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Abstract

Cities are laden with visual clues. Tapping on the large volume of street view imagery
(SVI) made available in the last decade, we investigate how modern computer vision
tools can characterize the visual quality and linguistic diversity of cities and leverage
on these novel metrics to study the impact of new housing projects.

Streets form a public space and how they look plays an important role in shap-
ing how walkable they are, how safe people perceive them to be, and the general
quality of living in the urban environment. To provide useful metrics to quantify
the quality of streets, we construct a scalable process with state-of-the-art machine
learning models to generate second-order metrics which capture both physical and
perceptual features in an urban environment. Recognizing that the abundance of
linguistic features littered across streetscapes gives us clues about underlying indi-
vidual and social preferences in streetscapes, we also seek to quantify the linguistic
diversity in cities. To that end, we construct a language detection model support-
ing English, Swedish, Arabic and Chinese that outperforms existing optical character
recognition (OCR) tools. We evaluate visual interpretability with gradient-weighted
class activation maps (Grad-CAM) and find that our model is both accurate and
interpretable. We apply these tools to our case study of Stockholm and find intuitive
spatiotemporal characterizations of the city. We also advance the application of these
metrics by using them in a difference-in-difference (DID) setting to study the effects
of newly completed housing projects on the built environment. We find that these
projects generate spillover effects, as evident in the increase in enclosure and linguistic
diversity in their immediate surroundings.

Thesis Supervisor: Fábio Duarte
Title: Principal Research Scientist, Senseable City Lab
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Chapter 1

Introduction

In this thesis, I investigate how modern computer vision tools can characterize the

visual quality and linguistic diversity of cities and leverage on these novel metrics to

study the impact of new housing projects.

Cities are laden with visual clues. In my first visit to Flushing in New York

City, I was surprised by the co-location of Chinese and Korean signs all around

the neighborhood. I had been to Chinatowns and Koreatowns before but never a

place that seemed like a mix of both. I later learned that Flushing had experienced

large-scale immigration from East Asia in the late 20th century and the presence of

both Chinese and Korean in the streetscapes of Flushing today is emblematic of the

cultural smorgasbord that is New York. While in New York, I also realized how much

our experience in a city is shaped by its visual features. In midtown Manhattan, I

was surrounded by towers after towers—awe-inspiring but also somewhat daunting.

Although I am used to seeing skyscrapers in my hometown of Singapore, the ubiquity

of trees lined along the streets of the “garden city” seemed to have a mellowing effect

on the scale of city, unlike in Manhattan.

As Allan Jacobs points out, “[p]eople who live in cities ... take cues from their

physical environments every day, knowingly or not, and they often base their actions
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on those messages.” [37] What we see and experience around us are not only clues

about the condition of cities at present, but the changes in these visual features help

us capture and understand the evolution of the city.

Previous work have looked at how to quantify these features in hopes of improving

our understanding of cities [21, 22, 53]. However, these early efforts tend to take the

form of field studies—either through making observations on the field or constructing

features based on videos of streetscapes. Such efforts are laborious and not scalable

to large urban areas such as an entire city. However, there are two key developments

in the last decade that spell promise for this area of research:

In 2007, Google launched the first large-scale street-level online corpus, provid-

ing street-level photographs in thousands of cities—Google Street View (GSV). This

kickstarted the explosion of street view imagery (SVI), with commercial competitors

such as Bing and Baidu providing similar services. Today, it covers all 7 continents

and includes temporal data for most major cities in the world. The sheer scale, both

spatially and temporally, of GSV and of other forms of SVI provides an extensive

dataset for researchers and policymakers to tap on to understand how cities evolve.

The second development, which also stems from the rise in big data, is the advent

of deep learning in computer vision. In 2012, Krizhevsky et al. achieved a 10 percent-

age point decrease in classification error on the ImageNet Challenge1 [41]. AlexNet

(the model used by Krizhevsky et al.) utilized a deep convolutional neural network

(DCNN) architecture and its impressive performance kickstarted the deep learning

revolution in computer vision. In the last decade, we have seen the growth of deeper

and better DCNN models [31,35,65], pushing the limits of what we can do with com-

puter vision models. These new architectures provide powerful pre-trained models

that can be further trained for more specific computer vision tasks such as semantic

segmentation, scene classification and optical character recognition (OCR).
1The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) evaluates algorithms for

object detection and image classification at large scale.
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The growth of SVI and the advent of deep learning have also inspired the growth of

computational social science, with researchers seeking insights from visual information

in streetscapes. Salesses et al. and Dubey et al. trained models to predict how humans

perceive their surroundings using GSV images [19,61]. Similarly, there has been work

done to quantify greenery [8, 48], safety [73] and shade provision [47] by applying

DCNNs to SVI. This thesis contributes to this new body of literature by using SVI

to construct two sets of measures that characterizes the visual quality and linguistic

diversity of streetscapes.

Beyond monitoring how measures of visual quality and linguistic diversity change

spatiotemporally, I recognize that such changes need not happen spontaneously. Of-

ten, they are by-products of other changes. To that end, I investigate how these

measures evolve in response to the construction of new housing projects. As part of

the Senseable City Lab’s collaboration with the City of Stockholm, I study how the

construction of new housing in Stockholm affects the surrounding areas as measured

by the novel metrics of visual quality and linguistic diversity.

1.1 Main Contributions

This thesis is divided into three parts. In Chapter 2, I review existing work seeking

to characterize the visual quality of streetscapes and adopt a deep learning approach

to construct informative features of streets. This work contributes to a growing body

of literature that utilizes urban imagery to understand cities.

Given the poor performance of existing OCR tools in classifying languages present

in a scene, I develop a language detection model in Chapter 3. The language

detection model helps to characterize linguistic diversity in streetscapes and like our

measures of visual quality adds another dimension to our understanding of cities.

In Chapter 4, I apply the novel metrics constructed in Chapters 2 and 3 to study

the effects of new housing projects. While there is now a large body of literature in
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using urban imagery to characterize cities, little has been done to study how these

novel metrics respond to urban interventions. This thesis contributes to the literature

by pushing the limits of how we can apply these novel metrics. Concurrently, this

work also contributes to a strand of urban studies literature examining the spillover

effects of new construction.
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Chapter 2

Quantifying Visual Quality

Streets form a public space and how they look plays an important role in shaping

how walkable they are, how safe people perceive them to be, and the general quality

of living in the urban environment. Many developed cities such as London, Shanghai,

Copenhagen have initiatives and guidelines to improve street design [12, 59, 71]. In

fact, in the Stockholm City Plan, there is an overarching goal to provide “Good Public

Spaces” [14] and under the Pedestrian Plan, the city has targeted for at least 85% of

their residents feeling that the streetscape is attractive [13].

In line with these goals, it is important to develop a scalable process which can

quantify visual changes in the streetscape, both spatiotemporally and in response

to urban interventions. The traditional approach to quantify the visual quality of

streetscapes involves field surveys and is limited to very small-scale empirical studies

[70]. The advent of machine learning algorithms that can help quantify physical

features of streetscapes spells hope for automating this process. Using the latest

machine learning algorithms in scene classification and semantic segmentation, we

construct measures of visual quality using physical features shortlisted by Ewing and

Handy [22]. Recognizing that the visual quality of an urban area is not solely defined

by what people see but also how people feel based on what they see, we train a model

using the Place Pulse 2.0 dataset [19] that scores an image from 1 to 10 along 6
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perceptual dimensions. We then apply these metrics to quantify the visual quality

of Stockholm, and examine how these measures of visual quality vary spatially and

their relationships with socioeconomic characteristics.

2.1 Literature Review

2.1.1 Visual Quality and Physical Features

What is considered a visually appealing street is subject to debate. In urban design

literature, authors often cite intangible qualities that they hypothesize to intervene

between physical features and human behavior. Such qualities are difficult to qualify

and quantify. Experts may have an intuitive understanding of oft-used terms such as

“enclosure” and “complexity” but these ideas are difficult to operationalize as there is

no clear definition as to what they entail and how we can measure them. In an attempt

to summarize and operationalize these subjective ideas of visual quality, Ewing and

Handy studied how physical features relate to expert ratings along 5 urban design

qualities—imageability, enclosure, human scale, transparency and complexity [22].

Ewing and Handy assembled a panel of 10 urban design and planning experts from

professional practice and academia, with experience in both the US and Europe. They

engaged these experts to study video clips of 48 commercial streets across 22 cities

in the United States and provide ratings along 5 urban design qualities selected for

their importance in urban design literature. Concurrently, the authors also analyzed

each of the 48 video clips to construct more than 100 measures of physical features

in the streets. The authors then regressed expert panel ratings against these physical

features to establish objective features that are well-correlated with these subjective

qualities (Table 2.1).

Although Ewing and Handy’s extensive work has provided us with both urban

design qualities and measurable features that we can use to characterize urban spaces,
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Urban design quality Significant physical features

Imageability people (no.)
proportion of historic buildings
courtyards/plazas/parks (no.)
outdoor dining (y/n)
buildings with non-rectangular silhouettes (no.)
noise level (rating)
major landscape features (no.)
buildings with identifiers (no.)

Enclosure proportion street wall—same side
proportion street wall—opposite side
proportion sky across
long sight lines (no.)
proportion sky ahead

Human scale long sight lines (no.)
all street furniture and other street items (no.)
proportion first floor with windows
building height—same side
small planters (no.)
urban designer (y/n)

Transparency proportion first floor with windows
proportion active uses
proportion street wall—same side

Complexity people (no.)
buildings (no.)
dominant building colors (no.)
accent colors (no.)
outdoor dining (y/n)
public art (no.)

Table 2.1: Significant physical features associated with each urban design quality.
Reproduced from Ewing and Handy [22].

their manual approach in constructing these metrics is not scalable and would be ill-

posed in characterizing the visual quality of large urban spaces. As Neckerman et

al. who applied Ewing and Handy’s work to auditing New York City note, there is

a strong impetus to explore alternative methods of data collection to improve the

time efficiency of quantifying the urban space [53]. In particular, they note that the

preponderance of Google Street View (GSV) images, among other street view imagery

(SVI) means that researchers no longer need to spend time collecting videos like Ewing

and Handy. Furthermore, they also recognize the consistency of imaging techniques

used in GSV, which ensures the spatial consistency of measures constructed from

GSV images.
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The explosion of big data has also contributed to the advent of deep learning. The

rise of data-driven machine learning models that can automatically process images

and extract high-level features spell promise for automating the laborious process

of coding physical features in streetscapes. Indeed, Ye et al. studied how features

easily identified by machine learning models can predict visual quality [72]. The au-

thors suggest that measures produced by a semantic segmentation model—building

frontage, greenery, sky view, pedestrian space, motorization and diversity—can cap-

ture the 5 qualities in Ewing and Handy’s paper and they explore how these measures

can predict a measure of visual quality. To construct the measure of visual quality,

the authors invited 10 urban design experts to do pairwise comparisons of a repre-

sentative sample of street view images in Shanghai, China before transforming the

results of the pairwise comparison into scores using the Elo rating system. Like Ew-

ing and Handy, Ye et al. study how pre-selected physical features can correlate with

expert scoring. Their key contribution to literature is studying how existing machine

learning algorithms can help automate the construction of the pre-selected physical

features.

Although the authors’ idea of leveraging existing machine learning algorithms to

measure physical features in streetscapes marks a huge step in making the quantifica-

tion of visual quality more scalable, the choice of measures Ye et al. used leaves more

to be desired. Despite Ewing and Handy providing a long list of physical measures

strongly correlated with each design quality, Ye et al. chose to only look at 5 features

that can be measured with a semantic segmentation model.

They extract the percentage of pixels representing greenery, sky, buildings, pedes-

trian paths and pedestrians, and motorways and cars. Their measure of diversity is

the percentage of pixels representing the rest of the design elements, thereby includ-

ing features such as street lights and street furniture. Since all pixels in an image are

represented in the model, there is no presupposition of what might be important ex

ante. Furthermore, the authors go on to assert that diversity has the second highest

relative importance even though it is really just a catch-all measure. Rather, there
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are many more physical features and meaningful metrics that can be constructed with

Ewing and Handy’s work and Ye et al.’s machine learning-driven approach, a task we

endeavor to complete in Section 2.2.

2.1.2 Perceptual Features

In both Ewing and Handy and Ye et al., the authors do not explicitly model perceptual

features. Unlike physical features that are objective descriptors of a streetscape, per-

ceptual features capture how people feel and what they perceive in the surroundings.

Understanding how people feel in their surroundings is important given prior evidence

of how perception of urban areas can affect socioeconomic outcomes [15,20,42].

