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Characterizing and understanding the environment affecting quantum systems is critical to elucidate its
physical properties and engineer better quantum devices. We develop an approach to reduce the quantum
environment causing single-qubit dephasing to a simple yet predictive noise model. Our approach, inspired by
quantum noise spectroscopy, is to define a “self-consistent” classical noise spectrum, that is, compatible with all
observed decoherence under various qubit dynamics. We demonstrate the power and limits of our approach by
characterizing, with nanoscale spatial resolution, the noise experienced by two electronic spins in diamond that,
despite their proximity, surprisingly reveal the presence of a complex quantum spin environment, both classically
reducible and not. Our results overcome the limitations of existing noise spectroscopy methods and highlight
the importance of finding predictive models to accurately characterize the underlying environment. Extending
our work to multiqubit systems would enable spatially resolved quantum sensing of complex environments
and quantum device characterization, notably to identify correlated noise between qubits, which is crucial for
practical realization of quantum error correction.

DOI: 10.1103/PhysRevB.106.155413

I. INTRODUCTION

The performance of quantum devices is often limited by
the effects of their environment, even if the environment could
be tamed or even turned into a resource if it could be prop-
erly characterized [1–8]. Unfortunately, a full characterization
of the environment is usually not possible, and one has to
rely on a simplified model of the noise sources. For simpler
quantum systems such as qubits and qutrits, it is in principle
always possible to reduce a complex quantum environment
to a classical noise (spectrum) model, at least for a fixed dy-
namics of the total system [9–11]. However, this noise model
is not guaranteed to be predictive when the system (or bath)
dynamics is changed by control, as is the case for quantum
devices. Obtaining a classical noise spectrum that can describe
the system dynamics under a broad set of controls and predict
its performance would be highly desirable, not only to enable
practical characterization of unknown complex many-body
environments (e.g., for applications in quantum sensing or
quantum device characterization), but also to engineer more
robust quantum devices and control sequences tailored to the
noise.

In this paper, we demonstrate an approach to build a
practical yet predictive noise model of qubit decoherence.
Our approach is to form a “self-consistent” classical noise
model—that is, consistent with all observed decoherence un-
der various qubit dynamics—by reconciling complementary
approaches to noise spectroscopy. Crucially, by reconciling
limitations of existing methods, we demonstrate that it suc-
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ceeds even when the existing methods fail to yield the correct
noise model and is further able to predict the system dynamics
under additional control sequences. If such a self-consistent
noise model is possible, this indicates that the underlying
(quantum) bath can be effectively reduced to a classical
Gaussian noise process, enabling practical characterization of
the bath with predictive power. We demonstrate this exper-
imentally, by building a self-consistent noise model of the
electronic spin of a nitrogen-vacancy (NV) center in diamond
and subsequently verify that it is predictive even under new
qubit dynamics. On the other hand, if a self-consistent model
is not possible, this indicates that the underlying bath is suffi-
ciently complex, either of quantum or of non-Gaussian nature.
We verify this experimentally with another electronic spin
near the NV—and indeed with further investigation verify the
quantum nature of its local environment. Finally, having char-
acterized the bath of two nearby electronic spins in diamond,
we are able to probe, with nanoscale spatial resolution, the
dominant source of noise common to both qubits arising from
the quasistatic many-body electronic spin bath. The noise
model reveals the local spin density and timescale of spin
bath dynamics with nanoscale variations, information which
is inaccessible by conventional nuclear magnetic resonance
(NMR) or ensemble-sensor techniques.

II. QUANTUM NOISE SPECTROSCOPY

Several protocols for noise spectroscopy have been de-
veloped thus far, ranging from simple sequences [12–14]
to more complex continuous [15–17] and pulsed [18–21]
control. They have successfully elucidated noise sources
(from local fluctuators [18,22–25] to spin environments
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[12–14,19,20,26]), and their accuracy to reproduce a given
classical noise has been evaluated [27]. However, much less
attention has been paid to analyze their predictive power es-
pecially when the reconstructed noise spectrum is only an
approximation to the real noise, i.e., whether because it arises
from a quantum system [28] or a complex classical source
[29–31]—or more simply due to experimental limitations.
Here, to achieve a predictive noise model, we propose to build
a self-consistent noise spectrum by combining complemen-
tary approaches.

The simplest approach, which we call R-E-noise spec-
troscopy, utilizes only decoherence under the free evolution
[Ramsey (R)] and spin echo (E) experiments. The knowledge
of their decay functionals and decay times T ∗

2 (R) and T2 (E)
may be sufficient to fully characterize a noise model S(ω| �p)
with unknown model parameters �p [32]. While minimal in
experimental cost, this method requires a noise model that is
already known and sufficiently simple to uniquely identify �p
[12–14]. Furthermore, it can only investigate low-frequency
noise (ω < T −1

