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Quantum sensors such as spin defects in diamond have achieved excellent performance by combining
high sensitivity with spatial resolution. Unfortunately, these sensors can only detect signal fields with
frequency in a few accessible ranges, typically low frequencies up to the experimentally achievable control
field amplitudes and a narrow window around the sensors’ resonance frequency. Here, we develop and
demonstrate a technique for sensing arbitrary-frequency signals by using the sensor qubit as a quantum
frequency mixer, enabling a variety of sensing applications. The technique leverages nonlinear effects in
periodically driven (Floquet) quantum systems to achieve quantum frequency mixing of the signal and an
applied bias ac field. The frequency-mixed field can be detected using well-developed sensing techniques
such as Rabi and CPMG with the only additional requirement of the bias field. We further show that the
frequency mixing can distinguish vectorial components of an oscillating signal field, thus enabling
arbitrary-frequency vector magnetometry. We experimentally demonstrate this protocol with nitrogen-
vacancy centers in diamond to sense a 150-MHz signal field, proving the versatility of the quantum mixer
sensing technique.

DOI: 10.1103/PhysRevX.12.021061 Subject Areas: Quantum Information

I. INTRODUCTION

From environmental noise in qubit platforms [1–3] to
magnetism in condensed matter physics [4] and microwave
antennas [5–7], magnetic fields of interest span from dc to
GHz ranges. Quantum sensors such as neutral atoms
[8–10], trapped ions [11], and solid-state spins [12,13]
have made rapid progress in performance, yet have been
limited to standard sensing protocols, including Rabi
oscillation [14–17], and pulsed [18–21] and mixed dynami-
cal decoupling [22]. These protocols severely limit the
range of accessible frequencies to a narrow window around
the sensor’s resonance frequency or a low-frequency range
constrained by the control field amplitude. For example, the
accessible frequency range for solid-state nitrogen-vacancy
(NV) spins in diamond [23] is currently limited to a near-
resonant window around 2.87-GHz zero-field splitting or
below a few MHz. Notably, NV ensembles have not yet

been able to sense intermediate frequencies (50 MHz to
2 GHz) or ultrahigh frequencies (above a few GHz)
because of the challenges of achieving large static fields
and strong driving with the required homogeneity. Even for
single defects, avoiding large static fields while achieving
arbitrary-frequency vector magnetometry is desirable.
A strategy to overcome this constraint is to convert the

desired signal to the accessible frequency range of preex-
isting sensing protocols by classical frequency mixers [24].
However, these bulky devices can be an obstacle to deploy
quantum sensors and reduce their spatial resolution.
In this paper, we develop an integrated sensor and

frequency mixer based on the same quantum device by
exploiting virtual transitions between different Fourier
manifolds in periodically driven (Floquet) quantum sys-
tems. This creates the quantum analog of a frequency
mixer, which we dub quantum frequency mixing.
The synthetic ladder energy structure of Floquet systems

[25] yields rich dynamics and broad applications [26].
In quantum simulations, Floquet systems have become
versatile platforms for creating and characterizing exotic
states of matter such as time crystals [27,28], topological
phases [29–35], and quantum chaos [36], and Floquet states
have been exploited to characterize dynamical symmetries
[37,38], observe stimulated Raman transition [39], and
simulate long-range hopping [40]. In quantum metrology,
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Floquet spectroscopy has been developed to sense ac
magnetic field signals [20] and analyze spin systems
[41]. For example, Floquet systems can be used to amplify
weak signals by engineering spin-based masers [42,43],
with applications in dark matter searches [44,45]. When
driving with incompatible frequencies, the Floquet ladder
structure extends into higher dimensions, leading to even
more intriguing applications such as topological frequency
conversion [46–48]. Under multiple driving frequencies,
the dynamics of the quantum systems can be solved by
multimode Floquet theory [49–52]. However, most multi-
mode Floquet methods only analyze zero-frequency (on-
resonance) terms, which give rise to static effective
Hamiltonians. In this paper, we construct a theoretical
framework based on Floquet theory to derive an effective
frequency-mixed time-dependent Hamiltonian. This frame-
work allows us to identify the frequency modes that
dominate the dynamics and thus to build optimized pro-
tocols for frequency-mixer-based quantum sensing.
Importantly, our technique exploits well-known sensing

protocols, such as continuous (Rabi) and pulsed dynamical
decoupling, and expands these methods to a broader range of
frequencies via quantum frequency mixing. Moreover, we
extend our technique to enable arbitrary-frequency vector
magnetometry by taking advantage of differences in the
frequency conversions of transverse and longitudinal signal
components. We demonstrate ac vector magnetometry
exploiting nitrogen-vacancy centers in diamond. Quantum
frequency mixing not only broadens the capabilities of
quantum sensing, especially in extending the frequency
range, but also opens up more potential applications.
This paper is organized as follows. In Sec. II, we give an

intuitive picture of the main results of this work, including
the principle of quantum frequency mixing and its applica-
tion for quantum sensing. In Sec. III, we derive the effective
Hamiltonian of quantum frequency mixing. In Sec. IV, we
propose the protocol for sensing either transverse or longi-
tudinal signal fields with an arbitrary frequency. In Sec. V,
we discuss the strategy to improve sensitivities of these
sensing protocols. In Sec. VI, we propose the principle for
arbitrary-frequency vector ac magnetometry and perform a
proof-of-principle experiment with a NV center ensemble,
where we also characterize the sensitivity and discuss its
limitations. In Sec. VII, we discuss more potential applica-
tions and summarize the paper.

II. PRINCIPLE OF QUANTUM MIXER

Frequency mixing is commonly used in classical
electronics, where a frequency mixer or a multiplier
generate the sum and difference of the original frequencies
via a nonlinear electrical circuit [24]. The frequency
conversion brings a signal to the optimal operational range
of a device, allowing more efficient amplification, trans-
mission, or detection, and it remains a dominant feature of
radio reception and high-frequency oscilloscopes [24,53].

In quantum engineering, a classical frequency mixer up-
converts the control fields to the resonance frequency of
quantum devices to implement the desired quantum gates
[1,54]. In addition, the frequency conversion based on
general nonlinear effects in different materials [55–58]
is also useful for optical engineering [59,60], quantum
computation [61], quantum communication [62–64], and
quantum sensing [65].
Thus, one natural idea to probe a signal with a frequency

inaccessible by existing sensing protocols for a given
quantum sensor (usually a high-frequency one) is to
down-convert it by mixing with a bias ac field.
However, existing (classical) frequency mixing methods
are challenging in the context of quantum sensing, where
the target signal might be localized at the nanoscale (and
should be probed with a corresponding spatial resolution)
or it is itself quantum in nature: In either scenario, mixing
with a (bulky) classical apparatus might not be possible. We
tackle this challenge by introducing quantum frequency
mixing in quantum systems under multiple driving frequen-
cies, as summarized with a simple schematic in Fig. 1(a).
The idea is inspired by two-photon transitions mediated by
an extra state coupled to two levels of the qubit sensor [66],
but here we exploit a state in the Floquet space as the virtual
level. When mapping these transitions back to the Hilbert
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FIG. 1. (a) Quantum frequency mixing schematic. The effec-
tive Hamiltonian (red) emerges from the frequency mixing of
the signal (purple) and bias (green) Hamiltonians. The effective
Hamiltonian frequency ωT can be probed experimentally.
(b) Electron spin resonance (ESR) experiment to probe ωT
using an ensemble of NV centers. We sweep the bias field
frequency ωb to detect the presence of a signal field at
ωs ¼ ð2πÞ150 MHz, which is not in the accessible range of
typical sensing methods. We observe a resonance when the
down-converted frequency ωT ¼ �ðωs − ωbÞ matches the
probing drive amplitude at Ω ¼ ð2πÞ3 MHz.
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space, we find that the joint effect of two Fourier compo-
nents Hbeiωbt and Hse−iωst in the system Hamiltonian is
equivalent to an effective Hamiltonian with a frequency
ωb − ωs.
Based on the theory of quantum frequency mixing, we

propose a protocol for quantum sensing with an arbitrary-
frequency range. Given a signal with frequency ωs, we
apply a bias field with frequency ωb to convert the signal to
a new target frequency ωT ¼ ωb − ωs, which is in the
accessible frequency range of preexisting sensing proto-
cols, as shown in Fig. 1(a). Then, the frequency-converted
signal can be probed by well-known methods in ac
quantum sensing, including pulsed dynamical decoupling
[12] or continuous decoupling [15,67] (by detecting Rabi
oscillations [14] of either a population or a spin-locked
state [15,68]).
Figure 1(b) shows a simple experimental demonstration

of sensing via quantum frequency mixing with the Rabi
method using an ensemble of electronic spin qubits based
on NV centers in diamond. We assume that the achievable
Rabi amplitude is Ω ¼ ð2πÞ3 MHz at the qubit frequency
ω0 ¼ ð2πÞ2.2 GHz, making it impossible to detect a
150-MHz transverse signal directly. However, when we
simultaneously apply a bias field and sweep its frequency
ωb, we can observe an electron spin resonance when
ωb − ωs ¼ �Ω, demonstrating that we induced a down-
converted signal at frequency ωT ¼ ωb − ωs.
While it is easy to grasp the intuitive picture of quantum

sensing via quantum frequency mixing, evaluating its
performance and designing the most effective protocols
requires a more in-depth analysis of the dynamics, which
can be obtained by developing a modified multimode
Floquet theory. This more comprehensive picture further
provides insights enabling the development of a protocol
for arbitrary-frequency vector magnetometry.

III. MULTIMODE FLOQUET THEORY

In this section, we extend multimode Floquet theory to
derive a time-dependent effective Hamiltonian arising from
the mixing of different frequency modes. The precision of
the analytical approximation is then evaluated by numeri-
cally characterizing the evolution of a qubit under two
driving frequencies.

