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Abstract

Working memory has long been thought to arise from sustained spiking/attractor dynamics.

However, recent work has suggested that short-term synaptic plasticity (STSP) may help

maintain attractor states over gaps in time with little or no spiking. To determine if STSP

endows additional functional advantages, we trained artificial recurrent neural networks

(RNNs) with and without STSP to perform an object working memory task. We found that

RNNs with and without STSP were able to maintain memories despite distractors presented

in the middle of the memory delay. However, RNNs with STSP showed activity that was sim-

ilar to that seen in the cortex of a non-human primate (NHP) performing the same task. By

contrast, RNNs without STSP showed activity that was less brain-like. Further, RNNs with

STSP were more robust to network degradation than RNNs without STSP. These results

show that STSP can not only help maintain working memories, it also makes neural net-

works more robust and brain-like.

Author summary

Working memory has been thought to depend on sustained spiking alone. But recent evi-

dence shows that spiking is often sparse, not sustained. Short-term synaptic plasticity

(STSP) could help by maintaining memories between spiking. To test this, we compared

artificial recurrent neural networks (RNNs) with and without short-term synaptic plastic-

ity (STSP). Both types of RNNs could maintain working memories. But RNNs with STSP

functioned better. They were more robust to network degradation. Plus, their activity was

more brain-like than RNNs without STSP. These results support a role for STSP in work-

ing memory.
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Introduction

Working memory (WM), the holding of information “online” and available for processing, is

central to higher cognitive functions [1,2]. A well-established neural correlate of WM is spik-

ing over a memory delay [3–5]. For many years, this was thought to be the sole mechanism

underlying WM maintenance. The idea is that sensory inputs elicit unique patterns of spiking

that are sustained via recurrent connections [6], creating attractor states—stable patterns of

activity that retain the WM [7]. It seems evident that these attractor dynamics play an impor-

tant role in WM. Recent observations, however, have suggested that there may be more going

on [8–11]. A few neurons seem to show spiking that looks persistent enough to be an attractor

state, but the bulk of neurons show memory delay spiking that is sparse [12–15]. This is espe-

cially true when spiking is examined in real time (i.e., on single trials) because averaging across

trials can create the appearance of persistence even when the underlying activity is quite

sparse.

This all begs the question of how WMs are maintained over these gaps in time with little-

to-no spiking [11,16]. One possibility was suggested by observations of short-term synaptic

plasticity (STSP), transient (< 1 second) changes in synaptic weights induced by spiking, in

circuits in the prefrontal cortex [17]. Several groups have suggested updating the attractor

dynamics model with this feature [18–20]. The idea is that STSP helps the spiking. Spikes

induce a transient “impression” in the synaptic weights that can maintain the network state

between spikes [21–23]. Evidence for STSP comes from techniques like patch-clamp recording

that are difficult to implement in the working brain, especially in NHPs. Thus, we tested the

role of STSP in WM by using computational modeling in conjunction with “ground-truthing”

via analysis of spiking recorded from the PFC of a NHP performing a WM task. We found

that PFC spiking carried little-to-no stimulus-specific WM information across the delay. We

aimed to determine if network models with STSP can solve the working memory task, whether

they have properties similar to those seen in the actual brain, and whether STSP endows func-

tional advantages. The answer to these questions was “yes”.

We trained Recurrent Neural Networks (RNNs) with and without STSP to test how it

affects network performance and function. We focused on the key property of robustness

[9,24–27]. Working memories must be maintained in the face of distractions. Networks need

to deal with noise and show graceful degradation (i.e., continue to function when portions of

the network are damaged). Our analysis showed RNNs with and without STSP were robust

against distractors. However, only the RNNs with STSP were “brain-like”—their activity more

closely resembled activity recorded from the prefrontal cortex of a NHP performing a WM

task. RNNs with STSP were also more robust against synaptic ablation. Thus, STSP offers func-

tional advantages and explains how WM can be maintained between stimulus presentations.

This point has been made repeatedly in the literature. However, our study is the first to train

artificial neural networks with STSP and quantitatively measure their similarity to recorded

electrophysiological data.

Results

A NHP was trained to perform an object delayed-match-to-sample task (Fig 1). The NHP was

shown a sample object and had to choose its match after a variable-length memory delay. At

mid-delay a distractor object (1 of 2 possible objects never used as samples) was presented (for

0.25s) on 50% randomly chosen trials. We recorded multi-unit activity (MUA) bilaterally in

dorsolateral PFC (dlPFC) and ventrolateral PFC (vlPFC) using four 64-electrode Utah arrays

for a total of 256 electrodes. The animal learned to do the task consistently at ~99% accuracy

for both distractor and non-distractor trials.
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Sample information in population neural activity was weak over longer

delays

First, we examined MUA recorded from the lateral PFC. To quantify the amount of sample

object information carried by spiking, we used a linear classifier (see Methods for details)1.

This showed that spiking carried sample object information for about one second after the

sample disappeared. From the start of the delay period the decoder accuracy decreased steadily

towards chance (Figs 2A and S1). We corroborated this by measuring the distance between

neural population activity for all pairs of sample objects. That gave an average distance

between experimental conditions at every timepoint (see Methods). This showed that the dis-

tance between population MUA activity for different samples returned to pre-stimulus levels

(Figs 2B and S2). Interestingly, we found that this was not simply due to spiking returning to

pre-sample values. We determined this by training a classifier to discriminate between pre and

post sample spiking activity. We found that this classifier was consistently able to discriminate

between pre and post sample spiking activity over the delay (S3 Fig).

Population neural activity was robust to distractors

We found that when the mid-delay distractor was presented, neural trajectories diverged from

that of non-distractor trials (Figs 2C, S4). Once the distractor disappeared, the trajectories

quickly reconvened, indicating neural stability. This was true for all five delay lengths used (1–

4 s in five logarithmic steps, S4 Fig). The time course of trajectory reconvening was roughly

exponential with a time constant of ~200 milliseconds (Figs 2C, S4). We determined this by fit-

ting an exponential function to the recovery curves and measuring the inverse of the fitted

decay constants. This is consistent with prior observations that time constants in cortex peak

at this value in the PFC [28].

This all raises a couple of questions. 1. How can PFC networks support WM task perfor-

mance when, across the population, sample information in spiking is relatively weak? 2. How

do PFC networks achieve the stability to recover from distractors? To answer these questions,

Fig 1. Electrode location and task structure. Utah arrays were implanted bilaterally in dorsolateral PFC (dlPFC) and

ventrolateral PFC (vlPFC). Animal performed a distracted delayed match-to-sample task. Each trial began with visual

fixation on the middle of the screen for 0.5s. Fixation was maintained throughout the trial until the behavioral

response. The delay length was parametrically varied from 1–4 s in five logarithmic steps, randomly chosen each trial.

At mid-delay a neutral distractor (1 of 2 possible objects never used as samples) was presented randomly on 50% of

trials. During the multi-choice test the NHP was allowed to freely saccade between all objects on the screen. The final

choice was indicated by fixating on it for at least one second.

https://doi.org/10.1371/journal.pcbi.1010776.g001
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we used RNN modeling and neural network theory. As we will show, the two questions share a

common answer: STSP.

