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In weakly collisional plasma environments with sufficiently low electron beta, Alfvénic turbulence
transforms into inertial Alfvénic turbulence at scales below the electron skin depth, k⊥de ≳ 1. We argue
that, in inertial Alfvénic turbulence, both energy and generalized kinetic helicity exhibit direct cascades. We
demonstrate that the two cascades are compatible due to the existence of a strong scale dependence of the
phase alignment angle between velocity and magnetic field fluctuations, with the phase alignment angle

scaling as cos αk ∝ k−1⊥ . The kinetic and magnetic energy spectra scale as ∝ k−5=3⊥ and ∝ k−11=3⊥ ,

respectively. As a result of the dual direct cascade, the generalized helicity spectrum scales as ∝ k−5=3⊥ ,
implying progressive balancing of the turbulence as the cascade proceeds to smaller scales in the k⊥de ≫ 1

range. Turbulent eddies exhibit a phase-space anisotropy kk ∝ k5=3⊥ , consistent with critically balanced
inertial Alfvén fluctuations. Our results may be applicable to a variety of geophysical, space, and
astrophysical environments, including the Earth’s magnetosheath and ionosphere, solar corona, and
nonrelativistic pair plasmas, as well as to strongly rotating nonionized fluids.

DOI: 10.1103/PhysRevLett.125.265101

Introduction.—Many important turbulent plasma envi-
ronments are characterized by a low ratio of the electron
plasma pressure to magnetic energy density, that is, low βe,
in addition to weak collisionality. Examples are the iono-
sphere [1,2], the Earth’s magnetosheath [3], the solar
corona [4,5], and some instances of the solar wind [6,7].
Turbulence may play a role in structure formation, energy
dissipation, magnetic reconnection, heat conduction, and
other processes relevant for the dynamics and thermo-
dynamics of such systems [6,8–16]. Despite vigorous
investigation, the nature of turbulent fluctuations in low
beta regimes remains incompletely understood and con-
tinues to attract considerable interest [3,17–20].
At scales below the electron skin depth in plasmas with

sufficiently low βe, the dominant low-frequency plasma
modes are arguably nonlinear inertial Alfvén waves, whose
turbulent cascade is governed by the existence of two ideal
invariants: energy and generalized kinetic helicity.
Turbulent dynamics in the presence of two invariants is
poorly understood in both plasmas and nonionized fluids
[21,22]. It is possible that both invariants are subject to a
forward (direct) cascade or that one of them cascades
forward and the other backward [20–25]. When both
quantities cascade forward, one can argue in favor of the

cascade of either invariant setting the nonlinear eddy
turnover time [22], greatly complicating the analysis and
leading to different predictions and understanding of the
underlying turbulent dynamics.
In this Letter, we propose that, in inertial Alfvén

turbulence, both energy and (kinetic) helicity cascade
forward, and it is the cascade of energy, rather than that
of helicity, that determines the cascade time. We demon-
strate that, rather remarkably, this is achieved via a strongly
scale-dependent phase alignment between fluctuations of
electric and magnetic potentials, which manages to sup-
press helicity while allowing the energy cascade to proceed
unhindered. Our phenomenological model predicts the
spectra of magnetic, kinetic, and helicity fluctuations in
the inertial kinetic regime, shown here to be in good
agreement with the results of numerical simulations.
More broadly, we conjecture that the phenomenon of

scale-dependent phase alignment uncovered in this work
may be the mechanism underpinning the joint forward
cascade of two ideal invariants in other physical systems,
including nonconducting fluids described by the Navier–
Stokes equation [22,24,26,27].
Model equations.—We consider a plasma permeated by

a strong magnetic field, B0ẑ, such that the total field is
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B ¼ B0ẑþ δB⊥, with δB⊥=B0 ≪ 1. The evolutionary
equations that we adopt are as follows:

