yields
a range of n values for improvement in N;N, where (1) < 8(®) < ..., This range
of n must terminate somewhere. Otherwise, the fact that 8 is strictly increasing
for all n implies Ag:) and pg:) are unbounded. But the throughput, pg;)(l -P)<1

for all n.

Foi' a concrete example, the reader can verify that for m = 1 and P, = 0.01,
pgb) = 0.01 and pﬁ’ =~ 0.08 > 2pg"').4 Moreover, substituting n = 2 in (7.10), we see
that as long as pgb) < 0.125, there will be an improvement in N,N; by increasing
the network connectivity to 2. Again, the “actual” condition for improvement may

be less stringent.

“Queueing interpretation: It is not surprising a 2-server queue can support a higher load per serve
than (i.e. more than double the input rate of ) a 1-server queue for the same blocking probability.
It is somewhat curious that the example shows each server of the queue is 8 times as busy as that in
the 1-server queue. One may argue intuitively that since the load is small, the servers idle most of
the time and there is room for improvement. Nonetheless, the result remains peculiar and it carries
over to the work here.
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In a fiber-optic network supporting voice services only, it is likely we will not
operate in the improvement region due to the possibility of large channels. To get
a rough idea, let the transmission rate of the channels be 9.6 Mbps. Since this can
accommodate 150 64-kbps voice services simultaneously, m = 150. From results
of queueing theory, for fixed P, pgb) increases with m. If P, is not unreasonably
small, pS},) is likely to be close to 1. For instance, for P, = 0.001, pgb) ~ 0.8. But
the throughput (1 — Pb)pg? < 1 implies pg:) < 1/(1 - B) =~ 1 for all n. Hence,
pg:) / npgb) < 1 for all n and an improvement in N, N; is not possible. On the other
hand, if it turns out that it is better to have many smaller channels rather than
a few large ones, then the discussion here will be relevant. The merits of small

channels will be discussed in the next chapter.

The fact that it is possible to decrease both N,N; and N, by increasing the
connectivity is a peculiar result from the engineering viewpoint. For this means all
the parameters in our model improve: the bandwidth required is less, the number
of channels a node accesses decreases and on top of that, the connectivity increases.
Further research in this direction to see if this is a fundamental result for a large

class of access control models is certainly worthwhile.

7.1.2 A Packet-Switched System

For a purely packet-switched data network in which the performance is measured

in terms of the average delay of a packet, the same qualitative results apply.

As before, for simplicity, we assume there is an implicit central controller and
that scheduling delay is negligible. Unlike before, however, the channels will not
be further time-divided since statistical multiplexing using one channel generally
performs better than statistical multiplexing using m channels with # the service

rate [6]. Recall that the reason the available “bandwidth” is divided into N, “large”
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channels is that the bandwidth window of optical fiber is so large that there are no
practical electronic transmitters and receivers which operate at compatible speeds.
In a way, we are forced to frequency-divide the bandwidth into channels with max-
imum rate of 1-10 Gbps [38]. It may be desirable to reduce this rate (increase N,)

further if slower transmitters and receivers are very much cheaper.

For an n-connectivity set-up, using an M/M/n queueing model with arrival rate

nA and average packet duration 1/u, the average packet delay is [6,23]

1 Py
T=-4+—9 _ 7.12
B onp(l—3) (712)

where Pg is the probability that a packet will queue and it is

-1

Py = 1+(1—5)'§L (7.13)

m pardl nA n—¢
=0 ! ( b )
For a fixed A, Py decreases as n increases; and therefore so does T. If T is fixed

instead, the sustainable rate A increases with n. Hence, the effective capacity of an

n-connectivity network also increases with n.

An analogous result to the circuit-switching case where N; N, can be reduced by
increasing the connectivity when the load is small will be derived. As before, define
g = A/n. We want to show that for a fixed T, 8 increases with n. But it is
complicated to compare (") with 8("~1) given by a fixed T since the right-side of
(7.12) is messy. Instead, we use the old “trick”. Specifically, we show that for some
B, if we let B(") = g(n~1) = g, the resulting delays, T < T(n-1), Therefore, we can
increase (") further so that T(™ = T("-1) giving the result that g > pr-1) = g,

For (") = gl»-1) = g, (7.12) can be written as

_ n8) py a1 (228)]]7
T(")=%+ nu(l—':‘—ﬂ) 1+(1("Tj‘)),.m¥:(z"—') . (7.14)
B =
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Let

Aln) = np (1— Z—ﬂ) ,

o= 2)n

(=)
The reader can easily check that T < T(*~1 if A(n) > A(n—1), B(n) > B(n—1)
and 1 —nfB/u > 0 (note: nf/u = A/p must be smaller than 1 for stability of the

queues anyway). Now, A(n) > A(n — 1) can be reduced to

8 1

. < (7.15)
Also,
B(r) _ _A(n) (n-1)(=20)™"
B(n—1) A(n-1) (ﬂ_"‘é)" '

Suppose A(n) > A(n —1). Then B(n)/B(n —1) > 1iff (n — 1)((n — 1)28/p)*1 >
(n®B8/u)™, which simplifies to

2n
1-1
p < Q; n>2. (7.16)
p= (n-1)
Alternatively,
1 2n—1
pn 1) < (1 - ;) i n>2. (7.17)

Since Condition (7.15) in contained in the above, we can forget about (7.15). To
see this, one can show (2n — 1)(1 — 1/n)**/(n — 1) < 1. Substitutingz=1—1/n
and using the inequality log, z < z — 1, it is easily seen that (1 — 1/n)" < e72.

Also, (2n —1)/(n — 1) < 3. Finally, (2n —1)(1 — 1/n)**/(n —1) < 3¢"2 < 1.