RNNs with STSP are more brain-like

RNNs with and without STSP were able to successfully perform the object delayed match to

sample task. However, only the RNNs with STSP did so with activity that was similar to that

seen in the actual PFC. Our main hypothesis space consisted of four different kinds of RNNs:

two with fixed synaptic weights (fixed after training) and two with STSP. The two fixed-weight

networks were ‘vanilla’ RNNs. They differed only in their activation functions. One used a

hyperbolic tan (tanh), the other used a rectified linear (ReLU). We will refer to these fixed syn-

apse networks as FS-tanh and FS-relu respectively. We choose these two activation functions

because they represent two sides of a spectrum. Tanh units can become unresponsive for very

Fig 2. a) Left: training a decoder to predict sample identity given a neural trajectory. Right: decoder accuracy on held-out trials for distracted vs. undistracted

trials b) Left: comparing trial-averaged trajectories corresponding to different samples. Right: average pairwise distance in state-space between trajectories

elicited by all possible sample images. Normalized by the average pre-stim distance. c) Left: comparing trial-averaged distracted vs. non-distracted trajectories

through neural state space. Right: distance in state space between distracted vs. non-distracted trajectories throughout the trial. Shown are trials with a delay of

four seconds.

https://doi.org/10.1371/journal.pcbi.1010776.g002
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large inputs (i.e saturate) while ReLU units cannot. Both activations are commonly used

throughout computational neuroscience and machine learning [29,30]. They lead RNNs to

prefer one strategy over another for performing a task. ReLU units are ideal for forming line

attractors, while tanh units are ideal for forming point attractors [30]. Additionally, we also

trained Long-Short-Term-Memory networks [31] (LSTMs) and Gated Recurrent Unit net-

works [32] (GRUs). These two networks are popular in machine learning and are well-known

for their excellent performance capabilities. However, they are not biologically-plausible mod-

els of the brain [33], and thus serve as a useful tool for dissociating our measures of brain-simi-

larity and robustness.

The synaptic weights for the fixed-synapse networks are only adjusted during training.

After training, they are untouched. The other two models use STSP to adjust synaptic weights

during each trial. This represents the distinction between long-term and short-term memory.

Long-term memory is acquired over the course of task-optimization and remains fixed

throughout the trial. Short-term memory changes during the trial and reflects the contents of

working memory. We reset the state of the plastic synapses at the beginning of each trial.

One RNN with STSP was based on a model introduced by Mongillo et al [19]. The model

uses a set of simplified equations for synaptic calcium dynamics to endow the RNN with STSP.

The Mongillo model adjusts synaptic weights based on presynaptic neural activity. For this

reason we will call it PS-pre. The other RNN with STSP was introduced by Kozachkov et al.

[34] and adjusts synaptic weights in a way that depends on both the pre and post synaptic neu-

ral activity. For this reason, we will call it PS-hebb. It uses excitatory anti-Hebbian and inhibi-

tory Hebbian mechanisms to stabilize the RNN [34].

All models were trained with backpropagation-through-time using a standard deep learn-

ing library [35]. While the FS models were trained without any explicit constraints, the PS

models needed to be parameterized to ensure they satisfy certain properties throughout train-

ing. In particular, the PS-pre model had separate excitatory and inhibitory neurons. The weight

matrix therefore needed to be parameterized so that these populations always remained sepa-

rate (see Methods). Likewise, for PS-hebb the weights were parameterized so the network

remained stable throughout training. To ensure that our results did not depend on the particu-

lar choice of training hyperparameters, we trained the six models under a wide range of hyper-

parameter settings. These hyperparameters were: the degree of activity regularization, degree

of parameter regularization during training, and the size of the network (called hidden size,

referring to the number of hidden units). Roughly 2000 models were trained in total. We refer

the reader to the Methods section for more details on the models and the training process. As

in the analysis of the experimental data, we used a decoder to read out sample object informa-

tion over time. We did this for both the fixed-synapse and plastic-synapse models. For the

fixed-synapse RNNs we trained the decoder on trajectories from the spike rates. For the STSP

RNNs, we trained two separate decoders: one on the spike-rates and one on the synaptic

weights. In the LSTM and GRU models, there are no variables which can clearly be denoted as

“STSP weights” (since they are not biological models), so we exclude them from this analysis.

In all models, sample presentation elicited a large increase in decoding accuracy (Figs 3 and

4). Spike rate decoding of sample information in the fixed-synapse models remained high

throughout the memory delay. This is in sharp contrast to the actual PFC MUA data. The PFC

MUA showed a large drop in sample object decoding accuracy once the sample disappeared

and especially for delays longer than one second. This was mirrored in the STSP models (Figs

3 and 4). However, sample decoding accuracy on the synaptic weights for the STSP models

remained high over the entire delay, including longer delays (Fig 4).

This raises the question: do STSP models better capture the dynamics of the real PFC? We

addressed this question by comparing the similarity of each of the ~2000 trained models to the
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actual neural data. To quantify the similarity between model and brain, we used the Pearson

correlation between the decoder accuracy curves for the real neural data and the RNNs (Fig 3,

bottom row). We did this for each delay length and averaged the correlation scores to get a

final brain-RNN correlation value for each model. We did this analysis with and without the

LSTM and GRU networks, to dissociate the potential performance improvements of LSTM/

GRU with their brain-similarity. The results without these networks are shown in Fig 5, the

results with are shown in S8 Fig.

This analysis revealed that the PS-hebb model was the most similar to the brain across a

wide range of hyperparameters (Fig 5, left column). Interestingly, for a particular choice of

parameter regularization, this analysis also revealed that increasing the amount of activity reg-

ularization led to a corresponding increase in brain-similarity for the PS-pre model (Fig 5, top

left panel). Within the fixed-synapse model class, the models that were most brain-like across

all hyperparameter values showed a marked dip in neural decoder accuracy during the delay

period—as expected. However, this dip was far less pronounced than in the models with plastic

synapses. The result was that models without synaptic plasticity had a lower similarity to the

actual neural data.

An important difference between measuring information in RNNs and brains is that we

subsample neurons in the brain. It is possible that the decoding accuracy curves are affected by

this subsampling. To control for this, we repeated the above analysis while subsampling at four

different values. We randomly picked 0.01%,1.0%,10.0% and 100.0% of the neurons in each

RNN to decode from. The result was that STSP networks were more brain-like and this did

not change because of subsampling (S5 Fig).

STSP increases structural robustness

The two models with STSP were almost always more structurally robust than the models with

fixed synaptic weights (Fig 5, middle column). We examined how the performance accuracy of

the trained network varied as we randomly ablated a varying fraction of synaptic weights. We

Fig 3. Example neural activations and their corresponding decoder curves. Top row: neural activity corresponding to a single trial condition. The leftmost

panel is the actual neural data. The other panels are artificial neural networks, whose details are described in the main text. Bottom row: decoder accuracy

curves corresponding to the neural activations in the top row.

https://doi.org/10.1371/journal.pcbi.1010776.g003
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found that the STSP network’s performance on the task remained high even when as many as

half of the synapses were ablated. By contrast, the fixed-synapse models were highly sensitive

to synaptic ablation. Their performance severely degraded even with ablation of only 10–20%

of the synapses.

We repeated this analysis over all the models trained with different hyperparameters. From

each model we defined two measurements to quantify robustness. The first was robustness to

structural noise. The second was the robustness to synaptic noise. Both measurements were

calculated in a similar way. We took the weighted average RNN performance over all the noise

values tested. We weighed each term in the sum by the corresponding noise value. The reason

for this weighting scheme is simple. If the RNN performance is high when the noise is low, this

does not tell us much about robustness. However, if the RNN performance is high when the

noise is high, this does indicate robustness. Thus, a natural measure of robustness is the prod-

uct of noise and performance.

This analysis revealed that the PS-hebb and PS-pre models were more robust to structural

perturbations than the fixed synapse networks across a wide range of hyperparameters (Figs 5

and S8). Interestingly, the fixed synapse networks tended to be more robust to process noise

(although always less brain-like). We repeated this analysis with the LSTM and GRU networks.

Fig 4. Decoding accuracy for RNNs. a) A decoder is trained to predict the sample label from RNN neural trajectories, for the fixed-synapse RNNs. a1) The

accuracy of the trained decoder as a function of time from sample onset for FS-tanh. a2) The same plot as (a1), for FS-relu. b) Two decoders are trained on the

neural and synaptic trajectories separately. Black lines indicate neural decoding, purple indicate synaptic decoding. b1) Neural and synaptic decoding accuracy

as a function of time for PS-pre. b2) Same plot as in (b1) but for PS-hebb.

https://doi.org/10.1371/journal.pcbi.1010776.g004
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This revealed that, out of the six kinds of networks, the LSTM and GRU networks were the

most robust to structural noise and process noise across a wide range of hyperparameters (S8

Fig). However, they were almost always less brain-like than the PS-hebb and PS-pre models.

