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Abstract

Shape memory alloys (SMAs) and zirconia-based ceramics (SMCs) find a wide range
of applications in various fields due to their unique properties such as superelasticity
and shape memory effect. Desirable superelastic properties of shape memory mate-
rials are realized to their maximum extent in single crystalline structures due to the
absence of internal constraints. By contrast, in polycrystalline forms, superelasticity
is significantly compromised by severe premature intergranular fracture originated at
grain boundaries. This limitation has generated significant research interest focused
on developing microstructures that can preserve the properties of single crystals while
avoiding the production cost and manufacturing limitations of single-crystal process-
ing.

The overarching goal of the thesis is to improve our understanding of the com-
petition between martensitic transformation, grain boundary constraints, and inter-
granular fracture in shape memory materials through comprehensive computational
modeling. To this end, we developed a finite-element based framework for model-
ing martensitic transformation at the continuum level incorporating details of the
micromechanical information. A single-crystal model is implemented to provide a
full mechanistic three-dimensional description of both the anisotropic elastic and
martensitic transformation stress-strain response, including the non-Schmid behav-
ior observed in some types of SMCs. We used the geometrically nonlinear theory of
martensite to identify all possible transformation systems in SMAs and SMCs, based
on the knowledge of lattice parameters of the single crystal. In the case of SMCs,
the model was calibrated against data obtained from compression tests of zirconia
micropillars in previously published literature. We conducted finite element simula-
tions to obtain detailed information on the nucleation and evolution of martensite
variants and stress distribution at grain boundaries in both SMAs and SMCs. The
simulation results also provide insights on the competing mechanisms of elastic and
transformation incompatibility leading to severe stress concentration at grain bound-
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aries. We identified grain boundary configurations which result in very large stress
concentrations at very low deformations due to elastic incompatibility, as well as oth-
ers where the elastic incompatibility is relatively low and stress concentrations only
occur at large transformation strains. We also showed how this approach can be used
to explore the misorientation space for quantifying the level of elastic and transfor-
mation incompatibility at grain boundaries in both SMAs and SMCs. In addition
we investigated the correlation between different types of incompatibilities and grain
boundary characteristics. In the particular case of SMAs, we explored the role that
a coincident site lattice (CSL) may have in affecting grain boundary incompatibili-
ties. We demonstrated that grain boundaries with low CSL order exhibit low elastic
incompatibilities in Cu-based SMAs, as previously suggested from experimental ob-
servations. However, high CSL order grain boundaries result in incompatibilities that
are commensurate with those exhibited by random grain boundary configurations.
This approach could be used to identify misorientations that reduce or minimize
grain boundary incompatibilities, thus extend the superelastic range of the material.

Thesis Supervisor: Raúl Radovitzky
Title: Professor of Aeronautics and Astronautics

Committee Member: Rohan Abeyaratne
Title: Professor of Mechanical Engineering

Committee Member: Christopher Schuh
Title: Professor of Materials Science and Engineering

Committee Member: Xuanhe Zhao
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Shape Memory Materials and Their Properties

Shape memory materials are a class of materials that can undergo reversible diffu-

sionless transformation from one solid phase to another. These phase transitions only

involve a sudden change in lattice structures and crystal symmetries, while atoms in

a lattice do not change their relative positions with respect to one another and only

alter their distances. This process is known as martensitic transformation, and has

been observed in various metallic materials, ceramics and polymers [18, 19, 20, 21, 22].

By virtue of the reversible martensitic transformation, shape memory materials are

able to recover their original shape upon heating. This is known as the shape mem-

ory effect (SME). They can also exhibit large reversible strains accommodated by the

transformation upon cyclic mechanical loading, which is known as superelasticity or

pseudoelasticity.

The solid-to-solid first-order phase transformation in a shape memory material

is between austenite (a high temperature phase) and martensite (a low temperature

phase), and can be induced by a change of temperature and/or stress. Martensitic

transformations in shape memory materials are characterized by four important tem-

peratures: martensite start temperature (𝜃𝑚𝑠), martensite finish temperature (𝜃𝑚𝑓 ),

austenite start temperature (𝜃𝑎𝑠), and austenite finish temperature (𝜃𝑎𝑓 ). These tem-

peratures define the state of the material and whether phase transformation is possi-
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Figure 1-1: Stress-temperature phase diagram and cyclic loading stress-strain re-
sponse of SMAs.

ble. When the temperature is above 𝜃𝑎𝑓 , the austenite phase is stable and the material

is in the purely austenitic phase as martensite is metastable at higher temperatures.

Figure 1-1 shows a typical thermomechanical response of a shape memory material.

The vertical line 1 is an example of an isothermal process. At a given temperature

𝜃 > 𝜃𝑎𝑓 , a shape memory material at the stress-free state will first deform elastically

upon loading until the stress reaches a critical value 𝜎𝑚𝑠, at which point the transfor-

mation from austenite to martensite (forward transformation) initiates. It is worth

noting that the material will undergo plastic deformation or fracture if the stress

reaches the critical stress for slip or fracture before transformation. Upon further

loading, the material will continue to deform with a very small variation in stress if

the transformation is unimpeded until the material is completely in the martensite

phase, from where the material will again deform elastically upon further loading. If

the loading is removed, the material will first unload elastically from the martensite

phase, until the stress reaches a critical value 𝜎𝑎𝑠 at which point the reverse transfor-

mation is activated. Once the reverse transformation is complete and the loading is

removed, the material will unload elastically in the austenite phase to the zero-stress

state with no residual strain and a full recovery in its original shape. This behavior

is known as superelasticity.

The vertical line 2 in Figure 1-1 demonstrates the isothermal cyclic loading process

18



at a lower temperature 𝜃𝑚𝑠 < 𝜃 < 𝜃𝑎𝑓 . Upon loading, the aforementioned forward

transformation can still happen once the stress reaches the critical value 𝜎𝑚𝑠. It is

worth noting that these critical stresses are temperature-dependent as indicated in

Figure 1-1. Once the material is completely in the martensite phase, it will deform

elastically upon further unloading. However, reverse transformation cannot be initi-

ated upon subsequent unloading to the stress-free state, which will produce a residual

strain. This is due to the austenite phase being unstable at lower temperatures, and

the material can only recover its original shape when heated above the temperature

where austenite is stable, i.e. 𝜃 > 𝜃𝑎𝑓 . This phenomenon is known as shape memory

effect, as the material is able to "remember" its original shape, and the seemingly

permanent deformation could only be recovered upon heat treatment.

It is worth pointing out that stress-induced martensitic transformations are not

limited to cases where external stresses are applied. Internal stresses can also trigger

the martensitic transformation. For example, local internal stresses induced by the

initial transformation may subsequently affect the transformation in their neighboring

regions.

When a material is undergoing the martensitic transformation, the change of total

Gibbs free energy ∆𝐺 during transformation can be expressed as follows [23],

∆𝐺 = ∆𝐺chem + ∆𝐺el +𝑊fr (1.1)

where ∆𝐺chem is the difference in the chemical free energy between the two phases.

∆𝐺chem is negative at temperatures below 𝜃𝑚𝑠. ∆𝐺el is the stored elastic energy asso-

ciated with the transformation. 𝑊fr is the energy dissipated during the transformation

due to the internal work to overcome frictional barriers. This irreversible loss in en-

ergy accounts for the hysteresis loop observed during transformation, see Figure 1-1.

The material stays in the austenite phase if the total change of free energy ∆𝐺 > 0,

i.e. |∆𝐺chem| < ∆𝐺el + 𝑊fr. When ∆𝐺 is negative, i.e. |∆𝐺chem| > ∆𝐺el + 𝑊fr, the

austenite phase becomes unstable or metastable and the martensitic transformation

may happen.
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Important properties like superelasticity and shape memory effect observed in

shape memory materials have made them promising candidates for a wide range of

applications in various industries. The application of shape memory alloys in the

biomedical industry can be traced back to the 1970s [24]. SMAs are proven suitable

materials for eyeglasses, dental wires, and antennae due to their ability to attain

large recoverable strains [25, 26, 27, 28]. NiTi SMAs are especially widely used in

the orthodontic field as palatal arches, orthodontic wires/distracters, and endodon-

tic files [29, 30]. Due to their good corrosion resistance and biocompatibility, NiTi

SMAs are commonly used in intraspinal implants, venous filters, and neurosurgical

stent devices for arteries and veins [29, 30, 31]. Possessing a unique combination of

characteristic properties like superelasticity and SME with excellent corrosion resis-

tance, good wear resistance, and low coefficient of friction, shape memory ceramics

(SMCs) have attracted a considerable amount of interest in clinical and biomedical

applications. Zirconia is especially a material of keen interest in dental restorations

as endosseous implants, implant abutments, and ceramic crowns [32, 33, 34]. Zirconia

has also been increasingly used as hemoral head components in hip arthroplasty [34].

Shape memory materials are also considered excellent active materials due to their

ability to convert a non-mechanical input to a mechanical output, and have found

themselves desirable in actuation and sensing applications [35, 36, 37, 38, 39, 40].

SMAs have been widely used as actuators or artificial muscles in various robotic ap-

plications since the early 2000s [41, 42, 43, 36]. In the case of ceramic shape memory

materials, zirconia-based SMCs particularly have very large transformation stresses

on the order of GPa, which are expected to translate into large output stresses when

used for actuator applications [44]. Due to the high melting and transformation tem-

perature (can be as high as 1100∘C), zirconia-based SMCs are attractive candidates

for high-temperature devices in oxidative environment [45, 46]. Transformation tem-

peratures in zirconia-based SMCs can also be controlled when doped with different

metal oxides. Doped zirconia is also widely used as oxygen sensors in a variety of ap-

plications such as combustion control systems and oxygen generation systems [47]. In

addition, shape memory materials are also suitable for force protection and shielding
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purposes due to their excellent damping properties [48, 49, 50].

1.2 Oligocrystalline Cu-based SMAs

Cu-based SMAs have attracted much research interest in recent years due to their

promisingly low material and processing cost compared to NiTi SMAs. Desirable su-

perelastic properties including large recoverable transformation strains and low trans-

formation stresses are realized to their maximum extent in single crystalline struc-

tures. For example, single crystal Cu-based SMAs have exhibited strains as large

as 10% prior to fracture. This is attributed to the absence of internal constraints

in the form of grain boundaries that limit the extent of the martensitic transfor-

mation [2]. San Juan and Schuh [51] quantitatively studied the superelastic cycling

responses of micropillars of CuAlNi SMAs. They observed a completely recoverable

superelastic behavior in these micropillars with transformation strains above 5%, and

that some pillars underwent as high as hundreds of superelastic cycles. By con-

trast, in polycrystalline forms, superelastic properties are significantly compromised

by severe premature intergranular fracture originated at grain boundaries and triple

junctions [2, 52]. The deficiency in ductility and severe embrittlement problem ob-

served in polycrystalline Cu-based SMAs have significantly limited their commercial

applications.

Recent work has been conducted on the thermomechanical and superelastic re-

sponses of Cu-based SMAs with an emphasis on the influence of grain microstructure

and grain boundary characteristics on the martensitic transformation [1, 53, 2, 54, 52,

55]. Chen et al. [1] applied a liquid-phase wire forming process and microstructure

control technique that significantly improved the ductility limits and prevented pre-

mature intergranular fracture in polycrystalline CuAlNi SMAs through the reduction

of the grain boundary area and the removal of triple junctions. Specifically, they fab-

ricated Cu-based SMAs in bamboo-shaped thin wire forms, namely oligocrystalline

structures. Figure 1-2 illustrates the scanning electron micrographs of two typical

CuAlNi oSMA wires produced by Chen et al [1]. The diameters of the bamboo-
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shaped oligocrystalline SMAs (oSMAs) wires range from 10 to 150 𝜇𝑚. The wires

also have significantly larger grains spanning along the longitudinal axis and less

grain constraints in the forms of grain boundaries or triple junctions compared to

their polycrystalline counterparts. In a broad sense, oligocrystalline materials refer

to those with fewer and coarser grains [56, 57] and larger free surface area relative

to the grain boundary area [2]. The absence of grain constraints facilitates an unim-

peded phase transformation only seen in single crystals and permits larger recoverable

superelastic and shape memory strains, which notably has not yet been observed in

bulk polycrystalline CuAlNi SMAs [1]. The grain microstructure of a typical oSMA

wire and its mechanical response can be found in Figure 1-3, which is reproduced

from the work of Ueland et al [2]. As a comparison, Figures 1-3 (a) and (d) re-

spectively show the stress-strain responses of polycrystalline CuAlNi SMAs [58] and

single crystal ones [59] obtained in previous studies. As can be clearly seen, while a

single-crystal CuAlNi SMA underwent unimpeded martensitic transformation with a

10% transformation strain, a polycrystal SMA suffered from fracture at a very small

strain level before the martensitic transformation was complete. Overall, CuAlNi

SMAs of oligocrystalline (Figure 1-3 (c)) and near-oligocrystalline (Figure 1-3 (b))

structures achieved much higher strains and exhibited a clear enhancement in their

ductility limits compared to polycrystalline SMAs. In particular, the bamboo-shaped

oligocrystal wires with no triple junction can reach rather large strains (as high as

7%), approaching those of a single crystal. Ueland and Schuh [54] conducted ex-

perimental study on the transformation behavior and superelastic characteristics of

CuZnAl microwires and observed large recoverable strains up to 7.5% in these oSMA

wires. They also showed that the fatigue life of CuZnAl can be significantly improved

in oligocrystal forms, and that oSMAs may exhibit fatigue lifetimes two orders of

magnitude higher than bulk polycrystalline ones. These findings have inspired an

important microstructure engineering approach to solve the embrittlement problem

of polycrystalline SMAs and achieve desirable single crystal-like mechanical proper-

ties while avoiding the high processing cost associated with single crystal production,

which will significantly expand the use of Cu-based SMAs to more practical engineer-
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ing applications.

Figure 1-2: Scanning electron micrographs of two CuAlNi microwires showing bamboo
grain structure, where grain boundaries are marked by arrows [1].

Figure 1-3: Stress-strain curves of Cu-based SMAs in single-crystal, polycrystal, near-
oligocrystal and oligocrystal forms. The schematics on the top right corner show the
grain structure of the oligocrystal and near-oligocrystal specimens [2]

More recently, the same authors [52] investigated the effect of grain constraints

on the martensitic transformation of as-cast oligocrystalline CuZnAl wires. They

conducted in situ tensile tests on wires with different degrees of microstructural com-

plexity inside a scanning electron microscope, and examined the formation and evo-

lution of martensite variants in different regions of the wires. They observed that the

complexity of martensite morphology during transformation increases with increas-

ing grain constraint, in that the martensitic transformation is largely single-variant

and complete in the unconstrained monocrystalline region, and multi-variant and

partial near grain boundaries. This was attributed to the stress concentrations near
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grain boundaries due to incompatibility of transformation strains that emerge at

considerably-high levels of strain (∼ 4%). The stress concentrations have the effect

of inducing transformation in secondary variants, impeding full transformation and

possibly leading to premature fracture near grain boundaries. They also performed

finite element simulations using an anisotropic linear elastic constitutive model of

CuZnAl wires, which showed the role that incompatibility of elastic deformations

due to grain misorientation has in producing large stress concentrations at the grain

boundary. This experimental and modeling study suggested that both the elastic

and transformation strain incompatibility can be attributed to stress concentration

at grain boundaries. An important limitation of the model is the absence of a mech-

anistic description of the martensitic transformation, and therefore it was unable to

ascertain whether the stress concentration is due to elastic or transformation strain

incompatibility. Ueland and Schuh [55] also systematically studied the martensitic

transformation morphology in CuZnAl microwires in the size range of 21 to 136 𝜇𝑚.

They observed a transition from a multi-domain to a single domain martensitic mor-

phology with decreasing diameters of CuZnAl wires. Specifically, in coarser wires,

many martensite plates started to nucleate and grow and eventually coalesce with

their neighbors as the martensitic transformation progressed. In finer wires, however,

only one single martensite plate was formed at the beginning of the transformation

and proceeded to grow and propagate in a monolithic manner.

Additional important previous work has also provided potential explanations of

the tendency of Cu-based SMAs to fracture along grain boundaries [58, 60, 61, 62,

63, 64]. Miyazaki et al. [60, 61] tested two kinds of bi-crystals groups with both sym-

metric and random grain boundaries. The symmetric cases showed uninterrupted

phase transformation like their single crystal counterparts. In cases of randomly ori-

ented bi-crystals, three samples with incompatible elastic strains fractured along the

grain boundary before transformation, whereas one sample with incompatible trans-

formation strains fractured during transformation. From these observations, they

concluded that intergranular fracture in Cu-based 𝛽 phase SMAs is induced by stress

concentration at grain boundaries due to either the large elastic anisotropy or to
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the difference in transformation strain at grain boundaries, instead of the brittleness

of grain boundaries. Sakamoto et al. [58] examined the fracture and fatigue char-

acteristics of polycrystalline CuAlNi SMAs under three different deformation modes;

elastic deformation in the austenite state, pseudoelastic/inelastic deformation due to a

stress-induced martensitic transformation, and deformation in the martensitic state.

They concluded from the experimental results that intergranular fracture in poly-

crystalline CuAlNi SMAs originated from the formation of stress-induced martensitic

transformation. Husain et al. [62] investigated the role of impurities on the segre-

gation of metalloids and consequently intergranular embrittlement in CuAlNi alloys.

The experimental results indicated that neither the presence of oxygen due to heat

treatment nor grain boundary precipitation of brittle intermetallic compounds like

carbides constitutes a significant source of embrittlement. Creuziger et al. [63] in-

vestigated the role of grain boundary characteristics on the fracture response with

the goal of providing a more comprehensive explanation for grain boundary fracture

in polycrystalline CuAlNi. They conducted mode I loading tests to samples with

different grain misorientations, and applied the coincident site lattice (CSL) theory

to categorize the experimental results. They observed that intergranular fracture did

not occur on samples with low angle grain boundaries. It was found that all sam-

ples with non-CSL grain boundaries fractured with the exception of one sample that

likely had a triple junction near the notch instead of a typical grain boundary. They

therefore concluded that grain boundaries with coincident site lattices are capable of

accommodating the deformation and prevent premature fracture in CuAlNi. However

their CSL analysis is not exhaustive as it did not include samples where grain bound-

ary failure was observed with no visible martensitic transformation on either side of

the grain boundary. This suggests that they overlooked the case of elastic incom-

patibility. In a more recent paper, Dar et al. [64] noticed that intergranular fracture

oftentimes occurs before the completion of martensitic transformation in most brit-

tle single-phase polycrystalline samples. They used a grain boundary engineering

(GBE) approach to improve the transformation ductility of polycrystalline SMAs.

They stimulated the precipitation of a ductile second phase along grain boundaries
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to accommodate transformation strain and relieve constraints in adjacent austenite

grains by extensive plastic deformation. Their results showed that by relaxing strain

mismatch during transformation, one could relieve local stress concentration and re-

duce the probability of crack nucleation at grain boundaries, and therefore avoid or

delay intergranular fracture in polycrystalline SMAs.