∂
∂t∇

2⊥ϕþfϕ;∇2⊥ϕg¼fψ ;∇2⊥ψgþVA
∂
∂z∇

2⊥ψþfϕ; ð1Þ

∂
∂tð1−d2e∇2⊥Þψþfϕ;ð1−d2e∇2⊥Þψg¼VA

∂ϕ
∂zþfψ : ð2Þ

Here, ϕ denotes the stream function, related to the E × B
flow velocity by v⊥ ¼ ẑ × ∇⊥ϕ, and ψ is the flux function,
related to the perpendicular component of the magnetic
field by δB⊥=

ffiffiffiffiffiffiffiffi
4πρ

p ¼ ẑ × ∇⊥ψ, with ρ the mass density.
The Poisson bracket is defined as fA;Bg¼∂xA∂yB−
∂xB∂yA, the Alfvén speed is VA ¼ B0=

ffiffiffiffiffiffiffiffi
4πρ

p
, and fϕ

and fψ are forcing terms to be described later. The only
kinetic effect included in these equations is the electron
inertia, characterized by de, the electron skin depth [28].
These equations describe low beta nonrelativistic pair

plasmas [31], as well as electron-ion plasmas in the
“ultralow” beta limit, βe ∼ βi ≪ me=mi [32]. The modes
described by these equations are (as we show below) the
inertial Alfvén modes. However, quite importantly, our
equations are also pertinent to a wide range of other
environments. When k2⊥d2e ≫ 1þ 2=βi, our equations are
structurally identical to Eqs. (19) and (20) of Ref. [3],
which were derived under the assumptions of βi ∼ 1 and
βe ≪ 1. The dominant low-frequency modes there are
inertial kinetic Alfvén waves (ω < k⊥vthi, with vthi the
ion thermal speed) [3,33]. In addition, in the limit
k2⊥d2e ≫ 1þ 2=βi, Eqs. (1) and (2) are structurally equiv-
alent to Eqs. (25) and (26) of Ref. [3], which describe
inertial whistler waves (ω > k⊥vthi) in reduced electron
magnetohydrodynamics (MHD). One can also demonstrate
that, quite remarkably, in the limit k2⊥d2e ≫ 1, our equations
map onto the equations describing rapidly rotating non-
ionized fluids [34]. A short derivation of Eqs. (1) and (2) is
presented in the Supplemental Material [35], while a
summary of their regimes of applicability is shown in
Table I. In the Supplemental Material, which includes
Refs. [36–40], we also discuss the instrumental resolution

required to measure turbulent fluctuations in the k2⊥d2e ≫ 1

range in space plasmas.
Equations (1) and (2) have two quadratic invariants: total

energy,

E ¼ 1

2

Z
dVfð∇⊥ψÞ2 þ d2eð∇2⊥ψÞ2 þ ð∇⊥ϕÞ2g; ð3Þ

and generalized kinetic helicity,

H ¼
Z

dVf∇2⊥ϕð1 − d2e∇2⊥Þψg; ð4Þ

which reduces to cross-helicity at MHD scales (k⊥de ≪ 1).
The only linear mode supported by these equations is the

inertial Alfvén wave, with dispersion relation and eigen-
functions given by

ωl ¼ � kzVAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥d2e

p ; ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2⊥d2e

q
ψ : ð5Þ

Inertial Alfvén turbulence.—The focus of our Letter is on
turbulence in the kinetic range k⊥de ≫ 1. In the opposite
limit of k⊥de ≪ 1, Eqs. (1) and (2) become the reduced
MHD (RMHD) equations [44–46], and thus the results
obtained for RMHD are expected to apply [47]. Following
Ref. [31], the energy flux at scales k⊥de > 1 is expected to
be ε ∼ k2⊥ϕ2

λ=τλ, where τλ is the eddy turnover time at the
scale λ ∼ k−1⊥ , and τλ ¼ 1=ωn1 ∼ 1=ðk2⊥ϕλÞ. This yields

ϕλ ∼ ε1=3k−4=3⊥ , leading to the scaling of the spectrum of

perpendicular kinetic energy EKðk⊥Þdk⊥ ∼ ε2=3k−5=3⊥ dk⊥.
For k2⊥d2e ≫ 1, equipartition between parallel and
perpendicular kinetic energies, i.e., between the second
and third terms in Eq. (3), results in ψλ ∼ k−7=3⊥ , from which
follows the magnetic energy spectrum EBðk⊥Þdk⊥ ∼
ε2=3k−11=3⊥ dk⊥. Finally, postulating critical balance of the
fluctuations in this range (i.e., that the characteristic linear
and nonlinear frequencies of the system approximately
balance at each scale [46,48]) yields

TABLE I. Summary of different regimes of applicability of the adopted model equations.

