
DESIGN REUSE AS A STRATEGY FOR INCREMENTAL NEW PRODUCT
DEVELOPMENT

A STUDY OF SOFTWARE INDUSTRY

VANDANA UPADHYAY

B.Sc., Jiwaji University, India (1982)
M.B.A., Panjab University, India (1984)

Submitted to the Alfred P. Sloan School of Management
and the School of Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN
THE MANAGEMENT OF TECHNOLOGY

A he

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1992

(c) Vandana Upadhyay, 1992. All rights reserved

The author hereby grants MIT permission to reproduce and to distribute
copies of this thesis document in whole or in part.

Signature of author: Vandana Llfiadlpy
Alfred P. Sloan Schdol of Management

May 5, 1992

Certified by:_

Certified by

Accepted by

TY CA

James M. Utterback
Thesis Advisor

- Michael A. Cusumano

Thesis Reader

Va

Roger A. Samuel
Director, Management of Technology Program

ARWSAAANVES re
OF TECHNOLOGY

JUL 141992
| IBRARIES

DESIGN REUSE AS A STRATEGY FOR INCREMENTAL NEW PRODUCT
DEVELOPMENT

A STUDY OF SOFTWARE INDUSTRY

VANDANA UPADHYAY

B.Sc., Jiwaji University, India (1982)
M.B.A., Panjab University, India (1984)

Submitted to the Alfred P. Sloan School of Management
and the School of Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN
THE MANAGEMENT OF TECHNOLOGY

i | he

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1992

(c) Vandana Upadhyay, 1992. All rights reserved

The author hereby grants MIT permission to reproduce and to distribute
copies of this thesis document in whole or in part.

Signature of author

Certified by:

Certified by:

Accepted by

Signature redacted
Alfred P. Sloan Schddl of Management

May 5, 1992

Signature redacted
james M. Utterback

Thesis Advisor

Signature redacted
»

Michael A. Cusumano
Thesis Reader

Signature redacted
Roger A. Samuel

Director, Management of Technology Program
ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NUL 141992
| IRRARIES

DESIGN REUSE AS A STRATEGY FOR INCREMENTAL NEW PRODUCT

DEVELOPMENT

A STUDY OF SOFTWARE INDUSTRY

x7

VANDANA UPADHYAY

Submitted to the Alfred P. Sloan School

on May 5, 1992, in partial fulfillment of the

requirements of the Degree of Master of Science in

the Management of Technology

ABSTRACT

Software reuse has been identified as a potential source of

significant improvement in software productivity and quality. However,
for reuse to become a reality major advances need to be made. The vision
that the software industry evolves into component factories has not been
realized yet.

Design reuse and other incremental product development
techniques have been successfully used by firms in various industries to
shorten product development time and save costs and to speed concepts to
market.

As more and more engineering practices are being applied to
software development, it appears logical to investigate if the rationale of
design and development techniques such as those mentioned above can
be extended to software.

A group of researchers have found prima facie evidence that
code reuse results in higher productivity of software development process.
This work examines the same data-set and extends the earlier

investigation to cover the entire software life-cycle including
development as well as maintenance phases to determine if reuse has an
impact on overall life-cycle costs of software and what is the nature of this
effect.

Thesis Supervisor : Professor James M. Utterback

[itle : Leaders for Manufacturing Professor and
Associate Professor of Engineering

Acknowledgements

First, I would like to thank my thesis advisor Professor James

M. Utterback and my thesis reader Professor Michael A. Cusumano for

their guidance and support. This research would not have been completed

without Professor Utterback's gentle persuasion to develop the ideas that
form the basis of this work. I am indebted to Professor Cusumano for his

generosity in sharing data from his previous research on which I could

test my hypotheses.

Thanks are also due to many other professors at Sloan School

of Management with whom I was able to discuss my ideas and develop a

better understanding of the subject.

I would like to express my gratitude for The Rotary

Foundation that provided me with financial support for joining the

Management of Technology Program. I am also thankful to my

supervisors at Center for Development of Telematics (C-DOT) who over

the years provided me with numerous opportunities for learning. I would

like to thank, particularly, D. R. Mahajan, Dr. B. D. Pradhan, Sam Pitroda,

Y. K. Pandey and Wg. Cmdr. V. Balasubramanian. I also consulted a

number of my former colleagues at C-DOT and would like to thank them
too for their time.

I would also like to remember my teachers, Badi Tai S.

Dravid and Late Nalini Pagnis who knew me since my childhood and

prepared me for this achievement.

Finally, I am thankful to my family and friends whose love

and continued support carried me through this intensive program.

Table of Contents

Abstract

Acknowledgements

Table of Contents

l. Introduction

2. Literature Review

2.1 General Review

2.1.1 Product Development Paradigms
2.1.2 Characteristics of Software Development Process 16

2.1.3 Evolution of Software Development Methodologies 19

[2

2.2 Technical Review

2.2.1 Definition of Reuse

2.2.2 Methodologies of Reuse

2.2.3 Software Reuse and Reliability

2.2.4 Software Engineering and Software Factory
2.2.5 Software Productivity Barrier and the Improvement

Paradigm

21

21

23

24

24

3. Hypotheses Formulation

3.1 Research Questions

3.2 Hypotheses
3.3 Data Segmentation

3.3.1 Country of Origin
3.3.2 Size of Software Projects

3.3.3 Type of Software Projects
3.3..4 Extent of Reuse

26

28

29

29

30

31

31

3.3.5 Product Support Environment 317

4. Data Analysis, Findings and Inferences

4.1 Data Analysis

4.2 Findings
4.2.1 Productivity and Code Reuse

4.2.2 Productivity and Design Reuse
4.2.3 Design or Code Reuse and Size of Software Project

4.2.4 Design or Code Reuse and Type of Software Project

4.2.5 Annual Maintenance Costs and Design or Code Reuse

4.2.6 Total Faults Observed and Design or Code Reuse

4.2.7 Total Faults Observed and Versions Released

4.3 Inferences

34

36

36

38

39

13

43

43

14

15

5. Barriers to Software Reuse

5.1 Organizational Issues
5.2 Motivational Issues

5.3 Cultural Issues

5.4 Contractual Issues

6. Issues for Further Investigation

Appendix A. Companies and Products Areas Included in the Study
Appendix B. Data Description
Appendix C. Results of Statistical Tests

Appendix D. Selected Bibliography and References

46

47

48

48

SU

53

55

59

62

Chapter1

Introduction

Software development is like talking to a distant star, by the time you
receive the answer, you may have forgotten the question

- B. I. Blum, 1982

Mclllroy [29] first described the software crisis as the

discrepancy between demand for large complex software systems and the

ability to build such systems. Amongst various techniques and

methodologies being used to improve software productivity, software

reuse has emerged as a partial solution to the problem [10],[11],[14].

Software development is regarded as a craft activity for its

one of a kind product and a high degree of individuality reflected in

different programming styles. Just as car production was a craft in late

nineteenth century, software development is thought of as a craft activity

of the 20th century.

The automobile industry has undergone a paradigm shift

from craft production to mass production and now to lean engineering

[32]. Mass customization is considered by some to be the next paradigm

shift.

The craft form of automobile production suffered from

several drawbacks - production costs were very high, cost did not drop

with volume, the system depended on highly skilled workers and the

system failed to provide durability and reliability [32]. The change in

product development and manufacturing practices in the automobile

industry was a response and result of many factors. As the use of

automobiles spread and motor vehicles replaced other modes of land

transportation resulting in greater demand for the product, automobile

manufacturers realized that the ability to produce larger numbers and at a

lower cost required a fundamental change in the methods of production.

Thus, mass manufacturing came into being which was soon implemented

by other industries too. Increasing competition, shorter product life-cycles

and technological progress have caused another change in production

processes first adopted by the Japanese automobile manufacturers, called

lean engineering. Lean engineering practices have now diffused in many

other industries too.

