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Abstract

The nonlinear three wave interaction (3WI) is used as a paradigm for spatiotemporal
chaos (STC), which refers to the chaotic evolution of coherent structures. The 3WI
describes many phenomena in plasma physics, nonlinear optics and hydrodynamics.
The conservative form is integrable by inverse scattering transforms (IST). Two non-
integrable models that exhibit STC and one model that exhibits low dimensional
chaos are studied.

The first model involves the saturation of a linearly unstable high-frequency wave
by coupling to two damped daughter waves. The unstable wave has the middle group
velocity of the three waves. The integrable form of the equations has soliton solutions.
The system is numerically simulated and STC is observed. The correlation function
is measured and spatial and temporal scales are observed. These scales and the
energy saturation conditions were estimated with linear analysis and by perturbation
expansions of the IST soliton solutions.

The second model is the same as the first except the unstable wave has the highest
group velocity. The IST solutions for the integrable form do not involve solitons.
The nonlinear interactions are radiation dominated. STC is observed in numerical

simulations with characteristic length and time scales. Estimates for these scales and
the saturated energy based on linear analysis and the IST solutions are again made.

The final system models Stimulated Brillouin Scattering in a finite medium. With
temporal dephasing bifurcations from a fixed state to periodicity, quasi-periodicity
and chaos occur in the controlling parameter space. This model does not exhibit STC
as defined above. The differences between low dimensional chaos, spatiotemporal
chaos and fully developed turbulence are discussed.

Thesis Supervisor: Abraham Bers
Title: Professor, Department of Electrical Engineering
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Chapter 1

Introduction

1.1 General Remarks

Nature abounds with complex phenomena where coherent ordered behaviour coexists

with turbulent chaotic behaviour. One striking example is the Great Red Spot of

Jupiter which is a coherent structure that has persisted for several centuries within a

raging, turbulent Jovian storm. The Red Spot is a gargantuan version of vortices in

complicated flows that occur on a more human scale as in tornados or eddies in white

water rapids. Coherent structures within disorder are not limited to vortices. Moving

fronts in propagating flames or chemical reactions, and interacting fluid convection

rolls, are other examples of coherent structures either embedded within chaos or

interacting chaotically (Campbell, 1987). A great effort has been made to understand

such systems. This dissertation is part of that effort.

Very often diverse phenomena exhibit similar ‘universal’ nonlinear characteristics.

Certain paradigmatic equations appear over and over again in descriptions of par-

ticular nonlinear phenomena. The nonlinear Schrodinger (NLS) equation, Korteweg-

deVries (KdV) equation, Ginzburg-Landau (GL) equations are examples of ubiquitous

nonlinear partial differential equations (PDE) that apply to many different contexts.

The nonlinear three wave interaction (3WI) is another of this family. Some of the

many applications of the 3WI are discussed in Chapter 2. Understanding the be-

haviour of these paradigmatic nonlinear equations goes a long way towards under-



standing nonlinear phenomena in general. The unity of phenomena stretches across

many fields including physics, chemistry, biology and economics. This universality

and the developments in computer simulations, dynamical chaos and soliton theory

have spurred the field of nonlinear science (Campbell, 1987).

Dynamical chaos refers to the aperiodic, irregular, unpredictable behaviour that

occurs in low dimensional deterministic dynamical systems (see Bergé, Pomeau and

Vidal, 1984; Campbell, 1987). Although there are some more precise definitions of

chaos (see Guckenheimer and Holmes, 1986; Devaney, 1989), one signature of chaos

is a broad band power spectrum. The ground work for chaos had been laid out by

Henri Poincaré (see Poincaré, 1952) a century ago. After Poincaré, mathematicians

and physicists on both sides of the Atlantic concentrated mostly on Hamiltonian

dynamics and ergodicity theory. Many very important results on dynamics and chaos

(intrinsic stochasticity as it was then called) were produced. The contributions are

too numerous to list but Arnol’d and Avez (1968) and Lichtenberg and Lieberman

(1992) provide comprehensive reviews. However, it was a great shock when Lorenz

(1963) showed that a simple dynamical system is completely unpredictable. This

and the advent of computer simulations were the seeds that set off the avalanche of

work on dynamics and chaos in dissipative systems. The study of fractals took on a

new meaning as well after it was found that the attracting sets of chaotic orbits, the

so-called strange attractors, were fractal-like. (Mandelbrot, 1975; see also Campbell,

1987). Chaos has been studied intensively and many excellent monographs exist

(Schuster, 1984; Zaslavsky, 1985; Bergé, Pomeau and Vidal, 1986; Guckenheimer and

Holmes, 1986; Devaney, 1989).

The equations of motion for fluid flow, the Navier-Stokes equation, have been

known for over a hundred years. In the intervening years many have tackled the

problem of fully developed turbulence (see Landau and Lifshitz, 1980; Herring and

Kraichnan, 1972; Tennekes and Lumley, 1972; Sirovich, 1989). Yet success has been

fairly limited and a complete theory is yet to be found. However given that many

degrees of freedom are involved it was not so surprising that turbulent behaviour

could arise. That the problem was so difficult to tackle may be the greater surprise.



However, chaos shows that unpredictability can arise from as few as three degrees

of freedom or dimensions. George Gamow’s book One, Two, Three, Infinity was so

inspiring to me as a child and is serendipitously prophetic. Within chaotic dynamics

three is a magic number. A three dimensional flow, and not an infinite number,

is all that is required for unpredictability and chaos. Landau (1944) proposed that

the broad band behaviour observed in turbulence arose from an infinite sequence of

bifurcations. In contrast Ruelle and Takens (1971) showed that aperiodic behaviour

could arise after three bifurcations. Li and Yorke (1975), found that ‘period three

implies chaos’. This was actually a rediscovery of Sarkovskii’s (1964) theorem which

laid out the sequence in which periodic orbits would appear; if period three existed

then so would all the periods. In this abstract sense three implies infinity.

However, is three as complicated as infinity or rather is infinity as complicated as

three? It all depends on what questions are asked. While the solution of three mutu-

ally gravitating bodies is intractable, the equilibrium state of a gas of 10%® molecules,

each bouncing around in a fashion fathomable only to Maxwell's daemon, can be

understood in an average sense in terms of average statistical quantities such as tem-

perature and pressure. Even if one were able to obtain the trajectories of each particle

it would be of little use. Collective effects such as sound waves would be completely

overlooked if one only had the microscopic orbits.

A statistical formulation for fully developed turbulence has been attempted with

some success (Herring and Kraichnan, 1972; Kraichnan and Chen, 1989). However

it still has difficulties dealing with coherent structures that exist at many length

scales and are located intermittently in space. At first it was thought that dynamical

chaos would provide a framework to comprehending turbulence, but the attractor in

fully developed turbulence has many dimensions and the characteristic time scales of

turbulence are much shorter than the attractor cycling time (Kraichnan and Chen,

1989). However, chaos did open new doors and gave a new perspective on nonlinear

dynamics in general. Surely if three dimensions are all that is required for unpre-

dictability, then there must be a variety of interesting behaviour between chaos and

fully developed turbulence. What happens when more dimensions are added to a



chaotic (low dimensional) system? The 3WI in spacetime will be used to address this

issue.

While nonlinearity can induce chaotic and irregular behaviour it can also produce

order and coherence. The discovery of solitons by Zabusky and Kruskal (1965) was

as great a surprise as the discovery of chaos. Here were nonlinear structures that pre-

served their form even after collisions! There is a whole history of solitons dating back

to J. Scott Russell’s (1838) observation of a solitary wave in a narrow barge channel,

but it was Zabusky and Kruskal (1965) who discovered the collisional properties and

coined the term soliton. It was later realized that the PDE’s that had solitons were

integrable by inverse scattering transforms (IST). Integrable PDE’s are a very special

class, to which the 3WI along with the NLS, KdV and sine Gordon (SG) equations

belong. A precise definition of integrability still does not exist (Kruskal, 1991). There

is no sure-fire way to tell whether an equation is integrable or not. The question of

what happens when an integrable PDE is perturbed remains. Chaotic behaviour is

one possibility.

Some of the issues alluded to above will be probed by considering the 3WI. The

3WI is discussed in depth in chapter 2. In short, it can occur whenever three waves

satisfy a frequency and wave vector resonance condition. The 3WI are the slowly

varying amplitude equations that describe the lowest order nonlinear interaction of

these waves. In its conservative form it is integrable by IST. In one spatial dimension

the group velocities determine the structure of the solutions. As will be discussed in

Chapter 2, there are two cases important cases. One case has soliton solutions, the

other does not. Nonintegrable versions of these two cases are studied in Chapters

3 and 4. In each case an unstable high-frequency wave saturates nonlinearly to two

damped daughter waves. These models apply to various physical situations which will

be discussed. A spatially uniform version of this situation exhibits low dimensional

chaos. The 3WI is an ideal system to study both a perturbed integrable PDE and a

spatially extended chaotic ODE simultaneously.

The results are intriguing. The saturated state involves the chaotic evolution of

coherent structures. This type of behaviour has recently been dubbed spatiotemporal

10



chaos (STC) (Hohenberg and Shraiman, 1989). A more thorough discussion of STC is

given in Section 1.2. It involves the coexistence of coherence and chaos, yet unlike fully

developed turbulence there is a separation of scales that perhaps allows a statistical

description. Through numerical simulations and analysis an attempt is made to

comprehend the dynamics and manifested STC. This dissertation, however opens

many more doors then it closes. Much remains to be learned about nonintegrable

systems, coherence and chaos. STC is not the only possibility of the perturbed 3WI. In

Chapter 5. a spatially extended model that exhibits low dimensional chaos is studied

and the contrast to STC is very evident. Section 1.2 will address the differences

between chaos, STC and fully developed turbulence.

1.2 Spatiotemporal Chaos

The term spatiotemporal chaos (STC) has acquired a more specific meaning than

simply chaos in space and time. Although there is no official definition, there has

been a recent trend to use STC to refer to the chaotic behavior of coherent structures

or patterns (Hohenberg and Shraiman, 1989). This is the usage that is taken for this

dissertation. This is in contrast to the more familiar low dimensional chaos and fully

developed turbulence. Examples of STC include large aspect ratio Rayleigh-Bénard

convection (Ahlers and Behringer, 1978; Bergé, 1979; Ciliberto and Caponeri, 1990),

Faraday ripples (Ezerskil et al., 1986), propagation of flame fronts (Sivashinsky, 1983),

nonlinear optics (Arecchi et al., 1990), chemical reactions (Kuramoto and Tsuzuki,

1976; Vidal et al., 1986) and in everyday phenomena like the patterns of sand moving

under the action of the surf. The nonlinear 3WI is another paradigm for STC.

STC differs from low dimensional chaos in that it deals with many degrees of

freedom. Thus the traditional methods of analysing chaos such as bifurcation routes,

strange attractors, Poincaré surface of sections, and so forth are not as relevant. On

the other hand it is far simpler than fully developed turbulence; the latter is usually

associated with an inertial range, coherent structures of many sizes, intermittency in

space and time, and vortices. It was the growth of chaos and a need for simple models

]



of turbulence that led to the insurgence of STC as a field of its own. A connection to

nonequilibrium statistical mechanics and dynamical renormalization group have also

led to the interest (Yakhot, 1983; Zaleski, 1989; Hohenberg and Shraiman, 1989).

The distinction between the different possible dynamics of a spatially extended

system can be made on the basis of length scales. Following Hohenberg and Shraiman

(1989), for any dynamical system there exist certain length scales. There is: (a) the

excitation length lg, the length scale at which energy is put into the system; (b) the

dissipation length Ip, the scale at which energy is dissipated; (c) the system size L;

and (d) the coherence or correlation length £. The correlation length is usually defined

in terms of a correlation function S(r — ’) =&lt; (u(r, t)— &lt;u &gt;)(u(r',t)— &lt;u &gt;) &gt;,

where the angled brackets denote time averages, and u(r,t) is some local variable (eg.

field amplitude, temperature, velocity, etc.). In many cases the correlation function

will have an exponential decay such as S(r) ~ exp(—r/¢) as € — oo, which defines

the correlation length.

Systems where energy is created and destroyed at the same length scale, Ig ~

Ip ~ L, only involve a small number of modes. The dynamics are thus low dimen-

sional. The system is completely spatially correlated. On the other extreme, in fully

developed turbulence energy is usually injected at some large scale and dissipated

at a small length scale, L &gt; lg &gt;&gt; lp, and the so-called inertial range lies between

the length scales. Also in fully developed turbulence, coherent structures exist at

all scale lengths and the correlation length is not well defined. However for systems

where energy is injected and dissipated at the same length scale and if these lengths

are both smaller than the system size, L &gt; lg ~ Ip, then the dynamics will depend

on the correlation length. If£&gt; L then again the system is spatially coherent and

the dynamics will be low dimensional. For instance single cell Rayleigh-Bénard con-

vection is a spatially extended system that has low dimensional dynamics. However

if { &lt;&lt; L the dynamics are incoherent in space and this corresponds to the regime

of STC. In STC there is no inertial range yet spatial degrees of freedom are very

important. The clean separation of scales also allows a statistical description in that

correlation functions are well defined.

19



Hohenberg and Shraiman (1989) postulated that although the dynamics of the

local variables are likely complicated, simple statistical properties may exist for the

long wavelength behaviour which depend on data from many correlation volumes.

For example, consider the Fourier transformed variable

u(q,t) = [ula tye ds.
In Eq. (1.1) an implicit average over many correlation volumes is taken. If the

correlation length is finite, the central limit theorem implies that the fluctuations

Au(g,t) = u(q,t)— &lt; u(q,t) &gt; are Gaussian. The long wavelength, low frequency

properties of STC are then expected to be described by a probability functional

P{Au(g,w)} ~ exp(—D(q,w)|Au(g, w)[*),

where the

factor YY

Gaussian measure D(q,w) is directly related to the dynamic structure

Claw) =&lt; |Au(gw)l* &gt;= ; D7 (gw).
The local variables Au(z,t) need not be Gaussian. The Fourier modes are Gaussian

with corrections of order (£/L)¢. Dropping these non-Gaussian corrections loses some

of the information about the local behaviour, and transforming Eq. (1.2) back into

real space yields a coarse-grained distribution.

The Kuramoto-Sivashinsky (KS) equation describing propagating flame fronts and

chemical reactions (Kuramoto and Tsuzuki, 1976; Sivashinsky, 1979) has been studied

intensively as a paradigm for STC (Manneville, 1981; Pomeau, Pumir and Pelcé, 1984;

Pumir, 1985; Chaté and Manneville, 1987 ; Hyman, Nicolaenko and Zaleski, 1986;

Shraiman, 1986; Zaleski, 1989). The statistics of STC have been tested experimentally

in fluid convection (Ciliberto and Caponeri, 1990) and in nonlinear optics (Arecchi et

al., 1990). Both cases show that the Fourier variables are Gaussian distributed while

the local variables are not.

Other work on perturbed integrable equations include studies of the SG equation

(see Bishop and Lomdahl, 1986), and the NLS equation (Moon and Goldman, 1984;

Goldman, 1986). Soliton turbulence has been studied in models of nonintegrable NLS

equations (Zakharov et al., 1988; D’yachenko et al., 1989).

7



Theoretical and numerical studies of spatial chaos, instabilities, and loss of symme-

try have been made in complex Ginzburg-Landau type amplitude equations (Coullet

and looss, 1990; Coullet, Elphick and Repaux, 1987; Goldstein et al., 1991).

1.3 Outline

The thesis is structured as follows. Chapter 2 gives a review of the Nonlinear Three

Wave Interaction (3WI). The physical applications are touched upon but not reviewed

in depth because an excellent review already exists (Kaup, Reiman, and Bers, 1979).

A derivation is provided that emphasizes the generality of the 3WI and its connections

to other amplitude equations. This is followed by a review of solutions for time only

amplitudes, linearized parametric instabilities and the inverse scattering transform

solution (IST) of the conservative equations. The IST solutions for the conservative

form of the equations studied in the chapter are described. Formal IST details are

given in Appendices A and B.

The next two chapters deal with specific models of the 3WI that exhibit STC. In

Chapter 3, the Soliton Decay Interaction (SDI) is considered. Numerical simulations

and analysis are combined to understand the manifested STC. The details of the

numerical method is given in Appendix C. Linear analyses and a perturbation calcu-

lation around the IST solutions are given to explain some of the numerical results.

Chapter 4 considers another model — Langmuir Decay Instability (LDI). Numerical

simulations and analyses are again used. Both LDI and SDI are applicable to any

physical situation that satisfies the generic properties. A specific application of LDI

to current laser-plasma experiments is given. The LDI and SDI differ only in the

order of the group velocities of the three waves. The integrable form of the equa-

tions with IST solutions have very different properties and this carries over into the

nonintegrable form.

Chapter 5 considers a model of Stimulated Brillouin Scattering (SBS) in a finite

medium. In this case low dimensional chaos is exhibited in contrast to the other

two models. A fixed state solution is derived and its stability is discussed. As the

A



relevant parameters are varied the fixed state makes transitions to a periodic orbit,

quasi-periodicity and chaos. The bifurcation diagram is mapped out numerically.

15



Chapter 2

The Nonlinear Three Wave

Interaction

The Nonlinear Three Wave Interaction (3WI) is an ubiquitous set of equations, arising

in many different contexts as diverse as plasma instabilities, laser-plasma interactions,

nonlinear optics, Rossby waves, buckling of cylindrical shells, water waves, etc. Ref-

erences for these applications and more are found in Kaup, Reiman and Bers (1979),

which gives a comprehensive review of the history and the many physical applications

of the 3WI. It belongs to the family of paradigmatic equations such as the Korteweg-

deVries (KdV), and nonlinear Schrodinger (NLS) equations. These equations arise

in many different contexts because they capture the lowest order nonlinear effects

of some generic interaction and many physical phenomena reduce to these equations

under appropriate asymptotic considerations. For instance, the KdV equation is ap-

plicable to wave-like flow with weak dispersion and weak nonlinearity, while the NLS

describes situations where there is strong dispersion and weak nonlinearity due to

self-modal interaction. The 3WI describes systems where three nondispersive waves

in resonance couple quadratically in the fields. The quadratic nonlinearity is often

the lowest order effect and occurs at a much faster time scale than dispersion or self-

modal interactions. Hence, if three wave resonances are allowed the 3WI will be the

dominant nonlinear effect. The 3WI, NLS, and KdV among a few others also share

the special property that they are integrable by Inverse Scattering Transforms (IST)

| A



and possess soliton solutions. Here the term 3WI refers to the simplest conservative

integrable form of this nonlinear effect. Of course it will be a nonconservative, nonin-

tegrable form of the 3WI which exhibits spatiotemporal chaos and is studied in this

thesis.

In this chapter a fairly complete and general derivation of the 3WI is presented.

This is followed by a review of previous work on the 3WI. The time only 3WI is dis-

cussed emphasizing the chaotic solution. There is a short discussion on the linearized

parametric interactions in space time. A review of the IST solutions ends the chapter.

2.1 Derivation of the SWI

The 3WI has been derived in many ways for various contexts (see Kaup et al., 1979).

The underlying unity in all of the derivations is the use of a slowly varying amplitude

expansion where waves may interact nonlinearly. The following derivation of the

3WI due to Benney and Newell (1967), emphasizes the generality of the 3WI and

demonstrates its connection to other amplitude equations such as the NLS and Four

Wave Interaction.

Consider a set of N discrete waves in a weakly nonlinear, conservative, homoge-

neous medium

wy = wiki) = —w_y, (2.1)

wherel = 1,2,..., N. In the absence of any interaction, the equations for the complex

Fourier amplitudes of the waves A(k;,t) are given by

d4; .

or + ww A; = 0,

where A; = A(k;,t) = A?,. The nonlinearity in the medium will couple the waves

together. For a weak nonlinearity an expansion in the product of the amplitudes is

possible and yields asymptotic nonlinear amplitude equations (Phillips, 1960; Benney,

1962)

1A tidy = ie) Opmn A, Ane uitkn tka)



P q,7.8

O(e), (2.3)

where € is a small parameter. The coupling constants aymn, Bip, Vigrs are real for a

conservative medium; (3, is the self-modal interaction strength. The presence of a

rapidly varying phase implies that only the terms where the wave number resonance

conditions k; + k,, + k, = 0, k; + k, + k, + k, = 0 are satisfied will be dominant.

For the situation where the linear waves are not completely discrete but are slightly

spread about the wave numbers k; one can consider slow space and time variations

of the amplitude

Ar = Ak,t,X,T), (2.4)

where X = ux, T = put, are slow scales depending on a small parameter yu. A

multiple scale expansion can be performed on the amplitude equation (2.3). The

time and space derivatives become

d/dt — 8/0 + ud/8T, 8/6z, — 8/0, + ud/6X.. (2.5)

The slow scales in Fourier space are determined by Tavlor expanding the frequency

yielding

wlk + pK) = : +3 Koo + © 5 Ko Kuga + 0) wk), (2.6)
where K. = —i8/0X,. The amplitude equation (2.3) becomes

(5+ Soman) = 55onan mn, omens
ie? = Bipaiayas

D_ Vgreagara;
O( Sen u?).

2

(2.7)

The coordinate index and wave index both appear in the subscript. The fast time

scales were removed by substituting

A,=ake.X,T)ett=qe”1t [9 8K J

- Q



The coupling coefficients ymn,7iqrs are nonzero only when the three and four wave

resonance conditions are satisfied

Wi + Wr, + wn =0, ki + kn +k,=0,

wy + We + wr + w, =0, ki +k; +k, +k, =0.

(2.9)

(2.10)

Depending on the relative ordering of the small parameters pu and e different

equations can result. If u ~ € then to leading order equation (2.7) yields the nonlinear

IWI

(Or + vi - Vx)a: = ibiaza3,

(Or + v2: Vx)a, = 1ibqaias,

(Br+vs-Va)as = ifsalas,

where v; = Ow;/0k;, and 6; = ann. For conservative couplings, the coupling con-

stants §; have the same magnitude, (Bers, 1975; Bers et al., 1976).