1.3 Grain Size Effects in SMAs

Grain size effects were first discovered in Cu-based SMAs in the 1970s [65], and

previous work on size effects in SMAs were largely focused on cases where the grain

size is considerably smaller than the sample size [66, 67, 68, 69]. Previous studies

demonstrated a decrease in the martensite start temperature (𝜃𝑚𝑠) and an increase

in the transformation stress in polycrystalline SMAs with smaller grain sizes [66,

67, 70, 71]. These observations suggested that increasing grain constraints limited

the nucleation and formation of martensite plates, and as a result the martensitic

transformation was suppressed in samples with smaller grain sizes. In recent years,

a number of studies have been carried out to study the grain size effects upon the

martensitic transformation and thermomechanical behaviors of SMAs in at micro-

and nanoscales and with unique oligocrystal structures.

San Juan et al. [72, 73] investigated the superelastic and shape memory prop-

erties in micro- and nano-scale CuAlNi pillars. They showed that both stress- and

thermal-induced phase transformation can take place in these finer-scaled pillars in

a reversible way. This completely recoverable superelasticity achieved at very fine

scales suggested the possibility of designing the next-generation smart micro- and

nano-electromechanical systems (MEMS) devices using CuAlNi systems. They also

showed that the martensitic transformation and the mechanical damping capacity

had strong dependencies on the sample size [73]. Specifically, they observed that

both the martensite and austenite phases were more stable in the nanopillars than

in their bulk counterparts, and both the hysteresis loop in the stress-strain curve

and the superelastic cycling ability in a nanopillar were significantly larger than in a
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bulk CuAlNi SMA. Chen and Schuh [53] showed that in oligocrystalline CuAlNi wires

with a bamboo grain structure, both the stress hysteresis upon mechanical loading

and the temperature hysteresis upon thermal loading increased as the wire diameter

decreased from 100𝜇𝑚 to 20𝜇𝑚. They proposed several possible origins of the ob-

served size effects including surface energy, stored elastic energy, interfacial energy,

acoustic emission, heat transfer, and internal friction. After evaluating each factor,

they concluded that the size effect observed in larger SMA samples can be attributed

to the sluggish heat transfer in larger specimens, while the size effect observed in

CuAlNi SMA microwires was due to the enhanced dissipation of frictional energy in

the free surfaces of smaller wires.

More recently, Ueland and Schuh [55] related the size effect on transformation

hysteresis observed in CuZnAl microwires to the morphological evolution of marten-

site. The experimental results suggested that the sampling of defects and obstacles

met by the transformation front as it propagated along the wire changed with sam-

ple size. Specifically, the transformation front encountered more obstacles on a per

volume basis in finer wires, which lead to a larger amount of frictional energy dissi-

pated and larger hysteresis size. In [74], the authors explored the effects of sample

size of CuAlMnNi wires on the thermal-induced phase transformation, and in par-

ticular on the martensitic transformation ranges and the stored elastic energy. They

observed that smaller wires responded faster to temperature change and the stored

elastic strain energy during martensitic transformation was proportional to the wire

diameter. More importantly, they showed that the macroscopic strain during the

thermal-induced martensitic transformation was independent of wire diameter in the

absence of external stress, while the strain increased with decreasing wire diame-

ter in the presence of external stress. These results suggested that thermal-induced

martensitic transformations and superelastic properties in SMAs were enhanced in

finer wires.
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1.4 Zirconia-based Shape Memory Ceramics

Historically, the work on shape memory materials has been mostly focused on metallic

materials like Cu-based and NiTi SMAs. Recent work [11, 75, 6, 76, 77, 78] has

notably expanded the study from metals and alloys to martensitic ceramics, with

significant research interest on the shape memory effect and superelasticity in small

volume shape memory materials such as micropillars of zirconia-based SMC [11, 75,

6, 76, 77, 78] and microparticles [79, 80].

Similarly to their metallic counterparts, SMCs can also undergo a reversible dif-

fusionless solid-to-solid phase transformations from austenite to martensite at the

crystal level. Among various shape memory ceramic materials, zirconia-based ones

have attracted much research interest in recent years for a number of reasons. First

of all, zirconia has a very well-studied and well-characterized martensitic transforma-

tion between a tetragonal austenitic phase and a monoclinic martensitic phase [81,

15, 82, 83, 19, 5, 7, 84, 85, 86]. They can also be fabricated by conventional ceramic

processing techniques [87]. By doping with different oxides, zirconia-based SMCs

are able to achieve a wide range of transformation temperatures, which makes them

attractive candidates for a variety of applications especially in high-temperature en-

vironments [6]. Shape memory behaviors were first demonstrated in polycrystalline

zirconia-based ceramics in the 1980s [19, 3, 88], and early research interest was largely

focused on the transformation toughening in zirconia-based ceramics [4, 89, 90, 91, 92].

Polycrystalline zirconia is known to suffer from premature fracture at very small strain

levels, which results in very limited superelastic effect. Figure 1-4 is adapted from the

work in [3]. As can be seen, while good superelastic properties can be observed in the

first few loading cycles, further loading induces a degradation of superelastic proper-

ties and eventual failure. In polycrystalline zicornia-based SMCs, the degradation of

shape memory and superelastic properties is due to shape distortions in adjacent crys-

tal grains being incompatible with one another, inducing large mismatch stresses and

triggering fracture along grain boundaries. This embrittlement problem has severely

limited the application of these materials in engineering practice.
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Figure 1-4: Axial superelastic stress-strain curves for CeO2-ZrO2 showing diminishing
hysteresis with each cycle, the 5th cycle resulted in failure [3]

As discussed in the previous section, the issue of stress concentration and potential

intergranular fracture due to grain boundary constraints is well studied in metallic

shape memory materials. In SMCs, strain incompatibilities at grain boundaries is

far less studied, although recent work has provided significant insights on this is-

sue [93, 94, 95, 96]. Pang et al. [93] investigated the two-dimensional compatibility of

the martensite-austenite interface via the application of the cofactor conditions as a

possible factor controlling the cracking of bulk polycrystalline zirconia-based SMCs.

The results suggested that samples with excellent interface compatibility may avoid

cracking during thermal cycles and that bulk compatibility was not necessarily the

dominant cause of transformation-induced fracture. Pang et al. [94] later studied the

role of grain constraints on the martensitic transformation in ceria-doped zirconia

(ZrO2-CeO2). They characterized and analyzed the thermally-induced transforma-

tion in ZrO2-CeO2 oligocrystalline powders and sintered pellets. They observed large

compressive strains in ZrO2-CeO2 pellets due to the pressure build-up at grain con-

straints and that transformation temperatures were depressed in ZrO2-CeO2 pellets

but not in powders. In [95], Crystal et al. studied the role of grain boundaries in
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the damage evolution of yttria-doped zirconia (Y2O3-ZrO2) SMCs subject to cyclic

thermal loading. The authors demonstrated that one can suppress cracking and avoid

intergranular fracture in single crystal Y2O3-ZrO2 in the micro- to the millimeter scale

by removing grain boundary constraints through careful microstructural control. The

same authors later investigated the grain size effect on intergranular cracking in 1.5

mol% Y2O3-ZrO2 in pellet forms [96]. The experimental results showed that smaller

grained samples required more thermal cycles to achieve full disaggregation, and the

total heat release associated with cracking increased with increasing grain bound-

ary area and decreasing grain size. These important previous work shed light on

the martensite-austenite interface compatibility and thermally-induced transforma-

tion in zirconia-based SMCs. However, comprehensive study on the mechanism of

stress-induced transformation and bulk compatibility in zirconia-based SMCs is still

lacking.

In this work, we concentrate on the stress-induced transformation as it is relevant

to superelasticity and shape memory materials’ mechanical damping properties. The

main goal of this work is to improve our understanding of the sources of grain bound-

ary incompatibility in zirconia-based SMCs. This can help identify grain boundary

configurations that increase the superelastic range of SMCs in oligocrystalline or poly-

crystalline forms.

1.4.1 Martensitic Transformation in Zirconia-based SMCs

To better understand strain incompatibilities at grain boundaries in SMCs and in

support of interpreting previous experimental studies, in this work we take on the

task of characterizing the martensitic transformation in zirconia-based SMCs through

the development of crystal-level models. This requires the fundamental description of

the martensitic transformation that is specific for zirconia-based SMCs at the single-

crystal level. In this section, we review the basics of the martensitic transformation

in zirconia-based SMCs and the variant selection process, and examine the resulting

austenite/twinned-martensite interface (habit plane) microstructure.

Zirconia can exist in three phases: the monoclinic phase is stable at temperature
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Figure 1-5: The three polymorphs of ZrO2 and the corresponding space groups: (a)
cubic, (b) tetragonal, and (c) monoclinic. Adapted from [4]

Temperature (∘𝐶) Phase Lattice Parameters
30 Monoclinic a= 5.1415, c= 5.2056, c= 5.3128, 𝛽 = 99∘18′

1393 Tetragonal a= 3.6526, c= 5.2928
2400 Cubic a= 5.272

Table 1.1: Lattice parameters of pure zirconia at room temperature and at elevated
temperatures [14, 15]

Figure 1-6: The tetragonal unit cell and three different monoclinic correspondences.
Adapted from [5, 6]

T<1170 ∘C, the tetragonal phase is stable at 1170 ∘C<T< 2360 ∘C, and the cubic

phase is stable at T> 2360 ∘C [86]. The schematic illustration of crystal structure

and lattice parameters of each phase in a pure zirconia can be found in Figure 1-5 and

Table 1.1 [14, 15], respectively. Though the cubic-to-tetragonal transformation was
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observed in zirconia systems [97], the martensitic transformation in zirconia normally

refers to the transition from the tetragonal to monoclinic phase. This transformation

is accompanied by a significant shear strain about 8% as well as a volume change

about 4%. The transformation is usually described by the lattice correspondence

between the tetragonal unit cell and the resulting monoclinic unit cell. There are

three possible paths through which the tetragonal cell can become the monoclinic

cell, see Figure 1-6. While each path produces an identical final monoclinic cell, the

paths differ on whether the tetragonal long axis 𝑐𝑡 becomes the monoclinic axis 𝑎𝑚,

𝑏𝑚, or 𝑐𝑚. These different paths are referred to as correspondences A, B and C,

respectively. This notation system where correspondences are named based on which

monoclinic axis is derived from the unique tetragonal axis (c𝑡) was proposed in [98],

and it is worth noting that this system lacks the ability to distinguish different variants

of a particular correspondence. The notation of correspondences is not unique.

Figure 1-7: Different variants and orientations of correspondence ABC. Adapted
from [7, 8, 9, 10]

In [8, 9, 10], the authors introduced a new notation system that allowed all the

different variants of a correspondence to be identified and labeled. The correspon-
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dences are described based on which atom of the parent phase becomes which atom of

the product phase, an example can be seen in Figure 1-7. As can be clearly observed,

there are two crystallographically equivalent variants related by a rotation for each

correspondence. For example, if the transformation happens through the correspon-

dence where axis c𝑡 becomes b𝑚, there are two possibilities for axes a𝑡 and b𝑡: (1) a𝑡 to

a𝑚 and b𝑡 to c𝑚; or (2) b𝑡 to a𝑚 and a𝑡 to c𝑚 (using a right-handed set of axes), which

can be represented by ACB and CAB to distinguish variants in transformation. For

each variant, there are two options for the axes c𝑚 and a𝑚 to align with the parent

phase: (1) a𝑚 becomes parallel to its counterpart parent axis and 𝑐𝑚 become inclined;

or (2) c𝑚 becomes parallel to its counterpart parent axis and 𝑎𝑚 become inclined, see

Figure 1-7. In summary, during the transformation from the tetragonal to monoclinic

phase, each of the three correspondences has two variants, and each variant has two

orientations, which results in 12 possible lattices in the monoclinic phase for each

tetragonal lattice. This information is crucial for the development of micromechanics

models of phase transformation, as the model needs to capture all possible variants

in order to correctly characterize the martensitic transformation in zirconia. From an

energy minimization perspective, correspondences B and C are more favored during

the variant selection process because they have the smallest Bain (transformation)

strain and lattice invariant strain, respectively [5]. Meanwhile correspondence A has

the largest Bain strain therefore is considered the least favorable for transformation

and rarely seen in experiments [86]. The preference among correspondence B and C

will be discussed in greater detail in the following section. This discussion on variant

selection is of great importance, as identifying the transformation strain tensor that

converts a tetragonal unit cell to a monoclinic unit cell is the starting point for cal-

culating theoretical transformation strains and austenite/martensite interface (habit

plane) orientations. Provided with this information, we later undertake the task of

calculating the transformation systems in zirconia using the geometrically nonlinear

theory of transformation which will be described in Chapter 2 with the knowledge of

the lattice parameters provided by our collaborators [6]. The results are interesting

and worth further discussion as the theory furnishes 24 habit planes (as shown in
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Table 2.2) in case of correspondence B, while no habit plane can be obtained via

correspondence A and C. This itself calls for further investigation as it indicates a

stark contrast between the martensitic transformation along different paths when one

searches for possible habit planes and will be discussed carefully later.

1.4.2 Orientation Effects and Non-Schmid Behavior in Single-

crystal Zirconia

The mechanical response of zirconia-based SMCs and its dependency on different

grain properties have been thoroughly studied in recent work [11, 75, 6, 76, 77, 78].

In [76, 6], the authors extensively studied the orientation dependence of zirconia

micro-pillars. They conducted micro-compression tests of 43 micro-pillars whose grain

orientations were identified using EBSD. All the pillars were based on the same phase

composition with diameters close to 1.2 𝜇𝑚 to avoid size effects, and only differed

in crystallographic orientations. The results of micro-compression tests exhibited a

wide variety of mechanical responses among these pillars. They showed that not all

of the pillars underwent martensitic transformation under compression; some pillars

fractured while others showed signs of plastic slip. The critical transformation stress,

transformation strain, and loading elastic modulus were measured for each pillar.

Among the 31 pillars that underwent martensitic transformation, a wide range of

critical transformation stresses from 0.58 to 8.7 GPa were observed, which indicates

that the critical stress depends strongly on the crystallographic orientation. This phe-

nomenon is well studied in shape memory alloys like NiTi and CuAlZn where phase

transformation is shear-dominated and Schmid’s law can be applied to predict the

orientation-dependence of transformation stress. In [6], extensive efforts went into

understanding the orientation-dependence of transformation stress in zirconia-based

SMCs. They first assumed that phase transformation in zirconia is shear-dominated

as is the case for most shape memory alloys, therefore the shear stress required to

activate transformation 𝜎𝑠ℎ𝑒𝑎𝑟 can be related to the Schmid Factor (SF). They also

investigated the relationship between the experimentally measured transformation
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stress and theoretical SF for different crystallographic orientations. It is worth men-

tioning that correspondence A was neglected in the discussion as it is not favored

thermodynamically for transformation as discussed in the previous section, and only

correspondences B and C and their combination were examined in [6]. Their results

showed a lack of good alignments of SF and transformation stress when considering

martensite variants derived from correspondence B or a combination of correspon-

dences B and C. Interestingly, results obtained from considering correspondence C

alone revealed a better fit, which as mentioned in the previous section, contradicts the

nonlinear theory of martensitic transformation. Still, the results obtained from only

correspondence C were not very satisfying, which strongly indicated that the maxi-

mum resolved stress criterion was not sufficient to explain the orientation-dependence

of transformation stress in zirconia. With the resolved stress criterion being insuffi-

cient, they postulated that the non-Schmid effect might be related to the experimental

observations that the martensitic transformation in zirconia was accompanied by a

rather large volume change [6]. To this end, they proposed to incorporate a normal

effect in the transformation criterion by adding a normal component to adjust the

calculation of SF. However, this was also proven insufficient as the results showed

that for only some orientations would the addition of the normal factor have a sig-

nificantly positive affect, and in particular it affected orientations with low Schmid

factors, among which many were fractured and slipped. In fact, the effect of the

additional normal factor on transformed pillars was shown to be marginal, as the

fitting result were almost identical to that using the resolved stress criterion. One

possible explanation is that the same weight was assigned to the normal and shear

component while evaluating SF in the transformation criterion while the relation is

likely to be much more involved. These discrepancies between the nonlinear theory

and experimental results call for a more detailed study on the non-Schmid effect in

the transformation response of zirconia-based SMCs, which we will later take on.
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Figure 1-8: Superelastic stress-strain curves for a pillar cycled 53 times with deff =
1.1 𝜇𝑚, produced in [6]

1.4.3 Shape Memory Ceramics in Small Volumes

Towards the goal of manufacturing high-strength robust ceramics through microstruc-

tural design to fully realize their superelastic properties and avoid intergranular frac-

ture, recent development in zirconia-based SMCs [11, 75, 6, 76, 77] has demonstrated

that that shape memory properties can be preserved in polycrystalline structures by

applying microstructure control techniques to reduce grain boundary constraints and

consequently reduce stress concentrations at grain boundaries. The authors showed

that catastrophic cracking and failure in SMCs can be suppressed when made into

small volumes (on the order of a few cubic microns) with few crystal grains and less

grain boundaries constraint. The concept behind the design is that oligocrystalline

and near-oligocrystalline structures will effectively relieve the stress concentration

generated by martensitic transformation and mismatch between neighboring grains,

therefore permitting cyclic transformation without cracking.

Lai et al. [11] manufactured zirconia micro-pillars that are able to withstand

dozens of transformation cycles at significant strain levels of several percent (one

pillar withstood 53 superelastic cycles and more than 7% strain), as shown in Fig-

ure 1-8. This indicates a great improvement over polycrystalline superelastic zirconia

that can only endure several cycles before catastrophic failure. Notably, zirconia-

based SMCs also demonstrate great energy absorption properties, with the energy

dissipation upon cyclic loading significantly larger than that in conventional metallic
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Figure 1-9: Superelastic zirconia micro-pillars dissipates more energy than shape
memory alloys like NiTi and CuNiAl due to its higher transformation stress [11]

shape memory materials [11]. Figure 1-9 is reproduced from [11], and shows stress-

strain curves of superelastic zirconia along with SMAs like NiTi and CuNiAl. The

area within the stress-strain curve indicates the characteristic energy dissipation hys-

teresis of each material. It can be observed that zirconia has much higher strength

which leads to a particularly large total energy dissipated in a superelastic cycle.

In [95], the authors showed that polycrystal SMCs at the millimeter size scale exhibit

highly reversible transformation behavior over as many as 35 cycles, and their energy

dissipation ability also converges with that of the single-crystal structure.

1.5 Previous Work on Numerical Modeling of Shape

Memory Materials

There has been significant research interest in developing suitable constitutive mod-

els for shape memory materials in the past few decades, as thoroughly reviewed

in [99, 100, 101, 102]. Early efforts were largely directed towards one-dimensional

models that can adequately capture the characteristics of martensitic transformation

in shape memory materials [103, 104, 105]. The last few decades have also seen in-

tense efforts in the development of continuum models of martensitic transformation
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to describe the complex thermomechanical behavior of various shape memory alloys

at single crystal levels [106, 107, 108, 109, 110, 111, 100, 101, 102, 112, 113, 114, 115].

