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ABSTRACT

The introduction of expert systems as decision aids in decisionmaking organizations will
modify their performance. First, a model of symbolic computation with fuzzy logic, using
Predicate Transition Nets, is presented. The basic operators AND, OR, and NOT are then
used to model the most common kind of expert systems : the consultant expert system in
which production rules are used for knowledge representation. This model allows to
simulate the dynamical behavior of the expert system in its search for a solution and to
evaluate its response time for a given input. This response time depends on the number of
rules scanned by the system and on the number of interactions with the user. An Air
Defense Command and Control application, involving a hierarchical organization, where
the expert system is used as an aid in the fusion of inconsistent information, is then
developed. A strategy involving the use of the expert system is compared to two other
strategies expected to be used by a decisionmaker facing this problem. Measures of
performance (workload, timeliness, and accuracy) are evaluated for each of these
strategies. The results show that the use of the expert system improves significantly the
accuracy of the organization, but requires more time and increases the workload of the
decisionmaker using it.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM DEFINITION

Decisionmaking processes require the analysis of complex situations and the planning,
initiation and control of subsequent responses. These activities are done within some
constraints such as time and accuracy and so that an acceptable level of effectiveness be
reached. The amount of information handled by decisionmakers is often very large and, in
order to maintain performance above a certain level, decisionmaking organizations use
decision support systems to help them accomplish their mission.

Artificial Intelligence offers many tools to make the decisionmakers' task easier. In a
military context, the area covered by these tools range from the identification of targets to the
planning of actions against a certain threat given a particular distribution of the available
resources. Expert Systems are one of these tools. Their ability to handle symbolic concepts
and their deductive capability make them very useful to a decisionmaker.

Expert systems are studied in this thesis to assess their usefulness in aiding the fusion of
information coming from different sources and which is not always consistent. Expert
Systems have the ability to combine pieces of evidence of different kinds and to make
inferences using knowledge from their own higher levels of information. They can even deal
with uncertain data using different methods. Their role in the information fusion process can
be therefore critical. The main goal of this thesis is to investigate how the use of expert
systems as decision aids in the information fusion stage modifies the performance of an
organization.

1.2 BACKGROUND

The decisionmaker using an expert system will be studied with the analytical framework
developed by Levis (1984). The analysis of the workload in decisionmaking organizations
has been developed within the information theoretic framework introduced by Shannon
(Shannon and Weaver, 1949). The analysis of the architecture is done with the Petri Net
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formalism (Peterson, 1980; Reisig, 1985) which allows the modeling of asynchronous and

concurrent processes.

Boettcher and Levis (1982-a) have developed a model of a single decisionmaker (DM).
The DM has several alternatives to choose from in performing the assigned task. He is
memoryless and has no capability to learn while executing a task, and is in an hostile
environment where the tempo of operations is fast. These conditions imply that the
decisionmaker acts subject to some constraints (time, accuracy) which have an important
effect on the steady-state functioning of the organization. The value of the outcome of the
actions performed in this hostile environment is expressed in terms of a cost for the
organization. This model has been extended to the general case of interactions among several
decisionmakers of an organization (Boettcher and Levis, 1982-b). The assumption that the
decisionmaker is memoryless was relaxed by Hall and Levis (1984). Some studies have
addressed the integration of preprocessors (Chyen and Levis, 1985) and information storage
in decisionmaking organizations (Bejjani and Levis, 1985). This thesis continues the study of
the effects of integrating decision aids in decisionmaking organizations.

1.3. THE THESIS IN OUTLINE

To show to what extent the performance of an organization is modified by the use of an
expert system, two directions are pursued. The first one is the modelling of an expert system
using fuzzy logic to deal with uncertainty. This model is based on the Predicate Transition
Net representation and allows, through simulation capabilities, to make time-related measures
(response time). The second direction is an approach to the problem of fusion of inconsistent
or contradictory information through the use of expert systems. The strategy involving the
use of expert systems is compared to other strategies expected to be used in the data fusion
process. An application has been developed to illustrate measures of performance (accuracy,
workload, and timeliness) and to give a precise idea of how this problem can be approached
and solved using different strategies.

In chapter 2, the different tools used in this thesis for modeling and measuring are
described. Information Theory and Petri Net Theory are described briefly. Attention is
focused on Predicate Transition Nets which are used later in the thesis for the modelling of
expert systems. The model of the interacting decisionmaker is finally reviewed along with the
different measures of performance. The main concepts of knowledge based expert systems

14



are reviewed in chapter 3. This chapter describes also how uncertainty can be handled,
especially with fuzzy logic and fuzzy set theory. The model of expert system with fuzzy logic
is given in chapter 4 after the introduction of Predicate Transition Net models of the fuzzy
logic operators that realize the operations AND, OR and NOT. Finally, the method used to
evaluate time-related measures using this model is presented

The second main direction of the thesis, presented in chapter 5, is the use of expert
systems in information fusion. In this application, three strategies are introduced to deal with
this problem, one of them involving the use of the expert system. Measures of performance
are made for each of them. Chapter 6 contains the results for the example and provides an
interpretration of them. Conclusions and directions for future research are included in
chapter 7.

15
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CHAPTER 2

ANALYTICAL TOOLS

This chapter provides a description of the different tools used in this thesis.

2.1 INFORMATION THEORY

Information theory provides a theoretical framework for the analysis of workload in
decisionmaking organizations. It allows to evaluate the activity of a decisionmaker by
relating, in a quantatitative manner, the uncertainty in the tasks to be performed with the
amount of information that must be processed to obtain certain results.
2.1.1 Entropy and Transmission

Two quantities defined in Information Theory, and which are essential for this purpose,
are Entropy and Transmission. The entropy of the random variable x measures the
uncertainty in the value x will take. The transmission between x and y represents the amount

by which the knowledge of y reduces the uncertainty in x.

The entropy of a random variable x which takes values according to the probability
distribution p(x) is given by :

H(x) = - ), px) log,(p(x)) 2.1)

X

The conditional entropy Hx(y) is given by :

H(y)=- Y, p®) Y., p(ylx) logy(p(yhx)) 22)
x y
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The joint entropy of x and y is given by :
Hexy) =- ), ), pxy) log,(p(xy)) 23)
x y

The transmission or mutual information, between the variables x and y characterized by
p(x), p(y) and p(ylx) is given by :

T(x:y) = H(x) - H/(x) = H(y) - Hi(y) = H(x) +H(y) - H(x,y)  (2.4)

If x is deterministic and has no associated uncertainty, H(x) is equal to zero. If x and y
are independent, their mutual information T(x:y), is zero. If y is a deterministic function of x,
their mutual information is given by H(y).

