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Abstract 
 
Neurological conditions affect the brain and other parts of the nervous system. This 
includes neurodegenerative diseases like Huntington’s Disease, psychiatric conditions 
like schizophrenia, and brain cancers like glioblastoma. These conditions are 
particularly challenging to study because they affect such a vital and complex organ 
system, making it difficult to understand disease etiology and to develop high-quality 
model systems.  
 
Because of these challenges, experiments studying neurological diseases typically 
either contain very few patient samples or are collected from imperfect model systems. 
Machine learning approaches have proven helpful for processing these types of 
datasets and identifying relevant biological signal. In this thesis, I detail five examples of 
the utility of machine learning methods for analyzing neurological disease data. Some 
chapters focus primarily on the development of novel machine learning methods, while 
others discuss the implementation of established algorithms leading to significant 
advancements in our understanding of the given disease. 
 
Chapter 2 details a novel gene set scoring algorithm that significantly improves upon 
existing methods. This new approach is particularly useful for analyzing single-cell 
transcriptomics assays, which are becoming increasingly common in neurological 
disease studies. In Chapter 3, I describe how multi-omic integration of ATAC-Seq, 
ChIP-Seq, and RNA-seq data revealed a novel population of cycling cells relevant to 
Huntington’s Disease models. In Chapter 4, I discuss an improved multi-commodity flow 
algorithm for omics data integration and highlight its utility for understanding drug effects 
in glioblastoma. Chapter 5 highlights how clustering and the Prize-Collecting Steiner 
Forest algorithm led to a better understanding of proteomic subtypes in 
medulloblastoma tumors. Lastly, Chapter 6 expands upon the work in Chapter 5, and 
details how I used computational approaches to figure out that some medulloblastoma 
tumors contain cells recapitulating cerebellar granule neuron development. 
 
In summary, this thesis showcases the value machine learning techniques for analyzing 
the small, complicated datasets typically found in neurological disease experiments. 
Throughout this work, I emphasize the importance of collecting and integrating multiple 
types of biological data to get a more complete understanding of these conditions. 
 
Thesis supervisor: Ernest Fraenkel 
Title: Professor of Biological Engineering 



3 
 

Acknowledgements 
When I started college, I never imaged I’d pursue a PhD. In fact, I only worked with Dr. Jacques 
Fresco at Princeton because I was required to do an undergraduate thesis, but this experience 
changed my life. Jacques single-handedly taught me to love research with his dedication, 
passion, and curiosity and I cannot thank him enough for mentorship. When I graduated, I was 
hired to a research position at a biotech startup, but within weeks, I was asked to switch roles 
and learn how to code. I want to thank Alex Bisignano for the opportunity to work at Recombine 
and Nick De Vaux, Roman Shraga, and Charlotte Rivera for their patience and mentorship.  
 
As I was learning about coding, I realized all I wanted to with my new computational skills was 
become a better biologist. So, I decided to pursue a PhD in computational biology and was 
fortunate that the Computational and Systems Biology (CSB) program took a chance on 
someone who had never taken a formal computer science class. Thank you to Chris Burge, 
Jacquie Carota, and the whole CSB community for their support over the last six years. 
 
When I told Jacques I was pursuing a PhD, his one piece of advice was that my advisor was 
more important than my research topic, and I certainly took that to heart when joining the 
Fraenkel Lab. I am consistently in awe of Ernest’s efficiency, rigorous standards, and clear 
communication. I want to thank him for being an incredible advisor/mentor and giving me the 
freedom to explore many many directions during my PhD. I also want to thank Doug 
Lauffenberger and Matt Vander Heiden for helping to significantly improve the quality of this 
work with their engagement and thoughtful comments during my thesis committee meetings. I 
have also had the fortune of collaborating with many other labs during my PhD and I really 
appreciate everyone who helped generate the data and ideas presented in this work. 
Specifically, I want to thank Scott Pomeroy, Jill Mesirov, and Rob Wechsler-Reya for being 
incredible role models for how to do collaborative science in a productive and fun manner. 
 
I also want to thank the whole Fraenkel Lab for everything over the last six years. Specifically, I 
need to shout out Divya for being an incredible deskmate and friend and Tobi for his guidance 
on the medulloblastoma project. Additionally, I want to thank Mandy, Natasha, and Johnny for 
their consistent mentorship and Andrew for his invaluable help in finishing the wet lab 
experiments that let me graduate. To everyone I was unable to mention by name, I appreciate 
you making the Fraenkel Lab such an enjoyable place to work during my time. I also want to 
thank MIT for the many opportunities it offers outside of the classroom. Teaching through the 
educational studies program and playing club volleyball were integral parts of my PhD 
experience. Additionally, teaching “A Brief History of Kanye” was one of the highlights of 
graduate school and I am incredibly appreciative of the IAP program for allowing me to do so. 
 
Furthermore, I need to thank the important people in my life outside of school. I am so 
appreciative of my incredible friends from high school, camp, college, and graduate school who 
remind me of the importance of life outside of work. I also need to thank my fiancé Kristin, who 
has a remarkable ability to make any experience better, and who somehow convinced me four 
months before my thesis was due would be a good time get a puppy. And finally, thank you to 
my family. There is no way I would be here without your constant support. My siblings Jason 
and Nicki are both smart, thoughtful, caring people who I look up to, even though they’re 
younger. My parents David and Ruth are remarkable role models who have always encouraged 
me to pursue my passions and taught me the patience and dedication needed to finish my PhD. 
 
I grew a tremendous amount as a person and scientist during these six years, and I am truly 
grateful that I was given this opportunity. 



4 
 

Table of Contents 
CHAPTER 1 – INTRODUCTION ............................................................................................................................... 8 

1.1 SUMMARY OF RELEVANT NEUROLOGICAL DISEASES ................................................................................................ 8 
1.1.1 Medulloblastoma (MB) ......................................................................................................................... 8 
1.1.2 Glioblastoma (GBM) ............................................................................................................................. 9 
1.1.3 Huntington’s Disease (HD) .................................................................................................................. 10 

1.2 OVERVIEW OF DISEASE-SPECIFIC MODEL SYSTEMS .............................................................................................. 11 
1.2.1 Medulloblastoma (MB) ....................................................................................................................... 11 
1.2.2 Glioblastoma (GBM) ........................................................................................................................... 11 
1.2.3 Huntington’s Disease (HD) .................................................................................................................. 12 

1.3 SUMMARY OF RELEVANT BIOLOGICAL DATA TYPES ............................................................................................... 13 
1.3.1 Genomics ............................................................................................................................................ 13 
1.3.2 Epigenomics ........................................................................................................................................ 14 
1.3.3 Transcriptomics ................................................................................................................................... 15 
1.3.4 Proteomics .......................................................................................................................................... 16 
1.3.5 Metabolomics ..................................................................................................................................... 17 

1.4 SUMMARY OF RELEVANT MACHINE LEARNING METHODS ....................................................................................... 18 
1.4.1 Autoencoders ...................................................................................................................................... 18 
1.4.2 Gene Set Scoring Methods .................................................................................................................. 19 
1.4.3 Minimum Cost Flow Algorithms .......................................................................................................... 20 
1.4.4 Prize-Collecting Steiner Forest Algorithm ........................................................................................... 20 
1.4.5 Motif Enrichment Algorithms ............................................................................................................. 21 

1.5 ADDITIONAL COMPUTATIONAL APPROACHES FOR SIMILAR DATASETS ..................................................................... 21 
1.5.1 Bayesian Approaches for Biologically Informed Networks ................................................................. 21 
1.5.2 ATAC-Seq Footprinting for TF Inference .............................................................................................. 22 
1.5.3 Additional Network-Based Models for Omics Integration .................................................................. 22 

1.6 OVERVIEW OF THESIS .................................................................................................................................... 23 
1.7 REFERENCES ................................................................................................................................................ 24 

CHAPTER 2 - SHALLOW SPARSELY-CONNECTED AUTOENCODERS FOR GENE SET PROJECTION ............................ 30 
2.1 ABSTRACT ................................................................................................................................................... 30 
2.2 INTRODUCTION ............................................................................................................................................ 30 
2.3 METHODS ................................................................................................................................................... 31 

2.3.1 Model Summary .................................................................................................................................. 31 
2.3.2 Model Coding ...................................................................................................................................... 32 
2.3.3 Data and Gene Set Summary .............................................................................................................. 33 
2.3.4 Hyperparameter Selection .................................................................................................................. 33 
2.3.5 Other Projection Methods .................................................................................................................. 34 
2.3.6 Dendritic Cell Type Classification ........................................................................................................ 34 
2.3.7 Breast Cancer Prediction ..................................................................................................................... 35 

2.4 RESULTS ..................................................................................................................................................... 35 
2.4.1 Blood scRNA-seq Analysis ................................................................................................................... 35 
2.4.2 Supervised Classification of Cell Types ................................................................................................ 35 
2.4.3 Unsupervised Clustering of Cell Types ................................................................................................ 37 
2.4.4 Top Features Detected for SSCVA and SSCA ....................................................................................... 38 
2.4.5 Breast Cancer Survival Analysis .......................................................................................................... 39 

2.5 DISCUSSION ................................................................................................................................................ 40 
2.6 ACKNOWLEDGEMENTS .................................................................................................................................. 41 
2.7 REFERENCES ................................................................................................................................................ 41 

CHAPTER 3 - ABERRANT DEVELOPMENT CORRECTED IN ADULT-ONSET HUNTINGTON'S DISEASE IPSC-DERIVED 
NEURONAL CULTURES VIA WNT SIGNALING MODULATION ............................................................................... 44 



5 
 

3.1 ABSTRACT ................................................................................................................................................... 44 
3.2 INTRODUCTION ............................................................................................................................................ 44 
3.3 RESULTS ..................................................................................................................................................... 45 

3.3.1 Modified Protocol for Differentiation of iPSCs to Pure Neurons for Epigenomic Study ...................... 45 
3.3.2 Transcriptomics Reveal an Upregulation of Cell-Cycle-Related Genes in HD ...................................... 47 
3.3.3 Upregulation of Cell-Cycle-Related Genes and Transcription Factors in HD Identified Using 

Epigenomic Analysis .......................................................................................................................................... 48 
3.3.4 Adult-Onset HD Cell Lines Have a Persistent Mitotically Active Population in Neuronal Cultures ...... 50 
3.3.5 Single-Cell RNA-seq Identifies the Cyclin D1+ Population Specific to Adult-Onset Lines as NSCs ........ 51 
3.3.6 Inhibition of the WNT Signaling Pathway Abrogates NSC Populations in HD Neuronal Cultures ....... 53 

3.4 DISCUSSION ................................................................................................................................................ 56 
3.5 METHODS ................................................................................................................................................... 58 

3.5.1 iPSC Differentiation ............................................................................................................................. 58 
3.5.2 Immunofluorescence .......................................................................................................................... 59 
3.5.3 RNA-seq .............................................................................................................................................. 59 
3.5.4 scRNA-seq ........................................................................................................................................... 59 
3.5.5 ChIP-Seq .............................................................................................................................................. 59 
3.5.6 ATAC-Seq ............................................................................................................................................ 59 
3.5.7 Data Processing .................................................................................................................................. 59 
3.5.8 Motif Analysis ..................................................................................................................................... 60 
3.5.9 Flow Cytometry ................................................................................................................................... 60 
3.5.10 Western Blotting ............................................................................................................................ 61 
3.5.11 Statistical Analysis .......................................................................................................................... 61 

3.6 AUTHOR CONTRIBUTIONS .............................................................................................................................. 61 
3.7 ACKNOWLEDGMENTS .................................................................................................................................... 61 
3.8 REFERENCES ................................................................................................................................................ 62 

CHAPTER 4 - OMICS INTEGRATION FOR UNDERSTANDING SUBTYPE-SPECIFIC DRUG RESPONSE IN 
GLIOBLASTOMA CELL LINES ................................................................................................................................ 66 

4.1 ABSTRACT ................................................................................................................................................... 66 
4.2 INTRODUCTION ............................................................................................................................................ 66 
4.3 RESULTS ..................................................................................................................................................... 68 

4.3.1 Mesenchymal and Proneural cells have distinct proteomic response to dasatinib ............................. 68 
4.3.2 Subtype specific phosphoproteomic response to dasatinib ................................................................ 68 
4.3.3 Brief Summary of shRNA Screen Results from DKFZ ........................................................................... 70 
4.3.4 SamNet 2.0 For Integrating Omics Data Using Multi-Commodity Flow Algorithms ........................... 70 
4.3.5 SamNet 2.0 reveals cell cycle genes as candidate for combination therapy in proneural tumors ...... 72 
4.3.6 WEE1 inhibition produces synergistic effect with dasatinib in PN cell lines ........................................ 74 

4.4 CONCLUSION ............................................................................................................................................... 75 
4.5 METHODS ................................................................................................................................................... 76 

4.5.1 Differential Analysis ............................................................................................................................ 76 
4.5.2 Gene Ontology Enrichment ................................................................................................................. 76 
4.5.3 Figure Creation ................................................................................................................................... 76 
4.5.4 Phosphosite Set Analysis ..................................................................................................................... 77 
4.5.5 Multi-Commodity Flow Optimization with SamNet 2.0 ...................................................................... 77 
4.5.6 Implementation of SamNet 2.0 ........................................................................................................... 78 
4.5.7 Parameter Selection for SamNet 2.0 ................................................................................................... 80 
4.5.8 Virus production .................................................................................................................................. 80 
4.5.9 Lentiviral Titer Calculation .................................................................................................................. 81 
4.5.10 Viability screen ............................................................................................................................... 81 
4.5.11 gDNA Extraction ............................................................................................................................. 81 
4.5.12 Amplification and high-throughput sequencing of shRNA barcodes ............................................. 82 
4.5.13 Quality control of high-throughput sequencing data ..................................................................... 82 



6 
 

4.5.14 Sequencing ..................................................................................................................................... 83 
4.5.15 Deconvolution ................................................................................................................................ 83 
4.5.16 Data Analysis ................................................................................................................................. 83 
4.5.17 Microarray gene expression profiling classification of GSCs .......................................................... 84 
4.5.18 SILAC (stable isotope labeling of amino acids in cell culture) with mass spectrometry ................. 84 
4.5.19 Proteomics and phosphproteomics data pre-analysis ................................................................... 84 

4.6 REFERENCES ................................................................................................................................................ 85 
CHAPTER 5 - PROTEOMICS, POST-TRANSLATIONAL MODIFICATIONS, AND INTEGRATIVE ANALYSES REVEAL 
HETEROGENEITY OF MOLECULAR MECHANISMS WITHIN MEDULLOBLASTOMA SUBGROUPS ............................ 87 

5.1 ABSTRACT ................................................................................................................................................... 87 
5.1.1 Summary ............................................................................................................................................. 87 
5.1.2 Significance ......................................................................................................................................... 87 

5.2 INTRODUCTION ............................................................................................................................................ 88 
5.3 RESULTS ..................................................................................................................................................... 89 

5.3.1 Global proteomics reveals medulloblastoma subgroups .................................................................... 89 
5.3.2 Proteome suggests post-transcriptional heterogeneity within SHH medulloblastoma ...................... 91 
5.3.3 Post-translational modifications of MYC in Group 3 tumors are predictive of patient outcome ........ 93 
5.3.4 Medulloblastoma subgroups differ in activity of kinases ................................................................... 96 
5.3.5 MYC-active medulloblastoma cell lines have phosphorylated MYC and PRKDC ................................. 97 
5.3.6 Integrative modeling ........................................................................................................................... 99 

5.4 DISCUSSION .............................................................................................................................................. 101 
5.5 ACKNOWLEDGEMENTS ................................................................................................................................ 103 
5.6 AUTHOR CONTRIBUTIONS ............................................................................................................................ 103 
5.7 METHODS ................................................................................................................................................. 103 

