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ABSTRACT

High-resolution microwave radars, such as synthetic aperture
radars (SAR's) and range-Doppler (RD) radars, exploit coherent
target return processing to achieve spatial resolution better
than the diffraction limits of their antennas. These techniques
applied in the laser radar context provide the same resolution
enhancement on top of the improved diffraction-limit afforded by
their much shorter operating wavelengths. This thesis develops a
self-consistent laser radar system theory for these coherent
imaging systems and analyzes their performance, measured by
spatial resolution, carrier-to-noise ratio (CNR), and signal-to-
noise ratio (SNR), in a variety of situations. Analysis of the
effects that laser frequency instability, atmospheric turbulence,
target/radar motion errors, and laser speckle have on the system
performance are stressed. Preliminary evaluation of the results
indicates that these imagers may be feasible in the near future.
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CHAPTER I

INTRODUCTION

1.1. Motivation and Introduction

Radars can yicld useful information about the nature of the
targets. Although they have been operated at wavelengths from
meters to fractions of a micron, the vast preponderance of radar
systems are microwave radars, working at centimeter wavelengths -
[1]. These microwave radars provide adequate angular, range, and
velocity resolution for many applications, and operate at
wavelengths for which the absorption and scattering
characteristics of the atmosphere are relatively benign [1,2].

In some applications, however, laser radars, operating in the
optical or infrared (IR) frequency bands, offer significant
advantages over their microwave counterparts.

In recent years, there has been considerable interest in
developing coherent laser radars, i.e., radars which use laser
sources and coherent optical (heterodyne) detection [3-7]. Tor a
variety of reasons, the focus of this activity has been on 10.6
um wavelength systems using Co2 lasers [3,4,6]). The
attractiveness of laser systems vis a vis microwave systems is
three-fold. First, a diffraction-limited radar antenna of
diameter D produces a far-field angular beamwidth of
approximately A/D at wavelength A. This gives a 10 um

wavelength radar a beamwidth 1,000 times narrower than that of a
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1 cm wavelength radar of the same antenna size. Second, a radar
using pulses of duration t can infer target range (from roundtrip
delay) to a resolution of approximately ct/2, where c is the
speed of light {1,8]. Laser systems can therefore afford much
better range resolution than microwave systems in that they can
employ far shorter pulse durations. Finally, a Doppler (velocity
measuring) radar of dwell time T has a velocity resolution of
roughly A/4T [1,8]). Once again, the shortness of laser
wavelengths compared to microwave wavelengths offers a dramatic
improvement. These fundamental advantages must be tempered,
however, by key disadvantages of laser radars, namely, problems
with atmospheric propagation caused by turbulence and turbidity
[9-11], problems with target-induced fluctuations (laser speckle)
[12], and the relative immaturity of laser radar technology as
compared to microwave techonology. In fact, it seems clear
already that laser radars will develop to fill new application
niches, rather than supplanting microwave systems in their
present uses.

This thesis is concerned with system theory for coherent
laser radars. Previous efforts in this regard have concentrated
on conventional imaging configurations (angle-angle imaging) in
which the radar beam is scanned across the target, and intensity
and/or range and/or Doppler shift measurements are accumulated at
a raster of picture elements (pixels). These studies have
established the basic intermediate frequency (IF) signal models

for such systems [6,13], as well as quantified the impact of
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atmospheric turbulence and target speckle on imaging performance
[6,14-16]. 1In essence, these studies have applied microwave
radar theory with modifications dictated by the different physics
of the optical situations. Our interest is similar in spirit,
but the laser radars we shall address are high-resolution imaging
systems, namely synthetic aperture radars and range-Doppler
radars [17-19]. oOur primary interest in these imagers is based
on the fact that in some applications, for example detailed
mapping of terrain or navigational g-eidance, the
diffraction-limited spatial resolution of angle-angle imagers may
not be good enough. The high-resolution imagers, on the other
hand, are capable of better-than-diffraction-limited spatial
resolution through coherent processing of the target return.

High-resolution imaging radars in the microwave range have
existed for some time, with synthetic aperture radars (SAR) and
range-Doppler (RD) radars leading the way. Significant success
has been achieved with SAR's in the area of high-resolution
terrain imaging [20]), while the primary application of RD radars
has been in radar astronomy [21,22]. In both SAR and RD imaging,
there is a relative motion between the radar and the target, and
range-delay and Doppler shift measurements are utilized to form a
high-resolution image of the target.

Microwave treatments of SAR and RD imaging have not
addressed a variety of issues that may be of paramount importance
for optical systems of these genres. Laser frequency

instability, atmospheric turbulence, laser speckle, and
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target/radar platform vibrations are particular examples. The
main thrust of this thesis is to fill these gaps by developing
laser radar system theory results for these high-resolution
imagers, starting from the available laser radar IF signal model.
That will in turn help us better assess the comparative benefits
of operating these imagers in the optical and/or IR end of the

spectrum.

1.2. Thesis Outline

The thesis is organized as follows. In Chapter II, we
describe in some detail the basic laser radar system model. This
model consists of four major parts: transmitter, atmospheric
propagation, target interaction, and receiver front end. It is
essentially the same as the one used in conventional-imaging
laser radar theory. Thus, we expect to be able to compare the
merits of the high-resolution imagers we shall study against
angle-angle imagers on a fair basis.

In Chapter III, we discuss the performances of SAR's and RD
radars under ideal operating conditions. The performances are
evaluated in terms of spatial resolution, carrier-to-noise ratio
(CNR), and signal-to-noise ratio (SNR). We start off by going
over the underlying principle of high-resolution imagers in
general, and then, we apply the specifics to first SAR's and then
to RD radars. 1In the SAR section, we first examine the

unmodulated continuous-wave (CW) case, showing how a dramatic



-15-

improvement in the azimuthal (along-track) resolution can be
achieved, and then, we extend our analysis by introducing a
temporal modulation into this radar for improved cross-track
resolution. The RD radar section looks at the special case of
imaging a spatially unresolved rotating target. 1In the first
half of the section, we examine a processing architecture that
employs a bank of matched-filters, wherein the notion of
ambiguity function plays a key role. The second half deals with
an architecture that largely overcomes the traceoff constraint
between the range and Doppler resolutions which arises in the
first architecture.

In unapter IV, we investigate the degradation of imager
performance brought on by problems such as laser frequency
instability, atmospheric turbulence, and target/radar motion
errors. In each case, we take the basic framework developed in
Chapters II and III and accomodate within that framework an
appropriate statistical model which represents the particular
problem being addressed. Results of these analyses are compared
against the results of the ideal case in Chapter III and
interpreted in physical terms. We also lock at how systems
employing different types of transmitted waveforms are affected
by these various perturbations.

In Chapter V, we take some prototype imaging systems and
look at how such systems might perform under a variety of
realistic scenarios. This is done by using a set of reasonable

values for transmitter, receiver and perturbation model
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parameters. The results are discussed. Feasibility of these

imagers is discussed based on these results.

Chapter VI contains the summary of the thesis and a list of
recommended future work. Some of the items on the list include:
relaxing various assumptions made in the thesis; 1nvestigating
performance optimization issues in regard to the choice of system
parameters; and finally, examining alternative/additional
processing architectures to improve the performance of the

high-resolution laser radars.
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CHAPTER II

LASER RADAR SYSTEM MODEL

Consider the generic coherent laser radar system shown in
block diagram form in Fig. 2.1. In this system, the modulated
output of a transmitter laser is shaped by beam formation optics,
and directed by scanning/pointing plus exit optics. After
propagating through an atmospheric path, the resulting
illumination beam reflects off a target. This reflected beam
propagates back through the atmosphere to the radar receiver,
where it is collected by entrance plus scanning and pointing
optics. The collected target return field is superposed, through
a beam combiner, with the field of a strong local oscillator
laser on the surface of a photodetector. The local oscillator is
coherent with the transmitter laser, but operates at an
'intermediate frequency offset, ViF from the transmitter laser
carrier frequency. Bandpass filtering is used to select out the
photocurrent beat frequency components in the vicinity of VIF -
These are then processed to yield target information.

The preceding system description is sufficiently general to
encompass both t’ e conventional angle-angle imaging systems [6]
and the high-resolution imaging systems that will be th2 subject
of this thesis. In this chapter, we shall draw, therefore, upon
the basic system models employed in the studies of conventional
imagers to provide the foundation for our analyses. For the most

part, as in the previous theoretical work [6], technological



INISS3204d
Ujed 43A1323y-03-33bael (q) 39WHI
Yed 3abae]-03-4333jwsueay (e)
Wa3sAS Jepey 4aseq Juasayo) [ed1dA] e jo weabeyq o019 |°z 634 40LYT111I2S0
INISS3II0Ud
W01
(q) I )|
Wvyig "0°1
_ INFHHNI0L0Hd
SJ311d0
~ .Hlvd SJildo INILINIOd
1394yl A NOILY9YdO¥d aNv 4013313001044
> JTYIHISOWLY JINVULN] | ININNYIS
Wv3d Wv3g YINIGWOD
03133143y Q3A1303Y Wv39
(e) 401V INCOM
4
SJ11d0
H1vd SJ11d0 INIINIOd 43404 43sv1
1394v1 A.F NOILYOYdONd AH (1 aw AH
JTYIHISOWLY LIX3 ININNVIS Wv3d JILLIWSNVYL
Wv3g Wv3d
_ JOLYNIWNTTI YILLINSNVY L




-19-

details will not be carefully included. However, where
appropriate, analytical assumptions commensurate with current
practice in experimental co2 laser radars will be employed. 1In
this regard, we shall assume henceforth that, unless stated
otherwise, the system of interest is a monostatic shared optics
radar in which the transmitter and the receiver employ a common
telescope equipped with an appropriate optical transmit/receive
(T/R) switch, as is done in MIT Lincoln Laboratory test bed
radars [3].

The laser radar system model divides naturally into four
parts: the transmitter, the propagation path, the target, and the
receiver front end (up to but not including the image processing
part). Although all of these elements are sensitive to the
vector (polarization) characteristics of opticai radiation, we

shall follow the usual scalar-wave modelling approach.

2.1. Transmitter Model

Let the exit pupil of the transmitter be at the z=0 plane im
a Cartesian coordinate system. The transmitter model
characterizes ET(ﬁ,t), the real-valued optical-frequency field of
the transmitter beam ([W/mz]l/z), as a function of transverse
coordinates p = (x,y) and time t. We shall assume narrowband
(quasimonochromatic) operation about center frequency vo(Hz),
corresponding to a nominal wavelength ) = c/ Vo It is thus

convenient to work with complex envelopes in all our field
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manipulations, i.e., we deal with Ej(P,t), a complex-valued
baseband field such that

Ep(P,t) = Re{ Eq(P,t)exp[-3j2ny t] }. (2.1.1)
0]

The normalization employed in defining §T will be taken to be
that which makes | ET(ﬁ,t)I2 the short-time average power density
of the transmitter beam at (5 ,t) in the exit pupil. The
spatio-temporal characteristics of the transmitter beam are the
essence of the transmitter model. Mathematically, the following

form is convenient for our purposes

E.(P,t) = s(t) Up(p,t)exp(-3&(t)] , (2.1.2)
where

s(t) = temporal modulation (transmitted waveform),

QT(ﬁ,t) = normalized spatial beam pattern,

d(t) = phase error due to frequency instability.
Let us consider the component terms in (2.1.2). The beam pattern
U, is normalized to satisfy .IAB | y_T(fa,t)l2 = 1, where the

integration is carried out over the exit pupil area. It
therefore represents, in its spatial dependence, the (assumed
perfectly stahle) transverse mode behavior of the transmitter
laser as modified by the beam forming optics in Fig. 2.la. The

time dependence of U, is taken to represent the effects of the

T
pointer/scanner and/or transmitter motion. For stationary optics
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on a motionless radar platform, HT will be time independent. For
stationary optics on a radar platform moving with velocity v = GT
+ VZQ, where 2 is the z-axis unit vector and GT (GT-Q = 0) is the

transverse velocity, we have
- - o_-— -'
Up(P.t) = Unlp vptlexp( jkv,t] , (2.1.3)

with k=2n/ )\ being the wavenumber. 1In Eq. (2.1.3), gg is the
fixed spatial beam pattern in the radar's rest-frame, and
exp[-jkvzt] is the Doppler shift arising from the longitudinal
motion of the transmitter.