The generalization to n-dimensions is introduced to model information structures with
multiple variables :

H(Xy, Xy ooes %) ==, POKps Ky -vvs Xp) 10830y Ky o0y X)) (2.5)
X1 e Xy

which can be expressed also by :

HOxp, Xy oo ) =HO) +H )+ +H, L (x) (26)

The transmission between n variables is given by :

Txpixy:ix )= z Hx) - H(x;, x5, .00 X)) 2.7)
i=1
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2.1.2 Partition Law of Information

If the set {x1,X2, ... , Xp} is partitioned in disjoint subsets, the transmission of the n
variables can be decomposed as follows:

The study of information processing has led to the introduction of the Partition Law of
Information (Conant, 1976): the total information theoretic activity of a system is defined as
the sum of the entropies of all the internal variables of the system. Furthermore, this total
activity can be decomposed into four quantities that account for what actually occurs in the
system. For an input variable x, N-1 internal variables wj, i=1,...,N-1 and an output variable
y also called wy, the Partition Law of Information states :

N
Z H(w) =T(x:y) + Ty(x:wl, v W) F TOW Wy L wygty) + Ho(wy, s WNLpY)

i=1

(2.9)

G= Gt + Gp+ Gc +Gp | (2.10)

The total activity of the system is denoted by G. The first term on the right-hand side,
T(x:y), is denoted by Gt : it is the throughput and represents the mutual information or
transmission between the input and the output. The second term, Ty(x:wl,wz, v WN-1), 18
denoted by Gy, : it is the blockage of the system and represents the amount of information in
the input that is not included in the output. The third term, T(w1:w7: ... :wN.1:y), is denoted
by Gc : it is the coordination of the system and represents the amount by which all the
internal variables in the system constrain each other.The last term, Hy(w1,w?, ... ,}WN-1,¥),
is denoted by Gy, : it is the noise of the system and represents the information internally
generated.

19



2.2 PETRINET THEORY

Petri Nets (Peterson, 1980, Reisig,1985) are used for the modeling and the analysis of
concurrent and asynchronous processes. Their field of applications ranges from the modeling
of manufacturing processes to the representation of the flow-charts of complex computer
software. They have been succesfully used for the modeling of decisionmaking organizations
(Remy et al. 1987) because they provide an explicit representation of the interactions among
decisionmakers.

2.2.1 Definitions

A Petri Net - denoted by PN - is a bipartite directed graph represented by a quadruple

PN = (P, T, I, O) where :

P = {p1, ..., pn} is a finite set of n places,

T = {t1, ..., tm} is a finite set of m transitions,

I'is a mapping PxT -> {0,1} corresponding to the set of directed arcs - called connectors -
from places to transitions. I(p;j, t) = 1 means that there exists a connector from the place p;
to the transition t;.

O is a mapping TxP -> {0,1} corresponding to the set of connectors from transitions to
places.

An example of a Petri Net, PN1, is shown in Figure 2.1. Places are represented with
circles and transitions with bars.

D1 t1 p2 t2

O >O o}

p3 t3

Figure 2.1 Petri Net PN1.
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In this example, we have :

P ={p1.p2.P3, P4},

T = {t1, t2, t3},

Ip1,tD=1 Ip2,t1)=0 I(p3,t1)=0 I(pg,t1)=0
I(p1,t2)=0 I(p2,t2)=1 I(p3,t2)=0  I(pag,tp) =0
I(p1,t3)=0 I(p2,t3)=0 I(p3,t3)=1 I(pg,t3)=0
O(t1, p)=0 O(t2,p)=0 O(t3,p1) =0

O(t1,p2)=1 O(t2,p2)=0 O(t3,p2)=0

O(t1,p3) =1 O(t2,p3)=0 O(t3,p3)=0
O(t1,p4)=0 O(t2,pg)=1 O(t3,pg) =1

A marking of a Petri Net PN is a mapping M : P -> {0,1,2,...} which assigns a
non-negative integer number of tokens to each place of the net.

A transition t is enabled by a given marking M if and only if each of its input places
contains at least one token, which means that :

Vpe P, M(p)=Ipy). @2.11)

When a transition is enabled, it can fire : one token is removed from each input place
and one is added to each output place. A new marking M' is reached given by the relation :

V pe P,M'(p) = M(p) + O(t,p) - I(p,t). (2.12)

A Petri Net is pure if it has no self loop, i.e. no place is an input and an output of the
same transition.
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2.2.2 Linear Algebra

The structure of a pure Petri Net PN can be represented by an integer matrix C, called
the incidence matrix of the Petri Net PN. Its elements are :

Cij=O0(.pp) - I(pp,t),  1<i<n, 1<j<m (2.13)
Cijj only takes the value 0, 1 and -1. The incidence matrix of PN1 is :

(-1 0 0]

1-10

CeND=|

01 1]

The incidence matrix of a Petri Net is used to determine the simple paths of the net which
are the paths (place-transition- .. .-transition-place) linking the entry place of the net (called
the source) to the exit place (called the sink). Simple paths show the sequence of steps for the
modeled process. The incidence matrix is also useful for the determination of the slices of the
net, which are the sets of places or transitions which represent concurrent activity in the
process modeled by the Petri Net. In the example shown on Figure 2.1, the source of the net
is place p1, the sink is place p4. The simple paths are :

simple path 1 : p1 - t1 -p2 - 12 - p4.
simple path 2 : p1 - t] - p3 - t3 - p4.

The slices are :

slice 1 : {p2, p3}.
slice 2 : {tp, t3}.

Details on the determination of the simple paths and of the slices of a Petri Net can be
found in Hillion (1986) and in Jin et al. (1986).
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2.2.3 Petri Nets with Switches

For the modeling of decision making organizations, switches have been introduced as an
extension of the Petri Net theory to take into account the possibility of alternatives (Tabak and
Levis, 1985). A switch is a particular transition with multiple output places. When a switch
fires only one of its output places can receive a token. This output place which receives the
token is chosen according to certain decision rules associated with the switch. These decision
rules can be anything : they can be deterministic (the output place is a function of the input),
or stochastic (a probability distribution over the set of possible output places is defined).
Figure 2.2 depicts a Petri Net, PN2, with a switch S1.

pi s p2 t1

O >O—f

p3 t2

Figure 2.2 Petri Net PN2 with a switch

A pure Petri Net with switches can be represented also with an incidence matrix.
Switches are considered to be transitions and appear at the last columns of the matrix.
Nothing about the decision rules of the switch is contained in the matrix representation. The
incidence matrix of the Petri net PN2 is :

tl 2 sl

[0 0 -1]
101
C(PN2) = 0.1 1

_110j
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For the modeling of decisionmaking organizations, a Petri Net is a formal model of
information flow. Tokens can be considered as symbolic information carriers ; places are the
nodes where tokens can stand without being modified ; transitions and switches are events
that perform a transformation on the information : it can be a transmission, a computation or a
decision ; switches are particular kinds of events that transform input information according
to a certain decision rule.