A similar parallel can be drawn in the software industry.

Software development process continues to be human resource intensive

and requires high degree of sophisticated skills. Since no two projects are

alike, it is impossible to realize any economies of scale resulting from

repeated production of one single product in large numbers. The finding

from the study conducted by Swanson and Leintz [39] that 67% of costs or

effort in the entire software life-cycle is spent in maintenance during the

usage period, indicates that the systems are not very reliable. Examples of

large scale projects that have suffered numerous delays, failures and cost-

overruns abound.

A 1988 study undertaken by Price Waterhouse for the

Department of Trade and Industry, U.K. [38] revealed that problem fixing

in information technology industry accounted for over 50% of total effort.

The study also estimated the national U.K. market for commercial

products at 1000 million pounds. The total market size, including in-

house and government projects, was estimated to be 3000 million pounds.

On the basis of the above mentioned, it can be surmised that problem-

fixing easily costs the industry at least half of this figure that is 1500

million pounds annually.

Further, as each successive generation of computer hardware

has become more powerful, it has generated a greater expectation with

regard to software capability. While computer hardware engineers can

boast of productivity increases that raise computing power by an order of

magnitude, the software industry has been able to report an annual

productivity increase of only 4% [19].

his shortfall in the ability of software industry to produce

reliable and cheaper products to fully exploit increasingly powerful

hardware environment, is very critical.

£

A number of researchers including Basili [3], Boehm [8], and

Freeman [14], have advanced the argument that the application of

engineering principles to software development process can improve

productivity and reliability and decrease costs and time overruns

associated with it. Thus, reuse of components, tool support and

automation of routine tasks in software development should result in

higher levels of productivity and quality, similar to conventional

engineering or manufacturing disciplines.

In a study of forty software development projects, Cusumano

and Kemerer [12] found that a high level of code reuse was indeed

associated with significant productivity gains in software development.

Jones [20] has estimated that of all the code written in 1983, only fifteen

percent is unique, novel and specific to individual applications and; on an

average only fifteen percent of the code is reused. Thus, reusing existing

software products to eliminate all or part of the eighty-five percent

redundant development seems an obvious solution for achieving higher

productivity and lower costs.

Sanderson [37] puts forth the proposition that the cost and

time saving impact of reuse of existing components, automation and use

of tools is not limited to just new product development, but reaches

further down in the product life-cycle including manufacturing.

wh

If the same logic is applied to reuse of existing components

and automated development support environment, for new software

development then, reuse should not only affect the development costs but

also the downstream costs of maintenance that occur during the software

life-cycle. Indeed, Hooper [17] says that in addition to increase in

productivity and reduction in costs, software quality should increase due

to the greater use and testing of individual components, with the resulting

isolation and correction of any problems discovered.

In this study, I re-examine the data-set as used by Cusumano

and Kemerer [12], to extend the logic that reuse can have an impact not

only on development but also will result in a more reliable software

product and lower maintenance costs over the life of the product.

In this chapter, I have discussed the general theme of the

study. In the first half of the next chapter i.e. Chapter 2, some recent

product development techniques being used in conventional engineered

products and the nature of software development process are examined in

detail. The intent is to establish a similarity between the two and thus, lay

the ground for implementation and use of these new product

development paradigms into software development process to save time

and costs of development and also improve productivity of the process

and reliability of the product. In the second half of Chapter 2, software

reuse techniques and their embodiment in the overall engineering of the

software development process are discussed.

5

Chapter 3 is devoted to determining key research questions

that occured to this researcher as a result of previous discussion and study.

The hypotheses that form the basis of statistical analysis of data are also

established here. In Chapter 4, the results of statistical analysis of the data

and inferences thereof are discussed.

The problems that can be encountered by organizations that

promote reuse are discussed in Chapter 5. Chapter 6 is the concluding

chapter of this study that outlines the issues that arose in my mind either

as a result of this study or after a re-examination and subsequent discovery

that they were not addressed in my work. This chapter, I hope will provide

some groundwork for further research in the subject.

Chapter 2

Literature Review

Those who cannot remember the past, are condemned to repeat it.

George Santayana

2.1 General Review

2.1.1 Product Development Paradigms

Effective new product development has been a subject of

intense study, lately. Ever shortening product life-cycles, global

competition and convergence of technologies make the new product

development process not only complex but also highly risky. The risks are

not only associated with success in development, but also with timing.

How soon a product can be reached to market determines the product

profitability in its life cycle. Vesey [45] quotes a McKinsey & Co. study that

has showed that a product six months late to the market misses out on

one-third of the potential profits over the product's lifetime.

According to Sanderson [37] who is conducting extensive

research in this area, two different types of product development

paradigms have dominated the management of design and engineering in

the United States and Japan. The revolutionary or discontinuous

paradigm has characterized much of product development of American

D

companies until recently. This pattern views product development as a

series of large unrelated models with independent development teams.

The second paradigm, the continuous or evolutionary process is based on

a more planned and linked approach to new product development. Many

Japanese companies in electronics and computer manufacturing, besides

other industries, have been organized around this approach.

The modular or evolutionary approach depends on a high

degree of reuse of existing modules or components. It also presupposes a

development environment that consists of libraries of design modules,

automated tools and documentation.

Sanderson [37] further points out in her research how

Japanese companies have been successful in incremental product

development and have come out with several product releases in short

turn-around cycles. This, according to her, has been based on a high degree

of reuse of existing modules with or without modification.

There is some evidence that there is a similarity of approach

in software development as far as American and Japanese firms are

concerned. Cusumano in his book "Japanese Software Factories" states

that in absence of scale economies since no two software projects are

exactly alike, Japanese firms have tried to achieve economies of scope

through deliberate sharing of resources across different projects, such as

product specifications and design, executable code, tools, methods,

documentation and manuals, test cases and personnel experience [11]. A

study comparing Japanese software development practices with those of

American companies confirmed that a high degree of reuse characterized

the development approach of Japanese companies [12].

Susan Sanderson [37] proposes two complementary

approaches to information management in new product design that are

based on reuse of existing components of design. The two approaches are

called Group Technology and Virtual Design.

Group technology takes the advantage of design modularity and
achieves manufacturing efficiency through the use of common
physical components

Virtual design takes advantage of design abstraction and impacts
efficiency of design evolution through common high level design
representation [37].

Both these techniques of reusing existing components can be

mapped into the two approaches to software reuse, namely the

transformational and compositional approaches.

Virtual design which is based on abstraction of functionality

is akin to transformational approach whereas the group technology or

design modularity approach is similar to the compositional or component

software reuse techniques which are described in detail in the sections that

follow.

Some cost models have also been established to evaluate the

impact of group technology and virtual design techniques on costs of

product design and manufacturing. For one-time software projects it can

be assumed that there are no manufacturing costs, only product design

costs. However, another form of post product design costs are associated

with software. This is the post maintenance cost. That post maintenance

costs are important and should be taken into consideration is based on a

factual observation that 67% of life-cycle costs in software projects occur in

the post maintenance phase [39].

Bollinger [9] has developed the concept of cost-sharing

domains to clarify the amortization and pricing issues of software

development. For the purpose of reuse a cost sharing domain represents

the full set of present and future development groups that are likely to use

a given set of reusable components. Gaffney and Durek [15] have also

proposed a quantitative model to determine impact of reuse on

productivity.

Another type of approach to product development is design-

based incrementalism. Design-based incremental development has led to

shorter development cycle, easy manufacturability and lower costs [37].

Incremental development is not new to software industry. Since the early

seventies, computer scientists have been urging software industry to adopt

it but with very little success [36]. In the context of software, incremental

development is defined as a management technique for producing large

software systems that involve the delivery of successive versions of a

system, eventually ending up with the final product.