It is interesting that (7.17) is exactly the same condition as that of the circuit-
switched model! Whether this is a mere coincidence or the result of a more funda-

mental phenomenon remains to be studied.
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7.1.3 Integrated Systems

In an integrated network supporting a diversity of services, the performance require-
ments of different service types may well be very different. It is therefore difficult
to define the effective capacity. Also, in the CAP model, we do not distinguish
between traffic generated by different service types. A question is under what con-
dition the model is appropriate for an integrated network. Answering the question
very precisely is beyond the scope of this work. Qualitatively, we expect the CAP
model to be a good model under conditions which can sustain a high load, i.e. the
effective capacity is close to the actual transmission rate of a channel. In this case,
the access control aspect of the problem can be ignored, and we can arbitrarily set
the effective capacity to some value slightly lower than the true capacity without
sacrificing the performance of the services too much. To illustrate the above claim,

we propose a simple way of dealing with the CAP in an integrated environment.

The basic strategy is to assume some a priori effective capacity. Without dis-
tinguishing between the different service types making up the traffic, the CAP is
solved. We then come back to calculate the resulting performance of each service
type assigned to a channel. It may be necessary to solve the CAP again based on
a lower effective capacity if the performance requirement of some service type is
not satisfied. Iterating this eventually yield a valid solution. A shortcoming of this
strategy is that as long as the performance requirement of a single service type is
not satisfied, the CAP is not a valid solution. Therefore, a final solution may be
one in which capacities devoted to the other service types are poorly utilized. This

notion is made more concrete in the following discussion.

A new set of parameters is introduced: for each service type on a channel there
is a parameter describing the fraction of channel capacity dedicated to that service

type. These parameters must achieve certain values for a CAP solution to be valid.
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Consider a channel in a 1-connectivity network which supports two service types,
voice and bursty computer data. Let’s assume a static capacity partitioning scheme
in which a fraction ¢, of the channel capacity is devoted exclusively to the voice
services. The fraction the data receive is therefore ¢ = 1 — ¢,. There is no sharing
of capacity between different services.® We have the performance requirements: the
voice blocking probability is no more than P, and the average data delay is no more
than T seconds. Basically, for either service type, we have the interaction and the
trade-offs between three parameters: the assigned capacity, the load (or the utility
of the assigned capacity) and the performance. For the data, for example, a load of
pq and a performance requirement of T are satisfiable only if the capacity devoted
to data is high enough. This can be seen by considering the M/M /1 queueing result
for the average delay: T = (1/u)/(1 — ps) where 1/u is inversely proportional to
the capacity dedicated to the data. In general, in order to satisfy the performance
requirements and operate in some predefined load region, ¢, and ¢; must be greater

than some lower bounds, ¢, and ¢4, respectively.

Consider a uniform traffic example with a transmission rate of 1 Gbps per chan-
nel. Assume each voice service requires 64 kbps and the average data packet length
is 5000 bits. Tables 7.1(a) and (b) show the values of ¢, and ¢; for various load
and performance requirements. Table 7.1(a) is generated by fixing Py,x = P
and A/mp = p, in (7.1) and finding the m that satisfy the equation; ¢, is sim-
ply m(6.4 x 10)/10°. Table 7.1(b) is obtained using the M/M/1 formula : T =
1/(x — A). If L is the average packet length, then ignoring the discreteness of bits,
we have u = ¢4 X 10°/L. This gives T = L/(¢q x 10° X (1 — pg)) where p; = A/p.

Suppose the blocking probability requirement of voice is Pyjcx < P, = 0.001 and
let the predefined load region p, = 0.95. Then, according to the table, ¢, = 0.112.

$There have been substantial efforts devoted to the study of dynamic schemes in which the capacity
is shared by different services. [1,2,3,14,15,21,25,26,28,39]
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Pu Sy (Pb = 0.01) Cy (Pb = 0.001) Pd €4 (T =0.01 s) ¢q (T'=0.001 S)
0.80 [ 4.42x107% 9.66 x 10~3 0.80 | 2.50x10°3 2.50 x 10~2
0.81 | 4.80x 10~3 1.06 x 10~2 0.81| 2.63x%x10°° 2.63 x 102
0.82 | 5.25x10°2 1.18 x 102 0.82 | 2.78x 1073 2.78 x 10~2
0.83 | 5.76 x 10~3 1.31 x 102 0.83 | 2.94x 1073 2.94 x 10~2
0.84 | 6.34x 1073 1.46 x 1072 0.84 | 3.13x10°3 3.13 x 10~2
0.85 | 7.04x 1073 1.64 x 102 0.85| 3.33x10°3 3.33 x 10~2
0.86 | 7.87x 108 1.87 x 102 0.86 | 3.57x10°3 3.57 x 10~2
0.87 | 8.83x 103 2.14 x 10~2 0.87 | 3.85x10°% 3.85 x 10~2
0.88 | 9.92x 103 2.46 x 1072 0.88 | 4.17x10°3 4.17 x 10~2
0.89 | 1.13x 1072 2.88 x 10~2 0.89 | 4.55x% 1073 4.55 x 10~2
0.90 | 1.31x 1072 3.41 x 10~2 0.90 | 5.00x 10~3 1.00 x 10~2
0.91 | 1.52x10"2 4.11 x 10~2 091 | 5.56x 1073 5.56 x 10~2
0.92 | 1.80x 102 5.04 x 10~2 092 | 6.25x10°3 6.25 x 10~2
0.93 | 2.16x 102 6.35 x 10~2 093 | 7.14x10°3 7.14 x 10~2
0.94 | 2.66x 10~2 8.26 x 10~2 094 | 8.33x10°3 8.33 x 10~2
0.95 | 3.36 x 10~2 1.12 x 10~ 0.95 | 1.00x 10~2 1.00 x 10~!
0.96 | 4.41x10~2 1.63 x 10~ 0.96 1.25 x 10~2 1.27 x 1071
097 | 6.12x 102 2.59 x 10~ 0.97 | 1.67x10"2 1.67 x 10~
0.98 | 9.25x 10~2 4.91x 10! 0.98 | 2.50x10°2 2.50 x 10~
0.99 | 1.62x 101 >1 0.99 | 5.00x 10~2 5.00 x 101

(a) (b)

Table 7.1: (a) ¢, as a Function of Load; (b) ¢, as a Function of Load.