2.3 PREDICATE TRANSITION NETS

Petri Nets have been shown to be insufficient to model clearly large processes or a set of
different processes which use the same resources. The modeling tool needs to be extended to
allow the handling of different classes of tokens. There exist different extensions of Petri Net
theory which allow the manipulation of different kind of tokens : coloured Petri nets (Jensen,
1981), and Predicate Transition Nets (Genrich and Lautenbach, 1981) are the best known. In
this thesis, an adapted model of Predicate Transition Net is used in chapter 4 for the modeling
of fuzzy logic operators used in expert systems.

Predicate Transition Nets have the following characteristics.
2.3.1 Tokens

Each token travelling through the net has an identity and is considered to be an
individual of a given class called variable. Each variable can receive different names. For
example, we say that a variable represented by x takes the values a, b, or ¢. The set of the
values x can take is represented by :

x={a,b,c}

Another name for the variable represented by x which can take the same values is y. We
have :

y=x={a, b, c}

24



A token is therefore an occurence of x (or y) having taken a value and is represented
formally by xlyx—,. It is important to note that the token Yly=a is a different instance of the
token xly—5. For simplicity, in the figures, a token are represented by its value : a instead of
Xlx=4, for example.

2.3.2 Places

Places are entities which can contain tokens before the firing of transitions. A place can
contain token from different classes.

The marking of a place is a formal sum of the individual tokens contained in the place.
For example, if we suppose that {a,b,c} is a class of tokens and {<a>, <b>, <c>} is another
class of tokens, a place P containing the tokens a, a, b and <c> has the marking M(P) :

MP)=2a+b+<c>

The marking of a Predicate Transition Net with n places is a n-dimensional vector with
elements indicating the marking of each place.

2.3.3 Connectors and Labels

Each connector has a label associated with it which indicates the kinds of tokens it can
carry. A special grammar is used on the labels to define in what way tokens can be carried.
The labels of connectors linking places to transitions are conditions to fulfill to carry the
tokens. The labels of connectors linking transitions to places indicate what kind of token to
place in the places after the firing of the transition.

If we consider that :

{a,b,c} is a class of tokens of which the name can be x and/or y ,
{<a>, <b>, <c> } is another class of token of which the name can be <z>,

the following notation in labels is used :

When names are joined by the sign "+" then the tokens defined by these names have to
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be carried at the same time. For example, the label "x + y + <z>" indicates that two tokens
of the first class and one token of the second have to be carried together at the same time by
the connector.

When names joined by the sign "," then the tokens defined by these names can be
carried at different times but not together. For example, the label "x, <z>" indicates that
either a token of the first class or a token of the second can be carried.

Mixing of notation is possible. The label "(x+y),<z>" indicates that the connector can
carry either two tokens of the first class or one token of the second.

A connector without label has no constraint on the kind of tokens it can carry.
2.3.4 Transitions

Transitions have attached to them a predicate which is a logical formula (or an algorithm)
built from the operations and relations on variables and tokens in the labels of the input
connectors. The value (true or false) taken by the predicate of a transition depends on the
tokens contained in the input places of the transition. When the predicate has the value "true",
the transition is enabled and can fire.

A transition without predicates is enabled as soon as all the input places contain the
tokens specified by the labels of the connectors.

Transitions with predicates are represented graphically with squares or rectangles. The
predicate is written inside. Transitions without predicates are represented with bars as in the
ordinary Petri Nets.

2.3.5 Firing Process

The conditions of enabling of a transition are (1) the input places contain the combination
of tokens specified by the labels of the connectors and (2) the predicate of the transition is
true. If these two conditions are fulfilled, the transition can fire. In the firing process, tokens
specified by the input connectors are withdrawn from the corresponding input places and
tokens specified by the output connectors are put in the output places.
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Let us consider the following examples to illustrate this process. We assume that there
are three classes of tokens :

{1, 2, 3} represented by x and/or y and/or z,
{<1>, <2>, <3> } represented by <z>.
{<1,3>, <2,3> } represented by <x,y> and/or <x,z>.

In example 1, shown on Figure 2.3, the right tokens required by the label of the

connectors are present in the input places. However, the predicate of the transition is false.
Therefore the transition is not enabled and cannot fire.

1y

X=y <Xx,z>
Z

Figure 2.3 Predicate transition net : example 1

In example 2, shown in Figure 2.4, the transition is enabled : the right combination of
tokens specified by the connectors are in the input places and the predicate is true. The
transition can fire.

In the firing process the tokens of the input places which participated in the enabling of

the transition are withdrawn. The token <1, 3> specified by the label of the output connector
is put in the output place.
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x=y <X,z>
VA

(before firing)

| <x,z> C::?

(after firing)

Figure 2.4 Predicate transition net : example 2

Example 3, shown in the Figure 2.5. illustrates how two different classes of tokens can
be processed. The label "<x>x" indicates that the input place has to contain either a token of
the first class or a token of the second. Both are present but it is important to note that the x
used in the two parts of the label does not require any relation between the two kinds of
tokens but refers to the name of the variable used in the predicate of the transition. The
transition is enabled. The variable x used in the predicate is equal to 1 because the token <1>
in the first input place allows the predicate to be true and the token 3 does not.

In the firing process, only the tokens involved in the enabling are withdrawn from the
input places : <1> from the first, 2 from the second. The token <1,2> of the third class is put
in the output place.

In this last example, if there had been a token 1 instead of a token 3 in the first input
place, a conflict on the choice of the token to withdraw in the firing would have occured.
Different strategies for the conflict resolution exist : random choice, choice made by the
user, ... In this thesis, these conflicts are avoided by limiting the number of classes and the
capacity of the places.
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<X,z> ( )

(before firing)

X<z <Xx,z>
Z |

(after firing)

Figure 2.5 Predicate transition net : example 3

2.4 MODEL OF THE INTERACTING DECISIONMAKER
2.4.1 The Basic Model

The model of a decisionmaker interacting with an organization introduced by Boettcher
and Levis (1982-a) is shown in Figure 2.6. The model consists of four stages :

In the situation assessment (SA) stage, the decisionmaker receives an input X from
the environment and processes this information through the use of one of the U algorithms
f1,...fy. The choice of a particular algorithm is done by the decision switch on the basis of
a decision rule which does not necessarily depend on the input X. The result of the SA is Z.
The decisionmaker can also transmit some information, Zio, to the rest of the organization.