5.7.1 Patient samples ................................................................................................................................ 103 
5.7.2 Cell Lines ........................................................................................................................................... 104 
5.7.3 Proteomic profiling ........................................................................................................................... 104 
5.7.4 Sequencing and DNA Methylation Array Data Collection ................................................................. 105 
5.7.5 Western blots .................................................................................................................................... 105 
5.7.6 Immunofluorescence of cell lines ...................................................................................................... 105 
5.7.7 Drug dose response assay ................................................................................................................. 105 
5.7.8 Immunofluorescence staining of FFPE slides .................................................................................... 105 
5.7.9 Processing of DNA Methylation Array Data ...................................................................................... 106 
5.7.10 Processing of genomics data ........................................................................................................ 106 
5.7.11 Processing of RNA-seq data ......................................................................................................... 106 
5.7.12 Processing of Affymetrix expression array data ........................................................................... 106 
5.7.13 Processing of WGS data ............................................................................................................... 106 
5.7.14 Normalization of proteomics data ............................................................................................... 107 
5.7.15 Normalization of RNA-seq expression data ................................................................................. 107 
5.7.16 Quantification of Immunofluorescence staining .......................................................................... 107 
5.7.17 Quantification of Western Blots ................................................................................................... 108 
5.7.18 Dose response curve .................................................................................................................... 108 
5.7.19 Survival Curves ............................................................................................................................. 108 
5.7.20 Group 3 Cohort Expansion ........................................................................................................... 108 
5.7.21 Glutamate Pathway modeling ..................................................................................................... 109 
5.7.22 Consensus Clustering ................................................................................................................... 109 
5.7.23 Dimensionality Reduction ............................................................................................................ 109 
5.7.24 Differential analysis ..................................................................................................................... 110 
5.7.25 Global Correlation Analysis .......................................................................................................... 110 
5.7.26 Functional Annotation of Data Sets ............................................................................................. 110 
5.7.27 Integrative Network Analysis ....................................................................................................... 111 
5.7.28 Kinome Analysis ........................................................................................................................... 112 



7 
 

5.8 REFERENCES .............................................................................................................................................. 113 
CHAPTER 6 DEVELOPMENTAL BASIS OF SHH MEDULLOBLASTOMA HETEROGENEITY ........................................ 119 

6.1 ABSTRACT ................................................................................................................................................. 119 
6.2 INTRODUCTION .......................................................................................................................................... 120 
6.3 RESULTS ................................................................................................................................................... 121 

6.3.1 Tumor Cells in Medulloblastomas with Extensive Nodularity (MBEN) Recapitulate Granule Neuron 

Development ................................................................................................................................................... 121 
6.3.2 Clustering of Gene Set Signatures Reveals Connections Between Granule Neuron Development and 

SHH MB Heterogeneity ................................................................................................................................... 124 
6.3.3 Consensus Subtypes of SHH MB are Associated with Specific Developmental Stages ...................... 126 
6.3.4 Genomic Associations with Specific Developmental Stages ............................................................. 126 
6.3.5 The SHHb Proteomic Subtype is Associated with Tumor Cells Mimicking Late-Stage Granule Neurons

 128 
6.3.6 FMRP-Induced Post-Transcriptional Regulation Helps Explain SHHb Proteomic Phenotype ............ 128 
6.3.7 Desmoplastic/Nodular (DNMB) Histology in SHH MB Reflects Granule Neuron Development ........ 131 
6.3.8 Significant Variability in VSNL1 Staining Between and Within Tumors ............................................ 131 
6.3.9 Tumor Cell Spatial Organization Can Recapitulate the Developing Cerebellum ............................... 132 
6.3.10 Tumors with Late-Stage Granule Neurons have Distinct Metabolic Profiles ................................ 134 

6.4 DISCUSSION .............................................................................................................................................. 137 
6.5 METHODS ................................................................................................................................................. 138 

6.5.1 Preparation of single-cell suspensions .............................................................................................. 138 
6.5.2 Preparation of single-nuclei suspensions .......................................................................................... 139 
6.5.3 Single-cell and single-cell RNA library preparation and sequencing ................................................. 139 
6.5.4 Human Medulloblastoma Tissue Collection (CHLA) .......................................................................... 139 
6.5.5 VSNL1 immunohistochemistry .......................................................................................................... 139 
6.5.6 Cyclic Immunofluorescence ............................................................................................................... 139 
6.5.7 Antibody Validation and Panels ........................................................................................................ 140 
6.5.8 MALDI Slide preparation and Matrix Coating ................................................................................... 141 
6.5.9 MALDI imaging ................................................................................................................................. 141 
6.5.10 Hematoxylin and Eosin (H&E) staining for MALDI slides .............................................................. 142 
6.5.11 snRNA-Seq and scRNA-Seq data processing ................................................................................ 142 
6.5.12 Pseudotime Analysis .................................................................................................................... 143 
6.5.13 Plotting with Seurat ..................................................................................................................... 143 
6.5.14 Clustering of Gene Set Signature Scores ...................................................................................... 144 
6.5.15 Copy number variation (CNV) analysis ......................................................................................... 145 
6.5.16 Post-transcriptional regulation analysis ...................................................................................... 145 
6.5.17 Image registration and processing ............................................................................................... 146 
6.5.18 MALDI Data Processing ................................................................................................................ 146 
6.5.19 Joint graphical lasso ..................................................................................................................... 147 
6.5.20 Bivariate Moran’s I analysis ......................................................................................................... 147 

6.6 REFERENCES .............................................................................................................................................. 147 
CHAPTER 7 - CONCLUSIONS .............................................................................................................................. 154 

7.1 SHALLOW SPARSELY-CONNECTED AUTOENCODERS ........................................................................................... 154 
7.2 CYCLING CELLS IN IPSC-DERIVED NEURONS FROM HD ....................................................................................... 155 
7.3 SAMNET 2.0 FOR DRUG RESPONSE ANALYSIS IN GLIOBLASTOMA ........................................................................ 155 
7.4 MEDULLOBLASTOMA HETEROGENEITY ............................................................................................................ 156 
7.5 OVERALL CONCLUSIONS ............................................................................................................................... 157 

 



8 
 

Chapter 1– Introduction  

1.1 Summary of relevant neurological diseases 

Neurological disorders are conditions that affect any part of the nervous system (Patel 
et al., 2016). This includes a broad range of diseases, such as neurodegenerative 
disorders, psychiatric conditions, and brain cancers. These diseases are especially 
difficult to study because they involve complex, crucial organs. This thesis describes 
machine learning methods that are generally applicable to neurological disease 
datasets, but focuses on applications for three conditions (medulloblastoma, 
glioblastoma, and Huntington’s disease), summarized in this section.  
 

1.1.1 Medulloblastoma (MB) 

Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. 
There are around 1000 new cases each year and the mean patient age is estimated to 
be between 3 and 7 years old (Fogarty et al., 2005). The standard treatment protocol of 
surgical resection, radiation, and chemotherapy has led to relative high survival rates 
(85% 5-year survival for average risk patients and 70% survival for high-risk patients). 
Despite these good outcomes, the toxic therapies unfortunately can also lead to severe 
neurological side effects and increased risks of secondary cancers (Archer et al., 2017; 
Gajjar et al., 2006). Thus, there is an urgent need for more targeted, less dangerous 
treatments. 
 
Using precision medicine in medulloblastoma has been extremely challenging since 
these tumors are so heterogeneous. The World Health Organization recognizes both 
histological and molecular subtypes of MB (Louis et al., 2016). There are four primary 
histological patterns. Classic tumors are composed of tightly packed undifferentiated 
cells, while the large-call anaplastic (LCA) tumors are characterized by cytological 
pleomorphism and high rates of mitosis. The desmoplastic/nodular (DNMB) tumors 
have tightly packed cells interrupted by less dense nodules, typically filled with NeuN+ 
cells. Tumors with extensive amounts of nodularity (MBEN) are designated as their own 
histological category. 
 
The four consensus molecular subgroups of MB are named WNT-activated, SHH-
activated, Group 3, and Group 4 (Taylor et al., 2012). The WNT-activated and SHH-
activated tumors have overexpression of the wingless and sonic hedgehog pathways 
respectively. Group 3 and Group 4 tumors are less well understood, but molecular 
studies have shown that MYC-activated Group 3 tumors have particularly poor survival 
and that Group 4 tumors are primarily composed of differentiated cells (Archer et al., 
2018; Cavalli et al., 2017; Cho et al., 2011; Northcott et al., 2017). 
 
Since the establishment of the four consensus molecular subgroups, it has been well 
documented that each individual subgroup contains its own heterogeneity. Studies 
using genomics (Northcott et al., 2017; Taylor et al., 2012), transcriptomics (Cavalli et 
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al., 2017; Cho et al., 2011) and proteomics (Archer et al., 2018; Forget et al., 2018) 
have highlighted more subdivisions within each large subgroup. Additionally, single-cell 
transcriptomic studies have characterized the undifferentiated and differentiated cells in 
these tumors (Hovestadt et al., 2019; Riemondy et al., 2022; Vladoiu et al., 2019). 
These efforts have led to new potential therapeutic directions targeted at specific 
subtypes, such as differentiation therapies for SHH MBs (Cheng et al., 2020).  
 
This thesis details significant advancements in our understanding of MB heterogeneity. 
First, I describe our proteomic and phosphoproteomic analysis of MB tumors, which 
revealed novel, clinically relevant subtypes. Then, I discuss work showing that tumor 
cells in the SHH-activated subtype of MB can recapitulate cerebellar development. This 
finding has led to insights about tumor subtypes, mutations, metabolism, and histology. 
 

1.1.2 Glioblastoma (GBM) 

Glioblastoma (GBM) is a highly-aggressive brain tumor with an incidence of 5 per 
100,000 in North America (Stupp et al., 2010). GBM has a terrible prognosis, with the 5-
year survival rate being 5% and death typically occurring within the first 16 months after 
diagnosis (Holland, 2000; Oronsky et al., 2021). GBM is treated with a surgical 
resection, if possible, but this is often not feasible given the invasiveness of the tumor. 
Patients are then typically given the alkylating agent Temozolomide and radiation 
therapy (Stupp et al., 2005), neither of which are particularly effective. 
 
Given the incredibly low survival rate of GBM, there is a significant need for efficacious 
therapeutics. Like medulloblastoma, researchers have tried to identify molecular 
subtypes that can inform drug target identification. The primary subdivision in GBM is 
between IDH-wildtype (IDH-wt) and IDH-mutant (IDH-mt) tumors. IDH-mt cases have a 
mutation in one of the isocitrate dehydrogenase (IDH) genes, leading to excessive 
conversion of alpha-ketoglutarate into 2-hydroxyglutarate. This change depletes 
carbohydrates from the TCA cycle and produces excessive amounts of the 
oncometabolite 2-hydroxyglutarate, which affects tumor metabolism and epigenetics 
(Han et al., 2020). 
 
Molecular profiling of IDH-wt GBMs revealed three consensus subtypes named 
classical (CL), mesenchymal (MES), and proneural (PN) (Verhaak et al., 2010; Wang et 
al., 2017). Each subgroup has a distinct molecular profile and specific genomic events. 
For example, EGFR mutations occur almost exclusively in classical GBMs. Recent 
single-cell transcriptomics analyses revealed that IDH-wt glioblastomas contain four 
primary classes of malignant cell types: Oligodendrocyte Precursor-Like (OPC-like), 
Neural Precursor-Like (NPC-like), Astrocyte-Like (AC-like), and Mesenchymal-Like 
(MES-like) (Neftel et al., 2019). Each of the bulk subtypes are associated with specific 
cell types. The proneural tumors are primarily composed of NPC-like and OPC-like 
cells, while the classical tumors contain AC-like and MES-like cells. Additionally, the 
mesenchymal tumors are composed almost entirely of MES-like cells. 
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This thesis explores subtype-specific drug response in GBM and details computational 
approaches for understanding drug sensitivity and resistance in the proneural and 
mesenchymal subgroups. 
 

1.1.3 Huntington’s Disease (HD) 

Huntington’s disease (HD) is a neurodegenerative disorder that affects approximately 
10.6 – 13.7 people per 100,000 (Ross and Tabrizi, 2011). HD is a monogenic dominant 
genetic disease caused by a mutation in the huntingtin (HTT) gene on chromosome 4 
(MacDonald et al., 1993). This gene typically contains less than 36 CAG repeats and 
any person with greater than 39 CAG repeats is almost certain to develop HD 
(McColgan and Tabrizi, 2018; Ross and Tabrizi, 2011). 
 
HD often presents between 35 and 45 years of age (Walker et al., 1981), but this age of 
onset is affected by the length of CAG repeats in the HTT gene and mutations in other 
genes (Djoussé et al., 2004; Valcárcel-Ocete et al., 2015). The first symptom is almost 
always involuntary jerky motions, known as chorea, which become more pronounced as 
the disease progresses. Additionally, HD is associated with cognitive impairments, such 
as decreased executive functioning, and neuropsychiatric symptoms like depression 
and psychosis.  
 
It is hypothesized that HD symptoms are caused by the dysfunction and death of 
specific neurons in the brain. In HD, the first brain cells to die are the medium spiny 
neurons of the striatum, a region of the brain related to motion and reward processing 
(Hollerman et al., 2000). As HD progresses, cells in cerebral cortex and nucleus 
accumbens are also affected (Ross and Tabrizi, 2011). This pattern likely explains why 
motor symptoms occur first and cognitive effects appear later. 
 
Despite HD being caused by a single genetic mutation, it is not well understood how 
extra CAG repeats in the HTT gene lead to neuron dysfunction, cell death, and 
eventually Huntington’s disease. It is hypothesized that the molecular effects of HTT 
mutation are a combination of a loss of function (i.e. only having one healthy HTT gene) 
and gain of function (i.e. the mutant HTT gene developing new toxic properties). The 
mutant HTT expansion has been linked to many molecular pathologies, such as 
synaptic dysfunction, bioenergetic deficiencies and protein aggregates (McColgan and 
Tabrizi, 2018; Ross and Tabrizi, 2011), but it is still not clear how these specific 
molecular disturbances manifest as HD and why the age of onset is so late in life. 
 
In this thesis, I highlight analysis of iPSC-derived neurons, whereby human fibroblasts 
are reprogrammed into stem cells and then differentiated into neurons. We found that 
the iPSC-derived neurons from HD patients contain a distinct population of cycling cells 
not present in neurons derived from healthy controls.  
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1.2 Overview of Disease-Specific Model Systems 

It is particularly challenging to create model systems for neurological conditions 
because the human nervous system is so complex that it is difficult to faithfully model in 
an animal or cell line. Additionally, these diseases are typically multifactorial and their 
pathophysiology is not well understood. Still, there are model systems for many of these 
conditions and this section provides a brief overview of the most common models used 
to study the conditions discussed in this thesis. 
 

1.2.1 Medulloblastoma (MB) 

Most observational studies of MB use tumor tissue resected during surgery. This model 
allows researchers to study the diseased tissue directly, but unfortunately it can be 
challenging to obtain these samples given the low incidence of the tumor. The rareness 
of MB also makes it difficult to run assays requiring fresh cells, such as single-cell RNA-
sequencing, and hard to justify performing experiments like bulk proteomics which 
require large amounts of tissue. 
 
There are many cell lines used in MB research (Casciati et al., 2020), but it is debatable 
how well they model human MB. MYC-activated Group 3 cell lines (like D458) are 
considered the most reliable cell line models. Mouse models are also commonly used in 
MB research and they are usually either genetically engineered mouse (GEM) models 
or patient-derived xenograft (PDX) models (Roussel and Stripay, 2020). GEM models 
use a Cre system (Feil et al., 2009) to induce cell-type specific activation or repression 
of a gene to promote tumor formation. For example, PTCH1 gene knockouts in Math1+ 
granule precursor cells lead to MB formation in mice (Li et al., 2013). The best GEM 
models mimic SHH MB and MYC-activated G3 MB as these tumor models contain 
many of the same cell types identified in human MB (Riemondy et al., 2022). 
 
Patient-derived xenograft (PDX) models of MB are created by injecting cells from 
human tumors into mice brains; these mice are typically immunocompromised to the 
raise the chances of tumor growth (Roussel and Stripay, 2020). The most successful 
PDX models come from aggressive forms of MB, like TP53-Mt SHH MB and MYC-
activated G3 MB. PDX models are a great resource for studying aggressive MBs, but 
the lack of high-quality mouse models for other subgroups makes it challenging to 
perform interventional studies on the less aggressive forms of MB. 
 
This work focuses primarily on observational data collected using resected tumor tissue 
and highlights one example of a validation study performed in a Group 3 cell line that 
shows the importance of PRKDC in MYC-activated MBs. 

1.2.2 Glioblastoma (GBM) 

The types of models used in GBM studies are quite similar to MB models. Most 
observational studies in GBM use surgically resected tumor tissue, while interventional 
experiments rely on cell lines or mouse models (Kijima and Kanemura, 2017). There are 
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many commercially available cell lines (such as U87 and T98G), but this thesis also 
discusses cell lines developed in the department of neurosurgery in Heidelberg: 
NCH711d, NCH705, NCH421K, and NCH644.  
 
Like MB, there are GEM models and xenograft-derived models of GBM. These GEM 
models target specific genes that induce GBM, such as PDGF-B and KRAS (Huszthy et 
al., 2012). There are many patient-derived xenografts for GBM, but some studies also 
use cell-line derived xenografts, which are created by injecting well-established GBM 
cell lines into mice. These cell-line based xenografts have higher rates of engraftment 
and growth than PDX models, but the patient-derived xenografts more faithfully 
recapitulate human GBM tumor heterogeneity (Wakimoto et al., 2012).  
 