Among them, micromechanics-based models [107, 109, 110, 111, 115, 116] incorpo-

rate details of the crystallographic microstructure of martensite into the continuum

mechanics framework, and therefore are particularly suitable for modeling material

response under multi-axial stress states and material behavior such as the nucleation

and localization of martensite variants, austenite/martensite interface motion, and

growth of martensite plates. Micromechanics-based information like the orientation

of a habit plane and transformation strain can be identified by the crystallographic

theory of the martensitic transformation [117, 118, 119] or the geometrically non-

linear theory of martensite [120, 5, 121, 7, 122]. To allow for finite deformations in

the initially crystallographic-textured NiTi SMAs, Anand and several different co-

authors developed a rigorous continuum mechanics framework for micromechanics-

based anisotropic constitutive models [111, 109, 110]. Guided by the similarity be-

tween phase transformation and crystallographic slip in the crystal plasticity frame-

work, they developed a set of flow rules and transformation conditions based on

modifications of the crystal plasticity theory [123], and transformation systems are

calculated based on the geometrically nonlinear theory of martensite. Thamburaja

and coauthors later extended the finite deformation model to account for martensitic

reorientation and detwinning [124, 125]. Micromechanical models have also proven

instrumental for modeling the material response under multi-axial stress states. Sev-

eral authors obtained accurate predictions of macroscopic mechanical behavior of

SMAs [126, 127, 128, 129, 107, 130, 131, 132]. Several other authors have also incor-

porated features including self-accommodation, variants interactions, reorientation

and detwinning, and transformation-induced plasticity in the micromechanics mod-

els [133, 134, 135, 16, 136].

Another important part of the numerical works on SMAs has focused on the

macroscopic and phenomenological modeling of phase transformation in SMAs [137,

108, 138, 106, 113, 112, 114, 139]. Though these models were successful in pre-

dicting the macroscopic stress-strain response of various SMA systems, they are not
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able to provide detailed information on the phase transformation, or to assess the

effects of initial textures, grain orientations and grain boundaries (GBs). In the

past few decades, there has also been a surge of research interest in developing mi-

croscopic modeling approaches such as atomistic modeling and molecular dynamics

(MD) [140, 141, 142, 143, 144, 145, 146]. MD simulations are proven useful for ad-

dressing the shortcomings of continuum mechanics-based models, in that they are able

to capture atomic-level information of the deformation twinning and phase transfor-

mation. However, the utility of MD simulations is limited by two major challenges:

MD requires small time steps and simulation timescales for numerical stability, and

the accuracy of MD simulations depends highly on the choice of the interatomic po-

tentials. In recent years, phase field modeling (PFM) [147, 148, 149, 150, 151] has

also emerged as a powerful tool for simulating the morphological evolution of marten-

site microstructures in SMAs at the mesoscopic scale. Phase field models assume a

set of field variables that are continuous across the interfacial regions to describe a

multidomian microstructure. Instead of explicitly describing the motion of individ-

ual atoms, evolution equations of these field variables are obtained based on general

thermodynamics and kinetics principles. As a result, phase field models require the

knowledge of material specific properties based on experimental and theoretical stud-

ies. A review on phase field modeling of the martensitic phase transformation can be

found in [148].

Compared to SMAs, there have been far fewer continuum models for SMCs and

efforts have largely gone into the development of atomistic or phase field models. A

comprehensive review of computational models for SMCs can be found in [152]. Zhang

and Zaeem [153, 154, 155, 156, 157] conducted extensive studies of various aspects of

inelastic deformation of single crystalline yttria-stabilized tetragonal zirconia (YSTZ)

nanopillars by means of MD simulations including different deformation mechanisms,

orientation-dependency, grain size-dependency, and the influence of pre-existing de-

fects. In [154], Zhang and Zaeem conducted MD simulations to investigate the effects

of grain boundaries on phase transformation, dislocation emission and the mechani-

cal properties of yttria-stabilized tetragonal zirconia (YSTZ) bicrystalline nanopillars.
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They showed that grain orientations as well as grain boundary orientations with re-

spect to the loading direction resulted in different deformation mechanisms such as

amorphous phase formation, dislocation emission and martensitic phase transforma-

tion in YSTZ.

Phase field models have also been proven successful in modeling martensitic trans-

formation in zirconia-based SMCs [158, 159, 160, 161]. Various types of phase field

models have been developed for tetragonal to monoclinic transformation in zirconia

where different thermodynamic potentials and order parameters are used. In particu-

lar, in [160] a three-dimensional phase field model for tetragonal-to-monoclinic trans-

formation in zirconia was proposed. The model took into account all possible marten-

site variants from different correspondences and was used to study the formation of a

monoclinic embryo in a tetragonal single crystal. Their model is shown to successfully

capture the variant selection process based on the minimum formation energy and

the effect of variant strain accommodation during the tetragonal-to-monoclinic trans-

formation. They also reproduced the microstructural patterns and the morphological

evolution of martensite observed in experiments. In [161], the authors combined a

variational formulation of crack propagation with a two-dimensional phase field model

of tetragonal-to-monoclinic transformation. The model was employed to study crack

growth in a single crystal tetragonal zirconia.

1.6 Thesis Objectives and Approach

The background material and discussion presented so far in Chapter 1 suggest that

shape memory and superelastic properties in shape memory materials can be signif-

icantly improved when the microstructure is properly controlled. This speaks of the

great potential to improve the performance of brittle shape memory materials and

achieve the attractive properties of single crystals such as high strength and refractory

properties through integrated computational materials engineering (ICME) [162]. It

is also clear that there is a significant knowledge gap in the microstructure engineer-

ing and in characterizing the micromechanical responses of oligocrystalline and single
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crystalline SMAs and SMCs, and a number of outstanding research opportunities

exist for advancing our understanding of this field. To better utilize microstructure

engineering techniques to eliminate the brittle intergranular fracture commonly seen

in shape memory materials, it is imperative to improve our understanding on the

role of grain boundary as sources of deformation incompatibilities in shape memory

materials in polycrystalline forms.

The overarching goal of this thesis is to comprehensively study the competition

between phase transformation, grain boundary constraints, and their potential effect

on intergranular fracture in shape memory materials through comprehensive compu-

tational modeling. To this end, we first established a numerical framework for mod-

eling the martensitic transformation at the continuum level incorporating microme-

chanical information. We implemented an anisotropic rate-dependent constitutive

model of phase transformation based on the three-dimensional constitutive frame-

work for single-crystal SMAs developed by Anand and Gurtin [111] and Thamburaja

and Anand [109]. Notably, we adapted the model to take into account the non-Schmid

effect observed in zirconia-based shape memory ceramics [6], which to our knowledge

has not been done in previous finite element-based models. The model adopts the ge-

ometrically nonlinear theory of transformation to account for transformation strains

of different martensitic variants [120], and captures both the elastic and transforma-

tion anisotropy, and thus enables a full description of the effect of incompatibilities

arising at grain boundaries on the mechanical response for arbitrary grain misorien-

tations. We applied the theory to identify all admissible transformation systems in

a single-crystal Cu-based SMA and zirconia-based SMC, based on the knowledge of

lattice parameters. In the case of SMCs, the model was calibrated against micro-pillar

compression tests presented in [76, 6], and subsequently used to verify the orientation-

dependence of transformation stress and strain. We then conducted high-resolution

three-dimensional finite element simulations to explore and understand strain incom-

patibilities at grain boundaries due to both elastic and transformation anisotropy

in both materials with general misorientations. The simulation results provide im-

portant insights on the origins of incompatibilities at grain boundaries due to both
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elastic and transformation anisotropy in samples with general misorientations. We

also showed that this approach could be used to explore the misorientation space for

quantifying the level of elastic and transformation incompatibility at any grain bound-

aries. We also demonstrated that there is a clear correlation between grain boundary

characteristics such as disorientation angles and different types of incompatibilities.

This can help with understanding the sources of incompatibility and brittleness in

shape memory materials and provide an approach to material design based on ICME.

The organization of this thesis is as follows. In Chapter 2, the modeling frame-

work in this thesis is described. We first provide a detailed derivation of the rate-

independent anisotropic constitutive model for SMAs closely following the derivation

in [111, 109, 124]. We proceeded with a rate-dependent constitutive model for the

sake of efficiency and simplicity in terms of numerical implementation. We also pro-

vide algorithmic details of the robust explicit time integration scheme developed to

update the constitutive law.

In Chapter 3, utilizing the micromechanical modeling framework, we conducted

finite element simulations in support of interpreting the experimental results of Cu-

based fine wires with bamboo-shaped oligocrystalline microstructure obtained in [2,

52]. We studied tensile response in bi-crystal oSMA wires of arbitrary grain misori-

entations. Among these simulations, we identified two distinct cases representative

of two different configurations, one in which there is significant elastic incompati-

bility, and another one in which there is significant transformation incompatibility.

The simulation results provide insights on the competing mechanisms of elastic and

transformation incompatibility leading to intergranular fracture in the oligocrystalline

structure. The simulation results allowed the identification of misorientations that re-

duce or minimize elastic and transformation incompatibility, as well as provided some

explanations of the tendency of Cu-based SMAs to fracture along grain boundaries.

We then investigated the correlation between different types of incompatibilities and

grain boundary characteristics including the disorientation angle and coincidence site

lattice (CSL).

In Chapter 4, we first calibrated the constitutive model against the micro-pillar
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compression tests in [6, 76]. We then conducted a series of finite element simulations

to investigate different types of strain incompatibilities arising at grain boundaries in

zirconia using the calibrated model, followed by analysis and discussion of the results.

The simulation results provide detailed information on the nucleation and evolution of

martensite variants and stress distribution at grain boundaries. The results also shed

light on on the competing mechanisms of elastic and transformation incompatibilities

leading to severe stress concentration at the grain boundaries. We then explored the

misorientation space for quantifying the level of elastic and transformation incompat-

ibilities at SMC grain boundaries, as well as the correlation between different types

of incompatibilities and several grain boundary characteristics.

The thesis closes in Chapter 5 with conclusions and recommendations for future

work.
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Chapter 2

A Micromechanical-based Modeling

Framework

In this chapter, anisotropic rate-dependent constitutive models for single-crystal SMAs

and zirconia-based SMCs are proposed. The models are built upon the general con-

tinuum framework for describing martensitic transformations at the single-crystal

level proposed by Anand et al [109, 110, 111, 125]. This framework requires the

identification and geometric description of the transformation systems pertaining to

the specific crystal structure of the material. The geometric characteristics of the

transformation systems for martensitic transformations are defined by the normal to

the austenite-martensite interface plane (habit plane), m𝑖
0, and the transformation

strain direction vector b𝑖
0, where 𝑖 is the index of the existing transformation sys-

tems. These quantities can be computed from the geometrically nonlinear theory

of martensite [120, 5, 7, 122] based on the crystal structure of the austenite and

martensite phases of the material and the lattice parameters in both phases.

It is worth mentioning that the martensitic transformation in zirconia not only

involves lattice shear as in most SMAs, but it is also accompanied by a significant

volume change (∼4%) [88]. From a micromechanics perspective, transformation sys-

tems in zirconia are non-orthogonal and this results in a non-Schmid effect during

the transformation. In order to take into account the normal deformation in each

transformation system which is responsible for the volume change, we adapted the
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formulation in [12] developed for crystalline silicon. A robust explicit algorithm is

developed to update the constitutive law. The formulation of the constitutive model

follows closely the presentation in [111]. The model was incorporated in our in-house

computational framework ΣMIT developed by the research group of Raúl Radovitzky

to perform large- scale and high-resolution finite element simulations [163, 164, 165].

In this chapter, we summarized the main steps in the constitutive formulation. We

also provide algorithmic details of the robust explicit time integration scheme we

implemented to update the constitutive law.

2.1 Anisotropic Rate-dependent Constitutive Model

of Single-Crystal SMAs

A single-crystal micromechanics-based model is implemented to provide a full mech-

anistic three-dimensional description of the anisotropic elastic as well as martensitic

transformation stress-strain response in shape memory materials. The model is based

on the three-dimensional constitutive framework for single-crystal SMAs developed

by Anand and several co-authors [111, 109, 110]. The authors developed the model

by modifying the widely-used framework for crystal plasticity by crystallographic

slip, and assuming the similarity in the inelastic deformation during the martensitic

transformation and dislocation-based plastic deformation. The model takes into ac-

count the elastic anisotropy as well as the anisotropy from the transformation strains

and therefore is able to capture different grain orientations and crystallographic tex-

tures. Though the model does not explicitly account for the atomic-level fine-scale

microstructures of martensite, the model is able to track the evolution of volume

fractions of different martensite variants via the geometrically nonlinear theory of

martensite.

The anisotropic constitutive model is derived and summarized in the following

sections, closely following the derivation in [111, 109, 124].
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2.1.1 Kinematics

In this work we adopt the standard continuum mechanics notation, and an entire

single crystal is chosen as a representative-volume element (RVE). Considering a

material point X in the reference configuration in a homogeneous crystalline body𝐵, a

motion of 𝐵 maps the material point X to x = 𝜙(X, 𝑡) in the deformed configuration.

The deformation gradient F is a tensor that maps segments dX in the reference

configuration to segments dx = FdX in the deformed configuration. The deformation

gradient F, velocity v and velocity gradient L are defined as:

F = ∇𝜙 v = �̇� L = gradv = ḞF−1 (2.1)

where ∇ and grad are the gradient with respect to the material point in the reference

configuration, and the gradient with respect to the material point in the deformed

configuration, respectively.

We base the model of the martensitic transformation on a multiplicative decom-

position of the deformation gradient,

F = F𝑒F𝑝 (2.2)

where the elastic deformation gradient F𝑒 represents the mapping of segments dl in

the relaxed lattice configuration due to the stretching and rotation of the lattice, and

F𝑝 represents the mapping of segments dX to segments dl = F𝑝(X)dX in the relaxed

lattice configuration due to the nucleation and growth of the austenite/fine-twinned

martensite structure.

The elastic and phase transformation velocity gradient can be obtained by taking

the time derivative in Eq. 2.2,

Ḟ = Ḟ𝑒F𝑝 + F𝑒Ḟ𝑝 (2.3)

0F𝑝 is not the plastic part of the deformation gradient as is normally used in the plasticity theory
and the subscript 𝑝 is for phase transformation.
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where the elastic and phase transformation velocity gradient are defined as follows,

L𝑒 = Ḟ𝑒F𝑒−1 (2.4)

L𝑝 = Ḟ𝑝F𝑝−1 (2.5)

Substituting Eq. 2.3, Eq. 2.4, and Eq. 2.5 in Eq. 2.2, the velocity gradient can be

expressed as:

L = ḞF−1 = (Ḟ𝑒F𝑝 + F𝑒Ḟ𝑝)(F𝑝−1F𝑒−1) = L𝑒 + F𝑒L𝑝L𝑒−1 (2.6)

2.1.2 Field Equations

Balance of Linear Momentum Denote 𝜎 as the Cauchy stress in the deformed

body, and 𝐽 = det(F) as the Jacobian of the deformation gradient tensor. The first

Piola-Kirchoff stress S can be related to the Cauchy stress 𝜎 through the relation:

S = (detF)𝜎F−T = 𝐽𝜎F−T (2.7)

The balance of linear momentum in the reference configuration is guaranteed by,

Div S + b = 𝜌0�̈� (2.8)

where Div is the divergence with respect to the material point in the reference con-

figuration.

by neglecting dynamic effects and body forces, the equilibrium equation reduces

to the following form,

Div S = 0 (2.9)

Balance of Angular Momentum The balance of angular momentum guaranteed

by,

SFT = FST (2.10)
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This indicates that the Cauchy stress tensor 𝜎 is symmetric.

Balance of Energy In the reference configuration, denote 𝑃 as a region in the

reference body with the outward unit normal n𝑅 on its boundary 𝜕𝑅. Denote 𝑑𝑉𝑅

and 𝑑𝐴𝑅 as the volume and area integral. Furthermore, define 𝜖 as the internal

energy per unit reference volume, q𝑅 as the referential heat flux, and 𝑔 as the heat

generation rate per unit reference volume. The first law of thermodynamics in the

reference configuration yields,

∫︁
𝜕𝑅

Sn𝑅 ·�̇�𝑑𝐴𝑅−
∫︁
𝜕𝑅

q𝑅 ·n𝑅𝑑𝐴𝑅+

∫︁
𝑅

(b · �̇�+𝑔)𝑑𝑉𝑅 =
𝑑

𝑑𝑡

∫︁
𝑅

(𝜖+
1

2
𝜌0�̇�·�̇�)𝑑𝑉𝑅 (2.11)

By applying the divergence theorem to 2.11, we have,

∫︁
𝑅

(DivS·�̇�+S·∇�̇�)𝑑𝑉𝑅−
∫︁
𝑅

Divq𝑅𝑑𝑉𝑅+

∫︁
𝑅

(b · �̇�+𝑔)𝑑𝑉𝑅 =
𝑑

𝑑𝑡

∫︁
𝑅

(𝜖+
1

2
𝜌0�̇�·�̇�)𝑑𝑉𝑅

(2.12)

Recall the linear momentum balance (Eq. 2.8) and multiply both sides by �̇�,

DivS · �̇� + b · �̇� = 𝜌0�̈� · �̇� =
𝑑

𝑑𝑡
(
1

2
𝜌0�̇� · �̇�) (2.13)

Substituting Eq. 2.13 into Eq. 2.12 leads to,

∫︁
𝑅

(S · ∇�̇�− Divq𝑅 + 𝑔 − �̇�)𝑑𝑉𝑅 = 0 (2.14)

Localizing the energy balance equation for every part in 𝑃 yields,

S · Ḟ− Divq𝑅 + 𝑔 = �̇� (2.15)

Entropy Imbalance In the reference configuration, define 𝜂 as the entropy per

unit reference volume. The entropy imbalance yields,

𝑑

𝑑𝑡

∫︁
𝑅

𝜂𝑑𝑉𝑅 >
∫︁
𝜕𝑅

−q𝑅

𝜃
· n0𝑑𝐴𝑅 +

∫︁
𝑅

𝑔

𝜃
𝑑𝑉𝑅 (2.16)
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The Cauchy-Green elastic strain measure is defined as,

E𝑒 =
1

2
(F𝑒TF𝑒 − 1) (2.17)

We then introduce a Helmholtz free energy as follows,

𝜓 = 𝜓(E𝑒, 𝜃, 𝜉) = 𝜖− 𝜂𝜃 (2.18)

where 𝜃 is the absolute temperature and 𝜉 is the volume fraction of martensite, a

measure of the degree of phase transformation.