A. Theory

The dynamics of time-periodic Hamiltonians can be
solved by Floquet theory [25], where a time-dependent
Schrödinger equation ið∂=∂tÞΨðtÞ ¼ HðtÞΨðtÞ is simpli-
fied to a time-independent, infinite-dimensional, Floquet
matrix problem HFΦ ¼ λΦ. Here, λ is the eigenvalue of
the Floquet matrix representing the eigenenergy, and Φ is
the eigenvector comprised of Fourier components of
eigenstates ΦðtÞ satisfying ΨðtÞ ¼ e−iλtΦðtÞ. Besides fully
diagonalizing the Floquet matrix (with proper matrix

truncation) to numerically obtain the dynamics, the
Floquet-space evolution can be analyzed via time-indepen-
dent perturbation theory to highlight the contributions of
frequencies of interest [49–51]. However, these analytical
methods are typically constrained to zero-frequency (on-
resonance) terms. Alternate approaches to obtain time-
dependent effective Hamiltonians such as the Jacobi-Anger
expansion [69] require complicated analysis, limiting their
application in quantum sensing.
Here, we extend the perturbation theory approach such

that the nonstatic effective Hamiltonian due to the mixing
of different frequency modes can also be analyzed. In
comparison to typical perturbation theory methods where
higher-order Hamiltonian corrections arise from virtual
transitions through intermediate energy levels, here the
higher-order terms correspond to virtual transitions
between different Fourier manifolds in the multimode
Floquet space, which then give rise to frequency mixing
between different modes.
We start with a bimodal Floquet problem. For a

periodically driven quantum system with two frequency
modes ðωq;ωrÞ, the Fourier expansion of the Hamiltonian
in Hilbert space is

HðtÞ ¼
X∞
n¼−∞

X∞
k¼−∞

Hðn;kÞeinωqteikωrt; ð1Þ

where Hðn;kÞ ¼ ðHð−n;−kÞÞ† because the Hamiltonian HðtÞ
is Hermitian and ðn; kÞ denotes the frequency order. When
expressed in the bimodal Floquet space, the Hamiltonian
becomes a time-independent Floquet Hamiltonian,

HF ¼
X∞
n¼−∞

X∞
k¼−∞

Hðn;kÞ⊗Fq
n ⊗Fr

kþωqF
q
z þωrFr

z; ð2Þ

by introducing the ladder operator Fn ¼
P

m jmþ nihmj,
representing a hopping process from jmi to jmþ ni in
the corresponding dimension in Floquet space, and the
number operator Fz ¼

P
m mjmihmj, representing the lad-

der energy [49–51]. In other words, the Fourier compo-
nents give rise to equidistant energy levels (with energy
differences ωq;r) in Floquet space [see Fig. 2(a)]. By
applying a unitary transformation U ¼ eS with S anti-
Hermitian to block diagonalize the Floquet matrix HF in
Eq. (2) and then transforming back to the Hilbert space, we
obtain an effective Hamiltonian H̄ðtÞ describing the fre-
quency-mixed dynamics of the system such that

H̄ðtÞ¼
X
m;h

h
Hðm;hÞ þHðm;hÞ

ð2Þ þ �� �
i
eiðmωqþhωrÞt; ð3Þ

where the second-order term is

SENSING OF ARBITRARY-FREQUENCY FIELDS USING A … PHYS. REV. X 12, 021061 (2022)

021061-3



Hðm;hÞ
ð2Þ ¼ −

1

2

X
n;k

½Hðm−n;h−kÞ; Hðn;kÞ�
nωq þ kωr

; ð4Þ

with nωq þ kωr ≠ 0 (see a more detailed derivation in
Appendix A). For a general multimode Floquet problem,
all the results are valid by simply replacing the frequency
modes ðq; rÞ with ðq; r; s; � � �Þ.
Typically, the expansion in Eq. (3) is not only truncated

to the lowest nonzero contribution but also to retain only
the cross-resonance mωq þ hωr ¼ 0 terms, leading to a
time-independent effective Hamiltonian when transforming
back to Hilbert space [49–51]. In this work, we instead
include all the modes ðm; hÞ that dominate the system
dynamics, neglecting only fast oscillation (in the spirit of
the rotating wave approximation, or RWA):

mωq þ hωr ≪ ωl; ð5Þ

where ωl ∈ fnωq þ kωrjnωq þ kωr ≠ 0; Hðn;kÞ ≠ 0g are
all nonvanishing, high-frequency Fourier components of

the Hamiltonian. Thus, we retain a broader set of distinct,
mixed-up driving frequencies that determine the system
dynamics.
The theoretical results up to second-order expansion can

be summarized with a simple “mixer”-like schematic as
shown in Fig. 1(a), which provides an intuitive picture for
predicting and designing desired dynamics. The evolution
of a quantum system under two unmixed Hamiltonian
Fourier components H1eiω1t and H2eiω2t is equivalent—up
to the second-order expansion—to the dynamics given by a
“mixed” interaction with frequency ω1 þ ω2, given by

H1eiω1tþH2eiω2t⇒
1

2

�
1

ω1

−
1

ω2

�
½H1;H2�eiðω1þω2Þt: ð6Þ

For a general multimode problem, the effective
Hamiltonian up to second order can be calculated by
summing over mixed terms due to all frequency pairs,
where each pair generates an effective mixed Hamiltonian
according to Eq. (6).

B. Example

Assume we want to use a qubit sensor with energy ω0 to
detect a longitudinal signal field with Hamiltonian

Hsz ¼ Ωsz cosðωstÞσz; ð7Þ

with a frequency ωs that is outside the range accessible
by the sensor. To convert the signal frequency, we apply a
circularly polarized transverse bias field with Hamiltonian

Hb ¼
Ωb

2
½cosðωbtÞσx þ sinðωbtÞσy�: ð8Þ

In the absence of the signal field (Ωsz ¼ 0), the problem can
be solved exactly in a rotating frame defined by U ¼
e−iðωbt=2Þσz , yielding a time-independent Hamiltonian
ðω0 − ωbÞσz=2þΩbσx=2. Note that for Ωb≪ ðω0−ωbÞ,
to first-order perturbation theory, this reduces to evolving
under an energy shift Ω2

b=½4ðω0 − ωbÞ�σz (the ac Stark
shift) in the rotating frame. This simple approach cannot
be used to analyze the effect of the signal field, which is
still time dependent in the rotating frame, and we need
Floquet theory to tackle the problem. The bimodal Floquet
Hamiltonian—for modes ðωb;ωsÞ—is defined by the
Fourier components in the lab frame,

Hð0;0Þ ¼ω0

2
σz; Hð�1;0Þ ¼Ωb

2
σ∓; Hð0;�1Þ ¼Ωsz

2
σz; ð9Þ

with the operators σ� ¼ ðσx � iσyÞ=2. Each of these
components gives rise to transitions in the 2D energy-level
ladder of Floquet space shown in Fig. 2(a). Note that
Hð�1;0Þ is associated with the hopping Fb

�1 in the first
dimension, indicated by the green arrows, while Hð0;�1Þ is

Rabi
[H (+1,0), H (0,−1)]

(a)

(b) (c)

Floquet mode 1: 
Bias: 

(tunable “knob”)

Floquet mode 2:
Signal: 

Example: Rabi oscillation with a quantum mixer

ac Stark shift

H (+1,0),

FIG. 2. Characterization of the effective Hamiltonian
[Eq. (12)] predicted by Floquet theory, for a qubit of energy
ω0 ¼ ð2πÞ50 MHz and a signal field with frequency ωs ¼
ð2πÞ375 MHz and amplitude Ωsz ¼ ð2πÞ10 MHz. To achieve
quantum frequency mixing, we apply a bias field with Ωb ¼ Ωsz.
(a) Schematic showing the Rabi transition and the ac Stark shift
mediated by the virtual Floquet states. (b) Qubit population in the
j0i state at a fixed time t ¼ 1.875 μs as a function of the bias field
frequency. Similar to an electron spin resonance (ESR) experi-
ment, we observe a resonance at ωb − ωs ¼ ω0 þ δz (marked by
a dashed line). Note that the ac Stark shift here is obtained with a
more precise analysis in the rotating frame such that δz=2 ¼
Ω2

b=4ðω0 − ωbÞ (see Appendix B 1). (c) Population in j0i as a
function of time, at the resonance condition. Similar to a Rabi
experiment, we observe oscillations with a rate set by ΩTz.
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associated with hoppings in the second dimension, indi-
cated by the purple arrow. Focusing on quasienergy-
conserving second-order transitions, two effects emerge:
the ac Stark shift and the Rabi driving. The ac Stark shift is
due to transitions in the bias field space alone (Hð�1;0Þ).
Each transition changes the spin state (as they do not
commute), but the whole process conserves energy
[ω1 ¼ −ω2 ¼ ωb in Eq. (6)], giving rise to a simple energy
shift. Using Eq. (6), we can calculate

H̄δz ¼
1

ωb
½Hð1;0Þ; Hð−1;0Þ� ¼ −

Ω2
b

4ωb
σz ¼

δz
2
σz; ð10Þ

where δz is the ac Stark shift due to the bias field. Note that
the two hoppingsHð0;�1Þ do not introduce such a shift since
they leave the spin state unchanged (that is, they commute).
By exploiting transitions involving both Floquet dimen-
sions (the bias and signal field), we can induce a flip in the
qubit state, when ωb − ωs ≈ ω0. These transitions, due to
the two hoppings Hð1;0Þ, Hð0;−1Þ and the Hermitian con-
jugate process, yield a Rabi driving given by

H̄Ω ¼
�
1

2

�
1

ωb
þ 1

ωs

�
½Hð1;0Þ; Hð0;−1Þ�eiðωb−ωsÞt þ H:c:

�
¼ ΩTz½cosðωTtÞσx þ sinðωTtÞσy�; ð11Þ

where the mixed signal frequency isωT ¼ ωb − ωs, with an
amplitude ΩTz¼ðΩbΩsz=4Þðωb

−1þωs
−1Þ. When neglect-

ing fast oscillation terms in comparison to the energy gap
ω0, the effective Hamiltonian is given by

H̄ ¼ ω0

2
σz þ H̄δz þ H̄Ω: ð12Þ

We note that Eq. (6) applies to all frequency pairs,
irrespective of their sign, and thus we should also consider
terms proportional to ½Hð1;0Þ; Hð0;1Þ� that give rise to
oscillations at ωs þ ωb. However, these terms correspond
to fast oscillations, i.e., ωs þ ωb ≫ jωT j;ω0, and can be
neglected in Eq. (12), leaving only the term oscillating at the
target-sensing frequency. We also assume that the ampli-
tudes Ωb, Ωsz are much smaller than the mode frequencies
ωb, ωs, so the perturbation expansion can be truncated to
second order. Appendix B 1 contains a detailed derivation
and discussion of the optimal choice of reference frame.
The theoretical results in Eq. (12) can be validated by

simulating the system dynamics, sweeping the bias fre-
quency to determine ωT and sweeping the time to deter-
mine ΩTz. Indeed, we expect the spin to evolve on
resonance when ωT ¼ ωb − ωs ¼ ω0 þ δz, with a rate
set by the effective Rabi amplitude ΩTz, as shown in
Figs. 2(b) and 2(c), where we compare numerical simu-
lations to the behavior predicted by the Hamiltonian H̄
in Eq. (12).

IV. QUANTUM SENSING BY QUANTUM
FREQUENCY MIXING

With an understanding of quantum frequency mixing,
we can now devise various quantum-sensing protocols and
analyze their performance. A broad overview of potential
protocols is given in Table I, where we subdivide the
various scenarios as follows: (1) longitudinal (commuting
with the qubit sensor internal Hamiltonian) or transverse

TABLE I. Various quantum-sensing protocols based on quantum frequency mixing. All parameters are expressed in the rotating frame
defined by e−iðωt=2Þσz except for the signal and bias Hamiltonians, which are in the lab frame. The Bloch-Siegert shift Ω2=ð8ωÞ and
possible frequency mixing due to the spin-locking driving field in the Rabi measurement are neglected. In the notation of the
polarization of the signal, the bias, and the target (mixed) signal, σ� denotes a circularly polarized field with the form
Ω½cosðωtÞσx � sinðωtÞσy�, and σz;x denote linearly polarized longitudinal and transverse fields with the form Ω cosðωtÞσz;x. We note
that all frequency mixing terms potentially of use for quantum sensing are listed for completeness, and terms not satisfying the near-
resonance condition in Eq. (5) are neglected in practical calculations. Detailed derivations are included in Appendix B.

Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Signal (ωs, Ωs) σz σz σx σx σx
Bias (ωb, Ωb) σx σþ σx σþ σz
Target (ωT , ΩT) σþ or σ− σþ −σz −σz σþ or σ−
ωT ωb − ω� ωs or

ωb þ ω� ωs

ωb − ω� ωs ωb − ωs ωb − ωs ωs − ω� ωb or
ωs þ ω� ωb

δz=2 − Ω2
bω

2ðω2
b−ω

2Þ − Ω2
b

4ðωb−ωÞ − Ω2
bω

2ðω2
b−ω

2Þ −
Ω2

sxω
2ðω2

s−ω2Þ − Ω2
b

4ðωb−ωÞ −
Ω2

sxω
2ðω2

s−ω2Þ − Ω2
sxω

2ðω2
b−ω

2Þ

ΩT
Ωsz
4
ð Ωb
ωb−ω

∓ Ωb
ωs
Þ or

− Ωsz
4
ð Ωb
ωbþω ∓ Ωb

ωs
Þ

Ωsz
4
ð Ωb
ωb−ω

∓ Ωb
ωs
Þ Ωsx

2
ð Ωbω
ω2
b−ω

2 þ Ωbω
ω2
s−ω2Þ Ωsx

4
ð Ωb
ωb−ω

þ Ωb
ωs−ω

Þ Ωsx
4
ð Ωb
ωs−ω

∓ Ωb
ωb
Þ or

− Ωsx
4
ð Ωb
ωsþω ∓ Ωb

ωb
Þ

ϵ ¼ ΩT=Ωs Ωb=ð2ωsÞ Ωb=ð2ωsÞ Ωb=ωðωs ≪ ωÞ,
Ωbω=ω2

sðωs ≫ ωÞ
Ωb=ð2ωÞðωs ≪ ωÞ,
Ωb=ð2ωsÞðωs ≫ ωÞ

Ωb=ð2ωbÞ
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signal field; (2) longitudinal or transverse bias field with
linear or circular polarization. For each of the viable
combinations of these scenarios, we can use either con-
tinuous (Rabi) or pulsed (CPMG) sensing protocols to
sense the effective signal at ωT . In the following, we
examine in detail two exemplary cases.

A. Example 1: Sensing of longitudinal signals
by Rabi oscillations

We first describe the detection of a longitudinal signal
with frequency ωs [see Eq. (7)], where the goal is to
determine the amplitude Ωsz. Here, we use a qubit sensor
with (internal) energy H0 ¼ ω0σz=2 and apply a circularly
polarized bias Hb as described in Eq. (8). As shown in
Appendix B 1 a, the analysis is better carried out in the
rotating frame set by H0, where the Hamiltonian
H ¼ Hsz þ fHb. Here, the modified bias term is

fHb ¼
Ωb

2
½cosðω̃btÞσx þ sinðω̃btÞσy�; ð13Þ

where ω̃b ¼ ωb − ω0 is the shifted bias frequency in the
rotating frame. Under the assumptions ω̃b − ωs, Ωb;s ≪
ω̃b;ωs, we retrieve the results of Sec. III B, finding an
effective Hamiltonian H̄I [Eq. (12)] with a target signal
frequency ωT ¼ ωb − ω0 − ωs and amplitude

ΩTz ¼
ΩbΩsz

4

�
1

ωb − ω0

þ 1

ωs

�
: ð14Þ

As simulated in Fig. 2, the effective target signal field can
be used to drive the qubit evolution (Rabi oscillation) by
setting ωT ¼ δz ¼ −Ω2

b=ð2ω̃bÞ and thus estimate Ωsz.
Since the typical Rabi oscillation of the population state

j0i is limited by a short coherence time, a more robust
sensing protocol is achieved by adding an additional
driving field at frequency ω ¼ ω0ðþδzÞ with amplitude
Ω to perform Rabi sensing in the rotating frame [15,68,70],
where the Rabi oscillation of an initial spin-locked state
jþi is used to extract the target signal. Then, the target
frequency ωT can be simply set equal to Ω, and the
component of the effective target signal field orthogonal
to the spin-locking x direction will drive Rabi oscillations.
More precisely, we prepare the system initial state
to jþi and switch on a spin-locking microwave drive
ðΩ=2Þ½cosðωtÞσx þ sinðωtÞσy�, which is on resonance with
the static energy ω ¼ ω0, while at the same time applying
the target signal and bias fields. The effective Hamiltonian
in the rotating frame is then simplified to

H̄I ¼
Ω
2
σx þΩTz sin½ðω̃b − ωsÞt�σy; ð15Þ

where ΩTz; δz ≪ Ω, such that both the ac Stark shift
and the effective target signal term along x in Eq. (12)
are negligible. When the target signal frequency is on

resonance with the static energy in the rotating frame
jωb − ω0 − ωsj ¼ Ω, a Rabi oscillation is induced, which
can be obtained by monitoring the population of the initial
state jþi, yielding an oscillation signal SðtÞ:

SðtÞ ¼ PjþiðtÞ ¼
1

2
½1þ cosðΩTztÞ�: ð16Þ

The field amplitude Ωsz can then be extracted from the
signal oscillation frequency ΩTz through Eq. (14).
We note that, even in the more common case where the

bias field and spin-locking drive are both linearly polarized,
we obtain the same effective target signal in the rotating
frame, at the cost of additional ac Stark shifts and a Bloch-
Siegert shift induced by the counterrotating terms of the
bias and the spin-locking fields, respectively. These static
shifts have small amplitudes in comparison to Ω and can be
neglected (more details are included in both Table I and
Appendix B 1).

B. Example 2: Sensing of transverse signals
by pulsed dynamical decoupling

When the signal field is transverse, we can add either a
longitudinal or a transverse bias field to achieve quantum
frequency mixing. In the first case, the analysis is similar to
that described above by switching the bias and signal fields,
with results in Protocol 5 in Table I. Alternatively, we can
apply the same transverse bias field as in Eq. (8).
Assume a transverse ac signal field couples to the qubit

sensor with Hamiltonian

Hsx ¼ Ωsx cosðωstÞσx: ð17Þ

Then, the Hamiltonian in the rotating frame with the bias
field is HI ¼ H̃b þ H̃sx, where H̃b is the same as Eq. (13)
and H̃sx is

H̃sx ¼
Ωsx

2
½cosðω̃stÞσx þ sinðω̃stÞσy�

þ Ωsx

2
½cosð ˜̃ωstÞσx − sinð ˜̃ωstÞσy� ð18Þ

with shifted frequencies ω̃s ¼ ωs − ω0 and ˜̃ωs ¼ ωs þ ω0.
The dynamics under the Hamiltonian HI can again

be solved with our results in Eq. (6). Under the similar
assumptions ω̃b − ω̃s, Ωb;s ≪ ω̃b; ω̃s; ˜̃ωs, the mode domi-
nating the system dynamics is the frequency difference
ω̃b − ω̃s, yielding the effective Hamiltonian

H̄I ¼
δz
2
σz − ΩTx cos½ðωb − ωsÞt�σz; ð19Þ

where the static ac Stark shift due to both the bias and
signal fields is δz=2 ¼ −ð1=4Þ½Ω2

b=ω̃b þΩ2
s=ω̃s −Ω2

s= ˜̃ωs�,
and ΩTx is the target signal amplitude,
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ΩTx ¼
ΩbΩsx

4

�
1

ωb − ω0

þ 1

ωs − ω0

�
: ð20Þ

The initial transverse signal is converted to a longitudinal
signal with a (lower) frequency ωT ¼ ωb − ωs and a
reduced amplitude ΩTx. While this effective target signal
can be measured by the same rotating-frame Rabi protocol
described above under the resonance condition
jωb−ωsj¼Ω, it also naturally lends itself to pulsed
dynamical decoupling ac sensing methods [12]. Pulsed
dynamical decoupling sequences such as CPMG [18,71]
have previously been implemented in sensing both longi-
tudinal [12,19,72] and transverse signals [20], where a
series of π pulses is applied periodically with an interval τ
and only frequencies on resonance with the pulse train lead
to prominent state evolution. When jωb − ωsj ¼ π=τ, the
effective mixed signal in Eq. (19) is on resonance with the
CPMG sequence. Then, the amplitude of the transverse
component of the target signal can be obtained by meas-
uring the population in initial state jþi as a function of the
pulse number N ¼ t=τ, yielding

SðtÞ ¼ PjþiðtÞ ¼
1

2

�
1þ cos

�
4ΩTxt
π

��
: ð21Þ

V. SENSITIVITY TO QUANTUM
FREQUENCY-MIXED SIGNALS

In designing protocols for arbitrary-frequency (and
direction) sensing, the goal is to achieve the optimal
sensitivity, which is the minimally detectable field change
per unit time. The sensitivity η to the signal amplitudeΩs is
given by η ¼ σS

ffiffiffiffiffiffiffiffiffiffiffi
tþ td

p
=ðdS=dΩsÞ [13], where SðΩsÞ is

the measurement signal, σS is the signal uncertainty, and
t; td are the sensing time and sequence dead time, respec-
tively. By a careful choice of initial state and control
protocol, the signal can always be written as

S ¼ 1

2
½1þ e−χ cosðϵΩstÞ�; ð22Þ

where the factor χ is due to the signal decay, and the factor ϵ
sets the sensitivity degradation in comparison to typical
protocols without frequency mixing. Both of the factors are
dependent on the protocol chosen. In Table I, we review
possible protocols for sensing transverse and longitudinal
signals with quantum frequency mixing by different bias
fields. Since the factor ϵ is shown to be proportional to the
bias amplitude such that η ∝ 1=Ωb, the sensitivity can be
improved by increasing Ωb.
To further validate the theoretically derived target signal

amplitude and to explore the optimal sensitivity, we
simulate the rotating-frame Rabi oscillations for the sensing
of both longitudinal signals and transverse signals. The
Fourier spectrum of the Rabi oscillations, together with

the theoretical predictions, is shown in Fig. 3. In Figs. 3(a)
and 3(b), we simulate the Rabi spectrum as a function of
bias amplitude Ωb. When the bias amplitude Ωb is small,
the simulation matches the linear dependence predicted by
the theory with ac Stark shift terms neglected. When Ωb is
large, the simulated Rabi frequency deviates from a linear
dependence onΩb because of the larger frequency detuning
caused by the ac Stark shifts, and the simulation matches
the theoretical prediction when such shifts δz are taken into
account.
Thus, to apply a larger bias amplitude for better sensitivity,

one needs to extend the linear region by compensating the ac
Stark shift by tuning to the corrected resonance condition
ω ¼ ω0 þ δz, where δz ¼ δzðωÞ has a dependence on ω and
the solution to ω; δz can be obtained numerically for a given
Ωb. We then simulate the same bias amplitude sweep with
the corrected resonance conditions in Figs. 3(c) and 3(d) as a
comparison to Figs. 3(a) and 3(b). The linear region now
extends to a larger value of Ωb for both longitudinal and
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FIG. 3. Bias amplitude sweep. (a) Bias amplitude sweep for
longitudinal signal sensing. The intensity plot is the Fourier
spectrum of the Rabi signal PjþiðtÞ under different bias
amplitudes Ωb. The transverse bias field is circularly polarized
(same for other panels). The signal and bias frequencies are
fixed at ωs ¼ ð2πÞ375 MHz and ωb ¼ ωs þ ω0 − Ω. The signal
and spin-locking drive amplitudes are Ωsz ¼ ð2πÞ1 MHz and
Ω ¼ ð2πÞ3 MHz, and the spin-locking drive frequency is on
resonance with the qubit frequency ω ¼ ω0 ¼ ð2πÞ50 MHz.
Dashed lines are theoretical predictions. (b) Bias amplitude
sweep for transverse signal sensing. The parameters are similar
to panel (a) except for the resonance condition ωb ¼ ωs þΩ
and signal amplitude Ωsx ¼ ð2πÞ1 MHz. (c,d) Resonance cor-
rection with ac Stark shifts. The parameters are the same as in
panels (a) and (b) except for the frequency of the spin-locking
drive ω ¼ ω0 þ δz and the resonance condition ωb ¼ ωs þ ω −
Ω for the longitudinal signal, which cancels the ac Stark shift in
the rotating frame.
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transverse signals, which demonstrates that a large bias
amplitude, almost on the order of ωs, improves the sensi-
tivity. In principle, one can always use more orders of the
perturbation expansion for better resonance corrections to
expand the linear region further. However, when the value of
Ωb becomes even larger, the condition Ωb ≪ ω̃b ¼ ωb − ω
is no longer satisfied, and our theory based on the perturba-
tive Floquet approach starts to break down. Moreover, if the
bias amplitude can approach the same order of magnitude as
the signal frequency, preexisting protocols such as rotating-
frame Rabi magnetometry without frequency mixing [15,68]
can be utilized to perform the sensing task with better
sensitivity.
In conclusion, although it is difficult to completely

eliminate sensitivity degradation, this technique’s sensitiv-
ity can approach that of the preexisting traditional sensing
protocols without frequency mixing by increasing Ωb.