In Chapter 4, I discuss drug treatment experiments performed in GBM cell lines 
developed at DKFZ in Heidelberg. These cell lines were associated with a given GBM 
subtype (CL, MES, or PN) through transcriptional profiling and then comparing the 
expression to human tumors with known subtypes. 
 

1.2.3 Huntington’s Disease (HD) 

Like MB and GBM, HD experiments are typically performed with cell lines and mice, but 
there are key differences between modeling neurodegenerative diseases and brain 
cancers. Primarily, no tissue is surgically resected for HD treatment, making it difficult to 
directly study the human disease. Observational studies can be performed using 
postmortem brain tissue from HD patients, but this model has serious flaws. First, these 
samples only capture the latest stages of HD and thus are not great models for 
investigating disease etiology. Additionally, when an HD patient passes away, most of 
the striatal neurons have died, making it challenging to investigate the region of the 
brain most affected by HD. 
 
Because of these limitations, animal and cell line models are widely used in HD 
research. The most common animal models are mice that contain a version of the 
human HTT or mouse Htt gene with high numbers of CAG repeats (Ramaswamy et al., 
2007). Some mouse models contain the full human HTT gene, while others only have a 
small portion of the gene that contains the CAG repeats. The models with the full-length 
HTT gene more faithfully replicate human HD, but have slower progression and thus 
lead to significantly longer experiments (Shenoy et al., 2022). These mouse models 
have also been used to create cell line models of HD, like the STHdhQ111 model, which 
was developing using striatal neurons from the HdhQ111 mouse (Trettel et al., 2000). 
 
In recent years, neurons derived from induced pluripotent stem cells (IPSC-derived 
neurons) have been used to study HD (Lim et al., 2017). For this model, fibroblasts or 
blood cells from HD patients are reprogrammed into pluripotent stem cells and induced 
to differentiate into neural cultures that contain neurons, neural progenitors, and glia. 
This model system allows for studying human neurons with the HTT gene expansion 
but can be hard to work with because of the challenging differentiation protocol and the 
heterogeneous samples. In this thesis, I present a multi-omic characterization of these 
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iPSC-derived neurons and discuss a novel cell type only observed in neuron cultures 
from HD patients. 
 

1.3 Summary of relevant biological data types 

“Omics” generally refers any to any study seeking to characterize or quantify large 
amounts of biological molecules at once (Hasin et al., 2017). In the last two decades, 
significant technological advancements have increased the quantity and quality of 
biological data produced. This omics revolution has been extremely exciting, but has 
also created new challenges for how to interpret and analyze these large and confusing 
datasets. In this section, I provide an overview of the primary omics data types 
discussed in this thesis. 

1.3.1 Genomics 

Genomics refers to the analysis of DNA sequences. There are two main technologies 
used for genomic studies. The first is the DNA microarray, a limited but cost-effective 
assay for collecting information about select positions on the genome. DNA microarrays 
use 1000s of user-specified oligonucleotides, called probes, which are designed to bind 
a specific spot in the genome. This technology allows for detecting the identity of a 
single nucleotide (adenine, cytosine, guanine, or thymine) at those specified locations. 
Additionally, the hybridization rates of positionally sequential probes can be used to 
infer copy number variations (CNVs), mutations that cause gains or losses in regions of 
the genome.   
 
The biggest limitation of microarrays is that they can only detect the user-specified 
mutations, and thus cannot be used to identify de novo mutations. Next Generation 
DNA Sequencing (NGS) solves this problem because it can characterize the nucleotide 
sequences for entire genomes (Reis-Filho, 2009). There are many methods for 
performing NGS, but the most popular system was developed by Illumina (Quail et al., 
2012). For this protocol, DNA is extracted, fragmented into smaller bits, and then 
amplified through PCR. This DNA is then sequenced using modified nucleotides that 
compete to bind with the extracted DNA (Mardis, 2008). These nucleotides contain a 
fluorescent tag for identification and a 3’ blocker that prevents other nucleotides from 
being added to the 3’ end. When a nucleotide successfully hybridizes to DNA, the 
fluorophore is imaged to get the nucleotide identity and then the fluorescent tag and 3’ 
blocker are terminated allowing for the next nucleotide to bind. This cycle repeats for 
hundreds of bases to create a sequence of DNA that can be mapped to a reference 
genome. In this thesis, I discuss medulloblastoma genomics experiments that 
characterized single nucleotide polymorphisms and copy number variations in these 
tumors. 
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1.3.2 Epigenomics 

The exact definition of “epigenomics” is often debated (Greally, 2018). The term is often 
used refer to describe the study of chromatin, a mixture of DNA and histone proteins, 
that controls the accessibility of DNA. Inaccessible DNA is wrapped tightly around 
histones and cannot be reached by proteins like transcription factors (TFs), which alter 
the transcription of other genes. When the DNA is needed for cellular processes like 
replication and transcription, the chromatin can become unwound, leaving the DNA 
accessible to the relevant factors. Epigenomics can also refer to the study of any 
modifications made to DNA or chromatin that can affect transcription. Methylation of 
specific nucleic acid bases can affect nearby gene transcription and post-translational 
modifications to histone proteins can control nearby DNA accessibility.  
 
Epigenetic factors play a significant role in neurological conditions (Dubuc et al., 2012; 
Jakovcevski and Akbarian, 2013). Changes in chromatin accessibility can alter 
transcription patterns and even affect the developmental potential of a cell without 
directly altering transcription (Zhang et al., 2018). This section details the main assays 
used to collect epigenomic information (Mehrmohamadi et al., 2021).   
 
1.3.2.1 ChIP-Seq 

ChIP-Seq combines chromatin immunoprecipitation (ChIP) (Milne et al., 2009) and high-
throughput DNA Sequencing to identify genomic sequences bound by particular 
proteins. This method uses antibodies to target proteins or chromatin modifications to 
pull down nearby DNA fragments for sequencing. 
 
ChIP-Seq is frequently used to identify genomic regions bound by a specific TF in a 
given tissue or cell type. Additionally, this method can be used to target relevant histone 
modifications, such as methylation of histone protein 3 at its fourth lysine (H3K4), which 
indicates that a genomic region undergoing active transcription (Barski et al., 2007). In 
this thesis, we collected ChIP-Seq from iPSC-derived neurons derived from HD and 
control fibroblasts. 
 
1.3.2.2 ATAC-Seq 

 
ATAC-Seq is used to identify regions of accessible chromatin (Buenrostro et al., 2015). 
This method uses the Tn5 transposase which inserts into open regions of the genome 
and tags and fragments the DNA for sequencing. This method allows for the 
comparison of chromatin accessibility between conditions. Typically, the differentially 
accessible regions are further analyzed for proximity to relevant genes or enrichment for 
transcription factor binding motif sequences. We also collected ATAC-Seq data for HD 
and control iSPC-derived neurons and integrated this information with the ChIP-Seq 
data. 
 
1.3.2.3 Methylomics 

 



15 
 

DNA methylation affects transcription in complicated ways, sometimes increasing 
expression levels of nearby genes and other times decreasing it (Wagner et al., 2014). 
Regions of methylation are typically assayed using a microarray or a special type of 
DNA-sequencing. Microarray-based methods are designed to detect 5-methylcytosine 
at specific locations in the genome. Additionally, bisulfite sequencing converts all 
unmethylated cytosines in DNA to uracil, which can then be run through DNA 
Sequencing to identify methylated nucleotides (Hayatsu, 2008). The resulting 
methylation data can reveal information about transcriptional regulation and can also be 
used to identify clinically relevant subtypes of tumors (Capper et al., 2018). In this 
thesis, I present a analyses of methylation data where we tried to better understand the 
epigenetic differences between novel subtypes of MB.  
 

1.3.3 Transcriptomics 

Transcriptomics assays measure RNA expression levels. Like genomics, these 
experiments are performed using a microarray or an NGS-based approach 
(Raghavachari and Garcia-Reyero, 2018). Microarray-based transcriptomics uses a 
similar principle to CNV detection in genomics; RNA is reverse transcribed into cDNA 
and a microarray with specified probes is used to infer relative RNA expression from 
hybridization rates (King and Sinha, 2001). 
 
Like the genomics assays, microarrays are more cost-effective but are limited in their 
detection capabilities. RNA-sequencing (RNA-seq) (Wang et al., 2009) uses NGS 
technologies to collect more comprehensive RNA expression information for a sample. 
In this method, RNA is reverse transcribed into cDNA, which is then run through DNA-
Seq and mapped to the appropriate regions of the genome. RNA-seq allows for the 
detecting novel features, such a new gene fusions or mRNA isoforms. In this thesis, we 
analyze RNA expression profiles from MB tumors, GBM tumors, and HD iPSC-derived 
neuron cultures. 
 
1.3.3.1 Single Cell Transcriptomics 

 
In recent years, technological advancements have allowed for the measurement of 
gene expression profiles from single cells (Chen et al., 2019). There are many methods 
to perform single-cell RNA-sequencing (scRNA-seq). The main protocols differ primarily 
in cell isolation and RNA capture methodology and there is typically a tradeoff between 
the number of sequenced cells and how many genes can be detected. The quality of 
RNA-seq for each cell is lower than for bulk tissue and there are known issues with non-
biological zeros, whereby the RNA for a gene will not be measured even though it is 
present (Jiang et al., 2022). Still, there is tremendous value in observing the 
transcriptomic profiles from many individual cells in a sample. These technologies have 
helped characterize the intra-tumoral heterogeneity within MB tumors (Hovestadt et al., 
2019; Riemondy et al., 2022; Vladoiu et al., 2019) and GBM tumors (Neftel et al., 2019) 
and revealed issues with astrocytes in HD that are not obvious when studying the 
expression profiles from bulk brain samples (Al-Dalahmah et al., 2020). In this thesis, 
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we generated novel scRNA-seq data for both MB and HD studies to better characterize 
the model systems of interest. 

1.3.4 Proteomics 

Proteomics assays are used for protein identification and quantification. These methods 
begin with protein digestion, leaving smaller fragments known as peptides that are 
separated through liquid chromatography (LC) (Karpievitch et al., 2010). The molecules 
are then ionized and sent into a mass spectrometer (MS), where the time of flight can 
be used to identify the mass to charge ratio (m/z) of the peptide. Sometimes multiple 
rounds of MS will be repeated to get more exact measurements. These digested 
peptides are then mapped to whole proteins by matching m/z values to known 
databases and through inferences about the fragmentation patterns. 
 
There are many methods for quantifying protein levels. For label-free (LF) quantification, 
each sample is run through LC-MS individually and the relative abundances are 
determined by comparing the intensities in the mass spectrometer. Additionally, labeling 
methods allow for more accurate relative quantification between samples. The most 
common labeling techniques are stable isotope labeling by amino acids in cell culture 
(SILAC) (Chen et al., 2015; Oda et al., 1999) and tag-based systems like iTRAQ 
(isobaric tags for relative or absolute quantification) and TMT (tandem mass tags) 
(Thompson et al., 2003). SILAC is limited to cell culture experiments and works by 
labeling one condition with heavy amino acids; quantification is then performed by 
comparing the ratio of heavy to light peptides. Tagging methods chemically label each 
peptide, which allows for accurate relative quantification since all samples can be run 
through a single MS experiment. In this thesis, I detail novel proteomics datasets 
collected from MB tumors and GBM cell line models.  
 
1.3.4.1 Phosphoproteomics 

 
Protein activity is often regulated by the addition or subtraction of phosphate groups to 
specific amino acids (serine, threonine, and tyrosine). Phosphoproteomics dedicated to 
the detection and quantification of these phosphorylated proteins.  These experiments 
use the same steps as proteomics except there is an initial enrichment for proteins with 
phosphorylated residues. Additionally, the downstream computational mapping uses 
specific databases generated for phosphorylated proteins. In this thesis, I also detail 
phosphoproteomic experiments from MB tumors and GBM cell lines. In addition to 
identifying differential phosphoproteins between conditions, we also analyzed specific 
phosphosites to better understanding subtype-specific kinase activity. 
 
 
1.3.4.2 Spatial Proteomics 

 
Proteomics and phosphoproteomics assays characterize and quantify proteins, but 
these assays lose all information about how these proteins are spatially organized in a 
sample. Proteins can be markers of cell type, like CD3 for T-cells, or functional state, 
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such as Ki67 for actively cycling cells, and for complicated neurological disorders, there 
is great interest in understanding how these proteins are co-expressed and spatially 
arranged. This information can help determine the intra- and inter-cellular forces driving 
disease progression. 
 
Immunohistochemistry (IHC) is commonly used to detect the spatial expression of a 
small number of proteins (Coons et al., 1941; Ramos-Vara and Miller, 2014). IHC uses 
primary antibodies to bind targets of interest and then fluorescent secondary antibodies 
that allow for detection and quantification of the targeted protein. Since most 
microscopes can only distinguish a few fluorophores at once, this is assay can only 
detect a very small number of proteins at once (typically less than 5).   
 
Many multiplexed immunohistochemistry techniques have been developed to address 
this limitation. Cyclic immunofluorescence (CyCIF) allows for the detection of 10s of 
proteins using cycles of imaging (Lin et al., 2016). For this assay, primary antibodies are 
directly conjugated to fluorophores, removing the need for secondary antibodies. After a 
round of imaging, the samples are photobleached to remove the initial fluorescence, 
allowing for another set of fluorescent antibodies to be added and imaged.  
 
Another similar method is Co-Detecting by Indexing (CODEX) (Goltsev et al., 2018), 
which uses successive cycles of antibodies conjugated to nucleotides. The antibodies 
can be distinguished using special fluorescent nucleotides, where the fluorophores are 
removed each cycle. These multiplexed technologies allow for many proteins to be 
imaged at once, substantially increasing the potential for understanding the spatial 
organization of cell types and functional features. In Chapter 6 of this thesis, I highlight 
the power of CyCIF for analyzing the spatial organization of cell types in MB. 
 

1.3.5 Metabolomics 

Metabolomics is the study of small molecules, such as sugars, nucleic acid bases, 
amino acids, and fatty acids. These molecules play crucial roles in health and disease 
and studying them can reveal important changes in processes like bioenergetics and 
epigenomics.  
 
Metabolites are analyzed through untargeted and targeted approaches (Roberts et al., 
2012). Untargeted metabolomics is similar to the proteomics methods discussed above, 
whereby metabolites are extracted from a biological samples and LC-MS is used to 
collect metabolite information from the retention time in a mass spectrometer. This 
approach produces many m/z peaks, but unfortunately only a small portion of them can 
be mapped to known metabolites using the m/z value or spectral pattern. Targeted 
approaches rely on using analytical standards to validate metabolomic LC-MS patterns 
to ensure their identity and then measuring the intensity of sample metabolites that 
match those known profiles. 
 
1.3.5.1 Spatial metabolomics 
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Like spatial proteomics, there is significant interest in understanding the spatial 
relationships among metabolites within a biological sample. MALDI-IMS (Caprioli et al., 
1997; Stoeckli et al., 2001) uses a laser to vaporize and ionize molecules at specific 
locations and then sends those molecules to a mass spectrometer. Unfortunately, this 
assay cannot provide single-cell resolution, but current technologies allow for analyzing 
small spots that likely contain less than 5 cells. This technique is typically untargeted 
and relies on matching the m/z peaks to a known database. In this thesis, I present 
MALDI-IMS data which highlights the inter- and intra-tumoral metabolic heterogeneity of 
SHH-activated MBs.  

1.4 Summary of relevant machine learning methods 

As noted previously, neurological diseases are particularly difficult to study because it is 
challenging to develop good model systems and the diseases themselves are often 
multifactorial conditions with unknown etiology. Even in cases like HD where the 
disease is caused by a single mutation, the complexity of the nervous system makes it 
challenging to understand how this single genetic alteration leads to neurological 
symptoms. Machine learning techniques have proven helpful in finding relevant 
biological signal from these small, noisy datasets. This section provides background for 
many of the methods and algorithms discussed in this thesis. 

1.4.1 Autoencoders 

Autoencoders are used to learn a low dimensional representation of data. For omics 
studies, datasets are often represented as a matrix, where the rows are samples, the 
columns are biological features (like genes). These datasets typically contain far more 
features (~20,000 genes for bulk RNA-seq) than samples (typically 10s to 100s for bulk 
RNA-seq), which makes it difficult to find meaningful relationships between samples or 
identify biologically relevant features. Autoencoders reduce these complex features to a 
small number of latent variables that summarize much of the variability in the dataset. 
 