Similarly, let the average delay be bounded below by T = 0.001 and pg = 0.95.
Then, according to the table, ¢; = 0.1. Note that this is a realizable situation since
the sum of ¢, and ¢, is less than 1. On the other hand, a voice load of 0.99 with

P, = 0.001 is not realizable since ¢, > 1.

A strategy for tackling the integrated network’s CAP is to solve the CAP as-
suming effective capacity = 0.95(i.e. the load requirement) x true capacity, and ig-
noring the difference between the two different service types initially. After solving
the CAP, we come back to check if the fractions of voice and data in each channel
exceed ¢, and ¢4. If so, the solution is valid. Otherwise, another solution is needed,
and we may either relax the load requirements or the performance requirements, or
simply look for another CAP solution. Now, suppose we have a solution in which

¢4 = ¢4 and ¢, > ¢,. For the voice services, we have overdesigned and P, < 0.001.
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In principle, we should be able to support even more voice services than indicated
by the solution. However, we are already operating in a high-load situation where
p = 0.95 and there is unlikely that we can “squeeze” in significantly more voice
services. Note that this is not the case with low load situations where the solution
can be a very poor solution. Thus, intuitively, the high load situations are easy to
deal with as far as a good solution is concerned. To have high load situations, we

want the channel capacity to be as large as possible; i.e. large channels.

In the extreme that all service types are in the high load regions and a single
service (message) of each service type occupies only a tiny fraction of the channel
capacity, one would expect some “law-of-large-number” limit and the messages can
be treated more or less as constant flows. In this case, CAP can be approached
assuming negligible effect from access control. There remain many issues to be

answered about integrated networks. But these are beyond the scope of this work.

7.2 Further Comments

7.2.1 Hierarchical Networks and Access Control

In general, N, and N, decrease and N, increases as a result of introducing a hier-
archical structure into a network. However, if access control is taken into account,

N, and N; will decrease less and N, increases more.

Consider a voice service. It can be blocked by any of the subnetworks it passes
through. Thus, to maintain the same blocking probability as that of an ordinary
network, the effective channel capacity in the hierarchical network must be reduced.
The higher the order of the hierarchy, the lower the effective capacity since the voice

passes through more subnetworks. The same argument applies to a data message,
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where the system delay is the sum of the delays in the subnetworks of the data’s
path.

Detailed analysis will not be undertaken here. But again, intuitively, ignoring
the access control’s effects when solving the CAP will be a good first approxima-
tion under a high load condition, since the effective capacity is close to the actual

transmission rate.

7.2.2 More Sophisticated n-Connectivity CAP solutions

The channel access structure of Fig. 7.1 is a direct consequence of the simple CAP
heuristic we assumed. If it is somehow possible to increase the effective capacity by

going to another CAP solution, then N,, N, and N, can be reduced further.

Fig. 7.3 shows an example of an alternative scheme for a 2-connectivity CAP.
Like before, two CAP’s are solved, each assuming a traffic matrix of (Alea) /2).
Unlike before, the second CAP solution is deliberately different from the first. As
far as the resulting mappings are concerned, the traffic entries can be divided into
16 sources as shown, each containing a square submatrix of traffic entries. The
traffic entries of the same source access the same set of channels. A key difference
between this scheme and the simple scheme is that a single channel can be accessed

by more than one source in this scheme. For instance, channel (1) is accessed by

source 1, 2,5 and 6.

Intuitively, one would expect the system here to perform better. This is because
channel sharing, although still partial, is across all the channels. Consider the
simple CAP solution obtained by duplicating the first CAP mapping. Sources 1,
2, 5 and 6 are actually a single source in this simple scheme and it accesses two

exclusive channels. It is possible that the channels of a group of sources are very
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) @) () 12|34
1) (2)
5|6 7] 8
() (@) (8)
9 |10 | 11 12
(3) (4)
™) (@) (1) 13|14 | 15 | 16
1st CAP 2nd CAP Traffic between
Mapping. Mapping. node-pairs partitioned

into 16 sources.

Source 1 () [TTT]]] Channel (1)
Source 2 () [TTT]]] Channel (2)
Source 3 () [TTTT]] Channel (3)
[TTTI]] Channel (4)

Source 7 () [ITI]]] Channel (1)
. [TTT1]] Channel (2)

[TTI]]] Channel (3)

Source 16 () [TTTT]] Channel (4)

Figure 7.3: An Example of a 2-Connectivity CAP Solution.
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congested while the other channels are relatively free. Nothing can be done since
channels of different source groups are non-overlapping. On the other hand, for the
situation in Fig. 7.3, by introducing a more sophisticated structure, it is possible
to distribute congestion more evenly among the available channels. For instance, if
channel (1) is congested, source 1 may opt to transmit on channel (1’), source 2 on
channel (2’), source 5 on channel (3’) and source 6 on channel (4). The scheduling
control issues of structures like this are studied in detail in [40]. Note that given all
sources can access the same number of channels, there are many possible channel
access configurations. However, not all of these configurations correspond to good

CAP solutions in which N, and N, are small.