By applying the divergence theorem and combining Eq. 2.17,2.6, 2.12, 2.16, the

entropy imbalance yields,

{︀
T𝑒 − 𝜕𝜓

𝜕E𝑒

}︀
· Ė𝑒 −

{︀𝜕𝜓
𝜕𝜃

+ 𝜂
}︀
𝜃 + (C𝑒T𝑒) · L𝑝 − 𝜕𝜓

𝜕𝜉
𝜉 − q0

𝜃
· ∇𝜃 > 0 (2.19)

where a new stress measure, the elastic second Piola-Kirchoff stress is introduced:

T𝑒 = 𝐽F𝑒−1𝜎F𝑒−𝑇 .

Free Energy Following the work in [166, 124], the free energy per unit reference

volume 𝜓 is decomposed into three terms: the strain energy 𝜓𝑒, the energy of phase

transformation 𝜓𝑝, and the thermal energy 𝜓𝜃:

𝜓(E𝑒, 𝜃, 𝜉) = 𝜓𝑒(E𝑒, 𝜃, 𝜉) + 𝜓𝑝(𝜉, 𝜃) + 𝜓𝜃(𝜃) (2.20)

where 𝜉 is the martensite volume fraction, and 𝜃 is the temperature.

The strain energy is given by:

𝜓𝑒(E𝑒, 𝜃, 𝜉) =
1

2
E𝑒 · 𝒞(𝜉)E𝑒 (2.21)

where 𝒞 is the fourth-order elasticity tensor. Note that in this study we neglected the

thermal expansion term.
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The energy of phase transformation is given by,

𝜓𝑝(𝜉, 𝜃) =
𝜆𝑇
𝜃𝑇

(𝜃 − 𝜃𝑇 )𝜉 +
1

2

∑︁
𝑖,𝑗

𝑔𝑖𝑗𝜉𝑖𝜉𝑗 (2.22)

where 𝜃𝑇 ≡ 1
2
(𝜃𝑚𝑠 + 𝜃𝑎𝑠) is the phase equilibrium temperature, 𝜆𝑇 is the latent heat

of phase transformation at 𝜃𝑇 , and 𝑔𝑖𝑗 is the interaction matrix that accounts for

possible energetic interactions between transformation systems. Here we shall neglect

the interactions between systems and consider 𝑔𝑖𝑗 = 0 in our application of the theory

to zirconia due to the lack of experimental data that would allows us to calibrate the

interaction coefficients.

The thermal energy is given by,

𝜓𝜃(𝜃) = 𝑐(𝜃 − 𝜃0) − 𝑐𝜃 ln
𝜃

𝜃0
(2.23)

where 𝑐 is the constant specific heat, and 𝜃0 is the reference temperature.

Combining the above equations, the entropy imbalance can be rewritten in the

following form,

{︀
T𝑒 − 𝜕𝜓𝑒

𝜕E𝑒

}︀
· Ė𝑒 − (

𝜕𝜓

𝜕𝜃
+ 𝜂)𝜃 + (C𝑒T𝑒) · L𝑝 − q0

𝜃
· ∇𝜃 > 0 (2.24)

2.1.3 Constitutive Relations

Constitutive Equation for Elastic Stress The second Piola-Kirchhoff elastic

stress tensor T𝑒 can be expressed as,

T𝑒 =
𝜕𝜓𝑒

𝜕E𝑒
= 𝒞E𝑒 (2.25)

The elastic moduli 𝒞 are obtained in terms of the respective values for the austenite

and martensite phases 𝒞𝑎
𝑖𝑗𝑘𝑙 and 𝒞𝑚

𝑖𝑗𝑘𝑙, as a function of the martensite volume fraction

𝜉 using the rule of mixtures,

𝒞𝑖𝑗𝑘𝑙 = 𝜉𝒞𝑚
𝑖𝑗𝑘𝑙 + (1 − 𝜉)𝒞𝑎

𝑖𝑗𝑘𝑙 (2.26)
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As can be seen, T𝑒 is work-conjugate to the elastic strain E𝑒. T𝑒 is related to the

first Piola-Kirchhoff stress S and Cauchy stress 𝜎 through the following relations,

S = F𝑒T𝑒F𝑝−T

(2.27)

𝜎 = 𝐽−1F𝑒T𝑒F𝑒T (2.28)

Phase Transformation Flow Rule As discussed in the previous section, the flow

rule of phase transformation in SMAs is assumed to take a similar form to that in

the crystal plasticity theory 1,

Ḟ𝑝 = L𝑝F𝑝,

L𝑝 =
𝑁∑︁
𝑖=1

𝜉𝑖b𝑖
0 ⊗m𝑖

0

(2.29)

where 𝑁 is the total number of transformation systems taken into consideration, 𝜉𝑖, 𝜉𝑖

are the volume fraction of martensite and its rate of change in transformation system

𝑖, respectively. The volume fraction in each transformation system 𝜉𝑖 and the total

volume fraction
∑︀𝑁

𝑖=𝑖 𝜉
𝑖 = 𝜉 are constrained by:

0 6 𝜉𝑖 6 1 (2.30)

0 6 𝜉 6 1 (2.31)

A transformation system 𝑆0 is defined by a set of {b0, m0} which contains suf-

ficient information on the orientation of a compatible austenite-martensite inter-

face [120, 122].

𝒮 𝑖
0 = b𝑖

0 ⊗m𝑖
0 (2.32)

As mentioned in Chapter 1, given the lattice parameters and symmetry of the

austenite and martensite phases, one can apply the nonlinear theory of martensite
1Note that this is transformation flow rule proposed in [111] specifically for metallic shape memory

materials. We will later extend the formulation to shape memory ceramics where non-Schmid effects
have been observed during transformation
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to obtain the transformation systems in the single crystals of interest. The calcula-

tion requires the knowledge of the mapping from the austenite configuration to the

martensite one, which can be obtained by constructing the deformation gradient that

takes a unit cell in the austenite phase to martensite. From there one then obtains

the stretch tensor U0, as well as all possible variants of martensite by applying ro-

tations to the U0. Then one can obtain the transformation systems by solving the

twinning and habit plane equations, see Appendix B for a detailed description of the

procedure. The algorithm is summarized as follows:

1. Construct Bain strains U0 (a mapping from the austenite point group 𝒫𝑎 to the

martensite point group 𝒫𝑚) for the tetragonal to monoclinic transformation in

zirconia;

2. Calculate all the possible variants of martensite U𝑖 = Q𝑖U0Q
𝑇
𝑖 , Q𝑖 ∈ 𝒫𝑎;

3. Solve the twinning equation to obtain the twinning system for all possible com-

binations of 𝑖, 𝑗: a and n̂: RU𝑗 −U𝑖 = a⊗ n̂;

4. Solve the habit plane equation to obtain the transformation system b and m̂

for all possible combinations of 𝑖, 𝑗: Q(U𝑖 + (1 − 𝜇)a⊗ n̂) = I + b⊗ m̂.

Previous work has been focused on identifying transformation systems in SMAs

such as NiTi and Cu-based systems [167, 168, 128, 126, 17, 109]. The martensitic

transformation in a NiTi single-crystal can appear in as many as 192 transforma-

tion systems, yet only a subset of 24 transformation systems are observed in experi-

ments [128, 109]. In [111], the authors computed the components of theses 24 trans-

formation systems with respect to an orthonormal basis associated with the cubic

austenite lattice in a NiTi, and showed that the stress-strain response of a single-

crystal NiTi predicted using 24 systems are qualitatively similar to that using the

complete set of 192 systems [111]. Similar calculations were also later carried out for

CuZnAl SMAs where the phase transformation is between the cubic austenite phase

to a monoclinic martensite phase [16, 17], and 24 transformation system were iden-

tified for CuZnAl systems, as shown in Table 2.1. Simha [5] first used the nonlinear
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i [mi]1 [mi]2 [mi]3 [b]1 [bi]2 [bi]3
1 0.1817 0.669 0.721 0.1634 -0.7435 0.6487
2 -0.1817 -0.721 -0.669 -0.1634 -0.6487 0.7435
3 0.1817 -0.669 -0.721 0.1634 0.7435 -0.6487
4 -0.1817 0.721 0.669 -0.1634 -0.6487 0.7435
5 -0.669 0.1817 0.721 0.7435 0.1634 0.6487
6 0.721 -0.1817 -0.669 0.6487 -0.1634 0.7435
7 0.669 0.1817 -0.721 -0.7435 0.1634 -0.6487
8 -0.721 -0.1817 0.669 -0.6487 -0.1634 0.7435
9 -0.1817 0.669 -0.721 -0.1634 -0.7435 -0.6487
10 0.1817 -0.721 0.669 0.1634 -0.6487 -0.7435
11 -0.1817 -0.669 0.721 -0.1634 0.7435 0.6487
12 0.1817 0.721 -0.669 0.1634 0.6487 0.7435
13 0.721 0.1817 0.669 0.6487 0.1634 -0.7435
14 -0.669 -0.1817 -0.721 0.7435 -0.1634 -0.6487
15 -0.721 0.1817 -0.669 -0.6487 0.1634 0.7435
16 0.669 -0.1817 0.721 -0.743 -0.1634 0.6487
17 0.669 -0.721 -0.1817 -0.743 -0.6487 -0.1634
18 -0.721 0.669 0.1817 -0.6487 -0.7435 0.1634
19 -0.669 0.721 -0.1817 0.7435 0.6487 -0.1634
20 -0.721 -0.669 0.1817 0.6487 0.7435 0.1634
21 -0.721 -0.669 -0.1817 -0.6487 0.7435 -0.1634
22 0.669 0.721 0.1817 -0.7435 0.6487 0.1634
23 0.721 0.669 -0.1817 0.6487 -0.7435 -0.1634
24 -0.669 -0.721 0.1817 0.7435 -0.6487 0.1634

Table 2.1: Variants of the transformation systems for CuZnAl [16, 17]
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i [mi]1 [mi]2 [mi]3 [b]1 [bi]2 [bi]3
1 0.8230 -0.2522 -0.5090 0.0265 -0.0081 0.0169
2 -0.8230 0.2522 -0.5090 -0.0265 0.0081 0.0169
3 0.8230 0.2522 -0.5090 0.0265 0.0081 0.0169
4 -0.8230 -0.2522 -0.5090 -0.0265 -0.0081 0.0169
5 0.7856 -0.3519 -0.5090 0.0253 -0.0113 0.0169
6 -0.7856 0.3519 -0.5090 -0.0253 0.0113 0.0169
7 0.6987 0.5027 -0.5090 0.0225 0.0162 0.0169
8 -0.6987 -0.5027 -0.5090 -0.0225 -0.0162 0.0169
9 0.5027 -0.6987 -0.5090 0.0162 -0.0225 0.0169
10 -0.5027 0.6987 -0.5090 -0.0162 0.0225 0.0169
11 -0.3519 -0.7856 -0.5090 -0.0113 -0.0253 0.0169
12 0.3519 0.7856 -0.5090 0.0113 0.0253 0.0169
13 0.7856 0.3519 -0.5090 0.0253 0.0113 0.0169
14 -0.7856 -0.3519 -0.5090 -0.0253 -0.0113 0.0169
15 0.6987 -0.5027 -0.5090 0.0225 -0.0162 0.0169
16 -0.6987 0.5027 -0.5090 -0.0225 0.0162 0.0169
17 0.7856 0.3519 -0.5090 0.0162 0.0225 0.0169
18 -0.7856 -0.3519 -0.5090 -0.0162 -0.0225 0.0169
19 0.6987 -0.5027 -0.5090 -0.0113 0.0253 0.0169
20 -0.6987 0.5027 -0.5090 0.0113 -0.0253 0.0169
21 0.2522 0.8230 -0.5090 0.0081 0.0265 0.0169
22 -0.2522 -0.8230 -0.5090 -0.0081 -0.0265 0.0169
23 -0.2522 0.8230 -0.5090 -0.0081 0.0265 0.0169
24 0.2522 -0.8230 -0.5090 0.0081 -0.0265 0.0169

Table 2.2: Habit plane normal and transformation directions of the 24 transformation
systems. The monoclinic and tetragonal lattice parameters are 𝑎𝑚 = 0.51597, 𝑏𝑚 =
0.52222, 𝑐𝑚 = 0.53227, 𝛽 = 98.71, 𝑎𝑡 = 0.5149; 𝑐𝑡 = 0.5267

theory of martensite to compute the transformation systems in zirconia-based SMCs

where the phases are respectively tetragonal and monoclinic for a particular set of

lattice parameters, see also [7] for a review of martensitic transformation systems in

other ceramics. Here, we computed the transformation systems for the specific com-

position of CuZnAl and the ceria-doped zirconia used in the experiments from [6].

The results are shown in Table 2.2 and 2.1.

Transformation Conditions Similarly to the crystal plasticity theory [123], a

resolved shear stress for phase transformation in each transformation system is defined
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as follows,

𝜏 𝑖 = b𝑖
0 · (C𝑒T𝑒)m𝑖

0 (2.33)

A thermodynamic force 𝑏 (back stress) that is work-conjugate to the martensite vol-

ume fraction 𝜉 is defined as,

𝑏 =
𝜕𝜓𝑝

𝜕𝜉
=
𝜆𝑇
𝜃𝑇

(𝜃 − 𝜃𝑇 ) (2.34)

For simplicity, we assume 𝑏 remains the same for all transformation systems. Ne-

glecting the interaction effects of different systems, the driving force 𝑓 𝑖 for phase

transformation is defined as,

𝑓 𝑖 = 𝜏 𝑖 − 𝑏 (2.35)

Forward and reverse transformation can only occur when the driving force 𝑓 𝑖 in

the transformation system reaches a critical value 𝑌 𝑖. The transformation criteria

are as follows [111],

𝑓 𝑖(𝜉) =

⎧⎪⎨⎪⎩𝑌
𝑖
+ for 𝜉𝑖 > 0,

−𝑌 𝑖
− for 𝜉𝑖 < 0.

(2.36)

where 𝑌 𝑖
+ and 𝑌 𝑖

− are material parameters defined as the critical transformation re-

sistance for forward and reverse transformation, respectively.

The consistency condition for phase transformation in each system can be obtained

in a similar manner [109] to that in the plasticity theory [123],

˙
(𝜏 𝑖 − 𝑏− 𝑌 𝑖

+)𝜉𝑖 = 0 or
˙

(𝜏 𝑖 − 𝑏+ 𝑌 𝑖
−)𝜉𝑖 = 0 (2.37)

Rate-dependent Theory The rate-independent formulation requires an implicit

algorithm to determine the active transformation systems and associated marten-

site volume fractions. This is usually fraught with numerical difficulties which stem

from the lack of convexity of the problem. A rate-dependent transformation condi-

tion [111], facilitates the use of an explicit algorithm, which enables robust calcula-

tions [169, 170]. Such a rate-dependent flow rule will reduce to the rate-independent
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one (Eq. 2.37) in the limit where the rate-dependence exponent approaches zero.

Closely following the derivation in [111], the main steps in the formulation are sum-

marized below,

𝜏 𝑖 − 𝑏 =

⎧⎪⎨⎪⎩+| 𝜉𝑖
𝜉𝑖
|𝑚𝑌 𝑖

+ for 𝜉𝑖 > 0,

−| 𝜉𝑖
𝜉𝑖
|𝑚𝑌 𝑖

− for 𝜉𝑖 6 0,

(2.38)

where the reference transformation rate 𝜉𝑖, and the rate-dependence constant 𝑚, are

additional material parameters for the rate-dependent model.

The transformation condition in the rate-dependent theory can be obtained by

inverting Eq. 2.38,

𝜉𝑖 =

⎧⎪⎨⎪⎩+𝜉𝑖| 𝜏 𝑖−𝑏
𝑌 𝑖
+
|1/𝑚 for 𝜏 𝑖 − 𝑏 > 0,

−𝜉𝑖| 𝜏 𝑖−𝑏
𝑌 𝑖
−
|1/𝑚 for 𝜏 𝑖 − 𝑏 6 0,

(2.39)

Eq. 2.39 shows that the rate of change in martensite volume fraction in each

transformation system 𝜉𝑖 can be obtained in a straightforward manner in the rate-

dependent theory. The volume fraction of martensite 𝜉𝑖 is updated at each time

step upon solving for 𝜉𝑖. Closely following the framework in [111, 109], we assume

the critical transformation stress remains the same for all transformation systems,

𝑌 𝑖
+ = 𝑌 𝑖

− = 𝑌 for simplicity and lacking better experimental evidence.

2.1.4 Phase Transformation Flow Rule and Non-Schmid effect

The framework developed in the previous section is derived from the framework of

crystal-plasticity where slip is approximated as homogeneous shear deformation of a

lattice. However, unlike in metallic shape memory alloys where martensitic transfor-

mation is volume preserving, martensitic transformation in zirconia is accompanied

by a significant volume change (about 4-5%) and the formation of martensite in-

volves a normal deformation in addition to the pure shear component. Consequently,

stresses normal to the habit plane also contribute to the driving force for martensitic

57



Figure 2-1: Approximation of slip, twinning (a), and martensitic phase transforma-
tions (b) as homogeneous deformations. Reproduced from [12]

transformation in addition to shear stresses. From a micromechanics perspective, this

is explained by the fact that transformation systems in zirconia are non-orthogonal

which introduces a non-Schmid effect in the transformation response. As a result,

the formulation derived from crystal-plasticity that obeys the Schmid law is not suffi-

cient anymore. To this end, we adapted the formulation in [12] to include the normal

deformation in addition to the pure shear component during transformation,

As seen in Figure 2-1, the deformation associated with martensite transformation

and the inelastic deformation gradient can be expressed as:

x = X + 𝜉(b0 ⊗m0)X (2.40)

F = ∇x = I + 𝜉(b0 ⊗m0) (2.41)

The direction of phase transformation b0 is decomposed as,

𝜉b0 = 𝜉𝑠s0 + 𝜉𝑛m0 (2.42)

where s0 and m0 are the shear and normal directions, respectively, and 𝜉𝑛 = 𝜉b0 ·m0.

Upon including the normal deformation across the habit plane, the transformation

58



velocity gradient in a single transformation system setting then yields,

L𝑝 = ḞF−1 =
𝜉

1 + 𝜉𝑛
b0 ⊗m0 (2.43)

In a multi-system setting, the transformation velocity gradient becomes2,

L𝑝 =
𝑁∑︁
𝑖=1

𝜉𝑖

1 + 𝜉𝑖𝑛
b𝑖
0 ⊗m𝑖

0 (2.44)

Note that this is a general formulation for shape memory materials that takes into

consideration possible volume change accompanied by martensitic transformation.

Recall that in conventional crystal plasticity-like models with multiple transformation

systems, the velocity gradient L𝑝 is given by

L𝑝 =
𝑁∑︁
𝑖=1

𝜉𝑖b𝑖 ⊗m𝑖 (2.45)

. For metallic shape memory materials where there is no volume change during the

transformation, the term 1 + 𝜉𝑖𝑛 is 1 and Equation 2.44 reduces to L𝑝 =
∑︀𝑁

𝑖=1 𝜉
𝑖b𝑖

0 ⊗

m𝑖
0.