The basic unit of an autoencoder is known as a neuron and it is composed of an input 
(x), a weights matrix (w), and a bias term (b). The output of this neuron is summarized 
as ϕ(wTx + b), where ϕ is some activation function. Φ is frequently a non-linear function, 
such as the rectified linear unit (ReLu), to allow for learning non-linear relationships 
between features. Autoencoders use layers of these neurons to learn an encoder 
function that maps the high-dimensional data onto a low-dimensional space and a 
decoder function that takes this low dimensional representation and seeks to recover 
the initial high-dimensional space. These models are trained by minimizing the 
reconstruction loss, which is some measure of distance between the original input data 
and the output reconstructed from the low-dimensional space.  
 
Variational autoencoders (VAEs) are a type of autoencoder that learns to represent the 
input data using a continuous distribution (typically a multivariate gaussian). In a VAE, 
the encoder learns a function that maps to one set of neurons representing the means 
of multivariate gaussian and another set of neurons representing the standard 
deviations. Together, the mean and standard deviation vectors function like a 
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multivariate gaussian distribution, which can be sampled from by the decoder. In a VAE, 
the decoder learns a function that can reconstruct the input based on these samples 
from the encoder distribution. A VAE is optimized by considering the reconstruction loss 
and another loss term that uses the KL divergence to penalize the mean and standard 
deviation vectors if they differ too much from a prior distribution (typically the unit 
gaussian with means of 0 and standard deviations of 1). VAEs lead to a more 
continuous latent space than standard autoencoders because this loss function 
encourages encodings that are as close as possible while still distinguishing relevant 
features. These methods are widely used in biological analysis for dimensionality 
reduction and sample clustering and Chapter 2 of this thesis discusses a novel method 
using sparsely connected autoencoders to produce a biologically-informed latent space. 

1.4.2 Gene Set Scoring Methods 

In a typical omics experiment, large amounts of biological data are collected from 
disease and control models. It is then common to use statistical tests to identify 
differential features between conditions. In addition to analyzing differential genes, there 
is also great interest is considering sets of genes with related functions. The most 
common gene set analysis is Gene Ontology (GO) enrichment analysis (Harris et al., 
2008), whereby differential genes are identified in an omics experiment and a 
hypergeometric test is used to determine if a biologically-related set of genes (e.g. 
genes localized at synapses) are statistically enriched for the set differential of genes. 
There are many other methods, such as Gene Set Enrichment Analysis (Subramanian 
et al., 2005), for identifying differential gene set enrichment between conditions. 
 
In addition to these comparison methods, there are also gene set scoring algorithms. 
These approaches convert gene level data into gene set scores for each sample, which 
can then be used directly to identify differential gene sets or for sample clustering. This 
thesis introduces a new method for gene set scoring and compares it to four existing 
algorithms. The Z-score method calculates the z-score for each gene across samples 
and then considers the gene set score for a given sample as the mean of the z-scores 
of all genes in a given gene set (Lee et al., 2008). PLAGE also uses z-score 
normalization and then performs Singular Value Decomposition (SVD) for each gene 
set separately; here the gene set scores are the first right singular vector obtained from 
the SVD (Tomfohr et al., 2005). GSVA (Ramasamy et al., 2014) and ssGSEA (Barbie et 
al., 2009) are both rank-based enrichment algorithms that use distinct methods to 
perform a modified KS Test to compare the ranks of genes in a gene set to all other 
genes in a sample.  
 
The new method presented in this work uses sparse autoencoders for gene set scoring, 
by treating latent variables in an autoencoder as gene sets that only receive inputs from 
associated genes. This method significantly improves upon the existing methods 
because the most commonly used scoring algorithms, GSVA and ssGSEA, are both 
rank-based methods that struggle with 0-inflated scRNA-seq data, and this is less of an 
issue for the novel auto-encoder based approach. 



20 
 

1.4.3 Minimum Cost Flow Algorithms 

Minimum cost flow algorithms are used to identify optimal paths through directed 
networks where each edge has an associated cost and flow capacity. These methods 
are frequently used in logistics problems to identify optimal paths for transportation.  
 
These algorithms have also been used to analyze biological networks. For example, 
ResponseNet utilizes the minimum cost flow method to identify highly relevant subsets 
of proteins that are related to hits from two distinct biological assays (Yeger-Lotem et 
al., 2009). For ResponseNet, a directed network connects hits from one assay (e.g. 
genetic screen) and to hits from another biological assay (e.g. RNA-seq). These hits are 
connected through some known biological network, like a protein-protein interaction 
(PPI) network, where edges represent physical interactions between proteins. For 
ResponseNet, every edge in the network has an associated capacity and cost. For any 
gene that was a hit in a biological assay, the capacity and cost are related to the 
strength of the hit, where stronger hits have higher capacities and lower costs. For the 
other proteins, the capacity and cost are related to the biological network itself; in 
ResponseNet, the edge costs in the PPI are based on confidence, where experimentally 
determined protein interactions have lower costs than computationally derived edges. 
ResponseNet then solves the minimum cost flow optimization problem through this 
network to reveal a small subset of highly relevant proteins that connect the hits from 
the two biological assays. 
 
SamNet is another minimum cost flow algorithm that expands upon the ResponseNet 
framework to consider multiple conditions with one optimization problem (Gosline et al., 
2012). In this method, there are condition-specific source nodes at the top of the 
network and condition-specific sink nodes at the bottom. Still, all conditions share the 
same intermediate nodes. Gosline et al. (2012) found that this framework revealed more 
condition-specific effects than running ResponseNet individually for each case. This 
thesis details an updated and significantly improved version of SamNet. In this new 
method, I penalize flow through hub nodes and utilize RNA expression data to promote 
more realistic output networks. Chapter 4 highlights the utility of this approach in 
studying drug response in GBM cell line models. 
 

1.4.4 Prize-Collecting Steiner Forest Algorithm 

OmicsIntegrator is a machine learning package used to integrate multiple types of 
biological data (Tuncbag et al., 2016). This method is based on the Prize-Collecting 
Steiner Forest (PCSF) algorithm and uses a known biological network like ResponseNet 
and SamNet. In this method, every edge has an associated cost, and a small 
percentage of nodes have prizes. The goal of the optimization problem is to find the 
connected subnetwork that maximizes the prize values while minimizing the edge costs. 
 
For OmicsIntegrator, nodes are assigned prizes if they are hits from an omics 
experiment and the value of the prize is related to the strength of the hit. The edges are 
connections in the PPI network and the costs are related to the confidence of the edge. 
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The PCSF algorithm is then used to find the optimal network which retains high-prize 
nodes and connects them through low-cost edges. This results in a final subnetwork of 
the highly relevant hits from omics assays and other important proteins. In this thesis, I 
detail an example of OmicsIntegrator being used to better understand the drivers of 
proteomic subtypes in medulloblastoma. 
 

1.4.5 Motif Enrichment Algorithms 

ATAC-Seq experiments help identify regions of DNA with accessible chromatin. It is 
common to then test whether these open regions (or differentially open regions) are 
associated with specific transcription factors (TFs) binding sites. This is a 
computationally challenging problem that involves searching these oligonucleotide 
sequences for transcription factor binding motifs and comparing the frequency of those 
motifs to other regions of the genome.  
 
The most commonly used package for motif enrichment is HOMER (Benner et al., 2017; 
Heinz et al., 2010), which searches for potential transcription factors using supervised 
and de novo approaches. In the supervised mode, the regions of interest are matched 
against a database of known motifs, and it is determined whether these regions contain 
more matches than the rest of the genome. Additionally, HOMER can discover new 
motifs by finding sequential patterns of nucleotides that are enriched in these regions of 
interest compared to background areas. These de novo motifs are then matched 
against a database of known motifs to help with annotation. In Chapter 3 of this thesis, I 
integrated ATAC-Seq and ChIP-Seq data to identify relevant genomic regions and used 
the HOMER package to find potentially relevant transcription factors for HD models.  
 

1.5 Additional Computational Approaches for Similar Datasets 

Section 1.4 provided background on the primary machine learning approaches 
discussed in this thesis, but there are many other methods that could have been used to 
analyze and integrate the data types collected for these projects. In this section, I 
discuss some alternative approaches that could have been employed for this thesis. 
 

1.5.1 Bayesian Approaches for Biologically Informed Networks 

In this thesis, I discuss methods for incorporating prior biological knowledge into 
autoencoders by using sparsely connected networks. Other groups have performed 
similar tasks using a Bayesian framework  (Wang et al., 2018). In general, Bayesian 
Inference is a probabilistic way to learn about a dataset using a likelihood function, 
which measures how well the data matches a given model, and a prior distribution, 
which incorporates expectations about the dataset. Wang et al. (2018) used a Bayesian 
approach to model the interactions between genetic, epigenetic, and transcriptomic data 
and then used Markov Chain Monte Carlo (MCMC) sampling to infer the most important 
connections. The primary advantage of this approach is that it allows for encoding 
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complicated interdependences between the biological data types that are not easy to 
model in a neural network. On the other hand, the sampling methods needed to infer 
results are very challenging to employ and have incredibly long run times. The 
autoencoder based gene set scoring method discussed in Chapter 2 is very 
straightforward and thus a Bayesian approach would likely not be worth the 
computational challenges, but this Bayesian method would be very useful for future 
methods that try to calculate gene set scores based on multiple types of omics data at 
once. 
 

1.5.2 ATAC-Seq Footprinting for TF Inference  

For the HD project in Chapter 3, we collected epigenomic and transcriptomic data from 
iPSC-derived neurons from HD patients and controls. One of the primary analyses was 
identifying differentially accessible chromatin regions and then performing TF motif 
enrichment to identify disease relevant transcription factors. In 2019, Li et al. developed 
a method to help improve TF identification using a footprinting approach (Li et al., 
2019). Their HINT-ATAC algorithm is based on the principle that the ATAC-Seq 
transposase makes specific cleavage patterns around bound transcription factors. They 
incorporate this knowledge into ATAC-Seq data processing to identify chromatin regions 
likely bound by TFs. This algorithm could be used on the HD ATAC-Seq data to filter the 
differential chromatin regions down to areas likely bound by TFs. Performing motif 
enrichment on only these genomic regions would provide a more confident assessment 
of disease-relevant TFs. 
 

1.5.3 Additional Network-Based Models for Omics Integration 

For the glioblastoma and medulloblastoma projects, we used network-based algorithms 
to integrate data from multiple biological assays to get a more comprehensive 
understanding of the disease. The GBM project utilized network flow methods, while the 
integration of MB datasets was based on the PCSF algorithm. Many other groups have 
also used network-based algorithms to analyze multiple biological data types at once.  
 
For example, the HotNet2 method uses network diffusion principles to find relevant 
subnetworks for a given dataset (Leiserson et al., 2015). This method is based on how 
heat would diffuse through a network. It is implemented using a protein-protein 
interaction network where proteins are assigned an initial heat score and each node can 
receive and pass heat to its neighbors. The method then allows heat to diffuse between 
proteins until equilibrium is reached and uses statistical tests to identify subnetworks 
with significantly high amounts of heat. In the glioblastoma project, our goal was to 
identify potential combination therapies for the proneural subtype of GBM. We could 
have used the HotNet2 framework to study this question by assigning initial heat values 
to proteins that were hits from the shRNA viability screen or proteomics assay and 
analyzing significant subnetworks to see if any led to hypotheses about potential 
therapeutic targets. 
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Additionally, Hristov et al. developed the network-based algorithm, uKIN, which would 
be particularly useful for our MB data (Hristov et al., 2020). uKIN is similar HotNet2 and 
uses random walks through a PPI network to identify highly relevant subnetworks. The 
primary difference, however, is that uKIN allows for the incorporation of both prior 
knowledge and new information into the algorithm. Previously collected data is used to 
create the transition probabilities between nodes and hits from the new dataset are 
used as the starting points for the random walks. This framework could be very helpful 
for understanding the relevant properties of proteomic subtypes in MB. For example, 
when studying the new SHH-activated MB subtypes (SHHa and SHHb), prior genetic, 
epigenetic, and transcriptomic data collected about SHH-activated MBs could be used 
to create transition probabilities for the network. Then, to learn more about the SHHa 
proteomic subtype, uKIN can be run using proteomic hits that are upregulated in SHHa. 
This same procedure could be repeated to make inferences about the SHHb subtype. 
 

1.6 Overview of Thesis 

In this thesis, I present multiple examples of machine learning methods being used to 
improve our understanding of neurological diseases. I only discuss a small subset of 
neurological conditions, but the computational algorithms and analytical principles are 
applicable to similar datasets from other complicated disorders. 
 
Chapter 2 focuses on a novel machine learning method that I developed for gene set 
scoring. The main algorithms for gene set scoring are ssGSEA and GSVA, but both of 
these methods are rank-based and struggle with zero-inflated scRNA-seq data. I 
present a new method to address this issue, which uses sparse autoencoders to 
convert gene-level data into gene set scores, while simultaneously creating a low-
dimensional representation of the data. This allows for successful gene set projection 
that can be utilized for the many scRNA-seq datasets being produced to study 
neurological conditions (Al-Dalahmah et al., 2020; Hovestadt et al., 2019; Neftel et al., 
2019; Riemondy et al., 2022; Vladoiu et al., 2019). Additionally, these methods are 
currently being employed to analyze omics data from Amyotrophic Lateral Sclerosis 
(ALS) models, but this specific work is not discussed in the thesis. 
 
Chapter 3 details multi-omic analysis of iPSC-derived neuron models of HD. We 
performed ATAC-Seq, ChIP-Seq, bulk RNA-seq, and snRNA-seq on these models and 
found a novel population of cycling cells in the HD samples. My primary contributions to 
this work were integrating the epigenomic and transcriptomic data to better understand 
the molecular features of the cycling cells.  
 
Chapter 4 describes analysis of drug response in glioblastoma cell lines. I analyzed 
proteomic and phosphoproteomic data to characterize subtype specific drug response. 
In this chapter, I also present significant improvements to the SamNet multi-commodity 
flow algorithm. This new method uses a penalty to reduce flow through hub nodes, and 
allows for the incorporation of RNA expression data, both of which lead to more realistic 
output networks. 
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Chapters 5 and 6 detail machine learning approaches for studying medulloblastoma. 
Chapter 5 focuses on proteomic and phosphoproteomic analysis of MB. We found that 
clustering protein data from MB tumors leads to novel subtypes not observed in 
methylation or RNA data. We also used the OmicsIntegrator method to better 
understand the molecular drivers of these subtypes and observed that the new G3 
subtypes (named G3a and G3b) have significantly different outcomes. 
 
Chapter 6 focuses on single-cell RNA-sequencing of medulloblastoma tumors with 
extensive nodularity. Clustering and pseudotime algorithms helped reveal that some 
tumors contain cells mimicking every stage of granule neuron development. With that 
observation, I developed a novel computational method to connect these results to 
published examples of heterogeneity in SHH-activated MB. I found that considering this 
developmental perspective helped yield novel insights about tumor subtypes, mutations, 
metabolism, and histology. 
 
Some chapters detail specific improvements in machine learning methods applicable to 
a wide variety of disease data, while other sections emphasize novel biological insights 
found using advanced computational approaches. Together, this thesis highlights the 
value of machine learning for studying neurological diseases. 
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2.1 Abstract 

When analyzing biological data, it can be helpful to consider gene sets, or predefined 
groups of biologically related genes. Methods exist for identifying gene sets that are 
differential between conditions, but large public datasets from consortium projects and 
single-cell RNA-sequencing have opened the door for gene set analysis using more 
sophisticated machine learning techniques, such as autoencoders and variational 
autoencoders. We present shallow sparsely-connected autoencoders (SSCAs) and 
variational autoencoders (SSCVAs) as tools for projecting gene-level data onto gene 
sets. We tested these approaches on single-cell RNA-sequencing data from blood cells 
and on RNA-sequencing data from breast cancer patients. Both SSCA and SSCVA can 
recover known biological features from these datasets and the SSCVA method often 
outperforms SSCA (and six existing gene set scoring algorithms) on classification and 
prediction tasks. 

2.2 Introduction 

RNA-sequencing (RNA-seq) experiments can quantify the RNA expression levels 
for ~20,000 human genes and this data may reveal differences between experimental 
conditions, such as cancerous tissue vs. healthy tissue. Typically, RNA-seq analysis 
begins with identifying genes with differential RNA levels across conditions and 
determining if such genes are over-represented in any predefined gene sets (i.e. groups 
of biologically related genes). This standard approach can be useful but is also quite 
simplistic; it ignores relationships among the genes and assumes all genes in a gene 
set are equally important to the group.  