This suggests that brain-similarity does not imply robustness, and vice versa. To better under-

stand how the different trained models achieved WM that was robust to distractors we investi-

gated how these networks organized their activity in state-space.

We found that the fixed-synapse RNNs learned to perform the task by using simple attrac-

tors. To visualize these attractors, we projected the high-dimensional RNN activity into a

lower dimensional space using Linear Discriminant Analysis (Fig 6). We reasoned that this

projection would give us the clearest visualization of the underlying state space attractors. For

the plastic-synapse RNNs, we did this for both the neural and synaptic state-space. To better

quantify the attractor properties of these networks, we measured the distances between state-

space trajectories of the most brain-like models, as we did for the neural data (Fig 7). This

revealed different trajectories for different sample objects. Each trajectory settled into a steady

state that was unique for each sample, indicating the presence of attractors (Figs 6 and 7).

Fig 5. Results of the hyperparameter sweep across number of hidden neurons, parameter regularization strength, and activity regularization strength.

Each row corresponds to a different parameter regularization (1e-4,1e-3,1e-2). Each column corresponds to a different observed quantity (brain-likeness,

structural robustness, process robustness). Each subplot is a 10x10 grid, corresponding to 10 possible hidden size / activity regularization configurations.

Shown in each square of that grid is the most brain-like/robust network corresponding to that particular hyperparameter configuration. LSTM and GRU

networks were excluded (see S8 Fig for corresponding figure when they are included). Each color corresponds to a different network.

https://doi.org/10.1371/journal.pcbi.1010776.g005
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Comparison between trials with and without a distractor showed that the distractor temporar-

ily knocked trajectories out of the attractor state. These trajectories quickly returned to the

pre-distractor attractor state. This is how the fixed-synapse RNNs achieve robustness to the

distractor. Once the neural trajectories were ‘captured’ by the appropriate attractor, they

remained fixed there and can return there after being perturbed. In terms of neural activity

this means that the spike rates stayed elevated across the delay period corresponding to the

sample identity. In other words, these models achieve robust WM through persistent neural

activity as a consequence of attractor dynamics, as observed in many prior models.

Fig 6. Dimensionality reduced space plots for the most brain-like models. Time-averaged RNN activity during the sample-period as well as 500ms before

the end of the delay period. Linear Discriminant Analysis (LDA) was used to project the data into three-dimensions. To account for differences in training/test

splits, an Orthogonal Procrustes operation was used to rotationally align the sample and delay period activity. Colors denote sample IDs. Fixed synapse models

have activity organized around simple attractors in state space. There is one attractor for each sample ID. Plastic synapse models exhibit high sample-

separability in synaptic state space, and limited separability in the neural state space during the delay period. Similarly, PFC exhibited higher neural

discriminability during the sample than during the delay period.

https://doi.org/10.1371/journal.pcbi.1010776.g006
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The models with STSP did not achieve robust WM through persistent neural spiking, but

instead relied on the STSP. We again examined trajectories using spikes rates from the STSP

models (Fig 8). The neural distance between trajectories for different samples increased during

sample presentation but then dropped back down near zero during the delay, especially longer

delays. This mirrors the results from actual MUA activity in the PFC (see above). This stands

in contrast to the fixed-synapse models (Fig 7), in which strong persistent spiking occurred.

However, unlike the fixed-synapse models, in the STSP models we could measure trajectories

and distances in synaptic state-space. This is analogous to using spike rates but instead we mea-

sure synaptic weights over time (as was done in Masse [36]). This revealed that trajectories for

different samples in synaptic state-space remained elevated across the delay period (Fig 8),

indicating sample information was being maintained by STSP even when spiking levels were

low.

Fig 7. Distances between neural trajectories within a sample condition and between sample conditions, for fixed synapse RNNs. All models used were the

most ‘brain-like’, as determined by the methodology in section “RNNs With STSP are More Brain-Like”. a) Cartoon of trial-averaged RNN trajectories

corresponding to two different sample conditions for the fixed-synapse RNNs. a1) Average pairwise distance between trajectories on different sample

conditions, for the fixed synapse network with tanh activation (FS-tanh). a2) The same plot as in a1, but for FS-relu. b1) The average distance between

distracted and undistracted trajectories. Average taken over all sample conditions. Results shown for FS-tanh. b2) Same results as in b1, but for FS-relu.

https://doi.org/10.1371/journal.pcbi.1010776.g007
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As we found in the experimentally recorded MUA, in the STSP models the spike rate trajec-

tories between distractor and non-distractor trials increased during distractor presentation but

then quickly decreased back to pre-distraction levels (Fig 8). By contrast, the distractor had a

longer lasting effect in synaptic weights for the STSP models (Fig 8). These plots show the syn-

aptic distance decreasing on a longer timescale than the neurons. Since the synaptic distance

decreased on a timescale several times larger than the intrinsic time-constant of synapses, this

indicates that the neurons and synapses interact in a way that increases their effective time

constant [29]. This phenomenon is also found in simple linear systems, where a judicious

choice of weight matrix (for example a marginally stable weight matrix) can lead to an

increased effective time constant [29]. This could also potentially increase the susceptibility of

the STSP networks to distractions. However, notably, we found that this was not the case. This

Fig 8. Distances between neural and synaptic trajectories within a sample condition and between sample conditions, for plastic synapse RNNs. Black lines

correspond to neural trajectories, purple lines correspond to synaptic trajectories. a) Cartoon of trial-averaged neural and synaptic RNN trajectories corresponding to two

different sample conditions for the plastic-synapse RNNs. a1) Average pairwise distance between neural and synaptic trajectories on different sample conditions, for PS-

pre. a2) The same plot as in a1, but for PS-hebb. b1) The average distance between distracted and undistracted trajectories. Average taken over all sample conditions.

Results shown for PS-pre. b2) Same results as in b1, but for PS-hebb.

https://doi.org/10.1371/journal.pcbi.1010776.g008
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increased time constant did not affect the ability of the STSP networks to perform the task.

The STSP networks performed at a high level (above 90% accuracy) on both distractor and

non-distractor trials.

Discussion

We found that while RNNs with and without STSP showed robustness against distractors, the

RNNs with STSP were more brain-like. We also found that RNNs with STSP were more struc-

turally robust than RNNs without STSP. STSP models showed graceful degradation to synaptic

loss. In the STSP models, decodability of spike rates decreased during the memory delay (espe-

cially longer delays). Importantly, the WMs could be decoded from the synaptic weights. This

was in contrast to the RNNs without STSP, where spike-rate decodability remained high over

the entire memory delay. This high spike-rate decodability did not match observations of

actual spiking recorded from the PFC. In sum, STSP can not only maintain information over

gaps of no spiking, it also adds functional advantages. And, notably, adding STSP to RNNs

makes them exhibit brain-like behavior.

Some forms of STSP worked better than others. We found that purely Hebbian STSP mod-

els were difficult to train, in agreement with previous studies [37]. By contrast, our anti-Heb-

bian STSP model, PS-hebb, (which reduced synaptic weights when spiking was too correlated)

was successful and did not require any external weight clipping. We and others have found

that anti-Hebbian STSP plays a crucial role in network stability and function [34,38]. And like

others, we found that the synaptic weights in the PS-pre model had to be limited to a certain

range to maintain stability and trainability [19,36]. This assumption is biologically plausible, as

biological synapses are limited in the amount of resources that can be recruited by a presynap-

tic spike [19,39].

We found that the LSTM and GRU networks tended to be more robust to structural pertur-

bations as well as process noise than the other networks. However, they were less brain-like

than the STSP networks. This suggests that STSP may carry additional functional advantages

in the brain beyond robustness, such as energy-efficiency (spikes are metabolically expensive).

