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We report a deep learning method to predict high-resolution stress fields from material microstructures, 
using a novel class of progressive attention-based transformer diffusion models. We train the model 
with a small dataset of pairs of input microstructures and resulting atomic-level Von Mises stress fields 
obtained from molecular dynamics (MD) simulations, and show excellent capacity to accurately predict 
results. We conduct a series of computational experiments to explore generalizability of the model and 
show that while the model was trained on a small dataset that featured samples of multiple cracks, 
the model can accurately predict distinct fracture scenarios such as single cracks, or crack-like defects 
with very different shapes. A comparison with MD simulations provides excellent comparison to the 
ground truth results in all cases. The results indicate that exciting opportunities that lie ahead in using 
progressive transformer diffusion models in the physical sciences, to produce high-fidelity and high-
resolution field images.

Introduction
Modeling fracture is an important frontier in materials research 
[1–4] and a challenging problem for modeling and simula-
tion. In typical fracture problems a specimen with defect(s) is 
exposed to mechanical loading [2, 5], and the response to such 
boundary conditions are examined to predict stress and strain 
field, overall fracture toughness, or statistics of specific features 
of the resulting mechanical fields (Fig. 1) [6–8].

Whereas molecular-level models (e.g., molecular dynam-
ics, MD) provide accurate predictive results (especially using 
accurate force fields) [10], such simulations can be computa-
tionally expensive and quickly challenge the capabilities of 
computational resources. On the other hand, deep learning has 
emerged as a potential approach to help address the multiscale 
problem, as it could both serve as a proxy model for MD or finite 
element methods (FE) or as a way to bridge scales [11–15]. In 
scale-bridging applications, such methods should ideally have 
a generalization capacity that allows them to make predictions 
beyond the scope of the training data.

This question about the predictive power of physics-based 
deep learning has been a subject of various investigations [16, 
17], and is an important frontier in the field. In this paper we 
particularly focus on the use of deep learning for fracture appli-
cations, and explore the application of a small dataset and the 
generalization capacity towards a broader use of a deep learning 
method in a multiscale scheme. This assessment will provide 
us with insights on potential uses of such methods as a scale-
bridging tool to effective capture how building blocks of materi-
als (atoms, molecules, amino acids, etc.) interact to create spe-
cific sets of functions. A particular novelty of this study is the 
use of a physics-inspired diffusion machine learning approach, 
and an assessment of whether or not such a model is capable 
of adequately learning complex singular field data near cracks.

Language‑based models for physical sciences

We propose the use of language models, specifically using the 
self-attention architecture seen for instance in transformer 
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neural networks [18–20], which offers a building block 
approach that is native to many materials science problems—
linking structure, process and properties at a building block 
perspective, in a natural way, similar to language [21–25]. 
Earlier work in this field has demonstrated the suitability of 
convolutional and transformer architecture for solid mechanics 
problems including elasticity and fracture applications [26–29], 
as well as materials design based on human language input 
[23, 24]. More broadly, the use of transformer architectures 
has emerged as a broadly applicable approach for many data 
modalities including state-of-the-art text-to-image generation 
(e.g., VQGAN-CLIP [20, 30], GLIDE [31], DALL-E 2 [32, 33], 
or Imagen [34]).

Here we build on this body of knowledge and recent devel-
opments of state-of-the-art image generation methods [34] and 
explore the use of a new class of progressive diffusion models 

[34, 35]. We specifically focus on the following materials science 
questions:

1. Can progressive diffusion models be an effective approach 
to predict physical field solution from prompts that deline-
ate the input microstructure?

2. Can we successfully train a complex progressive diffusion 
transformer model with relatively small datasets of only a 
thousand image-to-image pairs?

3. Can such a model be used to predict solutions for input 
microstructures that are distinct from the types of data seen 
during training, so that the model can be used to generalize 
solutions?