VI. ARBITRARY-FREQUENCY VECTOR
FIELD SENSING

Although the protocols described in Sec. IV are for
sensing transverse and longitudinal signals separately,
in this section we show that combining these protocols
yields a method for sensing a vector ac field with an
arbitrary-frequency range. By applying a single bias
field with tunable frequency ωb, the transverse and longi-
tudinal components of a vector ac field can be separately
measured under different resonance conditions through
Rabi or CPMG methods. While MHz–GHz vector mag-
netometry has been extensively studied and demonstrated
[14,68,73–80], our protocol paves the way to implement
vector ac magnetometry in the high-frequency range (larger
than a few GHz) and also serves as an alternative to existing
protocols in the intermediate-frequency range (between
50 MHz and 2 GHz).

A. Principle

Consider a target signal that is a linearly polarized ac
magnetic field that couples to a spin qubit in the lab
frame as

Hs ¼ ½Ωs⊥ðcos θσx þ sin θσyÞ þ Ωszσz� cosðωstÞ: ð23Þ

We apply a circularly polarized bias field in the x-y plane
with phase ϕb relative to the signal phase and calculate the
effective Hamiltonian in the rotating frame following
Eq. (6), which yields

H̄I ¼
δz
2
σz −ΩT⊥ cosðωTtþ ϕb − θÞσz

þ ΩTz½cosðω̃Ttþ ϕbÞσx þ sinðω̃Ttþ ϕbÞσy�; ð24Þ

where ωT ¼ ωb − ωs and ω̃T ¼ ðωb − ω0Þ − ωs, the ac
Stark shift is δz=2¼−ð1=4ÞðΩ2

b=ω̃bþΩ2
s⊥=ωT −Ω2

s⊥=ω̃TÞ,

and the effective target signal amplitudes ΩTz, ΩT⊥ are
given by Eqs. (14) and (20), respectively (with Ωs⊥
replacing Ωsx). As quantum frequency mixing yields
different frequencies and directions for the longitudinal
and transverse components of the target signal, they can be
independently detected under different resonance condi-
tions. The sensing task is facilitated by applying a resonant
control field ΩðtÞ such that the Hamiltonian in the rotating
frame approximately reduces to

H̄I ¼
ΩðtÞ
2

σx −ΩT⊥ cosðωTtþ ϕb − θÞσz
þΩTz sinðω̃Ttþ ϕbÞσy; ð25Þ

as shown in Fig. 4(a). Here, we can safely neglect the ac
Stark shifts and the effective term along x. The control field
amplitude is set to implement either a continuous or pulsed
sensing protocol [Fig. 4(b)].
Option 1: Rabi. We set the control field to be a

continuous (static) field in the rotating frame, ΩðtÞ ¼ Ω,
and tune the bias frequencyωb to sense the longitudinal and
transverse components. When ω̃T ¼ �Ω, the longitudinal
component [the σy term proportional to Ωsz in Eq. (25)] is
on resonance, and we can neglect the off-resonance trans-
verse component. Then, Ωsz can be obtained by measuring
the rotating-frame Rabi oscillation of the initial spin-locked
state jþi as shown in Eq. (16). To sense the transverse field
Ωs⊥, we instead set ωT ¼ �Ω, so the corresponding
frequency-mixed term [the σz term in Eq. (25)] is now
on resonance and can similarly induce a rotating-frame
Rabi oscillation.
In addition to measuring the amplitudes Ωsz and Ωs⊥,

Rabi oscillation can also reveal the transverse field direc-
tion θ by setting the initial state to j0i and controlling the
bias field phase ϕb [68] (see Supplemental Material [81]).
Under the resonance condition for the longitudinal com-
ponent ω̃T ¼ �Ω, the Rabi signal is then SðtÞ ¼ ð1=2Þ×
½1� sin ðΩTztÞ sinðϕbÞ�, which reveals the phase difference
between signal and bias. With control over ϕb, the trans-
verse direction θ can then be measured under the resonance
condition for the transverse component ωT ¼ �Ω, yielding
a Rabi signal SðtÞ ¼ ð1=2Þ½1 ∓ sin ðΩT⊥tÞ sinðϕb − θÞ�.
We note that similar methods of sensing the signal trans-
verse direction have been demonstrated in vector ac
magnetometry without frequency mixing [68].
Option 2: CPMG. Rather than applying a continuous

drive, we modulate ΩðtÞ by periodically applying π pulses
along the σx direction, with an interpulse delay τ. When
we set the bias frequency so that ω̃T ¼ �π=τ, the σy term
in Eq. (25) arising from the longitudinal field is on
resonance with the CPMG sequence while we can neglect
the transverse component. Measuring the population of the
initial state jþi as a function of the pulse number yields
SðtÞ ¼ ð1=2Þ½1þ cosð4ΩTzt=πÞ�, which allows extraction
of the longitudinal amplitude Ωsz. Performing the same
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experiment with ωT ¼ �π=τ yields SðtÞ ¼ ð1=2Þ½1þ
cosð4ΩT⊥t cosðθÞ=πÞ�, where we only retain the on-reso-
nance transverse field in Eq. (25) and extractΩs⊥. Note that
we can further extract θ (and the signal phase ϕs, which is
set to 0 here for simplicity) by controlling the bias field
phase. For both cases, the measured signals depend on the
relative phase ϕb and transverse direction of the target
signal, θ, which can then be obtained with control over ϕb.
We note that many other sensing protocols could also be

combined with quantum frequency mixing to broaden
the range of accessible frequencies. For example, the
Ramsey sequence [82] could be utilized to probe an ac
signal through the ac Stark shift. A careful analysis of their
performance requires not only the Floquet tools provided
here but also a study of coherence times and other practical
limitations that should be evaluated case by case.

B. Experimental demonstration

We use a NV ensemble in our home-built setup [70] to
demonstrate arbitrary-frequency vector magnetometry. NV
centers are solid-state defects in diamond with spin S ¼ 1

that provide sensitive magnetometry using optically
detected, magnetic resonance techniques. A static magnetic
field B0 ≈ 239 G is applied along the NV axis to lift the
degeneracy of the spin-1 ground states jmS ¼ �1i. The two
ground states jmS ¼ 0i and jmS ¼ −1i are used as the
logical j0i and j1i [83], with an energy gap of 2200 MHz.
A 0.4-W green laser beam is focused to a spot of about
30 μm for polarization and fluorescence readout addressing
about 1010 spins simultaneously. A 0.7-mm loop structure
on a printed circuit board (PCB) delivers linearly polarized
microwave (MW) and radio-frequency (rf) fields through

(d)

(c)

(e) (f)

(a) (b)

FIG. 4. Vector ac magnetometry. (a) Principle of vector ac magnetometry with quantum frequency mixing. (b) Experimental sequence.
(c) ESR measurement. The initialization and readout state is jþi. The control fields are set to Ω; π=τ ¼ ð2πÞ1 MHz, and the π pulse
length for CPMG is 0.167 μs. A linearly polarized signal field with frequency ωs ¼ ð2πÞ150 MHz, phase ϕs ¼ 0, and amplitude
Ωsx ¼ ð2πÞ15.3 MHz, Ωsz ¼ ð2πÞ10.4 MHz is applied as the target to be sensed. A bias field with tunable frequency ωb is applied with
amplitudes Ωb ¼ ð2πÞ15.3 MHz for the low-frequency range to sense the transverse signal and Ωb ¼ ð2πÞ3 MHz for the high-
frequency range to sense the longitudinal signal. For the Rabi method, the evolution duration is set to 3.5 μs (4 μs) for the low- (high-)
frequency range, while for the CPMG method, the pulse number is set to 6 (8) for the low- (high-) frequency range. (d) Time evolution
measurement under resonance conditions. The experimental parameters are the same as in panel (c), and the data are fit to the function
SðtÞ ¼ c0 þ 0.5c cosðΩTtÞe−t=T2ρρ þ ξt, where ξ is a phenomenological drift factor. (e) Signal amplitude sweep under different bias
amplitudes. The Rabi frequency for the longitudinal component sensing is measured as a function of signal amplitude under three
different bias field amplitudes. The slopes for the signal sweep under different bias amplitudes are plotted in the inset and fit to a linear
trend. Because of large error bars (not shown) for ultraslow Rabi oscillation measurements, the first two (three) data points for
Ωb=ð2πÞ ¼ 2ð1Þ MHz are not included when fitting the linear curve. (f) Measured coherence time T2ρρ. The time evolution induced by
the effective transverse and longitudinal signals is measured in the rotating frame. The signal amplitude is swept, while the other
experimental parameters are the same as the time evolution measurement in panel (d).
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two input channels. Three synchronized channels of an
arbitrary waveform generator (AWG) implement precise
control over the MW and rf. Since all fields are applied by
the same loop, we have Ωsy, θ≡ 0.
We apply a vector ac signal with frequency ωs ¼

ð2πÞ150 MHz and a bias field with tunable frequency
ωb for quantum frequency mixing (protocols 1 and 3 in
Table I). In Fig. 4(c), sweeping the bias frequency for both
the Rabi and CPMG methods reveals resonances at ωb ¼
ωs � Ω (π=τ) and ωb ¼ ωs þ ω0 � Ω (π=τ), corresponding
to the transverse and longitudinal components of the signal
field. Figure 4(d) shows the on-resonance time evolution
for both components. We further experimentally confirm in
Fig. 4(e) the linear dependence of the measured effective
amplitudes, ΩTz, ΩTx [Eqs. (14) and (20)], on both the
signal and bias amplitudes.