2 ).
A more general approach based on dynamical-decoupling

sequences with equidistant π pulses [Carr-Purcell-Meiboom-
Gill (CPMG) pulse sequences] can in principle reconstruct
the full noise spectrum. Under the filter-function formalism,
each CPMG experiment of interpulse length 2τm forms a filter
| f̃T (ω)|2 that approximates a delta function δ(ω − ωm), ωm =
(2π )(4τm)−1. This allows direct measurement of S(ωm) from
the simple-exponential decay χm(T ) under CPMG pulse se-
quences, where

χm(T ) = 1

2

∫
S(ω)| f̃T (ω)|2 dω

2π
≈ 4

π2
S(ωm)T . (1)

While this method can characterize arbitrary, unknown noise
spectra with high resolution, it comes at increased experimen-
tal cost, as one CPMG experiment is needed per frequency.
Furthermore, the bandwidth, while much broader, is still
bounded by the coherence time T2 and Rabi frequency �0,
T −1

2 < ωm � �0 [20]. In particular, low frequencies are
harder to reach in the presence of strong noise.

III. SELF-CONSISTENT NOISE CHARACTERIZATION

Combining these techniques, we demonstrate how to ob-
tain a self-consistent classical model. We start with a minimal
noise model, consistent with initial experimental data, and
incrementally refine it as necessary to be consistent with
additional experiments. While other strategies are possible,
this minimizes the experimental cost. We first demonstrate
the protocol in the concrete case of an NV center in diamond
(Fig. 1).

A. NV electronic spin qubit

The first step is to measure the NV Ramsey dynamics.
We used the ms = {0,−1} states of the NV electronic spin
(electronic spin S = 1) in an external static magnetic field
of strength B0 ≈ 350 G aligned approximately along the NV
axis. The control was achieved with a single-tone, resonant
microwave of �NV

0 ≈ 6.9 MHz amplitude to drive both 15NV
hyperfine transitions (Azz ≈ 3.2 MHz).

FIG. 1. Reducing a quantum environment to a self-consistent
classical noise model. To model a quantum environment, we at-
tempt to develop a classical noise model S(ω) that is consistent
with the set of all observed decoherence under various controlled
dynamics. When such a “self-consistent” noise model is possible, as
demonstrated in this paper experimentally for an NV electronic spin
in diamond but not a nearby interacting electronic spin X several
nanometers away, we further verify that the self-consistent model
has predictive power even under new dynamics, confirming that it
accurately models the underlying quantum bath.

Observing a Gaussian decay under Ramsey control
[Fig. 2(b)], we assume as our minimal model an Ornstein-
Uhlenbeck (OU) process

S(ω|b, τc) = b2(2τc)

1 + (ωτc)2
, (2)

characterized by two parameters (b, τc). Indeed, a quasistatic
or “slow” OU noise, (bsτs) � 1, predicts a Gaussian decay,
χR(T ) = (bsT )2/2 ≡ (T/T ∗

2 )2. More generally, the slow-OU
noise has successfully modeled noise from a slowly fluctuat-
ing spin bath [13,14,26] and is expected [6] to be the dominant
noise in our system [33]. Then, fitting for T ∗

2 , we identify one
of two unknown parameters, bs = 0.56(2) MHz.

Given a working model S0 = Ss consistent with Ramsey
dynamics, we can ask whether it is already predictive of
echo dynamics. Unfortunately, we find that it is not, as while
S0 predicts a stretched-exponential χE(T ) ≈ (b2

s T 3)/(12τs) ≡
(T/T2)3, the NV echo is dominantly simple exponential
[Fig. 2(c)]. Note that similarly, we could have started with the
knowledge of NV echo decay to first search for a minimal
(single-termed) noise model consistent with echo dynamics
and test whether it is predictive of Ramsey dynamics. In such
a case, we would arrive at either a fast-OU noise S f (τ f � T )
or white-noise Sw, which both yield an exponential decay.
However, neither are consistent with NV Ramsey dynamics.

This suggests that the environment around the NV is
sufficiently complex so as not to be reduced to a single
independent noise process. We thus introduce minimal com-
plexity to the working model by considering two terms and
immediately find two valid models: A single-OU plus white-
noise model S1 = Ss + Sw and a double-OU model S2 =
Ss + S f . Both S1 and S2 predict the same competing de-
cay under echo dynamics with two characteristic timescales:
χE(T ) = (T/T2)3 + T/T0, where T2 = (12τs/b2

s )1/3 and T0 =
2/Sw (for S1) or T0 = (b2

f τ f )−1 (for S2). In fact, fitting the
NV echo to this more complex S1,2 yields the best fit versus
the simpler models with a single characteristic decay, con-
firming their validity. Notably, a similar multicomponent bath
model has successfully described the noise of shallow NVs
[34,35], with a slow bath typical of bulk NVs accompanied
by a faster bath due to paramagnetic centers on the surface.
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FIG. 2. Self-consistent noise model of an NV electronic spin in diamond. The (minimal) self-consistent noise model SNV
(min)(ω) is presented,