While we use a similar architecture as in state-of-the-art 
text-to-image generation methods [34] including a successive 

Figure 1:  Summary of the fracture mechanics field problem considered here, focused specifically on atomic-level stress data. (A) summary of the 
boundary condition and elliptical crack-like voids used in the training set. We use a fixed boundary indicated by the dashed line to constrain 
movement at the outside, in order to apply strain-controlled loading. (B) Molecular dynamics (MD) simulation setup, including a close-up view of 
the atomistically resolved stress field and an indication of the four fixed boundary strips used in LAMMPS [9]. The simulation domain of all mobile 
atoms is indicated in red color. (C) Two examples of input and output data pairs produced by MD simulation. As shown in the zoomed-in view on the 
right, the resolution of the output images is sufficiently high to resolve individual atoms and detailed stress variations—at the atomic level—near the 
edges. The region shown in magnified view is indicated by the dashed grey box. The hexagonal lattice structure is clearly visible, with the spacing of 
atomic distances marked in panel C to provide a reference for the key scales in the problem. As marked with the scale bar in panel A, the system size is 
approximately 32 nm (assuming that σ = 1 Å).
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denoising strategy that transforms noise to conditioned field 
solutions, our conditioning prompt is not text here; rather, 
the input prompt is an encoding of the input microstructure 
representation from which the model then learns to construct 
the field solution. In the cases discussed in this paper we 
predict the Von Mises stress field from the prompt; however, 
other fields or properties can be predicted as well and the 
model can be easily adapted (either training from scratch, 
or more efficiently, using transfer learning). The primary 
objective in this work is to develop a framework that can 
predict high-resolution field predictions that features exqui-
site detail of the resulting physical variables, at reasonable 
computational cost. The successive upscaling of the resulting 
field prediction from smaller to larger and larger resolution 
becomes tractable through the use of a cascading series of 
deep neural networks, as illustrated in Fig. 2. While limited 

to a 2D model material in this study, we anticipate that the 
general framework can be useful for a variety of scenarios 
and many other field data classes.

Paper outline

We begin the discussion with a brief review of the dataset, the 
neural network architecture, and then proceed to a presenta-
tion of the results. We review training and testing performance, 
as well as the exploration of using the model in scenarios far 
from the original dataset used in training, to explore generali-
zation capacity. A discussion with domain knowledge in frac-
ture mechanics is included, to further understand the model’s 
predictive power. Finally we discuss opportunities for future 
work that include experimental studies, integration with other 
types of field data, as well as transfer learning modalities.

Figure 2:  Summary of the neural network architecture of a diffusion-based generative model, consisting of three U-Net architectures (Unet 1, Unet 2 
and Unet 3) that are used to translate the input microstructure into the final field output, over three successive stages of translation and upscaling, 
ultimately reaching a resolution of 1024 × 1024.
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Results and discussion
Neural network architecture

Diffusion models, sometimes referred to as denoising diffusion 
models, have emerged as state-of-the-art tools in image genera-
tion especially when combined with transformer architectures, 
realized in methods such as DALL-E 2 or Imagen, and often 
exceed the performance of generative adversarial neural nets 
(GANs) [33, 35–37]. The key task in such models is that they 
learn a reverse process to perform denoising in order generate 
data, such as images or field data, from noise [37]. While these 
models have been widely used in the image synthesis litera-
ture, their exploration in the physical sciences, and specifically 
mechanics applications for materials science, has not yet been 
investigated.

Here we use a progressive neural network architecture that 
progressively upscales the prediction from the input prompt, 
to realize very high-resolution images with exquisite detail and 
quality. Figure 2 shows a summary of the neural network archi-
tecture of a diffusion-based generative model, consisting of a 
series of three U-Net architectures (Unet 1, Unet 2 and Unet 
3) that are used to translate the input microstructure into the 
final field output, over three successive stages of translation and 
upscaling, ultimately reaching a resolution of 1024 × 1024. Each 
U-net consists of a combination of ResNet blocks and self-atten-
tion layers, as described in [34]. Further details are provided in 
the Materials and Methods section.