Although urban design qualities draw from both physical and perceptual features

in the streetscape, both Ewing and Handy and Ye et al. chose to only measure physical

features under the implicit assumption that physical and perceptual features are well-

correlated. Although Zhang et al. recognize that interesting correlations between

physical and perceptual features exist, they also highlight that human perception goes

beyond what we see and draws from our prior experiences in similar spaces [74]. After

all, perception may have subtle or complex relationships with physical features [21].

Therefore, it is important to model perceptual features separately. Tang and Long

measure perceptual features with ratings from an expert panel, and combine these

measures with measures of physical features to construct an overall measure of visual

quality [70]. In their study of temporal changes in Beijing hutongs, they engaged 4

experts with a background in urban design education to rate the willingness to stay

in a space from 1 to 5, using criteria from Ewing and Clemente [21]1. Like Ewing and

Clemente and Ewing and Handy, such an approach is not scalable even if it is able

to provide high quality information for a small area of study.

Rather, as Tang and Long note, previous work at MIT Media Lab by Dubey et
1Ewing and Clemente uses the same set of urban design qualities as Ewing and Handy, but

replaces complexity with tidiness
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al. [19] has investigated predicting perceptual features of a streetscape using deep

convolutional neural networks. Dubey et al. construct a new crowdsourced dataset

of urban appearance (Place Pulse 2.0)—using an online data collection platform, the

authors show participants two street view images from the same city side-by-side and

ask participants which place looks more safe, beautiful, depressing, lively, wealthy or

boring. As of August 2020, the dataset comprises 1.55 million pairwise comparisons

for 110,988 images from 56 cities in 28 countries across 6 continents, along the 6

perceptual dimensions. Place Pulse 2.0 builds on work in Salesses et al. [61] which

introduced the original Place Pulse. Compared to Place Pulse, Place Pulse 2.0 has a

much larger scale and higher visual diversity. Intuitively, increasing visual diversity

would allow the model to generalize better and Dubey et al. show that holding the size

of the dataset constant, increasing visual diversity improves the prediction accuracy

of pairwise comparisons. Increasing the size of the dataset provides a further boost

to prediction accuracy.

A key difference between Tang and Long’s work and Dubey et al. is that Tang

and Long relies on expert raters to rate the streets while Dubey et al. used ratings

from the general public to construct a predictive model. There are academics who

criticize the use of input from the general public in generating predictions vis-à-vis

expert input on the grounds that the public does not necessarily know what is good

design [70, 72]. However, since these measures of visual quality are subjective and

the purpose of measuring these measures is ostensibly for the purpose of improving

public satisfaction with public spaces, it makes sense for such measures to be labelled

by the public. Furthermore, the participants in Dubey et al. hail from more than 150

countries, pointing to the diversity of responses—aggregating over such a large and

diverse sample helps us to learn from the wisdom of the crowd.

In Dubey et al., the authors trained models with a Siamese architecture that takes

in image pairs, extracts image features, and then predicts the winner of each pair.

However, as Zhang et al. note, a model that can predict a score for a single sample

(as opposed to a winner between an image pair) is more valuable for large-scale quan-
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tification of perceptual features in an urban area [74]. Inspired by schedule methods

used in Salesses et al. and Ordonez and Berg [56, 61], Zhang et al. constructed a

process that translates pairwise comparisons into scores for individual images. In this

process, an image is scored higher the more times it is chosen over another image,

but the score of each image is also corrected according to the score of images it is

compared to. We leverage on Zhang et al.’s scalable model and the latest data from

Place Pulse 2.0 to construct perceptual features.

2.2 Building a Computational Model

2.2.1 Physical Features

Machine Learning Models

Like Ye et al., we use a semantic segmentation model to extract useful measures of

physical features in streetscapes. Although Ye et al. and Tang and Long both use

SegNet [5] which has an encoder network that is topologically identical to the 13

convolutional layers in the VGG-16 network [65], we apply an implementation with a

ResNet-50 architecture2 that yields better performance than SegNet for the ADE20K

dataset3—41.26 Mean IoU4 for our chosen implementation vs 21.64 for SegNet.

For a given image 𝑖 defined by a 3D array 𝑝𝑖 ∈ R𝑙×ℎ×𝑐 where 𝑙 is the length of the

image, ℎ the height of the image and 𝑐 the number of color channels, the semantic

segmentation model 𝑆𝑆(·) returns a category (1 of 150 possible categories) for each
2Source code available at https://github.com/CSAILVision/semantic-segmentation-pytorch
3ADE20K is a common benchmark in semantic segmentation that consists of 150 object cate-

gories.
4Intersection over Union (IoU) is a common evaluation metric for semantic image segmentation.

For each class, the IoU metric is defined as the number of true positives divided by the number of
true positives, false positive and false negatives. Mean IoU is the mean of IoU across all classes.
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of the (𝑙 × ℎ) pixels.

𝑆𝑆(𝑝𝑖) = S𝑖 =

⎡⎢⎢⎢⎣
𝑆𝑖,1,1 . . . 𝑆𝑖,𝑙,1

... . . . ...

𝑆𝑖,1,ℎ . . . 𝑆𝑖,𝑙,ℎ

⎤⎥⎥⎥⎦ (2.1)

where 𝑆𝑖,𝑗,𝑘 ∈ [1, 150] is a positive integer representing the category of the pixel.5 For

most of the measures we construct, we are interested in the proportion of an image

classified as a specific category i.e.

𝑃𝑟𝑜𝑝𝑖,𝑚 =
1

𝑙 × ℎ

𝑙∑︁
𝑗=1

ℎ∑︁
𝑘=1

1(𝑆𝑖,𝑗,𝑘 = 𝑚) (2.2)

Since Ewing and Handy allude to physical features that are not necessarily objects

present in image, but also the semantic interpretation of the scene altogether, we use

the Places-CNN scene classifier [77] to provide other useful measures of streetscapes.

Places-CNN is a scene classifier trained on the Places Database—a repository of 10

million scene photographs—to classify images into one of 365 scene semantic cate-

gories.6 We use an implementation built on a ResNet-18 base architecture.7

Again, for a given image 𝑖 defined by a 3D array 𝑝𝑖 ∈ R𝑙×ℎ×𝑐, the scene classifier

𝑆𝐶(·) returns the vector of softmax probabilities for the 365 scene categories as an

intermediate output.

C𝑖 =
[︁
𝐶𝑖,1 . . . 𝐶𝑖,365

]︁
(2.3)

where
∑︀365

𝑚=1 𝐶𝑖,𝑚 = 1. As a final output, the classifier returns

𝑆𝐶(𝑝𝑖) = t𝑖 =
[︁
𝑡𝑖,1 . . . 𝑡𝑖,5

]︁
(2.4)

5Full list of ADE20K categories are presented in Appendix B
6Full list of Places scene categories are presented in Appendix B
7Source code available at: https://github.com/CSAILVision/places365
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where 𝑡𝑖,𝑘 is the 𝑘-th most likely scene category of an image 𝑖. In other words, 𝑆𝐶(·)

outputs the 5 most likely scene categories of an input image.

Constructing the Measures

Using the 5 urban design qualities in Ewing and Handy’s work, we shortlist physical

features from Table 2.1 that are also measurable in a scalable manner with modern

machine learning tools. We discuss each of the 5 urban design qualities and the

corresponding measures we construct below.

Imageability captures how distinct, recognizable or memorable a place is and

is related to Cullen’s idea of “sense of space” that entices people to enter the space

[16,21]. For example, Quincy Market in Boston may be considered a space with high

imageability, as a hub of activity and liveliness, with strong architectural qualities

which inspire people to gather. Following the features found to be significant in

Ewing and Handy (Table 2.1), we measure the following:

1. 𝑃𝑟𝑜𝑝𝑖,13 i.e. proportion of pixels classified as people

2.
∑︀5

𝑘=1

∑︀
𝑚∈𝑀 1(𝑡𝑖,𝑘 = 𝑚) where 𝑀 is the set of indices corresponding to the cat-

egories courtyard, plaza, outdoor diner and park i.e. number of scene categories

within the top 5 predicted categories which are in the desired categories

3.
∑︀

𝑚∈𝑀 𝐶𝑖,𝑚 where 𝑀 is the set of indices corresponding to the categories court-

yard, plaza, outdoor diner and park i.e. the combined probability of an image

being classified as one of the desired categories

Although counting the number of people (or in this case, the proportion of pixels

classified as people) from GSV images invites concerns about reliability, Ewing and

Clemente find that pedestrian count in SVI (they used samples from Google, Bing

and EveryScape) has almost perfect inter-rater agreement with manual audits on the
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streets of New York City [21]. This finding has also been corroborated by Chen et al.

through a validation exercise of much larger scale [10].

Enclosure captures how well streets and other public spaces are defined by ver-

tical elements such as walls, buildings and trees [21]. Cullen sees enclosure as the

“outdoor room” [16], which Jacobs argues help instills a sense of safety and memora-

bility [38]. Following the features found to be significant in Ewing and Handy (Table

2.1), we measure the following:

1. 𝑃𝑟𝑜𝑝𝑖,1 + 𝑃𝑟𝑜𝑝𝑖,2 i.e. proportion of pixels classified as wall or building

2. 1− 𝑃𝑟𝑜𝑝𝑖,3 i.e. proportion of pixels not classified as sky

Human scale captures how well physical elements in the streetscape coheres

with the size and proportions of humans [21]. Although numerous urban designers

and thinkers have offered specific definitions of what is considered human-scale, from

the height of buildings to space for personal interaction to building widths, Ewing

and Handy find that the presence of smaller-scale features correlates well with the

degree of human-scale. Therefore, we measure the following:

1.
∑︀

𝑚∈𝑀 𝑃𝑟𝑜𝑝𝑖,𝑚 where 𝑀 is the set of indices corresponding to tree, grass, plant

and flower i.e. proportion of pixels classified as street greenery

2.
∑︀

𝑚∈𝑀 𝑃𝑟𝑜𝑝𝑖,𝑚 where 𝑀 is the set of indices corresponding to sidewalk, table,

chair, sofa, armchair, seat, desk and ottoman i.e. proportion of pixels classified

as street furniture

Transparency captures the degree to which people can see or perceive human

activity—it is more than what people can see in the streetscape but what they can

imagine from the streetscape [21]. The most literal example of transparency would

be windows but more subtle features such as signs that demonstrate specific uses can

also add to transparency. Therefore, we measure:
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1. 𝑃𝑟𝑜𝑝𝑖,9 + 𝑃𝑟𝑜𝑝𝑖,44 i.e. proportion of pixels classified as windows or signboards

Complexity captures the visual richness of a place. Intuitively, high complexity

makes streets more interesting to look at and Gehl suggests that this makes “the walk-

ing distance seem shorter” [23]. Although Ewing and Handy find that the presence

of specific physical features contributes to visual complexity, these measures do not

capture the idea of diversity that is implicit in the idea of visual complexity. Since we

have already measured some of these physical features as part of our characterization

of other urban design qualities—presence of people, outdoor dining, and buildings,

we offer two alternative measures that better encapsulate the semantic meaning of

complexity.

1.
∑︀150

𝑚=1 1(𝑃𝑟𝑜𝑝𝑖,𝑚 > 0) i.e. number of objects detected through semantic seg-

mentation

2. 1−
∑︀365

𝑚=1𝐶
2
𝑖,𝑚 i.e. 1− sum of squared softmax probabilities

In particular, the second metric used in complexity follows the Herfindahl-Hirschman

Index commonly used in industrial organization

𝐻𝐻𝐼 =
𝑘∑︁

𝑖=1

𝑃 2
𝑖 (2.5)

where
∑︀𝑘

𝑖=1 𝑃𝑖 = 1. The index is minimized when 𝑃𝑖 = 1/𝑘 ∀𝑖 ∈ [1, 𝑘]. 𝐻𝐻𝐼 is

commonly used to measure market concentration and is minimized when the market

is equally distributed among key players. In our case, we use 1− the sum of squared

softmax probabilities so that a scene which is more complex (probabilities are almost

equally distributed among the various categories) would have a higher score.
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2.2.2 Perceptual Features

Translating Pairwise Comparisons to Individual Scores

We follow the method used in Zhang et al. [74] closely in our construction of perceptual

features. For each image 𝑖, we define a positive rate (𝑃𝑖) and a negative rate (𝑁𝑖) as

𝑃𝑖 =
𝑝𝑖

𝑝𝑖 + 𝑒𝑖 + 𝑛𝑖

(2.6)

𝑁𝑖 =
𝑛𝑖

𝑝𝑖 + 𝑒𝑖 + 𝑛𝑖

(2.7)

where 𝑝𝑖 (𝑛𝑖) refers to the number of times 𝑖 is (not) picked in a pairwise comparison

and 𝑒𝑖 the number of times 𝑖 is considered equal to the other image. We then define

a 𝑄-score for each image 𝑖

𝑄𝑖 =
10

3

(︃
𝑃𝑖 +

1

𝑝𝑖

𝑝𝑖∑︁
𝑘1=1

𝑃𝑘1 −
1

𝑛𝑖

𝑛𝑘2∑︁
𝑘2=1

𝑁𝑘2 + 1

)︃
(2.8)

that ranges from 0 to 10.