Brookes [10] differentiates between two types of difficulties in

development of large-scale systems. The first difficulty arises from the

underlying complexity of a software system. The second difficulty stems

from the errors that occur in translating user requirements into system

requirements. While incremental development can help manage the

complexity, due to splitting of a large system into smaller more

manageable modules, it is also capable of producing components that can

be reused. This is so because each mini-project is a separate entity and has

a better visibility which enhances reuse.

2.1.2 Characteristics ot Software Development Process

Software appears to have characteristics that make

conventional engineering or factory operations difficult to introduce -

little product or process standardization to support economies of scale,

wide variations in project contents and work flows, cumbersome tasks

difficult and sometimes counterproductive to divide, de-skill, or automate

[11]. Yet, Cusumano [11], Basili [3] and a number of other authors assert

that software development can no longer be regarded solely as an

organized art or craft activity.

"Job-shop or craft practices seem to have worked well in software
and no doubt proved essential in the early days of the industry,
when all products seemed new and changing, and when programs

remained small reflecting hardware limitations.as the industry
has evolved, loosely structured processes and craft organizations
have become inadequate to manage software..." [11]

The productivity of software development process has

increased only 3 to 8 percent per year for the last 30 years, while

price/ performance ratio of computing hardware has been decreasing about

20 percent a year [30a].

However, some studies comparing software industries in

several countries reveal some striking differences. The Price Waterhouse

study cited earlier reports average defects per thousand lines of code in

USA to be 10-50 versus 0.2 in Japan [38]. Several other researchers also

have found Japanese software as having higher productivity than U.S.

projects [12],[28].

All this points out two things. First, there is considerable

room for improvement in software development practices. Without a

more scientifically engineered methodology, it appears unlikely that all

the problems associated with software development process can be

overcome.

Two, the finding that Japanese software efforts show higher

productivity than U.S. projects implies that it is possible to improve

software productivity, which brings up the question - what techniques or

i 7

practices the Japanese employ and others do not, which make Japanese

software development comparatively more efficient.

Abernathy and Utterback [1] in their path-breaking work on

product and process innovation point out that significant productivity

gains result from process innovations. If the software development

process can be made more efficient, it is likely that not only will it result in

substantial productivity gains but also in more reliable products.

Thus, there is an urgent need to examine the process of

software development and develop tools, techniques and methodologies

that can make software development a more reliable and predictable

process.

Several authors including Freeman [14], Ince [19] and Macro

et al. [27] too argue that software industry is undergoing a paradigm shift

from craft form to a more automated and organized activity. A facet of

mass production does exist in software industry and that is the

prepackaged software product category for general applications. These are

characterized by a standard useability and functions. However, unlike

automobiles, application software usage is heavily dependent on user

requirements which cannot be reduced to standardized usages.

Since most software development projects are one of a kind

products, the software development process can be compared with new

3

product development process in other conventional products and may

therefore share its many characteristics. If this is so, then the principles

that govern success of new product development, should also be

applicable, at least to some extent, to software development.

2.1.3 Evolution of Software Development Methodologies

Software development focus has evolved from focus on the

project that is milestones and resource allocation concerns to focussing on

the product e.g reliability and maintenance issues to process that is

productivity, improved methods and models [3].

Predicting software reliability is very difficult.

Conventionally, software system reliability has been measured during the

development process which has severe limitations. In earlier software

development methodologies, all testing was concentrated in the final

stages of product development. Particularly in case of large software

systems, this made the procedure of bug-fixing very time consuming and

costly in terms of product delays. It has come to be realized that early

detection of faults saves costs and it is due to this realization that

prototyping and incremental type of software development practices have

come into being. However, incremental development is not new to the

industry; computer scientists have been urging it on the computer

industry since the early seventies with little success in getting it adopted

[36]. Brookes in his research paper "No Silver Bullet - Essence and

| ©

Accidents of Software Engineering”, has examined many research areas in

software engineering that have been claimed to have a great impact on

software productivity. Among those he thinks hold out any promise, are

prototyping and incremental development [10].

Complexity is also a major problem in design of large

software systems. Incremental development can not only address

problems of bug-fixing but those of complexity as well [4].

Prototyping is a technique for producing large software

systems that involves delivery of successive versions of a system,

eventually ending up with the final product. The prototyping approach

builds the system and redesigns an entirely new system based on all

problems reported in the prototype. Only parts of the prototype are

salvageable and most of the system prototype is thrown away. Ince [19] has

cited the following advantages of incremental development

"It enables a version of a system to be developed early on and act as
a partial prototype, thus, gaining many of the advantages associated
with prototyping. Second, it splits a software project into a series of
mini-projects that have the aim of delivering a small piece of
tractable software. Not only does this reduce the complexity of the
software to be delivered, but it also reduces the communicational
complexity of the project team."

20

2.2 Technical Review

2.1.1 Definition of Reuse

Webster's dictionary defines reuse as "to use again especially

after reclaiming or reprocessing" and reusability as "capable of being used

again or repeatedly" [47].

Kernighan [23] has defined reusability as ".... any way in

which previously written software can be used for a new purpose or to

avoid writing more software". In this view, a program is a component

and new programs can be constructed from existing ones. "Reusability is a

general engineering principle to avoid duplication and capture

commonality in undertaking classes of inherently similar tasks."

Freeman [14] has defined reuse as "any procedure that produces or helps

produce a system by using something from a previous development

effort". He has further defined reusable software engineering as software

engineering activities that both utilize existing information (reuse it) as

well as produce as a side effect information that could be reused in the

future. Further, the scope of reuse can be expanded beyond code-reuse to

include design, specifications, documentation, test plans etc.

2.2.2 Methodologies of Reuse

Reuse is increasingly being considered as a means to support

the construction of new programs using in a systematical way existing

~

designs, design fragments, program texts, documents or any other from of

program representation. The following two approaches of software reuse

have become an established practice:

I'ransitional Approach

n this approach programs are written in terms of abstract

specifications using domain-specific languages. The abstract program is

processed using a series of transformations to yield a program directed

towards one specific application.

Compositional Approach

In this approach, software components are used as building

blocks in the software construction process. Thus programs are constructed

using software components.

The transitional approach is more abstract and has to be built

into the system i.e. one has to plan for reuse and uses a more

intermediate, abstract component. Whereas the component or

compositional approach is based more on finding reuse of an existing

component. The first approach is similar to new product engineering

technique called Virtual Design and the second approach is akin to Group

Technology approach discussed in section 2.1.1.

DJ

My analysis deals with the second type of reuse called the

component approach as it has been found to be most promising one with

regard to its practicability and its use in short- and mid-term planning [35].

2.2.3 Software Reuse and Reliability

Systems are made of components. If identical components are

used in many kinds of systems, the repeated use or experience of using

components leads to the availability of component failure data. If the

reliabilities of components are known, then they can be used together with

the knowledge of the structure of the system, to compute the reliability

estimates for the whole system.

Reuse makes it possible to obtain better reliability estimates.

Literature cites that developers at IBM and Raytheon could achieve reuse

rates of 50% which resulted in an order of magnitude improvement in

software errors [21], [22], [46].

The advantage of reusable modules is that well-used

modules tend to be thoroughly tested and rarely give rise to errors. A

study conducted by two Stanford researchers Swanson and Leintz [39]

discovered that 21% of effort during maintenance arises from errors

committed during software production process. Thus, reuse can not only

save upfront costs of development by eliminating redundant tasks but also

23

in the post maintenance phase due to greater software reliability as errors

committed during development are reduced.

2.2.4 Software Engineering and Software Factory

To some extent, software development has come to be regarded as

an engineering process and hence the term software engineering.

Humphrey [18] has defined software engineering as the disciplined

application of engineering, scientific and mathematical principles,

methods and tools to the economic production of quality software. An

integrated project support environment (IPSE) or integrated software

development environment (IDSE) is referred to by some software experts

as the 'software factory. Thus, a software factory in the context of a

software development environment can be said to consist of a collection

of tools supporting different software development tasks which provides

an effective production environment for flexible and integrated

applications for the end-user.