In many physical situations resonant triads and quartets are excluded. Then the

(2.11)

dispersion and self-modal interaction are relevant and the equation for a single mode

is given by

Oa; Ow; Oa; oe 1 Guy O%q 2 »
or Tok ox. ; 2 orok oxox, TAua| (214)

In one spatial dimension and on translating to the frame of the wave and rescaling

the time via

K'=X—vI, T=¢T (2.15)

equation (2.14) becomes the familiar and celebrated nonlinear Schrodinger equation

8a; .| 8%

oT = 5s + Balad
where x = (1/2)(8%w; /Ok}).

Furthermore for the scaling € ~ u2 and when resonant triads and self-modal in-

teractions are excluded but resonant quartets are allowed the four wave interaction

results. For instance in nonlinear optics, isotropic media that have a center of in-

version exclude quadratic nonlinearities and so the 3WI cannot occur (Bloembergen,
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1965; Akhmanov and Khokhlov, 1972). In this context of generalized amplitude

expansions, the resonant 3WI is the lowest order effect and will dominate if triad

resonances are present. This emphasizes the importance and ubiquity of the 3WI.

For plasma interactions the 3WI ignores wave particle ‘quasilinear’ interactions whose

lowest order effect is also second order in the field amplitudes. The 3WI is then the

lowest order nonlinear interaction for waves that are nonresonant with the plasma

particles.

The above discussion dealt with conservative media. In many instances this will

not be the case. The linear waves may have weak growth or dissipation (Bers, 1975;

Chow et al., 1991a)

wp, = w(k;) + w(k). (2.17)

The imaginary part of the frequency can also be Taylor expanded as in Eq. (2.6).

In an isotropic medium, the rotational symmetry would eliminate the nonsymmetric

derivatives and so one is left with

pe &amp;lit uk) = [1+ SIRS + 00) vik)
or more simply as

uv ~~ + DV%, (2.19)

where D; = (p?/2)Viuy(k), and «4; represents the zeroth order term in the expansion

(2.18). The triad resonance does not necessarily have to be exact. There may be

situations where the interaction is slightly dephased with

§ = w, + wy, +ws #0 (2.20)

If these effects are included in the 3WI a nonconservative form emerges

dra; + vi -Vxa; +a + D1 Via; = ibia3al exp(26T), (2.21)

Braz + vz - Vxaz + Y2a2 + D;Via, = ibzala;exp(iéT), (2.22)

Oras + va + Vxaz + vsas + D3Vkas = i6sala}exp(i6T), (2.23)

This is the symmetric form of the nonconservative 3WI. The diffusion term is included

in Egs. (2.21)-(2.23) even though the dispersion and diffusion terms both come in at
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O(p?). This is because it was found to be necessary for nonlinear saturation in the

models studied in Chapters 2 and 3. Often it is more convenient to distinguish the

high frequency wave from the two lower frequency waves. Let w; be the high frequency

wave, and reassign the indices (1,2, 3) — (3, j,k). Take the complex conjugate of Eq.

(2.21) and let a; — a. Make the reassignment 16, = pK", where p; gives the sign

of the wave energies. The normalization is chosen such that |a;|? corresponds to the

wave action density. With these changes Eqs. (2.21)-(2.22) take the form

bia; + vi - Va; + via; + D;iV?a; = —p;Ka;ayexp(—ibt),

Ba; + v;- Va; + via; + D;V?a; = p;K*a;a;exp(ibt),

Oar + Vi - Vag + Year + Di Via, = pK"*a;a} exp(i6t),

(2.24)

(2.25)

(2.26)

where = and t are the slow variables. The resonance conditions now have the form

Ww; + we — wj = &amp;

k:i+ke—k; = 0.

(2.27)

(2.28)

Three different forms of Eqs. (2.24)-(2.26) modelling different situations are studied in

this dissertation. Two exhibit spatiotemporal chaos and one exhibits low dimensional

chaos.

2.2 Time Only Evolution and Chaas

For amplitudes that depend only on time, the 3WI Eqs. (2.24)-(2.26) reduce to a set

of three ordinary differential equations (ODE)

» —~i6t
a; = 7a; — piKajae™,

PT oy K*a.a"e'ta; = —7;a; +p;H aia.

: K*a:a* i6tar = —Ykak + pel aiae

(2.29)

(2.30)

(2.31)

This form of the 3WI applies to discrete modes, spatially uniform amplitudes, travel-

ling waves with equal group velocities or for one dimensional steady state. For positive

energy waves (p; = p; = Pk,) the conservative, resonant interactions (y; = 0,8 = 0)
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are easily solved in terms of Jacobi Elliptic functions (Bloembergen, 1965; Sagdeev

and Galeev, 1969; Davidson, 1972). The solutions are oscillatory with a period

 1 |a:(0)]
I Ka) “la; 0) 9.32)

When the high frequency wave has wave energy opposite in sign to the low frequency

waves (p; = pr = —pi) then there is an ‘explosive’ instability, (i.e. where the solution

becomes singular in finite time) (Coppi et al., 1969).

With the addition of the nonconservative terms, closed form solutions no longer

exist. However, one can consider an initial situation where the low frequency waves

are small and the high frequency wave is large. The equations can then be linearized.

This is known as a parametric interaction. Linearizing Eq. (2.29) yields

2:(t) = a;(0)e™* (2.33)

Equations (2.30) and (2.31) become

:(t)ag,*a;Kia; —Yia; i

ar’ + rar, = Ka;(t)%a;

(2.34)

(2.35)

Assume that a;(t) is very slowly varying and substitute in the following

This yields the dispersion

aie, ap = aie”, v= Kla(t)].

relation

(p+) +7m)—7=0.

(2.36)

(2.37)

The threshold for instability is given by 4 &gt; ~4;v,. For + slowly growing there will

always be an instability. Ultimately nonlinear theory is required to determine the

fate of the waves.

The nonlinear 3WI in time only was studied by Vyshkind and Rabinovich (1976),

Wersinger, Finn and Ott (1980), Meunier, Bussac and Laval (1982). In those studies

the damping rates of the two low frequency waves were chosen to be equal. With

this assumption these two waves evolve in step and can be set equal (i.e. a; = ag).
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Rescaling time with ¢ — t/~; and transforming the amplitudes with a; = u; exp(i¢;)

yields the equations

Ui = Ui — u? cos @,

ut; = —ui(I' —u;cos¢),

6 = —A—(2u— u?/u;) sin ¢,

(2.38)

(2.39)

(2.40)

where ¢ = ¢; — 2¢;, A = §/~;, I = 4;/~. The 3WI reduces to three coupled ODE’s

with two parameters I' and A.

Equations (2.38)-(2.40) have two fixed points. One is the trivial fixed pont u; =

u; = 0 which is always unstable. The other is given by

u; = I'/cosg,

u; = —I'%/cosé,

¢ = tan"!'[A/(1 —2@)]

(2.41)

(2.42)

(2.43)

Linearizing about this fixed point shows that it is stable within the region defined

by A? &gt; A? = a(a + 1)(a — 3)7!, where a = 4(T' — 1/2)2. For I' &lt; 1.37 the

system is always unstable. It can also be shown that for A = 0 there cannot be

any nonlinear saturation. However when A decreases through Ay a Hopf bifurcation

ensues. Wersinger et al. (1980) and Meunier et al. (1982) have mapped out portions

of the parameter plane (I';A) in some detail. A Poincaré surface of section can

be constructed by recording u; and u; at a time {,, defined by ¢ passing through

values ¢o + 2mm where ¢p is an arbitrary constant. They found that the parameter

plane is divided into three main regimes: the basin of the stable fixed point, an

unbounded regime and a regime of nonlinear saturation. The latter is the interesting

regime where a period doubling route to chaos and intermittency are observed. The

surface of section shows the transition from periodic orbits to strange attractors. The

resulting strange attractor has a very strong attraction in one direction and almost

resembles a one dimensional structure. Using this fact as a cue, Bussac (1982) was

able to reduce the three dimensional flow to a one dimensional map which exhibited

the same route to chaos.
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2.3 Spacetime Parametric Interaction

In spacetime the linearized parametric instability where the low frequency waves are

initially small can be studied as in the time only case (see for instance Bers, 1975).

However, in spacetime a localized, pulsed disturbance in an unstable medium can

evolve in two ways (see Bers, 1983): (a) the pulse can grow and propagate away

from its origin, so at a fixed point in space the disturbance decays in time — this is a

convective instability; or (b) the pulse can encompass more and more of space, so at

every point in space the disturbance grows in time — this is an absolute instability.

Transforming to the frame of the high frequency wave (v; = 0) and for a;(t) &gt;&gt; a;, ax

(a; can then be considered constant), Eqs. (2.25) and (2.26) can be linearized (Bers,

1975; Bers, 1983)

(6: +vi0: —vj)a; = 7a;

(6 + v0 — Yk )ar = 7a:

(2.44)

(2.45)

where v = |K*a;|, and ~; are dissipation coefficients (the second order diffusive term

is ignored). Only one spatial dimension is considered. The high frequency wave is

called the pump in the parametric interaction. The dispersion relation is simply

D = (w — kv; + iv;)(w — kve + i) +42 = 0. (2.46)

There is a threshold of instability

my
1 2 Vie = ~2 (2.47)

For vjur &gt; 0 this is a convective instability. For vjur &lt; 0 there is an additional

threshold for an absolute instability

- = 1
— =a &gt; a: + |luv, 11/2 5 il + low), (2.48)

where oq = 4; /v;.

If the pump is spatially varying then one must solve the boundary value problem

for Eqs. (2.44) and (2.45). For v;v, &lt; 0 the condition for an absolute instability is the
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existence of a growing normal mode. For a slowly varying pump with one extremum

and classical turning points the WKB condition for n growing modes is given by

(n=3)7&lt; [10? ~ (lal + lesl)?/41 de &lt; (+3) ™ (249)
where a and b are turning points for a localized pulse. For the situation where the

damping on the two daughter waves are equal (a; = ay) the condition for an absolute

instability is then given by

b T

[1o® =lay 2dz &gt; 7 (2.50)

2.4 The Inverse Scattering Transform Solution

The conservative 3WI is integrable by use of inverse scattering transforms (IST). This

technique was first developed by Gardner, Greene, Kruskal and Miura (1967) for the

KdV equation. Lax (1968) developed an approach that could be applicable to other

nonlinear PDE’s and Zakharov and Shabat (1972) used the method to solve the NLS

equation. Ablowitz, Kaup, Newell and Segur (1974), generalized the method and

coined the term IST because of the analogy to Fourier transforms.

The general strategy of IST is the same as any transform method — a transfor-

mation is made into a space where the time evolution is simple. After time evolving

the initial data in the associated space an inverse transformation is made to obtain

the solution. The transformed space for the IST method is defined by the asymptotic

scattering properties of the eigenfunctions of an associated eigenvalue or scattering

problem. The field of the nonlinear evolution equation serves as a potential function

of the scattering equation. The original equation is an integrability condition for this

scattering equation and a linear time evolution equation. The initial data are trans-

formed into ‘scattering data’ by ‘forward scattering’. The scattering data are evolved

in time and then transformed back by ‘inverse scattering’. The difficult part of the

procedure is in the inverse scattering which involves the solution of integral equations

known as the ‘Gelfand-Levitan-Marchenko’ equations. The Schrodinger equation for

instance is the scattering problem used to solve the KdV equation. It is actually a
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special case of the second order Zakharov-Shabat (ZS) problem (Zakharov and Sha-

bat, 1972). The sine-Gordon (SG), modified KdV and NLS equations among many

others are solved using the ZS problem. An outline of the ZS problem is given in

Appendix B. No attempt will be made to present a review of IST. Several compre-

hensive texts on the subject of solitons and the IST exist (Ablowitz and Segur, 1981;

Eckhaus and Van Harten, 1981; Dodd et al., 1982; Drazin and Johnson, 1989).

An outline for the IST solution of the 3WI in one spatial dimension was first

presented by Zakharov and Manakov (1973). They showed that the appropriate

scattering problem is the third order Zakharov-Manakov (ZM) problem (Zakharov

and Manakov, 1973), outlined in Appendix A. They later made a more detailed

study of the IST solution (Zakharov and Manakov, 1975). Numerical integration of

the 3WI (Bers and Reiman, 1975; Reiman and Bers, 1975) showed the existence of

solitons for separated envelope interactions and thresholds for explosive instabilities

in spacetime. Based on this, the problem was fully solved by Kaup (1976a), and he

also discovered that for most situations of interest the solution of the 3WI could be

solved using the simpler ZS problem instead. The numerical and analytical results

were shown to coincide in several specific interactions of the 3WI by Bers, Kaup

and Reiman (1976). Later Reiman, Bers, and Kaup (1977) conducted a study of the

3WI in an inhomogeneous medium. Kaup (1980) later solved the 3WI in three spatial

dimensions. A complete review of the solution and properties of the 3WI in one spatial

dimension is given by Kaup, Reiman and Bers (1979). The ensuing review of the IST

solution and the accompanying appendices follow directly from this reference, Kaup

(1976a) and Reiman (1977). The conservative 3WI in an inhomogeneous medium has

been reviewed by Reiman (1979). Two cases of the 3WI directly applicable to the

nonintegrable models studied in this thesis are covered in some detail. Formal IST

concepts are introduced only when necessary.

The 3WI has different behaviour depending on the relative order of the group

velocities and signs of the wave energies. When the energy of the highest-frequency

wave has the opposite sign to the lower frequency waves and it also has the middle

group velocity then a singularity may arise in finite time. This is known as the
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explosive instability. Unlike the time only case discussed in Section. 2.2, an area

threshold must be exceeded before the interaction is unstable. When all the waves

have energies of the same sign and the highest-frequency wave has middle group

velocity interesting soliton solutions exist. This case is known as the Soliton Exchange

or Soliton Decay Interaction (SDI). The case where the energies are of the same sign

and the highest frequency wave has the highest (or lowest) group velocity is known as

the Stimulated Backscatter Interaction. In physical systems the resonance conditions

are usually easier to satisfy for the latter case. In this thesis it will be used to model

Langmuir Decay Instability and Stimulated Brillouin Scattering. The nonconservative

forms of Soliton Decay and Stimulated Backscatter will be considered in this thesis

so a more detailed review of their properties are given in the following.

2.4.1 The Soliton Decay Interaction

The existence of solitons is usually synonymous with integrability and IST. In fact it

was the discovery of the soliton in the KdV equation by Zabusky and Kruskal (1965)

that spurred the development of IST. Solitons play an important role in the 3WI in

one spatial dimension when the high frequency wave has the middle group velocity.

As will be seen, the high frequency wave has a tendency to give up solitons to the low

frequency waves precipitating the name Soliton Decay. As outlined in Appendices

A and B, when the envelopes have negligible overlap each can be treated separately

with its own ZS scattering problem.

Solitons in the 3WI are a little different from the more familiar solitons in the

KdV or NLS equations. In those systems the solitons arise out of a balance between

the dispersion and the nonlinearity. Also solitons ‘have velocities proportional to

their amplitudes, larger solitons being faster than smaller ones. Collisions involve

larger solitons overtaking smaller ones and preserving their forms with only a shift

in position after interacting. The 3WI is nondispersive and all waveforms travel at

the group velocity of the wave. Collisions only occur between the different waves.

Solitons in the 3WI are localized structures in the wave envelopes that preserve their

form after interaction with solitons in the other waves. An interesting property of the
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3WI is that solitons can be exchanged between the envelopes. The high frequency

wave has a tendency to give up its solitons to the lower frequency waves. Because of

this property the high frequency wave is referred to as the parent wave and the low

frequency waves are referred to as the daughter waves.

In the IST framework solitons are given by the bound states of the associated

scattering problem. As shown in Appendix A when the three envelopes are separated

or have negligible overlap then each envelope can be treated individually with its

own ZS problem. Bound states of the ZS problem indicate solitons in the given

envelope. Depending on the group velocity ordering and wave energies each envelope

may or may not possess bound states and hence solitons. Using the notation of

Appendix A, for the SDI case (v; — v;)(vi — v:) &gt; 0, (11,72,73) = (—,—,—) and

(3,7,k) = (2,1,3). From Appendix A, this shows all three envelopes may contain

solitons. The continuous spectrum of the scattering problem is called the ‘radiation’.

The IST solution is divided into solitons and radiation. The radiation is the nonlinear

extension of the Fourier transform; the solitons have no linear counterpart.

If at some time the envelopes are separated, the scattering data for each envelope

can be obtained by forward scattering their respective ZS equations. When the en-

velopes interact, the evolution must be described by the full ZM equation. However,

at a later time after mutual interaction the three envelopes may again be separated

and the reduction to three ZS equations applies again. Inverse scattering can be

applied to these equations to obtained the time evolved envelopes. Equations (A.27)-

(A.29) show the relation between the initial and final scattering data. If the daughter

waves initially contain solitons then they will after interacting. However the parent

wave will give up its solitons.

The parent wave acts as a filter for solitons. The soliton content of the parent

wave is transferred to the daughters leaving the radiation behind. Certain potential

functions such as a square wave can be easily solved to yield the scattering data.

Thus given an initial condition where the parent wave is a square well, the ZS eigen-

value problem can be solved for the continuous spectrum and the bound states. For

arbitrary shaped pulses WKB theory may be applicable. Given a well that is slowly
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varying, with one extremum and classical turning points the eigenvalues of the bound

states can be found from the Bohr quantization condition

1
[(@—7) dz =x (n+3), (2.51)

where a and b are the turning points, gq is the ZS potential (proportional to the wave

envelope), 7 is the eigenvalue and n is an integer. Setting 7 — 0 gives the total

number of solitons, IN, contained in an envelope

b 1

v&lt; | lgld= + 3. (2.52)

The daughter waves inherit solitons from the parent. For the situation where the

parent envelope contains one bound state with eigenvalue A) each daughter envelope

will obtain a soliton with eigenvalues A), A(*) where the eigenvalues are related to

one another through Egs. (A.19), (A.21), (A.23). Single solitons for envelope I have

the form

 | = 22Wsech[2AW(z — vt — z0)], (2.53)

where v is the group velocity of the envelope and z, is a phase that is determined by

IST. The ZS potentials g!) are related to the wave envelopes through Eqs. (A.19),

(A.21), (A.23).
Figure 2-1 shows a numerical simulation of the decay of a soliton in the parent

wave (no radiation) into solitons in the daughters. The group velocities are given

by v; = 0, v; = —v, = —1. For this choice AG) = A) = X()/2, Only one of the

daughters a; is shown. The other will be the same under a transformation z — —=z.

Up to this point the reference to solitons has only been made with respect to the ZS

problems for each envelope. However, in truth the solitons are given by the bound

states of the ZM problem. The 3WI soliton is actually the combination of the three

envelopes. Equations (3.32)-(3.34) give the analytic expression for the soliton decay

shown in Fig. 2-1. However whenever the term soliton is used it will implicitly refer

to the ZS solitons corresponding to each envelope.

A point that will be very important when the nonconservative case is considered

in Chapter 3, is that the parent wave will not give up its solitons to the daughters
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Figure 2-1: Soliton solution of (a) parent wave and (b) daughter wave
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if it is completely isolated. This is easily seen in Eq. (2.24). The pulse will simply

propagate along the characteristic. However if a bound state does exist it is unstable

and a collision with or the initial presence of a daughter envelope, however small, is

necessary to trigger the decay. If the parent contains more than one bound state,

all of them will be transferred to the daughters and multi-soliton configurations will

form in the daughters. If two arbitrarily shaped daughter pulses happen to collide

many interesting things occur. If both do not contain any solitons they will interact

and deposit some of their energy into the parent. The waves will then separate and

all three waves will be distorted. If two daughter pulses each containing one soliton

dressed in radiation collide, they will transfer their soliton content and some radiation

to the parent, shed the rest of the radiation in the collision, and emerge delayed in

time as pure solitons. If two colliding solitons are resonant (having identical bound

state ZS eigenvalues) then they will create a parent soliton which will persist until it

is induced to decay. All of the various interesting behaviour for the SDI are reviewed

extensively in Kaup et al. (1979).

2.4.2 The Stimulated Backscatter Interaction

Without loss of generality the high frequency wave can be taken to have the highest

group velocity. For this case the following applies in Appendix A: (,7,k) = (3,2,1),

(71,72,73) = (—,—,+) . The terminology of laser-plasma interactions (stimulated

Brillouin scattering) is often convenient to use. The high frequency wave is referred

to as the pump wave (PW), the middle group velocity wave is referred to as the

ion-acoustic wave (AW) and the slow wave is referred to as the backscattered wave

(BW). From Egs. (A.18)-(A.23) it is clear that only the the BW can contain solitons

so soliton exchange effects do not play a role. This implies that the interesting effects

are radiation dominated and due to the collisions between the envelopes. Figures

2-2 - 2-4 show a numerical simulation of the spacetime evolution for the collision of

a large square PW with a small AW wave. The group velocities are v; = 0, v; = —1,

vr = —2. The interaction between the AW and the PW generates the BW hence

the name Stimulated Backscatter. The waves show a decimated structure after the
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Figure 2-2: SBI solution of the PW, a;(z,t)

interaction. Other simulations show that the wavelength of the oscillation decreases

as the size of the initial PW increases.

Closed form analytic results cannot be obtained for this case as in the SDI case

because the behaviour is radiation dominated. However the IST solutions can deduce

some of the properties of the envelopes. The reflection coefficient p(A) defined in Eq.