In summary, the rate-dependent flow rule of the phase transformation reads,

Ḟ𝑝 = L𝑝F𝑝

L𝑝 =
𝑁∑︁
𝑖=1

𝜉𝑖

1 + 𝜉𝑖𝑛
b𝑖
0 ⊗m𝑖

0

𝜉𝑖 = 𝜉|𝜏
𝑖 − 𝑏𝑖

𝑌
|1/𝑚sgn(𝜏 𝑖 − 𝑏𝑖)

(2.46)

2The sufficient condition that guarantees that the form for the inelastic deformation gradient is
independent of the sequence of activation is thoroughly discussed in [171]
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2.2 Summary of Governing and Constitutive Equa-

tions

The linear momentum balance:

DivS + b = 𝜌0�̈� (2.47)

The elastic stress-strain relation:

T𝑒 = 𝒞[E𝑒 −A(𝜃 − 𝜃0)] (2.48)

The transformation back stress:

𝑏 =
𝜕𝜓𝑝

𝜕𝜉
=
𝜆𝑇
𝜃𝑇

(𝜃 − 𝜃𝑇 ) (2.49)

The resolved shear stress for each transformation system:

𝜏 𝑖 = b𝑖
0 · (C𝑒T𝑒)m𝑖

0 (2.50)

The rate-dependent phase transformation flow rule:

Ḟ𝑝 = L𝑝F𝑝

L𝑝 =
𝑁∑︁
𝑖=1

𝜉𝛼

1 + 𝜉𝑖𝑛
b𝛼 ⊗m𝑖

𝜉𝑖 = 𝜉|𝜏
𝑖 − 𝑏

𝑌
|1/𝑚 sgn(𝜏 𝑖 − 𝑏),

(2.51)

It bears emphasis that the use of the constitutive model in calculations requires the

specification of the constitutive model parameters: anisotropic elastic moduli in both

phases 𝒞𝑎
𝑖𝑗𝑘𝑙, 𝒞𝑚

𝑖𝑗𝑘𝑙, the transformation stress 𝑌 , the back stress 𝑏, and the orientation of

each crystal relative to the frame of the simulations in which the loading directions are

specified. In our implementation of the model, we use the rotation matrix to define the

crystal orientation with respect to the global reference frame. This rotation matrix is
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used to effect the necessary tensorial transformations to the global coordinate system

in which the loading is applied. The rotation matrix can also be obtained from the

Euler angles determined experimentally.

2.3 Explicit Constitutive Update Algorithm for Marten-

site Phase Transformation

An explicit algorithm that solves for the volume fraction of martensite in each trans-

formation system in a sequential manner is implemented for updating the constitutive

equations [169, 170]. Each transformation system is handled iteratively in such a cal-

culation. The determination of forward or reverse transformation is distinguished

by the sign of the overstress, where positive values indicate forward transformation

(to monoclinic martensite) and negative ones a reverse transformation (to tetragonal

austenite). At each time step, the transformation system with largest absolute over-

stress |𝜏 𝑖− 𝑏| is identified and the corresponding volume fraction is updated based on

Equation 2.39. The computation proceeds with the other systems in decreasing or-

der of absolute overstress until there is no inactive system with admissible overstress

(i.e. for the forward transformation the resolved shear stress exceeds the back stress,

and for the reverse transformation the resolved shear stress is smaller than the back

stress). The detailed algorithm is as follows,

1. Calculate the volume fraction 𝜉𝑖 for all systems based on the step 𝑡𝑛;

2. Compute F𝑒 = F𝑛+1F
𝑝−1

𝑛 and evaluate 𝜏 𝑖 for all systems;

3. Calculate the overstress 𝜏 𝑖− 𝑏 for all systems and determine its largest absolute

value. If this overstress is negative: if 𝜏 𝑖 − 𝑏 > 0 for all systems, go to step 6; If

this overstress is positive: if 𝜏 𝑖 − 𝑏 < 0 for all systems, go to step 6. Otherwise:

4. Evaluate ∆F𝑝 = 𝜉𝑖𝑛
1+𝜉𝑖𝑛

𝑑𝑡(b𝑖
0⊗m𝑖

0) based on the system 𝑖 with the largest absolute

value of overstress;

5. Premultiply F𝑝 by ∆F𝑝, return to step 2 using the updated F𝑝;
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6. Compute new volume fraction rates 𝜉𝑖 for each transformation system.
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Chapter 3

Simulation Studies of Elastic and

Phase Transformation

Incompatibilities at oSMA Grain

Boundaries

Recent experimental studies have shown that premature intergranular fracture which

severely affects the superelastic properties of polycrystalline Cu-based SMAs can be

mitigated in fine wires with bamboo-shape oligocrystalline microstructure [2, 52].

In this case, the energy absorption properties and reversible transformation strains

can approach the limits of a single crystal. However, the presence of occasional

grain boundaries and triple junctions along the length of the wire can still originate

incompatibility of deformation due to either elastic or transformation anisotropy,

which induces stress concentrations and leads to premature intergranular fracture.

In this chapter, we investigated the competition between transformation and grain

boundary constraints as sources of potential premature intergranular fracture in the

deformation response of bi-crystal oSMAs using the micromechanical single-crystal

constitutive model of phase transformation described in Chapter 2 and finite element

simulations. The anisotropic model is able to account for the key mechanisms of
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elastic deformation and transformation anisotropy in the single crystal level, and for

the constraints to deformation that arise at the grain boundary.

We conducted a series of finite element simulations of the tensile response in

bi-crystal CuZnAl oSMA wires of arbitrary grain misorientations. The simulation

results facilitates a better understanding of the competing mechanisms of elastic and

transformation incompatibility leading to intergranular fracture. Specifically, they

suggest that if the grain misorientation is such that the elastic anisotropy is high,

sizable stress concentrations at grain boundaries can be observed. This would likely

induce fracture in the oligocrystal structure at very a small strain level. By contrast,

bi-crystals can achieve full transformation strength comparable to single crystals in

the case where elastic incompatibility is low. In addition, the results contain detailed

information on nucleation and evolution of martensite variants and stress concentra-

tion at SMA grain boundaries. They also provided a clear picture of the deformed

shapes of individual grain which helps to understand the type of deformation incom-

patibility arising at grain boundary. We also showed that this approach could be

used to explore the misorientation space for quantifying the level of stress concentra-

tion and strain incompatibilities arising at grain boundaries. The simulation results

allowed for the identification of general grain misorientations that reduce or mini-

mize elastic and transformation incompatibility, as well as provided insights on the

microstructural design of Cu-based SMAs to avoid fracture along grain boundaries.

We then investigated the correlation between different types of incompatibilities and

two specific metrics charactering the geometrical configuration of grain boundaries,

the disorientation angle and CSL.

3.1 Modeling Approach

To model the stress-strain response and martensitic transformation of bi-crystal CuZ-

nAl oSMA wires under tensile loading, we conducted finite element simulations uti-

lizing a computational mesh of 17762 tetrahedral first-order elements representing a

section in an oligocrystal oSMA wire. Figure 3-1 illustrates the geometry of a bi-
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crystal oSMA wire. Unit cells in each grain demonstrate different orientations of the

top and bottom grain, and the interface represents the bi-crystal grain boundary.

The length of the wire is 6 mm and the diameter 1 mm. Although the model lacks

the description of length scale, we selected the aspect ratio 6:1 to mimic the exper-

imentally observed geometrical configuration of oSMA wires. The mesh consists of

two volumes representing two grains oriented perpendicular to the 𝑥 − 𝑦 plane in

a cylindrical oligocrystalline sample, and grain boundary is perpendicular to 𝑧 axis.

Each grain is assigned a different orientation, which in the model is defined by a

rotation matrix and can be calculated from Euler angles. The interface in the middle

represents the grain boundary in the bi-crystalline structure. Considering the lack

of data specific to grain boundary response to allow a quantitative evaluation, we

adopted the well-established grain boundary conformity assumption [172, 173] to an-

alyze incompatibilities due to crystal anisotropy and grain boundary misorientations.

This assumption is also supported by scanning electron micrograph (SEM) images

showing that grain boundaries remain conformal during experiments. A more de-

tailed model of the grain boundary would require a characterization of deformation

mechanism which is not readily available. With one grain’s orientation fixed (Euler

angles 𝐸1 = 194∘, 𝐸2 = 46∘, 𝐸3 = 235∘), we conducted 26 finite element simula-

tions of oSMA wires with general grain misorientations undergoing tensile loading.

The orientations of the samples can be found in Table 3.1. We analyzed the simu-

lation results to explore how grain misorientation affects the development of stress

concentration due to elastic and/or transformation incompatibilities. We ran finite

element simulations up to 12% strain which exceeds the transformation strain for

single-crystals and analyzed the evolution of the von Mises equivalent stress at the

grain boundary and martensite volume fraction in each transformation system as the

deformation progresses. The von Mises stress is chosen as a metric for quantifying the

magnitude of the complex deviatoric stress state, which is responsible for premature

fracture. In addition, we explored the correlation between grain boundary character-

istics (CSL and disorientation angles) and different types of incompatibilities arising

at grain boundaries. Based on the results of the analysis, we proposed an interpre-
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tation on the role of elastic and transformation strain incompatibility as a cause for

stress concentration and potential premature fracture in oSMA wires.

simulation rotation matrix

1

⎡⎢⎢⎢⎣
−0.2528 −0.8491 −0.4639

0.6853 −0.4956 0.5337

−0.6830 −0.1830 0.70711

⎤⎥⎥⎥⎦

2

⎡⎢⎢⎢⎣
−0.9492 0.0605 0.3088

0.3103 0.0170 0.9505;

0.0523 0.9980 −0.0349]

⎤⎥⎥⎥⎦

3

⎡⎢⎢⎢⎣
0.4189 0.6909 −0.5892

−0.8912 0.1884 −0.4126

−0.1740 0.6980 0.6947

⎤⎥⎥⎥⎦

4

⎡⎢⎢⎢⎣
−0.0341 0.9689 −0.2451

−0.8501 −0.1571 −0.5026

−0.5255 0.1913 0.829

⎤⎥⎥⎥⎦

5

⎡⎢⎢⎢⎣
−0.7071 0.7071 0

0.2763 0.2763 0.9205

0.6509 0.6509 −0.390

⎤⎥⎥⎥⎦

6

⎡⎢⎢⎢⎣
0.5774 0.5774 0.5774

−0.7887 0.2113 0.5774

0.2113 −0.7887 0.5774

⎤⎥⎥⎥⎦

7

⎡⎢⎢⎢⎣
0.9659 0.2588 0

−0.2315 0.8640 0.4472

0.1157 −0.4320 0.8944

⎤⎥⎥⎥⎦

8

⎡⎢⎢⎢⎣
0.7555 0.6363 0.1562

−0.6489 0.6938 0.3123

0.0904 −0.3373 0.9370

⎤⎥⎥⎥⎦
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9

⎡⎢⎢⎢⎣
0.5175 0.8008 0.3015

−0.8486 0.4348 0.3015

0.1104 −0.4119 0.9045

⎤⎥⎥⎥⎦

10

⎡⎢⎢⎢⎣
0.5336 0.7407 0.4082

−0.8324 0.3747 0.4082

0.1494 −0.5577 0.8165

⎤⎥⎥⎥⎦

11

⎡⎢⎢⎢⎣
0.9097 0.3533 0.2182

−0.3439 0.3462 0.8729

0.2329 −0.8691 0.4364

⎤⎥⎥⎥⎦

12

⎡⎢⎢⎢⎣
0.8600 0.4558 0.2294

−0.4744 0.5488 0.6882

0.1878 −0.7008 0.6882

⎤⎥⎥⎥⎦

13

⎡⎢⎢⎢⎣
0.7868 0.5195 0.3333

−0.5863 0.4602 0.6667

0.1929 −0.7200 0.6667

⎤⎥⎥⎥⎦

14

⎡⎢⎢⎢⎣
0.5435 0.7038 0.4575

−0.8226 0.3378 0.4575

0.1675 −0.6250 0.7625

⎤⎥⎥⎥⎦

15

⎡⎢⎢⎢⎣
0.5499 0.6800 0.4851

−0.8162 0.3140 0.4851

0.1775 −0.6626 0.7276

⎤⎥⎥⎥⎦

16

⎡⎢⎢⎢⎣
0.7629 0.6086 0.2182

−0.6340 0.6384 0.4364

0.1263 −0.4713 0.8729

⎤⎥⎥⎥⎦

17

⎡⎢⎢⎢⎣
0.9659 0.2588 0

−0.2511 0.9371 0.2425

0.0628 −0.2343 0.9701

⎤⎥⎥⎥⎦
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18

⎡⎢⎢⎢⎣
0.7711 0.5778 0.2673

−0.6176 0.5770 0.5345

0.1547 −0.5773 0.8018

⎤⎥⎥⎥⎦

19

⎡⎢⎢⎢⎣
0.8472 0.5037 0.1690

−0.5130 0.6926 0.5071

0.1383 −0.5163 0.8452

⎤⎥⎥⎥⎦

20

⎡⎢⎢⎢⎣
0.9659 0.2588 0

−0.1436 0.5358 0.8321

0.2154 −0.8037 0.5547

⎤⎥⎥⎥⎦

21

⎡⎢⎢⎢⎣
0.6873 0.6499 0.3244

−0.7105 0.5083 0.4867

0.1514 −0.5650 0.8111

⎤⎥⎥⎥⎦

22

⎡⎢⎢⎢⎣
0.9659 0.2588 0

−0.2021 0.7543 0.6247

0.1617 −0.6034 0.7809

⎤⎥⎥⎥⎦

23

⎡⎢⎢⎢⎣
0.7777 0.5535 0.2981

−0.6045 0.5282 0.5963

0.1725 −0.6440 0.7454

⎤⎥⎥⎥⎦

24

⎡⎢⎢⎢⎣
0.9659 0.2588 0

−0.1948 0.7269 0.6585

0.1704 −0.6361 0.7526

⎤⎥⎥⎥⎦

25

⎡⎢⎢⎢⎣
0.9288 0.3586 0.0937

−0.3286 0.6799 0.6556

0.1714 −0.6397 0.7493

⎤⎥⎥⎥⎦

26

⎡⎢⎢⎢⎣
0.8140 0.5135 0.2716

−0.5528 0.5411 0.6338

0.1785 −0.6660 0.7243

⎤⎥⎥⎥⎦
Table 3.1: Orientations of the samples used in the finite element simulations
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Figure 3-1: An example of the oSMA wire specimen

3.2 Examination of Elastic and Transformation In-

compatibility in Bi-crystal oSMAs

In order to understand to the basic types of responses we obtained, we first discuss two

particular cases in these simulations with distinct stress-strain responses, where one

case shows distinct elastic incompatibility (Case 1: 𝐸1 = 250∘, 𝐸2 = 34∘, 𝐸3 = 206∘

for the top grain) and the other (Case 2: 𝐸1 = 187∘, 𝐸2 = 57∘, 𝐸3 = 234∘ for

the top grain) shows low elastic incompatibility yet rather large incompatibility of

transformation. The results corresponding to Case 1 are illustrated in Figure 3-2.

Figures 3-2a and 3-2b respectively show the spatial distribution of the von Mises

stress and the total martensite volume fraction on the surface of the bi-crystal wire

at a macroscopic strain level 𝜖 = 0.5%. As depicted in Figure 3-2a, the von Mises

stress exhibits a peak at the grain boundary of the order of 434 MPa which is a

factor of 3 larger than in the bulk of the grain. As shown in Figure 3-2b, both grains

remain ostensibly in the austenite phase at this level of applied strain, except at the

grain boundary where incipient transformation can be observed. Since there is no

significant transformation, it can be concluded that for this bi-crystal configuration,

69



(a) von Mises stress at 𝜖 = 0.5% (b) Martensite volume fraction at 𝜖 = 0.5%

(c) von Mises stress at 𝜖 = 6% (d) Martensite volume fraction at 𝜖 = 6%

Figure 3-2: Case 1: spatial distribution of stresses and martensite volume fraction
near grain boundary plane during elastic regime (a)(b), during transformation (c)(d)
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deformation incompatibility and stress concentration near the grain boundary arise

entirely due to elastic anisotropy.

Figures 3-2c and 3-2d demonstrate the corresponding results at the strain level

𝜖 = 6%, which is the final stage of transformation. Figure 3-2d shows that both

grains have almost fully transformed except for regions near the grain boundary where

transformation is still incomplete. It is worth emphasizing that although we ran the

simulations beyond the completion of martensitic transformation, the oSMA wire is

expected to break during the elastic range due to large stress concentration at this

strain level. As clearly illustrated in Figure 3-2c, the von Mises stress at the grain

boundary is about 3 times larger than in regions away from the grain boundary. This

indicates that as the wire deforms and the transformation progresses, the increase in

stress at the grain boundary is limited, since the stress concentration factor remains

the same value as prior to transformation. The stress concentration factor does not

increase noticeably during the transformation, which suggests that for this particular

grain misorientation, there is no further contribution to stress concentration arising

from the anisotropic transformation strains at the grain boundary. In addition, we

extracted the evolution of the spatial distribution of martensite variants from the sim-

ulations, and qualitatively compared this information with experimental observations

of martensite morphology captured in the SEM images in [52]. The experimental

results highlight a significant non-uniformity in martensitic transformation in the

oligocrystal structure. Specifically, grain boundaries trigger early onset of transfor-

mation yet restricts the complete transformation at larger strains. The morphology of

martensite is highly localized, multi-variant near grain boundaries and fairly uniform

in the unconstrained area. Figures 3-3(a)-(c) show respectively the spatial distribu-

tion of martensite volume fraction at strain level 𝜖 = 0.5% in selected systems 5, 10

and 14 obtained from the simulations. It can be noticed that in all three systems,

the martensitic transformation initiated at the grain boundary region. However, as

shown in Figures 3-3(d)-(f), at strain level 𝜖 = 6%, the martensitic transformation

near the grain boundary was largely stalled in system 5 and 14, while the region away

from the grain boundary experienced a relatively larger amount of transformation.

71



Meanwhile in the bottom grain, system 10 just started to transform while the top

grain remained in the austenite phase. It can be concluded that the simulation results

are in consistency with the experiments.

As a way to understand the magnitude of the stress concentration caused by the

presence of the grain boundary, we compared with the single crystal response per-

formed on two single crystals with the same orientations as each individual grain

in the bi-crystal. Figure 3-4 shows a comparison of the evolution of the von Mises

stress in both single crystals and the maximum value in the bi-crystal grain bound-

ary. A few observations can be made. The much larger initial slope in the bi-crystal

compared to the single crystals is indicative of significant elastic incompatibility for

this grain boundary configuration. These stresses relax very rapidly away from the

grain boundary in the unconstrained regions in the bi-crystal toward the values of the

stress fields in the individual single crystals. These observations are consistent with

the elastic simulation results in [52]. It is expected that for this type of grain boundary

configuration, fracture would ensue at the grain boundary due to elastic incompati-

bility at low levels of strain, thus preventing further transformation and significantly

inhibiting the ability of the material to achieve large superelastic deformations.