 Consortium projects (such as The Cancer Genome Atlas (TCGA) (Weinstein et 
al., 2013)) and the development of single-cell RNA-sequencing (scRNA-seq) (Tang et 
al., 2009) have yielded large public datasets for RNA-seq analysis; this has permitted 
the use of more complex machine learning techniques, such as autoencoders (Liou et 
al., 2008) and variational autoencoders (VAEs) (Kingma and Welling, 2013), for 
analyzing those data. These methods can project the high-dimensional gene space onto 
a lower-dimensional latent space, which may help with visualization, denoising, and/or 
interpretation (Wang et al., 2017; Xie et al., 2017; žurauskiene and Yau, 2016). 
Additionally, some neural networks and autoencoders have even been designed to 
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incorporate biological information by using sparsely-connected nodes that only receive 
inputs from biologically-related genes (Kang et al., 2017; Lin et al., 2017). 

 Many of these neural-network-based and autoencoder-based approaches have 
focused primarily on increasing accuracy, but recently, groups have used these 
methods for data interpretation. For example, Way and Greene (2018) used a VAE on 
TCGA data, wherein they projected RNA-seq data onto a reduced latent space, 
identified nodes that differentiate cancer subtypes, and used the learned model 
parameters to search for biological significance (Way and Greene, 2018). Chen et al. 
(2018) detailed a similar approach, whereby they used sparse connections to project 
genes onto gene sets and then had a fully-connected layer between the gene set nodes 
and latent nodes (Chen et al., 2018); a gene set was considered meaningful if it had a 
high input weight into a relevant latent superset node.  

 Here we describe a different approach for using autoencoders for gene set 
analysis. We present shallow sparsely-connected autoencoders (SSCAs) (Figure 1A) 
and shallow sparsely-connected variational autoencoders (SSCVAs) (Figure 1B) as 
tools for projecting gene-level data onto gene sets, wherein those gene set scores can 
be used for downstream analysis. These methods use a single-layer autoencoder or 
VAE with sparse connections (representing known biological relationships) in order to 
attain a value for each gene set. Chen et al. (2018) mentioned the SSCA model (Figure 
1A) but did not thoroughly explore its utility for gene set projection (Chen et al., 2018). 
There are many statistical methods for gene set scoring (see Section 2.5), but these 
techniques often rely on assumptions that do not reflect the underlying biology (e.g. all 
genes are equally important to a gene set). That being said, the machine-learning 
approaches presented in this work allow for learning a specific nonlinear mapping 
function for each gene set; thus, each gene within a gene set can be weighted 
differently and a single gene can have distinct weights across gene sets.  

 Ideally, the gene set scores should be able to retain high-level information from 
the gene-level data and provide new insights regarding the relevant gene sets. To test 
whether the SSCA and SSCVA algorithms can extract such gene set scores, we ran 
both algorithms on scRNA-seq data from human blood cells and on RNA-seq data from 
patients with breast cancer; we used classification and prediction tasks to compare 
these new methods to six existing gene set scoring algorithms and assessed the 
biological interpretability of SSCA and SSCVA by performing differential analysis using 
the computed scores.     

2.3 Methods 

2.3.1 Model Summary 

This work explores shallow sparsely-connected autoencoders (SSCAs) (Figure 1A) and 
shallow sparsely-connected variational autoencoders (SSCVAs) (Figure 1B). 
Autoencoders learn an encoder function that projects input data onto a lower 
dimensional space and a decoder function that aims to recover the input data from the 
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low-dimensional projections. The model is trained by minimizing the reconstruction loss 
(i.e. some measure of distance between the reconstructed output and the original input).  
 Variational autoencoders (VAEs), however, learn a continuous distribution 
(typically a multivariate gaussian) to represent the input data. The encoder learns 
projections onto both a mean vector and a standard deviation vector (which are used to 
represent a multivariate Gaussian) and the decoder takes samples from the encoded 
distribution and learns a function to project these samples onto the original space. For 
VAEs, the model is trained by minimizing both the aforementioned reconstruction loss 
and the KL divergence between the learned multivariate Gaussian and a chosen prior 
distribution (typically the unit Gaussian).  
 The shallow sparsely-connected autoencoders and VAEs discussed in this work 
are based on said algorithms, but with two notable restrictions: the encoding/decoding 
functions are only one layer deep and these layers are sparse (not fully-connected like 
standard autoencoders), with connections based on known biological relationships. For 
SSCA, each encoded node represents a gene set and only receives inputs from gene 
nodes included in the set. For SSCVA, each gene set is represented by a mean vector 
node and a standard deviation vector node, both of which only receive inputs from the 
relevant gene nodes. When analyzing the trained SSCVA models, we considered the 
score for each gene set to be the value of the mean vector node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Diagram for Shallow Sparsely-Connected Autoencoder (SSCA) and Variational Autoencoder 
(SSCVA). A) SSCA model. B) SSCVA model. For SSCA, the input genes (G1 - Gp) are connected to gene 
set nodes (GS1 - GSq). Each gene set node only receives inputs from the genes within the gene set. Light 
blue denotes the reconstructed gene values (G!1 - G!p). SSCVA follows the same model, except there is " 
node and # node for each gene set. The z values are collected using the following scheme: z% 	= 	µ% 	+ (σ, ∗
	ϵ%)	 where  ϵ%	~	1(0,1). Those values are then used to project onto G!1- G!p. 

2.3.2 Model Coding 

We implemented the models in python using the TensorFlow package (Abadi et al., 
2015) (version 1.8.0) and select functions from Keras (version 2.1.6) (Chollet, 2015). 
We employed hyperbolic tangent (tanh) activation for the encoder functions and sigmoid 
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activation for the decoder functions. For the encoders, we used batch normalization 
(which scales values to zero mean and unit variance) after linear activation and before 
tanh activation. Additionally, we trained both models using Adam optimization (Kingma 
and Ba, 2014). The SSCVA code is largely based on public code from Way and Greene 
(2018) (Way and Greene, 2018) and the sampling procedure follows the scheme where 
z" 	= 	 µ" 	+ (σ) ∗ 	ϵ")	 and ϵ"	~	.(0,1) (Figure 1B).  

2.3.3 Data and Gene Set Summary 

We used two publicly available data sets for this analysis: a single-cell RNA-seq dataset 
of 1078 blood cells (dendritic cells and monocytes) (Villani et al., 2017) and an RNA-seq 
dataset from patients with breast cancer from The Cancer Genome Atlas (TCGA) 
(Grossman et al., 2016; Weinstein et al., 2013). The scRNA-seq data matrix consists of 
preprocessed log TPM values for genes for 1078 high-quality cells (Villani et al., 2017). 
For training, the data was scaled to a range of 0-1 using min-max scaling. The breast 
cancer dataset includes 1093 patients with RNA-seq data (log2(FPKM + 1) transformed 
RSEM values) and matching clinical data (Grossman et al., 2016; Weinstein et al., 
2013). A small number of patients have multiple RNA-seq runs and for these cases, the 
mean RSEM value for each gene across runs was assigned to the patient. After this 
step, the breast cancer data was processed in the same manner as the scRNA-seq 
dataset. 
 The gene sets used to create the sparse layers are from the Molecular 
Signatures Database (Subramanian et al., 2005). We used the transcription factor 
targets collection (C3.TFT) for scRNA-seq analysis and the cancer signatures collection 
(C6) for the breast cancer survival analysis. We then filtered the collections to include 
only gene sets with more than 15 genes and less than 500 genes, reducing the C3.TFT 
collection from 615 to 550 gene sets and the C6 collection from 189 to 187 gene sets. 
Using only the remaining genes, the input matrices were 1078 cells x 10992 genes for 
the scRNA-seq data and 1093 patients x 10650 genes for the breast cancer analysis. 

2.3.4 Hyperparameter Selection 

We considered the following variables for a parameter sweep: learning rate (0.0075, 
0.001, 0.002), epochs (50, 100, 150), and L2 regularization (0, 0.05, 0.1). Additionally, 
we tested warmup (2) (0.05, 1) for the SSCVA model, where 2 controls how quickly the 
KL loss contributes to the total loss being minimized in the VAE (Sønderby et al., 2016). 
We kept the optimizer (Adam) and batch size (50) consistent for all trials. We used 90% 
of the samples for training and 10% for validation and chose the hyperparameters 
corresponding to the model with the lowest validation loss. For both the blood cell and 
the breast cancer data, the validation loss for SSCA was lowest for a learning rate of 
0.002, 150 epochs, and no L2 regularization. For SSCVA in both analyses, the 
validation loss was minimized by a learning rate of 0.002, 150 epochs, L2 regularization 
of 0.1, and 2 of 0.05. Hu and Greene (Hu and Greene, 2018) recently raised concerns 
about model comparison analysis when some models are heavily reliant on 
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hyperparameter tuning. Thus, in this work, the SSCA and SSCVA models chosen for 
comparison are the ones that minimize loss, without any regard for task performance.   

2.3.5 Other Projection Methods 

In addition to SSCA and SSCVA, we assessed the performance of six other methods for 
projecting gene data onto gene sets: Average Z-score (Z-Score) (Lee et al., 2008), 
Pathway Level Analysis of Gene Expression (PLAGE) (Tomfohr et al., 2005), Gene Set 
Variation Analysis (GSVA) (Hänzelmann et al., 2013), single-sample Gene Set 
Enrichment Analysis (ssGSEA) (Barbie et al., 2009), FastProject (FP) (DeTomaso and 
Yosef, 2016), and simple averaging (Average). The Z-Score method normalizes each 
gene by z-score across samples and considers the gene set score to be the mean 
normalized value of all genes in a set. PLAGE uses the same z-score normalization and 
then performs singular value decomposition (SVD) for each gene set; the gene set 
scores are the first right singular vector obtained from the SVD. GSVA and ssGSEA are 
enrichment-based algorithms that utilize distinct methods to rank each gene per sample 
and then calculate a score for each gene set based on the difference in ranks for genes 
within the set compared to those outside of it. The averaging method is the arithmetic 
mean of the RNA-seq values of all the genes within a gene set. Lastly, FastProject is a 
tool built for scRNA-seq data; the algorithm normalizes the data using z-scores while 
also accounting for sparsity common in scRNA-seq data and then assigns the gene set 
score as the mean of the normalized values.  
 We used the GSVA package in R (version 1.26.0) (Sonja et al., 2014) to 
calculate GSVA, PLAGE, Z-Score, and ssGSEA scores and ran the FastProject 
program (DeTomaso and Yosef, 2016) to compute FP scores. Averaging and 
autoencoder training were performed in python (per the above procedure). To help with 
training, we used min-max scaled RNA-seq values as inputs for the SSCA and SSCVA 
methods. The other methods used the normalized RNA-seq values (log TPM for blood 
cells and RSEM for breast cancer). The only exception is that min-max scaled RNA-seq 
values were used for the averaging projection for the breast cancer survival prediction 
as raw values led to convergence issues.  

2.3.6 Dendritic Cell Type Classification 

We used the python package Scikit-learn (version 0.19.1) to train the logistic regression 
models and gaussian mixture models (GMMs) (Pedregosa et al., 2011). For the GMMs, 
we set k = 3 and initialized each model five times (using n_init = 5), with the best result 
being kept. To compare the predicted clusters to known cell types (provided by (Villani 
et al., 2017)), we calculated normalized mutual information using Scikit-learn 
(Pedregosa et al., 2011). 
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2.3.7 Breast Cancer Prediction 

We analyzed five-year survival on the breast cancer dataset and only kept patients who 
survived greater than five years (i.e. TCGA “days_to_follow_up” > 1825 days) or who 
passed away within five years (i.e. TCGA “days_to_death” < 1825 days). This left 352 
patients: 253 survivors and 99 who have passed away. For the survival analysis, we 
used the lifelines package in python (Davidson-Pilon et al., 2018) to train a Cox 
proportional hazards model (Cox PHM) with a step size of 0.3 to help with convergence. 
Using a 4:1 train/test split, we trained the Cox PHM to predict days of survival from the 
gene set scores and compared the predicted days of survival to the true values using 
the concordance index (CI). To assess the importance of gene sets in predicting days of 
survival, we ranked the gene sets in ascending order by their p-values using a Wald 
test. We generated boxplots using the python package Matplotlib (Hunter, 2007) and 
performed Mann-Whitney U tests using the python package SciPy (Oliphant, 2007).  

2.4 Results 

We analyzed scRNA-seq data from blood cells (Villani et al., 2017) and RNA-seq data 
from breast cancer patients (Weinstein et al., 2013) to assess the utility of shallow 
sparsely-connected autoencoders (SSCA) and variational autoencoders (SSCVA) for 
projecting gene data onto gene sets. We compared the two autoencoder-based 
methods to six existing methods for gene set projection (see Methods): GSVA, PLAGE, 
Z-Score, ssGSEA, FP, and Average. 

2.4.1 Blood scRNA-seq Analysis 

When analyzing scRNA-seq data, it can be difficult to assess the importance of specific 
transcription factors (TFs) because mRNA levels do not always correlate with protein 
abundance (Lundberg et al., 2010; Vogel and Marcotte, 2012), and TF activity is 
affected by other factors in the cell, such as chromatin accessibility. One potential 
solution is to use transcription factor target gene sets (i.e. genes whose expression is 
potentially affected by a given TF); if the genes regulated by a TF are differential 
between conditions, this could suggest that the TF is biologically relevant. Thus, in order 
to explore the scRNA-seq data set from human blood cells, we performed gene set 
analysis on 550 transcription factor target gene sets from the Molecular Signatures 
Database (Subramanian et al., 2005). We performed classification tasks using the gene 
set encodings to determine whether these projections retain high-level information 
about the dataset and then analyzed the differential features for biological significance. 
 

2.4.2 Supervised Classification of Cell Types 

The scRNA-seq data set contains over 1000 individual cells, each of which was 
assigned one of ten cell types by Villani et al. (2017) (Villani et al., 2017) (six dendritic 
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cell types (DC1-6) and four monocyte cell types (Mono1-4)). We first ran the eight 
projection methods using the transcription factor target gene sets and then used the 
resulting gene set scores to train a logistic regression to predict cell type. We used 80% 
of the samples for training and compared the methods on classification accuracy using 
test data. This procedure was repeated for multiple distinct cell type combinations 
(Figure 2).  
 The cell types used in a given run affected the peak model accuracy, which 
ranged from 84% (all ten cell types) to 100% (DC1-DC6-Mono1). The model trained 
using SSCVA gene set scores yielded the highest accuracy in all six trials and was the 
sole top performer in five of six trials (DC1-DC6-Mono1 being the exception, where 
many algorithms achieved 100% accuracy). We also compared the performance of 
SSCVA-based models to logistic regression models trained directly on the gene-level 
RNA-seq data; models trained on SSCVA gene set scores never outperformed the 
RNA-seq models (Figure 2) but were always within 2% accuracy. Average-based 
models often led to the second highest accuracy and SSCA-based models typically 
resulted in the lowest accuracy among the methods tested. These results suggest that 
for the blood cell dataset, the SSCVA encodings retain more gene-level information 
about cell type than the other projection methods.  
 
 

 
Fig 2. Logistic Regression Test Data Accuracy. Each row represents a trial with the specific cell types 
shown in the first column. Additional columns indicate the data type used for training for cell type 
prediction (i.e. gene-level RNA-seq data or gene set scores from one of eight algorithms). Values are the 
classification accuracy of cell types on test data. Yellow emphasizes the highest test accuracy in each 
row. Scaled RNA-seq (Min-max scaled gene TPM values from (Villani et al., 2017)). Raw RNA-seq (gene 
TPM values from (Villani et al., 2017)). See Methods for the full names of gene set projection algorithms. 
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Fig 3. Gaussian Mixture Model Clustering Normalized Mutual Information (NMI) Values. A) Training 
Data normalized mutual information (NMI). B) Test Data normalized mutual information (NMI). Each row 
represents a trial with the specific cell types shown in the first column. Additional columns indicate the 
data used for training (gene-level RNA-seq data or gene set scores from one of eight algorithms). Values 
are the normalized mutual information scores between output clusters and known cell types. Yellow 
emphasizes the highest NMI in each row. Scaled RNA-seq (Min-max scaled gene TPM values from 
(Villani et al., 2017)). Raw RNA-seq (gene TPM values from (Villani et al., 2017)).  See Methods for the 
full names of gene set projection algorithms.  

2.4.3 Unsupervised Clustering of Cell Types 

We then examined whether unsupervised clustering of the gene set projections could 
separate samples by cell type. We trained a Gaussian mixture model on the gene set 
scores from each method for 80% of the relevant samples and this model was used to 
predict clusters for the training and test data. In order to evaluate the quality of 
clustering, we calculated the normalized mutual information (NMI) between the 
predicted clusters and the known cell types. This procedure was repeated for five 
distinct groups of three cell types and the results are summarized in Figure 3. 