2.2.5 Software Productivity Barrier and the Improvement Paradigm

The improvement paradigm requires an organization to

evolve a long-term, quality oriented, organizational life cycle mode [3].

Thus, the improvement paradigm is based upon the assumption that

software product needs directly affect the processes used to develop and

maintain the product. Among other things, the improvement paradigm

/ 4

requires a mechanism for storing experience so that it can be reused on

other projects. Thus, reuse orientation and improvement orientation of a

software development process are identical attributes, because

improvement is implicitly associated with learning and effective reuse can

occur only if a process is well understood; in other words, learning itself is

the process of accumulating and packaging experience so that it can be

used effectively. Systematic learning requires support for the off-line

recording or tailoring, and formalizing of experience. Systematic reuse

requires support for using experience. Thus both are complementary and

synonymous.

Traditionally, learning and reuse occurred through

individual efforts or by accident. Subroutine library and UNIX are two

most popular techniques of reuse. Spreadsheets and file packages are

examples of reuse which are widespread even amongst the users.

Basili [3] has proposed a reuse-oriented improvement model

of software development process called the experience factory. The

experience factory requires explicit formal mechanisms for capturing,

validating and sorting and retrieving the data. An organizational

orientation not project is a basic pre-requisite [42]. This process requires

the software development organization to be now two sets - project

organization that focuses on immediate customer needs and meeting time

and cost targets and the experience organization that focuses on learning

and reuse.

28

Chapter 3

Hypotheses Formulation

3.1 Research Questions

Basili et al. [4] and Boehm [8] have observed "we have been

slow in building models of products and processes and people for software

engineering even though we have such models for other engineering

disciplines". Boehm [8] has further asserted that "the biggest gains in

software productivity will come from increased levels of software reuse".

That these issues are considered critical, is reflected in the development of

tools and techniques like CASE, domain analysis, UNIX based

programming and object oriented software. Japanese companies have been

most successful in standardizing and automating the software

development process. However, these practices remain isolated within

firms and have not diffused widely in the industry.

Exhaustive literature review has not yielded any instances

where an actual economic assessment of reuse trade-offs at organizational

level has been made. Most works discuss the methodology and

development of specific techniques relating to a particular category of

development environment (UNIX, Ada, CASE etc.). Several case studies

investigating specific aspects of reuse have been reported, but there are no

models to analyze reuse at an organizational or project level. None of the

widely accepted models (COCOMO, Putnam, Walston and Felix, SDC) for

assessing software effort, costs, productivity or reliability incorporate

26

reuse as one of the factors influencing effort and costs [31]. Many models

have additional features to allow for code-reuse. However, such features

are less well founded theoretically and less validated than the main parts

of the model, according to Kitchenham [24]. Only Londeix [24a] gives an

equation only to determine level of code reuse. The formula again takes

into account only code-reuse excluding, many other promising aspects of

reuse namely specification reuse, design reuse and people reuse. Gaffney

and Durek have evolved some quantitative models for software reuse,

but they do not give any empirical evidence to support the models [15].

Barnes and Bollinger [2] too discuss some analytic approaches for making

reuse cost effective, yet again none of them are applicable to the data-set. In

absence of well proven direct measurement parameters, I examine the

variables in the data-set (on which Cusumano and Kemerer [12] findings

are based) indirectly to search for preliminary evidence of impact of reuse

on software project costs, effort, productivity and reliability. On the basis

of the discussion in the preceding chapters on several aspects of reuse in

software development, the following proposition can be put forth that

software reuse :-

has significant impact on software productivity by reducing

development and overall life cycle costs (development and post

maintenance)

shiortens the development cycle

improves overall quality and reliability during the software life-

cvcle.

3.2 Hypotheses

Software reuse can encompass product specifications and

design, executable code, tools, methods, documentation and manuals, test

cases and personnel experience. For the purpose of this study, scope of

reuse has been limited to design and code reuse only.

[f software reuse has a significant impact on productivity and

renability, then the following propositions should hold

Reuse should reduce the total development ume

Reuse should reduce the total development time per unit of

output of a software product (Software output or productivity is measured

in number of source lines of code produced per man-month). Reuse may

also have some impact on the time taken during each of the three stages of

development, namely design, coding and testing.

Reuse improves the reliability of the system

if reuse improves the reliability of the software product then,

it implies that reuse has an impact on post maintenance requirement.

28

The following parameters are assumed to have an impact on post-

maintenance costs.

a. total number of faults reported within sixty months of software

product release. It is assumed for the purpose of this study, that

software would have stabilized during this time and any errors that

occur thereafter are negligible.

b. average annual maintenance costs as a proportion of total project

-—
A1 P.

c. average annual maintenance effort measured in man-years

3.3 Data Segmentauoun

Several environmental characteristics and inherent product

characteristics are known to influence software development. Therefore,

the data will be segmented by the following characteristics to see if there is

any difference in patterns due to software reuse.

3.3.1 Country of Origin

Several researchers have already established that Japanese

software projects on an average show higher productivity than the U.S.

20

projects. Therefore, it seems logical to separate data into two populations

of projects, namely:

a. Japan and

bh. (JS

3.3.2 Size of Software Projects (measured in lines of code)

It is an established fact that as software projects grow in size

complexity increases more than proportionately. System dynamics theory

also supports this. The usual measure of software size is in terms of source

code statements. According to Macro and Buston [27], software projects

can be classified in terms of size as follows:

siltatl software systems

medium size software

ess than 2000 lines of source code

2000 - 100,000 lines of source code

systems

lai ze size software systems

super large size software

: 100k - 1000k lines of source code

> over 1000k lines of source code

systems

30)

3.3.3 Type of Software Projects

Convention says that system software development is more

difficult and complex than application software development. Therefore,

the data was segregated by type of software to see if the effect of reuse was

different in the two cases:

A. A pplication software and

Hy system software

3.3.4 Extent ot Keuse

Some software researchers that include Biggerstaff and

Richter [6] point out that reuse requires a critical mass of components

before it can really payoff. Thus, the separation of data by extent of reuse is

to determine if there exists an optimum below which reuse is inefficient.

The categorization by degree of reuse as given by Selby [37a] is adapted as

follows:

Complete reuse

Reuse with some revision

Reuse with major revision

Little or no reuse

= > 90 % reuse

= 75-90% reuse

= 25-75 % reuse

= < 25 % reuse

“

3.3.5 Product Support Environment

Since reuse requires codification of knowledge and high

degree of automation, use of support tools was investigated to find out if

use of tools was related to degree of reuse. Boehm's [8] definition of the

degree of automation and support tool usage with some abridgement is as

follows:

Levels of a Product Support Environment

L. Very Low

2. LOW

3. High

l.. 7 @] Software Tool

Assembler, Basic Linker, Batch Debug
Aids, Language-dependent Monitor

Macro Assembler, Simple Overlay Linker,
High-level Language Compiler, Language
independent Monitor, Batch Source
Editor, Basic Library Aids, Basic Database
Aids.

Virtual Memory Operating System,
Database Design Aid, Simple Program
Design Language, Performance
Measurement and Analysis Aids,

Programming Support Library with Basic
Aids, Set Use Analyzer, Program Flow
and Test Case Analyzer, Basic Test Editor

and Manager.

3)

4. Very High Full Programming Support Library,
Integrated Documentation System, Project
Control System, Requirements
Specification and Language Analyzer,
Extended Design Tools, Automated

Verification System, Special Purpose
Tools like Cross-compilers, Instruction

Set Simulators, Display Formatters,
Communication Processing Tools, Data-
entry Control Tools, Conversion Aids etc.