C. Performance: Decoherence and sensitivity

Although our setup is not optimized for high photon
collection efficiency and noise suppression, we evaluate the
performance of vector ac magnetometry using quantum
frequency mixing by characterizing the sensitivity. We use
the Rabi data in Fig. 4(d) to estimate the sensitivities ηz, ηx
for the longitudinal and transverse components,

ηz ¼
4σS

ffiffiffiffiffiffiffiffiffiffiffi
tþ td

p
cϵzγete−t=T2ρρ

≈ 7.2
μTffiffiffiffiffiffi
Hz

p ; ð26Þ

ηx ¼
2

ffiffiffi
2

p
σS

ffiffiffiffiffiffiffiffiffiffiffi
tþ td

p
cϵxγete−t=T2ρρ

≈ 7.6
μTffiffiffiffiffiffi
Hz

p ; ð27Þ

where for the calculation of ηz, ηx, σS ≈ 0.0094, 0.0095,
signal contrast c ≈ 0.01, 0.008, and coherence time
T2ρρ ≈ 7.5, 16.2 μs are obtained from the data fitting,
and we have the sensitivity reduction factors ϵz;x ≈ 0.01,
0.016, and the sensing time and dead time t; td ¼ 10; 50 μs
for both cases.
The ultimate projection-noise limit of the sensitivity

η ∝ 1=
ffiffi
t

p
[13] is set by the coherence time of the signal-

induced oscillation in the rotating frame, denoted by T2ρρ

[70]. The upper limit of T2ρρ is given by the coherence time
T1ρ of the state jþi in the absence of signal fields, which is
the spin-locked state for Rabi sensing or the optimally
protected state for CPMG. Theoretically, these coherence
times are associated with the power spectral density (PSD)
of stochastic magnetic fields due to various noise sources,
and their quantitative relation has been extensively studied
[21,68,70,84,85]. The coherence time of the rotating-frame
Rabi oscillation can be written as

1

T2ρρ
≈
1

4
SΩT

ð0Þþ1

8
SΩðΩTÞþ

3

4
SzðΩÞþ

5

8
Sxðω0Þ; ð28Þ

where Sj are the noise spectrum, with j ¼ x; z;Ω;ΩT

denoting the noise of the transverse and longitudinal spin

bath fields, the spin-locking drive field, and the effective
target signal field, respectively. In Fig. 4(f), we measure
T2ρρ as a function of the state oscillation frequency by
sweeping the signal amplitudes Ωs. The nonmonotonic
behavior was also observed in Ref. [70], which can be
explained by the presence of two competing noise terms:
SΩT

ð0Þ, which increases as ΩT , and SΩðΩTÞ, which
decreases as ΩT . Here, we assume the noise is dominated
by static and low-frequency components such as driving-
field inhomogeneities. However, under ideal conditions
when all control and bias fields are noiseless such that
SΩT

¼ SΩ ¼ 0, and Sxðω0Þ ∼ 1=T1 is small, the dominant
term is then only SzðΩÞ ∼ 1=T1ρ, which sets the limit of the
coherence time to the spin-locking coherence T1ρ. For the
experimental measurement depicted in Fig. 4(f), the spin-
locking coherence time approaches a timescale greater than
100 μs for the resonant driving amplitude Ω ¼ ð2πÞ1 MHz
(see a more complete discussion in Refs. [68,70]). Further
optimizations [13], such as improving the photon collection
efficiency [86], can improve the sensitivity and bring it
closer to the best performances reported in other sensing
protocols, with only a reduction factor ϵx;z difference.
The results in Fig. 4(f) show that the coherence time for

sensing a transverse component is better than the longi-
tudinal component and that the Rabi method provides
longer coherence times than CPMG. Here, we briefly
discuss possible reasons for this trend. Although dynamical
decoupling—in particular, the pulsed CPMG protocol—
can filter out static resonance shifts and inhomogeneities
(mainly σz terms), the cancellation is better when the
effective target signal Hamiltonian commutes with σz. In
addition, the bias fields for transverse and longitudinal
components are applied by rf and MW amplifiers with
different electronics elements, which give rise to different
noises. We note that similar results were also observed in the
comparison of various concatenated continuous driving
schemes, where the rotating-frame Rabi oscillations were
induced by modulation fields [70], though the noise spec-
trum model there already provided reasonable explanations.
Further identification of various noise sources—as

well as evaluation of the validity of different noise
models in continuous, pulsed, and even mixed sensing
protocols—will be of interest to achieve optimal protocols.
In particular, since quantum frequency mixing down-
converts a stochastic ac signal [term SΩT

ð0Þ in Eq. (28)]
in the same way as a coherent signal, this paves the way to
perform noise spectroscopy measurement with an arbitrary-
frequency range.

VII. DISCUSSIONS AND CONCLUSIONS

In this work, we theoretically derive an intuitive but
precise formula for calculating the time-dependent effective
Hamiltonian in multimode Floquet problems, which is
summarized as a quantum frequency mixing. Based on

GUOQING WANG et al. PHYS. REV. X 12, 021061 (2022)

021061-10



the theoretical results, we propose the first quantum-
sensing protocol with an arbitrary-frequency range, by
converting target signal frequencies to the dynamic range of
preexisting sensing protocols such as Rabi and CPMG. By
combining frequency conversions for the transverse and
longitudinal components of a target signal field, we
propose the first arbitrary-frequency vector ac magnetom-
etry. We then implement proof-of-principle experiments
with a NV center ensemble in diamond to demonstrate
vector magnetometry using both Rabi and CPMG methods
and validate the theory in detail. We discuss the sensitivity
of our setup and current limitations set by decoherence.
In practical applications, one potential limitation of our

sensing protocol is the degradation of the sensitivity as the
signal frequency increases. In addition to the method of
increasing the bias field amplitude discussed in Sec. V, one
can overcome such a limitation by properly choosing the
polarization options for the bias field. For example, when
the signal is transverse, choosing a longitudinal bias or a
circularly polarized transverse bias [87] gives an improve-
ment of the sensitivity by a factor of about ωs=ω0 in
comparison to a linearly polarized transverse bias. To
completely overcome such a degradation, one interesting
direction of future research is to integrate our mixer and
sensor with well-developed masers [42,43,88] to greatly
enhance the sensitivity and frequency range of the quantum
sensor simultaneously. Moreover, our protocol utilizes only
one orientation of NV centers and can be implemented
on single-NV setups [68], allowing for nanoscale spatial
resolution. Thus, our work paves the way to build a
quantum sensor with an arbitrary-frequency range, which
is also capable of being combined with other state-of-the-
art techniques to achieve high sensitivity [86,89], nanoscale
resolution [90,91], arbitrary-frequency resolution [92–94],
and k-space resolution [4].
Since the quantum frequency mixing protocols we

developed are generally applicable to any Floquet systems,
especially those under multiple driving frequencies, our
work leads to broad applications beyond quantum sensing.
In quantum control and quantum computation, multimode
Floquet systems provide platforms for studying geometric
phases and designing non-Abelian holonomic gates for
noise-resilient quantum computation [69,95]. In a quantum
simulation, the synthetic dimension of multimode Floquet
systems has been utilized to engineer desired Hamiltonians
[26] to study topological phases such as topological
frequency conversion [46,47] and anomalous edge states
[96]. In classical and quantum communications, quantum
frequency mixing provides an alternative way to perform
frequency modulation and frequency conversion [55–58]
along with other operations in the same system, which is of
interest for future study. Our theoretical calculations
combine the advantage of the precise prediction of dynam-
ics and physical insights, thus enriching the approaches
targeting the aforementioned applications and opening up

promising directions to develop more advanced protocols
for quantum applications.
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APPENDIX A: MULTIMODE FLOQUET THEORY

To derive a general framework to calculate the effective
Hamiltonian due to frequency mixing, we start with a
bimodal Floquet problem, which can be easily extended
to any multimode Floquet problem. A time-dependent
Hamiltonian with two frequency modes ðωq;ωrÞ,

HðtÞ ¼
X∞
n¼−∞

X∞
k¼−∞

Hðn;kÞeinωqteikωrt; ðA1Þ

can be written in the Floquet space as a Floquet
Hamiltonian

HF ¼
X∞
n¼−∞

X∞
k¼−∞

ðHðn;kÞ ⊗ Fq
n ⊗ Fr

k

þ ωqI ⊗ Fq
z ⊗ I þ ωrI ⊗ I ⊗ Fr

zÞ; ðA2Þ

where ðn; kÞ is a pair of integer numbers denoting the
Fourier expansion order, Fn ¼

P
m jmþ nihmj is the

ladder operator, and Fz ¼
P

n njnihnj is the number
operator. These operators satisfy the commutation relations
½Fz; Fn� ¼ nFn, ½Fn; Fm� ¼ 0 and FnFm ¼ Fnþm.
To find a solution in the form of a block-diagonalized

Floquet matrix, we first separate out a diagonal part Hð0Þ
F in

the Floquet matrix and use a constant ϵ ¼ 1 to denote the
order of magnitude, yielding

H0
F ¼ ωqF

q
z þ ωrFr

z; HF ¼ Hð0Þ
F þ ϵV; ðA3Þ

where the tensor product signs are eliminated for simplicity.
Then, we transform to a different frame using a unitary
transformation U ¼ eS, with S anti-Hermitian, to find an
effective Hamiltonian

H̃F¼eSHFe−S¼HFþ½S;HF�þ
1

2
½S; ½S;HF��þ…; ðA4Þ

which can be made approximately block diagonal by
eliminating the lowest-order, off-diagonal terms. We thus
expand S and the transformed Hamiltonian to different
orders of ϵ, S ¼ P

k ϵ
kSk and H̃F ¼ P

k ϵ
kH̃k, yielding
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H̃F ¼ Hð0Þ
F þ ϵðV þ ½S1; Hð0Þ

F �Þ

þ ϵ2
�
½S2; Hð0Þ

F � þ ½S1; V� þ
1

2
½S1; ½S1; Hð0Þ

F ��
�
þ…:

ðA5Þ

For simplicity, we assume that V is time dependent in the
Hilbert space and contains no terms commuting with the
diagonal part of the Floquet matrix. Then, V introduces an
off-diagonal term to first order, and to cancel it out, we set

V þ
h
S1; H

ð0Þ
F

i
¼ 0; S1 ¼ −Γ−1ðVÞ: ðA6Þ

Here, ΓðXÞ¼ ½X;Hð0Þ
F � and Γ−1ðXÞ¼−

P
k≠hPkXPh=ðEk

0−
Eh
0Þ is its inverse [97], where Pk is the projection operator

of the diagonal Floquet Hamiltonian, such that Hð0Þ
F ¼P

k PkEk
0. Using the relations

Γ−1ðFq
nFr

kÞ¼−
1

nωqþkωr
Fq
nFr

k; Γ−1ðFq
n0F

r
k0
Þ¼0; ðA7Þ

and V ¼ P
n;k H

ðn;kÞFq
nFr

k, we obtain an explicit expression
for S1:

S1 ¼
X

ðn;kÞ≠ðn0;k0Þ

Hðn;kÞ

nωq þ kωr
Fq
nFr

k; ðA8Þ

where the pairs ðn0; k0Þ satisfy n0ωq þ k0ωr ¼ 0; that is,
they denote the resonance condition. We now have the
relation

½S1; V� þ
1

2

h
S1;

h
S1; H

ð0Þ
F

ii
¼ 1

2
½S1; V�:

Then, the second-order correction is

H̃ð2Þ
F ¼

h
S2;H

ð0Þ
F

i
þ1

2
½S1;V�

¼
h
S2;H

ð0Þ
F

i
−
1

2

X
m;h

X
ðn;kÞ≠ðn0;k0Þ

½Hðm−n;h−kÞ;Hðn;kÞ�
nωqþkωr

Fq
mFr

h:

ðA9Þ

In Ref. [52], a projection operator simply eliminates

½S2; Hð0Þ
F �, but there, the summation was restricted to

on-resonance terms only, ðm; hÞ ¼ ðn0; k0Þ. Here, we
follow a slightly different route, where the second term

in Eq. (A9) is the same expression as Λð2Þ
F in Ref. [52] but

with the sum not restricted to n0, k0. We can now divide this
term into two parts such that