The results corresponding to Case 2 are shown in Figure 3-5. Figure 3-5b shows

that up to an applied strain 𝜖 = 0.5%, there is a negligible amount of transformation

inside the grains, whereas the grain boundary remains in the austenite phase. At this

strain level, the stress concentration at the grain boundary is much lower in this con-

figuration compared to Case 1, see Figure 3-5a. This suggests that in this particular

bi-crystal, grains are oriented such that elastic deformations in the austenite phase are

more compatible. Figure 3-5c and 3-5d show the corresponding results at 𝜖 = 6%. We

can observe that both crystals have almost fully transformed but the grain boundary

still remains in the austenite phase. This suggests that this specific grain misorienta-

tion inhibits phase transformation at the grain boundary, i.e. it corresponds to a case

of transformation strain incompatibility. Figure 3-6 shows the spatial distribution of

martensite volume fraction in some transformation systems at different strain levels.

When 𝜖 = 0.5%, as shown in Figures 3-6a-3-6c systems 5 and 14 are the dominant
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(a) system 5 (b) system 10

(c) system 14 (d) system 5

(e) system 10 (f) system 14

Figure 3-3: Case 1: spatial distribution of martensite volume fraction near grain
boundary plane in selected systems (a)(b)(c) 𝜖 = 0.5%, (c)(d)(e) 𝜖 = 6%
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Figure 3-4: Evolution of maximum von Mises stress at the grain boundary plane in
bi-crystal and single crystals

(a) von Mises stress at 𝜖 = 0.5% (b) Martensite volume fraction at 𝜖 = 0.5%

(c) von Mises stress at 𝜖 = 6% (d) Martensite volume fraction at 𝜖 = 6%

Figure 3-5: Case 2: spatial distribution of von Mises stress and martensite volume
fraction near grain boundary plane during elastic regime (a)(b), during transformation
(c)(d)
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transformation systems with a significant larger amount of martensitic transforma-

tion than system 9, which remains untransformed except for the small area near its

grain boundary where the transformation just initiated (martensitic volume fraction:

0.4%). As the applied strain increases to 𝜖 = 6%, we now can see the martensitic

transformation in the top grain in systems 5 and 14, while system 9 is still resistant

to transformation except for the grain boundary area (martensitic volume fraction:

1.2%), see Figures 3-6d to 3-6f. It is worth emphasizing that these simulation re-

sults once again demonstrate the multi-variant nature of martensitic transformation

in oligocrystal grain boundaries compared to their single crystal counterparts. The

localization of transformation is also accompanied by a concentration of stress at the

grain boundary, as the contours of maximum von Mises stress in Figure 3-5c demon-

strate, and stress concentration in this case is due to transformation incompatibility

instead of elastic incompatibility.

Figure 3-7 shows plots of the evolution of the von Mises stress in the two single

crystals and at the bi-crystal grain boundary for this case. It is very clear that

there is a high level of elastic compatibility in the austenite phase, as the three

initial slopes coincide. As transformation progresses, however, the maximum von

Mises stress in the bi-crystal interface grows significantly compared to both single

crystals, which confirms that the source of stress concentration is the incompatibility

of transformation strains.

Based on these results, it is expected that for this type of grain boundary early

fracture due to elastic incompatibility would be avoided. However, transformation

strain incompatibility would control the level of strain achievable without fracture.

We can also make some important visual observations of deformation incompatibil-

ities near bi-crystal grain boundaries. It is clear from Figure 3-6 that the deformation

of the two adjacent grains in Case 2 is relatively more compatible than in Case 1

(see Figure 3-3), and von Mises stress at the grain boundary in Case 2 is significantly

smaller than that in Case 1 towards the end of transformation.
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(a) system 5 (b) system 9

(c) system 14 (d) system 5

(e) system 9 (f) system 14

Figure 3-6: Case 2: spatial distribution of martensite volume fraction near grain
boundary plane in selected systems (a)(b)(c) 𝜖 = 0.5%, (c)(d)(e) 𝜖 = 6%
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Figure 3-7: Case 2: Evolution of maximum von Mises stress at the grain boundary
plane in bi-crystal and single crystals

3.2.1 Application of Coincident Site Lattice Theory of Bi-

crystal SMAs

With this preliminary understanding of these two types of incompatibilities, we now

discuss and analyze the finite element simulation results corresponding to the remain-

ing 24 cases. We use two metrics to characterize the type of incompatibilities. One

is the rate of growth (stiffness ratio) of maximum von Mises stress at grain boundary

relative to that in the bottom grain, this is chosen as a measure of elastic incompati-

bility. The second metric is the ratio of maximum von Mises stress at grain boundary

and in the bottom grain at strain level of 𝜖 = 3% (normalized von Mises stress), this

is the measure for the incompatibility of transformation strains. We chose to evaluate

the normalized von Mises stress at 3% strain because a Cu-based SMA is normally un-

dergoing forward transformation at said strain level. To investigate the dependence of

bi-crystal behaviors on grain boundary characteristics, we performed the Coincident

Site Lattices (CSL) analysis on all 26 bi-crystal samples following the work detailed

in [174, 175]. CSL are special grain boundaries where the atomic lattices line up such

that a fraction of the atoms of the two lattices will be in the same location. Grain

boundaries that contain a high density of lattice points in a coincident site lattice is

expected to have low energy and low diffusion rates and to be resistant to sliding due

to good atomic fit. The fraction of the atoms that align is expressed as Σ𝑛, where 𝑛
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is the inverse of the fraction of atoms that align or volume ratio). As the number of

atoms that align become smaller, multiple CSLs with the same fraction but different

rotation axes r̂ may occur; and these different configurations are distinguished by

letters after the Σ𝑛 value (e.g. Σ29𝑎) [63].

To demonstrate the effect of CSL on strain incompatibilities arising at the grain

boundary, we identified five finite element simulations with CSL grain boundaries,

as shown in Table 3.2. Figure 3-8 (a), (b), (c) and (d) shows the stress-strain re-

sponses of bi-crystals with Σ1, Σ11, Σ11, and Σ29𝑎, respectively. Note that grain

boundaries with extremely small disorientation angles 𝜃𝑚𝑖𝑛 are referred to as small

angle CSLs, denoted by Σ1. It can be observed that Σ1, Σ11 grain boundaries have

demonstrated very small incompatibility in the elastic range, while large elastic in-

compatibility is shown in the Σ29𝑎 grain boundary configuration. Figure 3-9 (a)-(e)

shows the corresponding results for non-CSL type grain boundaries. Evidently, these

cases all demonstrated elastic incompatibilities at different levels, with Figure 3-9 (b)

and (e) demonstrate the largest elastic incompatibility with stress concentration fac-

tor larger than 3. Creuziger et.at [63] conducted experiments and theoretical analysis

and concluded that grain boundaries with low order coincident site lattices (CSLs)

are less inclined to fail. However, our results showed that the level of transformation

incompatibility has no significant relation with the CSL order, see Figure 3-8 (b). In

summary, our analysis proved that CSL serves as a good indication of elastic incom-

patibility; that is, grain boundary configurations of CSL types exhibit low stiffness

ratio. But large stress concentration may still occur when transformation incompat-

ibility is high. Grain boundaries of high order CSL, however, are not necessarily

compatible elastically.

In addition, Figure 3-10a shows the stiffness ratios in 26 bi-crystal specimens and

their disorientation angles. Each point represents a bi-crystal with a disorientation

angle defined as the minimum rotation angle with the misorientation axis located in

the Standard Stereographic Triangle (SST). It can be observed that among these bi-

crystals with various misorientations, the largest stiffness ratio is about 2.3, suggesting

that in general elastic incompatibility in this type of Cu-based SMAs is quite high.

78



Case 𝜃𝑚𝑖𝑛 r̂ CSL Type
Low order CSL

1 13.4 [-0.0662 0.4197 -0.1854] Σ1-small angle
2 43.87 [1.0638 -0.8886 0.0061] Σ9
3 45.11 [1.0111 -0.1977 -0.9727] Σ11
4 55.12 [1.2893 1.0075 -0.1229] Σ11

Higher order CSL
5 43.6 [0.7169 0.9233 0.9297] Σ29𝑎

Table 3.2: Among the 26 misorientations considered, only 5 are CSL grain boundaries.
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Figure 3-8: Maximum von Mises stress at the CSL type grain boundary plane in
bi-crystal and single crystals
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One can also notice that there is no clear correlation between disorientation angles

and elastic incompatibilities. Moreover, the specimens with lowest stiffness ratio

are those with larger disorentation angles, which is quite counterintuitive. Most bi-

crystal specimens with smaller disorientation angles(smaller than 40∘) are shown to

have quite large stiffness ratios. The largest stiffness ratios occur in specimens with

disorientation angles between 40∘ and 50∘. Figure 3-10b shows the respective results

of maximum von Mises stress concentration factor at the grain boundary plane at

2.5% strain. Among all the bi-crystal specimens we analyzed, the largest von Mises

stress concentration factor is slighter smaller 4 and it occurs in the bi-crystal with

a disorientation angle about 52∘. Similarly, we see no clear correlation between the

disorientation angles and the von Mises stress concentration factor. However, it can be

noticed that specimens with larger disorientation angles (40∘ to 50∘) have the smallest

stresses concentration factor from both the elastic and transformation anisotropy.

3.3 Conclusion

Three-dimensional finite element simulations using the micromechanical model en-

abled the investigation of the evolution of stress concentrations at the grain boundary

due to either elastic or transformation strain incompatibility, as well as the analysis

of the evolution of the martensite volume fraction. We conducted a series of finite

element simulations of oSMA wires with general grain misorientations undergoing

tensile loading. Among them two representative cases were identified: one of high

elastic incompatibility (Case 1), and one of high elastic compatibility but significant

transformation incompatibility (Case 2). The following conclusions were drawn from

the simulations results and analysis.

1. The level of stress concentration at the grain boundary as measured by the

maximum von Mises stress strongly depends on the crystal boundary misorien-

tation.

2. Elastic incompatibility is quite large in this material. For grain configurations in
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which there is significant incompatibility due to elastic anisotropy, large stress

concentrations take place at oSMAs grain boundaries at very low strains levels

with no significant transformation occuring in either crystal.

3. There exist grain configurations with low elastic incompatibilities, and large

stress concentrations during the elastic range can potentially be avoided in

these configurations. However, there still can be incompatibilities depending

on the extent of transformation strain incompatibility, which will lead to stress

concentrations and potential failure at various strain levels during phase trans-

formation.

4. By means of CSL analysis, we also showed that grain boundaries of low or-

der CSL types exhibit very little stress concentration at grain boundaries dur-

ing elastic range, therefore can potential achieve larger transformation strain.

While large stress concentration at low strains due to elastic anisotropy were

observed in higher order CSL grain boundaries and random grain boundaries.

The approach could be used in an exhaustive simulation study spanning the

complete misorientation space. This would allow the identification of misorien-

tations that reduce or minimize elastic and transformation incompatibility and,

thus, extend the superelastic range of oSMAs.
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Figure 3-9: Maximum von Mises stress at the non-CSL type grain boundary plane in
bi-crystal and single crystals
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(a) Stiffness ratio (the ratio of initial slope at
bi-crystal grain boundary and single crystal)

(b) Normalized maximum von Mises stress at
2.5% strain level

Figure 3-10: Plot of quantified elastic and transformation incompatibility at bi-crystal
grain boundary vs. disorientation angles
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Chapter 4

Phase Transformation and

Incompatibility at Grain Boundaries

in Zirconia-based SMCs

In this chapter, a single-crystal model is implemented to provide a full mechanistic

three-dimensional description of the anisotropic elastic as well as martensitic trans-

formation stress-strain response, including non-Schmid behavior caused by the signif-

icant volume change during martensitic transformation. This model was calibrated

to and validated against compression tests of single-crystal zirconia micro-pillars con-

ducted in previous literature, prior to being used to model bi-crystals. We conducted

a series of simulations of bi-crystal SMCs sampled over the misorientation space,

in search of grain boundary configurations that can achieve the full ductility po-

tential of a single crystal. The simulation results provided detailed information on

the nucleation and evolution of martensite variants and stress distribution at grain

boundaries. To guide the discussion, we first identified bi-crystal configurations which

result in very large stress concentrations at very low deformations due to elastic in-

compatibility, as well as others where the elastic incompatibility is relatively low and

stress concentrations only occur at large transformation strains. We also analyzed the

relationship between different types of incompatibilities and grain boundary charac-

teristics, specifically disorientation angles. We also showed how this approach can
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be used to explore the misorientation space for quantifying the level of elastic and

transformation incompatibility at SMCs grain boundaries.

4.1 Model Calibration using Nano-pillar Compres-

sion Tests

The constitutive model described in Chapter 2 is calibrated against the micro-pillar

compression tests in [6, 76], where grain orientations of single crystal micro-pillar sam-

ples were identified using electron backscatter diffraction and correlated with room

temperature mechanical response. 24 transformation systems are identified from cor-

respondence B (neither correspondence A or C produces any habit plane for this

specific set of lattice parameters). These experiments provide the following data:

the critical stress for room temperature transformation, the transformation strain

that results, and an approximate value for the loading (tetragonal) elastic modulus.

Zeng et al. [76] observed a wide variety of mechanical responses amongst differently-

oriented samples, including martensitic transformation without cracking, plastic slip,

and fracture. An important limitation of micro-pillar compression experiments is the

significant difference between the measured and theoretical loading modulus [6]. In

this particular reference, it was observed that for most of the samples with smaller

transformation stresses, micro-compression experiments underestimated the elastic

moduli significantly. The authors attributed the discrepancy to several aspects of

the micro-compression experiments such as substrate and tip compliance, minor mis-

alignments, possible defects in the micro-pillar samples and indentation compliance

at the point of contact of the tip and pillar.

We conducted simulations of zirconia micro-pillars with various orientations un-

dergoing compression. In the simulation, we assumed an idealized compression test

and artificial compliance was not considered. We therefore expect to obtain a much

stiffer elastic response than the experiments. A test of a micro-pillar (Euler angles

𝐸1 = 53∘, 𝐸2 = 122∘, 𝐸3 = 299∘) that underwent full martensitic transformation
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without cracking was taken as the basis for calibrating the model parameters. The

constitutive model accepts as input the rotation matrix for describing the crystallo-

graphic orientation of the crystal. The three Euler angles are converted to the rotation

matrices, and later are used to properly rotate all the relevant tensorial quantities.

Elastic constants for both austenite and martensite phases were obtained from [176].

Figure 4-1a shows the results of the model using the theoretical values of the elastic

constants, where the transformation stress 𝑌 = 6 MPa and backstress 𝑏 = 3 MPa are

calibrated to match the experimental results.

In this particular orientation, the elastic loading modulus in the experiment was

about three times smaller than the theoretical value, as a result of the machine com-

pliance issues described above. Accordingly, in Figure 4-1b we perform a post-facto

linear machine compliance correction of the strain, to force a match with the theoret-

ical modulus of the tetragonal phase at zero strain. Since the loading and unloading

moduli are similar, we used the value obtained from the austenite phase for both

loading and unloading cases for simplicity. Figure 4-1b shows that after adjusting

the moduli to the theoretical value, the model captures the stress-strain response of

the test using the calibrated parameters quite well. Simulations of pillar samples

with different grain orientations were conducted and their stress-strain responses are

shown in Figure 4-2. It can be observed that the model is also proven to capture the

orientation dependence of the material mechanical response quite well.

(a) Original experimental data (b) Experimental data with the elastic modu-
lus is adjusted to theoretical value

Figure 4-1: Simulation results compared with experiments, Euler angles =
[53, 122, 299]

87



To verify the ability of the calibrated model to capture the orientation dependence

of transformation stress in zirconia, we conducted simulations using the various ori-

entations of the samples tested in [76] that underwent martensitic transformation

without fracture. As a way of summarizing the results, we extracted from the simula-

tion results the calculated transformation stresses for each orientation and compared

them with the experimentally measured values in Figure 4-3. It can be observed

that, except for a few outliers, the theoretical predictions are a reasonable match to

the measured values, despite the unquantified uncertainties, including those in the

measurements of grain orientation, possible defects in the micro-pillars, the control

of boundary conditions and shape of the micro-pillars.

4.2 Competition Between Phase Transformation and

Incompatibility at Grain Boundaries in Bi-crystals

To improve our understanding of incompatibilities arising from elastic anisotropy as

well as incompatibility of transformations at grain interfaces, high-resolution three-

dimensional finite element simulations of bi-crystal zirconia specimens subjected to

compressive loading were conducted. We considered a simple scenario in which two

cubic grains were stacked along the 𝑧 axis. The grain boundary plane was oriented

parallel to the 𝑥−𝑦 plane and the loading direction is along 𝑧− axis. Figure 4-4 illus-

trates the geometry of the bi-crystal specimen. Unit cells in each grain demonstrate

different orientations of the top and bottom grain.

We first sampled misorientation space to explore different types of grain boundary

incompatibilities. We selected orientations from the experiments in [76] that exhibited

martensitic transformation under compression, and avoided orientations that slipped

or fractured in the single crystal tests. We started by fixing the orientation of the

bottom grain (E1=3∘, E2=146∘, E3=306∘) and considered two different orientations

for the top grain which resulted in distinct strain incompatibility types. Each grain

is described with its crystallographic orientation by effecting the necessary tensorial
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(a) Euler angles = [3, 146, 306] (b) Euler angles = [194, 46, 235]

(c) Euler angles = [75, 117, 301] (d) Euler angles = [250, 34, 206]

(e) Euler angles = [258, 60, 147] (f) Euler angles = [245, 33, 197]

(g) Euler angles = [187, 57, 234]

Figure 4-2: Simulation results compared with experimental data after the elastic
modulus is adjusted to theoretical value 89



Figure 4-3: Orientation dependence of critical transformation stress: simulation re-
sults compared with experiments

transformations to the global coordinate system in which the loading is applied.

Figure 4-4: An example of the bi-crystal specimen

We ran simulations up to 5% strain which exceeds the transformation strain for the

single-crystal orientations tested here, and monitored the evolution of the von Mises

equivalent stress at the grain boundary as the deformation progresses. The von Mises

stress provides a metric for quantifying the magnitude of the complex deviatoric stress

state at the grain boundary. We also monitored the volume fraction of martensite in

each transformation system and overall to understand the onset and progression of the

transformation at the grain boundary versus the bulk of the grain. To understand
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the influence of grain boundaries on the stress field, we conducted corresponding

simulations on single crystals with the same orientations as each individual grain in

the bi-crystal.

We considered two different cases which, as we shall see, result in two distinct

types of incompatibility. In Case 1, the top grain orientation is given by Euler angles

E1=53∘, E2=122∘, E3=299∘, whereas in Case 2, the Euler angles for the top grain are

E1=84∘, E2=142∘, E3=118∘. The results of the two simulations are shown in Figures

4-5 and 4-7.