Model training and testing

The model is trained successively whereby each of the U-Nets is 
trained individually (first Unet 1, then Unet 2, and then Unet 3). 
As a training set, we deliberate limit the scope to a very small set 
of 1,000 image pairs, as shown in Fig. S1 for a few sample geom-
etries (full dataset see link in Materials and Methods). Training 
performances are shown in Figs. S3 and S4. Figure S4 specifically 
shows images during training, revealing training performance 
for test and validation set, for the first U-net (Unet1) to give the 
readers a sense for how the model learns and performs dur-
ing this process. As can be seen, during training epochs (top to 
bottom), the prediction accuracy increases successively. Similar 
behaviors are seen for the other U-Nets in the model.

Validation and extrapolation

We now use the trained model and apply it to examine how well 
it can predict stress fields for a variety of vases. All predictions 
presented here are for the fully trained model, whereby images 
of size 1024 × 1024 are generated.

Figure 3 shows predictions based on a test microstructure 
[Fig. 3(A)], for the three different stages in the neural network. 

Figure 3(B) shows results for three different resolutions, cor-
responding to the three stages described in Fig. 2. The figure 
also shows a zoomed-in view of the area marked in panel B, left. 
Figure 3(D) shows a close-up view of the final result, as marked 
up in the right panel of B. The individual atoms and associated 
stress fields can be clearly seen. The detailed view of the input 
microstructure shows that individuals atoms are not provided, 
and rather, solely the overall shape of the crack/material distri-
bution. The model is still able to predict not only the stress field 
but also the position of atoms within the domain. A detailed 
visual inspection confirms that the predicted fields are similar 
in nature from the original data as shown in Fig. 1(C). These 
results indicate that the model has adequately learned how to 
predict stress fields from input microstructures, for data similar 
to the training set.

Next, we examine how the model performs for cases that are 
distinct from the type of data provided in the training set. To 
test this we next present additional validation cases predicted 
using the trained model, as shown in Fig. 4. Here we compare 
microstructures distinct from the ones included in the training 
set. Figure 4(A–D) show results for a single crack, respectively, 
and Fig. 4(E–H) depict results for a microstructure that fea-
tures multiple cracks. We emphasize that the training set does 
not include cases of single cracks. However, as the results show, 
the model is able to accurately predict the stress field including 
long-range order. This suggests that the model has learned key 
physical insights about fracture mechanics in solids, and is able 
to generalize from the training set.

Figure 5 depicts more comparisons of validation cases of 
single cracks (top two) and multiple crack cases (bottom two). 
The left column of the figure shows a histogram of the Von Mises 
stress field, comparing ground truth and predictions. The results 
show that the model can accurately predict not only the specific 
stress distributions (see also Fig. 4) but also overall statistics of 
stress fields. This is possible even for cases that are quite distinct 
from the training data.

For a deeper and quantitative analysis of how the model 
performs for generalization cases outside of the training set, 
Fig. 6 shows a correlation plots between statistical properties 
of the stress fields, for ground truth and model prediction, for 
standard deviation of the Von Mises stress field [Fig. 6(A)], and 
the variance [Fig. 6(B)]. The R2 values for the correlations are 
0.97 for the standard deviation and 0.98 for the variance. The 
colors indicate different types of microstructures considered 
(red = single cracks, blue = multiple cracks). Overall, we find that 
the correlation is excellent for all cases. The data further shows 
that single cracks, and the type of multiple-crack geometries 
used in this validation set, are not included in the training set, 
thus serving as a means to test generalizability.