We also found that the STSP networks were more structurally robust than the fixed-synapse

networks. This suggests that fixed-synapse networks require a “fine-tuning” of their synaptic

weights, to appropriately mold their attractor landscape in a way that subserves the demands

of the WM task. By contrast, we found that fixed-synapse networks tended to be more robust

to process noise than the STSP networks. Given the superior brain-similarity of the STSP net-

works, this suggests that the brain may optimize for higher structural robustness as opposed to

higher robustness to process noise. Indeed, the turnover rate of dendritic synapses in sensory

and motor brain areas is as high as 40% every five days. Further exploring this link between

STSP, structural robustness, and brain-similarity is an interesting direction for future studies.

The STSP models are in line with a variety of studies suggesting that cognition is more com-

plex than steady attractor states. For example, sustained attention was long-thought to depend

on attractor-like steady-state spiking. However, like studies of WM, this may have been an arti-

fact of averaging spiking across trials [11,14]. Examination of sustained attention in real time

(on single trials) has shown that, behaviorally, attention waxes and wanes rhythmically at theta

[40]. There is a corresponding waxing and waning of spiking synchronized to LFP theta oscil-

lations. Likewise, neural correlates of WM show sparse bursts of spiking linked to oscillatory

dynamics when examined in real time [14,15].

Whether WM relies on persistent attractor dynamics (i.e., persistent spiking) alone or

sparse spiking combined with STSP is of current interest [9–11,41,42]. A recent computational

study has provided insight. Masse et al trained a WM model with STSP [36,43]. They found
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that there was sparse spiking when WMs were being simply maintained and more spiking

when WMs were being used and manipulated. This is consistent with other STSP-based WM

models. For example, Lundqvist et al [14], found that spiking increases when WMs are being

read out for use. This makes sense because the brain cannot read information from the synap-

ses directly. Spikes are needed to “ping” the network to read information from the synaptic

weights. Thus, models with STSP can work for both modes: Sparse spiking when WMs are

being maintained and more spiking when WMs are being used.

It is also worth noting that studies that report higher levels of memory-delay spiking tend

to be those that used spatial delayed response tasks. Spatial delayed response may involve more

motor inhibition than WM per se [15]. The animal knows the forthcoming behavioral

response and is inhibiting it while waiting for a “go” signal. It is like revving the engine while

keeping your foot on the brake. By contrast, in WM tasks like delayed match-to-sample (i.e.,

the task used in this study), the behavioral response is not known until after the memory delay.

They involve holding information for further computation, not inhibiting a behavioral

response. Tasks like delayed match-to-sample are well known to produce lower levels of mem-

ory delay spiking [14,15,36,44] and thus require more than neural attractor states alone. That

being said, replication of our findings in other animals and similar tasks is needed to

strengthen our claims. Furthermore, while we limited ourselves to single-circuit WM mecha-

nisms, it will be useful in future work to explore the potential role of other brain areas (such as

hippocampus), other forms of synaptic plasticity, other computational mechanisms (such as

rotational dynamics [45]) and perhaps even different cell types [46].

The structural robustness and provable stability [34] added by PS-hebb, the most brain-like

network we trained, is critical not just to WM but to top-down control in general. A control

system which is overly sensitive to perturbations (e.g distractors) would quickly propagate

these disturbances to the rest of the brain, leading to errant behavior. Moreover, robustness

and stability are intimately tied to modularity [47,48]. Stable networks can be linked with

other stable networks in a way that preserves stability. Without that property, the whole net-

work must be retrained when new modules are added to subserve complex or composite

behavior. Our results suggest that STSP has a dual role. It can maintain information while

simultaneously ensuring robustness in an energy-efficient manner [9]. We speculate that sta-

bility could be a key component to understanding the way specialized modules in the brain

dynamically cooperate to form cohesive perceptions, plans, and actions.

Methods

Ethics statement

The non-human primate subject used in our experiments was a male rhesus macaque monkey

(Macaca mulatta), aged 17. All procedures followed the guidelines of the Massachusetts Insti-

tute of Technology Committee on Animal Care and the National Institutes of Health (protocol

approval number: 0322-029-25).

Subject and task

As described in the main text, Utah arrays were implanted bilaterally in dorsolateral PFC

(dlPFC) and ventrolateral PFC (vlPFC). The animal performed a distracted delayed match-to-

sample task. Each trial began with visual fixation on the middle of the screen for 0.5s. Fixation

was maintained throughout the trial until the behavioral response. The delay length was para-

metrically varied from 1–4 s in five logarithmic steps, randomly chosen each trial. At mid-

delay a neutral distractor (1 of 2 possible objects never used as samples) was presented ran-

domly on 50% of trials. During the multi-choice test the animal was allowed to freely saccade
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between all objects on the screen. The final choice was indicated by fixating on it for at least

one second.

Data analysis methods

Distances between neural trajectories

All neural spiking data was first smoothed using a 10ms Gaussian kernel. We refer to the

smoothed spiking data as the firing rate. To quantify the difference in population activity

between different conditions, we computed the distance between neural trajectories. We

define a neural trajectory as a vector of firing rates for N recorded neurons evolving in time.

For the distractor vs non-distractor comparison, denote xs;d;lt 2 ½0;1Þ
N

the neural trajec-

tory at time t on trial l2{1,. . .,L} for stimulus identity s2{1,. . .,S} and where d2{0,1} denotes

the presence or absence of a distractor in the delay phase. We first computed trial averages as

�xs;d
t ¼

1

L

XL

l¼1

xs;d;l
t

Then for each s we computed the distance between distracted and non-distracted trajecto-

ries, using the Euclidean norm, and took the average over stimuli:

ddist
t ¼

1

S

XS

s¼1

jj�xs;1
t � �xs;0

t jj
2

For the comparison between trajectories of different stimulus identities, we used only non-

distractor trials (d = 0). We first averaged over trials as above for each stimulus to get

�xs
t ¼

1

L

XL

l¼1

xs;0;l
t

and calculated the mean distance between each pair of stimuli as:

dstim
t ¼

2

SðS � 1Þ

X

1�i<j�S

jj�xi
t � �xj

tjj
2

Confidence intervals for trajectory distances

As our final measurement we calculated the mean over six experimental sessions for both ddist
t

and dstim
t . To quantify uncertainty that captures both the session and trial variability, we used a

non-parametric multi-level bootstrap. Briefly, for b21,. . .,B with B = 1000, we first sampled

with replacement over sessions (that is, we randomly selected a session with replacement E
times, where E is the total number sessions in the dataset—in our case E = 6), and then for

each resampled session, we resampled trials with replacement in the trial-average steps

described above, yielding the bootstrap samples ddist;b
t and dstim;b

t . We took the 2.5th and 97.5th

percentiles across b as our lower and upper values for the 95% confidence interval.

Sample decoding

For sample decoding experiments, we first smoothed trials (as above, with 10ms Gaussian ker-

nel), and then took average rates per neuron in 50ms time bins and attempted to decode sam-

ple type from the population activity at each time point. For our classifier, we used a linear
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Support Vector Machine and standard regularization (C = 1 in SciKit Learn). For each session we

used a 10-fold cross-validation to calculate decoding accuracy. (That is, we held out 10% of trials

as a test set, and trained on the remaining 90% of the data. We did this for 10 non-overlapping

test sets, and then took the average test accuracy). We performed a decoding analysis on each ses-

sion separately, and then took the average and standard error across sessions for our result.

Change from baseline decoding

We smoothed trials and took average rates as in the sample decoding above. Then, for a given sam-

ple type, we took the population activity from 400-350ms before the stimulus (or distractor) and

attempted to decode subsequent population activity against this baseline activity. We performed

10-fold cross-validation as above for calculating test accuracy, and calculated the average perfor-

mance over samples for each session. Plots show the average and standard error across sessions.