For the training data (Figure 3A), SSCA-based and PLAGE-based models 
performed best with SSCA-based models having the highest NMI in three cases and 
PLAGE-based models in two cases. SSCVA-based and GSVA-based models also led 
to comparatively high NMI scores, while Z-Score-based and Average-based models 
performed poorly in almost all cases. We observed different results for the test data 
(Figure 3B), however. The DC1-DC6-Mono1 task led to a tie between the models based 
on scores from GSVA, PLAGE and SSCVA; on the four remaining tasks, SSCVA-based 
models and PLAGE-based models each scored highest on two. It is noteworthy that the 
model trained using SSCVA encodings outperformed the SSCA-based model on the 
test data, a trend also observed in the logistic regression analysis.  
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2.4.4 Top Features Detected for SSCVA and SSCA 

In addition to retaining high-level information about the samples, gene set projection 
methods should help identify biologically meaningful gene sets from the data. In order to 
assess whether these new methods can recover known biology, we performed 
differential analysis using the gene set scores. The first trial focused on the DC6 cells, 
which are also known as plasmacytoid dendritic cells (Villani et al., 2017). For each of the 
550 gene sets, we calculated the median score for all DC6 samples and the median 
score for all other dendritic cell samples (DC1-5) and ranked the gene sets based on 
the absolute value of the difference between these medians. We then performed the 
same analysis comparing all the dendritic cell types (DC1-6) with monocytes (Mono1-4). 
 
The top hits for these trials are shown in Figure 4. For the DC6 vs. DC1-5 experiment 
(Figure 4A), STAT5A target genes are the 5th ranked feature for SSCVA. STAT5 plays a 
substantial role in repressing the development of DC6 cells (Esashi et al., 2008) and 
thus it makes sense this gene set would distinguish DC6 cells from the other dendritic 
cells. For the dendritic cells vs. monocytes trial (Figure 4B), the top five hits from the 
SSCA algorithm include targets of AHR (aryl hydrocarbon receptor), which is 
noteworthy as AHR has been shown to promote the differentiation of monocytes into 
dendritic cells (Goudot et al., 2017). Additionally, CEBPB (also known as C/EBP3) 
targets are the top differential feature for SSCVA and this result is reinforced by 
research showing that CEBPB is one of the key transcriptional regulators of monocyte 
cells (Huber et al., 2012). These few examples support the notion that SSCVA and 
SSCA may be able to utilize transcription factor target gene sets to help identify 
transcription factors with differential activity between conditions or cell types. 
 

 
Fig 4. Top Five Differential Features for Dendritic Cell Analysis. A) Top features comparing DC6 cells 
vs. the other five dendritic cell types (DC1 - 5). B) Top features comparing all dendritic cells (DC1 - 6) vs. 
all monocytes (Mono1 - 4). 
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Fig 5. Breast Cancer Survival Analysis. A) Box and Whisker Plot for Concordance Index Values. Each 
gene set projection algorithm was tested 50 times for survival prediction and the concordance index 
scores are plotted with the median CI value labeled. ** emphasizes the significant difference between 
SSCVA and SSCA at p < 0.005 (Mann-Whitney U test). SSCVA is also significantly different from GSVA, 
Z-Score, ssGSEA, FP and Average at p < 0.005. B) Top ranked features in predicting breast cancer 
survival (see Methods). Avg. Rank shows the mean rank out of 187 gene sets over the fifty runs. 

2.4.5 Breast Cancer Survival Analysis 

We also analyzed a dataset from The Cancer Genome Atlas (TCGA) that includes 
RNA-seq data and clinical survival data from 1093 breast cancer patients. In order to 
attain gene set scores, we first ran the RNA-seq data through the eight projection 
algorithms using 187 cancer signature gene sets; since the analysis was focused on 
predicting five-year survival, the dataset was then reduced to the 352 patients that have 
been followed for more than five years or have passed away. Once the final datasets 
were processed, we trained a Cox proportional hazards model (Cox PHM) to predict 
survival from the encodings for each method using 80% of the training data. The trained 
Cox PHM was then used to predict survival on the training and test data and success 
was measured by the concordance index between the actual and predicted days of 
survival. This was repeated fifty times with distinct training/test splits. 
 When analyzing the Cox PHM predictions on the test data,  models for all eight 
gene set scoring methods showed a wide range of concordance index values across 
the fifty trials (Figure 5A). PLAGE-based and SSCVA-based models performed best 
(median concordance index ~0.58), while the other projection methods led to models 
with a median concordance index of ~0.54. There is no significant difference between 
the SSCVA and PLAGE results, but SSCVA concordance index values are significantly 
different than the other six models (p value < 0.005, Mann-Whitney U test).  
 Additionally, each Cox PHM outputs a list of features ranked by their effect on 
survival (see Methods). We collected this ranked list for each of the fifty models for the 
SSCA and SSCVA encodings (Figure 5B). For SSCVA, the top ranked feature across 
the fifty runs is RB_DN.V1_DN and the RB-loss signature (low RB1) is associated with 
poor disease outcome in breast cancer (Ertel et al., 2010). Additionally, the top ranked 
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feature for SSCA is E2F1_UP.V1_UP; this result is supported by previous research as 
well, as E2F1 transcript levels are related to breast cancer outcome (Hallett and 
Hassell, 2011).  

2.5 Discussion 

This work explores shallow sparsely-connected autoencoders (SSCAs) and variational 
autoencoders (SSCVAs) as methods for projecting RNA-seq data onto gene sets. When 
using test data, models trained on the SSCVA encodings often performed as well as the 
models trained on the gene-level RNA-seq data and frequently outperformed (or 
matched) the existing projection algorithms. SSCA-based models, however, performed 
well on training data, but poorly on test data. These results suggest that the SSCVA 
encoding space may be better suited to extrapolation than that of SSCA, but future work 
is necessary to confirm and interpret this trend.  
 Additionally, it is difficult to assess a method’s ability to recover known biology 
without a ground truth, but we evaluated SSCA and SSCVA on whether differential 
analysis produced reasonable results. For the blood scRNA-seq data set, we found the 
top hits for SSCVA and SSCA included known transcriptional regulators of the groups 
being tested. Moreover, for the cancer analysis, the top gene sets for both SSCA and 
SSCVA are cancer signatures related to genes previously associated with breast cancer 
survival. These observations do not prove that SSCA and SSCVA can uncover 
insightful biology in all situations, but it is encouraging that the methods identify known 
features in the data sets tested. 
 Compared to the other methods discussed, the shallow sparsely-connected 
autoencoder framework provides greater flexibility for modeling biological phenomena. 
For instance, if a transcription factor acts as both an activator and a repressor, any 
given target gene may be up or downregulated. The averaging-based methods (Z-
Score, FP, and Average) may miss this trend because the combination of high and low 
values can reduce the signal. Additionally, the averaging-based approaches and the 
enrichment-based approaches (ssGSEA and GSVA) both weight all genes equally 
within a gene set, despite the fact some genes may be more relevant to the gene set 
than others. PLAGE addresses this issue by learning a specific mapping for each gene 
set, but the algorithm is limited to finding a linear combination of gene values. SSCA 
and SSCVA, however, can learn specific nonlinear mappings for each gene set, which 
could be useful for modeling complex biological relationships. Moreover, the mapping 
functions learned by SSCA and SSCVA can potentially provide more information about 
the importance of genes within specific gene sets.  
 Further exploration is required to better understand the utility of these models for 
single-cell omics data sets. For instance, SSCVAs may be particularly useful for 
analysis of cellular differentiation. Variational autoencoders are designed to produce an 
encoding space where clusters are distinguishable, but close together, and this can 
result in smooth transitions between groups of samples; thus, the SSCVA scores can 
potentially be leveraged for identification and visualization of gene sets that transition in 
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importance throughout differentiation. Additionally, this framework could potentially be 
applied to other gene-associated omics types, such as methylation. 
 Unfortunately, a weakness of autoencoder-based methods is that the results may 
not be entirely consistent between runs; the other six methods tested yield the same 
result every time, but since autoencoders are initialized randomly each trial, the learned 
encoder function (and thus the gene set scores) may not be identical across runs. This 
observation has also been noted by Chen et al. (2018) (Chen et al., 2018) and we are 
currently exploring whether changes in activation functions, hyperparameters, and/or 
regularization can improve consistency, while maintaining classification accuracy.  
 Overall this work supports the use of SSCA and SSCVA for gene set analysis on 
large RNA-seq data sets. These methods still require more rigorous testing and 
evaluation, and future work on this project will be dedicated to improving consistency 
between runs and understanding situations and data types where SSCA and/or SSCVA 
may be particularly useful.  
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3.1 Abstract 

Aberrant neuronal development and the persistence of mitotic cellular populations have 
been implicated in a multitude of neurological disorders, including Huntington's disease 
(HD). However, the mechanism underlying this potential pathology remains unclear. We 
used a modified protocol to differentiate induced pluripotent stem cells (iPSCs) from HD 
patients and unaffected controls into neuronal cultures enriched for medium spiny 
neurons, the cell type most affected in HD. We performed single-cell and bulk 
transcriptomic and epigenomic analyses and demonstrated that a persistent cyclin 
D1+ neural stem cell (NSC) population is observed selectively in adult-onset HD iPSCs 
during differentiation. Treatment with a WNT inhibitor abrogates this NSC population 
while preserving neurons. Taken together, our findings identify a mechanism that may 
promote aberrant neurodevelopment and adult neurogenesis in adult-onset HD striatal 
neurons with the potential for therapeutic compensation. 
 

3.2 Introduction 

Huntington's disease (HD) is an autosomal dominant CAG-repeat neurodegenerative 
disease (Huntington's Disease Collaborative Research Group, 1993). Mutation of the 
huntingtin (HTT) gene results in an expanded polyglutamine (Qn) repeat within the HTT 
(mHTT) protein. Individuals with ≥40Q develop HD, with juvenile-onset cases before 
age 20 years typically occurring above 60 repeats (Cronin et al., 2019). HD symptoms 
include uncontrollable movement, psychiatric disturbances, and cognitive impairment 
(Tabrizi et al., 2019) with progressive neurodegeneration and brain atrophy. The 
primary cell type that degenerates is medium spiny neurons (MSNs) of the striatum, and 
there remain gaps in our knowledge of early and initiating events in HD systems. 
 
Due to the degenerative nature of HD, postmortem human tissues limit our 
understanding of early neuropathology of affected brain regions. Human induced 
pluripotent stem cells (iPSCs) have emerged as important models to study 
neurodegenerative disease mechanisms (Poon et al., 2017). HD iPSCs differentiated to 
neural lineages have elucidated deficits in axonal guidance, lipid metabolism, and 
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neuronal development and function (Conforti et al., 2018, HD iPSC Consortium, 2017, 
The HD iPSC Consortium, 2012), and dysregulation of the transforming growth factor β 
(Bowles et al., 2017, Ring et al., 2015), wingless-related integration site (WNT) (Lim et 
al., 2017), and p53 (Guo et al., 2013, Ring et al., 2015) signaling pathways. 
 
Increased cell proliferation in HD patient brains proportional to disease grade in the 
subependymal layer that overlies the degenerating caudate nucleus (Curtis et al., 2003, 
Curtis et al., 2005) suggests increased neurogenesis in the adult brain, potentially as an 
adaptation to disease. Using HD iPSC-derived neuronal cultures and differentiated 
embryonic stem cells (ESCs), dysregulation of neurodevelopmental pathways 
implicates deficits in striatal maturation (Wiatr et al., 2018). These signaling deficits 
occur early and are associated with phenotypes such as increased vulnerability to 
growth factor withdrawal in persistent neural progenitors (Mattis et al., 2014, Ring et al., 
2015), suggesting that while neurogenesis is initiated, neuronal maturation may be 
impaired, leaving developmentally arrested cells vulnerable to cellular stressors. The 
mechanisms involved remain undefined, and these studies have primarily centered on 
highly expanded juvenile-onset repeat lines, with little known about the more prevalent 
adult-onset repeat-induced mechanisms. 
 
Here, we use a multi-omics approach to investigate mHTT-associated molecular 
phenotypes using a modified protocol to differentiate HD patient iPSCs into highly pure 
populations of neurons with striatal characteristics. RNA sequencing (RNA-seq) and 
chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveal significant 
dysregulation in cell-cycle-associated gene ontology (GO) terms. We show the 
persistence of a cyclin D1+ mitotic cellular population that emerges among neural 
progenitors in adult-onset lines and is maintained through terminal differentiation. 
Single-cell RNA-seq (scRNA-seq) confirms that cell-cycle-related signaling cues arise 
from the mitotic population of cells, identified as neural stem cells (NSCs), rather than 
the striatal neurons present in the same population. Furthermore, we show that the 
persistence of NSC populations is the result of aberrant WNT signaling and we can 
ameliorate this population through WNT inhibition. This perhaps identifies a pathway or 
mechanistic target for future therapeutic exploration. 

3.3 Results 

3.3.1 Modified Protocol for Differentiation of iPSCs to Pure Neurons for 
Epigenomic Study 

Our goal was to define epigenetic signatures of neuronal cultures enriched for MSNs. 
iPSCs were differentiated to electrophysiologically active neurons (Arber et al., 2015, 
Telezhkin et al., 2016) with the addition of activin A to promote the formation of lateral 
ganglionic eminence (LGE)-like progenitors and the subsequent systematic 
programming of neural progenitors. Comparing the previous protocol (referred to as LI, 
due to the media containing LDN193189 and IWR1) (Telezhkin et al., 2016) to this 
protocol with addition of activin A (LIA = medium containing LDN193189, IWR1, and 
activin A), we observe an increase in the co-staining of Protein Phosphatase 1 
Regulatory Inhibitor Subunit 1B (PPP1R1B, alias DARPP-32) and B-cell 



46 
 

lymphoma/leukemia 11B (BCL-11B or CTIP-2) when tested on 33Q control neuronal 
cultures without any noticeable change to overall neuronal maturation, as seen using 
phase-contrast microscopy. There is no change in the proliferation of these cell lines at 
the neural progenitor day 16 stage (Figure S1). Four control lines (CS25iCTR18n2—
18Qn2, CS25iCTR18Qn6—18n6, CS14iCTR28n6—28Qn6 [28Q], CS83iCTR33n1—
33Qn1 [33Q]), two adult-onset lines (CS04iHD46n10—46Qn10 [46Q] and 
CS03iHD53n3—53Qn3 [53Q]), and three juvenile-range repeat lines (CS02iHD66n4—
66n4 [66Q], CS81iHD71n3—71n3 [71Q], CS09iHD109n1—109n1 [109Q]) were 
differentiated over 37 days to mature neuronal cultures in duplicate (18Qn2, 46Q) or 
triplicate (18Qn6, 28Q, 33Q, 53Q, 66Q, 71Q, 109Q) (Figure 1). Quality control 
measures were performed (Table S1). To control for sex effects, these lines include 
male (18Q, 46Q, 53Q) and female subjects (28Q, 33Q, 66Q, 71Q, 109Q). Mature 
neurons were defined by microtubule-associated protein 2 (MAP-2) expression and 
striatal neurons by DARPP-32 and BCL-11B co-staining (Figure S2); quantification can 
be found in Table S1. The 46Q iPSC line was the only sample not to reach 10% 
DARPP-32 expression in the total population following differentiation (Table S1). As this 
differentiation protocol provides a high percentage of mature neurons (79%–98% MAP-
2+ for all cell lines), the following data represent a multi-omics analysis of mature 
neuronal cultures enriched for striatal characteristics derived from iPSCs within the 
context of HD.  
 