In the information fusion (IF) stage, the decisionmaker can merge his own situation
assessment, Z, with some information, ZOL communicated by the rest of the organization.
The result of this stage is Z',
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In the command interpretation (CI) stage, the decisionmaker can receive commands,
VOI, from decisionmakers hierarchically superior to him which modify the basis for selecting

a final response Y.

In the response selection (RS) stage, the decisionmaker selects a response Y by
processing the input Z' through the use of one of the V algorithms hy,...,hy. This choice is
represented by the second switch in the Figure 2.6. The rule of this switch is affected by the

command VOL,
SA IF Cl RS
f1 v .
1
X u yA Z Y
V -
h
f
U \Y,
io 0i i ;
7 7 VO] y 10

Figure 2.6 Model of the interacting decisionmaker.

A pure decision strategy for the decisionmaker is one for which both the situation
assessment strategy p(u) and the response selection strategy p(v | Z) are pure, i.e., one of the
algorithms fj is selected with probability 1 and one of the algorithms of the response selection
is selected with probability 1. The kth pure strategy of the decisionmaker is therefore :

Dy = {p(u=i) =1,p(v=j12) =1} 2.14)
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The maximal number of pure strategies for the decisionmaker is equal to UVM, where
U, V, and M are respectively the number of algorithms in the situation assessment stage, the
number of algorithms in the response selection stage and the number of values the variable Z
can take. The other internal decision strategies are mixed and are obtained as a convex
combination of the pure strategies.

Because of the possible interactions among the decisionmakers, measures of
performance (described in the next section) depend on the strategy employed by the
organization. In an organization with n decisionmakers, a pure organizational strategy is
defined as a n-tuplet of pure strategies (one for each decisionmaker) :

1 2 n._
Ay i, = Oy Do o Dy ) (2.15)

where Dkii is the k; th pure decision strategy of the decisionmaker 1, as expressed by equation
(2.14). Finally, since each decisionmaker is assumed to select his strategy independently of
the rest of the organization, the behavioral organization strategy is defined as a n-tuplet of
mixed strategies (one for each decisionmaker).

2.4.2 Measures of Performance of an Organization

The decisionmaking organization (DMO) can be considered as a system which must
perform a certain task or mission. We assume that the task of the DMO is to process an input
X taking values in a finite alphabet A with a discrete probability distribution p(X) and that a
cost C(Y) exists for every response Y of the organization. The real probability that the DMO
receives the input Xj is p(X=Xj). One possible way to define C(Y) is to map Xj into an ideal
response Y4; and then assign a cost C(Y,Yqy;j) to the difference between the actual
organization response Y and the desired response Y 4;. p(X) symbolizes the fact that all the
inputs are not equally likely. In the same way, C(Y) symbolizes the fact that the processing
of different inputs may have different utilities or interests for the organization designer.

In this context, the measures of performance (MOP) of the system and of the mission are

accuracy, timeliness, and workload. It is possible to assess the organization's effectiveness
in performing its task by measuring :
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The accuracy of its response, denoted by J, which shows how well its response
correspond to the desired responses (Andreadakis and Levis, 1987). For each input Xj and
each organization strategy j, the response Yj is produced and the cost C(Yj ,Y di) is computed.
The accuracy of the organization is then defined as follows :

7= 2p(X) DLOCY Y JpCY X) (2.16)
i j

The timeliness of its response, T, i.e., the extent to which those responses are
provided at the right times. It is possible to define several measures of timeliness : it can be
the expected response time or the probability that the response time lies inside an interval

[Tmins Tmax]-

The workload Gl of decisionmaker DM;, i.e., his processing activity in carrying out
his part of the task. It is obtained by computing the entropy of all of his internal variables in
accordance with the Partition Law of Information.

The mission requirements are specified in terms of constraints on the values that those
MOPs can take. The bounded rationality constraint (Boettcher and Levis, 1982a and 1982b)
expresses that Gl verifies : G1 < Fl.1, where Fl characterizes the maximum activity rate of the
decisionmaker DMj and T, the mean input interarrival time. Similarly, for accuracy, the
notion of satisficing is expressed as J < J,.

2.5 CONCLUSION

Several tools have been decribed in this chapter. They are used in the different parts of
this thesis. Information theory is useful for quantifying the workload of a decisionmaker.
Petri Net theory is applied to the representation of decisionmaking organizations using the
model of the interacting decisionmaker shown in section 2.4. One of the advantages of the
Petri Net formalism is that it allows to obtain time-related measures of these organizations.
Finally, Predicate Transition Nets provide a useful extension of the ordinary Petri Nets. They
allow the handling of different classes of tokens. Therefore, concurrent and asynchronous
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processes can be represented in more detail. They are used later in this thesis to model fuzzy
logic operators and to represent the dynamical behavior of an expert system. The next chapter
provides a description of the Knowledge Based Expert System technology. It describes
different ways to deal with uncertainty, especially the fuzzy logic formalism.
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CHAPTER 3

DEALING WITH UNCERTAINTY IN EXPERT SYSTEMS

3.1 EXPERT SYSTEMS

3.1.1 Structure of an Expert System

Knowledge Based Expert Systems, commonly called Expert Systems, are - in theory -
able to reason using an approach similar to the one followed by an expert when he solves a
problem within his field of expertise. An expert system can be used for many purposes : to
control, to diagnose, to solve problems, to plan, to design, ....

There are three distinct components in an expert system (Figure 3.1) :

(1) The knowledge base which contains the set of information specific to the field
of expertise. Knowledge is expressed in a language defined by the expert. The
knowledge base is a collection of general facts, rules of thumb and causal models of
the problem domain. A number of formalisms exist to represent knowledge. The
most widely used is the production system model in which the knowledge is
encoded in the form of antecedent-consequent pairs or IF-THEN rules.

(2) The fact base, also known as context or working memory, contains the data for
the specific problem to be solved. It is a workspace for the problem constructed by
the inference mechanism from the information provided by the user and the
knowledge base. The working memory contains a trace of every line of reasoning
previously used by memorizing all the intermediate results. This can therefore be
used to explain the origin of the information deduced or to describe the behavior of
the system.

(3) The Inference Engine is used to monitor the execution of the program by
using the knowledge base to modify the context. It uses the knowledge and the
heuristics contained in the knowledge base to solve the problem specified by the data
contained in the fact base. Often, the knowledge base is composed of rules of the
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kind, A -> B, saying that if A is valid, B can be deduced. In this case, the inference
engine selects, validates and triggers some of these rules to reach the solution of the
problem.