Sensitivity to smoothing and bin size

Throughout our data analysis we used a 10ms Gaussian kernel to produce firing rates, and in

the decoding analysis, we used the mean firing rate in 50ms time bins. To ensure our trajectory

distance results did not depend specifically on the choice of Gaussian kernel, we examined tra-

jectory distances using 5, 10, and 15ms Gaussian kernels (S6 Fig). For the distance between tra-

jectories with different sample identities, we took the mean distance within the sample

presentation period (0, 0.5s) and the 100ms preceding test time (ttest−0.1s, ttest), for each delay

and each session, and then compared the sample distances and test distances. Similarly, for dis-

tances between distracted and non-distracted trajectories, we took the mean distance within

the distractor presentation (tdist, tdist+0.25s), and the (ttest−0.1s, ttest), again for each delay and

each session. To ensure our decoding results did not depend on the specific choice of Gaussian

kernel and length of time bin, we again used 5, 10, and 15ms Gaussian kernels and additionally

used 20ms, 50ms, and 100ms time bins (S7 Fig). We then looked at sample decoding accuracy

in the non-distracted trials, for each combination of Gaussian kernel and time bin, again tak-

ing a mean for the sample presentation (0, 0.5s), and a mean for the pre-test period (ttest−0.1s,
ttest) for each delay and each session. The Wilcoxon signed-rank test was used for comparisons

between time epochs (e.g. Sample vs Pre-Test), with p-value corrections for multiple compari-

sons made using the Benjamini-Hochberg procedure (with α = 0.05).

Artificial neural network modelling

Fixed-Synapse (FS). For the fixed-synapse ANNs we used a ‘vanilla’ recurrent neural net-

work. Each neuron had an activation xi which we collected into a vector x2Rn such that (x)i =

xi. This vector was the state of the neural network at a given time t. The state evolves in time

according to the following differential equation:

t _x ¼ � xþ �ðWxþ I þ bþ NoiseÞ

Here τ is the time-constant of the network, which we set to 100 milliseconds. The function

ϕ(�) is a nonlinearity (e.g tanh, softplus, etc). The matrix W is the recurrent weight matrix of

the network, and determines how the different neurons interact with one another. The vector

I2Rn is the exogenous input into the recurrent neural network, and can vary with t. For our

purposes I will represent sensory information related to the task at hand. The vector b2Rn is a

fixed bias term. The noise will be defined shortly. To integrate the neural dynamics, we use the

standard Euler approximation scheme with fixed step-size of dt = 15 milliseconds. Defining

the ratio of dt

PLOS COMPUTATIONAL BIOLOGY Robust working memory through short-term synaptic plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010776 December 27, 2022 15 / 22

https://doi.org/10.1371/journal.pcbi.1010776


to τ as a � dt
t
, the approximated dynamics are:

xtþ1 ¼ ð1 � aÞxt þ a�ðWxt þ It þ bþ NoiseÞ

Here Noise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a� 1s2

recÞ
p

Nð0; 1Þ where σrec = 0.05 denotes the process noise and N(0,1)

denotes a draw from the standard normal distribution. For the FS-tanh networks, we use ϕ(�)

= tanh(�). For the FS-relu networks, we use ϕ(�) = ReLU(�) = max(0,�). Finally, we used an

affine readout for the network to produce the desired output for the task:

y ¼Woutxþ c

With the exception of W, all the parameters of the fixed-synapse networks were initialized

by drawing each element randomly from a gaussian distribution with mean zero and standard

deviation 1ffiffi
n
p . For the recurrent weight matrix W the elements were drawn from a gaussian dis-

tribution with mean zero, but standard deviation 0:9ffiffi
n
p . We found that this initialization achieved

faster training. At the beginning of each trial, the network state was initialized at the origin (i.e

x = 0).

Plastic synapse. PS-pre. This ANN was an implementation of the model originally intro-

duced by Mongillo et al [19] and then subsequently trained using deep learning techniques by

Masse et al [36]. Many of the details are similar to or exactly the same as in Masse et al. We go

through them here for completeness. As in the fixed-synapse model, we used Euler integration

to approximate the dynamics:

xtþ1 ¼ ð1 � aÞxt þ a�ðWxtutat þ It þ bÞ

Aside from the addition of two new variables ut and at (which we’ll define shortly) this is

the same model as the fixed-synapse model. This network consisted of 80% excitatory neurons

and 20% inhibitory neurons. To keep these populations separated throughout training, we

decomposed W as W ¼Wþ
recD where Wþ

rec is a matrix with non-negative entries and D is a

diagonal matrix whose iith entry is either 1 or -1, depending on whether neuron i is an excit-

atory or inhibitory neuron. To each synapse we associated a value a, for the fraction of avail-

able neurotransmitter and u, the amount of utilized neurotransmitter. These two variables

evolved according to:

_a ¼
1 � a
ta
� u tð Þa tð Þx tð Þdt

_u ¼
U � uðtÞ

tu
þ U 1 � uðtÞð Þx tð Þdt

here x(t) is the presynaptic activity at time t, τa is the time constant of available neurotransmit-

ter recovery, τu is the time constant of neurotransmitter utilization recovery. Half the synapses

in the network were facilitating, the other half was depressing. For the facilitating synapses, τa

= 200 ms, τu = 1500 ms and U = 0.15. For the depressing synapses, τa = 1500 ms, τu = 200 ms
and U = 0.45. Aside from Wþ

rec; the parameter initialization for PS-pre was the same as the

fixed synapse networks. For W, we found that initializing this matrix by drawing each element

from a Gaussian with mean 0 and standard deviation 1/N, where N is the number of hidden

neurons, and then randomly setting 50% of the weights to zero, worked the best. To ensure

that Wþ
rec stayed non-negative throughout training, we always ran each element through a rec-

tified linear function at the beginning of the trial. For each trial, the neural state vector x was

initialized at the origin. The facilitation variables a were all initialized at a = 1. The utilization
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variables were all initialized at u = 0. Throughout the trial, both facilitation and utilization

were clamped between 0 and 1. The readout from the network was affine, as in the fixed-syn-

apse networks.

PS-hebb. This excitatory anti-Hebbian / inhibitory Hebbian ANN was originally introduced

in Kozachkov et al [34]. As before, we use a Euler integration scheme to approximate the

dynamics:

xtþ1 ¼ ð1 � aÞxt þ a�ðWtxt þ It þ bþ NoiseÞ

Wtþ1 ¼ ð1 � agÞWt � aK � xxT

Here ϕ(�) = �. That is, ϕ is just the identity function. The parameter γ controls the degree of

weight decay, and is set to 1/200ms−1 unless otherwise noted. The matrix K is positive and pos-

itive-definite, and the symbol � denotes element-wise matrix multiplication (i.e Hadamard

product). During training we ensure positiveness and positive-definiteness of K by parameter-

izing it as:

K ¼ BTBþ 10� 2Oþ 10� 2I

Where Bij ¼ C2
ij, Oij = 1 and I is the identity matrix. Since BTB is positive semi-definite and

non-negative, the matrix O ensures that K is strictly positive, while the identity matrix ensure

that K is strictly positive-definite. The training is done on the matrix C. The output from the

network is affine, as in all the other networks. All the parameters are initialized the same way

as the fixed-synapse networks, except for C. The elements of this matrix are drawn from a uni-

form distribution between −0.5 and 0.5. At the beginning of each trial, the neural state vector x
and the weights W are initialized at the origin.

For all models, we tested how the numerical integration step-size impacted performance.

We used the hyperparameters corresponding to the most brain-like models. For each of the

models, we tested a smaller step-size (10ms) and a larger step-size (30ms). All the models

expect PS-hebb performed the same. PS-hebb was sensitive to the larger step-size, but insensi-

tive to the smaller step-size. This makes sense because the stability guarantees for PS-hebb were

proven in continuous-time. Smaller step-sizes provide more accurate approximations to the

precise continuous-time solution.

We found that the initialization of the parameters was important for all models. For the

fixed-synapse models, initializing the weight matrix with a slightly sub-critical matrix yielded a

good tradeoff between initial stability and expressivity. For the PS-pre model, using the log-

normal initialization provided by Masse worked well. When we experimented with different

initializations, training either failed or was slower. The same was true of the PS-hebb model—

different initialization schemes led to different training profiles in terms of model performance

and training time.