(B.8) and the density of radiation

L(A) = [1 £ |p(A)]*]F — 1, (2.54)

are the important quantities, where A is the eigenvalue of the ZS equation. The

density of radiation I' is analogous to a ‘power spectrum’ of the linear theory. When

the initial pulses are square pulses closed form solutions for I' can be found. From

Appendix B and Kaup et al. (1979) with the choice ¢; = —c3 and ¢; = 0,

P(A) = AXG(L2A?—A2),

rf?) = A2GA2):—A2),

(2.55)

(2.56)
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where A = A) L(1) is the length of the LW(AW) pulse, As(Az) is the area of the

PW(AW) pulse and

G(z) =
sinh?(—z)'/?/(—z) ifz&lt;0

| sin?(—z)/?/(—z) ifz&gt;0 (2.57)

Using Eqs. (A.27)-(A.29) for I'{") = 0 (BW initially zero) the final reflection coeffi-

cients can be derived

rod
1+18’

ppp = LO0ATE)
14+Tg7’(1+1I%")

(1+Tg")(1+Tg")
The basic structure of the BW can be inferred from pM. The Fourier transform of

pH gives the wave envelope in the linear limit but qualitative results should apply in

the nonlinear regime. When the areas of the AW and PW are small, | pH) ~ rr)

has a (sinz/z)? behaviour when the initial conditions are square pulses. This would

give a triangular shaped pulse. A large area AW pulse will not fundamentally alter

the reflection coefficient because of the denominator in Eq. (2.58), but a large area

PW pulse will. For example, from Egs. (2.55) and (2.56), if Az increases from 1 to

10, then at A = 0, TY) rises from an order unity to an order of e?°. For A &gt; Az/L,

rl is bounded by Az, while for 0 &lt; A &lt; As, re becomes of order e?&gt;4*, Thus

given A; &gt;&gt; 1, ri and hence Pik becomes almost square shaped with a width

Asz/L = Q3. The Fourier transform of a square wave is a sinc function. Thus the

wavelength of the oscillations of the BW structure are inversely proportional to the

initial height of the PW. Causality will chop off the forward half of the behaviour. Also

since pH is continuously differentiable, the corners of the square pulse are rounded

and this implies the Fourier transform will fall off faster than any power of = as

xz — oo. This is approximately what is observed in the simulations.

Similar analyses can be made with the AW and the PW. However the estimates

will not be as concrete as for the BW. For the AW initially small the final reflection

(2.58)

(2.59)
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coefficient of the PW from Eq. (2.60) behaves approximately as PP? ~~ rd /(1+

ri). For Az &gt;&gt; 1, Pk ~1/(1 +I) in the region 0 &lt; A &lt; As. Outside this region

1o8] goes to zero. The qualitative shape of the reflection coefficient is a symmetric

function that rises from zero to an amplitude of unity, then dips in the center with a

width of @3. The Fourier transform of such a function will be roughly some localized

structure with a characteristic width given by 27 /Q3. For large PW, the reflection

coefficient of the AW, Eq. (2.59) is also unity in the region 0 &lt; A &lt; A; and behaves as

I? /(1 + T§?) outside of this region. For small initial AW the Fourier transform will

behave somewhat like that of the BW. Collisions with varying initial amplitudes and

between the BW pulse and the PW yield similar results. Kaup et al. (1979) present

a detailed discussion of these and other results.
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Chapter 3

The Nonintegrable Soliton Decay

Interaction

3.1 The Model

A nonintegrable form of SDI that exhibits spatiotemporal chaos (STC) is considered

in this chapter. The 3WI is used to model the nonlinear saturation of a linearly

unstable high-frequency wave by coupling to two damped low-frequency daughter

waves. The high-frequency wave has the middle group velocity. The dynamics are

constrained to one spatial dimension. An example of a physical application would

be the decay of an unstable lower hybrid wave to two daughter lower hybrid waves

in magnetic plasmas (Reiman, 1977). However, the model applies to any generic

situation that satisfies the given conditions. The equations are a special case of

the general 3WI nonconservative equations (2.24)-(2.26). Numerical simulations are

combined with linear and perturbation analyses in order to understand the STC

manifested in SDI. The IST solutions for the conservative SDI are described in Section

2.4. The solutions involve the exchange of solitons between the three waves. The IST

solutions are essential to understanding the behaviour of the nonintegrable SDI, and

provide nonlinear solutions to perturb around.
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The equations in one spatial dimension ¢ and time ¢ are

dia; + v;0:a; — DOrea; — via; = —Kajay,

Oia; + v;0za; + va; = Kaa,

Oar + vi0zar + mar = K ‘aa

(3.1)

(3.2)

(3.3)

The 4's have been chosen to be positive. The high frequency wave labelled by sub-

script © will be referred to as the parent wave and the other two waves will be referred

to as the daughter waves. The group velocities satisfy the condition vy &gt; v; &gt; v;. All

three waves have positive wave energy. The parent wave has growth and the daugh-

ter waves are damped. The diffusive term in the parent wave Eq. (3.1) is the second

order term in the slow variation of the imaginary part of the frequency and provides a

cutoff in wave number for the growth in the parent. This term is extremely important

for nonlinear saturation of the system and in determining the long time behaviour.

The waves are in perfect resonance. Unlike the spatially uniform case considered in

Section 2.2, dephasing is not required for saturation. In fact simulations seemed to

indicate that it did not have a major effect on the behaviour at all.

These equations (3.1)-(3.3) are further simplified. A transformation into the frame

of the parent wave is made via £ — z — vt. In this frame the group velocities of

the daughter waves are chosen to be opposite and equal with a magnitude of v. The

damping coefficients of the daughters are also chosen to be equal yielding

Oia; — DOrza; — via; = —Kajay,

Oia; — vOza; + v;a; = K'a;a;,

Oar + vO ay + Yi%e = K%a;a’

(3.4)

(3.5)

(3.6)

The number of free parameters can be further reduced by rescaling the length, time

and amplitudes with: a; — (v;/K)a;,, t — t/v;,  — (v/v;)z, vi — 7/7; and

D — (v?/v;)D to yield

0.a; - Dé, a; — Ya; = —a
i

{3J

&gt;

»! {



O.a; — 0:a; +a; = aa;

Oia + Oar +a, = aa’

(2.8)

(3.9)

Notice that the phase of the coupling coefficient K has been absorbed into the am-

plitudes. The daughter waves satisfy a parity symmetry where the equations are

invariant under the transformation z — —=z, a; — ea, and a; — e *%a; where ¢ is

an arbitrary constant phase. The equations look deceptively simple. The linear part

of Eq. (3.7) is a diffusion equation with growth. The linear parts of Eqs (3.8) and

(3.9) are damped free streaming equations.

In the normalized form given by Egs. (3.7)-(3.9), there are two free parameters:

the normalized growth rate 4; and the normalized diffusion coefficient D. Different

regimes of the parameter plane (v;, D) yield different behaviour. Three different cases

exhibiting STC are considered. Results of numerical simulations are presented then

analysed. The first case is nearly integrable with weak growth and weak diffusion.

This allows the nonconservative terms to be treated as perturbations about the inte-

grable 3WI and much can be understood about the dynamics. The second case has

strong growth and the third has strong diffusion. Both of these cases are not as easily

tackled by perturbation theory so analytic results are not as complete as in the nearly

integrable case.

3.2 The Nearly Integrable Regime

3.2.1 Simulation Results

Equations (3.7)-(3.9) were numerically simulated with periodic boundary conditions

on the domain z € [0,L). The 3WI is a hyperbolic PDE. It lends itself fairly easily

to numerical integration because the characteristic curves are straight lines. Each

envelope is first transformed to its characteristic moving frame. A fixed spatial grid

is then laid out for each envelope and the PDE is reduced to coupled ODE’s. The

spatial grid was chosen to be able to resolve the smallest structures that may result.

The specific details of the numerical method is in Appendix C.
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The long time, large system dynamical behaviour was of interest. In each sim-

ulation, the complete spatiotemporal history of each envelope was recorded. The

integrated energy U(t) = [fT |ai(z,t)|?dz was monitored. The saturated state was

considered to be reached when the integrated energy began to fluctuate about some

average value. The correlation function Si(z,t) =&lt; a;(z — z’,t — t')a;(2',t') &gt;, where

the angled brackets denote time averages, was then constructed (See Appendix C for

the numerical procedure). Actual spatiotemporal profiles proved to be of great use in

comprehending the dynamics. In all the simulations, random real initial conditions

were chosen. The correlation function for different runs and runs of varying length

were compared to ensure the results were consistent. Conservation laws for the inte-

grated energy are derived in Section 3.2.3. Compliance with these laws was a measure

of the veracity of the simulations.

The parameters for the nearly integrable case were D = 0.001, 4; = 0.1, and L =

20. This case exhibits STC and falls into the regime where perturbation theory can be

used to explain the behaviour (Chow et al., 1991b). Fig. 3-1 shows the spatiotemporal

evolution profile of the parent. The length shown is one half the simulation system

size and t = 0 is an arbitrary time well after the transients have decayed. The profile

of the parent is irregular yet spatial and temporal scales can be observed. There are

coherent structures of a definite length scale that are seen to grow, deplete and collide

with one another. The corresponding daughter profile is shown in Fig. 3-2. A sea

of structures is seen convecting to the left. The structures are of a definite size and

are constantly being created. They then damp as they propagate. Only daughter

aj(xz,t) is shown. The other will be similar but with structures propagating to the

right because of the parity symmetry discussed in the introduction of this chapter.

The correlation function for the parent is given in F ig 3-3. It clearly shows decor-

relation for long times and lengths. The spatial direction shows a definite length scale

that was observed in Fig. 3-1. Correlations fall off gradually in the time direction.

This is a clear signature of STC. There is a well defined correlation length and beyond

this length the dynamics are decorrelated. Further information is gained by Fourier

transforming S;(x,t). The spectrum of static fluctuations S;(q,t = 0) for the parent
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Figure 3-1: Spatiotemporal profile of the parent wave a;.
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Figure 3-2: Spatiotemporal profile of the daughter wave a;.
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Figure 3-3: Correlation function S;(z,t) of the parent wave a;.

wave is shown in Fig. 3-4. There is a cutoff near ¢ ~ 10 and a range of modes show

up as a prominent hump. The cutoff reflects the length scale seen in the spacetime

profile and in the correlation function. The hump in the spectrum indicates weak

periodicity. The spectrum becomes flat for wavenumbers below the hump indicating

decorrelation. The local power spectrum S;(z = 0,w) given in Fig. 3-5 shows two

time scales. The spectrum bends over near w ~ 0.02 which gives a long time scale and

a shoulder at w ~ 0.3 gives a short time scale. Longer runs with the same parameters

hint that there may be a slow power law rise of undetermined exponent for frequencies

below the low w bend similar to that observed in the Kuramoto-Sivashinsky equa-

tion (Zaleski, 1989). The short time scale appears as the growth and depletion cycle

observed in the spatiotemporal profile Fig. 3-1.

The daughter correlation function is shown in Fig. 3-6. It is calculated along the

characteristic curve ¢ = —t. There is an abrupt drop in the time direction (direction

along characteristic) followed by a very slow and long decay. In space there is a

definite length scale where the correlation function drops to zero but then along the

x axis a very small but nonzero correlation is observed over the entire length. The
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Figure 3-4: Spectrum of static fluctuations S;(g,t = 0) of the parent wave a;.

temporal decay rate is of order t ~ O(1) and cannot be resolved at the scale of the

plot. The spectrum of static fluctuations S;(g,t = 0) is shown in Fig. 3-7. It shows a

softer cutoff than the parent wave around gq ~ 6 giving the correlation length observed

in Fig. 3-6. For wavenumbers lower than the cutoff the spectrum flattens out. The

local power spectrum S;(z = 0,w) is shown in Fig. 3-8. The spectrum shows two

peaks at high w. One is where the shoulder of the parent wave power spectrum is and

the other is at twice the frequency. For low frequencies the spectrum begins to bend

over at w ~ 0.007. This bend is more pronounced in longer runs. It is not known

whether the spectrum becomes flat below this bend or has a power law rise like that

in the parent wave. The time series for the integrated energy U, is shown for all of the

waves in Fig. 3-9. The upper curve is the parent wave; the two daughter waves are

perfectly synchronized in the lower curve. The power spectrum for the parent energy

is shown in Fig. 3-10 (a). There is a prominent peak at the location of the shoulder

in the local power spectrum (Fig. 3-5). The power spectrum of the daughter energy
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Figure 3-7: Spectrum of static fluctuations S;(g,t = 0) of the daughter wave a;.

in Fig. 3-10 (b) shows a similar picture.

The dynamics clearly fall into the realm of STC. There are coherent structures of a

definite length scale that interact chaotically. Correlation functions are well defined in

space and time and provide a good description of STC. The parent wave is composed

of coherent structures that grow and deplete on a short time scale and drift and

diffuse on a longer time scale. The daughter waves are composed of damped drifting

structures. They are created at intervals of the short time scale seen in the parent

wave and have very long correlation times. An analysis of the observed dynamics is

presented in the ensuing sections.

3.2.2 Qualitative Description of the Dynamics

The main features of the dynamics can be understood in terms of the linearized equa-

tions and by considering the growth and dissipation terms as perturbations around

the integrable 3WI. The numerical simulations show that the spatiotemporal dynam-
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ics exhibits STC and can be described in terms of a correlation function which has a

given amplitude (average energy density), and temporal and spatial scales. Combin-

ing linear analysis with the IST solutions the correlation lengths for the parent and

daughter are derived here.

The trivial fixed state of Eqs. (3.7)-(3.9) found by setting 3/0t to

8.20; + goa; = 0, a; =a, =0,

Zero 18

(3.10)

where go = 1/vi/D. The linearized dispersion relation for growth rate s and Fourier

mode gq for the parent wave obtained by linearizing Eq. (3.7) is

2
q

s = ;(1 — 2) (3.11)

Thus modes q &gt; go will damp and those with ¢ &lt; go will grow.

Energy is injected into the parent at long length scales. The trivial fixed state

is always unstable to long wavelength fluctuations. The nonlinear interaction with

the two daughter waves saturates the long wavelength instability. The parametric

interaction analysis for a spatially varying pump reviewed in Section 2.3 shows that

the daughter waves will be unstable and grow whenever the WKB area threshold

equation (2.50) is satisfied. In the notation of this chapter the WKB condition has

the form
b

/ ja? —72|"2de &gt; m/2. (3.12)

The IST solution for soliton decay shows that when the parent wave contains a soliton

given by the Bohr quantization criterion Eq. (2.51) it will decay into solitons in

the daughters. The damping and growth will perturb this decay process but for

weak perturbations the essential elements of the interaction remain intact. Instead of

decaying into solitons the parent wave will decay into quasi-solitons when the WKB

threshold condition is met. A perturbative analysis around the IST soliton decay

solution is detailed in section 3.2.4.

The depletion process spatially decimates the pump and saturates the growth of

the low gq. From any random initial condition, small scales are smoothed out by the

diffusion process to length scales on the order of 2w/qy. The long scales grow until



a local area exceeds the WKB depletion threshold condition Eq. (3.12). The parent

wave then depletes to quasi-solitons in the daughters and generates smaller scales

or higher q in the process. The steady state is attained when a balance between

the nonlinear conversion of long length scales to small length scales and the linear

elimination of the small scales is attained. Spatially the parent wave will be composed

of long wavelength fluctuations about the principal wavelength 27 /qo. The correlation

length for the parent is then

€p =~ 27/qo. (3.13)

The daughters will be composed of quasi-solitons in a constant state of creation

and decay. The daughter correlation length will be given by the average quasi-soliton

width. In Section 2.4 the soliton width in the integrable equations was shown to be

related to the bound state eigenvalue of the parent pulse. This relation is assumed

to carry over into the nearly integrable regime. If the average eigenvalue is denoted

by n then the daughter correlation length is

&amp; Tr 2/m (3.14)

3.2.3 Conservation Equations

Conservation equations can be formed for Eqs. (3.1)-(3.3) by first forming the complex

conjugate equations. Multiplying the original equations by a; and the conjugate

equations by a; and adding yields

Oilail? + vi0zlai|* — 2vilas|* — D(a! 8zza; + 0:80:20) = — Kala ax — K*a;a%ay, (3.15)

Bla?il? + v;Bela;|®i0z1a;12 + 2v;la;)*=Kajajar+Ki®j ’

Bclar|® + vilzlar|® + Sa.
27e|ax]? = Kalaja* , *;ajar + K'a;azay,

(3.16)

(3.17)

For a periodic domain z € [0,L), the equations are integrated over z. Equation

(3.16) is added to Eq. (3.15) and Eq. (3.17) is subtracted from Eq. (3.16) to yield the

integrated conservation or energy equations

1 1 L 2
5 OU + 50:U; = UU; — y;U; — Df |Oza| “dz, 3.13)

AR



50.0; — a0 = —7;U; + Uk, (3.19)

where U; = fy |a;|?dz. For the conservative 3WI, (D = +; = 0), Eqs. (3.18) and (3.19)

are known as the Manley-Rowe relations, usually rewritten in the form 8,(U;+U;) = 0,

0:(U; + Ux) = 0. The Manley-Rowe relations are two of the infinite conserved quan-

tities associated with integrable partial differential equations (Ablowitz and Segur,

1981). Equation (3.19) shows that if the damping coefficients of the daughters are

equal (vy; = vi) then the energies of the daughters will approach one another expo-

nentially.

In the saturated state the energy Uj; is composed of an average part plus a fluctu-

ating part, U; =&lt; U; &gt; +68U,, where (1/L) &lt; U; &gt;= §,(0,0). Inserting this into Egs.

(3.18) and (3.19) and taking the time average yields

D (L :

7; =f &lt; |G? &gt;de =X &lt;U; &gt;,
Yi Jo VY;

&lt;U; &gt;= Te Ur &gt;.
RE

Applying Parseval’s theorem to the integral in Eq. (3.20) gives

L oo

| &lt;18.ailt &gt; do = [7 | &lt;lala, 1)? &gt; da,
0 0

(3.20)

(3.21)

where the convention f(z) = = [€** F(q)dq is used. Note the right hand side of Eq.

(3.22) is really a sum rather than an integral. However for L &gt;&gt; §,, where §, is the

correlation length, this approximation is fairly good. For the STC regime &lt; |a;(g)|? &gt;

is approximately constant up to the highest unstable mode gq =v%/D. This allows

the integral to be evaluated yielding

L

[ &lt; |8.a;|? &gt;dr =
g

90

2 &lt;a &gt;|L 0

lv
aD &lt;U; &gt;,

(3.23)

(3.24)

since U; ~ go|ai(go)|?. Reinserting into Eq. (3.20) yields the relation

~

37;
Us &gt; &lt; U; &gt; 'Q-’: y

- i)

4Q



3.2.4 Short Time Behaviour

The short time scale observed in the simulation was due to the constant growth and

depletion of the parent wave into quasi-solitons. This time scale is contingent on

several factors. The IST soliton decay solution shows that the soliton content of the

parent is completely transfered to the daughters. The perturbing terms will convert

some of this soliton content into radiation. The result is that the depleted parent

will have some remaining area after depletion. This remaining area will then grow

until it attains the threshold for depletion and repeat the process. The threshold area

depends on the initial amplitude of the daughters. If the daughter amplitudes are

zero, Eq. (3.7) shows that the parent pulse cannot deplete. Some nonzero amplitude

is required to seed the depletion. Colliding daughter waves provide this stimulus for

decay. A closed loop follows. Depleting parent pulses generate quasi-solitons which

collide with other parent structures causing decays in a continual fashion.

Perturbation theory is used to answer two questions involved in this process:

a) Given that the parent depletes from some initial area (ZS eigenvalue), what is

the remaining area after depletion (leftover radiation) ? b) What threshold area

(threshold eigenvalue) is required for the parent to deplete? The first question is

addressed with a multiple-time scale analysis around the IST solution for soliton

decay. The IST one soliton decay solution shows that a soliton in the parent wave

decays to solitons in the daughters with a characteristic decay time. The growth and

dissipation are relevant on a slower time scale. The second question is answered with

a perturbation expansion in the ZM scattering space. A threshold condition on the

parent wave bound state eigenvalue for the emission of a daughter quasi-soliton is

derived. Many of the IST concepts dealt with in this section are outlined in Section

2.4 and Appendices A and B.

The main results are summarized here. Again let 77 be the average threshold bound

state eigenvalue of a localized parent structure. The remaining area after depletion

can be represented by an ‘effective eigenvalue’. This is the amount of soliton content

converted to radiation and not transfered to the daughters. If the effect of diffusion

is considered small then the time required to grow back to threshold after a depletion

20



is given by
1 n

t ~S— In — °

fxn (3.26)

The cycling time t. would then be the decay time plus t,. The IST solutions (see

Section 3.2.5) show that the decay time is on the order of 1/(27). However for weak

growth, 4; &lt;&lt; 27, the decay time can be neglected with respect to the growth time

and ¢, ~ t,. In Section 3.2.5 a multiple scale perturbation expansion about the

IST decay solutions is used to estimate 5’. The calculation relies on the ordering

vi &lt;&lt; 1 &lt;&lt; 27 and the result obtained is

n' ~ (2+) In(3)/2 (3.27)

A comparison of the Bohr quantization condition (2.51) with the WKB condition

for decay (3.12) shows that 7 &gt; «; is necessary for a parent pulse to decay. Once

n exceeds this critical value it will decay if a quasi-soliton collides with it. A more

careful analysis is given in Section. 3.2.6 where a perturbation expansion in scattering

space is developed. The depleting parent structures generate quasi-solitons on average

at intervals of t ~ t.. These quasi-solitons then collide with other parent structures

triggering further depletions in a self consistent loop. The complex dynamics is a

result of this feedback loop. Assuming that depletions are triggered by two colliding

quasi-solitons generated two correlation lengths away gives an estimate of

n ~ 27; + 4€.7;. (3.28)

This estimate does not take into account of radiation and diffusion effects which can

delay the decay. It must be considered more of a lower bound for ideal circumstances.

3.2.5 Multiple Scale Analysis

For simpuicity consider only real envelopes and write the 3WI as

uy = —vw + ecu + eDug,,

Ve = Vp + UW—EV,

We _ — Un + uv — EW.

(3.29)

(3.30)

(3.31)

2]



where u = a;, v = a;, and w = a. It can be shown that if the amplitudes are initially

real, they remain so for all time (Kaup et al., 1979). Numerically, it was found that

the results for complex envelopes and real envelopes were similar. A small parameter

e &lt;&lt; 1 has been scaled out. The parameters 0 and D will also be considered small.

An ordering of D &lt;&lt; 0 &lt;&lt; € &lt;&lt; 1 is chosen. The effects of diffusion and growth

are considered to be smaller than that of damping which is already considered small.

It is a simple task to transform back to the form Egs. (3.1)-(3.3) where the damping

was scaled to unity. For € = 0 the equations (3.29)-(3.30) are integrable by IST.