Figure 7 shows an application of the model to distinct geom-
etries very different from the data seen during training, including 
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Figure 3:  Predictions based on a test microstructure (A), for the three different stages in the neural network (B). Panel B shows the results for three 
different resolutions (see stages in Fig. 2), and panel D shows a zoomed-in view of the area marked in panel B, left. Panel D depicts a close-up view 
of the final result, as marked up in the right panel of B. The individual atoms and associated stress fields can be clearly seen (top: input, bottom: 
prediction). Visual inspection confirms that the predicted fields are similar in nature from the original data as shown in Fig. 1(C). Detailed, small-scale 
variations of atomic stresses (marked by the two arrows) can be predicted well using the model, due to the high resolution in this model. The small 
rectangles show even finer zoomed-in views of the input/output, to show more details.
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a crack defined by the MIT logo (A-B) and a star-shaped crack 
(C-D). Close inspection of the results confirms that the model 
makes accurate predictions in all cases, including the stress fields 
and the overall statistics as seen in the histogram. The field predic-
tions include an accurate representation of complex relationships 
between crack/defect shape and resulting stress field. The model 
is also capable of discerning key fracture mechanics theoretical 
predictions [8], such as showing higher stress concentration at 
cracks perpendicular to the loading condition, and much smaller 
stress concentrations at cracks oriented towards the loading condi-
tion [Fig. 7(C), for instance]. This general behavior is predicted in 
Inglis’ solution [38] [see Fig. 8(A) for geometry] tnat predicts the 
local stress at the tip of an elliptical defect:

where σ∞ is the remotely applied stress, and a and b describe 
the geometry of an elliptical crack. When a ≫ b , the crack is 
oriented perpendicar to the loading and yieds high stresses at 
the crack tip, and vice versa.

Analyzing all these validation results, there are specific 
details that the model has learned, including the fact that hori-
zontally oriented cracks show a smaller or vanishing stress con-
centration, as opposed to largely vertically oriented cracks that 
lead to a more significant stress concentration. Similar argu-
ments can be made with respect to the size of the crack; where 

(1)σmax = σ∞

(

1+ 2
a

b

)

,

Figure 4:  Validation cases predicted using the trained model, where we compare microstructures distinct from the ones included in the training set. 
(A–D) show results for a single crack, respectively, and (E–H) show results for a system with multiple cracks. The training set does not include cases of 
single cracks. However, the model is able to accurately predict the stress field including long-range order. This confirms that the model has learned key 
physical insights about fracture mechanics in solids, and is able to generalize from the training set.
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Figure 5:  Additional comparisons of validation cases of single cracks (top 2) and multiple crack cases (bottom 2). The left column of the figure shows 
a histogram of the Von Mises stress field, comparing ground truth and predictions. The results show that the model can accurately predict not only 
the specific stress distributions (see also Fig. 4) but also overall statistics of stress fields. This is possible even for cases that are quite distinct from the 
training data.

Figure 6:  Correlation plots between statistical properties of the stress fields, for ground truth and model prediction, for standard deviation of the Von 
Mises stress field (A), and the variance (B). R2 values are 0.97 for the standard deviation (A) and 0.98 for the variance (B). The colors indicate different 
types of microstructures considered (red = single cracks, blue = multiple cracks). The correlation is excellent for all cases. Single cracks, and the type of 
multiple-crack geometries used in this validation set, are not included in the training set, thus serving as a means to test generalizability.
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larger defects tend to yield stronger stress concentrations. These 
results agree well with what is known from fracture mechanics 
theories [38].

To provide further analysis of the results and a compari-
son with fracture theories, Fig. 8(B) shows a detailed analysis 
of stress field for microstructure with a larger number of cracks 
than what was seen during training. As can be seen in the fig-
ure, the model captures several important fracture mechanics 
concepts. The area marked by A shows that large defects yield 
high stress concentrations, and asymptotic stress fields across 
multiple large defects connect to form a stress path. As seen in 
the two areas marked with B, large defects but orientated in the 
loading direction tend to yield smaller stress concentrations. 
The area highlighted with C shows a small crack that generates 

a relatively small stress concetration. As another example, the 
point hightlighted with D shows an example for crack tip shield-
ing, whereas the larger neighboring defects play a role to protect 
the smaller defect.