along with noise model candidates S1,2 (consistent with R-E but not CPMG dynamics) and SCP (vice versa). While as shown both R-E- and
CPMG-based methods fail to yield the correct noise model due to their limitations, by reconciling them our method succeeds. (a) The noise
models are shown against the measured decoherence (markers) under multiple CPMG dynamics, S(ωm ). Note that S1,2 fail to be predictive
under higher-frequency noise. (b) and (c) Decay under Ramsey (b) and spin echo (c) dynamics is measured (blue circles) and fitted (red curve)
to perform R-E-noise spectroscopy. Note that SCP fails to be predictive under Ramsey or echo dynamics (zero or low-frequency noise). The
controlled qubit dynamics (pulse sequence) is shown below; green boxes indicate the minimal experimental measurements used to inform
SNV

min(ω), which is further predictive of new dynamics (see Fig. 3). The green box in (a) contains SCP(ωm ) = {17.5, 12, 10.5} ms−1 at ωm =
(2π ){0.05, 0.083̄, 0.10} MHz, respectively.

We can further identify some of the remaining unknowns,
with T2 = 69(6) μs [hence τs = 8(2) ms] and T0 = 55(8) μs
[hence Sw = 36(5) kHz].

Having completed R-E-noise spectroscopy, its three main
limitations are observed [32]: (i) It is in general insufficient
to characterize arbitrary noise models (e.g., here S1 with three
unknown model parameters could be fully characterized while
S2 with four unknowns could not). (ii) It cannot help identify
which noise model is the true (or at least more accurate) noise
model as it cannot discriminate between models predicting
the same time-domain decay functionals (e.g., while S1,2 are
spectrally distinct, they predict the same decay under R and E
dynamics). (iii) Furthermore, it is oblivious to noise at higher
frequencies ω > T −1

2 . To address these limitations, we turn to
CPMG-based noise spectroscopy.

To achieve with minimal experimental cost a self-
consistent noise model Smin predictive of Ramsey, echo, and
CPMG dynamics, the first step is to simply check whether any
working model SR-E is already predictive of CPMG. This can
be done by solving and checking

SCP(ωm)
(?)= SR-E(ω = ωm), (3)

where the left-hand side is given by experimental CPMG
measurements at ωm = (2π )(4τm)−1 and the right-hand side is
given by the candidate model evaluated at ω = ωm. Therefore,
given a model with q remaining unknown parameters, we
need (q + 1) measurements (equations) to verify whether the
model is self-consistent: The first q equations to solve for the
q unknowns—thereby identifying all model parameters �p of
SR-E(ω| �p)—and the last measurement to check whether the
model is predictive of a new CPMG experiment at ωq+1.

We apply this protocol to candidate models S1,2, utiliz-
ing (up to) three CPMG experiments [Fig. 2(a)]. S1, with
q = 0 unknowns, can be immediately checked. As seen
in Fig. 2(a), the significant relative error ε = [SCP(ωq+1) −
S1(ωq+1)]/SCP(ωq+1) > 1 rules out S1. S2, with q = 1, must

first be characterized by solving one equation. This yields
a unique solution (b f , τ f ) ≈ (74 kHz, 3.3 μs), suggesting
validity of S2. However, it predicts with a small yet statis-
tically significant error ε = 0.24–0.38 at higher frequencies
[Fig. 2(a)]. Therefore, to improve upon the working model,
we again introduce minimal complexity, to include a small
white-noise term Sw which is consistent with all observed
dynamics thus far, yielding SNV

min = Ss + S f + Sw. As this
model has q = 2 unknowns, we require three measurements to
check for self-consistency. This yields a unique (b f , τ f , Sw ) ≈
(58 kHz, 4.3 μs, 7 ms−1)—and predicts the last CPMG ex-
periment with an order-of-magnitude smaller error, ε = 0.02.
We thus arrive at a minimally self-consistent model SNV

min,
consistent with all observed qubit dynamics [36].

Additional SCP(ωm) measurements can be used to further
improve the model accuracy, either by revealing sharp reso-
nances in the spectrum or by probing higher-frequency noise.
For our NV, SCP(ωm) at higher ω reveals multiple resolved
peaks [Fig. 2(a)]. We thus obtain a final noise model SNV by
adding a series of spectral contributions Spk at ωl ,

SNV(ω) =
∑

k=s, f

Sk (ω|bk, τk ) + Sw +
∑

l

Spk (ω − ωl ). (4)

We remark that the same SNV can be reached starting from
CPMG experiments and achieving consistency with R-E de-
cays. Specifically, fitting the measured SCP(ωm) yields Eq. (4)
minus the slow-OU component Ss—since Ss is narrow around
ω = 0, it is only observed under R-E dynamics, while it is
canceled out by CPMG pulse sequences.