The IST solutions show that a single soliton in the parent wave will decay to

solitons in the daughter waves. This was discussed in Chap. 2 and in Appendix A in

terms of ZS solitons. However the same situation can be solved exactly in terms of the

ZM problem. This solution corresponds to two bound states where a;; and azz in the

ZM scattering matrix Eq. (A.16) are zero in their respective upper half planes. This

was explicitly computed by Kaup (1976a) for the case where two daughter solitons

at t = —o0, one at £ = —oo and one at z = oo, collide. If the two daughter solitons

are nonresonant (i.e. different eigenvalues) they pass through one another with only

a phase shift. However if the two are resonant then they form a soliton in the parent.

The time reversed version of this solution is of interest — a parent soliton decaying to

daughter solitons.

The soliton solution for a degenerate ZM eigenvalue { = in is

4n
e2rF 4 e—21% 4 2’

 9V2e—(z—t)
e¥" + 2" 4 e2rt’

24/2nen(=+t)
e2re | p—2ne 4 e2nt’

given by

(3.32)

(3.33)

(3.34)

For t — —oo the solution is

u = 2nsech(2nz),

3 13 Nn

(3.35)

(3.36)
and for ¢ — oo the solution is

-8 N
y
‘Q2i)
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= v2nsech(n(z +t),

w = v2nsech(n(z —t)),

(3.38)

(3.39)

The spectral parameter 7 is arbitrary for now, but will be estimated in Section 3.2.6.

Notice in Egs. (3.32)-(3.34) that the characteristic time scale for the decay process is

t ~~ 1/2n. The effect of the perturbations on this soliton solution is examined. With

growth and dissipation, the parent soliton will not completely transfer its energy to

the daughters. This remaining area is the desired result.

Consider for the moment an isolated soliton governed by the linearized equation

qt + CQ = —q (3.40)

For a soliton initial condition g(z,t = 0) = gosechgo(z) the equation (3.40) can be

solved to yield the solution q¢ = goe tsechqo(z — ct). Notice that only the amplitude is

damped but the width of the soliton remains unaffected. With this in mind consider

perturbed solutions of the form

UL

1)

 Uw

A(z,t)
e¥F + e2F 4 e2F’

B(z,t)e~n=-)
e2® 4 2m | e210’

C(z,t)em=+t)
e2rR | o—2r | o2me’

(3.41)

(3.42)

(3.43)

with the choice A = 47, B = C = 24/27 at t = 0. Plugging this into Eqs. (3.29)-(3.31)

yields the result

A. = Ba + ecA + eDO,u,,

AC —49B ,
B, = B. = “Stet © — eB,

_ AB-4nC _,

C, F— C. = “TS tert © —; eC,

(3.44)

(3.45)

(3.46)

where S = e?™ + e~2™. Since D &lt;&lt; € was chosen the effects of diffusion will be

ignored. The diffusion term is only relevant for long time scales. The problem has

two time scales, the soliton decay time given by t ~ 1/27 and the damping time given

by t ~ 1/e. The growth time scale will always be smaller than the damping time

£9



scale. For a separation of time scales 2n &gt;&gt; ¢, a multiple-time scale perturbation

analysis can be considered. By a simple rescaling of time and distance the eigenvalue

n can always be adjusted to be of order unity. The validity of the perturbation theory

is then given by € &lt;&lt; 1. When comparing with numerical results the parameters will

be rescaled so that € will be unity. This just implies that &gt;&gt; 1. For bookkeeping

purposes 1 will be carried throughout the calculation and is considered an O(1)

quantity.

Fast and slow time variables are assigned

SO tnat

ae lL. T1 = €t.

d/dt = d/dro + ed/dr;.

(3.47)

(2.48)

Consider perturbation expansions to first order

A = Ay(z,t)+ep,

B = By(z,t)+ev,

C = Colz,t)+ew.

(3.49)

(3.50)

(3.51)

Plug everything into Eqs. (3.44)-(3.46) and take order by order in e:

0O(1):

04 _

bro
0B, _

bro
8 _ o

B10

(3.52)

(3.53)

(3.54)

O(€):
op em
Bry k= Cov = Bo) ga =

84, 1 e?mm
Bn + (440 — BoCo) som + 0Ao, (3.55)

Ov Ov er

bro Ba (Cob TAHA)ga=
0B, 1 lad
I + —(4oCo — 4nBo) emgmBo, (3.56)
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Ow Ow er _
5m + Bz -— (Bop + Aov — dw) == =

6Co 1 e 2"
———; — — ra— S——. . 3.57

on + ¢(AoBo 4nCo)g + e2mm Co (357)

Notice that the following ordering is imposed

2nAo - BoC ~ O(e),

AC - 4nB, ~ O(e),

AoBo — 4nCo I~ O(e).

(3.58)

(3.59)

(3.60)

Recall that for the unperturbed situation the left hand sides of the above equations

are identically zero. The O(1) equations reveal that Ag, By and Cp are independent of

the fast time scale 75. The O(¢) equations form an inhomogeneous system of equations

with time dependent coefficients for the first order amplitudes. The O(€) equations

can be written in the simplified form

0 1)é=F,(2+ (2.61)

where ¢ is a column vector of the first order amplitudes, F' is the vector formed by the

right hand side of the O(e) equations and L is the spatial differential operator of the

system. Ideally one would like to solve for the eigenstates of L, expand F' in those

states then remove the secularities as was done by Kaup (1990) for the nonlinear

Schrodinger equation. In this manner the parts of F' orthogonal to L which do not

contribute secularities are identified. However the complexity and time dependence

of L makes this proposition difficult. With this caveat in mind, the secularities of

the O(e) equations were eliminated equation by equation. The justification comes

aposteriori by comparing with numerical results.

Removing the secular terms yields the set of slow modulation equations

HA, e2m/e
— = (2 — BoC) —————7—~= ,on ( nAo 0 0) e(S + e2mm/e) =} oAo
0B, 0B,
ae =...

on Oz 0

OC, 0Co
— — —— = —Cb.

ony Ox °

(3.62)

(3.63)
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Equations (3.63)-(3.64) are readily solved to yield

By, = 2v/2ne™™,

Co = 2V2pe™

(3.65)

(3.66)

since at t = 0, By = Co = 24/27. These results are then plugged into the modulation

equation for Ay, Eq. (3.62) to obtain

OA, 2 —2n ednm/e
or, (2040 —8n’e )E + e2m/e) +040

This is a first order linear differential equation. It can be immediately solved to yield

—eot ¢ 2nt ,—e(240)t
e 2 e“Te

gogo GR df fog rome = 78 / Stem TH
where the substitution 77 = ef was made and R is an integration constant. The

integral on the right hand side of Eq. (3.68) can be integrated by parts twice to

obtain an expansion to first order in €. The expression for Ag is then

ont
A(z,t)=dne=2 ~2e(2+0) 51) In(1 + Se2*)e2* —In(1 + S)e**], (3.69)

where the initial condition Ag(z,t = 0) = 4n has been applied. Recall that the full

perturbed solution for the parent is given by expression (3.41). Plugging in A, from

Eq. (3.69) yields

_ dne”?  2¢(2+4 0) —2nt\ _—2et eot
u= Fry — —a [In(l+Se Je —In(1+S)e*t]. (3.70)

The daughters can be considered separated from the parent for times t &gt; 1/27.

Thus, at separation the expression for the parent solution to first order in € is

_ 2¢(2+0)In(1 +5)
b=" te 4 e-2me

This is the remaining part of the parent after depletion to daughter solitons. Since

In(1 + S) is slowly varying compared to the denominator, simply evaluate it at = 0,

which gives S = 2. Notice that Eq. (3.71) has the form

LL Qsech(2nz), [3.7 ;

 + }
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where

Q = €(2 + 0) In(3). (3.73)

The asymptotic solution for u has the form of a soliton with reduced amplitude!

The cycling time for a growth and depletion cycle is given by the time it takes the

amplitude @ to reach 27, its initial value. Imposing this gives the expression

1 2n
te~ — In ——m———.

ec €(2+0)In(3)

The total cycling time will actually be the depletion time plus this time (3.74). If the

depletion time is much smaller than ¢. it can be ignored.

The calculation was tested numerically. An initial condition of a parent soliton

with eigenvalue 77 = 2 and small daughter pulses was taken to represent the ZM soliton

solution Egs. (3.32)-(3.34). Figure 3-11 shows the initial and final configurations for

this case with 7 = 2, e = 1 and no growth. The remnant of the parent wave after the

daughters have damped away has a reduced soliton shape as predicted by Eq. (3.72).

The amplitude is a little less than the predicted value of @ ~ 2 from Eq. (3.73).

Other simulations with different damping rates consistently have amplitudes that are

close to but a little less than predicted by the calculation. This may be due to the

order € perturbations in Egs. (3.49)-(3.51) that were not included. However, it works

reasonably well. Figure 3-12 shows the initial and final configurations forn =2,e=1

and o = 0.1. Again the final result agrees fairly well with the calculation. However,

as the growth is increased the calculation begins to fail. Again this may be due to

the order e perturbations. The calculation can only be trusted for very weak growth.
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Figure 3-11: Soliton decay with n = 2, e = 1, and no growth; (a) initial configuration,

(b) final configuration.
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(b) final configuration.
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3.2.6 Scattering Space Perturbation Theory

In order to estimate the threshold eigenvalue, a perturbation expansion in scattering

space, first developed by Kaup (1976b) and expanded by Kaup and Newell (1978) is

employed. This subject has recently been reviewed by Kivshar and Malomed (1989).

The following calculation is a time dependent version of the one given in Kaup et

al (1979), to estimate the threshold for noise induced decay of a soliton in the con-

servative 3WI. Those ideas have been used to construct a perturbation expansion to

estimate the threshold for decay of the 3WI with growth and damping induced by

collisions with daughter quasi-solitons.

The parametric interaction introduced in Section 2.3 has shown that a parent

pulse is unstable to decay when it exceeds a critical threshold Eq. (3.12). However,

a non-zero daughter amplitude (however small) is still required to induce the decay.

The question of what threshold area or eigenvalue is required for the decay to occur

remains. Many of the concepts and notation in this section are in Section 2.4 and

Appendices A and B.

The specific question addressed is the decay of the parent into the daughter. For

this the separation property of the ZM problem into three separate ZS problems will

be used, see Kaup et al. (1979) and Appendix A. Since the pump decays into the

two daughters symmetrically it is necessary to consider only one of them ¢®, where

q{™ are the corresponding ZS potentials for the nth envelope detailed in Appendix A.

In accordance with the notation of Kaup et al (1979), the envelopes are indexed by

(1,2,3) with index 1 corresponding to the lowest group velocity, index 2 corresponding

to the middle group velocity and index 3 corresponding to the highest group velocity.

As t — oo the envelopes will be separated and a ZS reflection coefficient for ¢(® (right

going daughter wave) is defined as (see Appendix B)

@_8ba
p T al® by (3.75)

Of interest is the soliton produced in ¢® by the decay of the parent ¢{®?). The one

A0



soliton solution for the ZS equation with eigenvalue A(®) = i¢ has the form

e%=
 (a) = 2D ——mm——,

14 kee
(3.76)

where
(3)

ar’ “i, b11 |,
(3.77)

is given by Eq. (B.11). The magnitude of the soliton solution Eq. (3.76) can be

written as

J
3, r) = 26sech(2(¢ — IT). (3.78)

where

Dy = 2¢e (3.79)

The average position of the soliton is then given by

»(3) —
[

2£ (3.80)

This gives the asymptotic position of the soliton after it has separated from the

parent. An estimate of when the soliton was emitted can be found by extrapolating

the position of the soliton to the position of parent soliton ¢(*), where it was initially

emitted. For a parent soliton with zero group velocity (c; = 0) located at the origin,

this would imply

 ' =n na _o
2(2)

|

(3.81)

From this, the threshold condition for soliton emission is found to be

D3(t) = 2¢(¢). (3.82)

For the integrable case { is constant, and 8D (t) = 2¢DO(2). The perturbing

terms evoke a time variation. Scattering space perturbation theory is employed to

determine the time dependence.

In addition to the ZM eigenfunctions given in Appendix A, define the eigenfunc-

tions $9) with the following boundary conditions:

r
Ee Me *i® ase wn (3.8: 3)
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A set of adjoint eigenfunctions for the associated adjoint problem can also be defined

(Kaup, 1976a; Kaup et al., 1979)

IY

A

3

kA — 3 Enmp DL BF eitelcrtertes)
m,p=1

 | (3.84)

and correspondingly for ¥(¥)4, where ¢;; is the totally antisymmetric tensor of rank

three. Defining [b;;] to be the inverse of [a;;], Kaup et al. (1979) found the time

evolution of the inverse of the scattering data to be

hiss = —I[®\W gi), (3.85)

vhere

1u,w)=i [ ~ TAC (Va) Wz,
where the ~ denotes matrix transpose, and the notation C = diag[e;, cz, cs], V = [Vi]

has been used. The ZM potentials V;; are defined in Egs. (A.10)-(A.12). Equation

(3.85) relates the time evolution of the scattering data directly to that of the potential.

From Eq. (A.17) the time evolution of the scattering data for the integrable 3WI has

the simple form
: 1 1

bi; = 1{cicaC3 (2 — 2) bij.
G 6

Using Eqs. (A.10)-(A.12) with Eqs. (3.29)-(3.31) the perturbed 3WI can be rewritten

as an equation for the ZM potentials V. In generalized notation this takes the form

Vi = Fo(V) + eFL(V), (3.88)

where Fp represents the unperturbed parts and Fj represents the first order pertur-

bation (terms of O(e)). Kaup’s (1976b) strategy was to use this in Eq. (3.85) to

construct an expansion in € for the time dependence of the scattering data. To first

order Eq. (3.85) becomes

bi, = —IO[@D ¥E _ fM[a0) gi) (3.89)

where in I) the perturbed part of Eq. (3.88) Fi, is used in combination with the

unperturbed eigenfunctions.
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The emitted soliton is given by a zero in the upper half { plane of b;;. Here ( is

the ZM eigenvalue. At a zero of b;; designated by (x the total derivative is also zero

 -

i -(%) +(52) de _odt =a ot Ce o¢ Ca dt
Rearranging and using Egs. (3.89) with (3.90) gives

dG. _ __1 (Be)dt (B11)x ot Ca
1

—— JM gw). £1Bon! Gil

(2.90)

(3.91)

(3.92)

where (b1;)r = (0b11/0()|¢,, and the third variable in I implies evaluation at { = (x.

Eq. (3.92) is the time dependence of the eigenvalue induced by the perturbing terms.

To obtain the time evolution of the residue of p(® it is necessary to account for the

time variation of {,. Thus

a(t.) = (2) re (2)
111¢=¢s 11 11 ¢=Ca

Since D¥ = —1i(by1/b1,) the time evolution for DY is

(3.93)

7 .C2 —C

DEY = (tn)? { (BDI. 80; 6) — i220, 6}, (3.04)

where 2 = boy U1) — pb.  W(2) and

JWG =i [ ali*C™ (VoW] k=

This was found by using Eq. (3.85) in Eq. (3.93). !

Assume at t = 0, g(t) = ¢(® are small and ¢® is a soliton located at z = 0 with

eigenvalue { = (; = in. Let the group velocities be cs = —¢; = 1,c, = 0. From

Eq. (A.23) this gives { = 1/2. To lowest order the integrals in Eq. (3.94) can be

evaluated with the unperturbed pure soliton states. For this initial condition (Kaup,

1976b; Kaup et al., 1979)
_¢(—G

bu = (3.96)

There is a typographical error in Eq. F18 in Kaup et al. (1979). The factor bY, is missing.

-
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© dz (2)
I= -/ e?® + e-2m I ’

1 foo dz— me (1) | ne (3)I= oo | a (md el)
From Eq. (3.29) the evolution equation of ¢(®) has the form

12) mo coq? + eDq? + eeey

(3.97)

(3.98)

(2.99)

where only the perturbing terms are shown. Again, consider the diffusion to be

so small that it can be neglected on the short time scales. Equation (3.99) with

q® = 2nsech(2nz) is then plugged into Eq. (3.97) and integrated to yield for the

O(e) term
~
x

 ~ 4 FF (3.100)

From Egs. (3.29) and (3.30) the evolution equations for the two daughters have

the form

2) T= —eqM) +...
a = —eq® +...

(3.101)

(3.102)

Let the initial conditions of the daughters have the form of amplitude reduced solitons

7") = Bsech(nz),

® = Csech(nz), B,C &lt;&lt;n

(3.103)

(3.104)

Plugging into Eq. (3.98) yields for the O(¢) term

J) = me | dx sech(2nz)sech(nz)(Be™ + Ce™™). (3.105)

If B= —C then J) = 0. This implies that two daughter pulses of opposite phase

will not deplete the parent . This fact is seen in the evolution Egs. (3.7)-(3.9) where

opposite phased daughters make a positive parent grow rather than deplete. Consider

the case where C = B. Then Eq. (3.105) is integrated to yield

J) — —enB
rR 1 206)

R4



This situation gives the maximum depletion initial condition. Plugging into Eq.

(3.94), with the knowledge of the unperturbed part yields

B
Df) ou nD + 2¢0 D{®) — co (3.107)

Plugging into the eigenvalue evolution equation (3.92) yields

q 5, — (3.108)

which integrates to

n — noe’ (3.109)

In the STC situation, the parent pulse decays and emits quasi-solitons which damp

as they propagate. They can then collide with another parent pulse and trigger a

second decay. With this in mind B is written in the form

B ne? (3.110)

where e~® represents the damping experienced by the quasi-soliton before it collides

with the parent pulse. Note that B differs from the daughter soliton amplitudes B,/2

in Eq. (3.65) by a factor of 4/2. This is because for the group velocities chosen the

wave amplitudes and the corresponding ZS potentials differ by a factor of v/2.

Of course in this calculation the parent pulse is a soliton. For very slow growth

this should be a reasonable approximation because it is the soliton content of the

pulse that is involved in the decay. The growth may cause some of the soliton content

to be transformed into radiation but if it is slow the effect should not alter the results

drastically. Plugging Eq. (3.108) into Eq. (3.107) yields

DE) = nee? DP 4 20D) — em(no/2)e %=2*

This is a first order linear equation which can be integrated to yield

DP ema met oxT04/e53:"dt+ R9 9 (3.112)

where R is an integration constant. The integral on the right hand side of Eq. (3.112)

can be expanded in powers of 2e0/n, by integrating by parts twice. Performing this

3d»



operation yields

D® = es (1 — 2% cet) + Re 5:5" et, (3.113)

At this point the initial condition must be applied. The initial condition also

splits into a zeroth order term plus a first order term. The zeroth order contribution

is identically zero since the unperturbed state was chosen to be a single parent soliton.

The first order contribution is due to the small but non-zero initial amplitudes of the

daughters. Thus following the same calculation as above (see Kaup et al, 1979)

except for a variation in D® due to the perturbation it can be shown that initially

B
DP(t = 0) = = (3.114)

Using this in Eq. (3.113) and applying the threshold condition Eq. (3.82) yields

5 € 1 _ 957 get
To

CO 5 22) eset? 2¢ct[A . (3.115)

One observes immediately from the threshold equation (3.115) that for 7 &lt; €

the parent will not decay. The damping will be sufficiently strong to suppress the

decay. This agrees with the conclusion deduced from the WKB threshold condition

Eq. (3.12). The solution set (n,t) could be found numerically although care must be

taken to ensure the correct branch is chosen. However, an analytic expression would

be very useful.

The eigenvalue 7 grows at a rate e®**. If ny &lt; € then the decay will not occur

and the eigenvalue will continue to grow until another collision occurs. On average

nearest neighbor pulses will be depleting at roughly t. intervals generating quasi-

solitons that may induce the decay of the pump. Suppose that 79 ~ 2¢ at a collision

with a daughter pulse. Self consistency can be checked for aposteriori. Then a lowest

order estimate of n can be made. Plugging in no ~ 2¢ into Eq. (3.115) yields

Ye ay

ET _, _ TT _; 1(.2¢o0t_

—e ¢o Zot 1 —e beele 1) (3.116)
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Terms of O(c) have been dropped; this approximation is valid in the weak growth

limit. Furthermore consider the limit where 2e0t &lt;&lt; 1 (short times), so the expo-

nentials in Eq. (3.116) can be expanded in a Taylor series. Truncating to first order

and solving for t yields the result

1 4 T
~ — ap J _Zin (Se (1 4°¢ ))- (3.117)

This value for t can then be plugged into the expression for Eq. (3.109) to obtain

n ~ 2ee” (3 *(1-577) (3.118)

By taking ¢ &gt;&gt; In(4/me% —1), Eq. (3.118) can be expanded to yield the simple form

n ~ 2¢(1 + od). (3.119)

In the STC regime as seen in Section 3.2.1 parent pulses are collided upon more

or less randomly by quasi-solitons with random phases. Consider a situation where

a collision is due to daughter pulses emitted two correlation lengths £, away. The

factor ¢ is then the damping occurred for propagation over this length

b 26. €/ca = 2¢€,, (3.120)

since c; has been scaled to unity. The expression for nn now takes the form

n ~ 2¢(1 + 20€t,).

Plugging this result into the expression for cycling time Eq. (3.74) yields

; 1In 4e(1 + 20¢€f,)
° er €2+0)n3°

(3.121)

(3.122)

This expression really should be considered to be a lower bound. It assumes that

the daughters collide with equal phases. In the STC situation this would not always

hold true. Radiation and diffusion effects will also serve to suppress the decay of the

parent pulse. For the parameter regime of the nearly integrable regime the logarithm

is of order unity and this expression is simplified to
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3.2.7 Long Time Behaviour and STC

The long time behaviour of SDI stems from the diffusion of the parent wave and the

many collisions between the parent structures and the daughter quasi-solitons. The

phases of the colliding quasi-solitons are very important for the outcome of the result.

Consider real envelopes. From Eq. (3.7) it is apparent that if the two quasi-solitons

have opposite sign they reinforce a positive pump and cause a negative one to deplete.