FACT BASE
(Context)

find
select
execute

\' INFERENCE
ENGINE

v

KNOWLEDGE BASE

Figure 3.1 Structure of an Expert System

Among the strategies used by the inference engine to select the rules, forward chaining
and backward chaining are the most common. In forward chaining, the inference
mechanism works from an initial state state of known facts to a goal state. It finds first all the
rules that match the context, it then selects one rule based on some conflict resolution
strategy, and then execute the selected rule. Facts are inputs to the system. The most
appropriate hypothesis that fits the facts is deduced. For backward chaining, the system
tries to support a hypothesis by checking known facts in the context. If these known facts do
not support the hypothesis, the preconditions needed for the hypothesis are set up as
subgoals. The process for finding a solution is to search from the goal to the initial state and
involves therefore a depth-first search. The model described in Chapter 4 uses backward
chaining as the strategy for finding the solution.
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3.1.2 Inference Net

The relationships among the rules of a production system can be represented with an
inference net. It allows to show graphically the logical articulation of different facts or
subgoals, and to identify which rules are used to reach a specific goal. Let us consider the
following production rules :

if A AND B, then C
if D ORE, then F
if NOT G, then H.

These rules are represented in the inference net formalism on Figure 3.2.

AND OR NOT

A B D E G

Figure 3.2 Representation of the logical operators in the inference net formalism

3.1.3 Consultant Expert Systems

We will focus our effort on the most common kind of expert system : the consultant
expert system, as described by Johnson and Keravnov (1985). Most systems engage in a
dialogue with the user, the computer acting as a "consultant," by suggesting options on the
basis of its knowledge and the symbolic data supplied by the user. The dialogue terminates
when a decision or a recommendation is reached. The formalism used to represent
knowledge in consultant expert systems is the production system model described earlier in
this chapter.
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Moving from known items of information to unknown information is the vital process
of a consultant system. The user of a consultant expert system has "observed" some
particular state of affairs within the domain of the system's expertise and submits these
observations to the system. Examples of these states are a sick person, a faulty machine and a
malfunctioning business environment. Based on the observations, the system makes
inferences and suggests new routes of investigation which will yield high grade information.
Interactions continue until the system finds the most likely explanation of the observations.

The mode of interaction used most often by these kinds of expert systems is the
computer initiated mode (as opposed to the user initiated mode) where the user is restricted to
responding to system's requests only.

3.2 DEALING WITH UNCERTAINTY

One aspect of great interest in expert systems is their ability to handle symbolic objects
which have a certain level of uncertainty. This is very important because real life problem
solving requires the acceptance of uncertainty in order to minimize the difficulty of the
problem. Various methods have been tried, some quite successfully, which allow the use of
fragmentary and uncertain information to reach an estimate of the truth. The application of
this ability to handle uncertainty in the fusion of inconsistent data is presented in section 5.4.

Since the handling of symbolic objects is subject to uncertainty, expert system research
has been accompanied by the development of methods for being precise about imprecision.
There are different ways of reasoning under uncertainty where the problem data and/or the
rules of inference are not 100% reliable.

Forsyth (1984) shows three main approaches to deal with this problem which have been
used quite successfully in different systems :

1- Certainty Factors are a scheme that has been successfully used in MYCIN by
Buchanan and Shortliffe (1984). Certainty factors measure the confidence that can be placed
in any given conclusion as a result of the preceding evidence. A certainty factor is defined as
the difference between two component measures :
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CFh:e]=MB[h:e]-MD[h:e] (3.1)
where :

CF[h : e] is the certainty factor of the hypothesis h given by the evidence e.
MBJIh : €] is the measure of belief in h given e.
MDIh : e] is the measure of disbelief in h given e.

CF can range from -1 (completely false) to +1 (completely true) with values in between,
0 representing ignorance. This definition is easily extended to more than one piece of
evidence :

MBIh:el, e2] =MB[h:el] + MB[ h: €2] - MB[h : e1] MB[h : 2] (3.2)

Furthermore, this model can include the possibility that inference may be uncertain as
well as data. Each rule has therefore an attenuation number between 0 and 1 which indicates
its reliability.

2- BAYES rule (Duda, Hart and Nilsson, 1984) is used to tie together information
from disparate sources. It provides for computation of relative likelihoods between
competing hypotheses on the strength of evidence. The likelihood ratio is defined as the ratio
of the probability of the event or evidence E given a particular hypothesis H over the
probability of the evidence given the falsity of that hypothesis (not H). It is given by the
formula :

P(E I H) (3.3)

LR(H:E) = P(E | not H)

Thus, if we know the probability of the evidence given the hypothesis and its negation,
we can determine the likelihood of the evidence given the hypothesis in the light of the
evidence. LR > 1 indicates the evidence is favorable to the hypothesis. If LR < 1, the
evidence is contra-indicative. If LR = 1, it is neutral.
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The likelihood ratio can be used to adjust the odds in favour of the hypothesis in
question, if the evidence has occurred. Odds in favour (F) is defined with the probability of
certitude P by the formula :

P
F= 17 (3.4)
The entire scheme is summarized in the expression :
F'(H) = FH) LR(H : E) (3.5)

where :

F(H) is the prior odds in favour of H
F'(H) is the resulting posterior odds given the event E as determined by the likelihood
ratio.

Finally the likelihood ratio can be adjusted, if the evidence is itself uncertain by
computing a scaled ratio LR’ such that :

LR'=LR P(E) + (1 - P(E)) (3.6)
where P(E) is the probability that the evidence is valid.

3 - Fuzzy Logic (Zadeh, 1983) deals with uncertainty in more general way than the
methods previously described. In these methods, the assumption of conditional independence
of hypotheses is made and, consequently, these approaches are not very useful when this
assumption is relaxed. The Fuzzy Logic approach seems appropriate. This method has been
successfully used as the underlying inference mechanism in different production systems
(Whalen and Schott, 1983) and particularly in the decision support system REVEAL (Jones
and Morton, 1982). This is the method chosen in this thesis to deal with the problem of
uncertainty .
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3.3 FUZZY SET THEORY AND FUZZY LOGIC
3.3.1 Fuzzy Set Theory
A fuzzy set (Zadeh, 1965) is defined as follows :

Let X = { x } be a collection (a set) of objects denoted generically by x. A fuzzy set A in
X 1s a set of ordered pairs :

A={(xpakx)} xeX (3.7

where [ (x) is the grade of membership of x in A. pp is a function from X to M, the
membership space. Often, M is the interval [0,1] and will be used as such in this thesis.