To summarize, having measured the qubit decoher-
ence under various dynamics, we were able to de-
fine a self-consistent classical noise spectrum SNV

(min)(ω),
which can self-consistently predict all of the already
observed decoherence, as verified numerically (Fig. 2). Now,
as a crucial check that this noise spectrum is an accurate
model of the underlying quantum environment, we also verify
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FIG. 3. Predictive power of the self-consistent noise model. As a crucial check that the developed self-consistent noise model SNV
(min)(ω) is

an accurate model of the underlying bath, we demonstrate that it is predictive even under new qubit dynamics, namely, in (a) higher-frequency
CPMG dynamics at ωm = 0.183 MHz (not used to inform SNV

min) as well as (b) Walsh dynamics of sequency 5, while R-E-noise spectroscopy
fails (S1,2). (c) Walsh filter function. The Walsh filter | f̃W (k,λ)(ω)|2 at time point T = Nλ = 120 μs (gold) for sequency k = 5 (cycle length
λ = 8τ ) is plotted against the noise spectrum directly measured from the data SNV

CP (ωm ) and its fit (blue). The filter function is scaled to more
easily visualize which parts of the noise spectrum it is sampling. Here the filter was numerically generated by taking its finite-time Fourier
transform of the Walsh time-domain function [37].

that it is predictive of new qubit dynamics. We first verify
that SNV

min(ω) can predict new CPMG dynamics probing order-
of-magnitude-higher frequencies [Fig. 3(a)]. Then, to probe
a unique qubit dynamics, we perform a Walsh dynamical
decoupling sequence of sequency 5 with asymmetric qubit-
bath evolution times [38,39], distinct from Ramsey, echo, or
CPMG sequences. Despite the more complicated dynamics
[Fig. 3(c)], we verify that SNV

(min)(ω) is predictive [Fig. 3(b)].

B. X electronic spin qubit

Having successfully characterized the noise experienced
by the NV electronic spin, we turn to examine the noise of
a nearby electronic spin X. Characterized in earlier works
[6,40,41], the X spin is an electron-nuclear spin defect (each
of spin 1/2) that is optically dark (at least with respect to
532-nm NV illumination). It is located several nanometers
away from the NV with coupling strength d ≈ 60 kHz [6]. To
achieve unitary control of the dark electronic spin X (S, I =
1/2), we apply a two-tone microwave drive resonant with each
of its hyperfine transitions (AX

zz ≈ 26.4 MHz at the given field
orientation [6]). The Hartmann-Hahn protocol is exploited to
achieve initialization and readout via the NV center [6].

As the NV and X spins are in physical proximity of the
same quantum environment, one may naively expect to find a
self-consistent classical noise model for X, similar to that of
the NV. Instead, while we observe a monotonic Gaussian de-
cay as expected under X Ramsey dynamics, small-amplitude
oscillations appear under echo [Fig. 4(a)] as well as multiple
CPMG experiments. The presence of oscillations is incon-
sistent with either single-qubit dynamics or the exponential
decay expected from an effectively classical bath, the prereq-
uisite for a classical noise model.

To identify the cause of observed oscillations, we hypothe-
size the presence of near-resonant and interacting (NRI) spins
around X (Fig. 1). This behavior is indeed reminiscent of
spin echo double resonance (SEDOR) experiments, where the
control (π ) pulses drive both spins to refocus their interaction,
leading to signal oscillations at the frequency set by the inter-
action strength [6,14,42–48].

To experimentally verify the presence of this complex
spin environment, we study the echo dynamics of X at
varying driving strengths. Full-amplitude oscillations are not
expected, since NRI spins are not driven on-resonance and
do not experience a perfectly refocusing π pulse. Still, as
the X Rabi frequency �0 is increased beyond the detuning
of the kth NRI spin from resonance, |�0| > |ωk − ω0|, we
expect progressively effective driving and thus SEDOR os-
cillations. Conversely, at sufficiently weak Rabi frequency
|�0| � mink |ωk − ω0|, as only the X qubit should be driven,
we expect a monotonic decay. To test this prediction, we mea-
sure the nominal X echo at two Rabi frequencies: High, �h =
2.5 MHz, and low, �l = �h/10. At �l we observe monotonic
decoherence, without oscillations, as expected of single-qubit
dynamics in the presence of noise, while oscillations are only
visible at �h [Fig. 4(a)].

Interestingly, the CPMG dynamics at varied driving
strengths also reveals the effect of the NRI spins. As suggested
by prior experimental works [14,48,49], the presence of mul-
tiple NRI spins with different couplings can lead to faster
decoherence when increasing �0 (since more spins become
affected by the driving), effectively increasing the size of the
spin environment by refocusing their interactions. Performing
X CPMG experiments, we indeed observe T2(�h) < T2(�l )
[Fig. 4(b)]—despite Fπ (�h) > Fπ (�l ) (Appendix A). Cru-
cially, in the absence of NRI spins we expect the opposite
behavior, as stronger driving yields higher-fidelity π pulses
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FIG. 4. Quantum bath of dark electronic spin X. By investigating the spin echo (a) and CPMG (b) dynamics with varying driving (Rabi)
strengths �, we verify the quantum nature of the local environment of the X spin, realized by the presence of near-resonant and interacting
(NRI) spins. (a) X echo dynamics reveals the presence of NRI spins: At sufficiently high Rabi strength �h, small-amplitude oscillations are
observed, akin to SEDOR and DEER experiments (the curve is a guide to the eye). However, at sufficiently low Rabi strength �l , the monotonic
decay expected under single-qubit echo is recovered (the curve shows the fit to decays under SX

0,1 which overlap). (b) X CPMG dynamics further
reveals the effect of NRI spins, where typically one expects to observe higher coherence time T2 with increasing Rabi power � due to higher
control π -pulse fidelity Fπ (�) (Appendix A). However, here we observe the opposite behavior, where the higher Fπ leads to lower T2, because
the larger �h recouples the X spin to a larger electronic-spin environment. (c) Finally, while the quantum bath precludes a classical noise
model, by suppressing the X spin interaction with the quantum NRI spins—which is possible by suppressing �—we successfully recover a
classical model for the X qubit over a restricted frequency range, following the same protocol as discussed with the NV.

and can cancel the couplings to a broader range of noise
sources.