Can the model also predict initiation of cracks? Fig. 9 
shows initial explorations of the model to address this ques-
tion. Indeed, we identify a potential to not only predict static, 
elastic stress fields near cracks but also a learned capacity 
to predict whether or not cracks will propagate. The two 
examples shown here where crack propagation occurs, com-
pared with the results shown in Figs. 3, 4, 5 where cracks do 
not propagate, seems to suggest that the model has already 
learned certain aspects of this general problem. In fact, close 
inspection of the training dataset does include a few cases 

Figure 7:  Application of the model to distinct geometries very different from the data seen during training, including a crack defined by the MIT logo 
(A, B) and a star-shaped crack (C, D). The model makes accurate predictions in all cases, including the stress fields and the overall statistics as seen in 
the histogram.
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where cracks nucleate. The model is capable to generalize this 
knowledge and predict, for large cracks and cracks oriented 
orthogonal to the loading direction, that nucleation occurs. 
This also agrees with fracture mechanics theories [38]. Fur-
ther, the results shown in Fig. 7(C) where crack initiation is 
predicted at the very top/bottom of the star-shaped defect, but 
not at the other edges. A more detailed exploration of this and 
related aspects is left to future work.

Conclusion
This paper reported a comprehensive workflow to translate input 
microstructures into complex field predictions. As the results 
depicted in Figs. 3, 4, 5, 6, 7 reveal, not only does the model 
accurate predict results for input microstructures close to the 
original type of structures considered, but generalizes well for 
distinct cases such as single cracks (Figs. 4, 5, 6, 8) and very dif-
ferent shapes (Fig. 7). Our study was based on a simplistic inter-
atomic potential, used here for proof-of-concept for a model 
material using an existing dataset [27] as a test case, within the 

scope of a model material [8, 39, 40]. This limitation can be eas-
ily addressed by training the model with a dataset derived from 
more accurate interatomic potentials, [41–44]and hence more 
realistic material data [15, 45]. We leave these explorations to 
future work but do not anticipate that this is an intrinsic limita-
tion of the model architecture proposed here, and that it hence 
offers many immediate research opportunities. The input data 
does not have to originate from molecular modeling, it can also 
be based on mesoscale or continuum models, or experimental 
data.

At the outset of this paper we posed three materials science 
questions. Based on the results reported here, we conclude:

1. Progressive diffusion models can be an effective approach to 
predict physical field solution from prompts that delineate 
the input microstructure; based on a deep-learning imple-
mentation of a conditioned denoising process.

2. A progressive diffusion transformer model can be trained 
with a relatively small datasets of only a thousand image-
to-image pairs.

Figure 8:  Detailed analysis of stress field for microstructure with a larger number of cracks (25 randomly placed defects of varied size). A close analysis 
of the resulting stress fields reveals that the model captures several important fracture mechanics concepts. (A) Large defects yield high stress 
concentrations, and asymptotic stress fields across multiple large defects connect to form a stress path. (B) Large defects but orientated in the loading 
direction tend to yield smaller stress concentrations (see two “tips” marked with B that each do not generate a significant stress concentration). C 
Shows a small crack that generates a relatively small stress concentration. The area marked with D depicts an example for crack tip shielding, whereas 
the larger neighboring defects play a role to protect the smaller defect marked with D.
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3. Such a model can be used to predict solutions for input 
microstructures that are distinct from the types of data seen 
during training. Importantly, we find that the model can be 
used to generalize solutions.

The ability to predict very high-resolution data from sim-
ple input prompts [see, specifically Fig. 3(D), left panels for a 
detailed view] offers many opportunities, both for image/field-
based models as done here but also when treating data explic-
itly where each “pixel” could represent an individual atom or 
molecule, or other data. In the way the model was used here, 
the resolution of the output images is sufficiently high to resolve 
individual atoms and detailed stress variations—at the atomic 
level—near the edges, as is shown for instance in Fig. 3. Moreo-
ver, since transformer models provide a high level of flexibility 
when it comes to data modalities, the model can likely be used 
for a variety of translational problems in the physical sciences, 
including text-to-field, or graph-to-property or field translation, 
or others. The use of image data, or by extension, time-series of 
images or videos, provides a direct linkage with many common 
datasets obtainable in materials research applications, such as 
high-resolution transmission electron microscopy, or others 
[46–48]. It is further noted that while the dataset used for train-
ing the model in this paper was based on one particular bound-
ary condition (see Fig. 1), this can be generalized to either train 
multiple models for varied boundary conditions, or to train one 
model whereby different boundary conditions are encoded in 
the prompt.