A consequence of using more complicated n-connectivity CAP solutions and ac-
cess control schemes is that the effective channel capacity is higher, and therefore,
N;, N; and N, lower. Again, this improvement is negligible under a. high load condi-
tion, which can be achieved by having large channels or less stringent performance

requirements.



Chapter 8

Conclusion

This research addressed the problem of assigning the capacity of a non-switching
multichannel network to its nodes in order to satisfy their traffic requirements. As
far as the cost criteria is concerned, three parameters were singled out: the number
of channels N, the system receivability N, and the system transmittability N;. In
a sense, to include only the phrase “capacity assignment” in the title of this work is
misleading since channel capacity is not considered to be the only precious resource.
The assumption that fiber-optic technology is used implies the “peripheral” network
costs, such as the cost of transmitters and receivers, are not negligible relative to
bandwidth. It is also important to recognize that N, and N, do not relate to
just the transmitters’ and receivers’ costs. Specifically, N;/N and N,/N are the
average numbers of channels a node transmits and receives on. It is likely that
these parameters are intimately tied to the control complexity at a node and other

network design considerations, e.g. the number of couplers in a network.

This is an extended concluding chapter containing additional discussions on the
implications of the previous chapters’ results. A summary of this research and its
important results is given in Section 8.1. Section 8.2 discusses some implications

for fiber-optic networks. Conclusions and issues that need to be explored further

151
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are presented in the Section 8.3.

8.1 Summary

In Chapter 2, the capacity assignment problem was formulated as a nonlinear-cost
multicommodity network flow problem. Although in principle the problem can be

solved, this approach suffers from the following shortcomings:

¢ The nonlinearity of the problem is such that it is necessary to solve a very large

mixed integer linear program.

¢ This approach gives us an algorithm, but not a closed form solution. Therefore,

it is not possible to study the relationship between the parameters easily.

e CAP captures only certain aspects of network design. When other considera-
tions are included, the important target may not be finding the exact solution
to the problem, but rather using some rules of thumb to determine the param-

eter values that are possible.

The question of the computational intractability of CAP was explored in Chap-
ter 3. In the same chapter, albeit not rigorously, we justified the assumption that
the traffic AP < 1 for all (P, q) and suggested a “residual” method for dealing with
cases with A("® > 1, This scheme is not optimal, but if some suboptimal heuristic
is to be used in the end anyway, there is no point in insisting on exact optimality
here. A simple instance of CAP was shown to be NP-hard. Therefore, it is unlikely
that a polynomial algorithm can be found for CAP, and this further motivated the
heuristic approaches in Chapter 4.
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Various heuristics were investigated in Chapter 4. In addition, the trade-offs
between N., N, and N; were studied. Through a lower bound on N, N, it was
shown that small values of N, and N, cannot be achieved simultaneously. Although
this bound assumes uniform traffic between all pairs of nodes, intuitively, there is
no reason why the trade-off between N, and N, does not apply to the nonuniform
traffic case. The trade-off between these two parameters and NN,, however, is not
very strong, especially when the traffic entries are small relative to the channel
capacity. Any such trade-off can be attributed to the integer constraints of the
parameters and the corresponding “packing” problem. Typically, N, is also small
as a side-effect of minimizing N, and N,. In Section 4.3, an O(N*) traffic-matrix

mapping heuristic was presented.

Upper bounds on v;N; + v, N, and N, were derived in Section 4.4 based on the
results of some simple heuristics. Here, v; and v, are the cost of a transmitter and
the cost of a receiver, respectively. We showed that under conditions with large
total traffic but small individual traffic between two nodes, these upper bounds are
close to the lower bounds in the sense that their ratios are roughly 1. Thus, the
conclusion is that very good solutions can be found using simple heuristics in such
a situation. Furthermore, the values of these bounds characterize the fundamental
achievable parameter values in the above asymptotic limit. If v, = v,, a rule of
thumb for a uniform traffic case is that N;/N = N, /N =~ +/N,. In other words, the
number of transmitters (or receivers) per node is bounded below by, but roughly

equal to, the square root of the system traffic.

n-connectivity networks in which any two nodes have at least n alternative chan-
nels for communication was discussed in Section 4.5. A scheme-dependent lower
bound on N;N, was derived and this bound also has the characteristic that when

the total traffic is large and the individual traffic small, simple traffic mapping
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heuristics yield results approaching it.

In Chapter 5, we departed from the strict definition of CAP and related the
combinatorial study of block designs to our problem. Basically, the block design
formulation is equivalent to adding more constraints and symmetries to CAP, A
result is that if the transmittable channels of every node is the same as its receivable
channels, and if the number of common accessible channels is the same for all node-
pairs, then N, > N » Tegardless of the actual traffic intensity. Whether this kind
of networks is justified in an environment where bandwidth is cheap, such as fiber-
optic networks, remains to be studied. The key question is whether the redundant
channels (i.e. more than that dictated by the total traffic) imply a greater cost
even if the channel bandwidth is cheap. Within the context of CAP here, the
minimization of N;and N, is accompanied by the minimization of N,. Therefore, it
would be unwise to have N. much larger than the total system traffic. On the other
hand, one may argue that bandwidth, and correspondingly N; and N, as well, can
be traded for simplicity in control. This will bring in the consideration of access
control schemes and whether the symmetry in a block design lends itself to more

structural and simple contro] schemes remains to be explored.