Training Process

In Zhang et al., the authors assigned a binary label to each image based on its 𝑄-

score crossing a certain threshold and formulated the prediction problem as a binary

classification task. Although this method was implemented to create a gap between

“positive” and “negative” samples by removing “noisy” data in the center, there is

significant data loss and loss in granularity.

Therefore, we construe the problem as a multi-label classification task with 10

labels (representing integers from 1 to 10), following the approach taken in [73]. To

translate the 𝑄-scores into labels from 1 to 10, we take the following steps:

1. Standardize the 𝑄-scores along each perceptual dimension to get zero mean and
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Hyperparameter Choice

Base Architecture DenseNet-121
Learning Rate 0.000001, 0.000005, 0.00001, 0.00005
Momentum 0.9
Weight Decay 10−4, 10−3

Batch Size 130
Epochs 150
Loss Function Cross-entropy
Optimizer Stochastic gradient descent
Weights [5, 3, 2, 1, 1, 1, 1, 2, 3, 5],

[4, 3, 2, 1, 1, 1, 1, 2, 3, 4],
[4, 3, 2, 2, 1, 1, 2, 2, 3, 4],
[3, 3, 2, 2, 1, 1, 2, 2, 3, 3],
[5, 4, 2, 1, 1, 1, 1, 2, 4, 5]

Image size 256× 256

Table 2.2: Hyperparameters for training perceptual features classification model

unit variance using StandardScaler in the Python sklearn package

2. Divide the data into 10 bins of equal-width

3. Store the center value of each bin: yields m𝑓 ∈ R10 for each perceptual feature

𝑓

4. Assign a label to each image based on which bin it is in

The base code for training and testing follows a modified version of the PyTorch

implementation from [77] that supports multi-label classification.8 We experiment

with the learning rate and weights allocated to each of the 10 labels.

Since the model uses a softmax classifier, an intermediate output in the multi-

label classification is the softmax probabilities over each each of the 10 possible labels.

Using the information of center values for each bin m𝑓 , we can reconstruct fine-grained

scores:

1. Compute the normalized score 𝑠𝑖,𝑓 = 𝜎′
𝑖,𝑓m𝑓 where 𝜎′

𝑖,𝑓 is the vector of softmax

probabilities of image 𝑖 for feature 𝑓

8Modifications made by Fan Zhang from MIT Senseable City Lab.
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Figure 2-1: Distribution of predicted scores along all 6 perceptual dimensions cor-
responds well with ground truth; model yields a mean absolute percentage error of
0.168

2. Denormalize the score using StandardScaler with the mean and variance of

the 𝑄-scores for the relevant feature

Another point of deviation from Zhang et al. [74] is the training dataset. The Place

Pulse 2.0 dataset has continued expanding since the publication of [74], with a 50%

increase in data available. The larger dataset indeed leads to improved performance,

yielding a mean absolute percentage error of 0.168, compared to 0.183 when trained

with the smaller dataset. Figure 2-1 shows how the distribution of the predicted

scores compares with the distribution of the ground truth.

2.3 Applications in Stockholm

For the twin purposes of validation and exploratory analysis, we apply the models

to our case study of Stockholm. Using images of Stockholm extracted from GSV,9

we construct fine-grained measures of visual quality and compare them with other

neighborhood characteristics.
9Details of data extraction are outlined in Appendix A.

36



Population Density Median Income

Imageability (People) 0.420 0.302
Imageability (SC, Top 5) -0.105 -0.104
Imageability (SC, Prob) -0.111 -0.133
Enclosure (Wall/Building) 0.731 0.417
Enclosure (Sky) 0.639 0.349
Human Scale (Greenery) 0.178 0.198
Human Scale (Furniture) -0.114 -0.115
Transparency 0.0473 0.0497
Complexity (Objects) -0.00526 0.0547
Complexity (Herfindahl-Hirschman) -0.119 -0.137

Table 2.3: Correlation of physical measures of visual quality with neighborhood char-
acteristics in Stockholm

2.3.1 Physical Features

As a form of validation, we look at how the physical measures of visual quality

correspond with neighborhood characteristics. Following the work of Neckerman et

al. in New York City, we look at how visual quality correlates with population density

and median income. We use data of population density from 2010 to 2021 and median

income from 2011 to 2021 from Statistics Sweden [68] . The correlation coefficients are

presented in Table 2.3. Figure 2-2 presents choropleth maps of population density,

median income and all 10 physical measures of visual quality in Stockholm at the

DeSO (Demographic Statistical Areas) level in the period 2020-2021.

Population Density

We find that population density has a moderate positive correlation with imageability

as measured by the proportion of pixels classified as people. This is intuitive since

higher population density should correspond to higher pedestrian traffic. However,

population density has a weak negative correlation with imageability as measured

by the outputs of the scene classifier. This is counterintuitive since we expect the

likelihood of seeing courtyards, plazas, outdoor diners, parks to be higher in more

densely populated areas, which suggests that imageability measures constructed with
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the scene classifier may have limited usefulness.

Intuitively, population density should correspond with a denser built-up area that

is livelier. This corresponds to higher scores on enclosure and transparency. Indeed,

we find strong positive correlation between population density and both measures of

enclosure and weak positive correlation between population density and our measure

of transparency.

Neckerman et al. argue that population density may have a negative associa-

tion with human scale due to the denser and possibly taller built-up structures [53].

However, Ewing and Handy note that street elements such as trees, or features that

demonstrate street-level activity such as furniture can moderate the scale of tall build-

ings, citing Times Square and Rockefeller Center in New York City [22]. We find that

population density has a weak positive correlation with human scale as measured

by street greenery, and a weak negative correlation with human scale as measured

by street furniture. The overall effect is ambiguous, as we expect, given the lack of

consensus in literature.

We expect population density to have a positive association with complexity since

it is more likely for denser areas to have more street-level activity, buildings with

mixed uses and visual features that contribute to overall visual richness. That said,

we find that complexity as measured by the number of objects is uncorrelated with

population density while complexity as measured by the Herfindahl-Hirschman in-

dex has a negative association. The latter reinforces the notion that second-order

metrics from the scene classifier may have limited usefulness in characterizing urban

streetscapes, likely because there is a lot more underlying noise in its predictions than

in a semantic segmentation model.
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Median Income

Like Neckerman et al., we hypothesize that urban areas with higher median income

should have higher scores across the board since higher visual quality should be priced

into rent and housing prices, which would correspond to a more affluent populace.

Table 2.3 shows that this is mostly true, except for imageability as measured by

the scene classifier, human scale as measured by street furniture and complexity as

measured by the Herfindahl-Hirschman index.

2.3.2 Perceptual Features

We present choropleth maps of perceptual features in Stockholm in 2020-21 in Figure

2-3.

In general, we notice a small spread in these indices throughout most of the

city, with only the boroughs of Hässelby-Vällingby and Spånga-Tensta standing out

as being less beautiful, more depressing, less safe, less wealthy, but marginally less

boring and livelier.

Although it is unclear why these boroughs are considered to be livelier, their scores

for the other perceptual dimensions agree with our understanding of Stockholm. The

two boroughs are centered on large public housing projects—Vällingby, the first ABC

town10, Hässelby gård and Tensta, both part of the Million Programme.11 These

projects are known to be inexpensive, but architecturally dull [29]. Furthermore,

both boroughs are considered to be among the most vulnerable areas in Sweden, with

higher levels of crime and social exclusion [4]. Therefore, it is no surprise that their

perceptual scores stand out from the rest of Stockholm.
10Loosely translated as a labor housing center, acting as a self-contained city, providing both

employment and housing.
11The Million Programme is a government initiative to build 1 million new dwellings in Sweden

that ran between 1965 and 1974.
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Beautiful Boring Depressing Lively Safety Wealthy

Imageability (People) 0.124 0.0840 -0.0881 -0.115 0.0609 0.0592
Imageability (SC, Top 5) -0.373 -0.352 0.156 0.525 -0.0942 -0.123
Imageability (SC, Prob) -0.457 -0.425 0.223 0.601 -0.152 -0.171
Enclosure (Wall/Building) 0.234 0.116 -0.160 -0.202 0.119 -0.126
Enclosure (Sky) 0.214 0.128 -0.150 -0.206 0.105 0.110
Human Scale (Greenery) 0.923 0.307 -0.738 -0.664 0.600 0.676
Human Scale (Furniture) -0.538 -0.401 0.345 0.561 -0.238 -0.304
Transparency 0.0349 0.0989 0.0458 -0.146 -0.0817 -0.0874
Complexity (Objects) 0.00813 0.111 0.0462 -0.0968 -0.0691 -0.0385
Complexity (HH) -0.497 -0.318 0.312 0.511 -0.316 -0.274

Table 2.4: Correlation of physical measures of visual quality with perceptual features
in Stockholm

2.3.3 Relationships between Physical and Perceptual Features

Although we construe visual quality as the synthesis of physical features and percep-

tual features, we recognize that they are not mutually exclusive. Rather, Zhang et

al. and Ewing and Clemente both recognize that what we see and what we feel are

inextricably linked, even if they do not fully overlap [21,74]. In Table 2.4, we present

the correlation coefficients between physical features and perceptual features.

We see that human scale, as measured by the presence of street greenery has

strong positive correlation with perceived beauty, safety and wealth but is negatively

correlated with how depressing a place feels. The effects of greenery has been well

documented in urban studies literature, with Ashihara arguing that urban greenery

offers a sense of peacefulness and quietness [2] and Knez showing in a field study in

Gothenburg, Sweden that urban greenery leads to improved well-being [39].

We also notice some interesting relationships between the physical measures and

liveliness. Imageability, as measured by the scene classifier, and human scale, as

measured by street furniture, has a moderate-to-strong positive correlation with live-

liness. This is intuitive since these measures of imageability and (to some extent)

human scale proxy for human activity at the street level, which contributes to the

liveliness of an urban area. Complexity, as measured by the Herfindahl-Hirschman In-

dex, also has moderate-to-strong positive correlation demonstrating how mixed uses
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may relate with the liveliness of an urban area. Interestingly, human scale, as mea-

sured by street greenery exhibits moderate negative correlation with liveliness. Even

though greenery contributes to how scenic or visually appealing a streetscape is, it

does not necessarily correlate with human activity. For example, Times Square in

New York City, though extremely vibrant, is almost devoid of trees. Rather, this

finding highlights the importance of constructing measures along different perceptual

dimensions to capture a multi-faceted view of cities.

2.4 Concluding Remarks

In this chapter, we develop a scalable process to quantify the visual quality of a

streetscape. Building on the work done by Ewing and Handy and Dubey et al.,

we characterize a streetscape along 5 urban design qualities (through measures of

physical features) and 6 perceptual dimensions. We leverage on the abundance of SVI

offered by GSV and the strong performance of deep learning approaches in computer

vision to automate the process of extracting visual features from SVI and scoring

a streetscape along the different dimensions of visual quality. We apply the model

to Stockholm, Sweden and find that most of our measures of visual quality exhibit

intuitive relationships with socioeconomic characteristics and with one another. In

Chapter 4, we will further explore how informative measures of visual quality are in

the context of evaluating the effects of new housing projects.
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Figure 2-2: Choropleth maps of population density, median income and all 10 physical
measures of visual quality in Stockholm at the DeSO level in the period 2020-2021
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Figure 2-3: Choropleth maps of perceptual features in Stockholm at the DeSO level
in the period 2020-2021
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Chapter 3

Quantifying Linguistic Diversity

Any visitor to New York City would hardly find it difficult to locate an ethnic enclave.

Chinatown, Little Italy, Koreatown, Little Egypt are all easily identifiable on a map,

and anyone who unknowingly walks into these places would quickly figure out where

they are from street signs, names of restaurants, advertisements and other language

clues (Figure 3-1). Yet, not all enclaves have self-explanatory names like those in

a major city. Nothing about the names Skärholmen (Stockholm) or Edgware Road

(London) suggests that they have a large Arabic-speaking population, but visual clues

from the languages that appear on these streets suggest otherwise.