This formulation allows one to handle concepts or things which are fuzzy in nature and
can not always be described with numbers. For example, let X be a collection of persons,
X = {John, Steve, Charles} and we know that :

John is 25 years old,
Steve is quite old,
Charles is very old.

If A denotes the fuzzy set of old persons in X, A will be :
A = { (John, 0.3), (Steve, 0.7), (Charles, 1) }

The numbers (0.3, 0.7, 1) show to what extent the persons belong to the fuzzy set A.
We can see that fuzzy concepts like quite old or very old which are not attached to any real
numerical values can be taken into consideration. It is important to note also that these grades
of membership to the set A are defined in a subjective way. They can, for example, depend
on the environment in which the set X is defined. If X defined above is a collection of

students, the fact that Charles is very old does not necessarily mean that Charles is very old
in the collection of all the inhabitants of a town.
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In addition, for this example, when the age is known, the mapping function giving the
degree of oldness ( or the grade of membership to the fuzzy set of old persons) from the age
of a person is also defined in a subjective way. There are no strong rational grounds for
preferring one mapping function to another.

3.3.2 Operations on Fuzzy Sets and Fuzzy Logic.

The theory of fuzzy sets offers also a collection of operations on the sets :

equality : A=B ifus(x) =ppkx), Ve X (3.8)

inclusion : ADB if pa(x) > upx), Vxe X 3.9)

complementarity : A'is the complement of the fuzzy set A if :

HA(x) = 1-pax), Vxe X (3.10)
intersection : pA~B(X) =min(Lp(X), up(x)), Vxe X. (3.11)
union : paUB(X) = max(pa(x), up(x)), Vxe X. (3.12)

The three last operations are the basis for the definition of fuzzy logic. Fuzzy logic
operates on numbers between 0 and 1 which indicate partial truth denoted by p and which are
equivalent to the grades of membership in different fuzzy sets. For example, the partial truth
of the statement "Paul is tall"” will be equal to the grade of membership of Paul in the fuzzy
set of tall persons. The equivalents of the AND, OR and NOT operators are defined as
follows :

pl AND p2 = min(pl, p2)
pl OR p2 = max(pl, p2) (3.13)
NOTpl=1-pl

Thus, pieces of evidence are combined in a rigorous and consistent manner by
computing the resulting partial truth or grade of membership from the partial truths or grades
of membership of the pieces of evidence. For example, the partial truth of the statement "Paul
is not tall" will be equal to the grade of membership to the fuzzy set which is complementary
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to the fuzzy set of tall persons. In the same way, the partial truth of the statement "Paul is tall
and fat" will be measured by the grade of membership of Paul in the intersection of the fuzzy
set of tall persons and of the fuzzy set of fat persons, and will be equal to the minimum of the
grades of membership in these two sets.

3.3.3 Interest for Artificial Intelligence.

In spite of this problem of subjectivity in the definition of these grades of membership,
the interest for Artificial Intelligence is very significant. Indeed, the problems to be solved in
Al rarely involve the distinction between two opposed elements. As Zadeh (1983) points out,
with two valued logic (true-false), all classes are assumed to have sharply defined
boundaries. So either an object is a member of class or it is not a member. But in the real
world, most classes do not have sharp boundaries. This is the case for characteristics or
properties like tall, intelligent, tired, sick... Two-valued logic is not designed to deal with
properties that are a matter of degree. Fuzzy logic allows this and opens new horizons. It
underlies inexact or approximate reasoning. Fuzzy logic reduces the gap between the
imprecise human reasoning and the reasoning used by computer. It allows the processing of
unclear knowledge and common sense reasoning.

Another great interest of Fuzzy logic is that it is a formalism which allows for and
encourages the use of natural language as its means of interaction with the user. We have
presented earlier in this chapter how fuzzy sets and fuzzy logic were able to deal with and
process natural language quantifiers (quite, very, ...) in a structured and consistent way.

However, this approach for dealing with the fuzziness of the real world does not solve
everything. Forsyth (1984) shows that one of the most important problems is the weighting
of disparate pieces of evidence. How does one resolve the conflict of two different
contradictory truth values for the same proposition obtained with two different sets of pieces
of evidence ? Do we take the minimum, the maximum, the average or some other function of
the two numbers ? Let us consider the following rules :

"John is tall" if "John plays basketball" (1)
"John is tall" if "John is more than 6 feet tall" 2)
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If we know that John plays basketball but is 5'11" tall, the rules (1) and (2) will lead to
completely different partial truth for the statement "John is tall". The problem is to define
which final value to assign to this statement. There is no right answer. One way to solve this
problem is to assign some degree of likelihood for each rule which leads to the safne
conclusion. In the previous example, the rule (2) will have a higher degree of likelihood and
would give the final partial truth of the statement. The problem is about the same for a
proposition of which the different truth values are obtained through different rules pointing in
the same direction, tending to confirm each other and reinforcing belief in the conclusion.
The resulting truth value should indicate a higher degree of truth than the average or even the
maximum of the obtained truth value.
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CHAPTER 4

AN EXPERT SYSTEM MODEL USING PREDICATE TRANSITION NETS

4.1 STRUCTURE OF THE EXPERT SYSTEM

4.1.1 The Knowledge Base

The model developed in this thesis permits the explicit representation of the rules of a
knowledge base and the relationships among them. The kind of rule we are considering here
is the production rule. A production rule is divided in two parts :

A set of conditions (called left-hand side of the rule) combined logically together with a
AND or a OR operator,

A set of consequences or actions (called also right-hand side of the rule), the value of
which is computed according to the conditions of the rule. These consequences can be
the conditions for other rules. The logical combination of the conditions on the
left-hand side of the rule has to be true in order to validate the consequences and the
actions.

An example of a production rule is :
IF the flying object has delta wings AND
the object flies at great speed

THEN the flying object is a fighter plane.

The conditions "the flying object has delta wings" and "the object flies at a great speed”
have to be true to attribute the value true the consequence "the flying object is a fighter
plane."”
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4.1.2 The Inference Engine.

Logic used : In order to deal with uncertainty in items of evidence, fuzzy logic is
implemented in the model to combine logically the conditions of the left-hand side of the
rules. The value of a rule or a fact is either unknown or a number between O and 1,
representing the degree of truth associated with it. The operators AND, OR, and NOT
execute operations on these degrees of truth (see section 3.3.2).

p1 AND p2 = min(p1,p2)
pl1 OR p2 = max(pl,p2) (4.1)
NOT pl = 1-pl.