Chapter 6 studied the consequences of introducing hierarchical structures into
networks. Based on a logical definition of hierarchical networks, it was shown that
hierarchical networks have higher N, but smaller N; and N,. When the total system
traffic is large and the individual traffic small, N; and N, in a hierarchical network is
negligible compared with those of the corresponding ordinary network. Intuitively,
this is the result of the embedded switching functionality at the bridges. Thus,
a hierarchical structure can be considered as a method of introducing distributed

switches to reduce N; and N,.
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In Chapter 7, the interaction between access control schemes and CAP is investi-
gated. When scheduling overhead is taken into account, N, decreases as connectivity
n increases. This is due to the control flexibility provided by the larger connectivity.
Whereas N; (or N,) is roughly proportional to v/n previously, when access control
is considered in the analysis, N; (or N,) increases less dramatically with n. In fact,
a perhaps counter-intuitive result is that N; (or N,) actually decreases with n if
the system is operating in a low load situation, a consequence of either stringent
performance requirements or small-size channels, or both. Typically, given some
fixed performance requirements, a large channel can be better utilized than a small
channel. Thus, intuitively, the above situation occurs when the channels are too
small to allow a high load operating point. However, for most services’ bandwidth
requirements, the maximum allowable capacity (1-10 Gbps) of a channel in a fiber
system is relatively large. With reasonable performance requirements and large
channels, a high load operation is expected. Hence, the qualitative result that N,
(or IV,) increases with n still applies, unless, of course, small channels are desirable
for other reasons. In this case, the physical speeds of transmitters and receivers are

not a limiting factor on the channel size anymore.

8.2 Implications for Fiber-Optic Networks

8.2.1 The Size of the Channel Capacity

Consider a high-bandwidth fiber-optic environment in which the maximum channel
capacity is 1-10 Gbps. Suppose we drop the viewpoint that the channel cé.pacity
is given as a fixed quantity. A question is whether the fiber bandwidth should be
partitioned into frequency channels of capacity 1-10 Gbps (i.e. maximum rate of

electronics) or into many smaller channels.
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As with most practical situations, there is no simple general answer to this
question if every aspect of network design is taken into account. To narrow down the
scope, we assume the transmitters’ and receivers’ costs are the dominant costs and
that N, is not a significant cost factor. Also, to simplify our discussion, we assume
vy = vy = v(r) where r is the transmission rate of a channel in bits per second.
Thus, the average transmitters’ cost and receivers’ cost per node are v(r) N, /N and
v(r)N, /N respectively. Our problem is simply to find the minimum v(r)[N:/N +
N, /N].

We consider the uniform traffic situation with 1-connectivity requirement. Let

a = absolute traffic from one node to another (bps) ;
7 = normalized traffic from one node to another (unitless);
p(p,r) = channel utility or load in a channel (unitless),

where p is some quantity describing the performance requirement: the smaller it
is, the more stringent the requirement. Thus, p increases with p. As we have seen
in the previous chapter, p also increases with r thanks to greater capacity sharing

among services. By definition,
a

ro(p,r)’

7= (8.1)

To have a closed form expression for comparison purposes, suppose the total traffic
is very large and the individual traffic 4 is small. Then using the “square traffic
matrix mapping” heuristic discussed in Chapter 4,

[

TP(P, 1’) . (8.2)

%z(N—l)ﬁ=(N—l)

Thus, the transmitter cost per node is

N v(n)
v(r)w ~ Tp,r)(N —1)va. (8.3)
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Note that v(r) can be used to model various cost components, other than the
transmitter cost, that depend on N¢/N. For example, a coupler (or any interface
device) may be needed for each accessible channel. N; /N may also be related to the
control complexity at a node. One possibility is v(r) = a+v(r), where a represents
costs that depend linearly on N:/N but not on r, and v; is the actual cost of a
transmitter. Let’s focus our attention on the case where v(r) can not be separated

in the above fashion.

In a high load region where p(p,r) ~ 1, what (8.3) says is that it will be worth-
while to use large capacity channels only if v(r) does not go up as fast as Vrasr
increases. Thus, if the transmitter cost increases linearly with r, then many smaller
channels are better than a fewer very high capacity channels. This is not difficult
to understand intuitively. If v(r) = r, then v(r)N;/N corresponds to the total
“transmission capability” of a node. But for a large channel, the traffic originating
from a single node constitutes only a small part of the total traffic a.ssigned to a
channel. But the node must transmit at the channel transmission rate. Therefore,
a substantial part of the transmission capability of the node is “wasted”. But there
is a catch to this reasoning! As r decreases, p decreases and we may be in a low
load situation. Nonetheless, if r is sufficiently larger than the individual service
requirements, this is not a significant problem, and the above argument will still be

valid qualitatively.

The conclusion is that we must use channels that are large enough so that channel
utility p is close to 1 and good CAP solutions can be easily found?!, but not too
large that a lot of the transmitting and receiving capabilities are wasted, unless

their costs increase less rapidly than the square root of their speed. It must be

!Strictly speaking, a good CAP solution is sometimes possible even if v is large. Suppose we let
7 = a/p so that each traffic entry occupies a channel. Then v(r)N:/N = v(r)(N - 1) = (N —1)/p
if v(r) = r. This will be a good solution if « is large and represents an aggregate of many services
so that p is large.
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stressed that this conclusion depends strongly on the assumptions we make. For
example, in terms of the technical difficulty, it is easier to divide the bandwidth
into a few large channels using wavelength multiplexing rather than many smaller
channels using heterodyne detection [38]. Furthermore, the channel capacity must
be greater than « if the traffic between every node-pair is not to be split across

more than one channel.

8.2.2 To Switch or Not to Switch

From this work, we see that even without switching, bandwidth of the communica-
tion medium can be utilized quite efficiently in that N, is approximately equal to
the traffic requirements. On the other hand, N; and N, grow very fast as the system
becomes large (i.e. N increases). Suppose the output rate of a node (N —1)yis
fixed , say at A*. If N, ~ N,, then

A*
ek

Since (N —1)~ is fixed, as N increases, -y decreases and the above becomes very large.