Physical system Asymptotic regime Range of scales Examples

Electron-ion plasmas βi ≪ me=mi, βe ≪ me=mi All scales Ionospheric plasmas [1,2]
Electron-ion plasmas (inertial
kinetic Alfvén waves)

βi ∼ 1, βe ≪ 1
ω < k⊥vthi [3]

k2⊥d2e ≫ 1þ 2=βi Regions of solar wind and corona
[4–6], Earth’s magnetosheath [3]

Electron-ion plasmas (inertial
whistler waves)

βi ∼ 1, βe ≪ 1
ω > k⊥vthi [3]

k2⊥d2e ≫ 1 Regions of solar wind and corona
[4–6], Earth’s magnetosheath [3]

Electron-positron (pair) plasmas β ≪ 1 All scales Upcoming low-temperature
laboratory pair plasmas [41,42]

Rapidly rotating nonconducting
fluids

ωz ≪ Ω Low Rossby number
Ro ≪ 1

Low Rossby number (Ro)
geophysical flows [43]
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kk ∼ ε1=3deV−1
A k5=3⊥ : ð6Þ

Using the above scalings for ϕλ and ψλ, we would predict
the helicity spectrum to scale as Hðk⊥Þdk⊥ ∼ k−2=3⊥ dk⊥ in
the kinetic range. However, as discussed in Ref. [31], in this
case the helicity flux cannot be constant; rather it should
increase at small scales, leading to a contradiction. If, on
the other hand, we assume that the scaling of the fields
should be determined by a direct helicity cascade, we
would formally conclude that the energy cannot cascade
toward small scales at k⊥de > 1. This contradiction can be
solved if, as conjectured in Ref. [31], the helicity flux at
scales k⊥de ≫ 1 is written as

ðk2⊥ϕλÞðd2ek2⊥ψλÞRλ=τλ ∼ εH; ð7Þ
where Rλ is a scale-dependent cancellation factor.
Requiring that the flux of kinetic helicity be constant in
the kinetic range and enforcing consistency between energy
and helicity fluxes leads to

Rλ ∼ εHðk2⊥ϕλÞ−2ðd2ek2⊥ψλÞ−1 ∼ εHðk⊥deÞ−1: ð8Þ

When the cancellation factor is present, the simultaneous
direct cascades of both energy and helicity become pos-
sible, and we arrive at a different prediction for the helicity
spectrum, Hðk⊥Þdk⊥ ∼ k−5=3⊥ dk⊥. In what follows we
demonstrate that the cancellation factor is a manifestation
of a new phenomenon that we call “dynamic phase
alignment”: an increasing correlation between the phases
of the fluctuating magnetic and velocity fields as the
cascade progresses toward smaller scales.
Numerical setup.—We now report on direct numerical

simulations carried out to test these theoretical predictions.
We integrate Eqs. (1) and (2) with the code VIRIATO [49] on
a triply periodic domain using a grid of N2⊥ × Nk points.
Hyperdissipation terms of the form νH∇6⊥ are included on
the right-hand side of both equations, with νH set to remove
energy at the grid scale. Energy is injected via delta-
correlated forcing terms of the form

fϕ;ψ ¼ Cϕ;ψα�δðkx − kx0Þδðky − ky0Þ cosðkz0zÞ; ð9Þ

where Cϕ and Cψ are randomly chosen complex numbers
determining the phase of the mode being excited (Cϕ ≠ Cψ

and jCϕ;ψ j ¼ 1), and α� > 0 are numerical coefficients
determining the strength of the drive, their subscript
relating to positive and negative (generalized) kinetic
helicity injection, as discussed below. The mode numbers
kx0, ky0, and kz0 are randomly chosen from a predetermined
range and at every time step they are the same for both fϕ
and fψ .
From Eqs. (4) and (9), one can show that the kinetic

helicity injected at any time step by the forcing terms is
given by

H�
inj ∝ k2⊥0ð1þ k2⊥0d

2
eÞα2�Re½CϕCψ �; ð10Þ

where k2⊥0 ¼ k2x0 þ k2y0. When Re½CϕCψ � > 0, i.e., when
the phase between fϕ and fψ is such that positive helicity is
injected at a particular time step, the αþ coefficient is used
in the forcing terms. When Re½CϕCψ � < 0, the coefficient
α− is used instead. We define the ratio of positive to
negative kinetic helicity injection as RH ≡Hþ

inj=H
−
inj. The

ratio of the coefficients is set as αþ=α− ¼ ffiffiffiffiffiffiffiffi
RH

p
.