33

Chapter 4

Data Analysis, Findings and Inferences

4.1 Data Analysis

A number of parametric and non-parametric tests, using

SYSTAT! package were tried on the sample to test the hypotheses put

forth in the previous chapter, but they failed to reveal any conclusive

evidence. Because of small number of observations, the data set could not

be subjected to separate tests on the basis of segmentation given in section

3 p;

SYSTAT package, the software used to analyze the data, relies on

asymptotic theory for calculating p-values which are valid only if the

sample sizes are reasonably large and well balanced across the data. For

small, sparse, skewed, or heavily tied data, the asymptotic theory

sometimes may not be valid. Our data size indeed was small, had a

number of missing values and a large range of values. Therefore, the tests

were repeated using another statistical package, SYSEXACT?2. This package

has been designed for similar samples and yields more accurate results.

The statistical findings are reported in the following section. Further

l.SYSTAT is a widely used statistical package available on Apple Macintosh computers
and PCs.

2, SYSEXACT is a package developed by Professors Cyrus Mehta and Nitin Patel of
Harvard University . This package has been designed for similar samples and yields more
accurate results as the p-values and Confidence intervals are calulated by permutational
methods.

3

analysis was limited to testing those relationships wherever, there was

some likelihood of improving the test result obtained form SYSTAT

analysis. These test results are discussed in the following section and the

detailed test results are reported in Appendix C.

35

4.2 Findings

4.2.1 Productivity and Code Reuse

5000
-

L

4000

s

<d 3000

x}

Ee)
2000

LOOO

20 40 60 80 100
ou

Level of code reuse

Legend: x-axis -

y-axis

Level of code reuse is represented as a percentage of total code in
the new project reused from previous developments.

Productivity is expressed as Fortran equivalent lines of code
sroduced per manmonth.

As shown in the graph, productivity measured in Fortran

equivalent source lines of code (FELOC) when plotted against code reuse

does not seem to have any pattern, even after removing some outliers.

386

However, since earlier research findings had revealed a significant

relationship between the two, further tests were conducted.

The relationship between productivity and code reuse was

again analyzed using the Linear-by-Linear test defined by Larry Goodmans.

Since the values of the two variables could be ranked, the Goodman test is

more powerful than Pearson's Chi-square test. It does show a significant

relationship between productivity and code reuse. The two sided

probability of the test was 0.019 which implies that 99% of the time there is

a significant relationship (for details see Appendix C). This only confirms

the findings of Cusumano and Kemerer [12].

3. Larry Goodman, Simple models for the analysis of association in cross classifications
having ordered categories, JASA 74:537-552, 1979

<

4.2.2 Productivity and Design Reuse

grein. 5000 po
Le]

4000

»y
)
YY, 3000

o

Fd
7) 2000

1000

1

oT)

C
9)

—— — ——

20 40 60 80 100

Level of design reuse

Legend: x-axis -

y-axis -

Level of design reuse is represented as a percentage of total design
in the new project reused from previous developments.

Productivity is expressed as Fortran equivalent lines of code
oroduced per manmonth.

As shown in the plot, there does not seem to be any

relationship between productivity and design reuse. However, the same

tests as were conducted in case of productivity and code reuse, were

repeated on the two variables, but I did not find any significant

relationship.

38

4.2.3 Design or Code Reuse and Size of Software Project

100

80J
be
3
9
 uy

.

wd

60

410
=,
3

1
Y
»

3
wd

20

J aL ae = 1 a = 1 s] i

100 200 300 400 500

Size of software project (FEKLOC)

Legend: x-axis - Size of software project is measured in Fortran equivalent thousand
lines of code or FEKLOC.

y-axis Level of design reuse is represented as a percentage of total design
n the new project reused from previous developments.

30

J
m
o
o
od

4
-

na?

sirI

80

60

4(
+!
9

1
*

u
1

2C

"

“

LJ 3 4

Size of software project (categorized)

Legend: x-axis -

y-axis

1 = small software projects 2 = medium size software projects
3 = large size software projects 4 = very large size software projects

Level of design reuse is represented as a percentage of total design
n the new project reused from previous developments.

 |

0

80
J
i]
3
0
a

60

1

H
ls}

-
M

I
i|

40

20

At

Size of software project(categorized)

Legend: x-axis - 1 = small software projects 2 = medium size software projects
3 = large size software projects 4 = very large size software projects

J-axis revel of code reuse is represented as a percentage of total code
n the new project reused from previous developments.

2

In
 ud

/

+

r

=

on
0

7 J wh

Size of software project (categorized)

Legend: x-axis - 1 = small software projects
3 = large size software projects

y-axis - 1 = Little or no reuse

3 = Reuse with some revision

2 = medium size software projects
4 = very large size software projects

2 = Reuse with major revision
4 = Complete reuse

No significant relationship was found here. Even categorization of data by

size of software project and degree of reuse did not change results either

for design or code reuse. As is evident within each category, a wide

variation is observed.

1 /

4.2.4 Design or Code Reuse and Type of Software Project

No significant relationship was observed either between software

type and design reuse or software type and code reuse after performing

Pearson's Chi-square test. After categorization, as discussed in section on

data segmentation, Kruskal-Wallis test too did not reveal any significant

results.

4.2.5 Annual Maintenance Costs and Design or Code Reuse

Marginal relationship was found between annual

maintenance costs and design reuse without categorization, at 90%

confidence level with Linear-by-Linear test. The results did not improve

after categorization. For code reuse, no significant results could be

obtained.

4.2.6 Total Faults Observed and Design or Code Reuse

No significant relationship with either code or design reuse

was evident. Tests with categorization as well as continuous data, were

tried but there was no change in the results.

43

4.2.7 Total Faults Observed and Versions Released

Fisher-Exact test did not reveal any significance. However, if

Linear by Linear test is applied, since the values are ordered, a significant

relationship at 95% confidence level was observed.

Py
3]
[xg 4

~

3
J 3

2

~
3
“4

1

-y
x
IS)
0
Jf

'.

Tl
J 5 10 15

3

20

Versions released

Legend: x-axis -

y-axis

lhe number of versions of software released after initial product
release.

-otal number of faults observed per Fortran equivalent thousand
ines of code within 60 months of product release.

12

4.3 Inferences

Though, no significant statistical results could be obtained, it

does not mean that the hypotheses are invalid. The failure can be

attributed to the small size of the data, number of missing values which

reduced the test set further and wide variations in values. As identified in

section 3.3, there are a number of factors that can influence the

relationships. Many of these factors are also interactive. For example both

country of origin and size of software project affect the degree of reuse. It

becomes extremely difficult to isolate the effect of each individual

parameter, particularly when the number of observations is so small. To

illustrate, Japanese software projects on an average have shown higher

levels of code reuse. But for all Japanese projects if one tries to investigate

further, whether reuse was related to size or type, then the number of

observations for each category of size becomes so small that it renders any

statistical measurement futile. A number of missing values exacerbate the

problem further.

The hypotheses have been based on valid assumptions that

are borne out by literature review, and I am confident that with a larger

data set, the exercise if repeated could yield more meaningful results.

15

Chapter 5

Barriers to Reuse

Reuse has been called the fundamental issue in the software

development improvement paradigm. Several authors that include Tracz

[43], [44], Basili and Torii [4a] have said that the factors that support reuse

are not only technical but managerial and cultural as well. Biggerstaff and

Richter [6] observe that "technologists are confounded because reusability

is a multi-organization problem and requires a critical mass of

components before it can really payoff". Even if new techniques that

promote reuse are implemented, motivating people to reuse will require

different set of incentives.

5.1 Urganizational Issues

Technical challenges of reusability are tightly interlinked

with organizational issues and it is difficult to separate the two [25] [41]. Co-

operation is thus essential for reuse. Sharing across projects is only

possible if there exists a portable library of reusable components. Ease of

portability is an important fact in promoting reuse which brings up the

issues of standardization of information representation format,

documentation, methods of library organization and classification.