Task structure and training details for artificial neural networks. The basic task struc-

ture for the ANNs was the same as for the non-human primate. Each stimuli was encoded in a

one-hot vector. There was a total of 10 images (8 sample images, 2 distractor). The number of

input neurons going into the ANNs was 11 = 10 + 1: 10 input neurons for the stimuli and 1 for

a fixation signal. These input stimuli were collected into a vector mt, which changed with time

throughout the trial. This vector was fed into the ANNs via a trainable input weight matrix It =

Winmt. There were 11 = 8 + 2 + 1 output neurons leaving the ANNs, 8 for each sample image,

2 for the distractors and one as a fixation neuron. These neurons were collected into the vector

ydesired, which defined the desired output of the ANNs.
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The fixation is left on for 1000ms. At the end of the fixation period a randomly chosen sam-

ple image is presented for 500ms. Following the sample presentation period, the delay period

begins. The delay length is randomly chosen from 1.0 s, 1.41s, 2.0 s, 2.83 s and 4s.

On 50% of the trials a distractor is presented in the middle of the delay for 250ms. Follow-

ing the end of the delay period, the test period begins. During the test period the original sam-

ple image is presented as well as an off-target image for 500ms. At this point the RNN must do

two things: stop fixating (i.e make the output fixation neuron output a value of ‘0’) and indicate

the correct choice by making the output neuron corresponding to the sample image hold a

value of ‘1’.

We use a mean-squared loss to quantify network performance. For each trial we take the

network output for a period of 500ms after the test period ends and compute the loss:

L ¼
1

noutT

XtþT

t

jjy � ydesiredjj
2

We compute this loss for each trial in the batch, and then average over the batch to get a

total loss per batch. Our training and test sets consisted of 214 trials each. We used a batch size

of 256 to train and test. To train the networks we use the Adam optimizer with PyTorch stan-

dard parameters, a weight-decay value of 10−4 for all models unless otherwise specified. For

the FS models we use a learning rate of 10−3. For PS-pre we use a learning rate of 0.02. For PS-
hebb we use a learning rate of 0.01.

As described in the main text, we concluded a hyperparameter search to assess the general-

ity of our claims. For reasons we will describe shortly, the PS-hebb model was treated slightly

differently than the other three. For FS-relu, FS-tanh and PS-pre, we looped over:

• Hidden size = (100, 129, 166, 215, 278, 359, 464, 599, 774, 1000)

• Activity regularization = (1e-03, 3.59e-03, 1.29e-02, 4.64e-02, 1.66e-01, 5.99e-01, 2.15e+00,

7.74, 2.78e+01, 1e+02)

• Parameter regularization (weight decay) = (1e-4,1e-3,1e-2)

For activity regularization, we computed the squared sum of all the neuron activations in a

batch, and divided by the number of neurons and the number of time points. This quantity

was then scaled by the regularization strength parameter which was varied during the hyper-

parameter sweep. This scaled quantity was then added to the overall loss function. For the PS-
hebb model, we varied the hidden size by dividing the above hidden size values by 10 and find-

ing the nearest integer. The reason we could not increase the size of the model to 1000 is due

to GPU memory issues. The number of variables in PS-hebb model scales quadratically with

the number of neurons (because each synapse is also a variable).

To test network performance, we compute the ‘decision’ of the network as the index of the

output neuron which had the highest value. We compute the average accuracy of the network

by the following procedure:

1. In the 500ms following the end of the test period, we compare the network output to the

desired output for each time-point. We add up the number of times the network makes the

right decision in this period, and then divide over the number of time-points to get a sin-

gle-trial accuracy.

2. We compute this single-trial accuracy for all trials in the test set, and report the final net-

work accuracy on the task as the average single-trial accuracy, taken over the whole test set.
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Supporting information

For all supplementary figures, green indicator box denotes sample period, gray distractor

period, blue test period. Dotted lines indicate chance accuracy values

S1 Fig. Decoding sample identity from neural spiking, Classifier was a linear support vec-

tor machine. We evaluated performance on held-out data. Sample decoding accuracy drops to

approximately chance during the delay.

(TIF)

S2 Fig. Average distance between pairs of trajectories elicited by different samples.

(TIF)

S3 Fig. Decoding pre vs post sample presentation from neural spiking. Spiking contains

information about pre vs. post sample presentation through the delay. This indicates that neu-

ral spiking does not return to its pre-sample firing pattern following sample presentation.

(TIF)

S4 Fig. Average distance between distracted and non-distracted trajectories corresponding

to the same sample item.

(TIF)

S5 Fig. The effect of subsampling the RNNs on the brain-correlation index used. The quali-

tative result stays the same (PS-hebb is more brain-like on average), but the particular correla-

tion values change.

(TIF)

S6 Fig. Effect of using different smoothing parameters on trajectory distances. In all plots,

each pair of dots correspond to averages during two time epochs for a particular session and

delay time. In both cases the Pre-Test epoch used was 100ms preceding test time. All compari-

sons were statistically significant (p< 1e-3, Wilcoxon signed-rank test). a) Average distance

between neural trajectories for different sample IDs for different smoothing parameters. Com-

parison is between Sample epoch (blue) and Pre-Test epoch (red). b) Average distance

between neural trajectories for distracted and non-distracted trials for different smoothing

parameters. Comparison is between Distractor epoch (blue) and Pre-Test epoch (red).

(TIF)

S7 Fig. Average decoding accuracy on non-distractor trials for different smoothing param-

eters and different time bin sizes. Comparison is between Sample epoch (blue) and Pre-Test

epoch (red). In all plots, each pair of dots correspond to averages during two time epochs for a

particular session and delay time. The Pre-Test epoch used was 100ms preceding test time. All

comparisons were statistically significant (p< 1e-3, Wilcoxon signed-rank test).

(TIF)

S8 Fig. The results of the hyperparameter sweep in the main text, including the LSTM and

GRU networks.

(TIF)

Author Contributions

Conceptualization: Leo Kozachkov, John Tauber, Mikael Lundqvist, Scott L. Brincat,

Jean-Jacques Slotine, Earl K. Miller.

Data curation: Mikael Lundqvist, Scott L. Brincat.

PLOS COMPUTATIONAL BIOLOGY Robust working memory through short-term synaptic plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010776 December 27, 2022 19 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010776.s008
https://doi.org/10.1371/journal.pcbi.1010776


Formal analysis: Leo Kozachkov, John Tauber, Jean-Jacques Slotine.

Funding acquisition: Earl K. Miller.

Investigation: Leo Kozachkov.

Methodology: Earl K. Miller.

Project administration: Earl K. Miller.

Resources: Earl K. Miller.

Validation: John Tauber.

Visualization: Leo Kozachkov, John Tauber, Earl K. Miller.

Writing – original draft: Leo Kozachkov, John Tauber, Earl K. Miller.

Writing – review & editing: Leo Kozachkov, John Tauber, Mikael Lundqvist, Scott L. Brincat,

Earl K. Miller.

References

1. Baddeley A. Working memory. Science. 1992; 255: 556–559. https://doi.org/10.1126/science.1736359

PMID: 1736359

2. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001; 24:

167–202. https://doi.org/10.1146/annurev.neuro.24.1.167 PMID: 11283309

3. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorso-

lateral prefrontal cortex. J Neurophysiol. 1989; 61: 331–349. https://doi.org/10.1152/jn.1989.61.2.331

PMID: 2918358

4. Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995; 14: 477–485. https://doi.org/10.

1016/0896-6273(95)90304-6 PMID: 7695894

5. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971; 173: 652–654.

https://doi.org/10.1126/science.173.3997.652 PMID: 4998337

6. Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay peri-

ods in the cerebral cortex. Cereb Cortex N Y N 1991. 1997; 7: 237–252. https://doi.org/10.1093/cercor/

7.3.237 PMID: 9143444

7. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities.