Because of the form of Eq. (2.1.1) and the normalization

used for U it follows that | _s_(t)l2 is the transmitted power at

-\
time t, and (when v, = 0, &(t) = 0) arg( s(t)) 1s the
transmitted phase modulation at time t. We use s(t) to represent
a deterministic temporal modulation (amplitude, frequency, phase)
imposed on the transmitter. Depending on the application, this
modulation may be totally absent ( s(t) =\/;; for a CW beam of
power PT), or it may represent a simple pulse or a train of
pulses.

The preceding components of the transmitter model are all
ideal in the sense that no random fluctuations are included. For
the high-resolution imagers we want to study, assumption of a
completely nonrandcem transmitter during the coherent integration

period is unrealistic. These imagers are particularly sensitive

to the coherence (frequency stability) of the transmitter. Thus,
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the ®(t) term is included in (2.1.2) to introduce such

instabilities. We shall take this term to be of the form

t
&(t) = ZEJfAU g(u) ' (2.1.4)

=00

N
where f(u) is the instantaneous frequency fluctuation. We will
have more to say regarding the frequency stability issue in

Chapter 1IV.

2.2. Propagation Model

There are three types of situationgc to consider when
modelling the propagation of the transmitted beam to the target
and/or propagation of the scattered beam to the receiver. They
are: propagation through free-space, propagation through a
turbulent atmosphere, and propagation through a turbid
atmosphere. Among the three, turbid atmosphere propagation is of
the least interest to us as the réceived signal energy is then
typically insufficient for imaging. For angle-angle imaging,
turbulence may be a very serious pfoblem for large aperture
systems, but perhaps not as important for compact (small
aperture) systems [10,11,14]. For high-resolution imaging, the
atmospheric coherence length, which reflects tha turbulence
strength, must be compared against not only the aperture size
but also against the extent of the displacement of the radar

and/or the target during the coherent integration time.
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Free-space propagation is usually achievable only in
exoatmospheric situations; at 10.6 um, absorption in the
atmosphere is significant [9].

For the most part in this thesis (except in the section that
deals with the effects of atmospheric turbulence), we will use
the free-space propagation model with a correction to account for
the atmcspheric loss. 1In this regime, propagation of narrowband
optical radiation through distance L near the optical axis
(paraxial case) can be characterized by the following version of

the quasimonochromatic (QM) Huygens-Fresnel principle [10]

E (B',t) = fdﬁ E;(P,t-L/c) h(P - P') , (2.2.1)
where z=0

§i(5,t) = incident (input) field at z=0 plane,

§L(§',t) = propagated (output) field at z=L plane,

h (B) = (1/3 A L)exp[ikL + ik|Bl%/2L - aL/2]. (2.2.2)

Propagation of the incident field Ei through distance L
corresponds to, from a system theory point of view, passing
through a linear, space-invariant filter whose impulse response
is given by B(ﬁ) of (2.2.2). a in (2.2.2) 1s the effective
atmospheric attenuation coefficient with the unit of 1/m, and k =
2nvg/c is the wavenumber; L/c in (2.2.1) accounts for the nominal
delay of Ei due to the distance between the input and the output
planes. [If the incident field has a large temporal bandwidth,

the nominal delay L/c must be modified to include the transverse
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coordinate dependence.] The spatial impulse response needs to be
modified in the presence of atmospheric turbulence; this is done
in Chapter 1IV.

In the Fraunhofer diffraction or far-field limit, where
Dz/ AL << 1, with D being the size of the source aperture,

(2.2.1) reduces to the following form

E (p',t) = h(p')- /2L, t-L/e) , (2.2.3)
where
i;Jf,t-L/c) = 2D spatial Fourier transform of
E;(b,t-L/c). (2.2.8)

Because of the reciprocity of free-space [23], the QM
Huygens-Fresnel principle (2.2.1) can be used to describe both
the propagation of the transmitted beam to the target plane, and
the propagation of the scattered beam back to the
transmitter/receiver. Therefore, the far-field approximation of
Egs. (2.2.3) and (2.2.4) may be used for the propagation of the
scattered field as well, provided that the target is sufficiently

small.

2.3. Target Model

Because of the short wavelengths employed in laser radars,
target surfaces encountered in most situations can be

characterized as rough surfaces, i.e., ch >> A prevails where ch
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is the target's rms surface height fluctuation. That makes it
necessary to treat the scattering by the target in a statistical
manner [12]). We will assume throughout the thesis that we are
dealing only with surface scattering coming from diffuse
(speckle) targets described above.

We shall adopt the following multiplicative model to
describe the relationship between the incident field and the
reflected field at the reference plane 2=L, which is taken to be

the nominal target plane (see Fig. 2.2) [6]:
Ep(p,t) = T(p) E;(P,t) , (2.3.1)

where E (P, t) and Ep(p,t) correspond to the incident and the
reflected fields at the z=L plane, respectively, and T(p) is
complex field reflection coefficient of the target at p. [We
have assumed that the target is stationary.] The statistical

model for T(p) at wavelength A will be assumed to be [6,7,13]

< T(P) > =0,

< T{p) T(P') > =0, (2.3.2)
2

<TH TR > = X T(BI6(R-B"),

where jr(ﬁ) represents the average reflectivity of the target
surface at 5, and * denotes complex conjugation. Following the
standard laser radar theory, T(p) is modelled as a circulo-

complex Gaussian random process [6,8].
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A few remarks regarding the diffuse target model represented
by (2.3.1) and (2.3.2) are in order. Physically, a rough target
surface turns a spatially coherent incident beam into a
spatially incoherent scattered beam. This effect, coupled with
the temporal coherence of the source (laser), gives rise to the
well-known laser speckle phenomenon [12], which degrades the
quality of the target image and thus must be dealt with in the
post-detection part of the receiver. The impulse 6(5-5') in
(2.3.2) represents this spatial incoherence aspect of the
scattering process. The dependence of j’on 5 accomodates the
spatial variation of the reflectivity strength. For imaging
applications, i.e., for our purpose, 3/(5) will be the quantity
of interest to us; we are trying to obtain a high-resolution

image of jl.

2.4. Recelver Front End Model

Heterodyne photodetection is essential to all conerent laser
radars since they require both phase and amplitude information of
the target return. When the reflected field at the target plane
is propagated back to the receiver (Fig. 2.1b), it goes through
the heterodyne detection process.

After passing through the entrance optics, the target return
field gs(ﬁ,t) is combined with a CW local oscillator (LO) beam of

frequency v via a beam combiner. The LO field §L0(5,t) is

o = VIF
given by
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Ejo(Pst) =,,/—P-LO Upo(Prtiexpli2ny tlexp(-3®(t)],  (2.4.1)

where P, , is the LO beam power, and gLo(ﬁ,t) is the normalized
spatial LO beam pattern whose time dependence represents
pointer/scanner and radar motion as in (2.1.3) for ET’ Note that
the frequency instability term &(t) is the same as that in
(2.1.2) for ET because we assume that the LO beam is derived from
the same laser that is used to obtain the transmitter beam. The
resultant beam from the beam combiner illuminates the
photodetector, and the photocurrent from the detector is then
passed through an IF filter. The IF filter is a bandpass filter
whose center frequency is around VIF i its main function is to
select out the signal component of the photocurrent [10].

In the limit of a strong LO beam, we can use the IF signal

model shown in Fig. 2.3 for the normalized complex envelopes of

the target return and the LO shot noise [10,24]:

r(t) = Re { r(t) exp[-jzn\HFt] }, (2.4.2)
where
r(t) = y(t) + n(t), (2.4.3)
n(t) = LO shot noise
= 2zero-mean, circulo-complex, passband-filtered
white Gaussian noise with spectral density hvo/n '
y(t) = target return

fdﬁ Eg(P,t): U (B ,t)exp[3o(t)] , (2.4.4)

detector
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where hvo‘is the photon energy at the laser wavelength, and "
the quantum efficiency of the photodetector.

The antenna theorem for heterodyne reception [25] allows the
overlap integral (2.4.4) to be evaluated at any convenient plane
along the path of the optical beam instead of at the
photodetector. In typical practice, the LO field backpropagated
to the radar entrance pupil obeys the relationship QLS*(ﬁ) =
Hg(ﬁ). Thus, the antenna theorem along with the reciprocity of
free space permit us to express the overlap integral of Eq.

(2.4.4) as an integral at the target plane z=L [6]

y(t) =fd5 () h¥(B) YA(B/ A L, t-L/c)
zz=L + s(t-2L/c)exp[-]j(®(t=2L/c)=®(t))] , (2.4.5)

where we have used the far-field approximation. [We will continue
to assume in all subsequent analyses that our laser radar system
operates in the far-field limit.] 1In Eq. (2.4.5) U;is the

spatial Fourier transform of U and we have neglected the radar

T
lag angle.

Up to this point, the radar system model we have developed
has not distinguished between conventional ahgle-angle imagers
and our high-resolution imagers. The choices made for the
transmitter waveform and the IF filter inject this distinction
into the analysis. Thus, in what follows, the IF filter has the
dual responsibility of selecting the beat-frequency components in

the vicinity of v,. - for heterodyne detection - and, at the same

IF
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time, prcoessing the target return in a coherent manner to
produce high-resolution images. Just how this is done will be

discussed in Chapter III.
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CHAPTER III

PERFORMANCE UNDER IDEAL OPERATING CONDITIONS

For angle-angle laser radars, spatial resolution is
essentially dictated by the size of the laser beam on the target.
Therefore, even though angle-angle laser radars afford spatial
resolution quite superior to that of equal-aperture microwave
systems, it 1s clear that for some applications, their
diffraction-limited resolution may be inadequate, thus providing
the rationale for examining high-resolution imagers such as SAR's
and RD radars in the optical and IR frequency regimes. These
imagers, under appropriate operating conditions, are capable of
spatial resolutions much better than the diffraction-limited
resolutions. We shall analyze in this chapter the performance of
these optical SAR's and RD radars, assuming ideal operating
conditions. The chapter is organized as follows.

The first section (Section 3.1) of this chapter 1s divided
into two parts. In the first part, we focus on the common
underlying principle of these high-resolution imagers; the
exploitation of a relative motion between the target and the
radar that introduces a position-dependent Dopprler frequency
shift to the target return.

The second part of 3ection 3.1 introduces basic notations
and performance measures which will be used throughout the
thesis. Spatial resolution and carrier-to-noise ratio (CNR) are

formally defined and interpreted in physical terms.
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Signal-to-noise ratio (SNR), a measure of the random fluctuations
of the target return strength, is also defined and discussed.

Section 3.2 deals with SAR imaging. First, the one-
dimensional (CW) case 1s discussed, wherein CW transmission is
used, i.e., the transmitted waveform employs no temporal
modulation. A very simple physical picture is usea to illustrate
how a drastic improvement in the along-track (azimuth) resolution
can be made. The CW SAR analysis is then followed, with minimal
amount of modification, by the analysis of the two-dimensional
(2D) SAR imaging, where a fine cross-track resolution is achieved
via temporal modulation of the transmitted beam.

Section 3.3 examines range-Doppler imaging in two parts.

The first part deals with a processor which uses a bank of
filters matched to the transmitted waveform. The discussion on
the performance of this type of imager is centered around the
notion of ambiguity function [1,8], which directly relates the
range-delay and Doppler resolutions to the transmitted waveform.
The second part involves an analysis of a different type of
processor which, by using a train of short pulses, overcomes the
tradeoff constraint between the range and Doppler resolutions
that i1s inherent in the first type of processing scheme.