N
T RN -1)/F= (8.4)

With internal switching (a frequency translator inside the network), potentially,
Ni/N =~ X*, which is invariant to N. This is obtained assuming that each node
needs only enough transmitters to send out the outgoing traffic and more discussion

on its achievability will follow in the next section.

An irony is that although when N is large and < is small, good suboptimal CAP
solutions can be found easily, it is also in this case that N; and N, necessarily
become very large, as can be seen from the lower bound of N;N;. They can be
reduced by introducing switching. One method is using hierarchical structures
discussed in Chapter 6. Thus, unless transmitters and receivers are cheap, in a large
system, switching functionality, whether implemented inside or at the peripheries

of networks, is necessary. Here, switching functionality refers to the capability of
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directing traffic from one channel to another.

Tuning can replace switching, but may require more complicated access control.
In this case, a tunable transmitter at a node is shared by many accessible channels.
If many services are going on at a node simultaneously, this means its transmitters
and receivers must be able to tune from channel to channel very quickly. In other
words, a transmitter or a receiver is time-shared by many services very much the
same way a mainframe computer is time-shared by many users. Adding to the
complication is that a transmitter and its intended receiver must be coordinated
so as to tune onto a common channel. Extra overhead is likely to be encountered
here as compared to a switching system, and this may result in requiring more
transmitters and receivers, even if they are tunable. Whether this is really the case,

of course, remains to be explored.

A final word is that the power division problem [29,38] in a passive optical net-
work is a nontrivial problem. N; and N, will be important if the number of couplers
sharing the power in the network increases with them. So, for a very large network,
some switching or tunability is desired as a way to reduce the transmitters’ and
receivers’ costs and other costs related to N, and N,, and as a way to solve the

power division problem.

8.3 Concluding Remarks and Topics for Further Research

In this thesis, we assumed there is no switching in the network. For the most part,
we also assume nontunable transmitters and receivers. With these assumptions,
the system transmittability and receivability (N: and N,) naturally correspond to

the total number of transmitters and receivers. It is shown that, without switching
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and tuning, these parameters necessarily grow quickly as the network size increases.
For a network with tunable hardware, this is not so since a single transmitter or
receiver can access many channels. In all cases, the lower bounds on the number of
transmitters and receivers, 3°,[3, A?9] and 3, [, AP9], must still hold since the
operating speed of a transmitter or a receiver is limited by the transmission rate of

the channel.

These lower bounds cannot be achieved simultaneously in the nontunable case.
To what extent these limits can be approached by introducing tunability remains
an open question. Technology is a factor to be concerned. As an example, consider
the situation where a channel is time-divided into slots, which are then allocated
dynamically to services based on demand. To share a single transmitter between
several channels, the operating frequency of the transmitter must be tunable on a
slot-by-slot basis. This is difficult with the current technology if the time scale is

on the order of milliseconds.

For a network with internal switches (frequency translators), it can be shown that
the lower bounds on N, and N, can be achieved simultaneously in principle, though
we may need complex switching control modules in addition to mere frequency
translation capability. This will be discussed in the section entitled “Networks with

Internal Switching” that follows.

The hierarchical structures in Chapter 6 is a way of introducing switching ca-
pability into a network. The degree of switching in a network varies according
to the underlying hierarchical structure. Thus, instead of categorizing networks
into switching networks and non-switching networks, we could talk of the degree of
switching incorporated in a network. In general, a hierarchical network is a “hy-

brid” network, with some of the nodes communicating directly, and others through
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switches. The bridges in a hierarchical network can either be active or passive. In
the former, the subnetworks are isolated and the bridges are located inside the net-
work. In the latter, the bridges are external and they can be considered as special
nodes through which messages hop in order to get to their destinations. Specifically,
a passive hierarchical network is a kind of multihop network — a bridge is a special
message-passing node and it does not generate traffic; an ordinary node generates

traffic but does not switch the traffic of other nodes.

On a conceptual level, whether using a large number of transmitters and re-
ceivers, or tunable hardware, or internal switches, or multihop strategy, the goal is
to establish connectivity between the communicating nodes. Further investigation
is needed so that we can compare more accurately the trade-offs between these dif-
ferent methods. This work points to a fundamental trade-off between the required
transmitting and receiving capabilities, and the complezity of switching in a network.
If the nodes are capable of selecting out their own messages, there is no essential
trade-off between the required channel capacity and the switching complexity since
it is already close to the total system traffic even without switching. Of course, a
general measure of switching complexity is necessary in order to support the above

conclusion on a firmer ground.

" This research is a first attempt at understanding some of the important issues
in a setting where bandwidth is not a primary concern to network design. It lays a
foundation upon which more complicated networks can be studied systematically.

We conclude this thesis with a discussion on some topics for further research.

Networks with Tuning Capability

The nodes in a network can be either single-user nodes in which there is at most

a service going on at a node at one time, or multi-user nodes in which many services
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are going on simultaneously at a node. The underlying issues for these two kinds

of networks are different.

Consider a tuning network with single-user nodes. In this case, each node needs
a transmitter and a receiver, assuming their rates exceed the outgoing and incoming
traffic. The main problem here is coordinating two communicating nodes so that
the transmitting node and the receiving node are tuned onto the same channel.
There is no optimization issue as far as the numbers of transmitters and receivers

are concerned. This is the setting in Reference [1].

In a tuning network with multi-user nodes, on the other hand, there can be
much saving if a transmitter or a receiver is shared by many services. To serve
these services simultaneously in a time-shared manner, the hardware must be able
to hop from one tuned channel to another very quickly. The problem of coordinating
the transmission and the reception becomes very complex if both the transmitters
and the receivers are allowed to tune. Thus, it is easier to approach this problem

fixing the accessible channels of either the receivers or the transmitters.