Although census data may provide fine-grained information on the ethnolinguistic

distribution of residents across census tracts, visual information provides a different

perspective, giving us clues not only about the people who live there but also about

people who work in and frequent the area. When combined with census information,

visual clues may give us an idea of the level of social integration within an area—

whether linguistic diversity is commensurate with the ethnic diversity of the urban

area. From an urban policy standpoint, it is important to be cognizant of the eth-

nolinguistic make-up and linguistic diversity of urban regions and monitor how these

metrics evolve spatiotemporally. Therefore, we seek to use modern computer vision

tools to quantify the linguistic diversity of streetscapes.
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Figure 3-1: Streetscape of Chinatown, Little Italy, Little Egypt, Koreatown from top
left in clockwise direction.
Sources: “Chinatown, NYC” by nmadhu2k3, “Little Italy, NYC” by RobertFrancis
and “Koreatown NYC” by Chun’s Pictures are licensed under CC BY 2.0. Image of
Little Egypt is taken from GSV.

This study is especially interesting in Stockholm, and Sweden more generally.

Sweden has been characterized by a common language, religion, and political history

for most of its history [17]. Amidst waves of immigration, most recently the large

influx of Arabic-speaking people in the aftermath of the Arab Spring, it is interesting

to see how native Swedes cope with living with a growing population of people who

look and speak differently and how this manifests in the linguistic diversity on the

streets.

Current tools that can be used for language classification are generally developed

for optical character recognition (OCR) and the performance is mixed. Therefore, we

take a different approach—rather than trying to identify every character in a scene,

we seek to detect the presence of specific languages. Given that we are only interested

in the prevalence of languages in a city rather than the actual words used, we can

sacrifice the complexity of the problem to achieve better accuracy.

Since we aim to study linguistic diversity in streetscapes in Stockholm, we con-

struct a novel multilingual dataset containing Google Street View (GSV) images from
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7 cities, covering the presence of 4 languages—English, Swedish, Arabic and Chinese.

We train a binary classification network over 4 independent tasks using a pre-trained

DenseNet, and our best model achieves a test accuracy of 80.8% with a corresponding

F1 score of 79.8%.

We apply this model to GSV images in Stockholm to further test the model’s use-

fulness. We find that the spatial distribution of language concentration in Stockholm

agrees with intuition. Although somewhat counterintuitive, we find that language

mix does not correspond well with population mix,1 instead providing a different

perspective of Stockholm. We argue that in a culturally homogeneous society such

as Sweden, minorities may not necessarily feel comfortable expressing themselves in

their languages, which is reflected in the chasm between population and linguistic

mix.

3.1 Literature Review

3.1.1 Linguistic Diversity of Streetscapes

The study of linguistic diversity in streetscapes is more commonly known as the

study of linguistic landscapes in sociolinguistic literature. This body of literature is

motivated by the abundance of linguistic features littered across streetscapes—public

road signs, advertising billboards, street names, place names, commercial shop signs,

street art, and public signs on government buildings [43]. As Gorter eloquently puts

it: “[s]igns are everywhere, they permeate our daily life, and they can give us a sense

of place” [25]. However, as much as signs influence us and our behaviors, they are

also artifacts of individual and social preferences [54]. After all, the languages used

on a sign is an outcome of deliberate choices made by political or economic actors,
1Since fine-grained data on ethnic/racial distribution is not publicly available, we construct an

entropy measure with broad categories used in Statistics Sweden’s publicly available data (Section
3.5.2).
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which are in turn influenced by both economic interests and the social preferences

of the populace. In a case study of Donostia, Spain and Ljouwert, the Netherlands,

Onofri et al. find that the choice of languages in a sign is strongly influenced by the

type of establishment associated with the sign. For instance, the use of English is

strongly positively correlated with an establishment being an international chain. In

contrast, the use of Frisian in Ljouwert is strongly correlated with the establishment

being a shop or an official building [54].

As much as we can learn something about individual and social preferences from

the languages we see in street signs, we may also learn something from those we do not

see. In a field study of Oslo, Norway, Opsahl finds scarcely any presence of the Polish

language, despite the large number of Polish immigrants in Norway [55]. Although

we often see cities as platforms for languages to “manifest their vitality as well as

their visibility” [6], the counterintuitive “invisibility” of Polish makes one question

if individuals can indeed express themselves in their preferred tongue in Oslo [55].

And perhaps this is a valid question not just in Norway but also in Sweden, with

Leinonen and Toivanen arguing that the Nordic nations have an identity that builds

on cultural, religious, and linguistic homogeneity [44].

Even though studying linguistic landscapes is interesting, research in this area

often relies on extensive field work in small communities. Such an approach offers deep

insights into specific urban areas, but these insights may not necessarily generalize

to the larger urban environment. Given the abundance of street view imagery (SVI)

offered by GSV and similar services, there is a nascent field that seeks to automate the

process of characterizing linguistic landscapes. In particular, Hong conducted a proof-

of-concept study of a small Chinese community in Seoul, South Korea using Google

Vision API tools [33]. Albeit their approach sets a new direction for studying linguistic

landscapes, they find that many word sequences in their samples were unrecognized

by the algorithm. To advance this literature further, we also take a big-data approach

in constructing fine-grained maps of linguistic diversity in Stockholm.
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3.1.2 Scene Text Recognition

The problem of scene text recognition is part of a larger field of image-based sequence

recognition. The fundamental motivation in this field of research is to extract as much

high-quality information from images as possible. Therefore, current tools that can

be used for language classification are designed to not only detect if a language is

present in an image but also output what the specific word sequences are.

EasyOCR2 is a popular open source ready-to-use tool for scene text recognition.

The tool uses a convolutional recurrent neural network (CRNN) architecture [64]

that integrates feature extraction, sequence modeling and transcription into a unified

framework to identify text in a scene. EasyOCR supports over 80 languages and has

reasonable performance for English. However, it has a distinctly poorer performance

for identifying other languages (see Section 3.4 for a comparison with our model).

There is also a host of commercial OCR tools that spells more promise, although

it is unclear how these tools function. We experiment with Google OCR, which does a

reasonably good job of recognizing specific characters when it detects the presence of

any word sequence. However, it has a low recall, which corroborates with the findings

of Hong [33]. This translates to an average accuracy and an F1 score poorer than

EasyOCR (see Section 3.4). The mixed performance of state-of-the-art OCR tools

motivates adopting a different paradigm in scene text recognition.

3.1.3 Classification with CNNs

Therefore, we seek to tackle an easier task—identifying the presence of a language in

a scene. Like how OCR tools use some form of convolutional neural network (CNN)

to extract features, our language detection model is also built on a pre-trained CNN.

Common CNNs used in extracting features from a scene include VGG [65] and
2Source code available at: https://github.com/JaidedAI/EasyOCR
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ResNet [31]. While VGG offers a more parsimonious network (19 layers), the in-

creased complexity of ResNet (>100 layers) accords more degrees of freedom for

better feature representation. Against the backdrop of deeper and deeper networks

and the associated problem of vanishing gradients, the Dense Convolutional Network

(DenseNet) [35] offers a different modeling paradigm. In each layer of a DenseNet,

the feature maps of all preceding layers are used as inputs, thereby creating a denser

representation structure with fewer layers, striking a balance between model parsi-

mony and representation space. DenseNets have performed well in image and scene

classification tasks [75,76], and we use a pre-trained DenseNet in our implementation.

3.2 Data

3.2.1 Synthetic Data

Given the labor cost of manual labeling, we automate the process of data generation

by using SynthText,3 a tool for generating text onto given background images. Gen-

erating synthetic data is a common technique used in scene text recognition [30, 49]

due to limited authentic data. To synthesize images with text, Gupta et al. identify

regions with sufficient continuities using segmentation data and transform the text to

be placed on images using depth data [28].

Although SynthText was originally developed only for English, we made amend-

ments to the original code to provide support for generating Swedish, Arabic and

Chinese text. We do this by introducing a multilingual corpus and fonts that support

the three other languages.

Given that we can change the language of the text generated while controlling for

the background image, the data generated may skew training towards focusing on the

text rather than irrelevant visual features. In Figure 3-2, we provide examples of 4
3Source code available at: https://github.com/ankush-me/SynthText
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Figure 3-2: Examples of synthetic images generated with the same background but
with different languages—Arabic, Chinese, Swedish and English, from top left in
clockwise order.

images with exactly the same background, each with text of a different language. We

provide statistics of the synthetic dataset in Table 3.1.

3.2.2 Google Street View Images

Although there are benefits in using synthetic data, we recognize that visual domain

adaptation is difficult [62]. Since we ultimately want to apply our text detection tool

to real scenes, it is important for the model also to be trained on real streetscapes.

Therefore, we source real data from GSV and manually label them with pigeon,4

an open source labeling tool. With the intention of applying this tool to Stock-

holm, we scrape images from densely populated areas with a good amount of text in

the scene. Our dataset comprises images from cities where the target languages are

dominant—Stockholm for Swedish, Ramallah, Bethlehem and Beirut for Arabic and

Hong Kong for Chinese. To avoid overfitting on these cities where the target lan-

guages are highly prevalent, we also include images from London and New York City,
4Source code available at: https://github.com/agermanidis/pigeon
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Language Synthetic Real

English 1028 6105
Swedish 1028 1175
Arabic 1028 1434
Chinese 1028 1165
None 1028 6049
Total 5140 15928

Table 3.1: Size of dataset for each language. The synthetic data for each of the 4
languages is generated from the same 1028 background images. After finding good
performance with training solely on real data, we scaled up manual labeling of real
data, thereby leading to a much larger dataset of real data.

both global metropolis where minority languages feature in a less prominent manner.

Therefore, we have a dataset with good coverage of the four target languages, with

variations in how prominently they are featured and the architectural styles of the

scenes they are featured in. This ensures that the resultant model is generalizable to

our case study of Stockholm.

To obtain GSV images, we begin by generating sampling points along the road

network in areas of interest at 50-meter intervals using OpenStreetMap. We then

make API requests from GSV using these sampled coordinates and the following

parameters—90∘ field-of-vision, 0∘ pitch, 50m radius. For each set of coordinates, we

obtain images at compass headings of 0∘, 90∘, 180∘ and 270∘, thereby capturing the

full panorama at each point. The summary statistics of data obtained from each city

is presented in Table 3.2.2.

We first approached the study with the hypothesis that pre-training with synthetic

data would allow for better overall performance. Therefore, we generated synthetic

data and labeled a small amount of real data manually. After finding better perfor-

mance with training solely on real data vis-à-vis pre-training with synthetic data, we

scaled up manual labeling of real data, thereby leading to a much larger dataset of

real data (Table 3.1).
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City En Sv Ar Cn None Total

London 2836 0 103 0 2543 5383
New York City 355 0 29 0 302 660
Stockholm 590 1175 2 15 1195 2633
Ramallah 873 0 1048 0 988 2214
Bethlehem 188 0 217 0 240 522
Beirut 48 0 35 0 59 127
Hong Kong 1215 0 0 1150 722 2034
Total 6105 1175 1434 1165 6049 13573

Table 3.2: Size of dataset by city

3.2.3 Dealing with Imbalanced Data

Since the language detection model is construed as a binary classification model with

4 parallel tasks, we will have many more negative examples than positive examples.

For example, if we train the classifier solely on synthetic data where each image only

has one language present, each classifier will have 1028 positive examples and 4112

negative examples. Therefore, we downsample the data randomly before training so

that the number of positive examples and negative examples are equivalent.

3.3 Building a Computational Model

3.3.1 Hyperparameters

We train the models using a NVIDIA GeForce RTX 2080 Ti GPU with 11GB mem-

ory. We adopt a train-validation-test split of 70-15-15 and experiment with different

learning rates before using the model with the best validation accuracy on our test

set. The remaining hyperparameters are listed in Table 3.3.

The base code for training and testing follows a modified version of the PyTorch

implementation from [77] that supports multi-label classification.5

5Modifications made by Fan Zhang from MIT Senseable City Lab.
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Hyperparameter Choice

Base Architecture DenseNet-121
Learning Rate 0.0005, 0.001, 0.002
Momentum 0.9
Weight Decay 10−4

Batch Size 100
Epochs 150
Loss Function Cross-entropy
Optimizer Stochastic gradient descent
Image size 256× 256

Table 3.3: Hyperparameters

3.3.2 Training Process

We first train the model purely on the synthetic dataset, before training the best

performing model on the real dataset for another 150 epochs. We also train the

model with the real dataset from scratch.6

3.3.3 Second-order Metrics

The model predicts if a language is present in an image (outputs 1) or not (outputs

0), lending itself to a measure of language concentration in an urban area as defined

as:

𝑃𝑥,ℓ =
1

|𝑥|
∑︁

𝑖∈𝒮(𝑥)

1(language ℓ is in image 𝑖) (3.1)

where 𝒮(𝑥) is the set of images in an urban area 𝑥. To quantify the linguistic diversity

in an urban area, we use the concept of Shannon entropy from statistical physics that

is commonly applied to capture the notion of diversity [1, 51,67].