Thus our experimental evidence strongly indicates the
quantum nature of the environment of X. Still, given the
proximity of NV and X spins, we expect both spins to interact
with a largely similar environment, for which it was possible
for the NV to develop an effective classical model (indeed,
the NV π pulses are detuned by hundreds of megahertz
due to its zero-field splitting). We thus attempt to recover
a classical noise model for X, by suppressing the quantum
character of the spin environment by sufficiently reducing the
Rabi power. Using �l to perform Ramsey and echo experi-
ments, we obtain two minimal models, SX

0 (ω) = Ss(ω|bX
s , τX

s )
and SX

1 (ω) = Ss(ω|bX
s , τX

s ) + SX
w . Following the same proto-

col as for the NV, we measure CPMG decays to verify which
model is predictive. Despite the severely restricted bandwidth,
SCP(ωm � �l ), we are able to confirm the validity of SX

1 ,
while ruling out SX

0 [Fig. 4(c)].

IV. DISCUSSION

Our results point to a protocol for quantum sensing of
complex many-body environments with nanoscale spatial res-
olution, achieved by comparing the common noise sources
shared by nearby n � 2 qubits. As a proof-of-principle
demonstration, here we compare the dominant noise acting
on both qubits, Ss(ω|b, τc), arising from the quasistatic many-
body electronic spin bath. This reveals local bath properties
with nanoscale spatial resolution, not attainable by conven-
tional NMR or an ensemble of single-qubit sensors. First, the
characteristic qubit-bath interaction strength b reveals an esti-
mate of the local spin density (Appendix C 1), from which we
estimate f NV ≈ 0.69(2) ppm, f X ≈ 0.22(2) ppm from SNV

s

and SX
s , respectively. Not only is this within the order of

magnitude of the expected defect density given sample im-
plantation (Appendix B), but also importantly, the accurate
estimate of b reveals significant variation in the local spin
density, even across nanometer length scales. Similarly, the
characteristic timescale of the noise process τc probes locally
the (qubit-independent) bath correlation time, determined by
its internal evolution [14,50,51]. For two qubits interacting
with the same bath, we expect τNV

c = τX
c . Interestingly, we

observe instead a significant discrepancy, τNV

τX = 6(4), reveal-
ing that the spin bath properties at the nanoscale can vary
significantly. Interestingly, this also contradicts a naive as-
sumption of a bath of homogeneous spin species, for which we
expect (bτc)NV ≈ (bτc)X, even accounting for varying spatial
density as naively both b ∝ f and τ−1

c ∝ f [26,49,52]. Going
further, we can attempt to explain the origin of the significant
variations in (b, τc) at different spatial positions by a simple
model. The observed stronger qubit-bath coupling b for the
NV, but with slower bath fluctuation τc than for X, suggests
the presence of a denser bath around the NV, but with con-
siderable disorder (e.g., due to inhomogeneous spin species),
which hinders energy-conserving spin flip-flop. Conversely,
despite the lower density around X, there exist spins suffi-
ciently nearer in resonance to result in faster flip-flops. This
is in agreement with our discovery of NRI spins around X.
Thus one can envision that, given a spatial network of qubits at
locations �x j (or a qubit on an atomic force microscope (AFM)
tip [34,53]), by measuring (b, τc) as a function of �x it becomes
possible to map out an unknown complex many-body spin
environment, which reveals not only (quantitatively) the local
spin density and effective decoherence time of the local spin
bath but also (qualitatively) whether locally it is composed of
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a homogeneous spin species with either uniform or spatially
varying density.

V. CONCLUSION AND OUTLOOK

In this paper, we demonstrate a protocol to build a noise
model that is not only self-consistent but also even predic-
tive of qubit dynamics under varying controls, by reconciling
complementary approaches to quantum noise spectroscopy.
Crucially, our method is strictly more accurate and robust
compared with existing techniques, as it succeeds even when
other methods fail to yield the correct noise model. Thanks
to its simplicity and the potential to develop a practical yet
predictive noise model of quantum devices, our method can
find application in various qubit platforms, further revealing
interesting physical insights peculiar to each platform.