Table II summarizes key parameters of the simulations
performed. In all cases, energy is injected at the largest
scales, where k⊥de < 1. In runs A1 and B2, net positive
kinetic helicity is injected by the forcing terms (RH ¼ 10
andRH ¼ 30, respectively), while in run B1 no net kinetic
helicity is injected (RH ¼ 1). Run A1 aims at capturing the
dynamics in both the RMHD and kinetic range and
providing insight into how the transition between the
two regimes occurs. Simulations of type B aim at capturing
in more detail the turbulent dynamics in the kinetic range.
Energy spectra.—Figure 1(a), (b) shows the energy and

(generalized kinetic) helicity spectra (obtained from time-
averaged data after steady state is reached) for simulation
A1. The magnetic energy spectrum is seen to smoothly
transition from ∼k−5=3⊥ to ∼k−11=3⊥ at k⊥de ≈ 1, whereas
the kinetic energy scales as ∼k−5=3⊥ throughout the inertial
range, as does the helicity spectrum. These observations
are in good agreement with the theoretical predictions
and offer an immediate confirmation of the existence
of the scale-dependent cancellation factor Rλ ∼ 1=k⊥ at
scales k⊥de > 1.
Runs of type B confirm the kinetic range results over a

larger scale range [see Fig. 2(b), (d)]. The energy spectra
are not significantly affected by the ratio of positive to
negative helicity injected in the system. When no net
helicity is injected in the system, the spectrum of helicity
is not well-defined [Fig. 2(b)]. One can observe that the
sign of kinetic helicity is different at different perpendicular
wave numbers k⊥ in the inertial range, and its value is zero
when spatially averaged over the entire simulation domain
and time averaged over the steady state. When instead net
helicity is injected in the system, a well-defined spectrum
is observed, exhibiting a scaling ∼k−5=3⊥ [Fig. 2(d)], as in
simulation A1.
To characterize eddy anisotropy, we consider

that the parallel wave number of a fluctuating field ϕ at
perpendicular scale k⊥ may be approximated as [50]

TABLE II. Summary of key simulation parameters.

ID N⊥ Nk ðk⊥deÞmin RH

A1 2048 2048 0.02 10
B1 768 4096 0.3 1
B2 768 4096 0.3 30
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kk ≈
�hjB0∂zϕk⊥ þ δBk⊥ · ∇ϕk⊥ j2i

hB2
k⊥ihϕ2

k⊥i
�

1=2

; ð11Þ

where h…i denotes spatial averaging. In the kinetic
range, electromagnetic fluctuations are small because
electron inertia (k2⊥d2e∂tψ) dominates over the inductive
part of the electric field (∂tψ) in Eq. (2). Therefore,
turbulence in this regime is essentially electrostatic, i.e.,
B0∂zϕk⊥≫δBk⊥ ·∇ϕk⊥ , and thus kk ≈ kz. The scatter plots in
Fig. 2(a), (c) show, for each value of kz, the corresponding
value of k⊥ at which the energy of the ϕ fluctuations is
largest. The data exhibit the scaling kk ∝ k5=3⊥ , in agreement

with Eq. (6), confirming that the inertial Alfvén cascade is
critically balanced [3].
Kinetic helicity spectrumand dynamic phase alignment.—

The net kinetic helicity at each wave number is a function
of the absolute value of the Fourier coefficients jϕkj and
jψkj, and of the phase angle between them, αk. For a given
k⊥, the average value of αk is given by

cos αk ¼
1

2

hk2⊥ϕk⊥ð1þ d2ek2⊥Þψ�
k⊥ þ c:c:i

hjk2⊥ϕk⊥jjð1þ d2ek2⊥Þψk⊥ji
; ð12Þ

where the numerator represents net kinetic helicity at a
given perpendicular wave number. In the k⊥de < 1 range,

(a) (c) (e)

(f)(d)(b)

FIG. 2. Eddy anisotropy scaling for simulations B1 and B2 [subplots (a) and (c), respectively]. Spectra of kinetic helicity and of kinetic
and magnetic energy for simulations B1 and B2 [subplots (b) and (d), respectively]. Different colors are used to represent the presence of
net positive or negative helicity in perpendicular wave-number shells. Subplot (f) presents the spectra of kinetic helicity and of the
product of the absolute value of the factors in the integrand of Eq. (4) in simulation B2. The corresponding average value of the cosine of
the phase angle [Eq. (12)] as a function of scale is shown in subplot (e).