Proc Natl Acad Sci U S A. 1982; 79: 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 PMID:

6953413

8. Kamiński J, Rutishauser U. Between persistently active and activity-silent frameworks: novel vistas on

the cellular basis of working memory. Ann N Y Acad Sci. 2020; 1464: 64–75. https://doi.org/10.1111/

nyas.14213 PMID: 31407811

9. Stokes MG. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends

Cogn Sci. 2015; 19: 394–405. https://doi.org/10.1016/j.tics.2015.05.004 PMID: 26051384

10. Barbosa J, Stein H, Martinez RL, Galan-Gadea A, Li S, Dalmau J, et al. Interplay between persistent

activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory.

Nat Neurosci. 2020; 23: 1016–1024. https://doi.org/10.1038/s41593-020-0644-4 PMID: 32572236

11. Lundqvist M, Herman P, Miller EK. Working Memory: Delay Activity, Yes! Persistent Activity? Maybe

Not. J Neurosci. 2018; 38: 7013–7019. https://doi.org/10.1523/JNEUROSCI.2485-17.2018 PMID:

30089640

12. Pasternak T, Greenlee MW. Working memory in primate sensory systems. Nat Rev Neurosci. 2005; 6:

97–107. https://doi.org/10.1038/nrn1603 PMID: 15654324

13. Cromer JA, Roy JE, Miller EK. Representation of Multiple, Independent Categories in the Primate Pre-

frontal Cortex. Neuron. 2010; 66: 796–807. https://doi.org/10.1016/j.neuron.2010.05.005 PMID:

20547135

14. Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and Beta Bursts Underlie

Working Memory. Neuron. 2016; 90: 152–164. https://doi.org/10.1016/j.neuron.2016.02.028 PMID:

26996084

15. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018; 100: 463–475. https://doi.org/

10.1016/j.neuron.2018.09.023 PMID: 30359609

PLOS COMPUTATIONAL BIOLOGY Robust working memory through short-term synaptic plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010776 December 27, 2022 20 / 22

https://doi.org/10.1126/science.1736359
http://www.ncbi.nlm.nih.gov/pubmed/1736359
https://doi.org/10.1146/annurev.neuro.24.1.167
http://www.ncbi.nlm.nih.gov/pubmed/11283309
https://doi.org/10.1152/jn.1989.61.2.331
http://www.ncbi.nlm.nih.gov/pubmed/2918358
https://doi.org/10.1016/0896-6273%2895%2990304-6
https://doi.org/10.1016/0896-6273%2895%2990304-6
http://www.ncbi.nlm.nih.gov/pubmed/7695894
https://doi.org/10.1126/science.173.3997.652
http://www.ncbi.nlm.nih.gov/pubmed/4998337
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1093/cercor/7.3.237
http://www.ncbi.nlm.nih.gov/pubmed/9143444
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1111/nyas.14213
https://doi.org/10.1111/nyas.14213
http://www.ncbi.nlm.nih.gov/pubmed/31407811
https://doi.org/10.1016/j.tics.2015.05.004
http://www.ncbi.nlm.nih.gov/pubmed/26051384
https://doi.org/10.1038/s41593-020-0644-4
http://www.ncbi.nlm.nih.gov/pubmed/32572236
https://doi.org/10.1523/JNEUROSCI.2485-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30089640
https://doi.org/10.1038/nrn1603
http://www.ncbi.nlm.nih.gov/pubmed/15654324
https://doi.org/10.1016/j.neuron.2010.05.005
http://www.ncbi.nlm.nih.gov/pubmed/20547135
https://doi.org/10.1016/j.neuron.2016.02.028
http://www.ncbi.nlm.nih.gov/pubmed/26996084
https://doi.org/10.1016/j.neuron.2018.09.023
https://doi.org/10.1016/j.neuron.2018.09.023
http://www.ncbi.nlm.nih.gov/pubmed/30359609
https://doi.org/10.1371/journal.pcbi.1010776


16. Constantinidis C, Funahashi S, Lee D, Murray JD, Qi X-L, Wang M, et al. Persistent Spiking Activity

Underlies Working Memory. J Neurosci. 2018; 38: 7020–7028. https://doi.org/10.1523/JNEUROSCI.

2486-17.2018 PMID: 30089641

17. Wong K-F, Wang X-J. A Recurrent Network Mechanism of Time Integration in Perceptual Decisions. J

Neurosci. 2006; 26: 1314–1328. https://doi.org/10.1523/JNEUROSCI.3733-05.2006 PMID: 16436619

18. Lundqvist M, Herman P, Lansner A. Theta and Gamma Power Increases and Alpha/Beta Power

Decreases with Memory Load in an Attractor Network Model. J Cogn Neurosci. 2011; 23: 3008–3020.

https://doi.org/10.1162/jocn_a_00029 PMID: 21452933

19. Mongillo G, Barak O, Tsodyks M. Synaptic Theory of Working Memory. Science. 2008; 319: 1543–

1546. https://doi.org/10.1126/science.1150769 PMID: 18339943

20. Sandberg A, Tegnér J, Lansner A. A working memory model based on fast Hebbian learning. Netw Bris-

tol Engl. 2003; 14: 789–802. PMID: 14653503

21. Knoblauch A, Palm G, Sommer FT. Memory Capacities for Synaptic and Structural Plasticity. Neural

Comput. 2010; 22: 289–341. https://doi.org/10.1162/neco.2009.08-07-588 PMID: 19925281

22. Seeholzer A, Deger M, Gerstner W. Stability of working memory in continuous attractor networks under

the control of short-term plasticity. PLOS Comput Biol. 2019; 15: e1006928. https://doi.org/10.1371/

journal.pcbi.1006928 PMID: 31002672

23. Taher H, Torcini A, Olmi S. Exact neural mass model for synaptic-based working memory. PLOS Com-

put Biol. 2020; 16: e1008533. https://doi.org/10.1371/journal.pcbi.1008533 PMID: 33320855

24. Bouchacourt F, Buschman TJ. A Flexible Model of Working Memory. Neuron. 2019; 103: 147–160.e8.

https://doi.org/10.1016/j.neuron.2019.04.020 PMID: 31103359

25. Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neu-

rosci. 2000; 3: 1184–1191. https://doi.org/10.1038/81460 PMID: 11127836

26. Jacob SN, Nieder A. Complementary Roles for Primate Frontal and Parietal Cortex in Guarding Work-

ing Memory from Distractor Stimuli. Neuron. 2014; 83: 226–237. https://doi.org/10.1016/j.neuron.2014.

05.009 PMID: 24991963

27. Barak O, Tsodyks M. Working models of working memory. Curr Opin Neurobiol. 2014; 25: 20–24.

https://doi.org/10.1016/j.conb.2013.10.008 PMID: 24709596

28. Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, et al. A hierarchy of intrinsic time-

scales across primate cortex. Nat Neurosci. 2014; 17: 1661–1663. https://doi.org/10.1038/nn.3862

PMID: 25383900

29. Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural

Systems. MIT Press; 2005.

30. Maheswaranathan N, Williams A, Golub M, Ganguli S, Sussillo D. Universality and individuality in neural

dynamics across large populations of recurrent networks. Advances in Neural Information Processing

Systems. Curran Associates, Inc.; 2019. Available: https://proceedings.neurips.cc/paper/2019/hash/

5f5d472067f77b5c88f69f1bcfda1e08-Abstract.html

31. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997; 9: 1735–1780. https://

doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

32. Cho K, van Merrienboer B, Bahdanau D, Bengio Y. On the Properties of Neural Machine Translation:

Encoder-Decoder Approaches. arXiv; 2014. https://doi.org/10.48550/arXiv.1409.1259

33. O’Reilly RC, Frank MJ. Making Working Memory Work: A Computational Model of Learning in the Pre-

frontal Cortex and Basal Ganglia. Neural Comput. 2006; 18: 283–328. https://doi.org/10.1162/

089976606775093909 PMID: 16378516

34. Kozachkov L, Lundqvist M, Slotine J-J, Miller EK. Achieving stable dynamics in neural circuits. PLOS

Comput Biol. 2020; 16: e1007659. https://doi.org/10.1371/journal.pcbi.1007659 PMID: 32764745

35. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,

High-Performance Deep Learning Library. Advances in Neural Information Processing Systems. Cur-

ran Associates, Inc.; 2019. Available: https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html

36. Masse NY, Yang GR, Song HF, Wang X-J, Freedman DJ. Circuit mechanisms for the maintenance and

manipulation of information in working memory. Nat Neurosci. 2019; 22: 1159–1167. https://doi.org/10.