Extensions to multiqubit devices enables applications not
only in quantum sensing but also in quantum device charac-
terization. Indeed, of significant interest is the characterization
of correlated noise between qubits, which has implications
for not only development of high-fidelity multiqubit (en-
tangling) gates, but also practical realizability of quantum
error-correction protocols [54–57]. Our work contributes to
the characterization of correlated noise, not only as common
noise between qubits contributes to correlated noise, but also
more importantly as accurate knowledge of individual-qubit
noise is a prerequisite to reveal correlations [54]. As already
demonstrated in this paper, the accurate characterization of
noise at the single-qubit level can reveal a markedly nonuni-
form noise profile across a multiqubit processor (surprisingly,
even across nanoscale distances), of which certain novel
quantum protocols such as quantum error-corrected sensing
schemes [58] can take advantage.

As a final remark, the absence of a self-consistent clas-
sical model heralds that the underlying bath is sufficiently
complex, either of quantum or of non-Gaussian nature. In
our system, we discover a quantum (possibly coherent) group
of near-resonant electronic spins interacting with the X spin.
Motivated by recent pioneering work in engineering larger
quantum registers of electronic spins [48], we note that the
system as observed here opens the door to building and
controlling even larger electronic-spin registers—beyond the
coherence of the central qubit.
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APPENDIX A: CHARACTERIZATION
OF π-PULSE FIDELITY Fπ

In the main text we showed that the decay rate of the
X spin under dynamical decoupling increased with the driv-
ing strength. As we expect that the decay rate should have
contributions from the qubit-bath interactions during the free
evolution and from the pulse imperfections,

T −1
2 = T −1

2,b + γc(Fπ ),

we need to evaluate the driving fidelity (here the π -pulse
fidelity Fπ ) in order to find T2,b, which characterizes the noise
due to the bath alone. In general, for imperfect control, Fπ <

1, there is an additional decay due to imperfect pulses, which
is detrimental when performing noise spectroscopy, since it
might mask the correct shape of the noise spectrum.

Here, we use a simple method to experimentally char-
acterize the π -pulse fidelity Fπ = |Tr[U †

π R]|/2, which is
particularly useful in the presence of strong noise (1/T ∗

2 � 1).
Here, Uπ is the ideal π -pulse unitary, and R is the experi-
mental one. For a single qubit, an imperfect π -pulse rotation
of duration L might be due to a miscalibrated or fluctuat-
ing driving amplitude �0 or to an offset from resonance,
δ. The actual evolution is then R = e−i(�0σx+δσz )L/2, yielding
Fπ = 〈|( �0

�
) sin( �L

2 )|〉, where � = √
(�0 + δ). If the main

pulse error arises from an off-resonance Hamiltonian, a larger
driving strength will lead to better fidelity. However, if there
are imperfections in the Rabi driving, typically larger driving
results in larger deviations and thus lower fidelities.

The experimental sequence we use to estimate Fπ is simply
a series of N spin flips, realized by (imperfect) π pulses,
applied to an initial population state ρ0 = 1

2 (1 + β0σz ). Im-
portantly, each pulse is separated by interpulse delay τ � T ∗

2 ,
in order to ensure that any qubit coherence has decayed before
the next π pulse is applied, i.e., 〈σx(y)〉 = Trρσx(y) → 0, while
the polarization 〈σz〉 should be ideally maintained. In other
words, at each cycle of unitary π rotation R and coherence
decay, the state evolves as

ρ = Rρ0R† = 1
2 (1 + β0RσzR

†)

= 1
2 (1 + β0�n.�σ ), ||�n|| = 1

τ>T ∗
2−−−→ 1

2 (1 + β0nzσz ).

Then, the expectation value 〈σz〉 = β0nz yields the fidelity,
nz = TrσzRσzR† = 1 − 2F 2

π . For a more precise estimate, we
vary the number of π pulses, so that after N cycles the z
measurement yields 〈σz(N )〉 ≈ β0nN

z . Then, fitting the exper-
imental data 〈σz(N )〉 to β0(−nz )N , one can directly estimate
Fπ = √

(1 − nz )/2. Empirically, because τ ≈ 2T ∗
2 suffices to

ensure full decay of coherences, the method is useful for
qubits in strong noise environments.

Figure 5 shows that the control fidelity is better for higher
driving strengths, as expected when off-resonant effects (in-
cluding from noisy fields) are the main source of error. Then,
we would also expect that higher fidelity pulses would also
lead to slower decay. Surprisingly, we find, however, that the
overall measured decay time T −1

2 (�h) > T −1
2 (�l ) is shorter

for higher-power driving, even if F X
π (�h) > F X

π (�l ) (Fig. 5).
This again indicates that the noise from the bath T −1

2,b depends
on the choice of driving power �X

0 , and in fact increases
with �X

0 , while we can exclude the scenario where the higher
driving power results in a reduced fidelity of the control
pulses. This observation is in agreement with our discovery
of the NRI spins from the spin echo dynamics in the main
text, consistent with the known SEDOR effect, whereby either
increasing the qubit driving power or selectively recoupling
additional resonant spin groups resulted in stronger decoher-
ence of the central qubit [14,48,49].
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FIG. 5. Characterization of π -pulse fidelities Fπ . The measured
NV (red squares) and X (circles) π -pulse fidelities Fπ are shown.
The NV is controlled by a single-tone π pulse resonant with the
ms = {0,−1} transition and strength �0 = 6.76 MHz. By fitting the
signal to 〈σz(N )〉 = β0(−nz )N + c0, we extract Fπ = |Tr[U †