H̃ð2Þ
F ¼

h
S2; H

ð0Þ
F

i
þW þ H̄ð2Þ

F ; ðA10Þ

where

W¼−
1

2

X
m;h∉hm;hi

X
ðn;kÞ≠ðn0;k0Þ

½Hðm−n;h−kÞ;Hðn;kÞ �
nωqþkωr

FmFh; ðA11Þ

H̄ð2Þ
F ¼ −

1

2

X
hm;hi

X
ðn;kÞ≠ðn0;k0Þ

½Hðm−n;h−kÞ;Hðn;kÞ �
nωq þ kωr

Fq
mFr

h; ðA12Þ

where the summation for H̄ð2Þ
F is restricted to the indices

hm; hi labeling only the non-negligible terms (e.g., zero
frequency, on resonance, and low frequencies that are picked
up by the sensing protocol), and W is the complementary
term. We can now use S2 to cancel out W, by setting

½S2; Hð0Þ
F � þW ¼ 0: ðA13Þ

If we keep all terms in Eq. (A9) (and neglect their effects
later, e.g., with RWA, resonance, etc.), we can set W ¼ 0,
which also implies S2 ¼ 0. So with either strategy, the
relevant second-order correction is

H̃ð2Þ
F ¼−

1

2

X
hm;hi

X
ðn;kÞ≠ðn0;k0Þ

½Hðn;kÞ;Hðm−n;h−kÞ�
nωrþkωq

Fq
mFr

h: ðA14Þ

The effective Hamiltonian in Hilbert space is now

H̄ðtÞ ¼
X
n0;k0

hn; kjHð0Þ
F þHð1Þ

F þHð2Þ
F þ � � � jnþ n0; kþ k0i

¼
X
hm;hi

½Hðm;hÞ þHðm;hÞ
ð2Þ þ � � ��eiðmωqþhωrÞt; ðA15Þ

where the second- and third-order terms are [98]

Hðm;hÞ
ð2Þ ¼ −

1

2

X
n;k

½Hðm−n;h−kÞ; Hðn;kÞ�
nωq þ kωr

; ðA16Þ

Hðm;hÞ
ð3Þ ¼ 1

2

X
n;k;n0;k0

½½Hðn;kÞ; Hðm−n−n0Þ;ðh−k−k0Þ�; Hðn0;k0Þ�
ðnωq þ kωrÞ2

þ 1

3

X
n;k;n00;k00

½½Hðn;kÞ; Hðm−n−n00;h−k−k00Þ�; Hðn00;k00Þ�
ðnωq þ kωrÞðn00ωq þ k00ωrÞ

:

ðA17Þ

While the range of values hm; hi is flexible in
different applications [50–52], in this work we focus on
slowly varying terms with a near-resonance condition
mωq þ hωr ≈ 0 or mωq þ hωr ≪ ωl, where ωl ∈ fnωqþ
kωrjn; k ∈ Z; nωq þ kωr ≠ 0; Hðn;kÞ ≠ 0g, to describe fre-
quency mixing due to different frequency modes, as we
neglect terms oscillating at high frequency, which rapidly
average out.

GUOQING WANG et al. PHYS. REV. X 12, 021061 (2022)

021061-12



The theoretical calculations up to second order are
summarized as a simple correspondence in Eq. (6) in the
main text. These results can also give rise to time-
independent effective Hamiltonians as discussed in
Refs. [50–52]. Here, we show an example of calculating
an ac Stark shift with Eq. (6) for time-independent cases.
For a qubit with an energy gap ω0 under a circularly
polarized driving field ðΩ=2Þ½cosðωtÞσx þ sinðωtÞσy� with
detuning δ ¼ ω − ω0, the effective Hamiltonian can be
calculated in the rotating frame, where the unmixed
Hamiltonian is ðΩ=2Þ½cosðδtÞσx þ sinðδtÞσy�, yielding
H1 ¼ ðΩ=2Þσ−, H2 ¼ ðΩ=2Þσþ, and ω1 ¼ −ω2 ¼ δ. The
effective Hamiltonian is then calculated as −½Ω2=ð4δÞ�σz,
which is exactly the ac Stark shift induced by a detuned
oscillating field. This result is consistent with the calcu-
lation in standard textbooks on atomic physics [99].

APPENDIX B: QUANTUM FREQUENCY MIXING

1. Longitudinal signals

a. Case 1: Linearly polarized bias and signal
(lab-frame analysis of Protocol 1 in Table I)

In the main text, for both the effective transverse and
longitudinal signals, Rabi oscillations in the rotating frame
are used to extract the signal amplitudes. Here, we show
that an effective mixed signal in the x-y plane transformed
from a longitudinal unmixed signal can induce Rabi
oscillations in the lab frame. We start with the calculation
of the effective Hamiltonian in the lab frame; then, we note
that a more precise calculation should be performed in the
rotating frame, which will be discussed shortly.
If both the bias field with amplitude Ωb and signal with

amplitudeΩsz are linearly polarized, the Hamiltonian in the
lab frame is

H ¼ ω0

2
σz þΩb cosðωbtþ ϕbÞσx þΩsz cosðωstþ ϕsÞσz:

ðB1Þ

This is a bimodal Floquet problem with two frequency
modes ðωb;ωsÞ. The nonzero Fourier components of the
Hamiltonian H in Eq. (B1) are Hð0;0Þ ¼ ðω0=2Þσz,
Hð�1;0Þ ¼ ðΩbe�iϕb=2Þσx, and Hð0;�1Þ ¼ ðΩsze�iϕs=2Þσz.
We assume Ωb;Ωsz; jωs − ωbj ≪ ωs;b and consider the
following frequencies that satisfy the near-resonance con-
dition mωb þ hωs ≈ 0: (1) ðm; hÞ ¼ ð0; 0Þ such that
mωb þ hωs ¼ 0, giving rise to the ac Stark shift;
(2) ðm; hÞ ¼ ð�1;∓1Þ such that mωb þ hωs ¼
�ðωb − ωsÞ, giving rise to the frequency-mixed Rabi drive
(target signal). For each case, we use Eq. (A16) to calculate
the second-order effective Hamiltonian term, where the
values of ðn; kÞ in the summation go through all integer
numbers satisfying nωb þ kωs ≠ 0. For example, for
ðm; hÞ ¼ ðþ1;−1Þ, the values of ðn; kÞ resulting in

nonvanishing second-order terms in Eq. (A16) are ðn; kÞ ¼
ð0;−1Þ and ðn; kÞ ¼ ðþ1; 0Þ; thus, the second-order term
can be calculated as

1

2

�
1

ωb
þ 1

ωs

�
½Hðþ1;0Þ; Hð0;−1Þ�eiðωb−ωsÞt;

which again validates the formula in Eq. (6) in the main text.
To calculate the complete effective Hamiltonian in the lab
frame, we sum up all the frequency-mixed terms and obtain

H̄ ¼ ω0

2
σz þ

1

ωb
½Hð1;0Þ; Hð−1;0Þ� þ 1

ωs
½Hð0;1Þ; Hð0;−1Þ�

þ
�
1

2

�
1

ωb
þ 1

ωs

�
½Hð1;0Þ; Hð0;−1Þ�eiðωb−ωsÞt þ H:c:

�

¼ ω0

2
σz þΩTz sin½ðωb − ωsÞtþ ðϕb − ϕsÞ�σy; ðB2Þ

where the target signal amplitude is

ΩTz ¼
ΩbΩsz

2

�
1

ωb
þ 1

ωs

�
: ðB3Þ

When jωb − ωsj ¼ ω0, a resonance condition is satisfied
and a Rabi oscillation signal SðtÞ is obtained when
monitoring the population of an initial state j0i in the
lab frame such that

SðtÞ ¼ Pj0iðtÞ ¼
1

2
½1þ cosðΩTztÞ�: ðB4Þ

The ac Stark shift of the linearly polarized bias field is
not predicted from the lab-frame calculation, keeping terms
up to second-order expansion in the perturbation. A more
precise calculation of the effective Hamiltonian should be
performed in the rotating frame.

b. Case 2: Linearly polarized bias and signal
(rotating-frame analysis of Protocol 1 in Table I)

Here, we analyze case 1 again but in a rotating frame
defined by U¼e−iðω0t=2Þσz. This transforms the Hamiltonian
in Eq. (B1) to

HI ¼ Ωsz cosðωstþ ϕsÞσz
þ Ωb

2
½cosðω̃btþ ϕbÞσx þ sinðω̃btþ ϕbÞσy�

þ Ωb

2
½cosð ˜̃ωbtþ ϕbÞσx − sinð ˜̃ωbtþ ϕbÞσy�; ðB5Þ

where ω̃b ¼ ωb − ω0 and ˜̃ωb ¼ ωb þ ω0 are the shifted bias
frequencies. The rotating-frame Hamiltonian HI describes a
three-mode Floquet problem. We assume Ωb;Ωsz; jωb −
ω0 � ωsj ≪ ωs; ω̃b; ˜̃ωb and neglect other fast oscillating
frequencies such as ωb þ ω0 � ωs; then, we obtain the
effective Hamiltonian in the rotating frame,
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H̄I ¼
δz
2
σz þΩTz½cos½ðωb − ω0 − ωsÞtþ ðϕb − ϕsÞ�σx

þ sin½ðωb − ω0 − ωsÞtþ ðϕb − ϕsÞ�σy�
−Ω0

Tz½cos½ðωb − ω0 þ ωsÞtþ ðϕb þ ϕsÞ�σx
þ sin½ðωb − ω0 þ ωsÞtþ ðϕb þ ϕsÞ�σy�: ðB6Þ

The ac Stark shift term is

δz
2
¼ −

Ω2
bω0

2ðω2
b − ω2

0Þ
; ðB7Þ

and the target signal amplitudes are

ΩTz ¼
ΩbΩsz

4

�
1

ωb − ω0

þ 1

ωs

�
; ðB8Þ

Ω0
Tz ¼

ΩbΩsz

4

�
1

ω0 − ωb
þ 1

ωs

�
: ðB9Þ

We note that at most one of the two conditions ωb − ω0 �
ωs ≪ ωs can be satisfied in practical experimental condi-
tions. In the main text, the term with amplitude Ω0

Tz is
neglected; here, we include both ΩTz and Ω0

Tz terms for
completeness, as resonance conditions can be used with the
protocols outlined in Table I.
If we apply a linearly polarized spin-locking drive

Ω cosðω0tÞσx to create a static field Ω ≫ δz;ΩTz along
the x axis in the rotating frame, then the Hamiltonian can be
simplified further to

H̄I ¼
Ω
2
σx þ ΩTz sin½ðωb − ω0 − ωsÞtþ ðϕb − ϕsÞ�σy

−Ω0
Tz sin½ðωb − ω0 þ ωsÞtþ ðϕb þ ϕsÞ�σy; ðB10Þ

where the total ac Stark shift ½δz=2þΩ2=ð8ω0Þ�σz is
neglected. Here, Ω2=ð8ω0Þ is the Bloch-Siegert shift due
to the counterrotating term of the spin-locking drive.
When the resonance condition jωb − ω0 − ωsj ¼ Ω (or

jωb − ω0 þ ωsj ¼ Ω) is satisfied, a Rabi oscillation signal
SðtÞ is obtained when monitoring the population of the
initial state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

in the rotating frame
such that

SðtÞ ¼ PjþiðtÞ ¼
1

2
½1þ cosðΩTztÞ�: ðB11Þ

For both ultrahigh signal frequencies Ω ≪ ω0 < ωs and
intermediate signal frequenciesΩ ≪ ωs < ω0, the effective
Rabi frequency is reduced to ΩbΩsz=2ωs, leading to a
sensitivity reduction factor ϵz ¼ Ωb=2ωs.
We note that the derivation here can also be used to

describe the lab-frame Rabi in case 1 by setting Ω ¼ 0.