1038/s41593-019-0414-3 PMID: 31182866

37. Orhan AE, Ma WJ. A diverse range of factors affect the nature of neural representations underlying

short-term memory. Nat Neurosci. 2019; 22: 275–283. https://doi.org/10.1038/s41593-018-0314-y

PMID: 30664767

PLOS COMPUTATIONAL BIOLOGY Robust working memory through short-term synaptic plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010776 December 27, 2022 21 / 22

https://doi.org/10.1523/JNEUROSCI.2486-17.2018
https://doi.org/10.1523/JNEUROSCI.2486-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30089641
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16436619
https://doi.org/10.1162/jocn%5Fa%5F00029
http://www.ncbi.nlm.nih.gov/pubmed/21452933
https://doi.org/10.1126/science.1150769
http://www.ncbi.nlm.nih.gov/pubmed/18339943
http://www.ncbi.nlm.nih.gov/pubmed/14653503
https://doi.org/10.1162/neco.2009.08-07-588
http://www.ncbi.nlm.nih.gov/pubmed/19925281
https://doi.org/10.1371/journal.pcbi.1006928
https://doi.org/10.1371/journal.pcbi.1006928
http://www.ncbi.nlm.nih.gov/pubmed/31002672
https://doi.org/10.1371/journal.pcbi.1008533
http://www.ncbi.nlm.nih.gov/pubmed/33320855
https://doi.org/10.1016/j.neuron.2019.04.020
http://www.ncbi.nlm.nih.gov/pubmed/31103359
https://doi.org/10.1038/81460
http://www.ncbi.nlm.nih.gov/pubmed/11127836
https://doi.org/10.1016/j.neuron.2014.05.009
https://doi.org/10.1016/j.neuron.2014.05.009
http://www.ncbi.nlm.nih.gov/pubmed/24991963
https://doi.org/10.1016/j.conb.2013.10.008
http://www.ncbi.nlm.nih.gov/pubmed/24709596
https://doi.org/10.1038/nn.3862
http://www.ncbi.nlm.nih.gov/pubmed/25383900
https://proceedings.neurips.cc/paper/2019/hash/5f5d472067f77b5c88f69f1bcfda1e08-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5f5d472067f77b5c88f69f1bcfda1e08-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.48550/arXiv.1409.1259
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1162/089976606775093909
http://www.ncbi.nlm.nih.gov/pubmed/16378516
https://doi.org/10.1371/journal.pcbi.1007659
http://www.ncbi.nlm.nih.gov/pubmed/32764745
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1038/s41593-019-0414-3
https://doi.org/10.1038/s41593-019-0414-3
http://www.ncbi.nlm.nih.gov/pubmed/31182866
https://doi.org/10.1038/s41593-018-0314-y
http://www.ncbi.nlm.nih.gov/pubmed/30664767
https://doi.org/10.1371/journal.pcbi.1010776


38. Tyulmankov D, Yang GR, Abbott LF. Meta-learning synaptic plasticity and memory addressing for con-

tinual familiarity detection. Neuron. 2021 [cited 24 Dec 2021]. https://doi.org/10.1016/j.neuron.2021.11.

009 PMID: 34861149

39. Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neuro-

transmitter release probability. Proc Natl Acad Sci. 1997; 94: 719–723. https://doi.org/10.1073/pnas.94.

2.719 PMID: 9012851

40. Helfrich RF, Fiebelkorn IC, Szczepanski SM, Lin JJ, Parvizi J, Knight RT, et al. Neural mechanisms of

sustained attention are rhythmic. Neuron. 2018; 99: 854–865. https://doi.org/10.1016/j.neuron.2018.07.

032 PMID: 30138591

41. Parthasarathy A, Herikstad R, Bong JH, Medina FS, Libedinsky C, Yen S-C. Mixed selectivity morphs

population codes in prefrontal cortex. Nat Neurosci. 2017; 20: 1770–1779. https://doi.org/10.1038/

s41593-017-0003-2 PMID: 29184197

42. Parthasarathy A, Tang C, Herikstad R, Cheong LF, Yen S-C, Libedinsky C. Time-invariant working

memory representations in the presence of code-morphing in the lateral prefrontal cortex. Nat Commun.

2019; 10: 4995. https://doi.org/10.1038/s41467-019-12841-y PMID: 31676790

43. Masse NY, Rosen MC, Freedman DJ. Reevaluating the Role of Persistent Neural Activity in Short-Term

Memory. Trends Cogn Sci. 2020; 24: 242–258. https://doi.org/10.1016/j.tics.2019.12.014 PMID:

32007384

44. Miller EK, Erickson CA, Desimone R. Neural Mechanisms of Visual Working Memory in Prefrontal Cor-

tex of the Macaque. J Neurosci. 1996; 16: 5154–5167. https://doi.org/10.1523/JNEUROSCI.16-16-

05154.1996 PMID: 8756444

45. Libby A, Buschman TJ. Rotational dynamics reduce interference between sensory and memory repre-

sentations. Nat Neurosci. 2021; 24: 715–726. https://doi.org/10.1038/s41593-021-00821-9 PMID:

33821001

46. Frontiers | Modeling Working Memory in a Spiking Neuron Network Accompanied by Astrocytes. [cited

12 Oct 2022]. Available: https://www.frontiersin.org/articles/10.3389/fncel.2021.631485/full

47. Slotine JE. Modular Stability Tools for Distributed Computation and Control. 2002.

48. Kozachkov L, Ennis M, Slotine J-J. Recursive Construction of Stable Assemblies of Recurrent Neural

Networks. ArXiv210608928 Cs Math Q-Bio. 2021 [cited 24 Dec 2021]. Available: http://arxiv.org/abs/

2106.08928

PLOS COMPUTATIONAL BIOLOGY Robust working memory through short-term synaptic plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010776 December 27, 2022 22 / 22

https://doi.org/10.1016/j.neuron.2021.11.009
https://doi.org/10.1016/j.neuron.2021.11.009
http://www.ncbi.nlm.nih.gov/pubmed/34861149
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1073/pnas.94.2.719
http://www.ncbi.nlm.nih.gov/pubmed/9012851
https://doi.org/10.1016/j.neuron.2018.07.032
https://doi.org/10.1016/j.neuron.2018.07.032
http://www.ncbi.nlm.nih.gov/pubmed/30138591
https://doi.org/10.1038/s41593-017-0003-2
https://doi.org/10.1038/s41593-017-0003-2
http://www.ncbi.nlm.nih.gov/pubmed/29184197
https://doi.org/10.1038/s41467-019-12841-y
http://www.ncbi.nlm.nih.gov/pubmed/31676790
https://doi.org/10.1016/j.tics.2019.12.014
http://www.ncbi.nlm.nih.gov/pubmed/32007384
https://doi.org/10.1523/JNEUROSCI.16-16-05154.1996
https://doi.org/10.1523/JNEUROSCI.16-16-05154.1996
http://www.ncbi.nlm.nih.gov/pubmed/8756444
https://doi.org/10.1038/s41593-021-00821-9
http://www.ncbi.nlm.nih.gov/pubmed/33821001
https://www.frontiersin.org/articles/10.3389/fncel.2021.631485/full
http://arxiv.org/abs/2106.08928
http://arxiv.org/abs/2106.08928
https://doi.org/10.1371/journal.pcbi.1010776