𝐸𝑥 =
∑︁
𝑙

−𝑃𝑥,ℓ log(𝑃𝑥,ℓ) (3.2)

6i.e. from pre-trained DenseNet-121 parameters
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3.3.4 Evaluation Metrics

To evaluate the performance of our model, we look at both classification accuracy

and the F1 score, which is defined as such:

Precisionℓ =
𝑇𝑃ℓ

𝑇𝑃ℓ + 𝐹𝑃ℓ

(3.3)

Recallℓ =
𝑇𝑃ℓ

𝑇𝑃ℓ + 𝐹𝑁ℓ

(3.4)

F1ℓ = 2 · Precisionℓ · Recallℓ
Precisionℓ + Recallℓ

(3.5)

where 𝑇𝑃ℓ (𝐹𝑃ℓ) is the number of positive examples that are (in)correctly classified

for language ℓ while 𝐹𝑁ℓ is the number of negative examples that are incorrectly

classified for language ℓ. Although classification accuracy is easily interpretable, it is

not robust to data imbalance. Since we have a larger proportion of negative exam-

ples than positive examples for our test dataset, we are concerned about misleading

test statistics (for example, a model may achieve high test accuracy by classifying

everything as negative). Tracking recall and the F1 score provides us with another

perspective of the model’s performance.

3.4 Results

3.4.1 OCR vs Our Method

The test accuracy of the different models is presented in Table 3.4. We use our own

test dataset, comprising 2964 images scraped from GSV, to evaluate the performance

of our model and compare them to those of ready-to-use OCR tools. We find that

both OCR tools have around 60-70% accuracy across the 4 languages.

From the precision and recall of the different models (Tables 3.5 and 3.6), we

find that the OCR tools are generally quite conservative, as precision is generally

55



much higher than recall across the 4 languages. This is especially the case for Google

OCR, which has almost no false positives, at the expense of a large number of false

negatives.

On the other hand, we find that our language detection model works well for all 4

languages, when trained with real data. The overall accuracy of both models trained

with real data is higher than that of both OCR tools and crucially, the gap between

precision and recall for our models is small. In fact, for the models trained with real

data, the gap between precision and recall for each classifier only has a maximum of

11.5 percentage points, much smaller than those of the 2 OCR tools. Consequently,

the F1 scores of the models trained with real data are also higher than those of the

OCR tools (Table 3.7).

Intuitively, the superior performance of our model in comparison with OCR tools

arises from the fact that it is not trained to care about the specific characters. In

an OCR tool, the model is trained to identify word sequences and only yields any

output if the model has a sufficiently high confidence that a particular word sequence

is present in the image. The language identified in the word sequence is only a

byproduct and depends on a word sequence being identified first. However, identifying

a language does not necessarily require identifying the specific words first, even for

humans, particularly when the languages of concern are distinct from one another.

In our specific use case, we note that Arabic is a cursive language where most of the

characters in one word are connected, while written Chinese comprises pictographs

that are of roughly equal size. These characteristics make Arabic and Chinese distinct

from the Latin script and from each other. Even between English and Swedish, there

are clear visual distinctions, with the use of accents and much higher frequency of

long compound words in Swedish (e.g. Centralstationen (Swedish) vs Central Station

(English)). Not focusing on specific characters allows the model more degrees of

freedom to focus on distinct linguistic features, and to output a positive result, even

when it is not clear what the specific words are (e.g. in scenes where the words are

small or skewed).
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Model En Sv Ar Cn Total

EasyOCR 75.2 67.0 68.6 64.0 71.9
Google OCR 71.6 67.6 74.7 62.6 70.5
Synthetic 55.3 53.4 48.1 53.1 53.9
Synth + Real 71.6 82.4 88.6 88.9 77.2
Real 76.4 85.5 88.1 91.1 80.8

Table 3.4: Test accuracy of EasyOCR, Google OCR and our models. For each training
paradigm, we only include the test accuracy of the model with the highest total
validation accuracy. Highest test accuracy bolded.

3.4.2 Training with Synthetic vs Real Data

The performance of the model trained solely on the synthetic data is poor, with the

test accuracy being about as good as a random guess. This points to the limitation

of transfer learning—the underlying distributions of the synthetic data and real data

are different and a model trained solely on synthetic data may not generalize well to

real data.

However, once we train the model further with real data, we find improved per-

formance and the test accuracy for languages other than English is much higher than

that of the OCR tools. We also trained the model from scratch with real data and

this model achieves better performance than OCR tools across all 4 languages, with

a total test accuracy of 80.8%. Although we hoped that pre-training with synthetic

data would teach the model to focus on the text rather than irrelevant features and

therefore lead to better performance than training from scratch, it is likely that the

poor generalization of the synthetic data made the parameters learned from train-

ing with synthetic data a distraction rather than an aid. The strong performance of

training from scratch suggests that it may not be necessary to use synthetic data to

train a language detection model.
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Model En Sv Ar Cn

EasyOCR 82.2 65.7 68.7 66.1
Google OCR 71.2 94.1 100.0 98.0
Synthetic 68.7 42.9 47.2 60.3
Synth + Real 69.2 76.2 86.7 87.6
Real 79.2 79.0 85.6 90.2

Table 3.5: Precision of EasyOCR, Google OCR and our models. For each training
paradigm, we only include the precision of the model with the highest total validation
accuracy.

Model En Sv Ar Cn

EasyOCR 63.3 56.6 65.1 60.9
Google OCR 71.2 30.2 47.8 27.4
Synthetic 18.9 9.4 57.4 24.6
Synth + Real 76.4 88.7 90.4 91.1
Real 70.7 92.5 90.9 92.7

Table 3.6: Recall of EasyOCR, Google OCR and our models. For each training
paradigm, we only include the recall of the model with the highest total validation
accuracy.

Model En Sv Ar Cn Total

EasyOCR 71.5 60.8 66.9 63.4 68.4
Google OCR 71.2 45.7 64.7 42.8 63.4
Synthetic 29.6 15.4 51.8 34.9 30.8
Synth + Real 72.6 82.0 88.5 89.3 77.8
Real 74.7 85.2 88.2 91.4 79.8

Table 3.7: F1 score of EasyOCR, Google OCR and our models. For each training
paradigm, we only include the F1 score of the model with the highest total validation
accuracy. Highest F1 score bolded.
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3.4.3 Visual Interpretability

Although our model performs well, we want to be sure that it is looking at the right

features instead of picking up spurious correlations. Therefore, we use a gradient-

weighted class activation map (Grad-CAM) to translate gradient information of each

of the 4 classifiers flowing into the final convolutional layer onto a heatmap.7 In

Figure 3-3, we present the heatmaps produced for a sample of correctly classified

images in the test dataset. In general, we find that in correctly classified examples,

the model focuses on the right things—store signs, road markings. In incorrectly

classified examples (Figure 3-4), the model might still be looking at the right things

but fails to detect a language likely because the word sequences are too small or

indistinct.

We also provide the Grad-CAM of correctly classified multilingual scenes (Figure

3-5 provides five examples—English and Swedish, English and Arabic, English and

Chinese, Swedish and Arabic, and Swedish and Chinese). In general, we find that the

pair of relevant classifiers tends to focus on the same spot, likely since multilingual

text are often co-located with English. In the English and Arabic example, where

the English and Arabic text are not co-located, we see that the English classifier

focuses on the part containing English text and the Arabic classifier focuses on the

part containing Arabic text, which suggests that each classifier focuses on the correct

target language.
7Modified implementation of: https://github.com/eclique/pytorch-Grad-CAM
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Figure 3-3: Grad-CAM performed for true positive examples. There is one example
for English, Swedish, Arabic and Chinese (from top to bottom). Heatmaps for each
classifier (English, Swedish, Arabic and Chinese, from left to right) are provided for
each image. For each row, the heatmap highlighted in red is that of the classifier
for which the image is a true positive example. In general, we see that the model
is attentive to parts of the images for which there is text e.g. store signs or road
markings.

3.5 Applications in Stockholm

3.5.1 Summary Statistics

We apply our classifier on GSV images in Stockholm, Sweden between 2009 and 2021.
8 To facilitate comparison with public socioeconomic data from Statistics Sweden [68]

we aggregate our data at the DeSO (Demographic Statistical Areas) level. In Figure
8Details of data extraction are outlined in Appendix A.
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3-6, we present choropleth maps of the linguistic concentration in Stockholm in 2020-

2021.

We see that Swedish (unsurprisingly) has the strongest presence among the 4 lan-

guages across the city. English has a moderate presence, while Arabic and Chinese

has minimal presence, and these three languages are more concentrated around the

downtown area. As Hult observed in Sweden, English is not imposed from above but

arises from socioeconomic interests [36]. It is therefore unsurprising to find a stronger

presence of English in the downtown area where there are stronger commercial inter-

ests and higher tourist footfall.

3.5.2 Comparison with other Socioeconomic Characteristics

Statistics Sweden provides aggregated data of the citizenship of residents—residents

are classified as “Swedish”, “Europeans except Swedish”, or “Others”. To facilitate

comparison with our measures of linguistic diversity, we construct a measure of pop-

ulation entropy in the same way we constructed our measure of linguistic entropy. In

Figure 3-7, we present choropleth maps of linguistic entropy and population entropy

in Stockholm in 2020-2021. We also include a choropleth map of median income to

facilitate comparison.

Interestingly, and perhaps counterintuitively, the spatial distributions of the two

measures are reversed, with areas that have higher linguistic entropy having lower

population entropy. In fact, the correlation of the two measures across all years is

-0.205, implying a weak negative correlation. Although this might not make sense

at face value, this observation aligns well with our understanding of Swedish society.

Crucially, we need to recognize that high linguistic mix need not arise from high

population mix, particularly in a country whose heritage and culture is hallmarked

by homogeneity. Rather, the linguistic diversity we see in Stockholm is not so much

resultant of a diverse resident population along ethnolinguistic lines, but likely a

feature of globalization. In fact, in a study of linguistic landscapes in Seoul, Hong
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finds an increased prevalence of Chinese signs despite a relatively unchanged Chinese

population and attributes this to “the recent popularity of Chinese food in the Korean

society” [33], suggesting that linguistic diversity can be driven by preferences. One

telltale sign for our case is the positive correlation between linguistic entropy and

median income—0.261 which suggests that linguistic diversity may be well-associated

with a diversity-seeking upper-middle class population that demands more culturally

diverse goods and services.

On the other hand, despite the strong population entropy in the outskirts of the

city, the lower linguistic entropy suggests that minorities are not necessarily comfort-

able expressing themselves in their mother tongues, in a country that prides itself on

its cultural homogeneity. In fact, Daun notes that differences in cultural backgrounds

are downplayed in accordance with the Swedish “emphasis on conflict avoidance” [17],

and this may have contributed to the limited presence of minority languages, similar

to the case of Polish in Norway.

3.6 Concluding Remarks

In this chapter, we introduce a different paradigm for detecting the presence of lan-

guages in streetscapes. Instead of using existing OCR tools, we propose the use of a

pre-trained DenseNet-121 model to do binary classification for the presence of each

language of interest. Our best model (which supports English, Swedish, Arabic and

Chinese) achieves a test accuracy of 80.8%, surpassing the performance of existing

OCR tools. We explore the use of both synthetic and real data in training our model

and find that training solely on real data achieves the best performance, likely because

synthetic data does not generalize well to real streetscapes and text in the wild. To

check if the model is making sense, we employ Grad-CAM and find that the model

is indeed focusing on visual features containing text. We apply our model to GSV

images in Stockholm and find that the linguistic concentration of each of the 4 lan-

guages aligns with our intuition. We construct an entropy index to measure linguistic
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diversity and compare it with population entropy. Although there is a weak negative

correlation between the two, we argue that linguistic mix and population mix need

not go hand-in-hand, particularly in a strongly homogeneous society like Sweden.