The major novelty of Chapter III, compared to the existing
microwave SAR and RD radar theory, is the CNR analysis. Here, we
incorporate the effects of LO shot noise and laser speckle into
the CNR calculations; the CNR expressions are then interpreted in

an intuitively pleasing manner. The performance analysis of this
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chapter also serves a useful purpose in that it provides the

basic framework for the analysis c¢f Chapter IV.

3.1. Fundamentals

3.1.1. Underlying Principle of High-Resolution Radars

Whenever there is relative motion between the transmitter
and the receiver, the transmitted signal acquires a Doppler
frequency shift, from the receiver's perspective, that is
proportional to the relative velocity. The same phenomenon
occurs for a radar and a target in relative motion, and provides

the basis for the high-resolution imaging schemes we are about to

discuss.

Let R(t) be the range at time t from the center of the
radar's exit optics to a particular fixed location, in the
target's rest frame, on the target. Then, the Doppler shift
experienced by the return from this target point that is received

at the laser radar is given by
vpit) = -2R(E)/ A, (3.1.1)

where ﬁ(t) is the (time) rate at which the range is changing, and
A is the laser wavelength.
suppose now that the Doppler shift \b(t) varies for

different points on the illuminated target. As an example,
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consider the configuration for SAR imaging as shown in Fig. 3.1:
a stationary target is located at nominal distance L meters away
from a radar that 1s translating with respect to the target. Let
the radar's transverse coordinate at time t be 5R(t) = (vt,0).
Then, the range from the radar to a point scatterer on the target

iocated at Es = (x,y) as a function of time is
2 2
R(t) =~ L + ((x-vt)® + y°)/2L, (3.1.2)
and the corresponding Doppler shift history is given by

Vp (B, t) = 2v(x-vt)/ AL (3.1.3)

1/2. Clearly, the Doppler shift is

for L >> [(x-vt)2 + Yzl
position- dependent: it depends on the x-coordinate of the point
scatterer.

Another example of configuration that gives a rise to a
position-dependent Doppler shift is shown in Fig. 3.2. 1In this
setup - one commonly found in radar astronomy applications of the
range-Doppler radars - the radar is stationary while the target
rotates about some axis (z in the figure) with rotation rate Q.
When we stare at the figure for a while, it becomes clear that
the locus of points with same y(t) values generate target returns
with same Doppler frequency shift value at time t. [Actually,

the iso-Doppler contours have slight curvatures but in the

far-field limit, the curvatures can be ignored.}] Thus, once



-36-

- LASER RADAR

L LASER BEAM

¢ FRONT VIEW )

Vm/S // \\
— [ 2 9
/L_____/—"_A
\ /
~ /

LASER BEAM

¢ SIDE VIEW )

Fig. 3.1 CW SAR Configuration



LASER
RADAR

-37-

Fig. 3.2 RD Radar Configuration
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again, the Doppler shift of the target return varies with the
target coordinate.

In both examples just cited, because different portions of
the target generate different Doppler shift histories, it is
possible to separate out the individual components from the gross
target return and identify them with certain parts of the target.
This requires some apriori knowledge regarding the target, such
as the nominal range to the target, the rotation rate (if any),
etc., which may be acquired through alternate modes of operation
with the same radar, or some complementary sensor system.

What we just described in the last paragraph is the essence
of high-resolution imaging. Just how the process of sorting out
various Doppler components 1is carried out falls under the realm
of transmitted waveform and IF filter design. 1In deciding what
the optimal design should be, other performance factors such as
the CNR and complexity of the processor must be taken into acount
in addition to the spatial resolution. In most cases, the
transmitted signal is amplitude and/or frequency-modulated to
yvield an acceptable range resolution, as the relative motion
between the radar and the target helps resolve only the Doppler
dimension of the target. [The temporal modulation, on the other
hand, helps resolve the dimension orthogonal to the Doppler
dimension, 1.e., the range dimension.] If there are several
locations on the target with same range and Doppler values =~ as
is often the case with some applications of range-Doppler radars

- interferometry [21,22] can be used to resolve that ambiguity.
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3.1.2. Notations and Performance Measures

Let us look now, in more detail, at the post-
photodetection part of the processor in these imagers (see Fig.
3.3). The structure shown in the figure is the prototype that
will be used for the most part in this thesis. 1In some cases,
where a bank of filters or a two-stage (cascaded) filter is used,
the structure in Fig. 3.3 becomes a module which serves as the
basic building block. Thus, it is worthwhile to closely examine
the processor. In this section, we will also establish some
notations which will be used throughout the thesis, and with
these notations, introduce the performance measures we will use
to evaluate the imaging systems.

The output of the photodetector, r(t), [which is made up of
a target return component y(t) and a LO shot noise component
n(t), - cf. (2.4.2)-(2.4.4)] is filtered by a bandpass filter
with center frequency Vi - To be consistent with the earlier
notation adopted in Chapter II, we write the impulse response

h(t) of this filter in terms its complex envelope as follows:

h(t)

Re{ h(t) exp[-jvaIFt]}. (3.1.4)

Let

1(t) = r(t) * h(t)

= 1,(t) + 1 (t) (3.1.5)
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be the complex envelope of the filtered output. We shall be
interested in both the component of 1(t) due to the target return
y(t), and the component due to the local oscillator shot noise
n(t); we shall use ly(t) to denote the former, and 1 (t) to
denote the latter.

The output of the IF filter is typically envelope
(linear)-detected or square-law detected. For our purpose, we
will adopt the square-law detection scheme, which 1s
mathematically more convenient. Under this scheme, we use the
following set of notations for the intensity, i.e., the output of

the square-law detector:

I(t) = | 1(t)|?

- 2
I,(t) = | ly(t)lz (3.1.6)
I (t) = |1 (t)]%.

We now set forth the definitions of the performance
measures. We will look at the carrier-to-noise ratio (CNR)
first.

We define CNR to be
CNR = <IY(t)> / <In(t)>, (3.1.7)
where the angular brackets < > denote ensemble-averaging over

target roughness, shot noise, and any other randomness that may

occur. In physical terms, the CNR is the ratio of the average
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target return power to the average noise power in the output of
the filter h(t). It measures, in part, the sensitivity of the
imaging system. The average target return intensity <Iy(t)> can

be written as a target-plane integral in the following form:
<1 (t)> = a5 J(5) 9(E,t), (3.1.8)

where s is the target coordinate, :T(E) the average target
reflectivity of (2.3.2), and g(s,t) is a function of finite
spatial width that depends on the diffraction-limited beam size,
the transmitted waveform, and IF processing. Similarly, the

average LO shot noise intensity can also be written as an

integrail:
o0
_ 2
<I,(t)> = I;t I B(T) 1™ hy  /n
= [df | H(E)I? av, /. (3.1.9)
where hvo /n 1is the spectral density of n(t) (cf. (2.4.4)), and

H(f) is the Fourier transform of h(t).

Spatial resolution is perhaps the most important performance
measure of imagers. Given that an imager's task 1is to map the
profile of the average target reflectivity :r(E), and that only
the reflectivities of the area accessed by the sampling function
g(E,t) of (3.1.8) are represented in the output <« Iy(t) >, it 1is
sensible then to define the spatial resolution in terms of the

width of g(s,t). Specifically, we define the spatial resolution
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1 attentuation points of

to be the full-width between the e~
g(s,t). For example, if g(s,t) = exp[-(x-vt)z/ai -yz/asl, then
according to our definition, the x- and y-resolutions are 2ax and
2ay, respectively. To put it in simple terms, the spatial
resolution cell represents the size of the target area that
contributes to the intensity Iy(t) at any given time.

A very prominent problem in any laser radar imaging scenario
is laser speckle, which manifests itself as blotches of light and
dark spots in the target images, making them far less useful.
The seriousness of the problem caused by laser speckle can easily
be grasped when we consider the degree of random fluctuation
associated with I_(t). After all, the desired information T(p)
is embodied in <Iy(t)>, and if Iy(t) is wildly fluctuating, our
estimate of the target's reflecting characteristics will be
unreliable even in the absence of LO shot noise. Because the
complex envelope ly(t) associated with a rough-surfaced target 1is
a zero-mean circulo-complex Gaussian process, the intensity Iy(t)
has exponential statistics [12]. This means that there is a
100 % fluctuation associated with Iy(t) about its mean!

We can measure the reliability of Iy(t) by comparing the

signal measure < Iy(t) > against the combined speckle and shot

noise effects as follows:
SNR = (<I(t)> - <In(t)>)2 / var(I(t)). (3.1.10)

Because In(t) also has exponential statistics [6,10] - but for a
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different physical reason from Iy(t) - and ly(t) and 1 (t) are
statistically independent, we have the following expression for

SNR [6]:
SNR = (CNR/2) / [1 + CNR/2 + 1/2CNR], (3.1.11)

where CNR is given by (3.1.7). The first term in the denominator
of (3.1.11) is due to both the LO shot noise and the target
return while the second and the third terms are due to target
return and LO shot noise alone, respectively. Note that even
when LO shot noise 1s completely dominated by target return,
i.e., CNR --> », the SNR does not exceed unity because of the
target speckle.

In angle-angle imaging, a solution to this problem can be
found by averaging over several independent frames, thereby
reducing the uncertainty regarding the measured intensity [6,16].
In most situations involving high-resolution imaging, however, we
are not able to perform that kind of averaging because of the
radar and/or target motion. Instead, we must resort to averaging
over adjacent pixels. There exist various linear and nonlinear
spatial filtering séhemes - median filtering and geometric
filtering [26-29], for example - which reduce the effect of
speckle; however, they invariably do so at the cost of reduced
spatial resolution.

At this point, we digress briefly to make a clear

distinction between SNR and CNR. As pointed out previously, CNR
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defined by (3.1.7) 1is an indicator of the average strendath of the
target return component Iy(t), relative to that of the LO shot
noise component In(t). The SNR, on the other hand, acts as an
indicator of how <Iy(t)>, the average signal component, fares
against the overall fluctuation of the intensity I(t), measured
in terms of its variance, var(I(t)). Obviously, high CNR and SNR
are desirable for a good estimate of <Iy(t)>; they would ensure
that the output of the square-law detector I(t) 1is due mostly to
the target return, and that its deviation from the mean of the
target return component is small.

Having laid down the basis of the high-resolution radars and
a set of criteria to measure the performance of those systems, we
now proceed to analyze specific types of systems, namely SAR's

and RD radars. We start with the SAR's.
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3.2. Synthetic Aperture Radar (SAR)

In this section, we present our treatment of optical SAR
imaging, assuming that the cocherent laser radar that operates
under ideal conditions, i.e., without any atmospheric turbulence,
transmitter frequency instability, or motion errors. We begin
with a very simple, yet physical picture of how such a system can
improve the spatial resolution of a conventicnal laser radar
(angle-angle imager) by coherently integrating the target return.
We then develop analytical results for the resolution and CNR
behavior of such a radar, using the system model established in
Chapter II. The first half of the section is devoted to
one-dimensional case (CW SAR), in which a CW transmitter is used
and only the along-track resolution is improved. The extension
to the two-dimensional case (2D SAR) with a modulated transmitted

signal is straightforward, and is considered in the second half.

3.2.1. CW SAR

Consider once again the CW SAR configuration shown in Fig.
3.3. A laser rada: that is mounted on a vehicle - usually an
aircraft - moving with transverse velocity v in the x-direction,
observes a stationary, rough-surfaced target at nominal range L.
The basic principle of SAR can be understood from the Doppler
frequency history of the return from a point scatterer located at

(%,y,L). Under this configuration, as pointed out earlier in
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Section 3.1.1, the Doppler frequency shift of the return from the

point scatterer at time t is given by

vylt) = -2R(t)/ A
~ 2v(x=-vt)/aA L, (3.2.1)

where ﬁ(t) is the rate at which the range is changing. From
(3.2.1), we see that the target return from a point scatterer at
(%x,y,L) has a Doppler history that is a linear function of time
with Dcppler rate (slope)\}D = -2v2/1 L and zero-intercept at
t=x/v. In fact, what we have is a linear frequency-modulated
(FM), or equivalently a chirped, signal. This 1s illustrated in
Fig. 3.4. Equation (3.2.1) represents the observed Doppler shift
over only the length of time that the point scatterer lies within
the transmitter's spatial beam pattern, i.e., only when the
scatterer is illuminated. As we shall see shortly, by taking
this Doppler histeory into account, the SAR processor coherently
integrates the return over the illumination time, performing
basically a pulse-compression operation (usually called focussing
or beam-sharpening in the SAR context). The result is a dramatic
improvement in the the resolution along the x-direction.