Suppose the receivable channels are fixed. In principle, N, and N; can be limited
to their lower bounds ¥°,[, A(P9)] and T[T, AP, Let’s divide the receiving
time of node g is into time frames, each consisting of many time slices. The trans-
mitters are served in a round-robin fashion, and the lengths of services depend
on the proportions A(L9) A(29) ,AN9). that is, the ratio of the numbers of time
slices allocated to transmitter nodes s and 7is A6:9) : 269 | Byt in order that V; =
Yp[ 2, AP0, the sequences of times slices of the different receiving nodes must be
so arranged that at no time more than [Eq A("")] receiving nodes are serving trans-
mitting node p simultaneously. In addition, the transmitters and the receivers must

be active most of the time. Specifically, for node P, the ratio of the transmitters’ ac-
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tive time to their idling time is 2 Alpa) [, A(M)] -3, A(P9); for node g, the ratio
of the receivers’ active time to their idling time is >y Apa) . [, )\("'4)] -3, Alp.g),
This is not a trivial problem! But to the extent that scheduling overhead can be
ignored, the problem of which transmitters should be tuned to which receivers at
what times is essentially the same problem as the central switching problem that
will be discussed next. There the problem is which inputs should be connected, or
switched, to which outputs at what times. It can be shown that the lower bounds
can indeed be achieved. How this will change if scheduling overhead is taken into

account remains to be studied.

There are also issues related to the tuning range of transmitters and receivers.
For a system with limited tuning, would the resulting parameter values fall between
those of the two extremes, the fully tunable case and the nontunable case? In

addition, tuning speed is another important consideration in practice.

Networks with Internal Switching

In principle, once an internal switch is introduced, there is no problem with N,
and N, achieving their lower limits. Fig. 8.1 depicts the situation with an active

frequency translator in the network.

Obviously, the frequency translator needs to do more than mere frequency trans-
lation. At different times, the messages on a channel must be switched to different
channels and no two channels must be switched to the same channel simultane-
ously. Reference [12] addresses the scenario in which each channel is divided into
time frames consisting of many time-slotted channels. Although the motivating
physical situations are different, the resulting problem frameworks are similar. In
particular, the paper’s main theorem, when applied to our situation, implies that

there is a switching scheme in which N; and N, achieve their lower bounds. There



164

# Channels

[, 209]

[, A0

Node
1

Node
p

CHAPTER 8. CONCLUSION

# Channels
. . Node
: : 1 [EP A(P-l)]
Central
. Switch .
. (Frequency .
Translator)
. . Node
. . g >, A9

Figure 8.1: A Central Switch Configuration.



8.3. CONCLUDING REMARKS AND TOPICS FOR FURTHER RESEARCH 165

seems to be no conceptual difficulty in extending the result to the continuous time
scenario since we can simply let the duration of the time slots go to zero and the

number of time slots in a frame go to infinity.

An algorithm that can find the “optimal” switching scheme in a short time
remains an open research topic. In practice, this is particularly difficult if there
are many time slots in a frame. Another question is whether there is a satisfactory

suboptimal but fast algorithm.

Multihop Networks

Switching functionality can be implemented centrally or distributedly. As men-
tioned earlier, the hierarchical networks in Chapter 6 can be regarded as distributed-
switching multihop networks if the bridges are passive and external to the networks.
An alternative scheme is to have the traffic-generating nodes share the switching
responsibility. Thus, a node will receive its own messages as well as switch messages
between other nodes. The different ways the switching functionality is distributed

and assigned to the nodes, and their respective merits, are open to further research.

In general, for the same reasons discussed in Subsection 7.2.1, a multihop net-
work will experience some degradation in performance compared with the ordinary
network of this work. To compensate for this degradation, more channel capacity
and devices of higher speed will be needed. On the other hand, switching in a mul-
tihop network may be simpler than in a central-switching network. This, of course,

remains to be substantiated.

Finally, a measure of switching complexity is essential if different switching net-
works are to be studied and compared more systematically. Whether a fundamental

measure for switching complexity is possible is worth exploring.




Bibliography

[1] G. L. Abbas, Frequency Allocation for Fiber Optic Integrated Services Commu-
nication Networks, M.I.T. Electrical Engineering Ph. D. Thesis, Feb 1988.

[2] J. M. Aein, “A Multi-User-Class, Blocked-Calls-Cleared, Demand Access
Model,” IEEE Trans. Commun., Vol. COM-26, # 3, pp. 378-385, Mar 1978.

[3] E. Arthurs and J. S. Kaufman, “Sizing a Message Storage subject to Blocking
Criteria,” Performance of Computer Systems, Armsterdam, The Netherlands:

North-Holland, pp. 547-564, 1979.
[4] J. Bellamy, Digital Telephony, Wiley (1982).

(5] D. P. Bertsekas, Notes on Nonlinear Programming and Discrete- Time Optimal
Control, M.I.T. Lids Report LIDS-R-919, Jan 1983.

(6] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall Inc. (1987).

[7] S. P. Bradley, A. C. Hax and T. L. Magnanti, Applied Mathematical Program-
ming, Addison-Wesley, Reading Mass. (1977).

8] F. R. K. Chung, J. A. Salehi and V. K. Wei, “Optical Orthogonal Code: De-
signs, Analysis, and Applications,” submitted to JEEE Trans. of Info. Theory,
1986.

[9] R. J. Dakin, “A Tree-Search Algorithm for Mixed Integer Programming Prob-
lem,” Comp. J., Vol. 8, # 3, pp. 250-55, 1965.

166



BIBLIOGRAPHY 167

[10] G. B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Program-
ming,” OR, Vol. 8, # 1, pp. 101-111, Jan-Feb 1960.

[11] A. Dey, Theory of Block Designs, John Wiley & Sons (1986).