Process of Selection and Firing of Rules : In order to simulate the behavior of an expert
system, the process of selection and firing of rules done by the inference engine has been
modeled when a backward chaining strategy is used. A trigger is associated with every rule
(or operator). A rule is selected by the inference engine when the trigger is activated. Only
one rule at a time can be activated and the continuation of the selection and firing process is
done according to the result of the rule :

If the result is unknown, the rule is put in memory and the rule which gives the value
of the first unknown precondition is selected.

If the result is known, the last rule which was put in memory is selected again because
the produced result is the value of one of its preconditions.

Let us consider the example where we have two rules :

B =>C 6))
A=>B ()

and where the degree of truth of the fact A is known.

The inference engine selects first the rule (1). The degree of truth of C is unknown
because the degree of truth of B is unknown. The rule (1) is then de-activated and put in
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memory. The rule (2) is selected. Since the value of A is known, the value of B is deduced.
Rule (1), which is the last to have been put in memory, is selected again and the answer C is
given.

Search for efficiency : The process of selection and firing of rules described above is repeated
by recursion until the final answer is found ; the process can last a long time. In the search
for efficiency and performance, unnecessary computations must be avoided. In some cases,
there is no need to know the values of all the preconditions of a rule to deduce the value of its
consequence. For example, in boolean logic, if we have the rule :

A ANDB=>C.
and we know that :
A is false,

then the consequence C is false and there is no need to look for the value of B to
conclude that ; the set of rules giving the value of B can be pruned.

In systems using fuzzy logic, this avoidance of unnecessary computations is all the more
important as computations are more costly in time and memory storage than in systems using
boolean logic. The problem is that little improvement in performance is obtained if extra
computation is avoided only in the case of complete truth (for the operator OR) or of
complete falsity (for the operator AND). The solution lies in the setting of thresholds for
certain truth and certain falsity. For example, in the case of the operator AND, if we have :

AANDB=C

and we know that the degree of truth of A is less than the threshold of certain falsity, we can
deduce that the degree of truth of the consequence C is less than the degree of truth of A, and
therefore, less than the threshold of certain falsity. There is no need to know the degree of
truth of the precondition B. The thresholds for which no further search is required in the
execution of the operators are set to 0.8 for certain truth in the operator OR and 0.2 for
certain falsity in the operator AND. A rule or fact having a degree of truth larger or equal to
0.8 (resp. less or equal to 0.2) will be considered to be true (resp. false). Therefore, the logic
takes into account the unknown rules or facts.
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4.1.3 The Fact Base

Since backward chaining is used, it is important to store the result of every rule scanned
by the system because it can be used several times by different operators and can be used to
explain how the answer has been found.

4.2 CHARACTERISTICS OF THE PREDICATE TRANSITION NETS USED IN THE
MODEL '

Predicate Transition Nets described in section 2.3. are used to represent the expert
system with fuzzy logic.

4.2.1 Classes of Tokens
Two classes of tokens are differentiated :

(1) The first one is the set of the real numbers between O and 1, representing the
degrees of truth of the facts or items of evidence and is denoted by P. The names of
the individual tokens of these classes will be p, p1, p2.
(2) The second class is denoted by S. The individuals of this class can only take one
value. Only one token of this class will travel through the net and will represent the
action of the inference engine in triggering the different rules.

4.2.2. Places.

Three kinds of places are differentiated :

(1) places representing a fact or the result of a rule and containing tokens of the class P
or no token at all,

(2) places used by the system as triggers of operators and containing the token of the

class S. These places and the connectors connected to these places are represented in
bold style in the Figures and constitute what is called in this chapter the system net.
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(3) places allowed to contain different kinds of tokens (P and S) and which are used to
collect the tokens necessary for the enabling of the transitions of which they are the
input places.

4.2.3 Connectors

The capacity of each connector is determined by its label. The label will define the class
of tokens it can carry. The grammar of the label defined in section 2.3 is used : the label
"p+S" indicates that the connector can carry a token of the class P and a token of the class S
at the same time.

In some cases, the connector has to carry the token of class S when there is no token of
the class P involved in the firing of a transition. The statement "absence of token of the class
P" is denoted by the symbol @. This symbol is used in the labels, as if it was a class of
tokens, in association with the names of the other classes. The symbol @ is used in the
following cases :

(1) The label "S+@" means that the connector can carry a token of the class S, if
there is no token of the class P.

(2) The label "(S+p),(S+@) means that the token can carry, either a token of the
class S and a token of the class P, or a token of the class S, if there is no token of the
class P.

4.2.4. Transitions
In order to be enabled, conditions on the variables of the class P must be fulfilled. A
transition will therefore be enabled, if the input places contain the number and the classes of

tokens defined by the label of the connectors linking those places to the transition, and if the
conditions on the variables are fulfilled. Let us consider the example shown on Figure 4.1 :
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Figure 4.1. Example of a transition with a predicate

The condition "pl < p2" written is the transition represented by a square is true when the
value of the token named p1l coming from place A is less than the value of the token named
p2 coming from place B, as specified by the connectors.

43 LOGICAL OPERATOR MODELS

The models of the logical operators AND, OR, and NOT are shown in Figures 4.2, 4.3
and 4.4. Let us describe now what happens in the operator AND (the operators OR and NOT
behave in a similar way).

The operator drawn in Figure 4.2 realizes the operation :
A AND B =>C.

It can be represented as a black box, having three inputs : A, B and S (the trigger) and
six outputs : C (the result), A, B (memorizing of the input value) and three system places S ,,
Sg and Spext- Only one of those system places (represented in bold style in the figures) can
have a system token at the output. Spex¢ Will contain a system token if the result of the
operation is known, i.e., if C contains a token of the class P. This shows that the next
operation can be performed. If the result is unknown, i.e., the two inputs are not sufficient to
yield a result, the system token is assigned in order to get the values of these unknown
inputs. Therefore, a system token will be assigned to S, if (1) C is unknown and (2) A is
unknown or if A and B are both unknown. The system token will be assigned to Sy if C is
unknown and only B is unknown.
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Figure 4.2 Model of the operator AND

The execution of the operation will start only if there is a system token in Sc. We denote
by Sc the trigger place of the operator computing C. As soon as there is a token in S, the
two input transitions are triggered by the allocation of a system token (S) at the input place of
these transitions. The values of A and B are therefore reproduced in A and B and in the
output place of each of the transitions. These places contain also a system token, which will
ensure the enabling of the following transition (i.e., that the two inputs are present). These
two places are the input places of seven different transitions which have disjoint conditions of
enabling. Only one of these transitions can be enabled and can fire. At the firing, the result,
if any, is given in the result place and then in C, while the system token is assigned either to
Shext» Or to S, or to Sp according to the result, as previously described.
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Figure 4.3 Model of the operator OR

These operators can be compounded in super-transitions. The model can be

generalized to operators with more than two inputs by combining these basic operators.