Another exciting direction is the exploration of the model to 
predict crack initiation, or even multiple frames of cracking. The 

initial observation shown in Fig. 9 suggests that this is indeed in 
the realm of possibility. Other future directions can be a direct 
implementation of various boundary conditions, which can be 
realized easily as additional input in the transformer architec-
ture. Similar to a text prompt, the ability to provide a variety of 
modalities and descriptors to drive the generation of the final 
prediction, the formulation based on a language model provides 
innate advantages.

In regards to the size of the training set, we deliberately 
designed this computational experiment to use a very small 
dataset of only 1000 pairs of input microstructures and fields. 
We showed that even with this limitation, the model has learned 
to generalize predictions and learned physical insights. This 
offers exciting possibilities for extensions of this work by using 
larger datasets or transfer learning that have already been shown 
to perform well for attention-based models both in language 
applications and in language model based physics applications 
[26, 49].

Along those lines, we expect that adding more data to the 
training set—and using larger sets of pairs of images, would help 
to improve the model. Albeit the computational experiments 
reported here were designed to focus on a very small dataset and 
specifically on atomic-level stress data derived from molecular 
simulations, this would likely expand the transferability and 
prediction capacity of the model even further.

In terms of computational expense, a model trained on rela-
tively small datasets can provide rapid predictions. Whereas the 
generation of the dataset may take significant computational 
resources, along with the training cost, a trained model offers 
unprecedented access to a vast design space of solutions. A key 

Figure 9:  In initial explorations of the model we identify a potential to not only predict static, elastic stress fields near cracks but also a learned capacity 
to predict whether or not cracks will propagate. The two examples shown here where crack propagation occurs, compared with the results shown 
in Figs. 3, 4, 5 where cracks do not propagate, seems to suggest that the model has already learned certain aspects of this general problem. In fact, 
close inspection of the training dataset does include a few cases where cracks nucleate. The model seems to be able to generalize this knowledge and 
predict, for large cracks and cracks oriented orthogonal to the loading direction, that nucleation occurs. Due to the stochastic nature of cracking, the 
model shows some more pronounced differences between the prediction and ground truth near the crack tips where cracking occurs.
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element is the use of advanced diffusion algorithms [35] that 
allows us to obtain excellent results with only 96 total diffusion 
steps (as opposed to 1000 s in the original approach [34]). This 
offers a substantial computational advantage during generation 
and validation.

While the methods developed and reported in the paper 
is believed to be generally applicable to any kind of field data, 
the specific training set used to train the deep learning model is 
developed from atomistic-level simulations. As such, the predic-
tions only hold for atomic-level stresses near cracks. Additional 
training data would be needed, e.g., developed from experimen-
tal measurements [e.g., digital image correlation, DIC [50]] or 
continuum models, to expand the applicability including via the 
use of multiscale modeling schemes [51–53]. This is beyond the 
scope of the paper, however, but opens exciting opportunities for 
future work in particular in conjuction with transfer learning 
strategies. More broadly, some studies have provided evidence 
for the validity of continuum theories at the atomistic scale [8, 
54–56], including recent experimental-computational studies that 
compared atomic-level deformations from simulations with high-
resolution in situ TEM [57]. Going beyond the current scope of 
the model that did not include plasticity, future work may include 
a range of other dissipative effects near cracks (including plastic-
ity, dislocation nucleation, etc.) and damage spreading, and more 
generally a full analysis of the dynamics of failure.

Materials and methods
Molecular dynamics (MD) simulations and dataset 
generation

A simple setup of a fracture model of is used to generate the 
dataset, which consists of input microstructures and cor-
responding stress fields [8, 41, 58], as originally reported in 
[27]. Here we provide only a short review of that dataset for 

completeness of the presentation. We consider the geometry 
shown in Fig. 1(A, B), depicting a simple triangular lattice with a 
12:6 Lennard–Jones (LJ) interatomic interactions [59, 60] under 
uniaxial loading.