Conversely two quasi-solitons of the same sign will deplete a positive pump but feed a

negative one. In the STC situation a parent at a given location will be involved with

collisions with quasi-solitons at random times with random phases. Certain collisions

will cause the parent structure to grow and others will deplete it. Thus the threshold

eigenvalue will have a spread around some average value depending on the phases of

the quasi-solitons and the frequency of collisions. The parent structures also act as

amplifiers for the quasi-solitons. When a quasi-soliton collides with a parent structure

of the right phase it can trigger a depletion and create new quasi-solitons. The quasi-

soliton regenerates itself and continues to propagate. By this mechanism the effect of

a quasi-soliton could extend over very long distances. During the process there will

be a small phase shift due to the time required for decay. So the long correlations

will be close to but exactly not along the characteristic curve.

In the STC situation the parent structures are not truly in isolation. Quite to the

contrary they are in the close proximity to one another. A more appropriate (although

more difficult) way to handle the problem may be to consider the ZS problem with a

perturbed periodic potential. The lack of isolation can lead to interesting effects. For

instance tunnelling between adjacent parent structures can occur. This could lead to

bound states of double or even n-tuple wells. These effects were sometimes observed

in the simulations.

If the diffusion coefficient is zero than there will be no nonlinear saturation. The

generated high ¢ modes would not be damped. The parent structures would simply

cascade to shorter and shorter length scales with higher and higher amplitudes. The

diffusion is responsible for the long time behaviour. The parent structures tend to

grow and deplete in one location for very long times compared to the cycling time scale

RK



t.. However the action of the diffusion combined with the growth and depletion will

cause them to drift and shift position. A simplistic estimate of the long time scale for

the parent 7, is obtained by considering the diffusion time across a correlation length.

Thus

2 (27)?
r,~ Dfg2 = 1

Pp /&amp;, ~ (3.124)

The long time scale observed in the daughter wave dynamics will be related to the

parent correlation time. As the quasi-solitons collide with the parent structures they

will deplete creating new quasi-solitons. As the parent structures drift so will the

location for creation of the quasi-solitons. However the quasi-solitons have a different

width than the parent structures so the long time scale of the daughters 74 is given

hv
4

Td ——.d 72D (3.125)

The average saturated energy density can be crudely estimated from the threshold

eigenvalue 77. Recall that the simulation results show that the saturated state of

the parent wave is in the form of coherent structures with the average amplitude

related to 7. Locally, the shape of the coherent structures are roughly sinusoidal

with wavenumber qq. Let the parent wave be composed of locally sinusoidal coherent

structures of average amplitude ag. Then the average energy density &lt; U; &gt; /L =

S;(0,0) (see Section 3.2.3) is given by

S;(0, 0) re al/2. (3.126)

The average amplitude can be estimated by using the Bohr quantization condition

Eq. (2.51). Taking a square wave form with a width given by the correlation length

£, gives a condition relating the average amplitude to the average eigenvalue

i

(a3 + 7°)/%, = 9

Solving for ag and plugging into Eq. (3.126) yields

1 x \?

5:(0,0) ~ 5 (%) +7? (3.128)

Given this estimate for S;(0,0) the average daughter energy density S;(0,0) follows

from Eq. (3.25).
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3.2.8 Discussion

The analytical estimates can be compared with the simulation results. In the simu-

lation y;, = e= 1, = 0 = 0.1, and D = 0.001. From Eq. (3.10) and (3.13), the

principal mode is go = 10, which gives a correlation length of {, ~ 0.6. The threshold

eigenvalue Eq. (3.28) comes out to be n ~ 2.2. This then gives a daughter correlation

length of ¢4 ~ 0.9 from Eq. (3.14). The cycling time is given by ¢. ~ 8 from Eq.

(3.74). From Eq. (3.124) the parent correlation time is 7, ~ 400. From Eq. (3.125),

the correlation time of the daughter is 74 ~ 800. To compare with the results of the

simulation the values can be expressed in terms of frequencies and wave numbers.

For the parent wave the long time scale 7, translates to a frequency of w, ~ 0.016

which corroborates with what was observed in the parent power spectrum in Fig.

3-5. The predicted cycling time translates to w. ~ 0.78. This value is high by about

a factor of two compared to the shoulder observed in the parent power spectrum.

However the spacetime profiles in Fig. 3-1 do show some of the parent structures

cycling near the predicted time scale, and Fig. 3-2 shows quasi-solitons being created

at a rate close to the predicted value so the calculation does give a lower bound. The

daughter power spectrum in Fig. 3-8 showed two peaks in the high frequency regime.

The lower frequency one corresponds to the cycling time and the higher frequency

one is at twice thefrequency and is probably a harmonic of the first. The predicted

long time scale translates to a frequency of wy ~ 0.008 which again corroborates well

with the simulation result.

The spectrum of static fluctuations in Fig. 3-4 for the parent wave shows a cutoff

near go ~~ 10 as expected. The daughter wave has a much softer cutoff as seen in Fig.

3-7. Since the correlation length is due to the quasi-soliton width this is expected.

The quasi-soliton width is inversely proportional to the threshold eigenvalue n and

thus has a spread about an average value. The estimate for the width given by the

correlation length £4 corresponds to a wave number of gg ~ 7 which is somewhat high

for the same reason the cycling frequency estimate was too high.

The ratio of the parent energy to the daughter energy was predicted to be U; /U; ~

15 from Eq. (3.25). The energy time series in Fig. 3-9 corroborates this. The peak
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height of the correlation functions of the parent and daughter waves S;(0,0)/5;(0, 0)

(Figs. 3-3 and 3-6) show the same ratio. The two daughter waves are synchronized

as expected from Eq. (3.19). The parent average energy density was calculated to

be S;(0,0) ~ 5.8 from Eq. (3.128) which is quite good considering the cavalier ap-

proximations made. The power spectrum of the energy in Fig. 3-10 shows a peak at

around w =~ 5 which is a little closer to the estimate for ¢t.. Recall that the cycling

time perturbation calculation in Section 3.2.4 was actually done for the eigenvalue or

area cycling time.

A word should be said about the system size. It is clear with the very long corre-

lation times for the daughters that they cycle the box many times before correlations

decay away. Thus for long times, the temporal correlation function along the char-

acteristic or at a single spatial location would be the same. This was borne out in

the simulation. It is unknown what the precise boundary effects are since it would be

impossible to numerically test a system large compared to this long time scale. How-

ever with other runs of varying length, it was found that the above time scales seem

to be unaffected by the system size as long as it is much larger than £,. The power

law rise for the parent power spectrum below 27/7, seems to decrease in exponent

as the system size increases. It appears that the main features of STC in terms of

correlation functions can be understood for this parameter regime.

3.3 Other Parameter Regimes

The parameter space is extremely vast. The above parameters were chosen because

they exhibited STC and fell into the regime were perturbation theory was possible to

provide analytical estimates for the properties of the correlation functions. However

the system is very rich and other regimes are equally complex and interesting albeit

less tenable to analytical analysis. Two different cases will be shown demonstrating

other forms of STC in SDI. These are by no means an exhaustive representation of

the behaviour of the system. The regime studied above in this chapter was the weak

growth and weak diffusion regime. In this section a case where the growth of the
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Figure 3-13: Spacetime profile of the parent wave a; in the strong growth regime.

parent is comparable to the damping and a case where the diffusion is large will be

studied.

3.3.1 The Strong Growth Regime

The parameters for this case were 4; = 1, D = 0.01, L = 20. Again the system

was numerically simulated and evolved until a saturated state was reached. The

correlation functions were measured for each envelope.

Figure 3-13 shows the spacetime profile of the parent wave. As in the nearly

integrable case there is still evidence of structures growing and depleting. However,

unlike that case the depletions are very violent often destroying the structures. The

correlation function S;(z,t) in Fig. 3-14 shows correlations decaying very rapidly in

both space and time indicating STC. Temporally there seems to be a short time

scale on the order of t, ~ 1 with a small tail. A hint of periodicity appears in the

space direction with an apparent correlation length around &amp;, ~ 1. The local power
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Figure 3-14: Correlation function of the parent wave a; in the strong growth regime.

spectrum S;(z = 0,w) appears in Fig. 3-15. There is a cutoff at approximatelyw~2.

This corresponds to a time scale of £ ~ 3. which is consistent with the spacetime

profile. In the spacetime profile the structures are seen to grow and deplete over

a range of times. Many have time scales around ¢ ~ 1, and the number decreases

with increasing depletion times. The longest depletion times are around ¢ ~ 5. The

shortest depletion time is reflected in the sharp drop in the correlation function. The

complete decorrelation of a parent structure seems to require a few depletions and this

shows up as the short tail in the correlation function and the correlation time observed

in the power spectrum. Fig. 3-16 shows the spectrum of static fluctuations. A cutoff

around q ~~ 8 is observed. The cutoff is much softer than in the nearly integrable case

where a hump was observed. The principal mode for these parameters is go = 10.

The spacetime profiles show that the violent depletions tend to broaden the widths

of the coherent parent pulses.

The spacetime profile of the daughter wave is in Fig. 3-17. The most notable

feature is that the amplitudes of the quasi-solitons are of the same order as the parent
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Figure 3-17: Spacetime profile of the daughter wave a; in the strong growth regime.

structures. This is because the growth rate and the damping rate are equal. Thus

the energies will be roughly equal according to Eq. (3.25). The dynamics involve

collisions between parent and daughter structures of comparable size so radiation

effects are more important than in the nearly integrable case (Kaup et al., 1979).

The perturbation results of the nearly integrable case will not apply. The correlation

function is shown in Fig. 3-18. It shows definite spatial and temporal scales. The

power spectrum is shown in Fig. 3-19. There is a cutoff at approximately w ~ 3

corresponding to a time scale of t ~ 2. The spacetime profiles show that decorrelation

is due mostly to the damping. The correlation length is around {; ~ 1 as seen in

the correlation function and in the spectrum of static fluctuations in Fig. 3-20 as a

cutoff around gq ~ 6. The energy ratio is S;(0,0)/S;(0,0) ~ 1.5 as expected from the

conservation condition Eq. (3.25).

Applying the perturbation results of Section 3.2.4, realizing these parameters are

beyond its validity yields the results  ~ 4.5, n’ ~ 1.6. This gives t. ~ 1 and {; ~ 4.

The result for the cycling time does agree with the simulation. However the daughter
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Figure 3-20: Spectrum of static fluctuations of daughter wave a; in the strong growth
regime.

correlation length does not fare as well. The spacetime profile shows that well defined

quasi-solitons do not exist as they did in the nearly integrable case.

3.3.2 The Strongly Diffusive Regime

The parameters are «4; = 0.1, D = 0.05, L = 80. The parent spacetime profile is

shown in Fig. 3-21. As in the nearly integrable case, there are spatial structures that

persist for very long times. The principal mode for these parameters is go = /2

corresponding to a length scale of &amp;, ~ 4.4. The spacetime profile shows structures

of that size but it is apparent that correlations exist well beyond that scale. There

appear to be large compound structures where individual structures are seen to grow

and deplete yet remain part of a collective conglomerate. The correlation function

in Fig. 3-22 shows long range correlations in both space and time. The spectrum

of static fluctuations in Fig. 3-23 corroborates the observation. The spectrum is

observed to bend over around the principal mode qo ~ 1.4 yet it does not entirely
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diffusive regime.

flatten out. It is also clear that correlations exist at the level of the system size.

The local power spectrum in Fig. 3-24 shows a very long correlation time as observed

in the correlation function and spacetime profile. The cycling time observed in the

spacetime profile is at too high a frequency to be resolved in this figure. The spatial

alternation between a single structure and a squarish collective structure seems to be

a robust state. Different runs with different initial conditions and slight variations in

the parameters produced similar looking profiles.

The spacetime profile of daughter wave a; and a, are shown in Fig. 3-25. Unlike

the nearly integrable case there is not a strong convection along the characteristic.

In fact it is difficult to distinguish between the two daughter profiles. The damping

length for the daughters is much smaller than the parent structure length scale. Thus

the daughter structures only exist within the confines of a parent structure and do

not interact very much with neighbouring structures as with weak diffusion. The

correlation function for the daughter is shown in Fig. 3-26. The correlation function
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Figure 3-24: Power spectrum of the parent wave a; in the strongly diffusive regime.

was measured in the frame of reference of the characteristic velocity. The observed

ridge is along the z = 0 direction of the system frame. It simply indicates that

the daughter waves mirror the parent structures. A slight rise in the ridge at about

z ~ 15 then again near 35 reflects the cycling time. The power spectrum of a; in Fig.

3-27 shows two peaks then a rise for low frequencies. Longer runs show the spectrum

bends over and begins to flatten out when the parent wave does. The larger peak

situated at w ~ 0.08 reflects the periodic structures seen in the correlation function.

It corresponds to the cycling time of a; around the simulation box. The smaller

peak is a harmonic of the larger peak. The spectrum of static fluctuations in Fig.

3-28 shows the spectrum gradually bending over yet correlations do extend across the

whole system.

In this case the daughter waves are slaved to the parent wave. All the spatial scales

are much larger than the damping lengths so for all effective purposes the daughters

are static and merely react to the parent. However unlike the case of spatially uni-

form amplitudes the instability can be saturated by forming quasi-solitons. In the
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diffusive regime.

nearly integrable case, the daughter waves transfered information between the parent

structures, constantly perturbing the parent structures and instigated the diffusion.

In the strongly diffusive case, information is transfered very slowly between the par-

ent structures. Hence the extremely long correlation times. However the mechanism

for decorrelation is poorly understood. Somehow it must be related to the rate of

information transfer between the different structures but no quantitative estimates

can be made.

3.4 Conclusions

The SDI case is an excellent paradigm for STC. In its nearly integrable regime,

perturbation theory around nonlinear solutions is possible. This is a great aid in

understanding the dynamics and for obtaining analytical results. The contrast to low

dimensional chaos seen in Section 2.2 is quite clear. Specific routes to chaos, fractals,

strange attractors — signatures of low dimensional chaos are not very relevant in the

R12



description of STC. Many degrees of freedom are clearly involved in STC. A descrip-

tion in terms of correlation functions captures much of the behaviour. The language

of linear response theory (Martin, 1968; Forster, 1975) may be more appropriate to

STC than the language of traditional chaos theory. On the other hand STC is much

simpler than fully developed turbulence. There is no inertial range. The chaos is

confined to long wavelengths. One could not really describe SDI as having weak tur-

bulence. That term is usually reserved for systems where the nonlinearity is weak

compared to the linear effects. In SDI the nonlinearity is essential in establishing the

coherent structures.

The results presented in this chapter leave many questions unanswered. The

analyses indicate that there are subtle interactions between the waves. Numerical

measurements of cross correlations between the waves would certainly yield interesting

results. Only a limited number of parameter sets were explored. Wider parameter

searches are certainly in order. The simulations seemed to hint that some interesting

effects may occur for extremely long times. Longer runs and better statistics are

required to check whether or not the power spectra of the waves really show scale

invariant behaviour and what exponent characterizes it. This would indicate whether

interesting collective behaviour involving the coherent structures exist or not. Higher

order moments could be measured to examine the distribution of fluctuations da; =

a;— &lt; a; &gt; in both real and Fourier space. It could then be checked whether or not

the fluctuations of the Fourier modes are Gaussian as discussed in Section 1.2. If

this were true then the large-scale governing equations in their simplest form could

be linear and relaxational. For instance with the KS equation, progress has been

made to deduce an effective equation driven by random noise to describe the large-

scale (coarse-grained) dynamics (Yakhot, 1983; Zaleski, 1989). Knowledge of the

response function would test whether the SDI dynamics obey a fluctuation-dissipation

theorem. This could be measured numerically by taking the average response to an

imposed perturbation. This would lead the way for possibly defining a temperature

for STC in SDI. The nearly integrable limit could be explored in ZM scattering

space. The eigenvalue spectrum could be evaluated numerically. The eigenvalues are
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no longer time invariant and may exhibit interesting dynamics. Collisions between

eigenvalues or other crises may occur in the eigenvalue plane giving more clues to

nonintegrability and STC. This type of analysis has been done with the sine-Gordon

equation (Overman II et al., 1986) and has yielded very interesting results.
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Chapter 4

Langmuir Decay Instability

4.1 The Model

This chapter studies a nonintegrable form of the stimulated backscatter interaction

that exhibits STC. As in Chapter 3 an unstable high-frequency wave, saturates non-

linearly by coupling to two damped low-frequency waves. The only difference being

that the high-frequency wave has the largest group velocity. In order to satisfy the

resonance conditions (2.9) it is much more common for the high frequency wave to

be the fastest wave as well. Thus the model described in this chapter is applicable to

many different physical contexts. The title of the chapter — Langmuir Decay Instabil-

ity (LDI), was chosen because of specific reference to one application in current laser

plasma experiments. The STC induced in LDI may explain some recent experimental

results. The unstable wave (Langmuir wave) grows because it is the decay product

of another three wave interaction (stimulated Raman scattering). The details are in

Section 4.4. An unstable Langmuir wave can also result from a beam-plasma interac-

tion. However the same equations are just as readily applied to other phenomena; one

example is the interaction of gravity-capillary waves where winds may excite and in-

duce a particular mode to grow which then couples to two other modes (McGoldrick,

1965).

Numerical simulation and analysis is used to understand the dynamics. The IST

solutions of the integrable equations described in Section 2.4.2 again will form the
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basis for understanding the nonintegrable behaviour. In LDI, solitons do not play a

major role. Instead it is the collision of the waves which drive the dynamics. Radia-

tion effects dominate and as a result perturbation theory is not as readily employed

compared to SDI. However much can be gleamed from the IST solutions regardless.

Some of the analysis of LDI will overlap with that done for SDI.

In normalized form the equations of interest are

Oia; — DOzea; — via; = —ajay,

Gia; — Oza; +a; = aay,

Oar — 20a, +a, = aa:

(4.1)

(4.2)

(4.3)

These equations are identical to the normalized SDI equations (3.7)-(3.9) except the

group velocity of envelope aj is v = —2 instead of v = 1. The frame of reference of

the unstable wave is again chosen. This small change makes an enormous difference

in the results. Just as the order of the group velocities in the integrable equations

led to major differences in behaviour so will it affect the nonintegrable equations and

the manifested STC. Using laser plasma terminology for LDI, wave a; is referred to

as the pump wave (PW), wave a; is the acoustic wave (AW) and wave a, is the

backscattered wave (BW).

4.2 Simulation Results

The Eqgs. (4.1)-(4.3) were simulated on the domain z € [0, L) with periodic boundary

conditions as in Chapter 3. The long time, large system limit was of interest. Simu-

lations were started with random real initial conditions. As in the SDI case it can be

shown that the envelopes remain real for all time (Kaup et al., 1979). The numerical

scheme is the same as that used for SDI and is detailed in Appendix C. The spatial

and temporal grids were chosen so as to resolve all the dynamics. The integrated en-

ergy U; = [ |a)(t)|?dz was monitored for each run. When it reached a state where it

fluctuated about an average value, the saturated state was considered to be attained.

The spacetime history was recorded for all the envelopes. In the saturated regime the
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Figure 4-1: Spacetime profile of the PW a;.

correlation functions Sj(z,t) =&lt; a;(z — 2’,t — t')a;(z',t') &gt; where averages are over

time, were taken. As in SDI the parameter set is given by (D,;).

Several different parameter sets were used in the simulations. In the first example

the parameters are: 7; = 0.1, D = 0.004 and L = 20. As will be seen later the length

plays an important role in the dynamics. The spatiotemporal profile of the PW is

shown in Fig. 4-1. Again furrowed ridgelike ‘coherent’ structures observed in the SDI

in Chapter 3 are seen but with a definite drift towards the right. There appear to be

length and time scales where things are correlated, but beyond which the dynamics

becomes chaotic. The correlation function for the PW is shown in Fig. 4-2. The

function approaches zero in space and time indicating STC but a nonlinearly induced

mode with a definite phase velocity is clearly observed. This effect was observed in the

spacetime profiles as the drifting coherent structures. The correlation function shows

that these structures are very long lived. Along the z axis, sin z/z behaviour similar

to the SDI is observed. The spectrum of static fluctuations S;(g,¢ = 0) is shown in

Fig. 4-3. A box like function as expected is observed with a cutoff at approximately
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q ~ 5, translating to a correlation length of §, ~ 1.3. The local power spectrum

Si(z = 0,w) is shown in Fig. 4-4. A definite peak at w ~ .1 is observed, the spectrum

then flattens out at around w ~ 0.007 defining a correlation time.

The spacetime profile of the AW is shown in Fig. 4-5. Ridgelike coherent structures

are seen to drift towards the left. For large scales the dynamics are chaotic. The

correlation function measured along the characteristic = —t is given in Fig. 4-6.

There is strong decay in space and time confirming STC. However there is a hump

located at S(z ~ 10,¢t ~ 10), and another at S(z ~ 1, ~ 20). Note that the

correlation function shown is over the entire length of the system, and the periodicity

for t = 0 is seen. The power spectrum is shown in Fig. 4-7. The correlation time

corresponds to a frequency of w ~ 0.3. The spectrum of static fluctuations is shown in

Fig. 4-8. There is a cutoff at ¢ ~ 9 corresponding to a correlation length of £, ~ 0.7.

The spacetime profile of the BW is shown in Fig. 4-9. Again irregular yet distinct

structures are seen to drift towards the left. The correlation function measured along
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Figure 4-6: Correlation function of the AW a.
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39



~~A

»®.
~

0

A

Fo,
EK »

—- “

10

Figure 4-9: Spacetime profile of the BW ay.

the characteristic # = —2t is shown in Fig. 4-10. Correlations approach zero in space

and time indicating STC. A nonlinear mode similar to the parent is also observed.

The propagating mode implies that the structures found in Fig. 4-9 are not aligned

along the characteristic curve but are actually slightly skewed to the right. The

phase velocity in the moving frame v ~ 0.1 indicates that the shift away from the

characteristic velocity is not very great. Correlations in the direction of the coherent

structures are fairly long compared to the damping times. The power spectrum along

the characteristic in Fig. 4-11 shows a cutoff around w ~ 0.4. The spectrum of static

fluctuations in Fig. 4-12 shows a cutoff around gq ~ 5 giving a correlation length of

&amp; ~ 1.3.

A sample time series of the energy U(t) is shown in Fig. 4-13. They fluctuate

about an average value. The BW and AW energies are locked together. The average

value is independent of the initial conditions.