Therefore in order to promote reuse, it is necessary to introduce formal

methods for capture or recording, storage and retrieval of components as

they are produced. A number of software experts, Lee [26] and Rossack et

1A

al . [35] further say that software development should be organized

around the notion of reuse. Cusumano [11] points out that leading

Japanese companies have achieved this organizational capability. Tajima

and Matsubara [40] in one such study of Japanese companies found that

software reuse is taught as a part of the training process and programmers

are required to take exercises that involve referencing the library of

reusable components in order to complete the task with minimum effort.

Kaiser and Garlan [21],[22] affirm that reusability has to be

built in from the start in order to increase the pay-off. This requires a

change in the present structure of software organizations. Separating the

present product development organization into a component

development group and a product development group will enable the

development paradigm to migrate from design-by-reuse to design-for-

reuse.

5.2 Motivational Issues

Reuse requires codification of knowledge. When the primary

concern of the project manger is to meet his time schedule within the

budget constraints, there is no incentive for the project manager to expend

extra effort on proper documentation and recording. Therefore as reuse

becomes more common or for that matter, in order to promote reuse,

different costing procedures will have to be used. The effort expended in

making any development work reusable could be treated as a corporate

+

overhead and the project that generates reusable components could be

paid a premium. Measures for estimating investment of resources in

making design reusable versus savings associated with reuse will also

have to be evolved. It will also require maintaining an inventory system

for identifying components that are more reusable than others.

5.3 Cultural Issues

The issues that generally confront people when they try to

reuse existing software components are - is the existing component

modifiable for my application; does the component do exactly what the

documentation implies; and can it create interface problems for my other

modules. Software developers are considered highly creative individuals.

They prefer to write new programs and develop new code but dislike the

maintenance work. Not only this, programmers do not have trust in

reusable components. With such attitudes prevailing, it is difficult for a

software development organization to promote reuse which essentially

involves understanding someone else's work and modifying it.

5.4 Contractual Issues

Reuse has legal implications too; who owns the rights over a

piece of code that has been paid for by a customer; since the developer

always maintains a copy of the development work what is to prevent him

from using it for other contracts. Should the original contractor for

13

software development demand a reimbursement. In my opinion, as reuse

becomes a common practice, every contractor will benefit from reused

components and ultimately the savings realized by developers in a free

market mechanism will be passed on to the contractors. Another

complication arises from pricing problem. For example, if companies

designing just software components emerge, then on what basis can they

determine the price of a component, particularly when the demand is not

known; should the sales contract allow a software designer one time use

only and inhibit multiple uses of the same component, unless the buyer

pays every time he uses the component or should there only be a base

price. If there is a base price without limitations to the number of uses,

then this base price is likely to be so high as to inhibit widespread use.

However, if the buyer contracts to pay per use, then the problem of

monitoring arises. The part could be so embedded in the system, that it

cannot be seen. Moreover, if a value added chain emerges, with each

software developer adding something and passing on to another

developer who adds more components and customizes the system for

another application, it would render the price fixing mechanism very

complicated.

Even if pricing problems were resolved, copyright and patent

laws will need adjustments to resolve the issues of relicensing when

software changed hands.

40.

Chapter 6

Issues for Further Investigation

While limiting its scope to a primary analysis of software

development practices, this study has concentrated on design-by-reuse and

has not looked at other aspects of reuse like design-for-reuse. It has also

not addressed the issues of when and how software reuse should be

implemented; what is the appropriate scale of components to be reused;

essentially are there any scale effects in the extent of reuse. Questions like

did the design method only promote reuse of the existing components; or

did it also yield reusable components as a by product; have not been

investigated. Nor have I investigated the different design practices that

have been followed in different companies to promote reuse.

Although, the data analysis provides only a feeble support for

reuse, the analysis is at best only a preliminary investigation. Finer

detailed analysis of various aspects of reuse is required. However two

conditions are an essential prerequisite - Reliable Metrics and In situ

studies.

Despite numerous references, I could not find any well

proven metrics that provide a basis for determining whether reuse is

feasible and under what conditions. Metrics to measure cost savings at

50

component level for deciding whether it is cost-effective to reuse or to

build anew have not yet been defined. Similarly there are no measures for

estimating the effort needed to adapt a software component. For the

purpose of this study, I could not find any software estimation models that

included reuse as one of the measures. Research is therefore, required in

this area, to determine metrics for measuring degree of reusability; for

establishing quality of components other than complete system. Well

established models for determining software development costs and

efforts need to be modified to incorporate reuse as an influencing

parameter.

The data set used in my analysis is only approximate. It is also

post facto , so that a degree of inaccuracy may have crept in because one

has to rely on organizational memory. If data are collected during work-in-

progress, a better understanding and more accurate picture is likely to

emerge.

Finally, in order to prove any theory or hypothesis, it is

necessary to test it over a large sample. In the present case, the data-set was

not sufficiently large to have permitted a rigorous testing of the

hypotheses.

Since reuse is influenced by so many non-technical factors, a

comprehensive study of reusability in future, should involve besides

computer science, the social science disciplines like psychology and

organizational behavior and economics. A reuse market has already

emerged in case of personal computers. Most of it can be attributed to the

degree of standardization that has been achieved in hardware, software

and user interfaces. Standardization in software engineering practices at

inter-company and international level will enable greater reuse in

software development for other computing environments, also.

Therefore, a study of standardization aspects should also be an issue in any

further research in reuse.

59

Appendix A

The data sample was originally collected for a study conducted by
Professors Michael A. Cusumano and Chris F. Kemerer, at the Sloan
School of Management during 1988-89, with the assistance of Kent
Wallgren, who did a master's thesis based on this data. Initial results of
the analysis were published by Cusumano and Kemerer in the journal,
Management Science. For complete reference, please see Appendix D,
reference No. 12 on page 63 of this document.

Companies and Product Areas Included in the Study

UNITED STATES

Amdahl

Amdahl

AT&T Bell Laboratories

AT&T Bell Laboratories

AT&T Bell Laboratories

Bell Communication Research

Bell Communication Research

Computervision
Computervision
Computervision
Financial Planning Technologies
Harris Corporation
Hewlett-Packard

Hewlett-Packard/ Yokogawa
Honeywell
Hughes Aircraft

International Business Machines

[International Business Machines

Unisys

Engineering Software
Product Software

Communication Database

Switching
Transaction Processing
Applications
Software Technology &Systems
Computer-Aided Manufacturing
Drafting
Research and Development

Planning Systems
Government Support Systems
Medical Division

Medical Products

Corporate Systems
Communications & Data

Processing
Basic Systems Software

Systems Integration Division
Computer Systems

51

Companies and Product Areas Included in the Study (contd..)

[APAN
Fujitsu
Fujitsu
Fujitsu
Hitachi

Hitachi

Hitachi Software Engineering
Hitachi Software Engineering
Hitachi

Kozo Kaikaku

Mitsubishi Electric

Mitsubishi Electric

Mitsubishi Electric

Nippon Business Consultant

Nippon Electronic Development
Nippon Electronics Development
Nippon Systemware
Nippon Telegraph & Telephone
Nippon Telegraph & Telephone
Nippon Telegraph & Telephone

Applications Software
Basic Software

Communication Software

Applications Software
Basic Software

Financial Systems

Operating Systems
Switching Software
Computer-Aided Design
Communications Software

Power & Industrial System
Software

Systems Software
Systems Software
Communication Systems
Information Service Systems
System Software
Applications
Network Systems
System Software

~ 4

Appendix B

Data Description

The data sample, whose description is given below, was originally
collected for a study conducted by Professors Michael A. Cusumano and
Chris F. Kemerer, at the Sloan School of Management during 1988-89,
with the assistance of Kent Wallgren, who did a master's thesis based on
it. Initial results of the analysis were published by Cusumano and Kemerer
in the journal, Management Science. For complete reference, please see
Appendix D, reference No. 12 on page 63 of this document.

Country of Origin

The survey covered projects from the United States and

Japan. Country of origin indicates whether the project was developed by a
Japanese company or an American firm.