Figure 4-5(a), (b) and (c) respectively show snapshots of the von Mises stress

at different cross-sections, and the total martensite volume fraction at the bi-crystal

grain boundary obtained in Case 1 at a small strain level of 0.6%, at which point the

deformation is still ostensibly elastic with martensite volume fraction on the order of

10−2. As can be observed, there is a significant amount of stress concentration at the

grain boundary plane in the bi-crystal, despite there being almost no transformation.

The maximum von Mises stress can be seen near grain boundary (≈ 0.96 GPa). Figure

4-5(c)-(e) show the total volume fraction as well as the volume fraction in selected

transformation systems (3 and 19). Though the overall martensitic volume fraction is

extremely small, it is still worth mentioning that the main contribution of martensitic

transformation came from system 19, which in this case is the most favorably oriented

for transformation, i.e., where the resolved shear stress is the largest. In contrast,

system 3 is an example of a system where transformation has not yet been triggered

and the volume fraction is 3 orders of magnitude smaller than that in system 19.

Figure 4-6(a) shows the comparison of the von Mises stress in the single crystals and

the maximum value in the bi-crystal grain boundary as a function of strain for Case 1.

As may be noted, the von Mises stress at the grain boundary plane grows significantly

larger than that in either single crystal before the occurrence of phase transformation.

These results suggest that the source of strain incompatibility is elastic anisotropy.

Figures 4-7 and 4-8 shows the corresponding results for Case 2. Figures 4-7(a),

(b) and (c) show the von Mises stress at different bi-crystal cross-sections and cor-

responding martensitic volume fraction when 𝜖 = 0.3%. At this strain level, the
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(a) von Mises stress at a bi-crystal cross sec-
tion plane parallel to 𝑥 − 𝑧 plane when 𝜖 =
0.6%

(b) von Mises stress at a bi-crystal cross sec-
tion plane parallel to 𝑥 − 𝑦 plane when 𝜖 =
0.6%

(c) Corresponding total martensite volume
fraction

(d) Corresponding martensite volume fraction
in system 19

(e) Corresponding martensite volume fraction
in system 3

Figure 4-5: Contours of: (a) von Mises; (c)-(e) martensite volume fraction; in the
bi-crystal cross-section with normal 𝑦; (b) von Mises in the bi-crystal cross-section
with normal 𝑧. The figures illustrate that there is a strong stress concentration near
the bi-crystal interface at a low strain level. Figures (b)-(d) show at that level, there
is an incipient but very low transformation. Martensitic transformation is primarily
triggered in system 19, but the overall amount of martensite volume fraction is still
very small.
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(a) Maximum von Mises stress at the grain
boundary plane in bi-crystal and single crys-
tals

(b) Pole figure showing the [001] [010] [110]
poles of the top (red, with the long axis labeled
as ’t’) and bottom grain (blue, with the long
axis labeled as ’b’)

Figure 4-6: Case 1: Grain boundary configuration with high elastic incompatibility

stress concentration at the grain boundary plane is extremely low and there is no

transformation (total volume fraction is on the order of 10−4). This grain bound-

ary configuration therefore has insignificant elastic incompatibility. Figure 4-7(d)-(j)

show the corresponding results at 𝜖 = 2%, as well as martensite volume fraction

in several transformation systems. There is a significant stress concentration at the

grain boundary plane at this strain level, as the maximum von Mises stress at the

grain boundary is about 1.3 GPa, which is about 1.44 times larger than that in the

regions that are farther from grain boundary. As shown in Figure 4-7(e), the corre-

sponding martensitic volume fracture in the bottom grain at this strain level is about

1 except for the region near grain boundary, which indicates that the bottom grain

has fully transformed to martensitic phase except for the region near grain boundary.

The top grain has also seen a significant amount of transformation with the volume

fraction ranging from 0.38 to 0.6, which suggests that stress concentrations are due

to the incompatibility of the anisotropic transformation strain at the grain boundary

instead of elastic anisotropy at this level of deformation. It is also worth mentioning

that martensitic volume fraction in system 19 is 3 − 4 orders of magnitude larger

than that in other systems, which makes it the dominant transformation system as it
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contributes the most to the total volume fraction. As shown in Figure 4-8(a), there

is a very low level of elastic incompatibility in the austenite phase, as the three initial

slopes coincide. As a result, the maximum von Mises stress at the grain boundary

plane remains similar to that in the single crystal. However, as transformation pro-

gresses, the maximum von Mises stress at the bi-crystal interface grows much larger

than inside either single crystal. At strain level 𝜖 = 2%, the stress concentration

factor at the grain boundary is about 1.6. The maximum von Mises stress at the

grain boundary grows from 1 GPa to 1.3 GPa during transformation, while von Mises

stresses in the two single crystal cases plateau at 0.7 GPa and 1 GPa, respectively.

This suggests that the source of stress concentration is the incompatibility of the

transformation strains. Specifically, at the grain interface, the transformation strain

in one grain cannot be accommodated by that in the neighboring grain due to the

anisotropic nature of the martensitic transformation, and the deformation constraints

lead to stress concentration. These figures suggest that a possible way to quantify

the level of elastic incompatibility is to compare the growth of the von Mises stress

at the grain boundary relative to the single crystal response during the elastic range.

Similarly, one way to quantify the transformation incompatibility is to compare the

von Mises stress at the grain boundary relative to the single crystal response at a

certain strain level during transformation.

Note that up to this point, we used von Mises stress as a metric as it is representa-

tive of complex deviatoric stress states. As mentioned in Chapter 1, the martensitic

transformation in zirconia-based SMCs involves a significant volume change, and nor-

mal stresses along with shear stresses can trigger the transformation. Therefore, it is

important to also examine the sensitivity of both types of incompatibilities to volu-

metric stresses. To this end, we compared the hydrostatic stress 𝑝 = 𝜎11+𝜎22+𝜎33

3
in

single crystals and at bi-crystal grain boundaries. Figure 4-9a shows the maximum

hydrostatic pressure at the bi-crystal grain boundary plane compared to the single

crystals for Case 1 where the grain configuration has high elastic incompatibility. Dur-

ing the elastic range, sizable stress concentrations can be observed at the bi-crystal

grain boundary. What’s more interesting is that during the transformation, there
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(a) von Mises stress at a bi-crystal cross sec-
tion parallel to 𝑥− 𝑧 plane at 𝜖 = 0.3%

(b) von Mises stress at a bi-crystal cross sec-
tion parallel to 𝑥− 𝑦 plane at 𝜖 = 0.3%

(c) Corresponding total martensite volume
fraction at 𝜖 = 0.3%

(d) von Mises stress at a bi-crystal cross sec-
tion parallel to 𝑥− 𝑧 plane at 𝜖 = 2%

(e) von Mises stress at a bi-crystal cross sec-
tion parallel to 𝑥− 𝑦 plane at 𝜖 = 2%

(f) Corresponding total martensite volume
fraction at 𝜖 = 2%
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(g) Martensite volume fraction in system 2 at
𝜖 = 2%

(h) Martensite volume fraction in system 12
at 𝜖 = 2%

(i) Martensite volume fraction in system 14 at
𝜖 = 2%

(j) Martensite volume fraction in system 19 at
𝜖 = 2%

Figure 4-7: Contours of: (a) von Mises; (c) martensite volume fraction in the bi-
crystal cross-section with normal 𝑦; (b) von Mises in the bi-crystal cross-section with
normal 𝑧 at 𝜖 = 0.3%; (d) von Mises; (f)-(j) martensite volume fraction in the bi-
crystal cross-section with normal 𝑦; (e) von Mises in the bi-crystal cross-section with
normal 𝑧 at 𝜖 = 2%. Figures (a)-(c) illustrate that there is no significant stress
concentration near the bi-crystal interface at this low strain level. Figures (d)-(j)
show that at a higher strain level, the bottom crystal has almost fully transformed
and there is a strong stress concentration near the bi-crystal grain boundary. System
19 is the most favorably oriented system for transformation.
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(a) Maximum von Mises stress at the grain
boundary plane in bi-crystal and single crys-
tals

(b) Pole figure showing the [001] [010] [110]
poles of the top (red, with the long axis labeled
as ’t’) and bottom grain (blue, with the long
axis labeled as ’b’)

Figure 4-8: Grain boundary configuration with low elastic incompatibility

is a significant pressure increase at the grain boundary, while the von Mises stress

plateaus during transformation, as shown in Figure 4-6c. As a result, the maximum

hydrostatic pressure at the grain boundary is about 1.7 times larger than that in the

bottom grain at 2% strain. Figure 4-9b shows the respective result for Case 2 where

the elastic incompatibility is low, yet the transformation incompatibility is high. We

can also observe a buildup of pressure during transformation, which can be attributed

to the significant volume expansion.

Having established the two basic types of sources of incompatibilities, we subse-

quently conducted a series of simulations with 43 different orientations of the top

grain with the orientation of the bottom grain fixed. The grain misorientations pre-

sented in a pole figure can be found in Figure 4-10. We used the ratio of the initial

rate of growth of the von Mises stress at the bi-crystal grain boundary relative to the

single crystal response of the bottom grain as a measure of the grain boundary stiff-

ness induced by elastic incompatibility. Similarly, we used the ratio of the von Mises

stress at the bi-crystal grain boundary at 2.2% strain (stress concentration factor),

relative to the single crystal response of the bottom grain to measure transformation

incompatibility. The original data generated from the finite element simulations can
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(a) Case 1: elastic incompatibility
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(b) Case 2: transformation incompatibility

Figure 4-9: Maximum hydrostatic stresses at the grain boundary plane in bi-crystal
and single crystals

be found in Figure A-1a and A-1b in Appendix A, respectively.

Figure 4-11a shows the grain boundary stiffness ratios in 43 bi-crystal specimens

and their disorientation angles. Each point represents a bi-crystal with a disorienta-

tion angle defined as the minimum rotation angle with the misorientation axis located

in the Standard Stereographic Triangle (SST). It can be observed that among these

bi-crystals with various misorientations, the largest stiffness ratio is slightly below

1.2, suggesting that in general elastic incompatibility in this zirconia-based SMC is

rather low. One can also notice that there is a correlation between disorientation

angles and elastic incompatibilities particularly for specimen with high disorientation

angles. Most bi-crystal specimens with smaller disorientation angles are shown to

have small stiffness ratios. By contrast, when the disorientation angle is larger, elas-

tic incompatibility is higher which results in larger stress concentrations in the elastic

range. It is worth noting that the two bi-crystals with smallest disorientation angles

appear to be outliers with much larger incompatibilities from elasticity than those

with disorientation angles between 30∘ to 50∘.

Figure 4-11(b) shows the respective results of maximum von Mises stress concen-

tration factor at the grain boundary plane at 2.2% strain. Among the 43 bi-crystals,

the largest von Mises stress concentration factor is 3.1 and it occurs in the bi-crystal

with a disorientation angle about 70∘. As demonstrated in Figure 4-11(b), bi-crystals
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Figure 4-10: A pole figure showing the [100], [010], [001] crystal directions of the
bottom (blue) and top grain (red) of 43 bi-crystals studied in the simulations with
the long axis [001] pole labeled

with larger von Mises stress and therefore higher transformation incompatibility often

correspond to larger disorientation angles, with some outliers in the results especially

for samples with small orientation angles.

We repeated the analysis for bi-crystals with a different bottom grain orienta-

tion (Euler angles = [194,46,235]) and 17 different orientations for top grain. The

corresponding results are shown in Figure 4-12. Similar conclusions can be drawn;

bi-crystals with larger disorientation angles tend to exhibit a higher level of elastic
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(a) Grain boundary stiffness ratio

(b) Normalized maximum von Mises stress at
2.2% strain level

Figure 4-11: Quantitative indicators of elastic and transformation incompatibility at
bi-crystal grain boundary vs. disorientation angles (bottom grain Euler angle [3, 146,
306])

and transformation incompatibilities. Although there exist a few outliers, bi-crystals

with disorientation angles between 10 − 40∘ have relatively lower stiffness ratios and

normalized von Mises stresses. The original data generated from the finite element

simulations can be found in Figure A-2a and A-2b in Appendix A, respectively.

A few observations can be made from Figures 4-11 and 4-12. Elastic incompatibil-

ities in zirconia are lower in magnitude compared incompatibilities resulting from the

martensitic transformation. These results also suggest that the correlation between
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(a) Grain boundary stiffness ratio

(b) Normalized maximum von Mises stress at
2.2% strain level

Figure 4-12: Quantitative indicators of elastic and transformation incompatibility
at bi-crystal grain boundary vs. disorientation angles (bottom grain Euler angle
[194,46,235])

disorientation angles and stress concentration factors is more evident in samples with

large orientation angles, yet the correlation is not very clear for samples with smaller

disorientation angles.
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4.3 Conclusion

In this chapter, we conducted a simulation study attempting to characterize the

sources and magnitude of strain incompatibility at bi-crystal interfaces in SMCs. To

this end, we implemented a micromechanics-based model for SMCs incorporating both

elastic and transformation anisotropy at the grain level. We incorporated the non-

Schmid effect into the model to account for the volume changes during martensitic

transformation which is a unique feature for zirconia-based SMCs. The model was

calibrated against micro-compression tests conducted in [6, 76] and shown to capture

the orientation-dependence of transformation fairly accurately. Three-dimensional

finite element simulations using the micromechanical model enabled the investigation

of the evolution of stress concentrations at the grain boundary due to either elastic

or transformation strain incompatibility, as well as the analysis of the evolution of

the martensite volume fraction, which has not been addressed in SMCs before. The

following conclusions can be drawn from the finite element simulation results and

analysis,

• Strong dependency of the level of stress concentration at the grain boundary on

the crystal boundary misorientations can be observed in SMCs.

• Upon identifying two particular cases with distinct stress-strain responses, we

observed that elastic anisotropy leads to severe deformation incompatibility

and high von Mises stress concentration at the grain boundary at relatively

low strains. When the two grains were elastically compatible, however, high

stress concentrations at the grain boundary and transformation strain incom-

patibilities were still possible due to the anisotropic nature of the martensitic

transformation.

• We extracted information about the stress-strain response and the level of strain

incompatibilities at grain boundaries from the finite element simulation results

and analyzed the relationship between different types of incompatibilities and

disorientation angles, a specific metric for characterizing grain boundaries. The
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results demonstrated that there was a clear correlation between both elastic and

transformation incompatibilities and disorientation angles.

• The approach adopted in this work could be used to identify misorientations

that reduce or minimize elastic and transformation incompatibility, thus po-

tentially realizing the superelastic properties and achieving the ductility limits

approaching those of single crystals SMCs.
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Chapter 5

Conclusions and Future Work

Directions

5.1 Conclusions

The objective of this thesis was to improve our understanding of the competition

between martensitic transformation, grain boundary constraints, and intergranular

fracture in shape memory materials through comprehensive computational modeling.

To this end, we accomplished the following goals:

• We implemented a comprehensive computational framework for simulating the

deformation of oligocrystalline SMAs and zirconia-based SMCs subjected to

general loadings. An anisotropic rate-dependent constitutive model was built

upon the framework of previously developed micromechanics-based models and

was implemented in the in-house computational framework ΣMIT. A robust

explicit algorithm was developed to update the constitutive law. We extended

the modeling framework to account for the non-Schmid effect observed during

phase transformation in SMCs.

• In the case of Cu-based SMAs, previous studies showed that the presence of

occasional grain boundaries and triple junctions in the oligocrystal structure

can originate incompatibility of deformation due to either elastic or transfor-
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mation anisotropy, which induced stress concentrations and leads to premature

intergranular fracture. To this end, we utilized the model to analyze elastic and

transformation anisotropy at a grain level to gain insights into the sources of

deformation incompatibility at bi-crystal grain boundaries which are potentially

responsible for premature intergranular fracture in oSMAs.

• From the finite element simulation results of bi-crystal Cu-based SMAs, we ob-

served that the level of stress concentration at the grain boundary as measured

by the maximum von Mises stress strongly depended on the crystal boundary

misorientation. The large elastic anisotropy Cu-based SMAs often lead to se-

vere deformation incompatibility and high von Mises stress concentration at

the grain boundary at relatively low strains. When the crystals were elasti-

cally compatible, however, high stress concentrations at the grain boundary,

and therefore transformation strain incompatibilities were still possible due to

the anisotropic nature of the martensitic transformation.

• We also explored the correlation between grain boundary characteristics (CSL

and disorientation angles) and different types of incompatibilities arising at

grain boundaries in bi-crystal Cu-based SMAs. We demonstrated that grain

boundaries with low CSL order exhibited low elastic incompatibilities in Cu-

based SMAs, as previously suggested from experimental observations. However,

high CSL order grain boundaries can result in incompatibilities that were com-

mensurate with those exhibited by random grain boundary configurations.

• In the case of SMCs, the model was calibrated against micro-compression tests

conducted in [6, 76] and shown to capture the orientation-dependence of trans-

formation fairly accurately. Three-dimensional finite element simulations using

the micromechanical model enabled the investigation of the evolution of stress

concentrations at the grain boundary due to either elastic or transformation

strain incompatibility, as well as the analysis of the evolution of the martensite

volume fraction.
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• From the finite element simulation results of SMCs, we identified grain bound-

ary configurations which result in very large stress concentrations at very low

deformations due to elastic incompatibility, as well as others where the elastic

incompatibility is relatively low and stress concentrations only occur at large

transformation strains. We also analyzed the relationship between different

types of incompatibilities and grain boundary characteristics, and the results

indicated a correlation between both types of strain incompatibilities and the

disorientation angle, in particular for samples with larger disorientation angles.

• Our study shed light on the competing mechanisms of elastic and transformation

incompatibilities leading to severe stress concentration at the grain boundaries.

This approach could be used to identify misorientations that reduce or minimize

elastic and transformation incompatibility, thus extending the superelastic range

of shape memory materials to potentially achieve the ductility limits of single

crystals.

5.2 Future work

5.2.1 Size effects in zirconia-based SMCs

An important observation in [75, 6] is that martensitic transformation in zirconia

strongly depends on structural length scales of the micro-pillar sample, and that

there is potential coupling effect of both size and orientation dependency. Therefore

it is of great interest to incorporate the size-dependency into the constitutive model

to account for the size effects in zirconia observed in [6, 75].

Both the intrinsic (related to grain size) and extrinsic size effects (related to

sample size, e.g. diameter or thickness) have been widely recognized in various

SMAs [68, 67, 66, 70, 177, 178, 53, 179, 180]. A considerable amount of previous efforts

has been dedicated to incorporating the size-dependency in modeling the martensitic

transformation and shape memory properties in SMAs [181, 182, 183, 114, 184, 116,

185, 186, 187, 151, 188, 146]. The modeling approach in [183, 114] combines a supere-
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lasticity formulation based on the martensitic volume fraction with gradient plasticity

theory [189, 190, 191] to account for size effects that arise at the nano-scale due to

grain interactions and free surfaces. Size effects are incorporated through two internal

length scales, an energetic length scale and a dissipative length scale, which corre-

spond to the gradient terms in the free energy and the dissipation, respectively. How-

ever, the combination of gradient plasticity theory with a multi-system anisotropic

constitutive framework is much more challenging and involved and such models have

not yet been developed for phase transformation in shape memory materials to our

knowledge. The major challenge is to address the coupling of size dependency and

orientation effect, which has not been systematically studied experimentally or nu-

merically. The orientation dependent size effect observed in [6] was based on data

from only a few samples with different orientations. A more comprehensive study

including more fabricated pillars with a wide range of orientations and grain sizes

would be extremely valuable to advance further understanding of the coupling of size

effects and orientation dependency in zirconia-based SMCs.