An example of the use of these logical operators is shown on the next section,
where the representation of a simple inference net is made and the search process in this net is
simulated.
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Figure 4.4 Model of the operator NOT

4.4 DYNAMIC REPRESENTATION OF AN INFERENCE NET

The connection of the super-transitions representing the logic operators to places
representing the items of evidence leads to a dynamic representation of an inference net. It
allows to show explicitly how the inference engine scans the knowledge base. By running a
simulation program, we can see in real time what the steps of reasoning are, the possible
deadlocks, or mistakes. It allows one to identify the parts of the knowledge base where the

knowledge representation is incorrect.
Let us consider the simple symbolic system containing the following rules :
if Aand B=>E
if CandD=>D

ifEorF=>G

The standard representation of the inference net of this system (see section 3.1) is shown

in Figure 4.5.
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Figure 4.5 Standard representation of the inference net of the example.
The representation of the inference net with Predicate Transition Net is deduced from
this representation by :
(1) replacing the rectangles representing the subgoals with the places of our model.

(2) replacing the formalism AND, OR, and NOT by the models of the operators aggregated
in super-transitions, and linking these places to those transitions (including the self loops).

(3) linking the system places of each operator according to the rules described in section 4.3
for the scheduling of the ckecking of the unknown subgoals.

The representation of the inference net of the simple symbolic system, using the
Predicate Transition Net models of the logic operators is shown on Figure 4.6. The interface
module with the user has been added with the places IA, IB, IC and ID, where the user can
enter the degrees of truth of A, B, C and D.
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Figure 4.6 Inference net of a simple symbolic system,
using the Predicate Petri Nets formalism

The simulation of the propagation of the tokens in this net allows one to observe the
reasoning process followed by the system. The mapping of the different places of the net at
each step of the process of the simulation is shown on table 4.1.

The search for the degree of truth of the goal G starts when the system token is put in the
system place Sg, at the beginning of the search (step 1). The degree of truth of G cannot be
evaluated when the operator OR is executed. The system token is therefore assigned to Sg for
the checking of the subgoal E (step 2). The execution of the operator AND cannot lead to a
result for E and the system token is allocated to S, (step3), which triggers an interaction
session with the user to get the degree of truth of A. The user enters this value (say 0.9)
through IA (step 4) which is assigned to A, while the system token is assigned to Sg (step 5).
Since, the degree of truth of A is larger than 0.2, the result of the operator AND cannot be
given in E and the system token is assigned to Sg (step 6) to get the degree of truth of B (say
0.8) through IB (step 7). The system token is then re-assigned to Sg to trigger the operator
AND (step 8), which can now be executed. The minimum of the degrees of truth of A and B,
0.8, is put in E, while the system token is assigned to Sg (step 9). Since the degree of truth
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of E is equal to 0.8, the operation OR can be performed to produce the result G equal to 0.8.
The system token is allocated in S,,; (step 10). The subgoal F has not been checked and all
the part of the net which is used to evaluate F has been pruned.

AlIA| B|mB| clic|pD| D| E| F|G |SaA|SB|Sc|Sp|SE|SF|ScRex
Step 1 S

Step 2 S
Step 3 S
Step 4 0.9
Step 510.9 S
Step 610.9 S

Step 7[0.9 0.8 S
Step 810.9 0.8 S

Step 910.9 0.8 0.8 S
Step 100.9 0.8 0.8 0.8 S

Table 4.1 Mapping of the Places at the different steps of the simulation

4.5 APPLICATIONS OF THE MODEL
4.5.1 Assessment of Parallelism

The search for a solution with an expert system is very costly in time and memory
storage and some limits exist regarding the size and the kind of problem that can be solved. A
way to improve the performance is to dispatch the problem to different processors, each of
them solving a part of the problem concurrently. Results of each of the parts are sent to the
appropriate processors through a message passing protocol. The problem is that message
passing is costly in time. Therefore, the different tasks allocated to each processor have to be
chosen very carefully in order to minimize the number of communications among the
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processors and also the average idle time in processors waiting for the result of a computation
done on another processor. The most reasonable way to do this is to allocate to each
processor a part of the problem which is as independent as possible of the other parts of the
computation.

The Predicate Transition Net model of the inference net allows to schedule the allocation
of the rules to the different processors. This is done in the following way :

We first transform the standard representation of the inference net of the problem to be
solved into its representation with Predicate Transition Nets, described in section 4.4. This
representation is then modified by first suppressing the system net representing the action of
the inference mechanism to select the rules (i.e. all the places and connectors represented in
bold style on the Figures),and second, by suppressing the self loops representing the
memorizing in the fact base of the intermediate results.

For example, the transformed net obtained from the representation of the example of the
simple symbolic system, obtained from its representation shown on Figure 4.6, is shown on
Figure 4.7.

a O——f A

and

8O of B

Or%
ic O o} C G

S and

0 O——}

Figure 4.7 Example of transformed net for the assessment of parallelism.
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Now, the simple paths and the slices of the transformed net can be determined. The
slices indicate the operations which can be performed concurrently, while the simple paths
indicate the sets of the dependent rules which have to be scanned sequentially by the system.

For the simple example presented in Figure 4.6, we consider four processors to handle
the problem. The slices of the transformed net are :

Slice 1: { IA, IB, IC, ID}
Slice2: {A, B, C, D}
Slice 3 : {E, F}

Slice 4 : {G}

The simple paths are :

Simple path 1 : IA,AE,G
Simple path 2 : IB,B,E,G
Simple path 3 : IC,C,F,G
Simple path 4 : ID,D,F,G.

An efficient way to allocate the rules to the processors is :
processor 1 : IAAE.G
processor 2 : IB,B  (send B to processor 1)
processor 3 : IC,C,F (send F to processor 1)

processor 4 : ID,D  (send D to processor 3)

This allocation requires only three message passings among the four processors.

4.5.2 Timeliness
The other application of the model is more appropriate to this thesis. The model allows

the evaluation of the time needed to produce an ouput ; this is then used to compute the
timeliness of an organization using an expert system.
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The timeliness of an expert system is related to the number of rules in the rule base
scanned by the system to give an answer to a specific problem or goal, and to the number of
interactions with the user.

The model we have defined allows a quick identification of the parts of the rule base
which have been scanned, given a certain set of inputs, to reach a specific goal, since each
place contains the token symbolizing the value of the rule or fact it represents.

Let us consider an expert system being used to give a certain answer in a certain
environment. We represent the input Xj to the system as a n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>