At this point, we should point out that the returns from all
scatterers on the target have the same linear FM Doppler history;
they are merely time-delayed replicas of one another, the amount .
of delay depending on their x-coordinates. This means that there

need be only one IF filter to process the target return, and the



-47-

V,(t)
8

slope m = “2ve/LN

x/v

Fig. 3.4 Doppler History of Target Return from a Point Scatterer



-48-

reflectivity of a particular region of the target may be inferred
by reading the output of the square-law detector at the
appropriate time.

Let us now calculate the resolution and the CNR. We will
try to optimize these quantities by designing our IF filter to
account for the Doppler history of the return.

Assume that the transmitter transmits a CW, collimated

elliptical-Gaussian beam:

= - O/
where

°,=, _ 1/2 _ 2 _ 2
Up(P) = (Z/Raxay) exp[-(x/a,) (Y/ay) 1. (3.2.3)

Here, PT is the average transmitted power, and ax, ay are the
transmitted beam's cross-sections along the x- and y-directions,
respectively. a, and ay are different because, as it will become
evident shortly, CW SAR improves only the resolution along the
x-direction, and the resolution in the y-direction 1s simply the
beamwidth along the y-direction at the target. Therefore, ay
should be much larger than ax for the cases of interest here.
With the transmitted field given by (3.2.2), (3.2.3), the IF

complex envelope of the target return, denoted by y(t), is given

by (cf. (2.4.5))
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¥(t) =[Py [dB T(B) Uf(x-vE,y) |, (3.2.4)
where z=L

1/2

U, (B) = -3(x%aga /2n1?)?/ 2exp[-aL/2] explikL]

.exp[ik|p|%/2L - (k/zL)z((axx)2+(aYy)2)1. (3.2.5)

Having established the structure of the IF signal, there remains
the question of how to process this waveform so as to best
utilize our knowledge of the Doppler history in improving the
along-track resolution.

The simple linear time-dependence of the Doppler history for
a point scatterer suggests that we reverse or compensate for this
chirp with our processor. This can be accomplished by filtering
r(t) (= y(t) + n(t) from Section 2.4) with a bandpass filter
whose impulse response has a complex eavelope c¢f the form

2. 8(t/T)?%] , (3.2.6)

h(t) = exp[-jnAt
where

A

chirp rate ,

impulse response duration.

As a first step, let us see how the resolution and the CNR are
affected by the filter parameters A and T.
With the IF filter of the form given in (3.2.6), we find

that
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- - 2 2 -
ly(t) = PT(k axay/ZnL ) C exp[-aL+]J2KkL] (3.2.7)
- - )
ap z(p)exp[jkyz/L-(kayy)"/2L2-(t-x/V)2 M] ,
_ 2 2 2
<Iy(t)> = P (k“a aY/ZnL ) l Clexp[-2aL] A

j( P J(Blexpl-(ka,y/L)?-2(t-x/v)°M'] ,  (3.2.8)

where C and M are complex-valued constants, and M'=Re{ M }. The
ensemble average < > in Eq. (3.2.8) is taken over the target
roughness. The expressions for C and M are as follows:

[m / ((8/T% + k%a® v2/2L ) + j(na - kv2/L)) 12,

and (3.2.9)

[(8/T% + jnA)(kzazvz/ZL - Jkv2/L) ]

0
n

Ix
n

/1(8/T% + k2a2v2/2L ) + 3(nA - kvZ/L)]. (3.2.10)

Putting aside the constants in the front, we recognize the
expression exp[-(kayy/L)2 -Z(t-x/v)zu'] in Eq. (3.2.8) as the
generic function g(s,t) introduced in Section 3.1.2 (cf. Eq.
(3.1.8)), which determines the spatial resolution. Then,
according to the definitions we adopted earlier, the along-track
and cross-track spatial resolutions (resolutions along the x- and
y-directions in our configuration) are given by vJE7§: and
2L/kay, respectively. We will denote these resolutions in the x-
respectively. By the way, it

and y-directions by x and y

res res’
is not surprising that the cross-track resolution does not depend

on the filter parameters since the target motion is only in the
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along-track direction and the IF filter operates only on the
time-dependent part of y(t).

Clearly, to optimize x , we must maximize M' with respect

res
to A, for all T. The optimal value of A - leading to the maximum

value of M'- is given by

- 2
Aopt = 2v' /AL, (3.2.11)

under the conditions

kai/zL << 1 , [Fraunhofer approx.]

vT >> Zax. (3.2.12)

This choice of A as the optimal value makes perfect physical
sense because (3.2.11) corresponds exactly to the Doppler history
for a point scatterer derived in (3.2.1), i.e., Aopt = - QD(t) of
(3.2.1). sSo, in effect, the filter is eliminating the chirp from
the target return.

With this value of A, M' approaches the maximum value
2(v/ax)2 as T--> », Now, we need to consider how the choice of
T would affect CNR. And since CNR depends on both <Iy(t)> and

<In(t)>, we need to examine the interplay between them. <In(t)>

is given by

<I_(t)> = (hv, /N ) T/t /4, (3.2.13)
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where this time the ensemble average is taken over the

shot noise.

response duration T. <Iy(t)>, on the

proportional to T; both M' and | C Iz
as T--> o, which in turn leads to the

This makes physical sense because the

Note that <In(t)> is proportional to the impulse

other hand, 1s not
saturate to constant values
saturation of <Iy(t)>.

target return has a finite

bandwidth - roughly equal to the maximum Doppler shift of the
illuminated area - and excess bandwidth of the IF filter (on top

of the signal bandwidth) cannot increase the amount of energy

present at the output of the filter. 1In view of the behavior of

X and CNR as a function of T (see Fig. 3.5), we choose T =

res

4L/(kaxv) = as the value which gives us an

(2 ) L/nax)/v

acceptable performance in terms of the X, and CNR.

s

Note that our choice of T matches the duration of the
illumination interval, i.e., the length of time for which a
particular scatterer on the target is illuminated by the moving
radar. This is consistent with our intuition that in imaging a
particular scatterer, only the portion of the target return
containing information about that scatterer should be utilized.

With the "optimal" values of A and T we have chosen, the CW

SAR results can be summarized as follows:

A = 2v2/x L, T-= 4L/kaxv, M = (v/ax)2
X.ag = 2 a, (3.2.14)
Yees ° 2L/kay,
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<I (t)> = (mPya,a A /2[2 LvP)exp-2aL1] o (VE), (3.2.15)
<I_(t)> = hv AL/(2fm nva)) , (3.2.16)
CNR(t) = (p,raf‘aY n/vi?hy ) (n/2)3/2
sexp(-2aL])T _ (vt), (3.2.17)
where

(a/mx_ .y ) [dB T (B)
2

cexpl-(2(x-x')/x )" - (2y'/y

Jave (%)

2
res) ]. (3.2.18)
’]}ve(x) is basically a spatial average of CT(E) over the region

whose size 1s equal to the area of one resolution cell (xre by

S

yres) and is centered at (x,0).

The results above regarding the spatial resolution and the
filter structure are not that different from those of microwave
SAR theory [17,18,30-32]. What is new here is the CNR result.
We will elaborate on the CNR result in a while.

At this point, let us compare the performance of our CW SAR
system with that of a conventional angle-angle imaging system.

The most striking thing is that the X e for CW SAR system,JE a.

s
is a quantity independent of all other parameters such as range
L, velocity v, etc. More importantly, it is a great improvement
over the conventional imager's resolution ZJE L/kax when
operating in the far-field regime wherein kai/L << 1; this makes
SAR's very attractive as high-resolution imagers. The yres of
the CW SAR, on the other hand, remains unaffected by the radar's
motion and the IF-processing we have just prescribed. Thus,

there is no distinction in Yies between the angle-angle imager
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and the CW SAR. However, as we will see in the next section,
Yies can be improved by modulating the transmitted signal.
Before we proceed to discuss CNR, we cast (3.2.17) into the

standard form [13]:

; . ) 2
cWw sar = ( NPp/Mv  Bey opp)* (Ap€pey expl-2al] p/nL7),
with (3.2.19)

CNR

=n effective heterodyne receiver mixing area,

axay
n:rave

(s/n)l/z(v/ax) = effective receiver bandwidth.

ARehet
p

diffuse reflectivity , (3.2.20)

Bew sar™

1/2

This bandwidth, (8/mn) (v/ax), is comparable to the speckle .

decorrelation rate for translation found in [15]. Furthermore,

note that since

T8 (8/n)1/2(4L/kai) >> 1, (3.2.21)

CW SAR
because of the far-field assumption, the bandwidth Bcw-SAR
greatly exceeds 1/T, where T is the dwell time (illumination
time). An angle-angle imager with a matched-filter, on the other
hand, has a bandwidth B that is comparable to 1/T, the inverse of
the dwell time. This difference 1s due to the fact that the
translation~induced Doppler shift of the target return results in
a larger bandwidth for the SAR. This means that with all

parameters being equal (including the dwell time), a CW SAR
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imager allows much more LO shot noise to pass through the
IF filter than does an angle-angle imager, and as a result, the
CW SAR system has a much lower CNR value than the angle-angle
imaging system [In both systems, the target return is assumed to
be matched-filtered so that mocst of the energy present in the
target return passes through.] Furthermore, if the two systems
were to have same spatial resolution, the angle-angle imager
would have even greater advantage in CNR over the CW SAR, as the
required increase in ax for the angle-angle imager would increase
the value of Anehet' and thus further increase its CNR. 1In
conclusion, the CW SAR gives a much improved along-track
resolution over the conventional angle-angle imager but does so
at the cost of inferior CNR performance.

Before we finish our analysis, let us compute the
correlation functions of ly(t) and 1 (t); these results could be

used in speckle reduction analysis. With the filter parameters

as specified by (3.2.14), we find that

* _ 2 _
< ly(t) ;y(u) > = (nPTaxaY A /4v°L) exp[-2al]
TavelV(t+u) 72) expl-(v/a,)?(t-u)?/2]
(3.2.22)

(hvpAL/2{m n va ) exp[-(v/ax)z(t-u)zl.
(3.2.23)

w*
< ln(t) An(u) >

So, the speckle decorrelation time is on the order of ax/v.
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3.2.2. Two-Dimensional (2D) SAR

In this section, we will show how to improve the cross-track
resolution by utilizing target range information in a side-
looking radar configuration wherein the range to a scatterer
depends almost exclusively on its cross-track coordinate. As
with the CW SAR analysis, the novelty of this section mainly lies
in the derivation and interpretation of the CiR results.

Let us examine the side-looking configuration shown in Fig.
3.6. The radar is moving with velocity v m/s in the x-direction
jus* a. it did in the CW configuration. However, rather than
looking straight down at the target, the radar now looks down at
some angle y in order to avoid range ambiguities. L is now the
nominal slant range to the center of the illuminated region on
the target.

To accomplish the task of improving the cross-track
resolution, we will need to (temporally) modulate the transmitted
waveform. There are many modulation schemes for a waveform.
Nevertheless, there are some common desired properties that a
potential transmitted waveform must possess: one, it should be a
wideband signal to ensure a good range resolution [8]; and two,
it should consist of a periodic train of pulses whose pulse
interval is sufficiently large so that the returns from different
transmitted pulses do not overlap, eliminating any possible
ambiguities. The periodically transmitted pulses serve the dual

purposes of sampling the Doppler shift and providing the
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range-coordinate (cross-track) information.