Rather, the fact that linguistic mix is not commensurate with population mix points

to the importance of measuring them separately.
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Figure 3-4: Grad-CAM performed for false negative examples. There is one example
for English, Swedish, Arabic and Chinese (from top to bottom). Heatmaps for each
classifier (English, Swedish, Arabic and Chinese, from left to right) are provided for
each image. For each row, the heatmap highlighted in red is that of the classifier for
which the image is a false negative example. In general, we see that the model fails
to detect the presence of text despite being attentive to parts of the images for which
there is text. We postulate that this is because the text is too small or indistinct
from other visual features in a streetscape.
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Figure 3-5: Grad-CAM performed for true positive multilingual examples. There
is one example for English and Swedish, English and Arabic, English and Chinese,
Swedish and Arabic, and Swedish and Chinese (from top to bottom). Heatmaps for
each classifier (English, Swedish, Arabic and Chinese, from left to right) are provided
for each image. For each row, the heatmaps highlighted in red are those of the
classifiers for which the image is a true positive example. In general, we see that the
model is attentive to parts of the images for which there is text e.g. store signs or
road markings. In multilingual scenes, the pairs of classifiers tend to focus on similar
parts of the image.
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Figure 3-6: Linguistic concentration of English, Swedish, Arabic and Chinese in Stock-
holm in 2020-2021. The presence of Swedish is much higher than all other languages
across the city. There is moderate presence of English in the downtown area while
the presence of other foreign languages is limited.
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Figure 3-7: Linguistic entropy, population entropy and median income in Stockholm
in 2020-2021
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Chapter 4

City Change

Cities are molded by change—they are a tapestry of both public and private interven-

tions in the urban space, and the rhythm of the city is captured through the changing

interactions between people and place.

Urban interventions—new schools, housing, parks, bus networks, stadiums, public

spaces—may have important intended and unintended implications for its immediate

vicinity. Neighborhoods can become more vibrant due to the spillover effect of urban

interventions—Hornbeck and Keniston noted how simultaneous reconstruction in ar-

eas afflicted by the Great Fire of Boston in 1872 set off a virtuous cycle of building

upgrades even in areas unaffected by the Fire [34]. Jaime Lerner, former mayor of

Curitiba, Brazil cited the construction of a provisional café that served as a new hub

of activity as an example of filling in urban “voids”, providing continuity in a space

that was not devoid of people or housing, but of a space for interaction. Such exam-

ples are, as Lerner describes, urban acupuncture, “a spark that sets off a current that

begins to spread” [45].

However, urban interventions can also foster gentrification processes or the degra-

dation of the built environment, among other unintended consequences. It is not

uncommon for existing residents to resist new developments within their neighbor-
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hood for reasons such as short-term visual pollution, increased traffic noise, disruption

to local traffic patterns, and long-term loss of a neighborhood’s character. Therefore,

it is key to understand the impacts of urban interventions and how these effects vary

spatiotemporally.

In this chapter, we study how the construction of new housing projects affects the

visual quality and linguistic diversity in Stockholm in the period 2009-2021. Stock-

holm is a growing city and its transformation over the years is characterized by a tire-

less process of construction and reconstruction—infill developments to increase the

density of existing neighborhoods, new housing projects to expand the urban space

and cater to the growth of a younger generation. Amidst expectations of continued

growth, the city has set its sights on 140,000 new homes by 2030 and a corresponding

expansion of its urban infrastructure [14]. Against this backdrop of growth and ex-

pected growth in Stockholm, it is important to understand what the consequences of

new construction are. We find that a 1% increase in the number of housing projects

within the 300m radius of a 100m × 100m grid can increase enclosure as measured

by the proportion of pixels classified as walls or buildings by 0.0134% and linguistic

entropy by 0.0375% in the period that construction is completed and the effects are

persistent over time. These findings suggest that new housing construction can spur

complementary developments in the surrounding area and also bring in people with

a stronger desire for culturally diverse goods and services.

Our work contributes to a body of literature that estimates the externalities of

urban interventions. Existing work in the literature has focused on the effects of

urban interventions as measured by common socioeconomic indicators—neighboring

land values [60], housing prices [18, 27], crime rate, income and racial diversity [18].

Studies focusing on housing or land values start by assuming a hedonic price model

and see each housing unit as a basket of amenities and qualities. The general nar-

rative is that changes in neighboring housing prices following an urban intervention

arises from a confluence of demand and supply factors that can be driven by improve-
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ments in building quality among other factors. In general, these studies estimate

the relative impacts of supply and demand effects, but do not necessarily identify

the mechanisms that underpin changes in supply and demand [3, 27, 69]. Although

some studies measure changes in building quality more directly—e.g. Perkins et al.

collate measures of self-reported home repairs and improvements and changes in the

assessed conditions of yards and exteriors [58], such data is not easily available. This

motivates the use of visual quality measures as a way for us to estimate the impact

of new housing projects on the visual quality of neighboring urban environments.

In a country that has recently experienced large-scale immigration, the conse-

quences of new housing projects on social integration, whether intended or unin-

tended, is also of concern. Most studies look into the effects of new policies or projects

on social segregation [26,50,63], which provides an objective measure of where people

live, allowing us to then infer the level of integration. In Chapter 3, we argue that our

measure of linguistic entropy is a measure of cultural capital that captures (1) the

level of comfort that minorities have in showcasing their culture and (2) the demand

among the general populace for multicultural goods and services. This measure goes

beyond showing where people live but offers a perspective of the overall comfort with

multiculturalism. Therefore, we also study the impact of new housing projects on the

linguistic diversity in the surrounding environment.

Evaluating the effects of urban interventions on metrics constructed from street

view imagery (SVI) follows from a body of literature that views cities as centers

of aesthetic and recreational value and uses images to characterize cities [9, 24, 52].

While these studies demonstrate the usefulness of SVI in their ability to predict

socioeconomic variables [9,24]1 and vice versa [52], we go one step further by testing

how metrics constructed with SVI change in response to urban interventions. We see

this as an opportunity to evaluate how useful metrics constructed from SVI can be

beyond the spatiotemporal characterization of urban areas.
1Technically, Carlino and Saiz only use counts of geotagged images, instead of the content of the

images, like we do.
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Housing

Completed Units Rooms

2009 122 5039 19469
2010 103 3503 13382
2011 95 3184 12360
2012 89 4356 17141
2013 78 3604 13980
2014 84 3071 11474
2015 112 5206 19545
2016 86 4026 13114
2017 121 5162 18588
2018 102 5497 18512
2019 105 5413 18965
2020 81 4228 13888
2021 68 4519 13491

Table 4.1: Summary statistics of new construction of housing projects. Data is avail-
able for 2009-2021. We include the total number of projects, units and rooms com-
pleted in each year.

4.1 Data

4.1.1 Housing Projects

We obtain data of new housing projects from the City Planning Authority in Stock-

holm. The dataset includes all housing projects between 2009 and 2021. For each

housing project, we are furnished with information of the number of units and rooms—

information that can be used to account for varying treatment intensity. The sum-

mary statistics are presented in Table 4.1.

4.1.2 Dependent Variables

We obtain Google Street View (GSV) images of the streets of Stockholm from 2009

to 20212 and apply methods outlined in Chapter 2 and 3 to construct measures of
2Details of data extraction are outlined in Appendix A.

72



visual quality and linguistic diversity respectively. We aggregate data from every 2

years as a single temporal unit and data within each 100m × 100m grid as a single

spatial unit to obtain a panel dataset. The summary statistics are outlined in Table

4.2.
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2009-10 2011-12 2013-14 2016-17 2018-19 2020-21

Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

Imageability (People) 0.000293 0.00112 0.000375 0.00128 0.000486 0.00138 0.000565 0.00214 0.000479 0.00168 0.000313 0.000721
Imageability (SC, Top 5) 0.129 0.134 0.127 0.132 0.123 0.131 0.128 0.13 0.132 0.136 0.123 0.114
Imageability (SC, Prob) 0.0237 0.0184 0.0234 0.0182 0.023 0.018 0.0233 0.0177 0.0239 0.0184 0.0227 0.0157
Human Scale (Greenery) 0.135 0.0464 0.138 0.0451 0.138 0.0452 0.138 0.044 0.136 0.0461 0.139 0.0388
Human Scale (Furniture) 0.0194 0.012 0.019 0.0117 0.0191 0.0119 0.019 0.0114 0.0193 0.0119 0.0188 0.0101
Transparency 0.000995 0.00127 0.001 0.00122 0.000975 0.00119 0.000979 0.00126 0.00098 0.0012 0.00101 0.0012
Enclosure (Wall/Building) 0.0764 0.0779 0.0846 0.0828 0.104 0.0902 0.0937 0.0888 0.0867 0.0835 0.0822 0.0795
Enclosure (Sky) 0.114 0.053 0.108 0.0548 0.1 0.0579 0.113 0.058 0.125 0.0582 0.114 0.0599
Complexity (Objects) 9.88 1.06 9.9 1.06 9.88 1.05 9.86 1.01 9.89 1.06 9.89 0.922
Complexity (HH) 0.263 0.0724 0.265 0.0721 0.267 0.0734 0.265 0.0709 0.263 0.073 0.266 0.0641
Beautiful 5.94 0.451 5.96 0.439 5.96 0.445 5.96 0.424 5.94 0.451 5.97 0.384
Boring 5.58 0.211 5.58 0.208 5.59 0.208 5.59 0.2 5.58 0.208 5.59 0.184
Depressing 4.37 0.339 4.36 0.336 4.36 0.342 4.36 0.324 4.37 0.341 4.36 0.297
Lively 4.82 0.263 4.82 0.258 4.81 0.256 4.81 0.25 4.82 0.259 4.8 0.224
Safety 4.82 0.26 4.83 0.257 4.83 0.26 4.83 0.246 4.82 0.263 4.82 0.228
Wealthy 5.34 0.393 5.35 0.39 5.35 0.395 5.35 0.376 5.35 0.394 5.35 0.346
Linguistic Entropy 0.491 0.287 0.541 0.31 0.566 0.314 0.593 0.33 0.485 0.303 0.518 0.268

Table 4.2: Summary statistics of dependent variable grouped by time period
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4.2 Methodology

4.2.1 Baseline

The standard approach for evaluating the effects of new construction in the vicinity

is difference-in-difference (DID) [3,18,34,46]. In the canonical DID model, we have 2

periods—before and after an intervention and 2 groups—a treated and a control. By

assuming that the dependent variable in the treatment and control groups would have

changed in parallel in the absence of treatment, we can estimate the average treatment

effect on the treated by estimating the difference between the treatment group and

the control group before and after an intervention. In the context of evaluating the

effects of a new construction, the treatment group is construed as a ring around each

intervention (inner ring) and the control group as a ring around the inner ring (outer

ring).

In practice, we often have data across many time periods, which also creates

variation in the treatment timing. This motivates a generalized DID model that is

estimated using a dynamic two-way fixed effects (TWFE) regression specification.

𝑌𝑖𝑔𝑡 = 𝛼𝑔 + 𝜑𝑡 +
∑︁
𝑘

𝛽𝑘𝐷𝑖,𝑔,𝑡−𝑘 + 𝜀𝑖𝑔𝑡 (4.1)

In our context, 𝑖 is the grid ID, 𝑔 the DeSO (Demographic Statistical Areas) ID, 𝑡

the time period. 𝛼𝑔 refers to spatial fixed effects, 𝜑𝑡 refers to time fixed effects and

𝐷𝑖,𝑔,𝑡−𝑘 is a dummy variable that takes 1 if there is at least one project completed in

period 𝑡 − 𝑘 within a given distance of observation 𝑖. In this dynamic specification,

we allow the causal estimand 𝛽𝑘 to vary across time (relative to project completion).

This allows us to tease out possible anticipation effects and evaluate how persistent

treatment effects are.

Beyond temporal heterogeneity, recent work in urban economics and real estate

literature also allow for spatial heterogeneity [7,40,57,66]. Intuitively, we expect that
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the treatment effect is stronger the closer a unit of observation is from an interven-

tion. In these studies, the authors construct multiple treatment rings to estimate

treatment effects at different distances from an intervention. This results in the fol-

lowing regression specification

𝑌𝑖𝑔𝑡 = 𝛼𝑔 + 𝜑𝑡 +
∑︁
𝑘

∑︁
𝑟

𝛽𝑘,𝑟𝐷𝑖,𝑔,𝑡−𝑘,𝑟 + 𝜀𝑖𝑔𝑡 (4.2)

where 𝐷𝑖,𝑔,𝑡−𝑘,𝑟 is a dummy variable that takes 1 if there is at least one project

completed in period 𝑡 − 𝑘 in the 𝑟-th ring of observation 𝑖. This yields a causal

estimand 𝛽𝑘,𝑟 that varies both spatially and temporally.

In the baseline, we use distance bins of 300m for the first 600m and 200m for the

next 1.4km. Here, the identification assumption is that within a micro-neighborhood

of 2km radius, the outcomes of interest would have changed in parallel in the absence

of new construction. Intuitively, since the units of observations are within a short

distance from one another, we expect that the only difference between these obser-

vations after controlling for fixed effects are their distances from new construction.