π R]|/2 =√
(1 − nz )/2 = 0.987(0) for the NV. On the other hand, the X spin

is modulated by a two-tone driving on resonance with the nuclear
hyperfine splitting, to effectively remove the nuclear spin degree
of freedom [41]. As expected, the control fidelity of the X spin is
higher at higher Rabi frequency �h = 10�l = 2.5 MHz: Fπ (�h ) =
0.992(2) (purple) > Fπ (�l ) = 0.955(7) (blue).

APPENDIX B: PHYSICAL ORIGIN OF DOMINANT
NOISE FOR ELECTRONIC SPINS

The characteristics of the experimental system used in this
paper (already introduced [6,40,41]) provide insights into the
physical origin of the observed noise. The NV center was
created via implantation of 14 keV 15N ions with a dose of
1013 ions/cm2 through a poly(methyl methacrylate) (PMMA)
mask with 30-nm-diameter apertures deposited on top of a
SiO2 mask (to mitigate channeling effects) on an isotopically
purified 12C diamond layer [6]. The relatively high implanta-
tion dose is expected to yield a high nitrogen concentration
[N] and, due to limited N-to-NV conversion efficiency (∼5%
under annealing at 800 K), only a few NVs per implantation
spot. We note that of the >150 spots surveyed, only three
(including the one investigated) had only one single NV, in-
dicating potentially a smaller [N] or conversion efficiency.
The implantation energy is expected to give an average depth
of ∼20 ± 7 nm [6] [based on Stopping and Range of Ions
in Matter (SRIM) calculations], thus reducing, but potentially
not eliminating, surface effects. Therefore NV decoherence is
expected to be limited by the electronic spin bath [26] formed
predominantly by N-related spin defects, with possible addi-
tional defects introduced from the mask or from the surface.
This is consistent with our observation that the dominant
noise experienced by the NV is given by a slow-OU noise
Ss, characteristic of a quasistatic many-body electronic spin
bath observed in Refs. [12,13,26]. The spin bath observed in
our sample is, however, more complex than in these previous
works, and our ability to probe it with two distinct spin probes

a few nanometers apart provides additional insight into the
bath properties and dynamics.

First, the double-OU noise Ss + S f observed for the NV
suggests that there exist two distinct groups of electronic
spin baths, distinguished by the timescale of their intrabath
dynamics τc. A similar double-OU model has been used in
an earlier work [34] to successfully describe the noise experi-
enced by shallow NV centers in diamond, with S f attributed to
the faster fluctuating spins on the surface. A similar scenario
could describe our diamond, with the deeper NV resulting
in the smaller b f � bs, while the observed (bf , τ

f
c ) agree

within an order of magnitude of those reported in Ref. [34].
In our sample, the NV still interacts more strongly with the
bulk spin bath that we can probe now with nanoscale spa-
tial resolution—using another controllable electronic spin (X)
several nanometers away from the NV.

Naively, due to the spatial proximity of NV and X spins,
one may expect a largely similar noise experienced by both
electronic spins. Surprisingly, we discover a local quantum en-
vironment around X, which precludes a classical description,
realized by a group of near-resonant and interacting (NRI)
electronic spins. Still, by sufficiently suppressing the inter-
action between X and NRI spins, we uncover the underlying
dominant slow spin bath SX

s , as reported by the NV. The results
highlight strong variations of the spin environment at the
nanoscale (see Sec. IV and Appendix C), further confirming
the need for multiqubit noise spectroscopy.

APPENDIX C: SPIN BATH PROPERTIES DERIVED
FROM THE OBSERVED NOISE SPECTRUM

In the main text, we modeled the noise spectrum with a sum
of Ornstein-Uhlenbeck (OU) noise processes, each given by
an autocorrelation 〈B(T )B(0)〉 = b2e−T/τc , fully characterized
by two parameters (b, τc). Here we want to show how such a
model can be related to the physical characteristics of spin
baths.

1. Local spin density from noise strength

The first parameter, b2 = 〈B2(0)〉, describes the noise
strength. In the case of dephasing of a central qubit via the
magnetic dipole interaction Hint = Sz

∑N
k AkIk

z to other spins,
b can help estimate the local spin density. The dipolar cou-
pling strength Ak between the central and kth spin is Ak =
μ0γeγk h̄

4πr3
k

(1 − 3 cos2(θk )), with γe(k) being the gyromagnetic ra-

tio of the central (kth) spin, rk being the interspin distance
between the central and kth spins, and θk being the polar
angle between �rk and the external magnetic field (assumed to
be aligned with the zero-field splitting of the NV). Here we
assume for simplicity γk = γe.