Different parameter sets were explored and showed similar results. In the cases
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tested the spacetime profiles all showed drifting coherent structures evolving chaot-

ically. The correlation functions showed qualitatively similar results to those shown

here. However these parameter sets were relatively close to the example case. A

discussion of the different behaviour that could arise with different parameter sets is

given in the next section.

4.3 Analysis and Discussion

The simulation results can be understood with the aid of linear analysis and the IST

solutions. The LDI dynamics exhibit STC and are described in terms of correlation

functions. The correlation functions have spatial and temporal scales and a definite

amplitude. There is also the additional feature of a nonlinear propagating damped

mode in the PW and to a lesser extent in the BW.

The linearized equation for the PW (4.1) is exactly the same as that for the parent

wave in SDI. The trivial fixed point Eq. (3.10) gives a principal mode for the PW

at go =v%/D. Higher modes are damped and lower modes are growing. As in

SDI there is a competition between linear growth and nonlinear saturation. Instead

of depletion to quasi-solitons seen in SDI, the saturation mechanism is due to the

radiation transferred during collisions between the envelopes. The balance between

the competing effects is also responsible for the propagating mode as will be shown.

The IST solutions of the stimulated backscatter interaction (which applies to LDI)

in Section 2.4.2, show solitons are not involved. The interesting dynamics are due to

collisional radiation effects. A collision between the AW and the PW generates the

BW and decimates the waves as seen in Figs. 2-2-2-4. Similar behaviour occurs when

the BW collides with the PW. The decimation of the parent wave is always on the

side opposite to that of the collision. This is seen in the IST solutions and can be

understood from the nonlinear saturation of the corresponding parametric instability.

When the AW collides with the PW, the BW and AW grow from the colliding edge

as a convective instability. This is because both of their group velocities are in the

same direction.
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When the two envelopes attain a significant amplitude the PW begins to saturate.

However the two daughter waves will continue to grow and continue to take energy

from the PW. The area of the PW will be reduced. The depleting pump cuts off the

growth of the two daughter waves and they saturate and begin to damp as well. If

the original amplitude of the PW was large enough or the growth rate +; high enough,

the reduction in area continues until the PW becomes negative. This effect was seen

in the integrable case in Fig. 2-2. The negative part of the PW can again be a source

for a convective instability and the same process ensues. In this way the envelopes

are spatially decimated into the oscillatory structures seen in the simulation. The

decimation is always on the side of the PW away from the colliding edge. The low

q’s are converted to high ¢’s by this process. Modes higher than gy, get damped, so

the PW will settle into structures of size §, ~ 27 /qo. The values go = 5 and &amp;, ~ 1.3,

obtained for the simulation parameter set, agree well with the simulation.

The PW equation (4.1) has the form of a growing diffusion equation. Thus any

localized pulse will spread and grow. The propagating PW mode is a result of the

combination of this spreading effect and the decimation effect. The wavepackets

decimate nonlinearly on one side and they spread and grow linearly on the other side.

A pulse moves like a sandbar near an ocean shore, building on one side and receding

on the other. A parabolic equation does not have a well defined phase velocity yet

one was observed in the PW correlation function. However, a ‘spreading’ velocity

can be defined by considering the trajectory of a point of constant amplitude on a

localized pulse. The phase velocity of the sandbar mode, as it will be referred to, will

then be given by this spreading rate. From the simulations of several different cases

it was discovered that the phase velocity behaves as v, ~ /D~;.

This dependence can be demonstrated by considering the linearized PW equation

B.a; = v;a: + O,.a.. (4.4)

The general solution of this equation is given by

) (v-Da*)tgia= go= [afg,t=0)e2(Z,t) = Vr \4"UY
“3
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where G;(g,t = 0) is the Fourier transform of the initial condition. Of interest is the

spreading rate of a single parent structure. The simulation shows that the spectrum

of static fluctuations is a box function of width go = y/~;/D. The inverse Fourier

transform is sin(goz)/(goz) which roughly describes the shape of the PW structures.

Therefore taking
. A if —q &lt; q&lt;
a,(g) =

0 otherwise

.he solution of Eq. (4.5) i

A (oo _ ;

ai(z,t) = or [ el D@)t gia gg

Completing the square and scaling out all the relevant factors yields

a:(z,t) - gvit—a?_A4 (+ /~;t —_ ia) .
2v/ 7 Dt

(&lt;.6)

(£7)

(4.8)

where a = z/+/4Dt. In the limit a &lt;&lt; 1, vit &lt;&lt; 1, Eq. (4.8) can ve expanded to

yield

Ado 2 it — 2?) .a;(z,t) ~ (x tam (4.9)

The ‘spreading’ velocity is defined by considering a point of constant amplitude.

Imposing a;(z,t) = const. yields

giving a velocity of

2
2% = 0,

x /8
Vp = T f~ 30%.

(4.10)

(4.11)

This does not quite agree with the empirical value of v, ~ 4/D~;. However this may

not be so surprising because the nonlinear and linear effects are involved simulta-

neously. However this simple linear argument seems to capture the essence of the

effect.

The peak in the PW power spectrum is given by the frequency of the sandbar

mode. Using the relation w = v,q, the frequency is found to be w ~ +; = .1. This is

precisely what was observed in Fig. 4-4. As seen in the correlation function in Fig.

4-2 the structures remain coherent for very long times. The power spectrum in Fig.
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4-4 was taken along the time axis. The long time scale observed was actually given

by the transit time of the sandbar mode around the box 7p ~ L/vp. It is unknown

what the decorrelation mechanism for the PW coherent structures actually is. They

persist much longer than the diffusion time across a correlation length.

The saturation energy of the PW can be understood as follows. The competition

between the nonlinear and linear effects leads to coherent structures of size 2m /qo.

The IST solutions in Section 2.4.2 show that the nonlinear interaction is radiation

dominated so the ZS reflection coefficients for each envelope is the relevant quantity.

The reflection coefficients after interaction Eqs. (2.58)-(2.59) show that structures of

this size are generated in collisions when the PW has a height of a; ~ qo. For taller

structures, the collisions with the BW and AW will generate structures with smaller

wavelengths. The simulations seemed to indicate that these results of the integrable

case carry over to the nonintegrable regime. Then as the PW grows, it gets depleted

as it constantly collides with the other waves. If it grows higher than a; ~ go the

generated structures damp away. Thus a; ~ go will be an upper bound to the height

of the PW. For these parameters go ~ 5 and the tallest structures in the spacetime

profile are of this order. Given the upper bound for the PW height, the saturated

energy density can be estimated as in the SDI case in Eq. (3.126) by considering the

PW to be composed of coherent structures locally resembling a sine wave with average

amplitude of go/2. This then gives an average energy density of S;(0,0) ~ ¢2/4 ~ 6.

The simulation shows a value of S;(0,0) ~ 5. Considering the assumptions used in

the estimate this is remarkably good.

The features of the BW and AW are also analysed. The correlation lengths of

the BW and AW structures are due to radiation effects and cross correlations. The

final reflection coefficient of the BW in Eq. (2.60) shows that the wavelength of the

decimated BW depends inversely on the height of the PW, and will be approximately

the same as the wavelength of the PW. However the AW final width is not as strongly

coupled to the widths of the other two waves. Simulations of pulse collisions confirm

this fact.

It is significant that the correlation length for the AW is one half the correlation
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length of the other two waves. This is due to the fact that its group velocity is half of

the BW. As discussed above the PW settles into coherent structures of size ¢,, and

this fixes the size of the BW structures. The AW gets generated wherever the BW

collides with the PW. In the time direction, along a PW coherent structure, the BW

and AW will tend to have the same number of coherent structures. This can be seen

by comparing Fig. 4-5 with Fig. 4-9. However since the AW has a group velocity half

that of the BW, if it has the same number of structures in the time direction, it must

have twice as many in the spatial direction. In other words the coherent structures

of the AW are half the size of the BW. This was observed in the simulation. In the

saturated state, a lattice-like structure will become established. Of course it is only

for special cases that a regular lattice can be formed. In most cases the lattice will be

frustrated. This leads to the lack of regularity and STC observed. It would be very

useful in the future to measure the cross correlation function between the waves to

better understand these effects.

The propagating mode of the BW seen in the correlation function can also be

inferred from the IST solution. The correlation function showed that the propagation

velocity of the coherent structures were slightly slower than the characteristic veloc-

ity. During a collision between the BW with the PW, the two waves will interact

nonlinearly and this process retards the transmission of the BW, slowing the velocity.

The AW spacetime profile in Fig. 4-5 shows a furrowed structure moving to the

left like the BW, but the correlation function in Fig. 4-6 does not show the long

correlations and evidence of a nonlinear mode like the BW and PW. Correlations

are quickly damped out compared to the other waves. This is likely due in part to

the fact that since the group velocity is half that of the BW, it experiences twice

as much damping between collisions. It may also be that the wave collisions affect

the AW more than the other waves. The humps observed in the AW correlation

function are due to collisions of the AW with the PW and BW waves. The one

at (z ~ 1,t ~ 20), is due to repeated collisions of the AW with a particular PW

structure. The correlation times of the PW structures are very long. Each time the

AW circles the simulation box it will collide with the PW structure. The hump is
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slightly off from the characteristic. This is due to the fact that the PW structure

is drifting. The hump at (z ~ 10,¢ ~ 10) is due to collisions between a given BW

structure and the PW structure. Whenever these two waves collide they generate the

AW in the process. The BW has group velocity twice that of the AW and so transits

the box in a time ¢ = 10. In the frame of the AW the hump gets shifted in = as well.

It would seem that the behaviour observed in Section 4.2 for LDI should persist

as the PW growth rate increases or the diffusion decreases. The PW structures

would reduce in width and this would lead to an increase in their amplitude. The

ratio of the PW energy to the daughters would approach unity. However in the

weak growth limit the ratio of the PW energy to the daughter energies would be

large. The PW structures would become wider and their amplitudes smaller. The

daughter waves would damp more between collisions. The coherence times would

likely become longer as in the SDI case. The energies of the daughter waves would

also get smaller in comparison to the PW’s and the nonlinearity would become less

important. Differences in the ratios of the velocity would change the ratio of the

sizes of the AW and BW. Differences in the damping rates on the daughters would

change the saturation energies. If the disparity were large than the wave with the

lower damping would dominate the nonlinear collision processes. These effects were

seen in preliminary simulations. A detailed analysis remains to be done.

4.4 Saturation of SRS in Laser Plasma Interac-

1011S

In recent years with the advent of high powered lasers and a major thrust into laser

fusion, laser-plasma experiments have become commonplace. These experiments pro-

vide an excellent opportunity to study examples of parametric decays describable by

the nonlinear 3WI. When a laser interacts with a plasma it can induce many inter-

actions. One example is stimulated Raman scattering (SRS) where the laser-light

wave, decays into a Langmuir wave (LW) (also called electron plasma wave) in the

plasma and a scattered light wave. An understanding of SRS may be very important
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for laser fusion. The scattered light can carry energy away from the target and the

hot electrons generated preheat the target.

Recent experiments (see Drake and Batha, 1991), suggest that certain aspects of

SRS cannot be well explained by the standard linear parametric theory of a convective

instability in an inhomogeneous medium of Liu, Rosenbluth, and White (1974). Thus

nonlinear mechanisms may be needed to explain the observations. One scenario is that

the LW in the SRS interaction, becomes a growing parent wave for another three wave

interaction — Langmuir Decay Instability, where the LW generated by SRS decays into

a backscattered LW and and an ion-acoustic wave (IAW) (Heikkinen and Karttunen,

1986; Bonnaud, Pesme, and Pellat, 1990; Drake and Batha, 1991; DuBois et al., 1991).

Drake and Batha (1991) suggest that the saturation of SRS by LDI may explain

some of the experimental data. Several investigators have studied the full nonlinear

system of SRS coupled to LDI. For strong damping on the daughter waves the LDI is

marginally unstable and saturates near threshold (Heikkinen and Karttunen, 1986).

With weaker damping there may be weak turbulence (Bonnaud, Pesme, and Pellat,

1990), and for even weaker damping, strong turbulence with Langmuir collapse may

result (DuBois, Rose, and Russell, 1991).

It may not be necessary to model the full system to understand the saturation

mechanism. A combination of nonlinear and linear theory may suffice. Equations

(4.1)-(4.3) are used to model LDI nonlinearly, while SRS is treated linearly. The LDI

will occur at a much faster time scale than the SRS. On this short time scale the laser

can be treated as a constant pump so the principal SRS interaction can be modelled

with the linearized parametric interaction of Section 2.3. For small amplitudes the

LW decay product of SRS will be unstable with a growth rate proportional to the

amplitude of the laser wave. This is the PW of the LDI discussed in this chapter.

The actual growth coefficient of the PW will be the difference between the growth

rate due to SRS and the Landau damping on the wave. Also since the instability will

be at the principal wave number of the unstable LW, the second order diffusion term

in the PW models the increase in damping that would exist away from the principal

wave number. The other LW and the IAW are damped. The group velocities of the

1 09



two LW’s will have approximately the same magnitude with opposite signs while that

of the IAW will be almost zero in comparison. Hence in the frame of the PW, the

group velocities will obey the ratios used in the simulation.

The results of this chapter show that the LDI exhibits STC and the growing PW

saturates. The saturation energy can also be estimated. For very strong damping on

the daughter waves (very weak growth) the correlation time scales will be very long

and the amplitude of the daughter waves will be very small. The nonlinearity becomes

weak and STC is very mild. As the damping weakens the nonlinearity becomes more

important and STC begins to dominate. This behaviour portrays the general trend

of the simulations of the full system. The advantage of isolating the LDI is that the

precise nonlinear mechanism for saturation and generation of STC is more readily

understood. However, the 3WI can never represent the regime of strong turbulence

and Langmuir collapse. The STC dephases the SRS interaction by providing a spread

in wave number and frequency around the principal values. The LDI acts like a sink

on the LW of SRS. This corresponds to an effective damping and eventual saturation

of the LW. The combination of LW damping and dephasing can be shown to saturate

the SRS parametric instability (Bers, 1975).

4.5 Conclusions

In both LDI and SDI, the competition between linear instability and nonlinear satura-

tion leads to the complex behaviour and STC, yet the nonlinear mechanisms respon-

sible are entirely different. Nearly integrable systems are very useful in analysing

STC. Perturbation expansions around nonlinear solutions are possible to elucidate

the behaviour. Unlike SDI, the IST solution for LDI is radiation dominated and thus

closed form solutions to perturb around do not exist. However the IST solutions were

still of great use in analytically understanding the dynamics of STC.

The three waves form a frustrated lattice. This is akin to the phase turbulence

and misalignment seen in the KS equation (Shraiman, 1985). There may be global

stationary solutions where the lattice is perfectly aligned. For instance, if the group
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velocity ratios are such that a triangular lattice is formed then a stationary state

may be possible. Perturbing around this stationary lattice may yield some useful

results. A reduced description of the dynamics driven by frustration could also be

used. Some lattice spin model with asymmetric couplings may be designed to capture

the essentials of the dynamics.

The long time scales of the coherent structures in the PW and BW are poorly

understood and need to be investigated further. Longer simulations are required.

A wider parameter search is also required. Many things could be studied in the

future. As in SDI the response function could be measured to check whether the

dynamics obey the fluctuation-dissipation theorem. Measurements of higher moments

test whether the distribution of fluctuations is Gaussian. As mentioned the cross

correlations between the envelopes should certainly be measured. The dynamics

seemed to be dependent on the system size. Simulations with different sized boxes

could explore this.
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Chapter 5

Stimulated Brillouin Scattering in

a Finite Medium

In the previous chapters, models of the 3WI that exhibited spatiotemporal chaos were

studied. In this chapter the 3WI will be used to describe a spatially extended system

that manifests low dimensional chaos. STC is conveniently described by the concepts

of statistical mechanics and linear response theory. The paradigms of low dimensional

chaos such as bifurcation theory, strange attractors, and Lyapunov exponents were

not as useful in analysing STC. However, they will make their appearance in this

chapter.

5.1 The Model

The model studied is Stimulated Brillouin Scattering (SBS) in a homogeneous finite

medium. The dynamics of SBS has captured considerable interest both in laser-

plasma interactions (Randall and Albritton, 1984; Sauer and Baumgartel, 1984; Blaha

et al., 1988; Hiiller et al., 1991) and in optical fibers (Cotter, 1983; Bar-Joseph et al.,

1985; Coste and Montes, 1986; Botineau et al., 1989; Harrison et al., 1990; Gaeta and

Boyd, 1991).

SBS results from a parametric coupling between electromagnetic (light) and acous-

tic waves. In an optical fiber, a laser impinges on the fiber, excites an acoustic wave
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Figure 5-1: Schematic of SBS in a medium of length L.

by electrostriction and scatters back (Stokes wave). In the case of a plasma an ion-

acoustic wave is excited. A schematic of SBS in a box of length L is shown in Fig. 5-1.

The three wave SBS equations are derived by considering slowly varying amplitudes

as in Section 2.1 (Kroll, 1964; Bloembergen, 1965; Kaiser and Maier, 1972).

Nonstationary and chaotic behaviour has been reported in SBS with external

feedback such as reflection at the boundaries (Randall and Albritton, 1984; Sauer and

Baumgartel, 1984; Hiiller et al., 1991) or with models involving more than one pump

(Narum et al. 1988; Gaeta et al., 1989). Harrison et al. (1990) have observed chaotic

SBS experimentally in an optical fiber without feedback. Gaeta and Boyd (1991),

have performed similar experiments and obtained similar results. They propose that

the experimentally observed aperiodic behaviour is due to amplification of noise. They

have a stochastically driven model that agrees with the experiments.

In the time only case described in Section 2.2, it was found that the addition of

temporal dephasing due to a frequency mismatch is required for chaos. It is shown

here that with the addition of temporal dephasing and without feedback the spa-

tiotemporal 3WI modelling SBS can be chaotic in a restricted parameter regime.

This appears to be one of the simplest SBS models that exhibits chaos. The question

remains as to how a frequency mismatch would occur in a fiber. The experiments

were done with narrow linewidth lasers and so the resonance conditions should always

be satisfied. Rubenchik (1991) has an argument for how dephasing may arise. The

wavelength of the acoustic wave is on the order of the fiber diameter. Thus transverse

modes will be set up in the fiber wave guide. The k spectrum will be discrete and so
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exact resonance may be impossible.

For SBS in a finite medium with temporal dephasing in one spatial dimension the

3WI, Eqs. (2.24)-(2.26) become

Ba; + vi6.a; — via; = —Kajay,exp(—ibt),

Bia; + v;0:a; —y;a; = K°a;a}exp(ibt),

Bear + viOzar — Year = K'a;ajexp(ift),

(5.1)

(5.2)

(5.3)

where power is input through the boundary with a;(0) = A,. Equations (5.1) and

(5.2) describe the evolution of light waves travelling in opposite directions so v; =

—v; = c/n where c is the velocity of light and n is the index of refraction for the

medium. Equation (5.3) describes the evolution of the acoustic wave (ion acoustic

wave in a plasma). The group velocity is the sound velocity c,.

For a typical experiment with fused silica optical fibers and a single-mode argon-

ion laser with A = 514.5nm, the parameters are n = 1.46, ¢, = 5.96 x 10°ms™?,

ve ~ 270MHz, K ~ 66ms~'V~!, and v/v =~ 107 (Cotter, 1983; Cotter, 1987;

Harrison et al., 1990; Gaeta and Boyd, 1991).

The equations can be simplified. For a relatively strong pump the interaction time

scale for the acoustic wave is given by 7 = 1/(K Ap). This then gives an interaction

length of 1 ~ rJec/n. The damping length for the acoustic wave is lg ~ ¢,/Yk-

For the case where the damping length is much smaller than the interaction length

(I3 &lt;&lt; 1) then the convection term in Eq. (5.3) can be ignored. This condition is easily

satisfied in optical fibers and can be satisfied in a plasma for heavy ion acoustic wave

damping. The damping on the EM waves are weak and can be ignored. Length and

time scales are renormalized with y4t — t, zyk(n/c) — &amp;, A = 8/4. The following

substitutions are made: Ey = a;K/Y, E, = a;K/qk, Ea = (aK /y:) exp(—iAt). The

SBS equations become

0.Eq + O:Eq = —E,E,,

OE, - O-E, = Eq E;,

BE, + (1+1A)E, = ELE.

(5.4)

(5.5)

be2.6)
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with the boundary conditions Eo(z = 0,t) = A, K/yx = A, E,(z = L,t) =e. The

scattered wave is assumed to grow from a small noise source € at the right boundary.

The laser wave Ej is referred to as the pump, the scattered light wave E, is often called

the Stokes wave. In terms of a typical optical fiber experiment, L = 1 corresponds to

0.75m, A = 1 corresponds to 270MHz, and A = € = 1 corresponds to 4MVm™2.

5.2 The Dynamics

Equations (5.4)-(5.6) were numerically simulated using the same method as in the

previous two chapters. The only difference was in the handling of the boundary

conditions. The details are in Appendix C. For each run the spatiotemporal series was

recorded. Diagnostics included monitoring the output time dependence of the waves:

Eo(z = L,t), E,(z = 0,t), E;(z = 0,t). The phase portrait of E,(0,t) vs. E,(0,t)

was constructed from this information. As a substitute for a true Poincaré surface

of section the phase portrait strobed at the dephasing rate was also constructed, i.e.

E.(0,t,) vs. E,(0,t,) where t, = 2nrn/A, n is an integer. The system has four free

parameters A, A, ¢, and L. However a numerical survey of the parameter space

indicated that a two dimensional surface in the parameter space could capture the

unfolding behaviour. The A-A parameter plane for fixed L and € was chosen.

Figure 5-2 shows the numerically determined unfolding diagram in the A-A plane

for L = 40 and € = 0.0025. Parameters L and € were chosen so that the bifurcation

diagram in the A-A plane was complete. For small A and A there is a stable fixed

state. It becomes unstable through a Hopf bifurcation to a periodic state. Then

there is a transition to quasi-periodicity and to chaos. Each region will be discussed

in detail.

5.2.1 The Fixed State

The system has one fixed state. This is best examined by transforming to modulus-

phase form. Substituting the following

E, = Age (5. .)