Size of Software

Lines of source code or source code statements is a traditional

method of denoting size of a software system. For the purpose of this

study, the size has been measured in terms of Fortran equivalent lines of

code. Wherever the software coding language was other than Fortran, it

was converted into equivalent lines of source code as if the software had

been written using Fortran language.

Software Type

Many researchers have attempted to define and measure

software complexity on a scientific basis, but at present there is no

definitive and accepted method for measuring software complexity.
Boehm [8] and some others [27] have advanced some models for

measurement which are inapplicable to the data-set being used. In absence

of a definite measure, for the purpose of this study, the following

55

simplification seems reasonable. It is generally accepted that system
software is more difficult to write than application software. Therefore,

we put application software projects as having low complexity and system
software projects as having high complexity. Software projects that are a

combination of application and system type are assumed to have an

intermediate level of complexity.

Code Keuse

This has been measured in terms of the proportion of the

total code of the project that was used from a pre-existing development.

Design Reuse

This has been measured in terms of proportion of total

design of the project that was used from a previous project(s). Note that

although coding phase follows design phase in the development cycle,
design reuse does not necessarily imply code-reuse.

Development Time

This is the sum of effort required in each phase of the

development cycle including design, coding and testing phases. It is
generally understood that the proportions of work involved in the three

principal phases of the software life-cycle are approximately:

Design
Coding
Testing

35-40%
15-20%

35-409%

The total project effort has been measured in number of man-years which

is an acceptable way of denoting effort in software.

5A

Percentage of Design Time

This is the proportion of total project effort that was spent in

the design activity

Percentage of Coding Time

This is the proportion of total project effort that was spent in

the coding activity

Percentage of Testing Time

This is the proportion of total project effort that was spent in
the testing activitv.

Software Productivity

Number of source code lines produced per man-month is an

accepted measure of productivity for software projects. This figure has
been obtained by dividing the software size (measured in thousand lines

of source code) by total man-months of project effort obtained by

multiplying the total development effort by the number of months in a

year.

Quality Ranking

Reusability of software was listed as one of the eleven quality

factors or attributes which the project managers were asked to rank in

order of importance applicable to their facility or product division.

Versions Released

This indicates the number of software versions that were

produced for a particular product. A version is defined as changes in the

~

software product due to a change in the system requirement [4]. The

change in requirements can be either user-initiated or maybe due to

incremental development of software or for error correction.

Average Annual Maintenance Cost

Maintenance costs are significant for software products. The

point has been emphasized several times in earlier chapters. The annual
maintenance cost has been measured as a proportion of the total project

development costs.

Average Product Maintenance

This is another measure of the reliability of software. Here

average product maintenance effort has been used as an indicator of

robustness of the software product.

Average Product Enhancements

This denotes average effort in many years spent on making

enhancements in the product.

Percentage of Maintenance /Enhancement by Original Staff

This denotes the people reuse aspect by observing what
percentage of the original staff that was involved in development, also
performed maintenance and enhancement activities.

Total Faults Observed

Managers were asked to indicate the number of faults

observed up to five years from the date of product release. The faults have

been normalized for different software sizes by dividing the total number

of faults observed by thousand lines of code.

58

Appendix C

Results of Statistical Tests

Results of Productivity and Code Reuse

LINEAR-BY-LINEAR ASSOCIATION TEST

Statistics based on the observed 4 by 37 table (x):
Mean Std-dev ~~ Observed(LL(x)) Standardized

(LL*(x))
0.1175E+05 6674. 0.2741E+05 2.346

Asymptotic p-values:
One-sided: Pr { LL*(X) .GE. 2.346} =
Two-sided: 2 * One-sided =

0.0095
0.0190

Monte Carlo p-value estimates at 99.00% level of confidence:
One-sided: Pr { Test Statistic .GE. Observed } = 0.0

Cl: (0.0, 0.0012)
Two-sided: Pr { [Test Statistic - Mean|.GE. |Observed - Mean| }

me 0.0262
0.0119

MESSAGE: Casefile of 34 observations read

Results of Productivity and Design Reuse

PEARSON CHI-SQUARED TEST

Statistic based on the observed 16 by 34 table (x):
CH(x) = Pearson Chi-squared statistic = 510.0

Asymptotic p-value:
(based on Chi-squared distribution with 495 df)

Sr ¢ CH(X) .GE. 510.0 }= 0.31 vO

20

LINEAR-BY-LINEAR ASSOCIATION TEST

Statistics based on the observed 16 by 34 table (x):
Mean Std-dev Observed(LL(x)) Standardized

(LL*(x))
0.8741E+06 0.2417E+06 0.1056E+07 0.7536

Asymptotic p-values:
One-sided: Pr { LL*(X) .GE. 0.7536} =

Two-sided: 2 * One-sided =

0.2255
0.4511

Monte Carlo p-value estimates at 99.00% level of confidence:
One-sided: Pr { Test Statistic .GE. Observed } = 0.2442

0.0175
Two-sided: Pr { |Test Statistic - Mean| .GE. [Observed - Mean| }

= 0.4820

0.0449

MESSAGE: Casefile of 34 observations read

Results of Annual Maintenance Costs as % of Project Costs and Design
Reuse

LINEAR-BY-LINEAR ASSOCIATION TEST

Statistics based on the observed 11 by
Mean Std-dev Observed(LL(x))

187.1 79.82 391.9

26 table (x):
Standardized(LL*(x))

2 566

Asymptotic p-values:
One-sided: Pr { LL*(X) .GE. 2.566} = 0.0051
Two-sided: 2 * One-sided = 0.0103

Monte Carlo p-value estimates at 99.00% level of confidence:
One-sided: Pr { Test Statistic .GE. Observed } = 0.0

Cl: (0.0, 0.0023)

30

Two-sided: Pr { |Test Statistic - Mean| .GE. |Observed - Mean| }
= 0.0505

1.0230

Results of Total Faults Observed and Versions Released

PEARSON CHI-SQUARED TEST

Statistic based on the observed 4 by 34 table (x):
CH(x) = Pearson Chi-squared statistic = 102.0

Asymptotic p-value:
(based on Chi-squared distribution with 99 df)

Pri CH(X) .GE. 102.0 }= 0 3981

LINEAR-BY-LINEAR ASSOCIATION TEST

Statistics based on the observed 4 by 34 table (x):
Mean Std-dev ~~ Observed(LL(x)) Standardized

(LL™(x))
0.2035E+05 6989. 0.2621E+05 0.8375

Asymptotic p-values:
One-sided: Pr { LL*(X) .GE. 0.8375} = 0.2012
Two-sided: 2 * One-sided = 0.4023

Monte Carlo p-value estimates at 99.00% level of confidence:
One-sided: Pr { Test Statistic .GE. Observed } = 0.2045

0.0164
Two-sided: Pr { [Test Statistic - Mean| .GE. |Observed - Mean| }

= 0.3930

0.0417

 B |

Appendix D

Selected Bibliography and References

Abernathy, William J. and James M. Utterback, "Patterns of Industrial

Innovation," Technology Review, June/July 1978, pp. 41-47.

Barnes, Bruce H. and Terry B. Bollinger, "Making Reuse Cost-
Effective," IEEE Software, January 1991, pp. 13-24.

Basili, Victor R. "Software Development: A Paradigm for the Future,’

Proceedings of the Thirteenth Annual International Computer
Software & Applications Conference, The Computer Society Press of
[EEE, 1989, pp. 471-482.

Basili, V. R. and A. J. Turner, "Iterative Product Enhancement: A

Practical Technique for Software Development," IEEE Transactions of

Software Engineering, Vol. SE-1, No. 4, December, 1975, pp. 34-45.

4a. Basili, V. R. and Koji Torii, in First International Workshop on

Software Quality Improvement, The Computer Society Press of
IEEE, 1989, pp. 487.