By defining the noise Hint = BSz with B = ∑N
k AkIk

z and
assuming the bath to be at thermal equilibrium, ρB = 1/2N ,
we can replace the bath spin-1/2 operators with random vari-
ables and define the effective spin-qubit Hamiltonian Hint =
BSz with the random variable B = ∑N

k AkIk
z characterized by
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b2,

b2 = 〈B2(0)〉

=
〈∑

k

A2
k1/4 +

∑
k �=l

AkAl I
k
z I l

z

〉

= Tr

[
ρB

(∑
k

A2
k1/4 +

∑
k �=l

AkAl I
k
z I l

z

)]

=
N∑
k

1

4
A2

k . (C1)

We remark that b2 is the second moment M2 = (�ω2)SI of the
dipolar broadening by unlike spins [59].

In the limit of a diluted spin bath ( f � 1), we can replace
the sum with an integral,

b2 =
∫

1

4
A2(�r)ρ(�r)d3�r,

where A(�r) = μ0γ
2
e h̄

4πr3 (1 − 3 cos2 θ ) and we introduced the spin
density ρ (cm−3) [or atomic fraction f (ppm)]. We can thus
estimate ρ from the experimentally measured decoherence
rate b,

b2 = μ2
0γ

4
e h̄2

4(4π )2

(
16π

15

∫ R

rmin

ρ

r4
dr

)
≈ 4πμ2

0γ
4
e h̄2

(4π )215

ρ

r3
min

(C2)

for sufficiently large R3 � r3
min. Here, rmin should not be taken

as the lattice constant, but instead it represents the typical
interspin distance in the sparse distribution of spins in the host
lattice. We can assume that the probability of finding n spins
in a volume of radius r is given by a Poisson distribution of
mean 4πr3ρ. Then, following Ref. [60], rmin can be taken
as the distance at which the probability of finding no other
spin is 1/2, i.e., p(x = 0) = e−4πρr3

min/3 = 1/2, which yields
rmin ≈ 0.55ρ−1/3. We finally have

b2 = 4πμ2
0γ

4
e h̄2

(4π )215

ρ2

0.553
≈ 1.69 × 1010 f 2 (rad/s)2, (C3)

from which we can estimate f ( f = ρ (cm−3 )
1.77×1017 (cm−3 ) ppm) from

the experimental knowledge of b. Our estimate, of b ≈ 0.13 ×
106 f rad/s, compares favorably with previous numerical re-
sults [26], which found b ≈ 0.78 × 106 f rad/s.

We remark that this estimation of the density from the
dephasing time (yielding a linear relationship, T ∗,−1

2 ∝ f )
is limited to sparse density f < 0.01 [26], while for suf-
ficiently dense systems ( f > 0.1) one expects T ∗,−1

2 ∝ √
f

[59]. Indeed, in that case one can approximate the sum
in Eq. (C1) as

b2 =
N∑
k

A2
k/4 = f

′∑
k

A2
k/4 ≡ f A2

tot,

where the prime indicates the sum over all lattice sites. For
a known lattice structure in either one dimension (1D), 2D,
or 3D, it is possible to (numerically) calculate the convergent
sum A2

tot = ∑′
k A2

k/4, leaving f as the only unknown. Simi-
larly, even for sparse systems, one can evaluate the integral
over other geometries, such as a 2D layer of surface spins
[34,35].

2. Disorder strength in the local bath of two spins

The autocorrelation time τc, also called the correlation
or “memory” time of the bath, describes the characteristic
timescale of the noise fluctuation and is thus expected to be
independent of the spin qubit used to probe the environment.

Even for a generic (quantum) bath, The knowledge of τc

may be of practical interest for a generic (even quantum) bath,
e.g., to establish its Markovian character (indicated by τc →
0), which allows modeling the qubit open system dynamics
via a Lindblad master equation; or to investigate sources of
correlated noise in a multiqubit device, more probable for
long-correlated noise sources, which is more difficult to an-
alyze and correct.

For a spin bath, the autocorrelation function 〈B(T )B(0)〉
describes the properties of the field generated by the spin bath
configuration, B(T ) = eiHBT B(0)e−iHBT . The correlation time
τc, then, characterizes the timescale over which B(T ) loses
memory of its initial state B(0) = ∑

k AkIk
z , due to evolution

under its internal dipolar Hamiltonian HB, which leads to, e.g.,
spin flip-flops within the bath [51]. The correlation function
can be often written as an exponential decay, 〈B(T )B(0)〉 =
b2e−T/τc , with τ−1

c ≡ ∑
j>k R jk given by the total spin flip-flop

rate between all j, k spin pairs Rjk ∝ Ajk
�d

�2
d +δ2 [52]. Then, the

correlation time depends not only on the spin density, Ajk ∝
f , but also on the distribution of the spin frequencies. Indeed,
the flip-flop rate Rjk is suppressed by frequency differences δ

between each spin pair. Whereas δ is small for a homogeneous
spin species, different hyperfine interactions (with strength on
the order of megahertz) can severely suppress the flip-flop
via dipolar coupling (approximately kilohertz). Even dipolar
coupling to other electronic spin species or to nuclear spins
can quench the bath fluctuations [52,61].
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