We do not expect this hyperlocal variation to depend on the dependent variables nor

other unobserved variables and exploit this variation to provide consistent estimates

of treatment effects.

4.2.2 Variation in Treatment Intensity

Even with a generalized DID model that accounts for spatiotemporal heterogeneity in

treatment effects (Equation 4.2), we do not account for varying treatment intensity

arising from exposure to multiple interventions and project size. This is essential

given how dense our dataset is.3 There are two broad approaches in handling multiple

treatments. Blanco and Neri allow for duplicate entries—i.e. observations exposed to

multiple treatments appear multiple times in the dataset—and check for robustness by
396% of the observations are exposed to multiple treatments.
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dropping different subsets of duplicates [7]. On the other hand, Pennington accounts

for variation in treatment intensity by regressing the dependent variables of concern

against the degree of exposure to new construction [57]. Therefore, we estimate the

following equation in the baseline:

𝑌𝑖𝑔𝑡 = 𝛼𝑔 + 𝜑𝑡 +
∑︁
𝑘

∑︁
𝑟

𝛽𝑘,𝑟𝐶𝑖,𝑔,𝑡−𝑘,𝑟 + 𝜀𝑖𝑔𝑡 (4.3)

where instead of a dummy variable, we have 𝐶𝑖,𝑔,𝑡−𝑘,𝑟 on the right-hand-side to capture

the number of projects completed in time 𝑡−𝑘 in the 𝑟-th ring around grid 𝑖. As part

of robustness checks, we define 𝐶 as the number of units and the number of rooms

too.

4.2.3 Variation by Income Group

Similar studies are often cognizant of heterogeneous effects in different parts of a city

across socioeconomic lines. In particular, many studies have made the distinction

between low-income and high-income areas. Asquith et al. noted that high-income

areas may have better reputation, broader appeal, better amenities than low-income

areas, with the interaction of underlying differences contributing to different empirical

impacts and focused on low-income areas in their study of the effects of new large

apartments [3]. Diamond and McQuade also made the distinction between high-

income and low-income areas and found that properties financed by the Low Income

Housing Tax Credit (LIHTC) have different qualitative impacts in high-income and

low-income areas. Therefore, in our study, we also make a distinction between high-

income and low-income areas [18]. We broadly define high-income areas as DeSO areas

whose mean income exceeds the Stockholm mean income in the period of concern,

and low-income areas as DeSO areas whose mean income falls below the Stockholm

mean income in the period of concern. Although we expect differing impacts in high-

income and low-income areas, we are agnostic about where these distinctions may fall

given the confluence of factors that differ between high-income and low-income areas.
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Figure 4-1: Event study plots of enclosure, using the full sample and the number of
projects as the measure of treatment intensity

4.3 Results and Discussion

4.3.1 Visual Quality

In the baseline, we run the regression with a full sample of observations, using the

number of housing projects in each ring as a measure of treatment intensity. Although

the results are fairly noisy for the other dependent variables (Appendix C), we find

that enclosure increases in the immediate vicinity (300m) of a new project and the

effect is persistent over time. The graphs in Figure 4-1 show that a 1% increase in

the number of housing projects completed within 300m of an area increases enclosure

(wall/building) by 0.0134% and enclosure (sky) by 0.0033% in the time period the

project is completed. The effect is persistent over time, and the estimated coefficients

rises to 0.0157 for enclosure (wall/building) and to 0.0065 for enclosure (sky) 2 periods

after the project is completed.

Intuitively, the completion of new housing projects may spur complementary de-

velopments such as increased commercial space or building improvements in the sur-

rounding area, thereby accounting for increased enclosure. This aligns with Perkins

et al., who found modest effects on a series of building quality measures within one

block of new housing [58].

When we run the regressions for samples segregated by income levels, we find that
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Figure 4-2: Event study plots of enclosure, using samples segregated by income and
the number of projects as the measure of treatment intensity

the effects on enclosure are seen in both high-income and low-income areas, with the

estimated effects being generally larger in high-income areas (Figure 4-2).

However, when we focus specifically on low-income areas, we see that the immedi-

ate vicinity sees an increase in imageability (people), becomes less depressing but more

boring (Figure 4-3). Although it is unclear why such effects are more pronounced in

low-income areas, it makes sense that a new housing project should increase footfall

in the area and the completion of construction and removing of scaffolding should

make a place look less depressing. Even though we expect an area to look less boring

with urban development in general, the increase in enclosure may account for urban

areas feeling more stifling and “boring”. In a study to uncover physical features that

can explain perceptual features, Zhang et al. argue that walls may lead to blocked

views, decreased sunshine, and the build-up of pollution, resulting in scenes with a

large proportion of walls to generate feelings of boredom [74].
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Figure 4-3: Event study plots of imageability (people), depressing and boring, using
the low-income sample and the number of projects as the measure of treatment in-
tensity

Figure 4-4: Event study plots of linguistic entropy, using the number of projects as
the measure of treatment intensity

4.3.2 Linguistic Entropy

In the baseline, we find that there is a strong increase in linguistic entropy in the

immediate vicinity of the construction. Based on Figure 4-4, we see that entropy

rises by 0.0194% for every 1% increase in the number of housing projects 2 periods

before project completion. The effect peaks in period 0 at 0.0375% but remains

positive and statistically significant at 0.0244% in period 2, demonstrating temporal

persistence. These effects are seen in both high-income and low-income areas (Figure

4-4).

In Chapter 3, we argue that linguistic entropy is not so much a measure of pop-

ulation mix. Rather, it is a measure of interest per se that tells us how diverse the

linguistic landscape is. As we show in Section 3.5.2, linguistic entropy has a stronger

(and positive) correlation with median income than with population mix. Therefore,

we do not see linguistic entropy as a result of a more diverse residential population.

Rather, we consider it an outcome of a stronger demand for culturally diverse goods

and services from people who reside in and frequent an area. Therefore, we interpret
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the increase in linguistic entropy in the vicinity of a new housing project following

its completion as the outcome of a rise in a population demanding more culturally

diverse products.

Crucially, several academics have characterized housing projects in Sweden today

as luxury goods that serve as an expression of one’s lifestyle [11,26,32]. Therefore, it is

likely that these new housing projects attract middle-income, high-income-types with

a stronger cultural consciousness and an appetite for diversity into the neighborhood,

generating the demand that results in a stronger linguistic mix in the neighborhood.

We also find that the effects in low-income areas are generally stronger than those in

high-income areas.

4.4 Robustness Checks

4.4.1 Varying Definitions of Spatial Bins

As a robustness check, we use larger spatial bins in our regressions. Using larger

spatial bins means that there is more data for each bin and this would allow us to

estimate the coefficients more precisely and check if zero-effects at further distances

are indeed zero. However, this comes at the expense of the spatial granularity of

treatment effects.

We find that the effects of housing construction on enclosure (Figure 4-5) and

linguistic entropy (Figure 4-6) remain strong in the immediate vicinity. However,

the estimated coefficients are now smaller—the estimates in period 0 on enclosure

(wall/building), enclosure (sky) and entropy are now 0.0072, 0.0017, 0.0179 respec-

tively. This makes sense if the effects exhibit distance decay—since the smallest ring

now includes projects further away from the unit of observation than before, the

average treatment effect is diluted.
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Figure 4-5: Event study plots of enclosure, using the number of projects as the
measure of treatment intensity, with 500m spatial bins

4.4.2 Varying Definitions of Treatment Intensity

Since we are furnished with data of the scale of the different housing projects in our

study, we repeat the study for different definitions of treatment intensity—using the

number of units and number of rooms instead of the number of projects.

We find similar results regardless of definition (Appendix C). Intuitively, there is a

strong positive correlation between the number of projects and the number of units or

rooms in each ring, thereby making it likely for us to see the same qualitative results.

In general, however, we find that the estimated coefficients are now smaller. This is

intuitive too, since we expect the effect of a 1% increase in the number of rooms or
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Figure 4-6: Event study plots of linguistic entropy, using the number of projects as
the measure of treatment intensity, with 500m spatial bins

units to be smaller than the effect of a 1% increase in the number of projects.

4.5 Concluding Remarks

In this chapter, we apply novel metrics constructed in Chapters 2 and 3 to conduct a

study of the effects of new housing projects, and how these effects vary spatiotempo-

rally. A number of the measures constructed yield noisy estimates in a DID setting,

which points to the limited effectiveness of measures constructed from SVI beyond

spatiotemporal characterization. That said, we derive some intuitive results, showing

that enclosure and linguistic entropy both increase in the immediate vicinity of new

construction, with effects that are persistent over at least two periods (of two years)

after construction. We interpret the increase in enclosure as an increase in comple-

mentary development in the surrounding area of new housing construction, and the

increase in linguistic entropy as an increase in a resident population that is more

culturally conscious and demands more cultural diversity. These results are robust
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to different spatial bins and different measures of treatment intensity.
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Chapter 5

Conclusion

In Chapter 1, we highlighted how the growth of street view imagery (SVI) has both

created a wealth of data in the urban sphere and contributed to the rise of the

deep learning paradigm. In this thesis, we leveraged on these developments to con-

struct novel metrics—visual quality and linguistic diversity to (1) characterize urban

streetscapes spatiotemporally and (2) apply them in studying the effects of construct-

ing new housing projects. We find that the metrics we have constructed are generally

able to offer insightful spatiotemporal characterizations of our case study of Stock-

holm when used in conjunction with existing metrics, and some measures are also

able to capture intuitive relationships when used in a difference-in-difference (DID)

framework. There are limitations to these measures, because (1) they are ultimately

quantifying abstract concepts and (2) they can only be as accurate as the underly-

ing accuracy of the predictive models used to construct them. We summary the key

findings of each chapter below:
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5.1 Key Findings

5.1.1 Quantifying Visual Quality

In Chapter 2, we showed how we can leverage on modern computer vision tools to

construct measures of visual quality. We used a scene classifier trained on the Places

Database and a semantic segmentation model trained on the ADE20K dataset to

construct measures of physical features that characterize the visual quality of an

urban environment. We then trained a multiclassification model on the Place Pulse

2.0 dataset to construct perception scores. Applying these models to Stockholm, we

found that our measures of visual quality generally demonstrate intuitive relationships

with population density and median income, and with one another. However, we are

also aware of the limitations of applying imperfect models to construct these measures.

In particular, we found that measures constructed by the scene classifier are less useful

than those constructed by the semantic segmentation model, which follows from the

fact that it is more difficult to classify abstract notions (scenes) than clearly defined

objects.

5.1.2 Quantifying Linguistic Diversity

In Chapter 3, we showed how modern computer vision tools can be used to detect the

presence of languages in streetscapes, allowing us to then construct a second-order

metric of linguistic diversity. We constructed a large dataset of SVI scraped from

Google Street View (GSV), labelled with the presence of English, Swedish, Arabic

and Chinese. We then trained a DenseNet-121 model on this dataset and the test

accuracy of our best-performing model surpasses the performance of existing OCR

tools on the same dataset. We applied the model to Stockholm and created an entropy

measure based on the linguistic concentration in each 100m × 100m unit, finding that

linguistic mix is negatively correlated with population mix and positively correlated

with median income. This finding suggests that linguistic mix in Stockholm is not
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driven by population mix, but likely by a demand for culturally diverse goods and

services. Furthermore, given that linguistic mix is not commensurate with population

mix, we argued that minorities may not be comfortable in showcasing their culture,

even in areas with higher population mix. These findings point to how insightful

linguistic diversity is as a measure, and the importance of measuring it separately.

5.1.3 Effects of Urban Interventions on Visual Quality and

Linguistic Diversity

Given the insights offered by the measures of visual quality and linguistic diversity in

the spatiotemporal characterization of Stockholm, we study the effects of new hous-

ing construction in Stockholm between 2009 and 2021 as measured by these metrics

in Chapter 4. Although most measures of visual quality demonstrated intuitive spa-

tiotemporal relationships, we found that they are less useful in a DID setting, with

only the measures of enclosure yielding intuitive results. We find that both enclosure

and linguistic diversity exhibit persistent increases in the immediate vicinity of new

construction, capturing modest spillover effects in the neighborhood of new housing

projects. In the larger context of quantifying urban streetscapes, these encouraging

findings also highlight the potential of metrics constructed from SVI in helping us

uncover more nuanced and robust causal relationships in the urban sphere. As more

data and more powerful prediction models emerge, we expect metrics constructed

from SVI to play an even more important role in understanding cities.
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Appendix A

Google Street View in Stockholm

A.1 Querying Process

We begin by generating sampling points along the road network in Stockholm at

50-meter intervals using OpenStreetMap. We then make API requests from Google

Street View (GSV) using these sampled coordinates and the following parameters—

90∘ field-of-vision, 0∘ pitch, 50m radius. For each set of coordinates, we obtain images

at compass headings of 0∘, 90∘, 180∘ and 270∘, thereby capturing the full panorama

at each point.