We shall now demonstrate the basics of 2D SAR imaging in the
context of laser radar with a specific waveform. Discussion of
the comparative advantages and disadvantages of various waveforms
will follow thereafter.

Consider the fcllowing waveform comprised of chirped

Gaussian pulse:

00

g(t) =’PTﬁim g(t - st + 2L/c) , (3.2.24)
where

£(t) = exp[-jmW_t2/T_ - 4t%,7%) (3.2.25)

- o) o o’ ' te
with

Ts = period of the pulse train ,

To = pulse duration

2

(fullwidth between e “ points of | ;(t)|2),

W = chirp bandwidth.

We will assume that ono >> 1, i.e., the chirp bandwidth is much
greater than the inverse of the pulse duration, and that Ts >>

To' This waveform, with proper choices of To' T
satisfies the aforementioned requirements for s(t). Moreover, it

s and wo,

gives a certain symmetry between the Doppler and the range
resolutions, as will be seen shortly. Finally, by setting wo =0
in the final results, we can obtain the corresponding results for
a train of Gaussian pulses without any frequency modulation.

Assuming the same transmitted beam pattern Qg(ﬁ) as 1in the
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CW case (cf. Eq. (3.2.3)), and the train of chirped-Gaussian
pulses given by Eqs. (3.2.24) and (3.2.25) for s(t), we can write

the complex envelope of the target return as follows:

y(t) = £ y (t), (3.2.26)
where e
y,(t) = g‘[dﬁ T(p)exp[j2kycosy + Jjk(ysiny )2/L
- (ka ysiny /L}%/2] £(t - mT, - 2ycos ¥/c)
rexp[(3k/L - (ka,/L)%/2) (x-vt)?] , (3.2.27)
with
B zﬁ(kzaﬁxm/mz) exp[2kL - aLl,
a d = cross-sections of the transmitted beam.

aY of the CW SAR has been replaced by a, because of the change in
radar configuration. Note also that a geometric factor ,f;IEji
has been added to T(p) - and aksorbed by B - so that the total
scattered power by the target surface remains the same,
independent of the look-down angle y . This modification is a
necessary consequence of our target-interaction modelling which
assumes that the target scatters the incoming coherent light
evenly into the entire upper hemisphere regardless of Vy .

If we assume that the sum of the pulse duration T, and the
spread of range-delays of the returns from the illuminated target
region is less than the interpulse interval TS, then xm(t), the

return due to the mth transmitted pulse, does not overlap in time

with y . (t) for m#¢m'. This means that at any given time t, the
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target return y(t) is primarily associated with a single
transmitted pulse (see Fig. 3.7a). Thus, y(t) can be divided
into segments of equal length Ts, each segment consisting
essentially of the return from a single pulse, and recorded in a
two-dimensional fermat as shown in Fig. 3.7b. 1In this storage
format, y(t) is represented by y(m,t), where m is used to index a
particular time interval or, equivalently, the segment of the
return associated with a particular transmitted pulse, and t
indicates time with respect to the center of that segment. That

is

yim,t) = X(st+t)

¥, (BT +T), (3.2.28)

-TS/Z ST S Ts/2.

Thus far, we have ignored the presence of the LO shot noise. 1In
reality, however, we would be dealing with the sum of the target
return and the shot noise: r(m,t) (= y(m,t) +.n(m,t)), where
r(m,t) and n(m,t) are defined in the same manner as y(m,T).

Because n(t) was previously modelled as a white noise with
spectral density hvo/n , its 2D representation n(m,t) 1is a 2D
white noise with the following statistics:

< n(m,T) n*(m',T') > = (hv, /n)6 ,6(T-T'), (3.2.29)
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y(t)
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Fig. 3.7b Two-Dimensional Storage Format
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where Bmm' is a Kronecker delta.

As mentioned at the beginning of this section, by
transmitting pulses at a sufficiently high rate, we are in effect
periodically sampling the Doppler shift due to the radar motion,
and at the same time, using the individual pulses to obtain the
range information. It is evident then that m and t are the
natural coordinates for carrying out these operations.

once cast in the 2D format, the IF signal r(m,t) is then
passed through a cascaded two-stage filter: a discrete-time
filter gl[m] followed by a continuous-time filter Qz(t) (see Fig.

3.8). The output of the two-stage filter 1l(m,t) is given by

i(m,t) = (_r(m,tT) ®h,[m] ) * hy(1)
it o
=—[ dt' [ = Ql[m-m'] r(m',t')] gz(t - T'). (3.2.30)
-Te/8 m=-eo

From the CW SAR analysis, it is clear that the optimal gl[m]
should be the discrete-time version of the filter h(t) given by
Eqs. (3.2.6) and (3.2.14). For the continuous-time filter gz(t),
we also choose a matched-filter, h,(t) = g*(-t), to perform the

pulse compression. Thus, the processor for (3.2.30) uses

h (m] = expl-(3k/L)(vaT)? - (ka, /1) (vmr)?/2) , (3.2.31)

and

. 2 2,2
Qz(t) exp[+3nwot /T0 - 4T /To]. (3.2.32)
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The target return componernit of the discrete-time filter's

output, denoted by z(m,t'), is given by
z(m,T') = (PT/n)l/z(kg_Jsinw /2Lst) exp[j2kL-alL]
:/AE T(F)exp[i2kycos ¥ + Jk(ysiny )°/L
-(ka,ysin y /L) %/2] £(t' - 2ycosV¥ /c)  (3.2.33)

exol - 2 v v 2
*exp(-ja, (m” - x7)] exp[-a,(x - m)"/2]
.z {exp[-(Zal(; -m) + 2nl)2/842]

" n
exp[- J((x + m)/2)(2a,(x - m) + 2nl) ]} ,

where
n,
X -m= (x - V(st+t ))/st ’
- 2
a.1 = k(st) /L ,
- 2 2
a, = (kavas) /2L

[ a, >> a

1 2 by far-field approximation].

The effect of periodic sampling is evident in the summation term
of (3.2.33), which has periodic peaks. It follows that z(m,t')
receives contributions from all the scatterers in the vicinity of
X = v(st+ T') - A 1L/2st, l=0,+1,+2,... . [Of course,
those contributions are weighted by exp [-az(;‘- m)2/2], the beam
pattern on the target.] Since the purpose of the discrete-time
filter is to select only the narrow strip centered at x = mvT_,
we want to avoid this type of aliasing, i.e., we want only one of
those periodic peaks to be within the illuminated target region.
This constraint provides a lower limit on the pulse-repetition-

frequency (PRF) 1/Ts. [The upper limit on PRF is set by the
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range-delay spread of the illuminated target]. A quick

calculation reveals that the condition for ensuring no aliasing

is:
ax Q st . (3.2.34)

This simply states that we need to transmit at least one pulse
during the time it takes the radar to cover the distance a, -
Upon recognizing v/ax as the speckle decorrelation rate found
earlier, this statement can also be interpreted as the Nyquist
sampling theorem in the spatial domain: the sampling rate 1/v'rs
should exceed the spatial bandwidth of the speckle 1/a . 1In this
section, we will assume that aliasing does not occur.

Provided that there is no aliasing, i.e., the PRF is

sufficiently high, only the 1 = 0 term remains from the summation

in (3.2.33); it is approximately equal to
 yh 2,22
exp[-(x-v(mT_+ t'))"/a,], (3.2.35)

which is identical to the CW SAR result. Now carrying out the
continuous-time filtering, we obtain the following approximate
result from Eq. (3.2.33) and the assumption Ts >> TO:

1,(mt) = D |dp T(Bexpli2kycos ¥ + Jk(ysin¥ )2/L
-“(xa ysin¥ /1)%/2)] Q(x,y,m,T) , (3.2.36)

where
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D = (Py/32)'/%(ka [sin ¥ T_/LvT ) exp[j2KL - aL] (3.2.37)
Q(x,¥,m,T) = expl-(x-v(mT .+ T))3(1/a2 + (ka /2L)%}]
rexp(-((mW )% + (4/T_)%) (cos¥ /c)?
- (y-ct/2c0s ¥)%/2] , (3.2.38)

We are now ready to compute the signal and noise components
of the average intensity, <Iy(m,t)> (= <| ly(m,t)|2>) and
<In(m,t)> (= <| ln(m,t;|2>), which are needed to evaluate the
spatial resolution and CNR of the 2D SAR. From (3.2.36)-(3.2.38)

we find that

2
<Iy(m,t)> = | EIZX exp[-(blbz/(b1 + bz))(Ct/ZCOSﬂ')z]
i/&i :T(B)exp[-z(x-v(mws+r))?(1/ai + (kax/ZL)z)]
+exp[- (b, +b,) (¥ - (bz/(b1+b2)r(ct/2cosu’))2]

(3.2.39)
and
<I_(m,T)> = (W% ALT,) / (25/2'1avas) , (3.2.40)
where
b, £ (ka sinV /L)>
b, = [(nwo)2 + (4/To)2](cosw /c)? (3.2.41)
| le = (PT/32)(quT°/LvTS)Zsin¢ exp[-2al].

From (3.2.39), we see that the along-track resolution Xiag
is still‘JE_ax and has not changed from the CW SAR case. This 1s
not surprising since no change has been made - except that the

Doppler shift is now sampled instead of being measured



continuously - in the way the Doppler information is processed.
The cross-track resolution, denoted by Yres’ is given by

-

= 2+[(ka, sin Y/L)% + (cos¥ /c)g((nwo)2 + (4/T°)2)]'1/“
2]1/2

yres

2
~ (2c/cos V¥ )/[(nwo) + (4/T°)
[for a large on-target beam size] (3.2.42)

( = 2c/(nwocos ¥) since "oTo >> 1 assumed)

Since W  is the bandwidth of the transmitted waveform, the last
result states the well-known fact: the range resolution improves
with the bandwidth. Thus, in general, a marked improvement in
the cross-track resolution can be achieved over the CW SAR case
by having a large modulation bandwidth or a very short pulse.

As a side note, the processed signal has a t-duration of

AT (cos w/c)J(b1+b2)/b1b2, where b1 and b2 are given by

(3.2.39).
If we assume that the average reflectivity irkﬁ) is

) and

approximately constant over a resolution cell (xr by vy

es res

that Yres is much less than the range spread (beamwidth)

L/qusin¢ , We can write CNR as

CN (m,T) = JJ(vas,Ct/zcosw ) exp[-ZaL](PTn /hvo )

R2p sar
-(a2a®n?cT ) sin y (3.2.43)
15x o v e

*exp[-((ka, sin y /L) (ct/2cosy ))2]

/2t 11+ (a/mu T )21 2vT_ A cosy ).
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The expression for CNR2D SAR above may be cast into the

standard form of Eq. (3.2.19) as follows:

CNRypy gar(®/®) = (N Pp/hVyBon gag)
-(ARehetexp[-zaL] p(m,t)/an) (3.2.44)
. 2
erangeexp[-((qusinw /L)(ct/2cos Y ))°1],
where
ARehet = ma_a,

= effective heterodyne receiver mixing area,
p(m,t) = n:yl(vas, ct/2cosy )

= diffuse reflectivity
Bop sar = B1B»

= two-dimensional bandwidth of the receiver,

B = (v/a,)/(mn/T,)

normalized bandwidth of the discrete-time

filter gl[m],

_ m 12q,1/2
B2 = nwo[l + (4/non°) ] = nwo

= bandwidth of the continuous-time filter h,(t),
erange = loss factor due to the range-delay spread

of the target

T, / (2 A LcotV /mca, )

There are three noteworthy differences between this result and

the result previously obtained for CW SAR: emergence of the

range-delay spread loss factor e replacement of B by

range’ CW SAR

BZD SAR’ and finally, presence of the last exponential factor in
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(3.2.44).