The LJ interatomic potential used here takes the form

While the LJ potential is a simplistic representation of mate-
rials, its use in a 2D hexagonal geometry yields a brittle material 
[8, 60], which serves the purpose of the study reported here as a 

(2)φ(rij) = 4ε

[

(

σ

rij

)12

−

(

σ

rij

)6
]

simple material model (hence, mechanisms around cracks, once 
failure is initiatied, are largely bond rupture events in accord-
ance with what is seen in brittle materials). The input geometry 
features a series of randomly located and oriented cracks of dif-
ferent sizes and aspect ratios, as shown in Fig. 1(B), showing 
also the fixed boundaries in which forces and velocities of atoms 
are set to zero to allow for application of strain for mechanical 
loading. The system is confined to 2D atomic motions in the x- 
and y-directions. The LJ interatomic potential parameters used 
in the generation of the dataset, as defined in Eq. (2) (see [27] 
for further details) are ε = 1 and σ = 1 with a cutoff radius of 
rcut = 1.2 (all simulations carried out in non-dimensional units). 
For instance, lengths are expressed as x*=x/σ and pressures/
stresses are expressed as p∗ = p σ 3

ε
 . As marked with the scale bar, 

the system size is approximately 32 nm (assuming that σ = 1 Å).
It is emphasized that the training set used to train the 

model includes only cases with a larger number of randomly 
situated cracks (see Supplementary Information). Validation 
cases include both very small/single crack cases or scenarios 
with a much larger number of defects and with a different 
crack geometry than what was used in training.

The MD simulations are carried out using the LAMMPS 
simulation package. All samples are exposed to homogeneous 
uniaxial tensile strain of 1% in the x-direction. As described 
in [27] we compute atomic von Mises stress σvonMises [61] in 
LAMMPS [9]. The fields are then visualized using matplotlib 
and we save images of both the input microstructure and the 
resulting stress fields to generate the data sets (see Fig. 1(C) 
for examples of the image pairs including a zoomed-in view). 
Input and output images are stored in CSV files and then used 
by the data reader for processing in the machine learning code.

For the discussions in this paper we limit the exploration to 
the Von Mises stress as a simple stress measure that allows us to 
plot field data; whereas the von Mises stress is calculated from 
the stress tensor σij as:

We generate field plots by using the matplotlib scatter func-
tion; where blue corresponds to p* = 0.00053 and red to p* = 2.84 
(stress values smaller or larger than these limits are plotted in 
blue or red, respectively). It is noted that the work reported here 
focus on pre-cracking stress fields where we primarily observe 
stretching of bonds (and hence generating particular stress fields 
based on the interatomic forces). That being said, some incipi-
ent failure mechanisms are observed, as shown in Fig. 9 and the 
surrounding discussion.

The stress contour plots along slices of the simulation 
domain are obtained by converting the field data with 3 color 
channels into a grayscale image, by multiplying the three 

(3)σvon Mises =

√

1

2

(

(σ11 − σ22)
2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
+ 6

(

σ 2
23 + σ 2

31 + σ 2
12

))
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channels with [0.299, 0.5870, 0.114] and then adding them, 
yielding a scalar field data of the van Mises stress and micro-
structure, respectively, that measures pixel-level intensity. All 
stress values are normalized such that the smallest value overall 
is 0, and the largest 1, for simpler comparison in the field plots 
and the histogram analysis.

The final training set used for the neural network training is 
based on 1000 images total for the computational experiments, 
90% of which is used for training and the rest for testing. The 

dataset can be accessed at https:// www. dropb ox. com/s/ 3i22i 
gvfee b3iac/ DataS et_ large_ mosaic. zip? dl=0.

Additional validation examples are created consisting of 
single cracks and a series of cases with multiple cracks but 
different crack geometries and number of cracks than in the 
training set. Further, we generate a validation set that includes 
distinct geometries of cracks such as the MIT logo and a star-
shaped void.