Biggerstaff, TJ. et al. "Forward: Special Issue on Software Reusability,"
IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,

September 1984, pp. 474-476.

5

7

Biggerstaff, T. J. and C. Richter, "Reusability Framework, Assessment

and Directions," Tracz Will (Ed.) Tutorial: Software Reuse: Emerging
Technology, The Computer Society Press of IEEE, 1988, pp. 3-11.

Blum, B. I. "ACM SIGSOFT Software Engineering Notes," Vol. 7, No.

4,1982, pp. 56-61.

a2

2 Boehm, B. W. Software Engineering Economics, Prentice-Hall, NJ,
1981.

Bollinger, T. B. and S. L. Pfleeger, "Economics of Reuse: Issues and

Alternatives", Information and Software Technology, Vol. 32, No. 10,
December 1990, pp. 643-652.

10. Brookes, F. P. Jr. "No Silver Bullet - Essence and Accidents of Software

Engineering," IEEE Computer, April 1987, pp. 10-19.

1 Cusumano, Michael A. Japan's Software Factories : A Challenge to

U.S. Management, Oxford University Press, New York, 1991, pp. 8, 11.

[2. Cusumano, Michael A. and Chris F. Kemerer, "A Quantitative Model

of the U.S. and Japanese Practice and Performance in Software

Development,” Management Science, Vol. 36, No. 11, November 1990,
pp. 1384-1405.

13. Dusink, Liesbeth and Patrick Hall (Eds.) Software Reuse, Utrecht

1989, Proceedings of the Software Re-use Workshop, 23-24 November

1989, Utrecht, Netherlands, Springer-Verlag, New York, 1989.

14. Freeman, Peter (Ed.) Tutorial: Software Reusability, The Computer
Society Press of IEEE, 1987.

15. Gaffney, John E. and Thomas F. Durek, "Software Reuse - Key to

Enhanced Productivity; Some Quantitative Models," Paper presented
at 27th Annual Technical Symposium of the ACM, Washington, DC,
June 1988.

16. Gautier, R. J. and P. J. L. Wallis (Eds.), Software Reuse with Ada,

Peter Peregrinus Ltd., London, U.K., 1990.

A

17. Hooper, J. W. "Perspectives of Software Reuse," Report for Sep 88 - Jan

89, Report No. ASQBG-I-89-025, Alabama University.

18. Humphrey, Watts Managing the Software Process, Addison-Wesley,
MA, 1988.

19. Ince, Darrel Software Development: Fashioning the Baroque, Oxford
Science Publications, New York, 1988, pp. 152.

20. Jones, T. C. "Reusability in Programming: A Survey of the State of the

Art," IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,

September 1984, pp. 488-495.

21. Kaiser, G. E. and D. Garlan "Software Reuse through Building Blocks,"

IEEE Software, July 1987, pp. 17-24.

22. Kaiser, Gail E. and D. Garlan (Eds.) Tutorial on Software Reuse-

Emerging Technology, The Computer Society Press of IEEE, 1988.

23. Kernighan, B. W. "The UNIX System and Software Reusability," IEEE

Transactions on Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 513-518.

24. Kitchenham, B. A. "Measuring Software Development,” in Paul

Rooks (Ed.) Software Reliability Handbook, Elsevier Applied Science,
New York, 1990, pp. 303-331.

24a.Kitchenham, B. A. and Bernard de Neumann, Cost Modelling and

Estimation," Paul Rooks (Ed.) Software Reliability Handbook,
Elsevier Applied Science, New York, 1990, pp. 333-376.

25. Lanegran, R. G. et al. "Software Engineering with Reusable Designs

and Code," IEEE Transactions on Software Engineering, Vol. SE-10,

No. 5, September 1984, pp. 495-501.

ag|

26. Lee, Hing-Yan "Towards Design Reuse in CASE Tools," Paper
presented in CASE '90.

27. Macro, Allen and John Baxton, The Craft of Software Engineering,

Addison-Wesley, MA, 1987.

28. Matsumoto, Yoshihiro "Some Experiences in Promoting Reusable
Software: Presentation in Higher Abstract Levels," IEEE Transactions

on Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 502-
513.

29. Mclllroy, M. D. "Mass Produced Software Components," P. Naur, B.

Randell and N. J. Buxton (Eds.), Proceedings of 1969 NATO

Conference on Software Engineering, Petrocelli/Charter, New York,

1969, pp. 88-98.

30. Moad, Jeff "Cultural Barriers Slow Reusability," Datamation, Vol. 35,
No. 22, November 15, 1989, pp. 87-90.

30a.Morrisey, J. and L. Wu, "Software Engineering: An Economic
Perspective," Proceedings of the 4th International Conference on

Software Engineering, The Computer Society Press of IEEE, 1979,
pp- 412-422.

31. Rook, Paul(Ed.) Software Reliability Handbook, Elsevier Science
Publishing, New York, 1990.

32. Roos, Daniel et al. The Machine that Changed the World, Harper

Collins, New York, 1991, pp. 21-47.

33. Rossack, Wilhelm "Reuse of Software Components: Alternatives in

Characteristics, Organization and Tool support," Paper presented in
CASE '90.

55.

34. Rossack, W. and R. T. Mittermeir "Structuring Software Archives for

Reusability," M. H. Hamza (Ed.), Proceedings of the IASTED

International Symposium of Applied Informatics -Al '87, Acta Press,

CA, 1987, pp. 157-160.

35. Rossack, Wilhelm, Roland Mittermeir and Elke Hochmuller, "Reuse

of Software-Components: Alternatives in Characteristics, Organization
and Tool Support," Paper Presented in CASE '90.

36. Ruston R. (Ed.) et al. "Top Down Programming Large Systems,"

Debugging Techniques in Large Systems, Prentice Hall, NJ, 1971.

37. Sanderson, S. W. "Design for Manufacture in an Environment of

Continuous Change," to appear in Gerald Susman (Ed.) Design for

Manufacture, Oxford University Press, forthcoming. Also Sanderson,
S. W. "Cost Models for Evaluating Virtual Design Strategies in

Multicycle Product Families,” to appear in Journal of Engineering and

Technology Management, forthcoming.

37a.Selby, Richard W. "Empirically Analyzing Software Reuse in a
Production Environment," Tracz Will (Ed.) Tutorial: Software

Reuse: Emerging Technology, The Computer Society Press of IEEE,
1988, pp. 176-189.

38. Software Quality Standards: The Costs and Benefits, A Review for the

Department of Trade and Industry, U.K., Price Waterhouse, 1988.

39. Swanson, B. and B. Lientz quoted in Darrel Ince, Software

Development: Fashioning the Baroque, Oxford Science Publications,
New York, 1988, pp. 5-7.

40. Tajima D. & T. Matsubara "Inside the Japanese Software Industry,"

IEEE Computer, March 1984, pp. 34-43.

~ RA

41 Teixeira, M. M. R. and F. R. D.Velasco "Tool for Aiding in the Reuse

of Software," Report No. INPE - 498 - PRE/1545, NASA, Washington,

DC, October 1989.

42. Thomson, Ronnie "Component Understanding within the Software
Reuse Process," Paper presented in CASE '90.

43. Tracz, Will "Software Reuse: Motivators and Inhibitors, " Will Tracz

(Ed.) Tutorial: Software Reuse: Emerging Technology, The Computer
Society Press of IEEE, 1988, pp. 62-67.

44. Tracz, Will (Ed.) Tutorial: Software Reuse: Emerging Technology,

The Computer Society Press of IEEE, 1988.

45. Vesey, John T. "The New Competitors: They Think in Terms of

‘Speed to Market," Academy of Management Executive, Vol 5., No. 2,
1991, pp. 23-33.

46. Ward, Michael Software that Works, Academic Press Inc., CA, 1990.

47. Webster's New Collegiate Dictionary, Merriam Co., MA, 1990.

a7