The loss factor erange is simply the ratic of the
transmitted pulse duration over the processed (filtered) signal's
duraticn [which may be taken as the range-delay spread for the
case we are considering]. Physically, the loss factor arises
because the total energy in each return pulse - obtained by
integrating the power carried by the target return over one
period 'I's - is independent of the range spread. This implies

that CNR representing the instantaneous power of the

2D SAR’
filtered target return, should decrease with increasing range-
delay spread (the return pulse gets stretched out in time) to
keep the energy constant. For CW SAR, where, instead of pulses,
a CW signal is transmitted, there is a constant average power
level for both the transmitted signal and the target return.
Hence, CNRCw SAR has no erange factor.

B the bandwidth, or more appropriately "bandarea" of

2D SAR'
the two-stage filter for the 2D SAR receiver, is a product of two

bandwidths; the bandwidth for the discrete-time filter gl[m] and
the bandwidth for the continuous-time filter h,(T). B,, oap
times the spectral density hvo/n (cf. (3.2.29)) gives the amount
of noise power present at the output of the 2D filter.

The exponential factor exp[-((ka, sinV /L)(cr/Zcos'P))zl
stems from the beam pattern of the illumination falling on the
target. In other words, it is the relative intensity of the
illumination at y = ct/2cosV¥ . This factor did not appear in

the CW SAR result because there was no temporal modulation. With
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CW SAR, the receiver effectively performs a spatial integration
over the entire illuminated area in the cross-track direction.

Having stated the major differences between the results for
2D SAR and 1D (CW) SAR, we now turn our attention to the
connection between s(t) and the system performance in the 2D SA.
case. The expressions for the cross-track resolution and the CNR
bear out the important roles played by the pulse duration and
bandwidth of f£(t). The cross-track resolution improves with
increasing bandwidth of £(t) whereas the CNR behaves in the
opposite manner. We also note that an increase of pulse duration
To leads to an increase in CNR, which is not surprising because a
longer pulse means more energy in the target return [in fact,
PT(To/Ts) is the (time-) average transmitted power]. These
observations suggest that an ideal waveform, from performance
point of view, should have a large bandwidth and a long pulse
duration, i.e., a large time-bandwidth product (TBP).

Oour analysis 1s general enough to allow, if one wishes to do
so, a discussion on the relative advantages and disadvantages of
using frequency modulation (as opposed to using shorter,
unmodulated pulses) to achieve a high resolution in the
cross-track direction. To provide a fair basis for a comparison,
we shall pit the result for a train of chirped Gaussian pulses
against that for a train of unmodulated Gaussian pulses. The
peformance in the first case is given by Egs. (3.2.42) and
(3.2.43) whilie the performance in the second case - obtained

simply by letting wo = 0 in (3.2.42) and (3.2.43) - 1s given
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below:

Yres = CTO/ZCOSW . (3.2.45)

(m,t) = :r(vas,Ct/Zcos V) exp[~2aL](Pyn/k v )

v (alalnl
(qLaxn cTo) siny

CNRZD SAR

-exp[-((qusinw /L) (ct/2cos w))zl
/(2L3(4/nTo)stA cosy ). (3.2.46)

[Of course, the numerical values of 'ro may be quite different for
the two cases.]

As an example of comparison between a system using FM pulses
and a system using much shorter, unmodulated pulses, suppose we
want those two systems to have roughly the same cross-track
resolution (bandwidth) and CNR. This requires the latter system
to provide a much higher peak power (PT) to compensate for the
short duration of its pulses, which may cause a problem since
there is a limit on how large Pn can be.

Clearly, we naed to consider several factors - resolution,
CNR, and (peak and average) power constraints of the system, just
to name a few - before judging which modulation format is

suitable for the application on hand.
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3.3. Range-Doppler (RD) Radar

In Section 3.2, we analyzed a SAR system which forms a
high-resolution image of a spatially-resolved planar target. 1In
this section, we present the performance analysis of
range-Doppler radars. In particular, we examine the issues
involving imaging of a rotating object. As with the SAR results,
the major novelty here is the CNR analysis of RD radars in the
optical context.

Section 3.3 is organized as follows. We start by describing
some of the fundamental differences between RD imaging and SAR
imaging, and go on to provide the nccessary groundwork £for the
remainder of the section which is divided into two parts. The
first part deals with a processing scheme that uses a collection
of bandpass filters matched to the transmitted waveform. Spatial
resolution and CNR are derived and discussed in terms of
ambiguity function. The second part is devoted to a different
type of processing scheme involving periodic transmission of
wideband pulses. This scheme, which is similar to the 2D SAR
imaging in many respects, eliminates to a large extent the need
to compromise between a good range resolution and a good Doppler
resolution that is normally associated with the first type of

processing.

Although SAR and RD imaging utilize the same underlying

physical principle examined in Section 3.1.1, in many respects
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range-Doppler imaging is quite different from SAR imaging. This
is because the former exploits relative motion between the target
and the radar that is due to target motion (in our case target
rotation), whereas the latter depends on relative motion provided
by radar translation. There exist three major problems we face
in imaging a rotating target. They are: one, changes in the
reflecting strength of a particular region because of the change
in the orientation of the region with respect to the incident
beam; two, movement of the region itself during imaging (due to
rotation), which can cause blurring of the target image [see, for
example, [18-20], for details on the motion-through-resolution-
cell problem]; and three, different parts of the target having
different Doppler histories.

The first two problems mentioned above necessitate having a
relatively short coherent integration time while the third
problem rules out the possibility of processing the target return
with a single filter, as done in the CW SAR case.

consider the configuration of Fig. 3.2, in which the target
is rotating about the x-axis at a nominal distance L away from
the stationary radar. 1In what follows within this section, we
will drop, without any loss of generality, the beam-intensity
pattern on the target. Physically, this corresponds to having a
uniform illumination power-density on the target, i.e.. the
target is spatially unresolved. Then, the IF complex envelope of

the target return component is (cf. Eq. (3.2.4))



y(t) = (-kzaxay/Zan)exp[-aL] 350 T(x,,y(t),z(t})
2 2

*exp[Jj2k(L-z(t))] exp[ik(y"(t)+x_)/L]
JPp s (t-2(L-z(t))/c) (3.3.1)
where
z(t) = zocos(Qt) + yosin(Qt) p
y(t) =-z°sin(9t) + yocos(nt) '
8,(t) = normalized transmitted waveform

[ s(t) = [Py s, (t)

In (3.3.1), £ denotes the illuminated region of the target, and
the subscript o denotes the target's coordinate at time t = 0.
We have assumed that the transmitted beam is still the
elliptical-Gaussian beam of (3.2.3) and that the target rotates
slowly with rate Q. The complex reflection coefficient
T(x,.¥v(t),z(t)) now embodies the scattering statistics - at time
t - of the region whose coordinates at time t = 0 are (xo,yo,zo).
An iso-range contour on the target is given by the locus of

points equidistant from the transmitter. The equation governing

the iso-range contour is
2 2y /o1 =
(L-2(t)) + (y (t) + xo)/GL = R. (3.3.2)

By the same token, an iso-Doppler contour on the target is given

by the locus of points with equal Doppler shift values; it obeys

the equation
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2Qy(t)[1 + 2(t)/L])/ ) = vy (3.3.3)
In both equations, the second term arises from the finite
curvature of the incident wavefront, and is quite small compared
to the first term. Thus, it will be neglected in our analysis.
For a short time interval t such that Qt << 1, we can make
the following approximations that basically amount to linearizing

the point scatterers' trajectories.

Z(t) ~ Zo + (Qt)Yo ’
y(t) = Yo ° (Qt)zo ' (3.3.4)
v2(t)e ¥ - 2(Qt)z v,

This implies that the Doppler shift associated with a particular
point scatterer is nearly constant over the coherent integration
time. It follows that, for a small enough t, the z - and Y-
planes constitute iso-range and iso-Doppler planes, respectively,
and through range-Doppler processing, zo (range)- and Yo
(cross-range) -coordinates of a scatterer can be resolved within
reasonable accuracy. However, there is almost a complete
ambiguity in the x-direction: X does not enter into either the
range or Doppler shift calculations, except through the curvature
of the incident wavefront, which is a very weak effect.
Therefore, some apriori knowledge of the object's shape is
essential in pairing range-Doppler components of the target

return with the corresponding parts of the target. In some
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cases, a target may have more than one location with an identical
set of range and Doppler values, in which case an interferometric
technique may be used to separate the contributions from these
range-Doppler degenerate locations [21,22]. We now proceed to
discuss the specifics of how to resolve various range-Doppler

components.

3.3.1. RD Radar: Processor A

One way tc sort out different Doppler components is to use a
bank of bandpass filters instead of a single IF filter (see Fig.
3.9). [For off-line processing, serial operation with one
frequency-agile bandpass filter suffices.] Each filter is
matched to the transmitted waveform which may consist of a single
pulse or a train of pulses, and has a center frequency which is

shifted fromvy,_ by its own characteristic parameter “b'

IF

h(t;vy) = sp(-t)exp[-32myt] . (3.3.5)

So, the output of a filter with parameter value vp at time t is
comprised of components with Doppler suift and range-delay values
in the vicinity of vb and t, respectively.

We now compute the average intensity of the target return
component. The target return contribution to the complex

envelope and the average intensity of the filtered output are:

oy = .y . - .2
_:!-_y(tl \)D) = _Y_(t) * E(tl \)D) and <Iy(tl \)D )> = <| ly(tl \)D)| >,
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g ha(t) > 1,(t)
r(t) = y(t) + n(t) :
—e »
——] () —— Ty (t)
—- hy(t) p—e——nou 1,(t)

hi(t) = sq(-t) exp(-32MZ t)

1.(t): CONTAINS INFORMATION ABOUT THE TARGET REGION
- WITH DOPPLER VALUE 24 (1SO-DOPPLER CONTOUR).
t INDEXES THE RANGE-DELAY.

Fig. 3.9 A RD Processor Utilizing a Bank of Matched-Filters
(Type A)
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]
respectively, where Vo is the parameter value of the filter.

Calculations yield

ly(th; ) = (-kzaxay/Zan)JE; exp[-aL] deEO T(X,,Yg:2,)
. exp[32k(L-z,)) exp[ik(yZ + x2)/L]
* !(zolyolt;\)o)l (3.3.6)
r 2
<Iy(t;\,D )> = (- k axay/ZnL ) PT A exp[-2aL] (3 3.7)
fds Tixg,vg.2,) | Rlzg.vy tivh) 12,
where o

X(z /Y, b vB) = {fdu §;(u+t) Sn (W) exp[-j2nu AVD 1)
'“exp[-jva6 t - j2nav, - Z(L-zo)/c] ,

vD = ZQyo/ A,
by = vy -v;), (3.3.8)
T = 2(L-zo)/c - t.

In deriving the above equations, we have employed the
quasi-static approximation given by (3.3.4).

We introduce one more notation which will be useful for

future discussions.

- o' 2 2
T(tr A\)D) = | g(zolyoltlvD )' /l )—‘OI
= | X(t,dvp 1271 %12, (3.3.9)
where
2 _
| §°| H (T 0, AVD -0)|

I X
- f s w212, (3.3.10)
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T rt,AvD ). which has a peak value of one at (0,0), is the
ambiguity function of gn(t) (see [1,8]). The notion of ambiguity
function usually appears in the parameter - range, Doppler -
estimation and target detection analysis. Here, it determines
the spatial resolution of target images. 1In fact, ¢ (T,AvD ] 1s
essentially the envelope function g(s,t) of (3.1.8).