However, the effective Rabi frequency and ac Stark shift
obtained in the rotating frame are different from those in the
lab frame with the same order-of-perturbation calculation. In
Appendix B 1 d, we discuss their comparison in detail and
show that the rotating-frame calculation is more precise.

c. Case 3: Circularly polarized bias
and linearly polarized signal

(Protocol 2 in Table I)

When the bias field is circularly polarized and the signal
field is linearly polarized, the Hamiltonian in the rotating
frame is

HI ¼ Ωsz cosðωstþ ϕsÞσz
þ Ωb

2
½cosðω̃btþ ϕbÞσx þ sinðω̃btþ ϕbÞσy�: ðB12Þ

By solving this bimodal Floquet problem, we obtain the
effective Hamiltonian in the same form as Eq. (B6) with the
same target signal amplitudes and a slightly different ac
Stark shift term,

δz
2
¼ −

Ω2
b

4ðωb − ω0Þ
: ðB13Þ

Under the same resonance conditions, the rotating-frame
Rabi oscillations of an initial spin-locked state can be
induced by the effective target signal with the same form
as Eq. (B11).

d. Comparison of lab-frame
and rotating-frame calculations

We notice that case 1 is a special case of case 2 when
Ω ¼ 0; however, the obtained ac Stark shift and target
signal amplitude are different. Under the resonance con-
dition ωb ¼ ωs þ ω0, the lab-frame derivation gives the
effective Rabi frequency ðΩbΩsz=2Þ½1=ωs þ 1=ðωs þ ω0Þ�,
whereas the rotating-frame derivation gives the effective
Rabi frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩbΩsz=ωsÞ2 þ δ2z

p
, which takes the ac

Stark shift into account. For an ultrahigh signal frequency,
ωs ≫ ω0, the two results are approximately the same, but
for an intermediate frequency, ωs < ω0, the two results are
quite different since the ac Stark shift is non-negligible.
In Fig. 5, we simulate the Fourier spectrum of the lab-frame
Rabi oscillations as a function of the signal frequency and
compare this with the theoretical predictions, which val-
idates that the Floquet predictions in the rotating frame are
more precise.
We further study this comparison by evaluating the

effective Hamiltonian in the lab frame up to third order
[50,51], which gives an ac Stark shift term δz=2 ∼
−Ω2

bω0=ð2ω2
bÞ due to the mixing of three frequencies
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ωb;−ωb; 0, which is still different from the one given by the
rotating-frame analysis δz=2 ≈ −Ω2

bω0=(2ðω2
b − ω2

0Þ) but
is already closer. When ωb ≫ ω0, the two results become
similar again. This comparison can be explained by
examining the orders of magnitude of the effective
Hamiltonian terms in Eq. (A15). In the lab frame, a large
static term ðω0=2Þσz enters the numerator in the perturba-
tion calculation, and the calculation of mixed terms is
precise only for ωs ≫ ω0. However, this large static term is
canceled by the transformation to the rotating frame,
and the perturbation analysis is precise as long as
Ωb;Ωsz ≪ ωb − ω0;ωs.
We note that a similar argument of the calculation

accuracy should also apply to the Jacobi-Anger method
[69]. To obtain a more precise result, the reference frame
for the theoretical analysis should be carefully selected.

2. Transverse signals

a. Case 1: Linearly polarized bias and signal
(Protocol 3 in Table I)

When both the bias and signal fields are transverse and
linearly polarized, the Hamiltonian in the lab frame is

H ¼ ω0

2
σz þΩb cosðωbtþ ϕbÞσx þΩsx cosðωstþ ϕsÞσx:

ðB14Þ

In the rotating frame defined by U ¼ e−iðω0t=2Þσz, we
obtain

HI ¼
Ωb

2
½cosðω̃btþ ϕbÞσx þ sinðω̃btþ ϕbÞσy�

þ Ωb

2
½cosð ˜̃ωbtþ ϕbÞσx − sinð ˜̃ωbtþ ϕbÞσy�

þ Ωsx

2
½cosðω̃stþ ϕsÞσx þ sinðω̃stþ ϕsÞσy�

þ Ωsx

2
½cosð ˜̃ωstþ ϕsÞσx − sinð ˜̃ωstþ ϕsÞσy�; ðB15Þ

where ˜̃ωb;s ¼ ωb;s þ ω0, ω̃b;s ¼ ωb;s − ω0.
The Hamiltonian in Eq. (B15) is a four-mode Floquet

problem. Assuming that Ωb;Ωsx; jωb − ωsj ≪ ω̃s;b; ˜̃ωs;b

and neglecting fast oscillating terms, we obtain the effective
Hamiltonian

H̄I ¼
δz
2
σz −ΩTx cos½ðωb − ωsÞtþ ðϕb − ϕsÞ�σz; ðB16Þ

where the ac Stark shift is

δz
2
¼ −

Ω2
bω0

2ðω2
b − ω2

0Þ
−

Ω2
sxω0

2ðω2
s − ω2

0Þ
; ðB17Þ

and the target signal amplitude is

ΩTx ¼
ΩbΩsx

2

�
ω0

ω2
b − ω2

0

þ ω0

ω2
s − ω2

0

�
: ðB18Þ

If we apply a linearly polarized spin-locking drive to
create a static field Ω along x in the rotating frame, the
Hamiltonian is then approximately simplified to

H̄I ¼
Ω
2
σx −ΩTx cos½ðωb − ωsÞtþ ðϕb − ϕsÞ�σz; ðB19Þ

where the total ac Stark shift ½δz=2þΩ2=ð8ω0Þ� ≪ Ω is
neglected.
When jωb − ωsj ¼ Ω, the resonance condition is satis-

fied, and a Rabi oscillation signal SðtÞ is obtained by
monitoring the population of the initial state jþi in the
rotating frame such that

SðtÞ ¼ PjþiðtÞ ¼
1

2
½1þ cosðΩTxtÞ�: ðB20Þ

For an ultrahigh signal frequency ωb;s ≫ ω0 ≫ Ω, the
effective Rabi frequency is reduced to ΩbΩsxω0=ω2

s ,
yielding a sensitivity reduction factor ϵx ¼ Ωbω0=ω2

s.
For an intermediate signal frequency Ω ≪ ωb;s ≪ ω0,
the effective Rabi frequency is reduced to ΩbΩsx=ω0,
and the sensitivity reduction factor is ϵx ¼ Ωb=ω0.

b. Case 2: Circularly polarized bias and signal

When both the bias and signal fields are transverse
and circularly polarized, the Hamiltonian in the rotating
frame is

Signal frequency s sweep

0 100 200 300 400 500

s /(2 ) (MHz)

0

1

2

3

4

5

6
f (

M
H

z)

0

0.05

0.1

0.15

0.2

0.25

Lab-frame calculation
Rotating-frame calculation

FIG. 5. Signal frequency ωs sweep simulation. The population
on initial state j0i is measured as Pj0iðtÞ, and the intensity plot is
the Fourier spectrum of Pj0iðtÞ. Both the signal (along z) and
bias field are linearly polarized with ϕb;ϕs ¼ π=2, 0 and Ωb ¼
Ωsz ¼ ð2πÞ10 MHz. The resonance condition ωb ¼ ωs þ ω0

with ω0 ¼ ð2πÞ50 MHz is satisfied. The calculation in the lab
frame is given by Eq. (B3), and the one in the rotating frame is
given by Eq. (B8) with the ac Stark shift taken into account (see
Supplemental Material for more details).
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HI ¼
Ωb

2
½cosðω̃btþ ϕbÞσx þ sinðω̃btþ ϕbÞσy�

þΩsx

2
½cosðω̃stþ ϕsÞσx þ sinðω̃stþ ϕsÞσy�: ðB21Þ

By solving the bimodal Floquet problem in Eq. (B21),
we obtain the effective Hamiltonian in the same form as
Eq. (B16) with the ac Stark shift term

δz
2
¼ −

Ω2
b

4ðωb − ω0Þ
−

Ω2
sx

4ðωs − ω0Þ
ðB22Þ

and the target signal amplitude

ΩTx ¼
ΩbΩsx

4

�
1

ωb − ω0

þ 1

ωs − ω0

�
: ðB23Þ

The rotating-frame Rabi oscillations also have the same
signal form as Eq. (B20) under the same resonance
condition jωb − ωsj ¼ Ω.
For an ultrahigh signal frequency ωb;s ≫ ω0 ≫ Ω, the

effective Rabi frequency is reduced to ΩbΩsx=2ωs; thus,
the sensitivity reduction factor is ϵx ¼ Ωb=ð2ωsÞ. For an
intermediate signal frequency Ω ≪ ωb;s ≪ ω0, the effec-
tive Rabi frequency is reduced to ΩbΩsx=ð2ω0Þ, and the
sensitivity reduction factor is ϵx ¼ Ωb=ð2ω0Þ.

c. Case 3: Circularly polarized bias and linearly
polarized signal (Protocol 4 in Table I)

Comparing the previous cases 1 and 2 shows that the
sensitivity for linearly polarized bias and signal fields (case
1) is degraded by an additional factor ω0=ωs in comparison
to case 2 (both fields are circularly polarized). Unfortunately,
we do not expect most signals to be circularly polarized
(hence, we did not include case 2 in Table I). Still, here we
show that even with a linearly polarized signal field, we can
eliminate such an additional sensitivity reduction by apply-
ing a circularly polarized bias source.
The Hamiltonian in the rotating frame is now

HI ¼
Ωb

2
½cosðω̃btþ ϕbÞσx þ sinðω̃btþ ϕbÞσy�

þ Ωsx

2
½cosðω̃stþ ϕsÞσx þ sinðω̃stþ ϕsÞσy�

þ Ωsx

2
½cosð ˜̃ωstþ ϕsÞσx − sinð ˜̃ωstþ ϕsÞσy�: ðB24Þ

By solving the three-mode Floquet problem in Eq. (B24),
we obtain the effective Hamiltonian in the same form
as Eq. (B16) with the same target signal amplitude and a
slightly different ac Stark shift term

δz
2
¼ −

Ω2
b

4ðωb − ω0Þ
−

Ω2
sxω0

2ðω2
s − ω2

0Þ
: ðB25Þ

The rotating-frame Rabi magnetometry signal has the same
form as Eq. (B20) under the same resonance condition
jωb − ωsj ¼ Ω. The target signal amplitude and the sensi-
tivity are thus similar to case 2, which has a smaller
degradation factor than case 1.