108



||
”

1

|

\Y,
A

P

&lt;
»
x

"

\

F

}

N 2

A

Figure 5-2: Bifurcation diagram in the A-A plane for L = 40 and e€ = 0.0025. There
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E, = A,

E, — A, e'be

(5.8)

(5.9)

into Eqs. (5.4)-(5.6) yields the equations

Aot + Ape = —A,Azcosd,

Ast—Ase=AoAacosd,

Aas+Aa=AoA,cos,

 bout don = —Titsing,
bute = sing,

Got +A = Ae sin@.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

where ¢ = ¢, + ¢, — do. The fixed state is obtained by setting the time derivatives

to zero. From Egs. (5.10)-(5.12) this yields the equations

Ao: = —AoA? cos? é,

A,., = —A2%A, cos’.

(5.16)

(5.17)

Combining Egs. (5.12) and (5.15) yields tan¢ = —A. The amplitudes must be

positive so from (5.12) it can be concluded that

cos ¢ 1 sin ¢ —4
= sing = ———=

V1+ A? v1+ A?

(5.17) can then be integrated to yield

AZ = A*(1-R)
1 — Rexp(—2(1 — R)ATz)’

A? = A%R(1 —- R)
*  exp(2(1 — R)AMz) — R’

A, =TY24,4,, T=(1+A3%"1,

(5.19)

(5.20)

(5.21)

subject to

A(z =L) =e (5.22)

The reflectivity R is determined by the boundary condition at z = L. Its value must

be obtained numerically.
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Plugging in for A, and sin¢in Eqs. (5.14) and (5.15) yields

A 2
Po. - 1 Arde

A 2

be = —TT pif

(5.23)

(5.24)

Using Eqs. (5.19) and (5.20), the phases Eqs (5.23) and (5.24) can be integrated to

yield
_ A. [1-Rexp(—24’(1 — R)I'z)’

bo =n | 1-R _

 A In exp(24%(1 — R)I'z) — R1
Pe=—7 exp(242(1 — R)TL) — R|

he

(5.25)

(5.26)

where the B.C.

¢o(z = 0) = 0, @(z = L) = 0, (5.27)

have been applied. The phases are fixed by the boundary conditions and increase

as they travel towards the opposite end. The pump phase has an upper bound of

#o(L) £ —(A/2)1In(1 — R) while the Stokes phase is unbounded for large A.

The spatial profile of the fixed state for the envelope moduli for parameters A =

1.6, A =0, L = 40, €e = 0.0025 is shown in Fig. 5-3. In this particular example the

reflectivity R for the Stokes wave is close to unity. The Stokes wave has a definite

decay length in space given by

lL, ~ (1+ A?%)/(2(1 — R)A?). (5.28)

For distances beyond z ~ [, the Stokes wave has negligible amplitude and the pump

passes through unaffected. Thus I, gives an effective interaction length. Although

the system box may be larger, the dynamics take place in the interaction region

I&lt; &lt;li,

The stability of the fixed state can be examined by plugging E; = A; exp(i¢)) +6E

into Eqs. (5.4)-(5.6), where §E; are small perturbations. If the perturbations are

assumed to have a time dependence of exp(st), the linearized equations form an

inhomogeneous fourth order boundary value problem for the real and imaginary parts

of §Ey and 6E,. These equations must be solved numerically. This has not yet been

done. For no temporal dephasing (A = 0), Blaha et al (1988) showed that this
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Figure 5-3: Fixed State spatial profiles of the pump (solid line), Stokes wave (dashed
line) and acoustic wave (dotted line) for the parameters A = 0., A = 1.6, L = 20,
e = 0.0025.

fourth order system reduces to two second order equations, one each for the real and

imaginary parts. These second order equations can then each be transformed into

Legendre equations and the time evolution of perturbations can be found in terms

of associated Legendre functions. They showed that the fixed state is unstable in

a semi-infinite medium. Applying boundary conditions for a finite medium to their

solutions, the fixed state can be shown to always be stable.

Numerically it was found that the fixed state Hopf bifurcates to a periodic state

along a ‘L’ shaped curve in the parameter plane (see Fig. 5-2). Although an analytic

condition for the stability of the fixed state cannot be found, this particular shape can

be deduced. Consider a nonzero value of A. The fixed state 1s stable for A = 0. The

only difference in the fixed state between A = 0 and A # 0 is the ‘phase twist’ given

in Eqs. (5.25) and (5.26). I postulate that the criterion for stability is determined

by the amount of ‘phase twisting’. For example when ¢,(z = 0) exceeds a critical
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Figure 5-4: Contour plot of ¢,(z = 0) in the A-A plane for L = 40, e = 0.0025.

threshold, the fixed state becomes unstable. A contour portrait of ¢,(z = 0) in the

A-A plane for L = 40 and e = 0.0025 is shown in Fig. 5-4.

Notice that the ¢,(x = 0) ~ 5 contour matches very closely to the numerically

determined stability boundary in Fig. 5-2. The bifurcation seems to be a codimension

one supercritical Hopf bifurcation (Guckenheimer and Holmes, 1986).

From Eq. (5.26) it appears that the phase ¢,(0) depends on A? and L in the same

way. This is not entirely true because the reflection coefficient depends nontrivially

on the parameters. However it has a relatively weak dependence and numerical

simulations do show that the bifurcation point responds similarly to A2 and L. In the

parameter plane, L was set large enough so that all the bifurcations were included.

5.2.2 Periodic Orbits

When the stability line is crossed in parameter space the fixed state Hopf bifurcates

to a periodic state. Points in the parameter plane will be denoted by the ordered
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pair (A, A). An example of the spatial profile of a periodic state at (1,1) is shown

in Fig. 5-5. The three profiles have the form of the fixed state profiles shown in Fig.

5-3 but now with modulations. In this and the following spatial profile figures, the

pump is the solid line, the Stokes wave is the dashed line and the acoustic wave is the

dotted line. The pump consists of a periodic pattern that propagates across the box.

The interaction between the waves is confined to a small region given roughly by the

decay length of the Stokes wave Eq. (5.28). Figure 5-6 shows the output time series

for the pump and Stokes wave. They are periodic. The power spectrum of the pump

is shown in Fig. 5-7 and shows the frequency is very near A. The power spectra of

the other two waves are similar. The phase portrait of E, vs. E, is shown in Fig. 5-8

(a). A closed curve is seen confirming periodic behaviour. The phase portrait strobed

at the dephasing rate A = 1 is shown in Fig. 5-8 (b). In this case the frequency is

locked to the dephasing rate. There are 38 discrete points indicating the frequency is

w = (37/38)A. In all cases the frequency will be near A but not necessarily locked to

it. Periodic states can also be composed of interesting shapes. Figure 5-9 shows the

spatial profile of the state (0.8,1.6). The pump is composed of a modulated periodic

pattern. The phase portrait is shown in Fig. 5-10. It is a closed figure but no longer

convex.

One small section of the periodic regime, indicated by a line of x’s in Fig. 5-2,

has a phase coexistence between a periodic state and a quasi-periodic state. Figure

5-11 shows the output time series Eo(z = L,t) for the pump at (1.1,1) for two

different initial conditions. In Fig. 5-11 (a) a periodic pattern is observed, however in

(b) a completely different quasi-periodic orbit appears. Figure 5-12 shows the phase

portraits for the corresponding time series. In (a) there is a closed oval, but in (b) one

sees a double looped figure that does not close. The two different runs were continued

for very long times to test their robustness. However even after many hundreds of

thousands of periods, the quasi-periodic state did not fall into the periodic attractor.

It is unknown what the basin of attraction is for each phase. This coexistence regime

was discovered by chance. It is uncertain whether more regimes exist in the periodic

regime. In many of the runs made in the periodic regime, the relaxation times were
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Figure 5-5: Spatial profile of the amplitudes at a fixed time at (1,1).

extremely long. Often it was difficult to distinguish between periodic and nonperiodic

states because the transients were so long lived.

5.2.3 Quasi-periodicity and Chaos

The periodic state can make a transition to a quasi-periodic state. As the bifurcation

boundary to quasi-periodicity is approached, a second frequency corresponding to the

round trip transit time across the box begins to make an appearance. Its decay time

becomes longer and longer as the boundary is approached until finally it becomes

stable. Very long computation times were required to resolve the boundary.

Figure 5-13 shows the time series for the quasi-periodic orbit at (1,2) for the pump

and the Stokes wave. The two frequencies are readily observed. A spatial profile is

shown in Fig. 5-14. The pump is composed of periodic ‘dimpled’ structures. The

Stokes and acoustic waves are modulated. The slow frequency is barely perceptible

in the pump. The phase portrait in Fig. 5-15 shows an attractor that has a width and
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is clearly nonperiodic. The power spectrum for the pump is in Fig. 5-16. The other

waves have similar power spectra. There are many peaks in the spectrum confirming

quasi-periodic behaviour. The peak at w ~ 1 is the fast frequency from the periodic

orbit. The broader peak near w ~ 0.07 corresponds to a time scale of twice the transit

time across the box.

The quasi-periodic state makes a subcritical bifurcation to chaos. At the boundary

between the two phases there is a region of hysteresis. This region is very narrow.

For instance at (1,2) there is another attractor. The phase portrait in Fig. 5-17

shows that the orbit has a double loop structure like that for the quasi-periodic phase

at (1.1,1) in Fig. 5-8 (b). The orbit alternates between one loop and the other.

Figure 5-18 shows the time series for the pump and Stokes wave. They resemble time

series for intermittency. However a measurement of how the laminar periods scale

with the unfolding parameter was not made to verify this. The time-only equations

were observed to exhibit TypeIintermittency (Meunier et al., 1982). The power
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spectrum in Fig. 5-19 for the pump shows broad band behaviour indicative of chaos.

A measurement of the largest Lyapunov exponent A was made by linearizing about

a fiducial orbit (see Wolf et al. (1985)). It was found to be very small but positive

(A ~ 0.001).

Plunging deeper into the chaotic regime at (1.1,2.6) the orbits become more ape-

riodic. Figure 5-20 shows the time series for the pump and Stokes wave. The laminar

regions are reduced in size from those in Fig. 5-18. The general structure of the time

series looks different. The phase portrait in Fig. 5-21 shows that a third loop has just

begun to form. The power spectrum for the pump in Fig. 5-22 is broad band. The

remnant of the periodicity still exists as indicated by a broad peak near w ~ 1. The

largest Lyapunov exponent has increased to around A ~ 0.002.

Finally, well into the chaotic region at (1,5), the time series of the pump is clearly

chaotic in Fig. 5-23. The phase portrait in Fig. 5-24 has no real structure. The power

spectrum in Fig. 5-25 flattens out below w ~ 1 defining a coherence time. The spatial
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profile is in Fig. 5-26. The waves appear chaotic yet the interaction length where the

Stokes wave has substantial amplitude remains small. From the plot it appears that

the coherence length of the pump structures is on the order of the decay length of

the Stokes wave. Thus the resulting chaos is low dimensional.

5.3 Conclusions

Given that temporal dephasing is present in SBS, a sequence of transitions from steady

state to chaos is possible. For the chaotic regime to occur, the reflectivity must be

high and the medium must be larger than the decay length (growth length) for the

Stokes wave. This appears to be the simplest SBS model thus far that has chaotic

solutions. Gaeta and Boyd (1991) have strong evidence that the aperiodicity observed

thus far in experiments with optical fibers is due to amplification of noise. This is not

to say that chaotic SBS due to dephasing may not exist in other experiments. For

high reflectivity in a large medium the effect of the noise need not be as great (Gaeta,
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1991). Future experiments using a second laser at very low powers to seed the Stokes

wave may be employed to reduce the effects of noise. The temperature of the optical

fiber could also be lowered. The frequencies could be scanned to search for acoustic

modes that would lead to dephased SBS. The power of the lasers and length of the

fiber could then be varied to search for chaotic behaviour.

As the equations stand, the results are very difficult to interpret. Even the linear

stability analysis is difficult. However the phase twist hypothesis (Fig. 5-4) seems

to work. This fact along with the existence of a relatively well defined bifurcation

sequence to chaos is an indication that there may be a reduced ODE description for the

dynamics. This has been accomplished with other systems (mostly fluid convection)

with a variety of methods (Malkus and Veronis, 1958; Lorenz, 1963; Guckenheimer

and Knobloch, 1983; Coullet and Spiegel, 1983; Rucklidge, 1991). A typical method

is a Galérkin truncation procedure. TheLorenz (1963) equations for instance are a

set of third order ODE’s for Rayleigh-Bénard convection derived this way. However
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it has been shown that the chaotic solutions of the Lorenz equations do not actually

appear when more modes are kept (Curry et al. 1984) or when the full PDE’s are

simulated (Moore and Weiss, 1973). Care must be taken that the reduced equations

are asymptotically exact descriptions (Rucklidge, 1991). The difficulty of the model

considered here is that the boundary conditions impose an inhomogeneous fixed state.

The linear equations must be solved numerically to obtain the eigenvalues. Simple

expansions in a harmonic series do not satisfy the boundary conditions. Thus, some

nontrivial mode expansion is likely to be required. Hopefully, in the future this can

be done and the bifurcation diagram can be unravelled.
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Chapter 6

Conclusions

In this dissertation I have considered three models of the nonintegrable three wave

interaction. The intent was to study their spatiotemporal dynamic behaviour and in

particular spatiotemporal chaos. Two of the models exhibited STC. Both involve the

nonlinear saturation of a linearly unstable high-frequency wave by coupling to two

damped low-frequency waves. They were distinguished by the relative order of the

group velocities. The third model, applicable to stimulated Brillouin scattering in

a finite medium exhibited low dimensional chaos. In the models that had STC, the

correlation function was measured and showed definite length and time scales. The

chaos arose from the interaction of these coherent structures. The conservative 3WI

is integrable by IST. The existence of analytical nonlinear solutions was paramount to

elucidating the dynamics. By means of perturbation expansions around the IST solu-

tions, and guidance from the numerical results, it was possible to provide approximate

analytical expressions for the essential scales of the dynamics.

Hohenberg and Shraiman (1989) have presented an exposition of STC using the

Kuramoto-Sivashinsky (KS) equation as a paradigm. In that case a well defined cor-

relation length exists, and the manifested chaos arises from the interaction of the

coherent structures. Hohenberg and Shraiman (1989) addressed the issue of whether

a statistical description borrowed from linear response theory is appropriate for de-

scribing STC. One postulate is that the Fourier transformed field fluctuations obey

a Gaussian distribution. It appears that this is observed in the KS equation. Gaus-
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sian distributions have been observed experimentally as well (Ciliberto and Caponeri,

1990; Arecchi et al., 1990). Other work on spatiotemporal chaos (see Goldstein et

al., 1991) have concentrated on the transition of regular spatial patterns to chaotic

spatial states. Perturbed integrable systems such as the nonlinear Schrodinger and

sine Gordon equations have also been investigated and will be reviewed by McLaugh-

lin (1992). Chaotic Rayleigh-Bénard convection in one and two dimensions have also

been studied intensively (see Greenside et al., 1988; Ciliberto and Caponeri, 1990)

along with other systems cited in Chapter 1. The body of work on STC continues to

grow.

In this dissertation , I have shown that STC is exhibited by the simplest nonlinear

interaction of three waves when the highest frequency wave is linearly unstable and the

other two waves are linearly damped. The STC is associated with the slowly-varying

spacetime amplitudes of these waves. I have characterized STC in the nonintegrable

3WI and found that it to be a very rich system. As shown in Section 2.1, the 3WI is

a set of amplitude equations akin to the nonlinear Schrodinger and Ginzburg-Landau

equations (see Newell, 1988). A study of the 3WI could have been approached from

various directions. I chose to look at the large system dynamics and try to under-

stand the length and time scales that arise in STC. However, important questions

remain unresolved and could be the subject of future work. Most of the statistical

issues addressed by Hohenberg and Shraiman (1989) have not been dealt with in this

dissertation. That would constitute the next phase in the study of the 3WI. The

precise mechanisms for STC are only understood at a rudimentary level. Studying

smaller systems may shed some light onto that area. When the correlation length ap-

proaches the system size a transition to low dimensional dynamics would presumably

occur. This needs to be investigated. The existence of nonlinear solutions to perturb

around made it possible to estimate for the nearly integrable regime the average sat-

uration amplitudes. In other systems without nonlinear solutions to perturb around

this would be more difficult. For example, this has not been done in the KS equation.

There are other topics to study that follow naturally from this work that were

mentioned in the conclusions of each chapter. In addition, other general issues remain.
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Given that the 3WI is the lowest order nonlinear, nondispersive effect of a generalized

amplitude expansion the effect of the terms ignored in the equations I studied comes

into question. If the saturated amplitudes are fairly large, the self-modal interaction

may become significant. On longer time scales the dispersion that was ignored could

also play a role. The Ginzburg-Landau equation that ignores three wave coupling has

a whole host of interesting behaviour. A combination of the the two systems awaits

investigation.

The model of stimulated Brillouin scattering (SBS) in a finite medium presented

in Chapter 5, is the simplest model that exhibits chaos for the given boundary con-

ditions. Nonstationary SBS remains a subject of active research. This effect could

be very important to optical fiber communication. The results of recent experiments

may be due to amplified noise (Gaeta and Boyd, 1991), yet this is not to discount

the possibility of chaos in future experiments. I have demonstrated that a small

amount of frequency dephasing is all that is necessary for nonstationary and chaotic

behaviour. The dynamics are fairly complicated but low dimensional and it maybe

possible to have a reduced ODE description that would be very useful in untangling

the behaviour. This may require novel mathematical techniques because the bound-

ary conditions impose an inhomogeneous fixed state. Defects and inhomogeneity in

the fiber may also produce interesting spatiotemporal effects.

This dissertation is not an end but rather a beginning. It introduces the 3WI as a

paradigm for STC. On a grander level, it is part of an effort to understand nonlinear,

nonintegrable behaviour in general. Perhaps, by comprehending simple systems such

as the 3WI a step closer to unlocking some of nature’s secrets has been made.
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Appendix A

The Zakharov-Manakov

Scattering Problem

In this appendix, the IST equations for the 3WI will be stated to introduce termi-

nology and notation to be used in the text. All of what is presented in this section

follows Kaup (1976a) and Kaup et al. (1979).

For conservative couplings the magnitude of the coupling coefficient can be scaled

away by a simple transformation @; = |6;|a;. The conservative SWI Eqs. (2.11)-(2.13)

then take the form

Que +a: = MmQ@Qs,

Qa + 2Q2. = 12Q1Q3,

Qa; +c3Q3, = ~3Q705.

(A.1)

(A.2)

(A.3)

where @Q;(z,t) are the slowly varying amplitudes, ¢; are the corresponding group

velocities satisfying

£4 Co "Cy. (A.4)

and ~; are the phases of the coupling coefficients given by

fe =—4 stgn(w; xX w;), (A.5)

where w; is the energy of the ith wave, and w are the resonant frequencies, whose
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relative signs are determined from

wi + wap +ws =0. (A.6)

The appropriate scattering problem for the 3WI is the Zakharov-Manakov (ZM)

scattering problem (Zakharov and Manakov, 1973; Kaup, 1976a) given by

—tv1 + Vigva + Vigus = —a1 (vu,

—1Vyz + Va1v1 + Vagus = —c(v,,

—tap + Va1v1 + Vaz = —calvs,

(A.7)

(A.8)

(A.9)

where V;; are the potentials and are given by

—1Vas == — © Vaz = —73Y2 Voz,
Vez —e)(es — 1)

—1Va: a ——— iQ: Vis = 7173Vai,
V (cz — e1)(cs — 2)

—1Q)3 *
Vie= re Va = —mimaVil

\V (ca — c1)(cs — cz)

For V;; — 0 sufficiently rapidly as |¢| — oo and for real {, two sets of linearly

independent eigenfunctions of Eqs. (A.7)-(A.9), ®™ and ¥™ can be defined with

the following boundary conditions

(A.10)

(A.11)

3) ~ Ere it? as T . (A.13)

(n) —ic;
o&gt; ~ §re i® as z — 00. (A.14)

where n = 1,2,3 denotes the nth eigenfunction and 7 = 1,2,3 denotes the jth

component. These two sets are then ‘connected’ through the relation

pm) — 5 [Gna] (OEM, (A.15)

defining the scattering matrix

S(¢) = [amn(C)], (A.16)

the elements of which are referred to as scattering data.
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The potentials Q;, @2, Qs have been mapped into the scattering data S. In the

linear limit of Eqs (A.1)-(A.3) for infinitesimal potentials the diagonal elements of S

are unity and the off-diagonal elements are the Fourier transforms of these potentials.

For the nonlinear situation such a simple relation no longer exists between the poten-

tials and the scattering data. However given S the potentials can be reconstructed

uniquely. The time dependence of S is exactly the same as the linear limit and is

given by

@mn((;t) = amn((,0) exp [ictescacs (= — =] : (A.17)

Given any initial condition going to zero sufficiently fast for |x| — oo, the scattering

data S({,0) are obtained, evolved in time with (A.17), then inverse transformed to

obtain the time evolved potentials.

The actual inverse scattering procedure for the ZM scattering problem is very

involved and detailed in (Kaup, 1976a). However for most purposes a simplification

is possible. Whenever the three envelopes are separated, the scattering data for the

ZM problem can be given in terms of the simpler second order Zakharov-Shabat

scattering problem (Zakharov and Shabat, 1973). Consider Eqs. (A.7)-(A.9) in a

region of space where @); and Q, are zero, but @Q3 is nonzero. Then by Eqs. (A.10)-

(A.12), the only nonzero potentials in this region are V;; and V,;. The ZM system

decouples into a trivial equation for vz and a second scattering problem for v; and

vy which can be transformed into the ZS problem (see Appendix B) by appropriate

rescaling. Similarly this applies for the region where ¢);, and Q, are nonzero. For

each envelope,

—727391 1)

" v/(c2 —c1)(cs — a) = wn
= (cs — ¢2)/2,

 9 wo
© v/(c2 - c1)(ca —- C2) TT nn

= ((czs—a1)/2,

} N79 (3)

A(3) Via —c1)(ca — cz) r= wr
= ((c; —1)/2,

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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where g™, (™ and A(™ are the corresponding ZS potentials and eigenvalue for the

nth envelope. If the three envelopes are separated than the scattering matrix S can

be factored in terms of the scattering matrices of the three ZS eigenvalue problems.