 
 

Figure 1: Differentiation Protocol for iPSC-Derived Striatal Neuronal Cultures 
 
(A) Schematic of the differentiation protocol used for iPSC-derived striatal neurons enriched for medium 
spiny neurons (MSNs) adapted from Telezhkin et al. (2016). (B) Representative immunofluorescence 
images of cells at day 37 in control (top) and HD (bottom) cells showing that the cells are positive and co-
localize for DARPP-32 and BCL-11B (left); cells are also positive for FOX-P1 and MAP-2 (middle) and are 
GABAergic, as they express the glutamate decarboxylase-2 enzyme (right). Scale bar, 20 μm. 
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3.3.2 Transcriptomics Reveal an Upregulation of Cell-Cycle-Related Genes in HD 

Bulk, total RNA-seq was used to identify differentially expressed genes (DEGs) between 
control and HD mature neuronal cultures enriched for MSNs. Gene expression values 
and DEGs were used for principal component analysis (PCA), GO enrichment analysis 
(GOrilla) and Ingenuity Pathway Analysis. Curiously, PCA of control (red) and juvenile-
repeat range (green) lines shows no clear separation (Figure S3). Only 105 DEGs were 
identified (Table S2, columns A–H) when comparing highly expanded repeat lines with 
controls, and there was no enrichment for specific GO terms, although RE1 Silencing 
Transcription Factor (REST) was downregulated as described in neural cultures 
(Buckley et al., 2010, HD iPSC Consortium, 2017). Finding limited DEGs was surprising 
given the documented transcriptional dysregulation in HD and in models expressing 
juvenile-range repeat lengths (Valor, 2015). Control (red) and adult-onset (blue) lines, 
however, show separation along principal component 1 (PC1) (Figure 2A). Given the 
statistical difference between the control and adult-onset lines and the biological 
relevance of exploring CAG-repeat lengths more prevalent in the HD population, we 
continued our analysis to define transcriptional differences between control and adult-
onset lines. We identified 823 DEGs in adult-onset neuronal cultures enriched for MSNs 
compared with control lines (10% false discovery rate [FDR] cutoff), with 754 genes 
upregulated and 69 genes downregulated (Table S2, columns I–P). The top genes by 
adjusted p value are labeled in a volcano plot (Figure 2B). Interestingly, the second 
most statistically significantly upregulated gene was the pluripotency marker POU 
domain, class 5, transcription factor 1 (POU5F1, alias Oct4) whereas other markers of 
pluripotency were not dysregulated (NANOG homeobox gene [NANOG], Podocalyxin 
like [PODXL, alias TRA-1-81], Kruppel-like factor 4 [KLF4], MYC proto-oncogene 
[MYC]). GO enrichment revealed dysregulation of cell-cycle-associated biological 
processes (Figure 2C), DNA-binding-associated molecular functions (Figure 2D), and 
chromosomal gene-associated cellular components (Figure 2E). The top cellular 
function, predicted to be activated, is cell-cycle progression, with a p value of 7.57 × 
10−39. 
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Figure 2: Cell-Cycle-Related Genes Are Upregulated in HD Adult-Onset Cell Lines by RNA-seq 
(A) PCA of global gene expression in HD (46Q and 53Q) and control (18Q, 28Q, and 33Q) iPSC-derived 
striatal neurons. PC1, which captures the most gene expression variance between samples, shows 
separation of HD and control samples. (B) Volcano plot showing statistically significant DEGs (light blue) 
between HD (46Q and 53Q) and control (18Q, 28Q, and 33Q) samples. The most significant genes, by 
FDR, are labeled. Significant gene expression differences are skewed, showing many more upregulated 
DEGs in the HD samples (Table S2, columns A–H).(C–E) Top GO enrichment analysis terms for 
biological process (C), molecular function (D), and cellular components (E) showing enrichment for cell 
cycle, DNA binding, extracellular matrix, and chromosomal genes. 
 

3.3.3 Upregulation of Cell-Cycle-Related Genes and Transcription Factors in HD 
Identified Using Epigenomic Analysis 

 
We performed ChIP-seq on trimethylated, histone 3 lysine 4 (H3K4me3) residues to 
identify active promoters in control (18Qn2, 18Qn6, 28Q, 33Q) and HD (46Q, 53Q) 
neuronal cultures, whereby 99,765 K4me3 sites were found across the lines. Differential 
analysis of K4me3 occupancy between control and HD lines identified 2,153 sites (5% 
FDR cutoff); 1,133 of the sites had higher K4me3 levels in HD and 764 sites had higher 
levels in controls. PCA of differential peaks (Figure 3A) shows clear separation between 
control and HD K4me3-enriched signals. Differential peaks were annotated to 1,340 
genes within a window of 10 kb from transcription start sites (TSS), with a majority of 
the genes (1,143 genes) having an upregulated K4me3 signal in HD. GO enrichment 
analysis of the genes annotated to the differential sites shows enrichment of cell-cycle-
related terms (Figure 3B). 
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We overlapped the ChIP-seq and RNA-seq differential signals and found that almost 
half of the transcriptionally upregulated genes in HD (327 DEGs) had K4me3-
upregulated sites in the area next to their TSS (Figure 3C). The subset of genes 
upregulated both transcriptionally and epigenetically show higher enrichment for cell-
cycle GO terms (compare Figures 3D and 3B). We used Assay for Transposase-
Accessible Chromatin sequencing (ATAC-seq) data to localize the transcription factor 
(TF)-binding sites within the K4me3 differential sites adjusted to the upregulated DEGs. 
TF analysis of these sites suggests enrichment for binding of several TFs related to cell-
cycle regulation in HD lines (Figure 3E). 
 

 
 

Figure 3: Epigenomics Upregulation of Cell-Cycle-Related Genes in HD 
(A) PCA of K4me3 sites identified by ChIP-seq in HD (46Q and 53Q) and control (18Q, 28Q, and 33Q) 
iPSC-derived striatal neurons. (B) Top GO enrichment analysis terms for genes near K4me3 differential 
sites show enrichment for cell cycle. (C) Venn diagram of genes upregulated in HD in RNA-seq and ChIP-
seq. Upregulated K4me3 sites were found near the TSS of almost half of the transcriptionally upregulated 
genes in HD. (D) Top GO enrichment analysis terms for the RNA and ChIP-seq overlapping genes show 
enrichment for cell-cycle processes. (E) Transcription factor (TF) analysis of the regulatory sites near 
genes upregulated in both RNA and ChIP-seq. Cell-cycle-related TF-binding sites are enriched in HD. 
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3.3.4 Adult-Onset HD Cell Lines Have a Persistent Mitotically Active Population 
in Neuronal Cultures 

Additional adult-onset HD lines were added to the study to determine whether the 
altered mitotic signature was maintained across different subjects. Within each of the 
terminally differentiated adult-onset lines, we observe novel populations comprising 
cells with enlarged cell bodies that lack projections, which are quite distinct from 
neurons and are absent in control cell lines (Figure 4A). These morphologically distinct 
cell clusters are readily apparent at the end of culture, as identified by phase-contrast 
microscopy. These cells are visible at low frequency at day 18 and are observed at 
higher frequency by day 23 among differentiating neurons. These cell clusters are 
present in each of four adult-onset HD cell lines examined (CS13iHD43n13 [43Q], 46Q, 
CS87iHD50n7—50Qn7 [50Q], 53Q) by immunofluorescence and phase-contrast 
microscopy (Figures S4A and S4B). These aberrant cells are positive for the cell-cycle 
G1/S phase transition marker cyclin D1, the pluripotency marker Oct4, and the 
neuroectoderm marker nestin, and are negative for the neuronal marker MAP-2 (Figure 
4B), an unexpected finding given that the differentiation protocol produces terminally 
differentiated, post-mitotic, mature neurons. This population is not the result of the LIA-
adapted neural progenitor specification adopted in our protocol, as it is also observed 
using the previously published LI protocol (Telezhkin et al., 2016) (Figures S1D and 
S4A), which is important given the role that activin A can play in pluripotency (Beattie et 
al., 2005). 
 
Flow cytometry was used to quantify the percentage of the population composed of 
cyclin D1+ cells, which revealed a significant increase (p = 0.0003) of cyclin D1+ cells 
(48.46% ± 4.54%) in terminally differentiated HD lines compared with controls (3.654% 
± 1.206%) when grouped together (Figure 4C). Separately, HD lines (50Q, 53Q) have 
significantly more cyclin D1+ cells than controls (18Qn6 [18Q], CS71iCTR20n6—20Qn6 
[20Q]) (Figure S4C). Almost all of the cyclin D1+ cells were also nestin positive (98.5% 
± 0.55%) and a high proportion of them were Oct4 positive (73.9% ± 14.1%) (Figure 
4D), implying that Oct4 and nestin are expressed in the same cells in a large proportion 
of the cyclin D1+ population. Of the total day-37 population, Oct4 was expressed at very 
low levels in control cells (1.03% ± 0.20%) and higher in adult-onset HD cells (22.7% ± 
4.34%) (Figure S5). Importantly, there was a very low percentage (<0.054%: 20Q, 46Q, 
50Q) of Oct4-positive cells in cultures at early stages (day 8) (Figure S5). Cyclin D1+ 
cells are proliferative throughout terminal differentiation, and increasingly make up more 
of the total population as the number of days in vitro progresses; however, this does not 
seem to have a detrimental effect on the remaining post-mitotic neurons. 
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Figure 4: High Percentage of Adult-Onset HD Neuronal Populations Express Cyclin D1 Compared 
with Controls (A) Phase-contrast images show control (top) and HD (bottom) neurons, with the mitotic 
population persisting in the HD line occupying the majority of the field. Scale bar, 100 μm. (B) 
Assessment of the cyclin D1+ population by immunofluorescence shows co-staining of cyclin D1 with 
nestin (top) and Oct4 (middle), and no co-staining with MAP-2 (bottom). Scale bar, 20 μm. Images are 
representative of the four adult-onset lines tested (43Q, 46Q, 50Q, 53Q), quantification for which can be 
found in Figure S4A. (C) Analysis of cyclin D1 expression by flow cytometry shows a significant increase 
in percentage of cells expressing cyclin D1 compared with controls. Data were acquired across three 
experiments using three cell lines per condition for two experiments (18Q, 20Q, 33Q, 46Q, 50Q, 53Q) 
and one experiment with two lines per condition (18Q, 20Q, 50Q, 53Q). Data represent mean ± SEM. 
Unpaired one-tailed t test, t = 9.539, df = 4, p = 0.0003, ***p < 0.001. (D) Analysis of co-markers of HD 
cyclin D1+ cells by flow cytometry shows that the majority of cyclin D1+ cells are Oct4+ and nestin+. Data 
from 50Q and 53Q (nestin), n = 1 HD cell line; data from 46Q, 50Q, 53Q (Oct4), n = 2 HD cell lines. Data 
represent mean ± SEM. 
 
 
 

3.3.5 Single-Cell RNA-seq Identifies the Cyclin D1+ Population Specific to Adult-
Onset Lines as NSCs 

To define the composition of the persistent cyclin D1+ cell population present in HD 
cultures, we performed scRNA-seq on neuronal populations differentiated from one 
representative control (18Qn6—18Q) and HD iPSC line (53Q). Single-cell viability for 
each sample was determined (86.9% for 18Q, 80.9% for 53Q). The estimated number 
of cells sampled was 5,070 (18Q) and 3,829 (53Q) with an average number of reads 
per cell of 31,675 (18Q) and 41,939 (53Q). After quality control of data filtering, the data 
were aggregated using Cell Ranger and gene-by-cell expression matrices generated 
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and used as input for Seurat and Scanpy. The top variable genes by PCA were used for 
exploratory analysis and visualization using t-distributed stochastic neighbor embedding 
(t-SNE) (Figure 5A). An unsupervised clustering approach identified seven distinct cell 
clusters, which were annotated using known cell-type markers (Figure 5B and data not 
shown). The NSC cluster (Figure 5A) is specific to the HD cell line, with the remaining 
clusters contributed to by both cell lines. None of the clusters express the astrocyte 
marker S100 calcium-binding protein β (S100β) or glial fibrillary acidic protein (GFAP), 
and most clusters express the neuronal marker MAP2, with the neural progenitor 
marker NES only expressed in the green and brown clusters. Only the NSC cluster in 
the HD line had high levels of CCND1. CCND1 identifies the aberrant HD population, 
and we find that other genes are also upregulated in this cluster that are either lowly or 
not expressed in the other six clusters (Table S2, columns Q–V), including the 
progenitor marker NES and SRY-box transcription factor 2 (SOX2), which identifies 
these cells as an NSC-type population. 
 
While the signal from the NSCs likely obscured gene expression differences from the 
neuronal population in our bulk RNA-seq dataset, scRNA-seq allowed for the 
identification of gene expression differences in MAP2+, NES/SOX2− neurons between 
HD and control lines (Table S2, columns W–AB). In this population, genes known to be 
dysregulated in HD were observed, some of which are: activity-regulated cytoskeleton 
associated protein (ARC), Fos proto-oncogene, AP-1 transcription factor subunit (FOS), 
JunB proto-oncogene, AP-1 transcription factor subunit (JUNB), neuronal PAS domain 
protein 4 (NPAS4), and neurogranin (NRGN), suggesting the possibility that these 
populations contribute to previously defined HD molecular signatures. 
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Figure 5: scRNA-seq Reveals a Unique Population of Cells Only in the Adult HD Sample(A) t-SNE 
plot of the aggregated scRNA-seq data from both the control (18Q) and HD (53Q) samples showing 
seven cell clusters. Clusters were annotated using known cell-type marker genes and are: mature neuron 
(blue; TPD52 like 1 [TPD52L1], myocyte enhancer factor 2C [MEF2C], paired box 6 [PAX6], and SIX 
homeobox 3 [SIX3]); D1 and D2+ spiny neurons (orange; Meis homeobox 2 [MEIS2], distal-less 
homeobox 5 [DLX5], hippocalcin [HPCA]); NSC cluster (green; nestin [NES], cyclin D1 [CCND1]); D1+ 
spiny and cholinergic striatal neurons (red; DLX5, ISL LIM homeobox 1 [ISL1], Rac family small GTPase 
3 [RAC3], arginase 2 [ARG2]); D1+ spiny neurons (purple; MEIS2, protein phosphatase 1 regulatory 
inhibitor subunit 1A [PPP1R1A], CaM kinase-like vesicle associated [CAMKV], RAC3, glutamate 
ionotropic receptor NMDA type subunit 2B [GRIN2B]); neural progenitor cells (NPCs) (brown; CCND1, 
homer scaffold protein 3 [HOMER3], EBF transcription factor 1 [EBF1]); and immature neurons (pink; 
VGF nerve growth factor inducible [VGF], H1 histone family member 0 [H1F0]). (B) Stacked violin plot 
showing expression of glial, neural, and neuronal cell-type markers. CCND1 expression is mainly visible 
in the NSC cluster, which only exists in the HD (53Q) sample. 
 
 

3.3.6 Inhibition of the WNT Signaling Pathway Abrogates NSC Populations in HD 
Neuronal Cultures 

Two of the top three transcriptional regulators with the largest changes in RNA-seq 
expression are transcriptionally regulated by WNT signaling: Oct4 (POU5f1, 6.479-fold 
increase) and CCND1 (5.186-fold increase). Analysis of TF-binding sites demonstrates 
that two of the top four regulatory motifs near genes upregulated in both RNA-seq and 
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ChIP-seq are MYC and E2F, which are both involved with WNT signaling (Hughes and 
Brady, 2005, Shi et al., 2015, Yeo et al., 2011) (Figure 3E). Examination of the WNT/β-
catenin signaling pathway reveals significant dysregulation of several key members, 
including components of the β-catenin destruction complex, APC regulator of WNT 
signaling pathway (APC), and glycogen synthase kinase 3β (GSK3β) downregulated in 
HD lines (Figure 6A). Additionally, scRNA-seq demonstrates that the dysregulation we 
observe in the WNT/β-catenin signaling pathway from the bulk analysis resides in the 
NSC population, which has increased expression of Wingless-Type MMTV Integration 
Site Family, Member 7A (WNT7A), increased expression of Transcription Factor 3 
(TCF3), increased expression of frizzled transcripts (frizzled class receptor 2 [FZD2] 
and frizzled class receptor 7 [FZD7]), decreased expression of β-catenin destruction 
complex transcripts (APC and GSK3β), and increased expression of WNT 
transcriptional targets (CCND1) (Figure 6B). We were unable to detect POU5f1 
expression in many of the HD cells (about 90 positive cells in HD lines and three 
positive cells in controls), presumably due to lower sequencing depth using the scRNA-
seq platform. 
 