5.2.2 Modeling the oligocrystal particle interactions response

via an anisotropic contact model

Previous discussions have clearly shown that when made into small volumes, zirconia-

based SMCs may exhibit several intriguing mechanical properties, and can potentially

survive many superelastic loading cycles without cracking or fracturing. Though these

newly-developed SMCs in small-volumes exhibit better energy absorption properties,

which brittle ceramics lacked, these micro-scale zirconia pillars are not ideally suited

for large-volume applications. Recent work [192, 95, 96] has been focusing on de-

veloping granular oligocrystalline packings of SMCs as an aggregate particle system

to maximum the energy dissipation. From the modeling perspective, this requires

the capacity to model oligocrystal particle interactions using a Hertz-like model for

anisotropic superelastic materials. Ideally, the finite element simulation results will

serve as a basis to transfer bulk mechanical behaviors into contact relations between
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particle pairs of different sizes and shapes and one can extract representative and

realistic particle contact laws based on the mechanical behavior of the particles. This

will provide the groundwork for upscaled modeling (e.g. Discrete Element Method)

to study interaction among a large number of particles. Previous efforts have been

made to implement a contact law between two elastically anisotropic bodies using the

Discrete Element Method [193]. However, the challenge of developing a Hertz contact

model for anisotropic particles undergoing martensitic transformation has not been

addressed to our knowledge.

5.2.3 Modeling More Complex Mechanisms during Transfor-

mation

• The strain incompatibility in shape memory materials can also derive from

the interaction between the different martensite variants. Due to the lack of

adequate previous work on the interaction matrix for zirconia-based SMCs that

would allow us to calibrate the additional model parameters involved in variants

interactions, the interactions among transformation systems were ignored in our

model. Previous work has offered a straightforward method in including the

variant interactions effects in constitutive models for SMAs [132], and extending

this work to zirconia-based SMCs would be an important addition.

• One could consider incorporating possible plastic deformation into the model.

The incorporation of both plastic deformation and martensite transformation

is a common practice in modeling of SMAs. However due to the lack of exper-

imental results in zirconia-based SMCs, we didn’t consider plastic deformation

to be part of the model in this work. This should be revisited in subsequent

work given more available experimental data.

• In this work, we adopted the common practice of treating grain boundaries in

FEM with conforming meshes. Considering the lack of any data specific to

grain boundary response that would allow a quantitative evaluation of their
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effect in the case of zirconia-based SMCs, we believe the grain boundary con-

formity assumption can still result in valuable information about deformation

incompatibility due to grain boundary misorientation. As more experimental

data becomes available, it would be desirable to describe mechanisms of defor-

mation and failure at grain boundaries explicitly as done in models of crystal

plasticity of metals [194, 195].

• Defects such as point defects or dislocations, can significantly affect the behav-

ior of ceramics. Defects also play a much larger role in micro-pillar experiments

due to the ratio of specimen size to defect size. Our current model does not

include the role of defects, as detailed information about the defects and their

distribution were challenging to ascertain and are not available as of now. This

is likely one of the sources of error in the calibration and analysis [6]. Incor-

porating a detailed description about the defects and their distribution in the

model when more experimental evidence becomes available would be extremely

valuable future work.

• Some recent work has studied the role of grain boundary in SMCs subject to

thermal cyclic loading[95, 96]. The simulations in this thesis were conducted in

isothermal conditions, and it would be very interesting to simulate the material’s

response in thermal loading and thermo-mechanically coupled situations.
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Appendix A

Elastic and transformation

incompatibility at SMC grain

boundaries

Figures A-1a and A-1a respectively show the stiffness ratio and the normalized von

Mises stress of the 43 cases presented in Chapter 4 where the Euler angles of the

bottom grain are fixed at [3, 146, 306]. Figures A-2a and A-2b respectively show

the stiffness ratio and the normalized von Mises stress of the 17 cases with a different

orientation of the bottom grain (Euler angles [194,46,235]).
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(a) Stiffness ratio/elastic incompatibility

(b) Normalized von Mises stress/transformation incompatibility

Figure A-1: Quantified elastic and transformation incompatibility of all samples on
a [001] inverse pole figure. Bottom grain Euler angles = [3, 146, 306]
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(a) Stiffness ratio/elastic incompatibility

(b) Normalized von Mises stress/transformation incompatibility

Figure A-2: Quantified elastic and transformation incompatibility of all samples on
a [001] inverse pole figure. Bottom grain Euler angles = [194,46,235]
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Appendix B

Geometrically Nonlinear Theory of

Martensite

B.1 Identifying martensite variants

In the section, the application of the geometrically nonlinear theory to different shape

memory materials is summarized, following the work in [13, 196, 122]. To calculate all

possible transformation systems in a specific single-crystal, only the lattice parameters

of the two phases and the lattice distortions, referred to here as the transformation

stretch matrices, are needed as inputs to the calculations; no assumption of a lattice

invariant shear is required. The theory is built upon the assumption that the mi-

crostructure of martensite results from energy minimization and strain compatibility.

An energy functional dependent on atomic positions and temperature is postulated,

where this functional has multiple energy wells for the different phases. This per-

mits a change of stability between the phases upon either a change in temperature or

stress. The theory assumes that there is a single critical temperature 𝜃𝑚𝑠 at which

the martensitic transformation occurs. At the critical temperature, the austenite and

martensite phases are both stable, while the martensite phase is stable when the

temperature is below 𝜃𝑚𝑠, and the austenite phase is stable above 𝜃𝑚𝑠. The starting

point of the calculation is to identify the tensor that maps a Bravais lattice of the

austenite phase to a that of the martensite phase. This deformation depends upon
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the change in symmetry during the transformation and the lattice parameters of the

two phases. As discussion in Chapter 1, the deformation is not unique, and one is

found for each of the symmetry related configurations of the martensite lattice to the

variants of martensite. With the knowledge of the transformation tensor, a macro-

scopic continuum model can be obtained from the microscopic atomic model through

the Cauchy-Born rule [197]. The energy functional depends on the macroscopic de-

formation gradient and temperature. A microstructure is essentially a homogeneous

deformation with gradient solely on the energy wells, and the geometrical construc-

tion of a microstructure can be reduced to studying certain microscopic compatibility

equations at the phase boundaries between the austenite and martensite phases as

well as different martensite variants.

The procedure is summarized in the following sections. Take NiTi SMAs for

example where the martensitic transformation is from a B2 cubic parent phase to

a distorted B19’ monoclinic product phase. This mechanism is divided into three

steps: (1) uniform expansion or contraction along the direction 𝑒1 (2) shuffling of the

atoms in the middle plane with normal 𝑒2 in the direction 𝑒3; the shuffling ensures

a close-packed martensitic structure. (3) shear in the plane with normal 𝑒3. The

deformation gradient reads,

F =

⎛⎜⎜⎜⎝
1 𝑐𝑜𝑠𝜃 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝛼 0 0

0 𝛾𝑠𝑖𝑛𝜃 0

0 0 𝛽

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝛼 𝛾𝑐𝑜𝑠𝜃 0

0 𝛾𝑠𝑖𝑛𝜃 0

0 0 𝛽

⎞⎟⎟⎟⎠ (B.1)

where 𝛼 = 𝑎/𝑎0, 𝛽 = 𝑏/
√︀

(2𝑎0),𝛾 = 𝑐/
√︀

(2𝑎0) are the transformation stretches and 𝜃

is the angle between the edges with lengths 𝑎 and 𝑐.

We then calculate the transformation stretch matrix U =
√︀

(FTF). Once the

components of a transformation stretch matrix U (denoted as U1) are obtained, all

other transformation stretch matrices can be found as the unique matrices in the

set
{︀
RU1R

𝑇 , 𝑅 ∈ 𝒫𝑎

}︀
, where 𝒫𝑎 is the point group of the austenite. The num-

ber of unique matrices in this set is 12, and these transformation stretch matrices
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U2, · · · ,U12 are referred to as the variants of U1. The components of all the mono-

clinic martensite variants in the cubic basis are

U1 =

⎛⎜⎜⎜⎝
𝜃 𝜌 𝜌

𝜌 𝜎 𝜏

𝜌 𝜏 𝜎

⎞⎟⎟⎟⎠U2 =

⎛⎜⎜⎜⎝
𝜃 −𝜌 −𝜌

−𝜌 𝜎 𝜏

−𝜌 𝜏 𝜎

⎞⎟⎟⎟⎠U3 =

⎛⎜⎜⎜⎝
𝜃 −𝜌 𝜌

−𝜌 𝜎 −𝜏

𝜌 −𝜏 𝜎

⎞⎟⎟⎟⎠U4 =

⎛⎜⎜⎜⎝
𝜃 𝜌 −𝜌

𝜌 𝜎 −𝜏

−𝜌 −𝜏 𝜎

⎞⎟⎟⎟⎠

U5 =

⎛⎜⎜⎜⎝
𝜎 𝜌 𝜏

𝜌 𝜃 𝜌

𝜏 𝜌 𝜎

⎞⎟⎟⎟⎠U6 =

⎛⎜⎜⎜⎝
𝜎 −𝜌 𝜏

−𝜌 𝜃 −𝜌

𝜏 −𝜌 𝜎

⎞⎟⎟⎟⎠U7 =

⎛⎜⎜⎜⎝
𝜎 −𝜌 −𝜏

−𝜌 𝜃 𝜌

−𝜏 𝜌 𝜎

⎞⎟⎟⎟⎠U8 =

⎛⎜⎜⎜⎝
𝜎 𝜌 −𝜏

𝜌 𝜃 −𝜌

−𝜏 −𝜌 𝜎

⎞⎟⎟⎟⎠

U9 =

⎛⎜⎜⎜⎝
𝜎 𝜏 𝜌

𝜏 𝜎 𝜌

𝜌 𝜌 𝜃

⎞⎟⎟⎟⎠U10 =

⎛⎜⎜⎜⎝
𝜎 𝜏 −𝜌

𝜏 𝜎 −𝜌

−𝜌 −𝜌 𝜃

⎞⎟⎟⎟⎠U11 =

⎛⎜⎜⎜⎝
𝜎 −𝜏 𝜌

−𝜏 𝜎 −𝜌

𝜌 −𝜌 𝜃

⎞⎟⎟⎟⎠U12 =

⎛⎜⎜⎜⎝
𝜎 −𝜏 −𝜌

−𝜏 𝜎 𝜌

−𝜌 𝜌 𝜃

⎞⎟⎟⎟⎠
where the specific components are

𝜃 =
𝛼(𝛼 + 𝛾𝑠𝑖𝑛𝜃)√︀

𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃

𝜌 =
𝛼𝛾𝑐𝑜𝑠𝜃

√
2
√︀
𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃

𝜎 =
1

2

𝛾(𝛾 + 𝛼𝑠𝑖𝑛𝜃)√︀
𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃

+ 𝛽

𝜏 =
1

2

𝛾(𝛾 + 𝛼𝑠𝑖𝑛𝜃)√︀
𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃

− 𝛽

The eigenvalues 𝜆(1), 𝜆(2), 𝜆(3) of these symmetric matrices are 𝜆(1) = 𝛽,

𝜆(2) =

√︀
𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃 −

√︀
𝛼2 + 𝛾2 − 2𝛼𝛾𝑠𝑖𝑛𝜃

2
,

𝜆(3) =

√︀
𝛼2 + 𝛾2 + 2𝛼𝛾𝑠𝑖𝑛𝜃 −

√︀
𝛼2 + 𝛾2 − 2𝛼𝛾𝑠𝑖𝑛𝜃

2
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B.2 Energy minimization

B.2.1 Energy wells

Since a rigid rotation does not change the state of the crystal or induce the martensitic

transformation, the austenite phase corresponds not only to the identity matrix but

to all rotation matrices Q. The austenite and the variants of martensite can be

described as follows:

𝒜 = {F : F = Q for some rotation Q}

ℳ1 = {F : F = QU1 for some rotation Q}

. . .

ℳ𝑁 = {F : F = QU𝑁 for some rotation Q}

where 𝑁 is the number of variants, which can be obtained based on the knowledge

of point groups of the martensite (𝒫𝑚) and austenite (𝒫𝑎):

𝑁 =
the number of rotations in 𝒫𝑎

the number of rotations in 𝒫𝑚

It is worth emphasizing that all the variants have the same energy according to

material symmetry, and the energy density is minimized on the austenite well 𝒜 at

high temperatures and on the martensite wells ℳ at low temperatures and on both

the austenite and martensite wells at the transformation temperature 𝜃𝑚𝑠.

𝜓(G, 𝜃) ≤ 𝜓(F, 𝜃), for all G ∈ 𝒜 and for all F 𝜃 > 𝜃𝑚𝑠

𝜓(G, 𝜃) ≤ 𝜓(F, 𝜃), for all G ∈ 𝒜 ∪ℳ and for all F 𝜃 = 𝜃𝑚𝑠

𝜓(G, 𝜃) ≤ 𝜓(F, 𝜃), for all G ∈ ℳ and for all F 𝜃 < 𝜃𝑚𝑠

(B.2)

Therefore the task of identifying the energy minimizing configurations for martensitic

transformation is reduced to looking for deformations y with the deformation gradient

∇y in the relevant energy wells. The essential steps to identify these configurations
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are summarized in the following sections.

B.2.2 Twinning in martensite

The deformation y corresponding to two variants I and J of the martensite can be

denoted as,

∇y =

⎧⎨⎩Q1U𝐼 in Ω1

Q2U𝐽 in Ω2

(B.3)

for some rotations Q1, Q2. For the deformation to be continuous, the kinematic

compatibility condition must be satisfied,

Q1U𝐼 −Q2U𝐽 = b⊗ n̂ (B.4)

for some vectors b and n̂. Premultiply by Q𝑇
2 and we have the twinning equation,

QU𝐼 −U𝐽 = a⊗ n̂ (B.5)

Given U𝐼 and U𝐽 , one can find Q, a, n̂ by solving the twinning equation following

the steps,

1. Calculate C = G−𝑇F−𝑇FG−1.

2. If C = I, there is no solution.

3. If C ̸= I, calculate the eigenvalues of C and number them so that 𝜆1 ≤ 𝜆2 ≤ 𝜆3.

4. The twinning equation has a solution if and only if the eigenvalues satisfy 𝜆1 ≤

1, 𝜆2 = 1, 𝜆3 ≥ 1.

5. If the inequality in step 4 holds, then there are two solutions given by:
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a = 𝜌

⎛⎝√︃
𝜆3(1 − 𝜆1)

𝜆3 − 𝜆1
ê1 + 𝒦

√︃
𝜆1(𝜆3 − 1)

𝜆3 − 𝜆1
ê3

⎞⎠ ,

n̂ =

√
𝜆3 −

√
𝜆1

𝜌
√
𝜆3 − 𝜆1

(︁
−
√︀

1 − 𝜆1G
Tê1 + 𝒦

√︀
𝜆3 − 1GTê3

)︁
,

(B.6)

where 𝒦 = ±1, 𝜌 ̸= 0 is chosen to make |n̂| = 1, and ê𝑖 are the eigenvectors of C

corresponding to the eigenvalues 𝜆𝑖. Choosing 𝒦 = ±1 gives us two solutions and

we can subsequently obtain Q by substituting a, n̂ back into the twinning equation.

The matrix C describes the deformation of one side relative to the other and its

eigenvalues describe the stretches of one side relative to the other. If the two sides

are coherent, we need to find a plane which is relatively unstretched. This is possible

if and only if (a), one of the three stretches is equal to one and (2) the other two

stretches straddle one.

To obtain all admissible twinning configurations Q, a, n̂, this procedure should be

applied to all possible pairs of martensite variants.

B.2.3 Solving the habit plane equation

After obtaining the twinning solutions, we can then identify the interface between

the austenite and twinned martensite. A schematic description of phase twinning

as parallel bands alternately containing different variants of martensite can be found

in Figure B-1. To ensure the deformation is continuous and its gradient exists, the

following compatibility equation has to be satisfied,

(𝜆A + (1 − 𝜆)B) −C = b⊗ m̂ (B.7)

This indicates that the "averaged" deformation (𝜆A+(1−𝜆)B) can form an interface

with 𝐶.

The sequence of deformations is an energy minimizing one if and only if A,B,C

belong to the energy wells. For example, C = I,B = Q2U𝐼 ,A = Q1U𝐽 is one such
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Figure B-1: Austenite-twinned martensite microstructure: R𝑖𝑗U𝑖 and U𝑗 represent
variant pairs that satisfy the kinematics compatibility equation, produced in [13]

.

energy minimizing set, and the resulting habit plane equation is,

QU𝐽 −U𝐼 = a′ ⊗ n̂ (B.8)

Q′(𝜆QU𝐽 + (1 − 𝜆)U𝐼) = I + b⊗ m̂ (B.9)

where Q = Q𝑇
2Q1 and Q′ = Q2. It can be concluded that a compatible interface

between the austenite and fine twins of the I th and J th variants of martensite can

be formed if and only if Equation B.9 is solvable. By solving the twinning equation,

we can determine Q, a, n̂, and the habit plane can be solved following the procedure

in [13, 122],
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1. Calculate

𝛿 = a ·UI(U
2
I − I)−1n̂

𝜂 = tr(U2
𝐼) − det(U2

𝐼) − 2 +
|𝑎|2

2𝛿

The austenite-martensite interface equation has a solution if and only if 𝛿 ≤ −2

and 𝜂 ≥ 0

2. Calculate

𝜆 =
1

2
(1 −

√︂
1 +

2

𝛿
)

3. Calculate

C = (U𝐼 + 𝜆n̂⊗ a)(UI + 𝜆a⊗ n̂)

Find the eigenvalues and eigenvectors (automatically 𝜆2 = 1). The following is

the solution to the habit plane equation:

b = 𝜌

⎛⎝√︃
𝜆3(1 − 𝜆1)

𝜆3 − 𝜆1
ê1 + 𝒦

√︃
𝜆1(𝜆3 − 1)

𝜆3 − 𝜆1
ê3

⎞⎠
m̂ =

√
𝜆3 −

√
𝜆1)

𝜌
√
𝜆3 − 𝜆1

(︁
−
√︀

1 − 𝜆1ê1 + 𝒦
√︀
𝜆3 − 1

)︁
where 𝜌 is chose n to make |m̂| = 1 and 𝒦 = ±1. Then go back to the habit

plane equation to obtain Q′

4. If 𝛿 < −2, replace 𝜆 with (1-𝜆) and repeat step 3.

In order to obtain all the possible habit plane solutions, the above procedure

should be repeated for each set of twinning variants U𝐼 , a, n̂.
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