For instance if at some time the envelopes have negligible overlap and are arranged

with the ith envelope to the right of the jth which is to the right of the kth then S

may be factored as

S = Sg) glk) (1,3,k = 1,2,0r 3), (A.24)

For situations where the three envelopes are initially well separated and again at

a later time after interacting, the ZM problem need never be used. The final ZS

scattering data can be expressed directly in terms of the initial ZS scattering data.

If at t = 0 the envelopes are ordered (3,2,1) from left to right then

Ss = sg gt) (A.25)

where the zero subscript denotes initial value. Since the time evolution of the scat-

tering data is given by Eq. (A.17) this determines S for all times. If the envelopes

separate as £ — oo then

S =sNsPsl (A.26)

Setting the expressions for S equal gives

(3)

2s ag’ag”
p2) (3)
Js = 211 OpDa0 _ pn)aj aa)" Bo ~ bob")

p) (2)% _ _Y (3) (2)—_ J Iz (1) , (3

al!) aa? [a5 as "bo +5757)

(A.27)

(A.28)

(A.29)

Equations (A.27)-(A.29) contain all the information about the exchange of solitons

and radiation density. The bound-state eigenvalues are given by the poles of b(A)/a(})

(zeros of a(A)) for A in the upper half plane. From Eq. (A.27) it is seen that zeros

al? and a¥ become zeros of af). It then follows from Eq. (A.28) that a) has no

zeros. Also from Eq. (A.29) zeros of ad) and a? become zeros of al! . Thus solitons

129



are never lost from the slow and fast envelopes. The middle envelope always loses

its solitons, giving solitons to both the slow and fast envelopes. In the stimulated

backscatter case, the middle envelope can never contain solitons (see Appendix B),

so this exchange will never occur.
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Appendix B

The Zakharov-Shabat Scattering

Problem

A complete discussion of the Zakharov-Shabat scattering problem is given in Ablowitz

et al. (1974), as well as the many texts mentioned in Chap 3. The ZS equation is

vie +1Av, = qua,

Vor — 1AVUg = Tq,

(B.1)

(B.2)

where

3

as

V4

Vo
(B.3)

is the eigenvector, A is the eigenvalue, and q and r are the potentials. The potentials

are assumed to vanish rapidly as |z| — 0 and satisfy the condition

[lial+Irllde&lt;oo. (B.4)

With this in mind, define eigenfunctions ¢, ¢, with the following boundary conditions

4
| 1

| 0
—t ATe "asx——00,0@-J

[ a(A)e~A=
b(A)etir=

3

|

asor- +00, (B.5)

ATi

b -

=

J

0

-\

—

easz——00,@—

I

b(A)e~ir=
—a(\)etr=|

as £ — +00. (B.6)
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The scattering matrix is usually defined as

 Ny 5 (7.7)

For the continuous part of the eigenvalue spectrum the important quantity is the

‘reflection coefficient’

(2)
p(A) = aA) (B.8)

The soliton part of the spectrum is determined by the zeros of a()) in the upper

half A\-plane. These correspond to discrete eigenvalues (bound states). The zeros are

designated by {\.}¥_,, where N is finite. At an eigenvalue

and when b()) can be anal

0
PD: Ak, T) —

bet re”
as Tr — CO,

yeically continued into the upper half A-plane,

Ol — b( Ak)

(7.9)

(B.10)

Define also the residue at the eigenvalue

br
—tDe -_ a (B.11)

rhere

, _ Ga(})
= OA IA=2a (B.12)

The pair [Mx, Di] corresponds to one soliton, where the imaginary part of A; deter-

mines the amplitude and width, the real part of A, determines the spatial phase

modulation, and D, determines its initial position and phase.

For the 3WI, only cases where

 ™m = +q° (B.13)

are involved. For this situation

a) = [a(A)],

BA) = FO)"

(B.14)

(B.15)
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For ¢ = +r and Eq. (B.4) the ZS problem is self-adjoint and so the eigenvalues are

real and no bound states can occur. For ¢ = —r bound states and hence solitons can

occur. Whenever q is real the spectrum is further restricted. Eqs. (B.14) and (B.15)

imply

a(—A*) = a*(}),

b(—A*) = b*(A).

(B.16)

(B.17)

When q is a square pulse, analytic solutions can be given for a and b. Take ¢ = Q

when I_ &lt; z &lt; I}, and zero elsewhere. For r = +¢*, Eqs. (B.1) and (B.2) can be

solved exactly to yield

a(A) = &gt; exp(iAL) (: — 2) exp(iAL)

3 1 + 2) exp(-iaL) :

b(A) = Fo [exp(iAL) — exp(—i1AL)|exp[—iA(ly + 1.)],

where L =, —I_ and A = [A2 + Q3]1/?

(B.18)

(B.19)
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Appendix C

Numerical Methods

The numerical method is based on the one used by Reiman and Bers (1975) to

integrate the conservative 3WI. Each envelope is transformed to its characteristic

frame by substituting b;(z,t) = ai(z + v;t,t). The SDI and LDI simulations used the

same code. Recall that the relevant equations were already transformed to the frame

of the high frequency waves. Each wave was put on a grid that moved along the

characteristics. The grid spacing ¢, — z,_; = h was fixed and chosen so as to resolve

the smallest dynamical structures that may arise. The diffusion term in the high

frequency wave Eq. (3.1) was finite differenced by a five point scheme. The resulting

equations were then

De ry, t) == —b;(Tm — v,t, t)bi(zn — uit, t) + bi (i, t),
D

1972 [(—bi(zi42,t) + 16b;(z141,t)
30b;(z;,t) + 16b;(xi_1,t) — bi(x1—2,t)],

1

(C.1)

bit(Zm, t) = b;(z, + vit, t)bi(zn + (vj — Ur )t, t) — bi(zm, t), (C.2)

brt(zn,t) = bi(x; + Vit,Yb(zm+(vi—vj)t,t)—b(n,t). (C.3)

In the SDI case vx = —v; = 1; in the LDI case vy, = —2, v; = —1. The z coordinates

of the nonlinear terms on the right hand sides often will not fall on the grid. A four

point polynomial interpolation formula was used to calculate the amplitudes on the

grid points. The time evolution was calculated using the IMSL, ODE solver DVERK,

144



which employs the Runge-Kutta- Verner fifth and sixth order method. All calculations

were performed on a CRAY 2 at the National Energy Research Supercomputing

Center. This numerical method is very stable.

At specified time intervals the entire grid would be recorded. The integrated

energy was also calculated using Simpson’s rule and recorded. They were then used

with the conservation equations (3.2.3) where the derivatives were evaluated with

a simple two point difference method to check for accuracy. The grids were made

periodic. To simplify the computations only real envelopes were evolved. It can be

shown that for real initial conditions the envelopes remain real for all time (Kaup,

Reiman and Bers, 1979). Comparisons between complex and real initial conditions

did not show any noticeable behaviour in the dynamics.

The correlation function was computed from the recorded spacetime data. The

discrete correlation function was calculated and averaged over several time parcels

with
1 M-1N-1

Si(Zm, tn) = NM &gt; &gt; a(Tmtiytnts)a(zi, ti), (C4)
i=1 4=1

where M is the number of grid points and N is the number of time slices for the

correlation function. This double sum is evaluated for each grid point and for all of

the time slices in the simulation. In a typical run, the simulation run was twenty

to thirty times longer than the correlation function time corresponding to N. The

correlation function was Fourier transformed along the x and t axes to obtain the

spectra.

The SBS simulation used a similar code. However complex envelopes were re-

quired. Again each wave was transformed to its characteristic and placed on its own

grid. The boundary conditions were different. The pump wave had a left boundary

condition and the Stokes had a right boundary condition. In the characteristic frame

this implied the boundary conditions were propagating.

145



Bibliography

1] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, 1974, Stud. Appl. Math.

53, 249.

2] M. J. Ablowitz and H. Segur, 1981, Solitons and the Inverse Scattering Transform

(SIAM, Philadelphia).

[3] G. Ahlers and R. P. Behringer, 1978, Prog. Theor. Phys., Suppl. 64, 186.

[4] S. A. Akhmanov and R. V. Khokhlov, 1972, Problems of Nonlinear Optics (Gor-

don and Breach, New York).

[5] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, 1990, Phys. Rev.

Lett. 65, 2531.

[6] V.I. Arnol’d and A. Avez, 1968, Ergodic Problems oy Classical Mechanics (Ben-

jamin, New York).

[7] I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R.G. Waarts, 1985, J. Opt. Soc.

Am. B 2. 1606.

[8] D. J. Benney, 1962, J. Fluid Mech., 14, 577

[9] D. J. Benney and A. C. Newell, 1967, J. Math. Phys. 46, 133.

[10] P. Bergé, 1979 in Dynamical Critical Phenomena and Related Topics, Lecture

Notes in Physics 104, edited by C. P. Enz (Springer-Verlag, Heidelberg) p. 288.

11] P. Bergé, Y. Pomeau, C. Vidal, 1984, Order within Chaos (Hermann, Paris).

146



[12] A. Bers, 1975 in Plasma Physics-Les Houches 1972, edited by C. De Witt and

J. Peyraud (Gordon and Breach, New York).

13] A. Bers, 1983 in Handbook of Plasma Physics, edited by M. N. Rosenbluth and

R. Z. Sagdeev (North Holland, Amsterdam), Vol . 1, Chap. 3.2.

14] A. Bers and A. Reiman, 1975, in Proceedings of the Seventh Conference on Nu-

merical Simulation of Plasmas, Courant Institute, N.Y.U., June 1975, p. 192.

15] A. Bers, D. J. Kaup and A. H. Reiman, 1976, Phys. Rev. Lett. 37, 182.

16] A. R. Bishop and P. S. Lomdahl, 1986, Physica 18D , 54

17] R. Blaha, E. W. Laedke, A. M. Rubenchik, and K. H. Spatschek, 1988, Europhys.

Lett. 7, 237.

18] N. Bloembergen, 1965, Nonlinear Optics (Benjamin, New York,

19] J. Botineau, C. Leycuras, C. Montes, and E Picholle, 1989. J. Opt. Soc. Am. B

A 200)

20] G. Bonnaud, D. Pesme, and R. Pellat, 1990, Phys. Fluids B 2, 1618.

[21] M. N. Bussac, 1982, Phys. Rev. Lett. 49, 1939.

[22] D. K. Campbell, 1987, Nonlinear Science ~ From Paradigms to Practicalities in

Los Alamos Science, No. 15, Special Issue on Stanislaw Ulam, edited by Necia

Grant Cooper.

23] S. Ciliberto and M. Caponeri, 1990, Phys. Rev. Lett. 64, 2775.

24] H. Chaté and P. Manneville, 1987, Phys. Rev. Lett. 58, 112.

25] C. C. Chow, A. Bers and A. K. Ram, 1991a, in Research Trends in Physics:

Chaotic Dynamics and Transport in Fluids and Plasmas edited by I. Prigogine,

et al., to be published by AIP, 1992.

26] C. C. Chow, A. Bers and A. K. Ram, 1991b, submitted to Phys. Rev. Lett.

om
i ed



[27] B. Coppi, M. N. Rosenbluth, and R. N. Sudan, 1969, Ann. Phys. (N.Y.) 55, 207.

[28] J. Coste and C. Montes, 1986, Phys. Rev. A 34, 3940.

[29] D. Cotter, 1983, J. Opt. Commun. 4, 10

[30] D. Cotter, 1987, Opt. Quantum Electron. 19, 1

[31] P. H. Coullet and E. A. Spiegel, 1983, SIAM J. Appl. Math. 43, 776.

[32] P. Coullet, C. Elphick, and D. Repaux, 1987, Phys. Rev. Lett. 58, 431.

[33] P. Coullet and G. Iooss, 1990, Phys. Rev. Lett. 64, 866.

[34] J. H. Curry, J. R. Herring, J. Loncarie and S. A. Orzag, 1984, J. Fluid Mech.

146. 1.

35] R. C. Davidson, 1972, Methods in Nonlinear Plasma Theory (Academic, New

York).

36] R. L. Devaney, 1989, An Introduction to Chaotic Dynamical Systems (Addison-

Wesley, Reading, Massachusetts).

[37] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, 1982, Solitons and

Nonlinear Wave Equations (Academic Press, New York).

[38] R. P. Drake and S. H. Batha, 1991, Phys. Fluids B 3, 2936

39] P. G. Drazin and R. S. Johnson, 1989, Solitons: an introduction (Cambridge

University Press, New York).

[40] D. F. DuBois, H. A. Rose, and D. Russell, 1991, Phys. Rev. Lett. 66, 1970.

[41] A. I. D’yachenko, V. E. Zakharov, A. N. Pushkarev, V. F. Shvets, and V. V.

Yan’kov, 1989, Zh. Eksp. Teor. Fiz. 96, 2026 [Sov. Phys. JETP 69, 1144 (1989)].

[42] W. Eckhaus and A Van Harten, 1981, The Inverse Scattering Transformation

and the Theory of Solitons: an introduction (North-Holland, New York).

148



[43] A. B. Ezerskil, M. I. Rabinovich, V. P. Reutov, and I. M. Starobinets, 1986, Zh.

Eksp. Teor. Fiz. 91, 2070 [Sov. Phys. JETP 64, 1228 (1986)].

44] D. Forster, 1975, Hydrodynamic Fluctuations, Broken Symmetry and Correlation

Functions (Benjamin, New York).

45] A. L. Gaeta, 1991, Private Communication.

[46] A. L. Gaeta, M. D. Skeldon, R. W. Boyd, P. Narum, 1989, J. Opt. Soc. Am. B

6. 1709.

47] A. L. Gaeta and R. W. Boyd, 1991, Phys. Rev. A 44. 3205

48] G. Gamow, 1967, One, Two, Three, Infinity (Bantam Books, New York).

49] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, 1967, Phys. Rev.

Lett. 19. 1095.

50] M. V. Goldman, 1986, Physica 18D, 67.

51] R. E. Goldstein, G. H. Gunaratne, L. Gil, and P. Coullet, 1991, Phys. Rev. A

43. 6700.

52] H. S. Greenside, M. C. Cross, and W. M. Coughran, Jr., 1988, Phys. Rev. Lett.

60. 2269.

53] J. Guckenheimer and E. Knobloch, 1983, Geophys. Astrophys. Fluid Dynamics

23. 247.

54] J. Guckenheimer and P. Holmes, 1986, Nonlinear Oscillators, Dynamical Systems

and Bifurcations of Vector Fields (Springer-Verlag, New York).

'55] R. G. Harrison, J. S. Uppal, A. Johnstone, and J. V. Moloney.

Lett. 65, 167.

1990, Phys. Rev.

56] J. A. Heikkinen and S. J. Karttunen, 1986, Phys. Fluids 29, 1291.

140



[57] J. R. Herring and R. H. Kraichnan, 1972, in Statistical Models and Turbulence

edited by M. Rosenblatt and C. van Atta (Springer-Verlag, New York), p. 148.

58] P. C. Hohenberg and B. I. Shraiman, 1989, Physica D 37, 109.

59] S. Hiiller, P. Mulser, A. M. Rubenchik, 1991, to appear in Phys. Fluids. B.

160] J. Hyman, B. Nicolaenko and S. Zaleski, 1986, Physica D 23, 265.

61] W. Kaiser and M. Maier, 1972, in Laser Handbook, Vol 2, edited by F. T. Arecchi,

S. Dubois (North-Holland, Amsterdam).

[62] D. J. Kaup, 1976a, Stud. Appl. Math. 55, qg

[63] D. J. Kaup, 1976b, SIAM J. Appl. Math., 31, 121.

[64] D. J. Kaup, 1980, Physica 1D, 45.

[65] D. J. Kaup, 1990, Phys. Rev. A, 42, 5689

[66] D. J. Kaup and A. C. Newell, 1978, Proc. R. Soc. Lond. A. 361, 413.

[67] D. J. Kaup, A. Reiman and A. Bers, 1979, Rev. Mod. Phys. 51, 915 (1979) and

references therein.

[68] Y. S. Kivshar and B. A. Malomed, 1989, Rev. Mod. Phys. 61, 763.

[69] R.H. Kraichnan and S. Chen, 1989, Physica D 37, 160

[70] N. M. Kroll, 1963, Proc. IEEE 51, 110.

[71] M. Kruskal, 1991, Private Communication.

[72] Y. Kuramoto and T. Tsuzuki, 1976, Prog. Theor. Phys., Suppl. 64, 346.

73] L. D. Landau, 1944, Dok. Alcad. Nauk. SSSR 44. 339

[74] L. D. Landau and E. M. Lifshitz, 1980,

"§ C

Statistical Physics (Pergamon, New

1R(]



[75] P. D. Lax, 1968, Comm. Pure Appl. Math.,21, 467.

[76] T. Y. Li and J. A. Yorke, 1975, Amer. Math. Monthly 82, 985.

(77] A. J. Lichtenberg and M. A. Lieberman, 1982, Regular and Stochastic Motion

(Springer-Verlag, Berlin).

[78] C. S. Liu, M. N. Rosenbluth, and R. B. White, 1974, Phys. Fluids 17, 1211.

[79] E. N. Lorenz, 1963, J. Atmos. Sci. 20, 130.

[80] W. V. R. Malkus and G. Veronis, 1958, J. Fluid Mech. 58, 289.

[81] B. Mandelbrot, 1983, The Fractal Geometry of Nature (W.H. Freeman and Co.,

New York).

82] P. Manneville, 1981, Phys. Lett. A 84, 129.

83] P. C. Martin, 1968, Measurements ana

Breach, New York).

Correlation Functions (Gordon and

84] L. McGoldrick, 1965, J. Fluid Mech. 21, 305

'85] D. W. McLaughlin, 1992, to be published.

86] C. Meunier, M. Bussac and G. Laval, 1982, Physica 4D, 236.

87] H. T. Moon and M. V. Goldman, 1984, Phys. Rev. Lett. 53, 1921.

88] D. R. Moore and N. O. Weiss, 1973, J. Fluid Mech. 58, 289.

89] P. Narum, A. L. Gaeta, M. D. Skeldon, and R. W. Boyd, 1988, J. Opt. Soc. Am.

B 5. 623.

90] A. C. Newell, 1988, in Propagation in Systems Far from Equilibrium, edited

by J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara

(Springer,Berlin), p. 122, and references therein.

91| E. A. Overman II, D. W. McLaughlin and A. R. Bishop, 1986 Physica 19D, 1.

i 51



[92] O. M. Phillips, 1960, J. Fluid Mech. 9, 193.

[93] H. Poincaré, 1952, Science and Method (Dover, New York).

[94] Y. Pomeau, A. Pumir and P. Pelcé, 1984, J. Stat. Phys. 37, 39

[95] A. Pumir, 1985, J. Phys. (Paris) 46, 511.

96] C.J. Randall and J. R. Albritton, 1984, Phys. Rev. Lett., 52, 1887.

[97] A. H. Reiman, 1977, Ph.D. Thesis, Department of Physics, Princeton University.

98] A. Reiman, 1979, Rev. Mod. Phys. 51, 311.

99] A. Reiman and A. Bers, 1975, in Proceedings of the Seventh Conference on Nu-

merical Simulation of Plasmas, Courant Institute, N.Y.U., June 1975, p. 188.

[100] A. H. Reiman, A. Bers, and D. J. Kaup, 1977, Phys. Rev. Lett. 39, 245.

[101] A. M. Rubenchik, 1991, Private Communication.

102] A. M. Rucklidge, 1991, to appear in J. Fluid Mech.

103] D. Ruelle and F. Takens, 1971, Commun. Math. Phys. 20, 167.

[104] J. S. Russell, 1838, in Report of the 7th Meeting of British Association for the

Advancement of Science, Liverpool, p. 417.

105] R. Z. Sagdeev and A. A. Galeev, 1969, Nonlinear Plasma Theory (Benjamin,

New York).

106] A. N. Sarkovskii, 1964, Ukr. Math. Z. 16, 61. G

[107] K. Sauer and K. Baumgirtel, 1984, Phys. Rev. Lett., 52 1001.

[108] G. S. Schuster, 1984, Deterministic Chaos: An Introduction (Physik-Verlag,

Weinheim. FRG).

109| B. I. Shraiman, 1986, Phys. Rev. Lett. 57 325.

1592



110] L. Sirovich, 1989, Physica D 37, 126.

111] G. I. Sivashinsky, 1983, Ann. Rev. Fluid Mech. 15, 170.

112] H. Tennekes and J. L. Lumley, A First Course in Turbulence (M.LT. Press,

Cambridge, MA).

1113] C. Vidal, A. Pagola, J. M. Bodet, P. Hanusse, and E. Bastardie, 1986, J. Phys.

(Paris) 47, 1999.

114] S. Y. Vyshkind and M.I. Rabinovich, 1976, Zh. Eksp. Teor. Fiz 71, 557 |Sov.

Phys. - JETP 44, 202 (1976)].

115] J. Wersinger, J. Finn, and E. Ott, Phys. Fluids, 1980, 23, 1142.

116] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985, Physica 16D,

285

[117] V. Yakhot, 1983, Phys. Rev. A 24, 642.

[118] N. J. Zabusky and M. D. Kruskal, 1965, Phys. Rev. Lett. 15, 240.

[119] V. E. Zakharov and A. B. Shabat, 1971, Zh. Eksp. Teor. Fiz. 61, 118 [Sov.

Phys. — JETP 34, 62 (1971)].

[120] V. E. Zakharov and S. V. Manakov, 1973, Zh. Eksp. Teor. Fiz. Pis’ma Red. 18,

413 [Sov. Phys.~JETP Lett. 18, 243 (1973)].

121] V. E. Zakharov and S. V. Manakov, 1975, Zh. Eksp. Teor. Fiz. 69, 1654 [Sov.

Phys. - JETP 42, 842 (1976)].

122] V.E. Zakharov, A. N. Pushkarev, V. F. Shvets, and V. V. Yan’kov, 1988, Pis’ma

Zh. Eksp. Fiz. 48, 79 [JETP Lett. 48, 83 (1988)].

[123] S. Zaleski, 1989, Physica D 34, 427.

124] G. M. Zaslavsky, 1985, Chaos in Dynamical Systems (Harwood Academic, New

York).

1593