[12] K. Y. Eng and A. S. Acampora, “Fundamental Conditions Governing TDM
Switching Assignments in Terrestrial and Satellite Networks,” IEEE Trans. of
Communications, Vol. COM-35, pp. 755-761, July 1987.

[13] J. Escobar, Mazimum Likehood Detection for Optical Code Division Multiple
Access System Models, M.I.T. Electrical Engineering Ph. D. Thesis, Feb 1988.

[14] M. J. Fischer and T.C. Harris, “A Model for Evaluating the Performance of
an Integrated Circuit-and-Packet-Switched Multiplex Structure,” IEEE Trans.
Commun., Vol. COM-24, pp. 195-202, 1976.

[15] G. Y. Fletcher, et. al., “A Queueing Network Model of a Circuit Switching Ac-
cess Scheme in an Integrated Services Environment,” IEEE Trans. Commun.,

Vol. COM-34, # 1, pp. 25-29, Jan 1986.

[16] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnoy Kan, “Opti-
mization and Approximation in Deterministic Sequencing and Scheduling: A

Survey,” Annals of Discrete Mathematics 5, pp. 287-326, 1979.
[17] M. Hall, Combinatorial Theory, Blaisdell Publishing Company (1967).

(18] J. H. Hayes, Modeling and Analysis of Communications Networks, Plenum,
New York (1984).

[19] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research, Vol.
I, Mc-Graw-Hill (1982)



168 BIBLIOGRAPHY

20] J. Y. Hui, “Pattern Code Modulation and Optical Decoding — A Novel Code-
Division Multiplexing Technique for Multifiber Networks,” IEEE Journal on
Selected Areas in Comm., Vol. SAC-3 NO. 6, Nov 1985.

[21] J. K. Kaufman, “Blocking in a Shared Resource Environment,” IEEE Trans.
Commun., Vol. COM-29, pp. 1474-1481, Oct 1981.

[22] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay, Mc
Graw-Hill, New York (1964), out of print; reprinted Dover, New York (1972).

[23] L. Kleinrock, Queueing Systems Vol. I: Theory, Wiley (1967)

[24] R. W. Klessig, “Overview of Metropolitan Area Networks,” IEEE Communi-
cations Magazine, Vol. 24, pp. 9-15, 1986.

[25] B. Kraimeche amd M. Schwartz, “Analysis of Traffic Access Control Strategies
in Integrated Service Networks,” IEEE Trans. Commun., Vol. COM-33, # 10,
pp. 1085-1003, Oct 1985.

[26] R. H. Kwong and A. L, Garcia, “Performance Analysis of an Integrated Hybrid-
Switched Multiplex Structure,” Performance Evaluation, Vol. 4, pp. 81-91,
1984.

[27] E. L. Lawler and D. E. Wood, “Branch-and-Bound Methods: A Survey,” OR,
Vol. 14, # 4, pp. 699-719, Jul-Aug 1966.

[28] S. -Q. Li and J. W. Mark, “Performance of Voice/Data Integration on a TDM
system,” IEEE Trans. Commun., Vol. COM-33, # 12, pp. 1265-1273, Dec
1985.

[29] S. C. Liew, Topologies and Power Division Problem of Fiber Optic Networks,
M.LT. Electrical Engineering Master’s Thesis, Feb 1986.



BIBLIOGRAPHY 169

[30] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complezity, Prentice-Hall, NJ (1982).

[31] E. G. Rawson, R. M. Metcalfe, R. E. Norton, A. B. Nafaratte and D. Cron-
shaw, “Fibernet: A Fiber Optic Computer Network Experiment,” Proc. Fourth
European Conf. on Optical Communication, Genova, Italy, Sep 1978.

[32] H. J. Ryser, Combinatorial Mathematics, MAA Publication (1973).

[33] R. V. Schmidt et. al., “Fibernet II: A Fiber Optic Ethernet,” IEEE Journal on
Selected Areas in Communications, Vol. SAC-1, #5, pp. 702-710, Nov 1983.

[34] A. P. Street and W. D. Wallis, Combinatorial Theory: An Introduction, Pub-
lished by the Charles Babbage Research Center, Canada (1977).

[35] Daniel T. W. Sze, “A Metropolitan Area Network,” IEEE Journal on Selected
Areas in Communications, pp. 815-824, Nov 1985.

[36] A. S. Tanenbaum, Computer Networks, Prentice Hall, Eaglewood Cliffs, NJ
(1981).

[37] J. A. Tomlin, “Minimum-Cost Multicommodity Network Flow,” OR, Vol. 14,
# 1, pp. 45-51, Feb 1966.

[38] S. S. Wagner, Multiplezing Methods for Fiber Optic Local Communication Net-
works, M.L.T. Electrical Engineering Ph. D. Thesis, June 1985.

[39] G. F. Williams and A. L. Garcia, “Performance Analysis of Integrated Voice
and Data Hybrid-Switched Links,” IEEE Trans. Commun., Vol. COM-32,
pp. 695-706, 1984.

[40] A. Wong, Channel Scheduling for Optical Communication Networks with Fre-
quency Concurrency, M.I.T. Electrical Engineering Ph. D. Thesis, Feb 1988.



170 BIBLIOGRAPHY

[41] C. Yeh and M. Gerla, "High Speed Fiber Optic Local Networks,” Proc. of the
Tenth Anniv. Meeting of the NSF Grantee-User Group in Optical Communica-
tions Systems, pp. 69-80, June 1982.

[42] N. Zadeh, “On Building Minimum Cost Communication Networks,” Network,

3: pp. 315-331, Wiley (1973).

[43] N. Zadeh, “On Building Minimum Cost Communication Networks over time,”

Network, 4: pp. 19-34 (1974).