3. Additional strategies to improve the sensitivity

Under a large bias field Ωb and spin-locking control
amplitude Ω, higher-order terms from perturbation theory
become important, as additional frequency modes are no
longer negligible. These terms might potentially limit the
optimal sensitivity. In addition, the possible frequency
mixing involving the control fields ΩðtÞ might also induce
imperfections.
As we mentioned, some of the higher-order terms could

be corrected for, by adjusting the working protocols. When
correcting the ac Stark shift by adjusting the resonance
condition of the control field Ω to ω ¼ ω0 þ δzðωÞ
(Sec. V), a detuning term in the rotating frame −δzσz=2
could give rise to additional mixed Hamiltonian terms.
Since the simulation matches the theoretical predictions
when the bias and signal amplitudes are not too large, as
shown in both Figs. 3 and 5, these imperfections only
become important when the bias or control amplitudes
become large compared to mode frequencies.
Another way to suppress the ac Stark shift to improve the

sensitivity is to increase the resonant driving amplitude Ω.
In the Supplemental Material [81], we simulate the
dependence of the bias amplitude Ωb under different drive
amplitudes Ω, which show that the deviation from the
linearity appears at a larger Ωb under a larger Ω. Thus,
correcting the ac Stark shift and increasing Ω may yield a
higher sensitivity to vector ac fields.

APPENDIX C: SIMULATION VALIDATION

In themain text andAppendixB,wevalidate the theoretical
predictions of the various quantum frequency mixing proto-
cols by simulating a few exemplary cases. In this section, we
add more detailed simulations for all six cases discussed in
Appendix B to further validate our theoretical results.

1. Phase dependence

As introduced in the main text, the relative phase
between the bias field and the signal field is used to extract
the transverse signal direction; thus, it is important to
validate the phase dependence of the effective Hamiltonian.
Since the population measurement on the initial state
jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

does not reveal the phase informa-
tion ϕb − ϕs in the effective Hamiltonian [Eqs. (B2), (B10),
and (B16)], here we instead monitor the population of the
initial state j0i (for the sensing protocol in the lab frame,
i.e., case 1 of longitudinal signal sensing, we monitor jþi in
the lab frame). Before we move forward to the simulation
validation of the phase dependence, we first provide an
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intuitive explanation of the evolution modes under the
effective Hamiltonian. The Rabi oscillation induced by
the effective signal, e.g., the ΩTx term in Hamiltonian
H̄I ¼ Ωσx=2 −ΩTx cos½Ωtþ ðϕb − ϕsÞ�σz, can be ana-
lyzed in a second rotating frame defined by the spin-
locking field Ωσx=2, where a static signal in the y-z plane
ðΩTx=2Þ½sinðϕb − ϕsÞσy − cosðϕb − ϕsÞσz�, arising from
the effective target signal, induces spin precession with a
rate ΩTx (or ΩTz for a longitudinal signal), which can be
directly measured by monitoring the population in jþi.
However, when monitoring the evolution with an obser-
vation operator σz noncommuting with the rotating-frame
transformation ðΩ=2Þσx, we are able to see a mixture of
the Rabi frequency and the rotating-frame frequency
Ω�ΩTx;Tz;Ω in the Fourier spectra of the evolution,
which form the Mollow triplet [37]. The intensity of the
center band Ω and sidebands Ω� ΩTx;Tz is determined by
the initial state with respect to the direction of the static
signal in the second rotating frame, which is then set by the
initial phase ϕb − ϕs.
In Fig. 6, we simulate the evolution Pj0iðtÞ [PjþiðtÞ for

case 1 of longitudinal signal sensing in the lab frame] as a
function of the phase ϕb (while keeping ϕs ¼ 0) for all six
cases discussed in Appendix B and plot their Fourier

spectra. When ϕb − ϕs ¼ 0, the initial state is along the
static target-field direction such that no spin precession is
induced in the second rotating frame. Then, the evolution
mode is simply an oscillation at the rotating-frame fre-
quency Ω [or ω0 for case 1 of longitudinal signal sensing in
Fig. 6(a)], which corresponds to the Mollow center band.
When ϕb − ϕs ¼ π=2, the opposite behavior is observed,
where the sidebands become most prominent and the center
band vanishes. The vanishing of the center band here is due
to the dynamical symmetry of the Hamiltonian, which is
discussed in detail in Ref. [38]. When ϕb − ϕs is an
intermediate angle, the evolution mode is a mixture of
both the center band and sidebands. These predictions are
validated in detail in Fig. 6.

2. Effective Rabi frequency

To further validate the theoretical results of the effective
target signal amplitudes ΩT ¼ ΩTðωs;ωb;Ωs;ΩbÞ in the
main text and Appendix B, we simulate the Rabi oscil-
lations induced by the effective target signal as a function of
these parameters and plot their Fourier spectra along with
the theoretical predictions obtained in Eqs. (B2), (B10), and
(B16) in Appendix B.
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FIG. 6. Phase ϕb sweep simulation for a qubit with ω0 ¼ ð2πÞ50 MHz. The intensity plots are the Fourier spectra of the simulated
time-dependent population PðtÞ for the initial (and readout) state jþi for panel (a) and j0i for panels (b)–(f). (a) Both the ac field (along
z) and bias field (along x) are linearly polarized with ωs ¼ ð2πÞ375 MHz, ωb ¼ ωs þ ω0 ¼ ð2πÞ425 MHz, ϕs ¼ 0, and
Ωb ¼ Ωsz ¼ ð2πÞ10 MHz. (b) Both the ac field (along z) and bias field (along x) are linearly polarized with ωs ¼ ð2πÞ375 MHz,
ωb ¼ ωs þ ω0 − Ω ¼ ð2πÞ422 MHz, ϕs ¼ 0, and Ωb ¼ Ωsx ¼ ð2πÞ10 MHz. The spin-locking drive amplitude is Ω ¼ ð2πÞ3 MHz.
(c) The ac field (along z) is linearly polarized, and the bias field (in the x-y plane) is circularly polarized with the same parameters as in
panel (b). (d) Both the ac field (along x) and bias field (along x) are linearly polarized with ωb ¼ ωs þΩ, ωs ¼ ð2πÞ375 MHz, ϕs ¼ 0,
and Ωb ¼ Ωsx ¼ ð2πÞ10 MHz. The spin-locking drive amplitude is Ω ¼ ð2πÞ3 MHz. (e) Both the ac field (in the x-y plane) and bias
field (in the x-y plane) are circularly polarized with the same parameters as in panel (d). (f) The ac field (along x) is linearly polarized,
and the bias field (in the x-y plane) is circularly polarized with the same parameters as in panel (d). All the dashed lines are theoretical
predictions derived from the multimode Floquet theory.
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In Fig. 7, we simulate the Rabi oscillation spectrum
as a function of the signal frequency ωs for all six cases
discussed in Appendix B in the ultrahigh-frequency range
ωs ≫ ω0 ¼ ð2πÞ50 MHz. The theoretical predictions are
indicated by the dashed lines, which match well with the
simulation. In Fig. 8, we use a large ω0 ¼ ð2πÞ2200 MHz

to simulate an intermediate range ωs < ω0. The consis-
tency between the theory and simulation demonstrates the
broad applicable range of our theoretical approach.
In Fig. 9, we simulate the Rabi oscillation spectrum as a

function of bias amplitude Ωb. The theoretical predictions
neglecting the ac Stark shift match well with the simulation
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FIG. 7. Signal frequency ωs sweep simulation. The parameters are the same as in Fig. 6 except for the phase ϕb ¼ π=2, initialization,
and readout state jþi for panels (b)–(f), j0i for panel (a), and the signal frequency ωs being swept. Resonance conditions ωb ¼ ωs þ ω0

(a), ωb ¼ ωs þ ω0 − Ω (b,c), and ωb ¼ ωs þ Ω (d)–(f) are satisfied when sweeping ωs.
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FIG. 8. Signal frequency ωs sweep (intermediate frequency). The parameters are the same as in Fig. 7 except for the qubit energy
ω0 ¼ ð2πÞ2200 MHz. Resonance conditions ωb ¼ ωs þ ω0 (a), ωb ¼ ωs þ ω0 þ Ω (b,c), and ωb ¼ ωs þΩ (d)–(f) are satisfied when
sweeping ωs.
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only when Ωb is small, while the predictions considering
the ac Stark shift match the simulation in a larger range.
In Figs. 7(a), 8(a), and 9, the theoretically predicted Rabi

frequency is more precise when taking the ac Stark shift
into account. See Supplemental Material [81] for detailed
derivations of these theoretical analyses.

APPENDIX D: TIME DOMAIN ANALYSIS

In some specific cases, e.g., when both the bias and
signal fields are along the transverse direction, there is a
time-domain analysis that can also give the correct effective
Hamiltonian under a reasonable approximation. One of the
most popular methods is based on Jacobi-Anger expansion,
which has been utilized to derive the system dynamics
under periodic drives [42,69]. A detailed discussion is
included in the Supplemental Material [81]. Here, we
instead use an example (Protocol 3) to show that, by
employing the typical method of calculating ac Stark shifts,
we can also obtain the frequency-mixed signal under the
condition ωb;ωs ≫ ω0. We consider the sum of both the
bias and signal fields in the lab frame

Hbs¼½Ωs cosðωstþϕsÞþΩbcosðωbtþϕbÞ�σx
¼
�
αcos

�
ωbþωs

2
tþϕc

�
þβsin

�
ωbþωs

2
tþϕc

��
σx;

ðD1Þ

where ϕc ¼ ðϕb þ ϕsÞ=2 and α, β are slowly varying
envelopes of the fast oscillation at frequency
ðωb þ ωsÞ=2, with

α ¼ ðΩb þ ΩsÞ cos
�
ωb − ωs

2
tþ ϕb − ϕs

2

�
; ðD2Þ

β ¼ ð−Ωb þΩsÞ sin
�
ωb − ωs

2
tþ ϕb − ϕs

2

�
: ðD3Þ

Then, we can calculate the static ac Stark shift induced by
both terms to obtain

H̄bs¼−
ðα2þβ2Þω0

2½ðωbþωs
2

Þ2−ω2
0�
σz

¼−
Ω2

bω0

2½ðωbþωs
2

Þ2−ω2
0�
σz−

Ω2
sω0

2½ðωbþωs
2

Þ2−ω2
0�
σz

−
ΩbΩsω0

ðωbþωs
2

Þ2−ω2
0

cos½ðωb−ωsÞtþϕb−ϕs�σz: ðD4Þ

Here, the first two terms are the ac Stark shifts due to the
bias and signal fields, and the third term, oscillating with a
frequency ωb − ωs, is the frequency-mixed signal. Under
the approximation ωb;ωs ≫ ω0 and ωb − ωs ∼ ω0, such a
result is consistent with the Floquet derivation of Protocol 3
in Eq. (B16).
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FIG. 9. Bias amplitude Ωb sweep simulation. The parameters are the same as in Fig. 6 except for the phase ϕb ¼ π=2, initialization,
and readout state jþi for panels (b)–(f), j0i for panel (a), and the bias amplitude Ωb being swept. The same resonance conditions are
satisfied as in Fig. 7. We note that in panel (b), the theoretical prediction considering the ac Stark shift deviates from the simulation
earlier than other curves. This may be due to the unconsidered three-frequency mixing of the counterrotating term of the resonant spin-
locking driving with −2ω0, the counterrotating term of the bias ωb þ ω0, as well as the signal −ωs, which does not exist when both bias
and resonant fields are circularly polarized in panel (c) or when Ω ¼ 0 in panel (a).
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We note that for other protocols where the signal or bias
field is not transverse, one can still use a similar analysis by
properly choosing the reference frame and applying the ac
Stark shift method or the Jacobi-Anger method, which
should be analyzed case by case.
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