A.2 Summary Statistics

We obtain images from the period 2009-2021 and this amounts to 1026960 unique

images, corresponding to 256740 unique panoramas. Since Google only conducts a

large-scale update of images approximately every two years, we group the data in sets

of two years (skipping 2015 as there is no data available for 2015). Furthermore, since

the panorama for a given area has a unique ID that varies temporally, we aggregate

our data at 100m × 100m grids in order to obtain a panel dataset. We present the
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data availability for GSV images in Figure A-1.

Figure A-1: GSV data availability in Stockholm. Grids (100m × 100m) with images

present for the particular year range are highlighted in blue.
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Appendix B

Categories in Machine Learning

Models

B.1 ADE20K Categories

The ADE20K scene parsing dataset used to train the semantic segmentation model

comprises the following 150 classes (Table B.1):

1 wall 2 building 3 sky 4 floor

5 tree 6 ceiling 7 road 8 bed

9 windowpane 10 grass 11 cabinet 12 sidewalk

13 person 14 earth 15 door 16 table

17 mountain 18 plant 19 curtain 20 chair

21 car 22 water 23 painting 24 sofa

25 shelf 26 house 27 sea 28 mirror

29 rug 30 field 31 armchair 32 seat

33 fence 34 desk 35 rock 36 wardrobe

37 lamp 38 bathtub 39 railing 40 cushion

41 base 42 box 43 column 44 signboard

45 chest 46 counter 47 sand 48 sink

49 skyscraper 50 fireplace 51 refrigerator 52 grandstand
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53 path 54 stairs 55 runway 56 case

57 pool 58 pillow 59 screen 60 stairway

61 river 62 bridge 63 bookcase 64 blind

65 coffee 66 toilet 67 flower 68 book

69 hill 70 bench 71 countertop 72 stove

73 palm 74 kitchen 75 computer 76 swivel

77 boat 78 bar 79 arcade 80 hovel

81 bus 82 towel 83 light 84 truck

85 tower 86 chandelier 87 awning 88 streetlight

89 booth 90 television 91 airplane 92 dirt

93 apparel 94 pole 95 land 96 bannister

97 escalator 98 ottoman 99 bottle 100 buffet

101 poster 102 stage 103 van 104 ship

105 fountain 106 conveyer 107 canopy 108 washer

109 plaything 110 swimming 111 stool 112 barrel

113 basket 114 waterfall 115 tent 116 bag

117 minibike 118 cradle 119 oven 120 ball

121 food 122 step 123 tank 124 trade

125 microwave 126 pot 127 animal 128 bicycle

129 lake 130 dishwasher 131 screen 132 blanket

133 sculpture 134 hood 135 sconce 136 vase

137 traffic 138 tray 139 ashcan 140 fan

141 pier 142 screen 143 plate 144 monitor

145 bulletin 146 shower 147 radiator 148 glass

149 clock 150 flag

Table B.1: Classes covered in the ADE20K dataset

B.2 Places Categories

The Places Database used to train the scene classifier comprises the following 365

categories (Table B.2):

1 airfield 2 airplane_cabin 3 airport_terminal
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4 alcove 5 alley 6 amphitheater

7 amusement_arcade 8 amusement_park 9 apartment_building

(outdoor)

10 aquarium 11 aqueduct 12 arcade

13 arch 14 archaelogical_excavation 15 archive

16 arena/hockey 17 arena/performance 18 arena/rodeo

19 army_base 20 art_gallery 21 art_school

22 art_studio 23 artists_loft 24 assembly_line

25 athletic_field 26 atrium/public 27 attic

(outdoor)

28 auditorium 29 auto_factory 30 auto_showroom

31 badlands 32 bakery/shop 33 balcony/exterior

34 balcony/interior 35 ball_pit 36 ballroom

37 bamboo_forest 38 bank_vault 39 banquet_hall

40 bar 41 barn 42 barndoor

43 baseball_field 44 basement 45 basketball_court

(indoor)

46 bathroom 47 bazaar/indoor 48 bazaar/outdoor

49 beach 50 beach_house 51 beauty_salon

52 bedchamber 53 bedroom 54 beer_garden

55 beer_hall 56 berth 57 biology_laboratory

58 boardwalk 59 boat_deck 60 boathouse

61 bookstore 62 booth/indoor 63 botanical_garden

64 bow_window 65 bowling_alley 66 boxing_ring

(indoor)

67 bridge 68 building_facade 69 bullring

70 burial_chamber 71 bus_interior 72 bus_station/indoor

73 butchers_shop 74 butte 75 cabin/outdoor

76 cafeteria 77 campsite 78 campus

79 canal/natural 80 canal/urban 81 candy_store

82 canyon 83 car_interior 84 carrousel

85 castle 86 catacomb 87 cemetery

88 chalet 89 chemistry_lab 90 childs_room

91 church/indoor 92 church/outdoor 93 classroom

94 clean_room 95 cliff 96 closet

97 clothing_store 98 coast 99 cockpit
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100 coffee_shop 101 computer_room 102 conference_center

103 conference_room 104 construction_site 105 corn_field

106 corral 107 corridor 108 cottage

109 courthouse 110 courtyard 111 creek

112 crevasse 113 crosswalk 114 dam

115 delicatessen 116 department_store 117 desert/sand

118 desert/vegetation 119 desert_road 120 diner/outdoor

121 dining_hall 122 dining_room 123 discotheque

124 doorway/outdoor 125 dorm_room 126 downtown

127 dressing_room 128 driveway 129 drugstore

130 elevator/door 131 elevator_lobby 132 elevator_shaft

133 embassy 134 engine_room 135 entrance_hall

136 escalator/indoor 137 excavation 138 fabric_store

139 farm 140 fastfood_restaurant 141 field/cultivated

142 field/wild 143 field_road 144 fire_escape

145 fire_station 146 fishpond 147 flea_market/indoor

148 florist_shop/indoor 149 food_court 150 football_field

151 forest/broadleaf 152 forest_path 153 forest_road

154 formal_garden 155 fountain 156 galley

157 garage/indoor 158 garage/outdoor 159 gas_station

160 gazebo/exterior 161 general_store/indoor 162 general_store/outdoor

163 gift_shop 164 glacier 165 golf_course

166 greenhouse/indoor 167 greenhouse/outdoor 168 grotto

169 gymnasium/indoor 170 hangar/indoor 171 hangar/outdoor

172 harbor 173 hardware_store 174 hayfield

175 heliport 176 highway 177 home_office

178 home_theater 179 hospital 180 hospital_room

181 hot_spring 182 hotel/outdoor 183 hotel_room

184 house 185 hunting_lodge/outdoor 186 ice_cream_parlor

187 ice_floe 188 ice_shelf 189 ice_skating_rink

(indoor)

190 ice_skating_rink 191 iceberg 192 igloo

(outdoor)

193 industrial_area 194 inn/outdoor 195 islet

196 jacuzzi/indoor 197 jail_cell 198 japanese_garden

199 jewelry_shop 200 junkyard 201 kasbah
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202 kennel/outdoor 203 kindergarden_classroom 204 kitchen

205 lagoon 206 lake/natural 207 landfill

208 landing_deck 209 laundromat 210 lawn

211 lecture_room 212 legislative_chamber 213 library/indoor

214 library/outdoor 215 lighthouse 216 living_room

217 loading_dock 218 lobby 219 lock_chamber

220 locker_room 221 mansion 222 manufactured_home

223 market/indoor 224 market/outdoor 225 marsh

226 martial_arts_gym 227 mausoleum 228 medina

229 mezzanine 230 moat/water 231 mosque/outdoor

232 motel 233 mountain 234 mountain_path

235 mountain_snowy 236 movie_theater/indoor 237 museum/indoor

238 museum/outdoor 239 music_studio 240 natural_history_museum

241 nursery 242 nursing_home 243 oast_house

244 ocean 245 office 246 office_building

247 office_cubicles 248 oilrig 249 operating_room

250 orchard 251 orchestra_pit 252 pagoda

253 palace 254 pantry 255 park

256 parking_garage 257 parking_garage 258 parking_lot

(indoor) (outdoor)

259 pasture 260 patio 261 pavilion

262 pet_shop 263 pharmacy 264 phone_booth

265 physics_laboratory 266 picnic_area 267 pier

268 pizzeria 269 playground 270 playroom

271 plaza 272 pond 273 porch

274 promenade 275 pub/indoor 276 racecourse

277 raceway 278 raft 279 railroad_track

280 rainforest 281 reception 282 recreation_room

283 repair_shop 284 residential_neighborhood 285 restaurant

286 restaurant_kitchen 287 restaurant_patio 288 rice_paddy

289 river 290 rock_arch 291 roof_garden

292 rope_bridge 293 ruin 294 runway

295 sandbox 296 sauna 297 schoolhouse

298 science_museum 299 server_room 300 shed

301 shoe_shop 302 shopfront 303 shopping_mall/indoor

304 shower 305 ski_resort 306 ski_slope
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307 sky 308 skyscraper 309 slum

310 snowfield 311 soccer_field 312 stable

313 stadium/baseball 314 stadium/football 315 stadium/soccer

316 stage/indoor 317 stage/outdoor 318 staircase

319 storage_room 320 street 321 subway_station/platform

322 supermarket 323 sushi_bar 324 swamp

325 swimming_hole 326 swimming_pool/indoor 327 swimming_pool/outdoor

328 synagogue/outdoor 329 television_room 330 television_studio

331 temple/asia 332 throne_room 333 ticket_booth

334 topiary_garden 335 tower 336 toyshop

337 train_interior 338 train_station/platform 339 tree_farm

340 tree_house 341 trench 342 tundra

343 underwater 344 utility_room 345 valley

(ocean_deep)

346 vegetable_garden 347 veterinarians_office 348 viaduct

349 village 350 vineyard 351 volcano

352 volleyball_court 353 waiting_room 354 water_park

(outdoor)

355 water_tower 356 waterfall 357 watering_hole

358 wave 359 wet_bar 360 wheat_field

361 wind_farm 362 windmill 363 yard

364 youth_hostel 365 zen_garden

Table B.2: Scene categories covered in the Places365 dataset
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Appendix C

Omitted Results

C.1 Baseline Regressions

In the baseline, we estimate:

𝑌𝑖𝑔𝑡 = 𝛼𝑔 + 𝜑𝑡 +
∑︁
𝑘

∑︁
𝑟

𝛽𝑘,𝑟𝐶𝑖,𝑔,𝑡−𝑘,𝑟 + 𝜀𝑖𝑔𝑡 (C.1)

where instead of a dummy variable, we have 𝐶𝑖,𝑔,𝑡−𝑘,𝑟 on the right-hand-side to capture

the number of projects completed in time 𝑡 − 𝑘 in the 𝑟-th ring around grid 𝑖. In

Figures C-1, C-2 and C-3, we present the baseline event study plots of all dependent

variables other than those already presented in Chapter 4, using the full sample,

high-income sample, low-income sample respectively.
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C.1.1 Full Sample

Figure C-1: Event study plots of all dependent variables other than enclosure and

entropy, using the full sample and the number of projects as the measure of treatment

intensity
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C.1.2 High-Income Areas

Figure C-2: Event study plots of all dependent variables other than enclosure and

entropy, using the high-income sample and the number of projects as the measure of

treatment intensity
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C.1.3 Low-Income Areas

Figure C-3: Event study plots of all dependent variables other than enclosure, entropy,

imageability (people), depressing and boring, using the low-income sample and the

number of projects as the measure of treatment intensity

C.2 Robustness Checks (Treatment Intensity Mea-

sures)

In the figures below, we present event study plots corresponding to positive results in

Section 4.3 using different measures of treatment intensity.
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Figure C-4: Effects on enclosure in the full sample using the number of units as the
treatment intensity measure

Figure C-5: Effects on enclosure in the full sample using the number of rooms as the
treatment intensity measure

Figure C-6: Effects on enclosure in high- and low-income areas using the number of
units as the treatment intensity measure
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Figure C-7: Effects on enclosure in high- and low-income areas using the number of
rooms as the treatment intensity measure

Figure C-8: Effects on imageability (people), depressing and boring in low-income
areas using the number of units as the treatment intensity measure

Figure C-9: Effects on imageability (people), depressing and boring in low-income
areas using the number of rooms as the treatment intensity measure
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Figure C-10: Effects on linguistic entropy using the number of units as the treatment
intensity measure

Figure C-11: Effects on linguistic entropy using the number of rooms as the treatment
intensity measure
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