(a) (b) (c)

FIG. 1. Simulation A1. (a) Spectra of magnetic and kinetic energy. (b) Spectra of kinetic helicity and of the product of the absolute
value of the factors in the integrand of Eq. (4). (c) Scale dependence of the average phase angle between fluctuations of electric and
magnetic potential in Fourier space.
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the spectra of jk2⊥ϕk⊥jjψk⊥j and of generalized kinetic
helicity (which turns into cross helicity at such scales) are
both expected to exhibit the scaling of the MHD energy
spectrum, and thus cosαk should not depend strongly
on scale. At scales k⊥de > 1, however, the spectrum of
jk2⊥ϕk⊥jjk2⊥d2eψk⊥j is expected to scale as k−2=3⊥ , while we

predict, and observe, kinetic helicity to scale as k−5=3⊥ . We
thus expect cos αk ∝ k−1⊥ . This is confirmed in Fig. 1(c): in
the RMHD range, cos αk does not vary strongly as a
function of scale. After a smooth transition at k⊥de ≈ 1,
the scaling of cos αk asymptotes to ∝ k−1⊥ for k⊥de > 1.
Figure 2(e) confirms the scaling cos αk ∝ k−1⊥ in the
kinetic range.
When cos αk ¼ 0, kinetic helicity is zero and the system

is in a perfectly balanced state. The scaling cosαk ∝ k−1⊥
therefore implies that the turbulence becomes progressively
more balanced as the cascade proceeds deeper in the kinetic
range. This statement is corroborated by results included in
the Supplemental Material [35], where we present an
analysis of the scale-dependent probability density function
of generalized kinetic helicity density (h).
Conclusions.—In this Letter, we showed that, in inertial

Alfvén turbulence, both energy and generalized kinetic
helicity cascade forward, with the cascade of energy
determining the nonlinear eddy turnover time. Helicity is
found to scale as H ∝ k−5=3⊥ in the kinetic range, a result
that is underpinned by a scale-dependent alignment angle,
cos αk ∝ k−1⊥ , between the Fourier phases of magnetic and
velocity fields. Consequently, turbulence becomes progres-
sively more balanced as the cascade proceeds deeper into
the kinetic range.
The results presented in this Letter may be valuable for

interpreting the direct measurements of low beta turbulence
in space plasmas [4–7], as well as for other astrophysical
and geophysical turbulent systems where dual energy and
kinetic helicity cascades are possible (e.g., subrelativistic
pair plasma [31], whose experimental realization is upcom-
ing [41,42]; ionospheric [1,2] and magnetospheric plasmas
[3]; and strongly rotating nonconducting fluids [43]).
Another context where our findings may be pertinent
is Navier–Stokes (NS) turbulence. Simulations reveal
a k−5=3 scaling of kinetic helicity and a scale-dependent
progressive balancing of turbulence (restoration of mirror
symmetry) [24,26,27] whose underlying dynamics is not
fully understood. We conjecture that the novel mechanism
of dynamic phase alignment uncovered in this work may
also be at play in NS turbulence and account for those
results. While the details of the nonlinear interactions in
plasma and NS turbulence are different, our conjecture is
based on commonalities between particular aspects of the
joint forward cascade of energy and (generalized) kinetic
helicity. In particular, in both systems, a “naïve” estimate of
the spectral scaling of helicity, without the inclusion of a
scale-dependent phase alignment factor, would yield a

scaling ∼k−2=3, which, if realized, would prevent energy
fromcascading forward. In both systems, a scalingH ∼ k−5=3

is instead observed [24,27], which may be underpinned,
in the case of NS turbulence, by a scale-dependent
alignment between the phases of velocity and vorticity
fluctuations.
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