We define the range~delay and Doppler resolutions, denoted

by and Ay res’ respectively, to be the fullwidths between

T
res

the e"1 attenuation points of the ambiguity function along the t

and Av[)axes. They are given by the following equations:

o0

_ * 2 2
T (Trag/2:0) = ll:gu Splurt /2) s, (u)17/1 X1

= e b, (3.3.11)
and "

- 2 , 2

T (0, Augg/2) = I[_Su I s, (u)|” expl-j2mu( Ay o5/2) 1]
2
/1 X
= e L. (3.3.12)

Furthermore, via relation (3.3.8), the cross-range resolution

Yres and range resolution ‘res 2re related to AVyes and Tres by
Yres =X Vpeg/2Q
Z s = crres/z. (3.3.13)

From examining (3.3.12), it is clear that a long waveform

duration is desired for a good Doppler resolution as AV pag is
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inversely proportional to the pulse duration, whereas a waveform
with large bandwidth is needed for a good range resolution [since
Tres 1s inversely proportional to the bandwidth]. The second
point is made more obvious by rewriting (3.3.11) in terms of

Sh(f), the Fourier transform of s (t), as follows:

2

[« 4
2 2
'JCSf Is,(£) 17 exp[-32nf(T,. ./2)]11" / | XJI
= e L, (3.3.14)

T(Tpg/2/0)

At this point, we should be aware that, despite our first
inclination to think otherwise, the preceding range-delay and
Doppler resolutions alone do not fully represent the overall
spatial resolution of RD images in some cases. A well-known

property of ambiguity functions, often called "volume-invariance
property" [8], states that

[ 2}

ob
J( dAvD dt Ft,AvD ) = 1, (3.3.15)
200 /-

00

for all waveforms. Since Tt and AvD are tied directly to z, and
Yo the volume-invariance property implies that when the target
dimensions are sufficiently large, the effective area of the
target contributing to the output of the filter remains the same,
regardless of the waveform being used. This means that 1f some

waveforms have better range-delay and Doppler resolutions (as

defined earlier) than others, they inevitably suffer from having

subsidiary peaks (ripples), etc.
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As an example, let us consider the chirped Gaussian pulse of

(3.2.25):
_ 4 2 - 2,m2
sp(t) = exp[-jnWw t"/T - 4t7/T_].
The corresponding ambiguity function is

2 2
)7 = 4(t/T )",
(3.3.16)

T(t, Av = exp[-(n/Z)z(wot - To Av

D D

In this instance, because of the coupling between t and AvD in
1

the ambiguity function, its e "-contour in the Tt - Av. plane is a

D
tilted ellipse which is very much lopsided (see Fig. 3.10).
Thus, Yees and Z es alone give a distorted picture of the true
resolution cell in the sense that they represent only a small
portion of the area enclosed by the e'l-ellipse; furthermore,
they give a false impression that the resolution cell is a
rectangular grid instead of an ellipse as shown by the e'l-
contour.

Although we have worked out only one explicit example here,
it is clear that under the present processing scheme we cannot
have arbitrarily fine Doppler and range-delay resolutions at the
same time in the true sense because of the volume-invariance
property of ambiguity functions. This is in stark contrast to
the 2D SAR case. In the 2D SAR case, under proper conditions,
the along-track resolution depends only on the beam dimension ay

while the cross~track recolution is determined mainly by the
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g ------
N

Fig. 3.10 e~ Contour of the Ambiguity Function
for a Chirped-Gaussian Pulse
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transmitted waveform's bandwidth; thus, there is no coupling or
tradeoff between the two resolutions. This deficiency in our
present processing scheme can be remedied, to a large extent, by
periodically transmitting wideband pulses, much like in the 2D
SAR case. We will discuss this in more detail later.

We now turn our attention to the issue of CNR. First, we

need to compute < I_(t; VB ) >. From (3.3.5) and (3.3.10), we

have

< I (t; v'D) > (h vo/n)Eu | gn(u)l2
(h v/ mn) | X 1|. (3.3.17)

o

Combining Eqs. (3.3.7), (3.3.9), and (3.3.17), we obtain the CNR

as follows:

CNR (t; vy) = (B n/hvo)(kza a./2n.?)?2 3" expl-2eL]

X'y
x| fdso T T (vav ) (3.3.18]
It is evident from (3.3.18) that CNR is directly proportional to
the transmitted waveform's duration ( | X | ), a result not
unexpected since a longer waveform duration has more energy in
its target return. As with 2D SAR, one consideration we need to
take into account when choosing a waveform is the peak power
constraint of the laser; if the peak power is not sufficiently
high, it may be necessary to transmit a longer waveform to

achieve the desired CNR value.
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For a sufficiently large target, i.e., a target whose range
and Doppler dimensions greatly exceed the e'l-contour of the

ambiguity function, the above expression for CNR may be rewritten

as follows by using (3.3.8) and (3.3.15):

2
CNR(t; v ) = (Pyn /My )(k°a a /2ni?)? X exp{-2aL] | X |

D
ter /o) T ey, (3.3.19)

where ']—avéﬁqvé ) 1s the spatial average of :T in the vicinity

of (y,.2.) = AvD' /29, L-ct/2).
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3.3.2. RD Radar: Processor B

In Section 3.3.1, we found out that processing the target
return with IF filters whose impulse responses match - within
some offset frequencies - the entire transmitted waveform poses a
contraint on the range-delay and Doppler resolutions. 1In this
section, we explore a processing scheme that removes this
constraint. This scheme involves transmitting a series of
wideband pulses and processing the return in two sequential
steps, in a manner analogous to the 2D SAR processing, and is
commonly used with most microwave RD radars [19-21].

Let us start with the transmitter. The transmitter
transmits a series of pulses, usually wideband, for a finite

period of time.

(N-1)/2
s,(t) = £ £(t - mT_ + 2L/c),
where m=-(N-1)/2 (3.3.20)
sn(t) = normalized transmitted waveform
f(t) = individual pulse
Ts = interpulse period,
Thus, the overall waveform duration ;s approximately NT (= TN)

for a large N. As with 2D SAR, duration of the individual pulses
and the interpulse period Ts should be chosen to ensure that
there is no overlap between returns associated with different

transmitted pulses. Under this condition, the return at any
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given time can be regarded as coming from a single transmitted
pulse, and the return can be stored in the two-dimensional
storage format introduced in Section 3.2.2 (see Fig. 3.7). The
target return due to the mth transmitted pulse can then be

written as follows:

y(m,t) = 7[;;(k2axay/2nL2)exp[-aL] dEO T(Xg ¥g:2Z)
rexp[23k(L-2z ) ] exp[ik(y2 + xg)/L] (3.3.21)

cexp[-j2n vp(mT _+t)] £(T + 2z /c) .

where
vy = zgyo/k
= Doppler shift associated with Yor
Zzo/c = range-delay associated with z,,

-Ts/2 £ TS TS/Z.

The quasistatic approximation of Section 3.3.1 has been used in
(3.3.21).

The sum of target return and LO shot noise components stored
in the 2D format is then processed in two sequential steps as
follows. First, the return associated with each transmitted
pulse is passed through a continuous-time matched-filter of
impulse response g*(-t). Then a discrete-time Fourier-transform
(DTFT) operation is performed on the matched-filter output
sequence (see Fig. 3.11). [In real applications, a discrete
Fouri er transform (DFT) would be used instead of DTFT]

Several remarks are in order at this juncture. The matched-
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filter in the Fig. 3.11 architecture is matched to a single pulse
£(t) rather than the entire waveform s _(t), as was the case in
the earlier scheme. Thus, unlike what transpires in the earlier
scheme where separation of various Doppler and range components
is done simultaneously (via ambiguity function), here it is done
sequentially: first the range-coordinate is resolved via the CT
filtering and then the Doppler-coordinate is resolved via tue
DTFT operation. Moreover, because the continuous-time (CT)
matched filter and DTFT are linear operations, the order in which
they are performed may be interchanged. So we can construct an
equivalent alternative architecture of Fig. 3.11 in which the
Doppler coordinate is resolved before the range coordinate.

We should also comment on the differences between the this
RD procescsing and the 2D SAR processing. The first obvious
difference is that the coherent summation for the former (DTFT)
has to be performed over a finite duration becauce of the time
constraint on the transmitted waveform, whereas for the latter
there is no such constraint. The second difference is in the
type of coherent summation performed: whereas the DTFT operation
constitutes the second step of the RD processing, a 2D SAR's
second processing step involves a discrete-time filtéring with a
chirped Gaussian. This difference is due to the different ways
the target/radar motion affect the target return in each case.
The SAR configuration produces target return - for a point
scatterer - whose Gaussian amplitude time dependence derives from

the Gaussian beam pattern on the target, and whose linear Doppler
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CONTINUOUS-TIME FILTER DISCRETE-TIME
r(m,T) —* . —| FOURIER TRANSFORM —.{g UJ.T)}

Fig. 3.11 A RD Processor Utilizing a Matched-Filter
and a Discrete-Time Fourier Transformer (Type B)

4/ TNT,
r —+ + + — VD

y - 2T v -VTs b b+ /T (= 2y /)

(g = -2) (@ = -1) (q = 0) (@ =1)

Fig. 3.12 DTFT Output As a Function of Target Coordinate y
for a Fixed Frequency ﬂg
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shift time dependence is due to the translational motion of the
radar. On the other hand, the target return from a point
scatterer in our RD configuration has no amplitude variation with
time - because the target is assumed to be spatially unresolved -
and it has a constant Doppler shift on the time scale we are
working with.

one final note, before fl:shing out analysis of Fig. 3.11
architecture. It should be clear that unless the amplitudes of
the transmitted pulses are tapered over the transmission time TN'
the Fourier transform operation will produce undesirable ripples
(sidelobes) in the frequency domain because of the sudden
termination of the target return after N pulses. This ill effect
can be reduced at the cost of adding another processing step and
a degradation of main-lobe Doppler resolution, by tapering the
target return's strength over N pulses. This technique can be
applied either to the amplitude of transmitted pulses themselves
or to the target return output sequence from the matched-filter.
In the analysis to follow, we will apply a Gaussian taper to the
return that matches the transmission time TN.Y

Let us now compute the target return and shot noise
components of the output intensity. By applying the Gaussian
taper exp[-a(m)N)z], we can approximate y(t) by

y(t) = T y(m,T),
where m==e (3.3.22)

. 2 2 - =
y(m,tT) = Pn(k axay/2nL )exp( aL]—/:iso T(x,,¥5:2,)
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rexp[23Kk(L-2,) ] exp[Ik(y + x2)/L]
exp[-3j2n vp (mT +T)] £(T + 22 /c)
sexp[-8(m/N)2].

It then follows that

[ - ' 2
< Iy, > =< |1ty )€ > (cf. Fig. 3.11)

2)zexp[-ZaL]

2
PT(k axay/ZnL

2 d_ 3- .
A 5o _J (%Yo 2o) (3.3.23)

[
+(nN%/8) |T exp[-N%(2n(y_-v. )T_ - 2rq)®/32]|°
fm q.—.-oo « D D s
o]/ dt' £(t'+ 22_/c) £ (t'-Tt)exp(-j2nv t']lz,
Jo - o’"l = D
where
vp = ZQYO/A
vB = Fourier transform variable.

The t'-integral is the result of CT filtering and the g-summation
is the result of DTFT. We will examine the t'-integral first.

The t'-integral is nothing more than a scaled ambiguity
function of individual pulses, i.e., of £(t). Thus, the range-
delay resolution in this processing scheme is determined by the
bandwidth of f(t). However, because the pulses tend to be very
short, the Doppler resolution based on the ambiguity function is
guite poor; as will be seen shortly, overall Doppler resolution
is determined by the total transmission time TN instead.

Whereas range resolution is related to the t'-integral,

Doppler resolution is derived from the g-summation. The terms
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inside the summation have been sketched in Fig. 3.12 as a
function of the Doppler shift vp = ZQYO/A for a particular
Fourier transform frequency vb. Two things are noteworthy about
this figure. One of them is that the width of the lobes in Fig.
3.12 is 4/nNTs ( = 4/nTN), and thus clearly much narﬁ@er than the
Doppler resolution based on the t'-integral alone. As a result,
the overall Doppler resolution AV res is 4/nNTs; it improves with
the total waveform duration.