TABLE 1:  Parameters used in the 
progressive transformer diffusion 
model (parameters for the three 
U-Nets, the integrated architecture, 
and additional parameters are 
provided). See also Fig. S2.

Neural network component Parameter Value

Unet 1 Dimension 128

Dimension multipliers 1, 2, 3, 4

Layer attentions False, True, True, True

Layer cross-attentions False, True, True, True

Resnet blocks 3, 3, 3, 3

Attention heads 8

Feed forward multiplier 2.0

Unet 2 Dimension 128

Dimension multipliers 1, 2, 4, 8

Layer attentions False, False, False, True

Layer cross-attentions False, False, False, True

Resnet blocks 2, 4, 4, 8

Attention heads 8

Feed forward multiplier 2.0

Unet 3 Dimension 128

Dimension multipliers 1, 2, 3, 4

Layer attentions False, False, False, True

Layer cross-attentions False, False, False, True

Resnet blocks 2, 3, 3, 3

Attention heads 8

Feed forward multiplier 2.0

Integrated architecture (com-
prised of Unet 1, 2 and 3)

Image sizes 128 × 128

512 × 512

1024 × 1024

Cond. drop probability 0.1

Sample steps (for Unet 1,
Unet 2, Unet 3)

64, 32, 32

σmin 0.002

σmax(for Unet 1, Unet 2, Unet 3) 80, 160, 160

σdata 0.5

ρ 7

Pmean − 1.2

Pstd 1.2

Pchurn 80

St,min 0.05

St,max 50

Snoise 1.003

Additional parameters Optimizer and parameters Adam Learning 
rate = 1E-4, epsilon = 1e-8, 
betas = (0.9,0.99)

Batch sizes (for Unet 1, Unet 2, Unet 3) 5, 5, 1

https://www.dropbox.com/s/3i22igvfeeb3iac/DataSet_large_mosaic.zip?dl=0
https://www.dropbox.com/s/3i22igvfeeb3iac/DataSet_large_mosaic.zip?dl=0
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Machine learning model

Our model is based on the Imagen architecture [34], but instead of 
conditioning the input on text prompts we condition the predic-
tions on microstructure embeddings (which define the material’s 
microstructure), as shown schematically in Fig. 2. The model con-
sists of three U-Net architectures: Unet 1 (constructed based on 
[36]), Unet 2 and Unet 3 (both constructed as Efficient U-Nets as 
proposed in [37]) that are used to translate the input microstructure 
into the final field output, over three successive stages of translation 
and upscaling, ultimately reaching a resolution of 1024 × 1024.

As proposed in [35, 62] we use the improved sampling 
and training processes, which yield computationally more effi-
cient and better predictions. Table 1 provides details about 
the model architecture and Fig. S2 a detailed PyTorch model 
readout to reveal the entire architecture. The implementation 
is based on the code published at [63].

The microstructure encoder scales the 8-bit pixel values to 
be between 0 and 1 and feeds each of the three-color channels to 
the neural networks in the embedding dimension. Since the input 
microstructures solely consist of white (no material) and black 
(material) building blocks, the input embeddings consist solely of 
(1,1,1) and (0,0,0) tensors for each building block that makes up 
the material microstructure. In some sense, this can be seen as a 
language prompt that provides a series of letters—“W” for void, 
“B” for material, to the model. Future work can expand on this 
easily and provide either more material choices or gradations, or 
text prompts that describe certain types of boundary conditions.

The total number of parameters in the model is 
987,891,378. Unet 1 features 107,837,860 trainable param-
eters, Unet 2 735,122,066 trainable parameters and Unet 3 
144,931,452 trainable parameters: 144,931,452.

The model is trained successfully, whereby each of the 
U-Nets is trained individually (first Unet 1, then Unet 2, and 
then Unet 3). Training performances are shown in Figs. S3 
and S4. Unet 1 is trained for 18 K steps, and Unet 2/Unet 3 are 
trained for 27 K steps each.
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