The other interesting point about the Fig. 3.12 1s that, as
in the 2D SAR case earlier, aliasing could be a problem; thus, we
need a sufficiently high PRF so that there is contribution from
only one nart of the target (one lobe in Fig. 3.12). As the
target is spatially unresolved in our RD configuration, it is not
the diffraction-limited beam size that places an upper bound on
the number of lobes included in the output - as in the SAR case -
but rather the size of the target itself. The requirement on the
PRF to avoid aliasing is then 1/Ts needs to be at least twice the
Doppler bandwidth (bandwidth due to target rotation) which we may
take to be roughly QDY/A , Where Dy is the target dimension in
the y-direction ana Q is the rotating target's angular velocity.
One important consideration from a practical standpoint is that
the Doppler bandwidth from a rotating target could be
significantly greater than the translation-induced Doppler
bandwith under equivalent conditions. As a result, the RD radars
may place a tougher requirement on their transmitter lasers than

the SAR's in terms of the required PRE's.
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In summarizing our results thus far, we have shown that with
the two-step processing it is possible to obtain good range-delay
and Doppler resolutions without encountering the tradeoff problem
seen in the previous RD processing scheme. 1In other words, the

range-delay and Doppler resolutions become decoupled in our

present scheme.
' - v 2
Let us now compute < In(VD ,T) > (= < | ln(VD ,TYIT >).
Using the statistics given by (3.2.29) for n(m,t), we easily

obtain:

(R, m)C jdetl £(3)1% ) (Z_exp(-16(n/N)° ]

(hv, /n) T N/4)( [ar | £(1)1% ).

-0

v
< In(\)D It) >

(3.3.24)

We will now let f(t) be a chirped Gaussian pulse given by
(3.2.25) and compute the system performance that goes with it.
If we assume that there is no aliasing so that only the q = 0
term in the g-summation contributes (cf. (3.3.23),

< Iy(vé’t) > becomes

< IY(VB ,T) > = ﬁF(kzaxay/anz)zexp[-ZaL]
A deo T (xg1¥5020) (3.3.25)
+(nN%/8) expl-(2n(y =v INT,)?/16]
+(n12/8) expl-(t+2z,/c)2( (MW /2)% + (2/T))%)]
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and < I_( vd't) > becomes

< Ip(vpT) > = (hy /g ) (NT _/842). (3.3.26)

The corresponding y- and z-resolutions are

2 A/nQNTS, (3.3.27)

(2¢/md_)/[1 + (4/“"oTo’2]1/2

yres

zres

2c/nwo, for ono >> 1. (3.3.28)

Advantages of laser radars - over microwave radars - stemming
from their short wavelengths and their ability to generate
wideband pulses are evident in the Yies and Z .og ©XPressions

above. Finally, the CNR is

CNR(JL,t) = (Ppn/h vg(kzaxay/Zan)zxz exP['ZaL](JE‘nNTO/e)
. dgo T(XOIYO;ZO) exp[-(Zn( \)D -V D)NTs)z/IS]
.exp[‘(t+220/c)2((nwo/z)z + (Z/To)z)]'

(3.3.29)

which, for yres and zres much less than the target dimensions,

reduces to

CNR(y,,T) w (Pg n/hvo)(kzaxay/anz)zxf exp[-2aL] (2 nNT_/8)

T Ly ™) (2a/9) JUHNT) (14 (4/mi T) 2112

D
(3.3.30)

)

where :T;Vé\$ ,T) is the spatial average of :T'in the target

area accessed by ( “D,t).
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CHAPTER IV

PERFORMANCE UNDER NONIDEAL OPERATING CONDITIONS

To this point, we have analyzed the performance of
high-resolution laser radars, assuming that the imaging is to be
performed in an ideal environment. That is to say, we have
assumed that: there is no atmospheric turbulence; the transmitter
laser produces a beam without random frequency instability; and
the radar and target trajectories do not deviate from their
nominal courses. Therefore, the performance level found ir
Chapter III represents the upper bound on the performance that
can be achieved.

Of course, in a real operating environment, we cannot expect
such benign conditions: the carrier frequency of the laser will
tend to wander around the desired value, due to thermal
fluctuations within the laser, structural vibrations, etc.; the
temperature gradients in the atmosphere will give a rise to
(atmospheric) turbulence; and there will be random motions
involving the target and radar-carrying vehicle. These, which
represent some of the most serious problems we face, will degrade
the system performance of high-resolution imagers to varying
degrees.

The problems of frequency instability, atmospheric
turbulence, and target/radar platform motions also impact
microwave high-resolution systems. However, they are potentially

much more damaging to the optical and infrared systems because of
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the shorter wavelenths involved. Moreover, it is not immediatel:’
obvious whether the detrimental effects brought on by the
aforementioned perturbations are enough to negate the advantages
gained from combining the features of angle-angle laser radars
with those of high-resolution microwave radars.

It is the goal of this chapter to quantify the effects of
these non-idealities on the system performance. In that regard,
we are especially interested in examining the effect on spatial
resolution, since these high-resolution imagers need temporal
coherence of the target return over the coherent processing time
to achieve fine tesolutions and these perturbations disrupt the
coherence of the return. In addition, we will also examine thelr
effect on CNR.

Some work has been done in the past [17,33,34] on analyzing
the effects of phase errors on the performance of high-resolution
microwave radars, primarily with SAR's. However, they have
largely been limited to either deterministic error analysis for
very specific cases or random phase error analysis with
mathematically intractable end results [making it necessary to
resort to numerical methods to obtain useful results]. More
importantly, there was no direct link to the actual phycical
processes responsible for the phase errors in these analyses. As
a result, there has been a lack of physical insight in regards to
how a particular type of random error degrades high-resolution
radar's system performance.

There also have been some studies on the effects of



-97-

atmospheric turbulence on microwave SAR's [35,36], but their
scope has been quite limited. And to our understanding, there
has not been any analytical work on the effects of either the
random transmitter aim error or the target/radar platform
vibrations on SAR or RD radar. Our analyses in this chapter
rectify these deficiencies in the laser radar context.

Chapter IV is divided into three sections: the first section
deals with transmitter/LO laser frequency instability; the second
section examines the effects of atmospheric turbulence; and the -
last section studies the effects of two types of motion errors,
target/radar platform vibration and transmitter aim error. 1In
each section, we first present a model which, with minimal amount
of complexity, represents the physical process whose effects we
are investigating. Then, with the model, we derive the
performance for SAR and/or RD radar. The results are then

discussed and compared with those of the ideal case from Chapter

III.
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4.1. Effects of Laser Frequency Instability

In this section, we investigate how random frequency
instability of the transmitter laser interferes with the coherent
processing of the target return, resulting in inferior resolution
and CNR compared to the ideal case of perfect frequency
stability. First, the instantaneous frequency deviation from the
nominal carrier frequency vois modelled as a stationary random
process. Then, several scenarios are examined, based on the
coherence time of the laser frequency, the extent of the
frequency deviation, and the target range. 1In deriving the
analytical results, we consider both frequency-modulated (FM)
waveforms and amplitude-modulated (AM) waveforms. The SAR case
will be analyzed first, followed by the RD radar case.

One remark before we proceed: we shall assume throughout the
analysis that the LO laser is perfectly coherent with the
transmitter laser, i.e., they share the same temporal
characteristics except for the nominal frequency offset UTE In
practice with Co2 laser radars, the best way of getting this
coherence between the two is to use a single laser. This would
be done by diverting some of the power from the transmitter laser

and then introducing the IF shift via external acousto-optic

modulation.
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4.1.1. Frequency Instability Model

As stated in Chapter II, frequency instability of the
transmitter/LO laser can be represented by including the phase
error term (cf. Section 2.1) exp[-j®(t)] in the target return

model where

t
o(t) = 2n_[ du f(u),
and %(t) = instantaneous frequency deviation (from 1O ).

We indirectly characterize the phase error ®(t) by characterizing
?(t). ¥(t) will be modelled as a staticnary, Gaussian random
process. Thus, %(t) is completely characterized by its mean anad
covariance. Following [37], we will assume that ?(t) has zero as
its mean and a double-sided exponential as its covariance

function:

< %(t) > =0,

mg(t)
K¥x(t)

< F(e)E(t+T) > (4.1.1)

2 )
O exp[-ltl/tf 1,

where
tf = coherence time of the instantaneous frequency
fluctuation %(t): 1/tf = short-term bandwidth
of the laser,
of = rms frequency error: long-term bandwidth

of the laser.
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our frequency instability model is based on the assumption that
the instantaneous laser frequency drifts randomly. tf
characterizes how rapidly g(t) tends to change, and O¢ represents
the extent of frequency drifting. We shall assume oftf >> 1
throughout our analysis.

ny
It follows from the characterization of f(t) that &(t) is

also a zero-mean, Gaussian random process (but no longer

stationary):
mQ(t) = < $(t) > = 0,
Kéé(t,u) = < &(t) ®(u) > (4.1.2)

t ru
2 vy
(2m) j;fwdsldsz Kff(sl-sz).

Since we have assumed that a single laser provides both the LO
and the transmitter beams, the frequency instability of the
laser manifests itself in the beat-frequency component, i.e., the

heterodyne-detected target return, as follows:

Y(t;0.#0) = y(t;o=0)+ w(t), (4.1.3)
where

wit) frequency-instability-induced term

exp[-j(®(t-2L/c)-2(t))]. (4.1.4)

X(t;cf#O) and y(t;o.=0) correspond to the target returns in the
presence of frequency jitter and in the absence of jitter,

respectively. Physically, the first factor &(t-2L/c) of w(t)
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represents the cumulative phase error - due to the frequency
jitter - of the transmitter beam at the time when the signal was
transmitted, while the second factor &(t) represents the phase
error of the LO beam when the transmitted beam has come back from
the target. In other words, w(t) represents the phase error
accumulated during the roundtrip time 2L/c due to the frequency
drifting, where L is the target range and c the speed of light.

By writing the target return in the presence of frequency
jitter as a product of X(t;cf=0) and w(t), we have implicitly
assumed that the discrepancy in the range for various parts of
the illuminated target area is negligible compared to the nominal
range L.

In light of the discussion thus far and what is to follow,
it is clear that we need to characterize w(t). In particular, we
will need to know the correlation function of w(t), R_.(T) =
< w(t+T) g*(t) >. When we evaluate wa(t), we obtain the

following exact expression:

wa(t) = exp[-2(2ncftf)2-{ 2L/ctf -1 + exp[-ZL/ctf]
- -ltl/tf + |t+2L/c|/2’cf + |1:-2L/c|/2tf
- exp[—ltl/tf] + 0.5exp[-|t+2L/cl/tf]

+ O.Sexp[-lt—zL/cl/tf] ) 1., (4.1.5)

which reduces to the following special cases for oftf>> 1 [37]:
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[1-(4nch/c)2] + (4nch/c)2exp[-|t|/tf]

for 2ch/c <<1 , (4.1.6a)
< expl-8(T/tg)"]

wa(t) o for 2L/ctf<<1 & 2Lof/c >»1 , (4.1.6b)
\ exp[-8<r/te%21

for 2L/ctf>>1, (4.1.6¢c)

where

/

ct
n

1/2
(cteg/L)™" 7/ mOg,

e@ \ﬁf /nof.

ct
1]

In the above, we have categorized wa(t) into three separate
cases: a) short-range; b) medium-range; and c) long-range,
according to the roundtrip delay 2L/c¢ and the frequency
instability parameters tf and of.

The short-range case represents those situations where
2ch/c, a typical phase error incurred during the roundtrip
delay, is negligible. The medium range case applies to those
where the typical phase error is large but the roundtrip delay is
still much shorter than the laser coherence time so that during
the roundtrip delay time, the frequency is more or less constant.
Finally, we have the long-range case for which the frequency is
apt to change quite significantly and quite often during the
roundtrip delay. In most practical situations, we will probably
be concerned with the medium- and the long-range cases. Thus we
will concentrate on these cases in our analyses.

Before we start the actual analysis, we note that the random
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phase &(t) induced by the frequency instability only affects the
target return component y(t). The noise component n(t),
characterized by Gaussian white-noise with spectral density
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