Because of the regulatory role of WNT/β-catenin over the expression of mitotic and 
pluripotency genes, we hypothesized that downstream correction of the WNT/β-catenin 
signaling pathway might reduce the mitotic cues necessary for the persistence of the 
NSC population in HD lines. Therefore, we titrated several WNT inhibitors that act 
downstream of the β-catenin destruction complex and found that the addition of ICG-
001 (hereafter ICG) eliminates the mitotic cell population within HD neuronal cultures. 
ICG is a selective, potent inhibitor of β-catenin-mediated transcription by preventing the 
interaction between CREB-binding protein and β-catenin (Emami et al., 2004). ICG 
addition at day 16 in the differentiation protocol significantly reduced cyclin D1 protein 
expression in HD lines (50Q, 53Q) by a factor of 10 (Figures 6C and 6D). A highly 
expanded repeat line (109Q) was assessed to determine the potential effect of ICG 
based on polyQ length; however, no additional effect was observed (Figure S6). 
Representative phase-contrast images of a representative adult-onset line (53Q; Figure 
6E) demonstrate that ICG treatment abrogates the morphologically distinct NSC 
populations within adult-onset HD neuronal cultures. Additionally, ICG does not alter 
MAP-2 expression (Figure S6A), suggesting that the presence of neurons is not altered 
by treatment. While expression of synaptophysin and Disks Large MAGUK Scaffold 
Protein 4 (alias PSD95) remain unchanged in HD lines (Figures S6B and S6C), 
expression of both is reduced in control lines by ICG treatment (Figure S6B). Notably, 
for these differentiations the 50Q line overwhelmingly had the highest percentage of 
mitotic cells and therefore, correspondingly, DMSO-treated 50Q cells have the lowest 
levels of MAP-2, PSD95, and synaptophysin overall. 
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Figure 6: WNT/β-Catenin Signaling Is Significantly Dysregulated and WNT Inhibition Rescues 
Aberrant Cyclin D1 Overexpression while Abrogating the Mitotic Population of Cells in Adult-
Onset Neurons (A) Dysregulation of the WNT/β-catenin signaling pathway from bulk RNA-seq was 
analyzed using Ingenuity Pathway Analysis. While Frizzled receptors are upregulated, members of the β-
catenin destruction complex, specifically APC and GSK3β, are downregulated, allowing for upregulation 
of WNT/β-catenin transcriptional targets, such as CCND1 and Oct4 (POU5F1). Orange molecules are 
upregulated, blue are downregulated, and black are targeted for destruction. A full legend can be found in 
Figure S5. 46Q and 53Q lines were compared with controls with 18Q (2 clones), 28Q, and 33Q in 
triplicate using a 0.1 FDR. (B) Dot plots show expression of WNT/β-catenin pathway genes and CCND1. 
The NSC cluster shows higher expression of all WNT-related genes except for genes of the destruction 
complex, APC and GSK3β, and WNT7A, which shows higher expression in the NSC cluster over all other 
clusters besides the cortical cluster. (C) The WNT inhibitor ICG or DMSO was added to the NPC 
population at day 16 of differentiation. Cells were harvested at day 37 and western blots were performed 
for cyclin D1, MAP-2, synaptophysin, and PSD95 using LI-COR. (D) Quantitation demonstrates that 
treatment with ICG completely rescues aberrant overexpression of cyclin D1 in adult-onset striatal 
neurons (50Q and 53Q). For analysis, lines were grouped by genotype. White bars represent DMSO-
treated cells and black bars represent ICG-treated cells. Analysis was done using a two-way ANOVA with 
Bonferroni correction. Multiplicity-adjusted p values were calculated for each comparison at a 95% 
confidence interval. Data represent mean ± SEM. ∗∗∗∗p < 0.0001. Data are from two independent 
experiments using four cell lines grouped by control (18Q, 20Q) and HD (50Q, 53Q). Further statistical 
details can be found in Tables S3 and S4. (E) Representative phase images show the mitotic population 
of cells at day 37 in adult-onset line (53Q) treated with DMSO (top-right panel), which is completely 
abrogated by ICG addition (bottom-right panel). The 53Q line is a representative adult-onset line. Scale 
bar, 100 μm. 
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3.4 Discussion 

 
Multi-omics-level analyses were performed on HD neuronal cultures enriched for MSNs 
using a protocol that induces increased expression of LGE markers including distal-less 
homeobox 1 and 2 (DLX1/2) and GS homeobox 2 (GSX2) mRNA. This response is 
likely via upregulation of BCL-11B, which is important for MSN development (Arlotta et 
al., 2008). Introduction of activin A increased co-localization of BCL-11B and DARPP-
32+ neurons, which is more indicative of MSNs than DARPP-32 positivity alone (Carri et 
al., 2013). Total RNA-seq and scRNA-seq showed that the primary transcriptional 
differences were reflected in a persistent population of NSCs within terminally 
differentiated, post-mitotic neuronal cultures from patients with adult-onset repeats. 
These findings are consistent with mitotic aberrations found in HD iPSCs differentiated 
toward a striatal lineage (Mattis et al., 2014). Here, we uncover a key mechanism 
underlying this mitotic persistence. 
 
mHTT has an impact on neurogenesis in HD knockin (Molero et al., 2009), transgenic 
R6/1 (Lazic et al., 2004), and R6/2 (Phillips et al., 2005) mouse models, and patient 
postmortem tissue (Curtis et al., 2003, Curtis et al., 2005). Neurodevelopmental 
changes associated with mHTT expression are observed in other stem cell-derived 
models: HTT-null NSCs derived from mouse ESCs (Lo Sardo et al., 2012), HD patient-
derived iPSC striatal cells (Conforti et al., 2018), and an isogenic allelic series of human 
ESCs differentiated toward a cortical neuron fate form disorganized neural rosettes 
(Ruzo et al., 2018), suggesting HD-related aberrations during development of the neural 
tube. While technical limitations of scRNA-seq limit analysis of Oct4 transcript 
abundance specifically within the NSC population, our observation of Oct4 persistence 
by bulk RNA-seq is corroborated by persistent Oct4 expression found in neuronal 
differentiations (Conforti et al., 2018). Expression of mHTT impairs Oct4 protein 
downregulation even in highly expanded repeat lines (60Q, 109Q, 180Q) during 
differentiation when control cultures transition from pluripotency to neuroectoderm 
formation. Aberrant maintenance of Oct4 expression in ESC-derived neuronal cultures 
has also been noted with expanded CAG repeats in other contexts, for example within 
the hypoxanthine phosphoribosyltransferase (Hprt) gene (Lorincz et al., 2004). 
Temporal dysregulation of other developmental markers has also been observed; 
juvenile HD iPSCs differentiated toward a striatal fate maintain nestin+ NPCs 
susceptible to death by brain-derived neurotrophic factor withdrawal, suggesting that 
mitotically persistent populations of cells are vulnerable to factors mimicking the HD 
environment (Mattis et al., 2014). These nestin+ NPCs were reduced by targeting the 
canonical Notch signaling pathway and lowering HTT by antisense oligonucleotide 
treatment (Mathkar et al., 2019). Additionally, transcriptomic analysis of HD iPSC 
isogenic lines showed that differences related to neuronal development and dorsal 
striatum formation occur at the NSC stage (Ring et al., 2015), further implicating the 
NSC stage in manifestation of developmental aberrations due to mHTT expression. In 
HD patient iPSC-derived neural cultures, one-third of all gene expression changes were 
related to pathways involved in neuronal development and maturation (HD iPSC 
Consortium, 2017). 
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Several studies have implicated mitotic persistence in altered neurogenesis in HD (Agus 
et al., 2019, Ooi et al., 2019). ESC-isogenic HD lines differentiated into forebrain 
neuronal cultures showed altered transcriptional signatures for cell-cycle progression. 
Other studies implicated cell-cycle re-entry as a mechanism of mitotic dysregulation in 
HD (Ditsworth et al., 2017, Liu et al., 2015, Pelegrí et al., 2008) and other 
neurodegenerative diseases (Höglinger et al., 2007, Seward et al., 2013). In contrast, 
our data indicate a failure to exit the cell cycle as the primary mechanism of persistent 
mitosis. It is possible that rare cells persist randomly and give rise to a proliferating 
population during differentiation as opposed to a specific mHTT-mediated effect; 
however, this is unlikely given that this persistent mitotic population is only observed in 
the adult-onset lines, not control lines, and is present in all adult-onset lines tested (n = 
4). Furthermore, scRNA-seq data showed no clusters having significant differentially 
expressed levels of CCND1 between HD and control cells that also showed high levels 
of mature neuronal marker expression, which would be expected if mature neurons 
were re-entering the cell cycle. 
 
The work presented offers a mechanism for mitotic persistence, aberrant WNT signaling 
leading to propagation of mitotic cell populations. This prolonged mitotic state may 
underlie the transient excess neurogenesis observed in animal models of HD and 
patient adult striatum (Curtis et al., 2003, Ernst et al., 2014, Tattersfield et al., 2004). 
Altered WNT signaling is implicated in HD pathogenesis. β-Catenin pathway modulation 
rescued the toxic effects of mHTT expression and increased the life span in HD 
Drosophila, attenuated neurodegeneration of primary striatal neurons (Godin et al., 
2010), and WNT dysregulation may promote aberrant angiogenesis-related signaling 
observed in HD iPSC-brain microvascular endothelial cells (Lim et al., 2017), 
suggesting that this pathway may be critical in understanding primary mechanisms 
affected as a consequence of chronic mHTT expression. 
 
While HTT interacts with the β-catenin destruction complex in vitro and in vivo, the 
expanded polyQ region in mHTT prevents binding, leading to toxic β-catenin 
stabilization and eventual neurodegeneration (Godin et al., 2010). One possibility for the 
presence of the NSC population only in adult-onset and not in juvenile-range repeat HD 
neuronal cultures is a threshold activation of the WNT pathway controlled by polyQ 
length. In neurons, highly expanded polyQ lengths may cause structural changes 
different from those observed in adult-onset cases that further dysregulate protein-
protein interactions and downstream signaling (Caron et al., 2013) such that the highly 
expanded polyQ region no longer prevents β-catenin from binding the destruction 
complex and allows for β-catenin degradation, thus preventing transcription of WNT 
targets such as CCND1 and Oct4. This could allow juvenile lines to follow the same 
developmental paradigm as control lines without the presence of aberrant NSCs in 
neuronal populations. 
 
Many neuronal induction protocols exploit inhibition of the WNT pathway due to its role 
in determining neural crest cell fate (Menendez et al., 2011); two striatal differentiation 
protocols add the WNT inhibitor DKK1 after initial neural induction (Aubry et al., 2008, 
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Delli Carri et al., 2013). Consistent with the hypothesis that WNT may be differentially 
activated in the adult-onset versus juvenile-repeat striatal-enriched neuronal cultures, 
RNA-seq showed that β-catenin destruction complex members were downregulated in 
adult-onset lines compared with similar levels of both APC and GSK3β in control and 
juvenile lines (data not shown). With the addition of CHIR99021, the WNT agonist, in 
our protocol, the adult-onset lines may no longer be able to compensate for the 
overactivation of WNT, thereby uncovering a previously undefined mechanism. 
 
We expected to uncover myriad cell-intrinsic differences between control and juvenile 
HD neuronal cultures and were surprised to find few transcriptional differences. This 
may be informative for the neurodegenerative disease field in the context of pure 
populations of iPSC-derived cell types to investigate cell-intrinsic effects. Furthermore, 
these findings perhaps highlight the phenotypic differences observed between adult- 
and juvenile-repeat HD, which present quite differently, with manifestation of dyskinesia 
and global neurodegeneration observed in juvenile cases not present with adult onset 
(Ruocco et al., 2006). We do not know whether the lack of transcriptional differences 
between control and juvenile groups is a consequence of (1) juvenile-repeat cell 
cultures bypassing some point in the differentiation process, (2) cells within the juvenile-
repeat lines that remain as NSCs being highly susceptible to cell death, (3) the length of 
the polyQ repeat expansion acting as flexible domain that modulates the spatial 
proximity of N17 and polyproline-flanking domains, thereby affecting downstream 
signaling (Caron et al., 2013), or (4) the need for signals from other cell types for full 
manifestation of disease. However, regarding point (4), scRNA-seq data from MAP2+, 
NES/SOX2− neurons identifies genes known to be dysregulated in HD neurons, 
suggesting that there are HD signatures in adult-onset iPSC-derived neurons that 
overlap with previously published data (HD iPSC Consortium, 2017). The protocol used 
here reflects very early cell-intrinsic effects. Thus far, we have observed the mitotic 
population of cells in all adult-onset lines differentiated with this protocol, but only rarely 
in juvenile-repeat lines and never in control lines. 
 
Overall, our data show that there is a persistent, mitotically active cell population unique 
to adult-onset repeat HD cell lines that we can prevent in vitro by targeting the WNT 
pathway with the application of the WNT inhibitor ICG. While ICG is used as a tool to 
demonstrate the mechanism behind the persistence of NSCs in the context of HD, we 
speculate that specific components of the WNT signaling pathway inhibited by ICG 
could be therapeutic targets for HD with the potential to compensate for 
neurodevelopmental defects. 
 

3.5 Methods 

3.5.1 iPSC Differentiation 

iPSC lines were generated as described by HD iPSC Consortium (2017). iPSCs were 
cultured on hESC-qualified Matrigel (Corning) in mTESR1 (STEMCELL Technologies) 
and passaged with Versene (Gibco). At 60%–70% confluency, medium was changed to 
start neural differentiation as described by Telezhkin et al. (2016) However, at day 8 
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cells were replated in activin A-containing medium (see Supplemental Experimental 
Procedures). 

3.5.2  Immunofluorescence 

Cells grown on glass coverslips were fixed with 4% paraformaldehyde (PFA; Electron 
Microscopy Sciences) in PBS for 10 min. Antibody incubations and imaging are 
described in Supplemental Experimental Procedures. 
 

3.5.3 RNA-seq 

Total RNA was isolated using the Qiagen RNeasy Kit and QIAshredders for cell lysis. 
One microgram of RNA with RNA integrity number values >9 were used for library 
preparation using the strand-specific Illumina TruSeq Total RNA protocol. Libraries were 
sequenced on the HiSeq 2500 platform using 100 cycles to obtain paired-end 100 reads 
at >50 million reads per sample. 
 

3.5.4 scRNA-seq 

Samples for scRNA-seq were harvested using Dispase (Gibco) for 30 min at 37°C, 
pipetted off the plate with advanced DMEM/F12 (1:1) with 2% B27, and collected by 
centrifugation. Cells in 0.1% BSA PBS were filtered through a 70-μm cell strainer and 
counted. Cells were resuspended at 700 cells/μL in 0.04% BSA in PBS at >80% 
viability. 
 

3.5.5 ChIP-Seq 

Frozen cell pellets (minimum of two replicates per line) were resuspended in lysis buffer 
and incubated on ice for 20 min. Chromatin was digested and samples processed as 
described in Supplemental Experimental Procedures. Libraries were prepared using 
NEBNExt Ultra II DNA Library Prep Kit for Illumina (NEB) and sequenced on an Illumina 
HiSeq 2000 for single-end 50-bp reads. 
 

3.5.6 ATAC-Seq 

Cryostored cell samples were processed in duplicates as previously described (Milani et 
al., 2016). The ATAC-seq libraries were sequenced on an Illumina HiSeq 2000 for 
single-end 50-bp reads. 
 

3.5.7 Data Processing 

For RNA-seq, fastq files were trimmed using a base quality score threshold of >20 and 
aligned to the hg19 genome with TopHat 2. Reads passing quality control were used for 
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quantification using HTSeq and analyzed with the R package DESeq2 to identify DEGs. 
Genes passing an FDR of 10% were used for GO enrichment analysis using GOrilla 
(Eden et al., 2007, Eden et al., 2009) (http://cbl-gorilla.cs.technion.ac.il/). 
 
For scRNA-seq, fastq files were quality controlled and aligned to the reference 
transcriptome to obtain a gene count matrix. Before downstream tertiary analysis, 
quality control of cells was performed by filtering out low-quality cells and low-
abundance genes. After quality control and expression matrix formation, normalization 
was performed using UMI (unique molecular identifiers), and log transformation was 
used to control variance. Dimension reduction was used to visualize and explore major 
features of the data using PCA and t-SNE, and differential expression statistical 
analyses were performed using Seurat and Scanpy. Cell types were assigned based on 
known cell-type markers. 
 
For ChIP-seq, fastq files were aligned to the hg38 genome assembly using Bowtie2. 
The ENCODE blacklist regions and PCR duplicates were removed (using SAMtools and 
Picard). Peak calling was done using MACS2 (--broad flag, q-value < 0.1). Differential 
analysis of the peaks was performed with Diffbind (Ross-Innes et al., 2012) 
(http://bioconductor.org/packages/DiffBind/), using EdgeR with FDR <0.05. Differential 
peaks were annotated to genes within a window of 10 kb from the TSS. GO enrichment 
analysis was done using Panther (Mi et al., 2012, Thomas et al., 2003) 
(http://pantherdb.org/webservices/go/overrep.jsp). 
 
For ATAC-seq, fastq files were aligned to hg38 genome assembly using Bowtie2. 
ENCODE blacklist regions and PCR duplicates were removed (using SAMtools and 
Picard). Peak calling was done using MACS2 (--nomodel --shift −100 --extsize 200 
settings and q-value < 0.05). The consensus peak file for all samples was generated 
using Diffbind. 
 

3.5.8 Motif Analysis 

HOMER (v.4.9.1) was used to identify TF motifs that are enriched in the differential 
ChIP-seq peaks. ATAC-seq data were used to identify TF-binding locations; thus, for 
motif analysis we considered consensus ATAC-seq peaks that overlap with the 
aforementioned differential ChIP-seq peaks. To identify enriched motifs, we used the 
findMotifs function in HOMER with default parameters; we looked for motif enrichment 
in the consensus ATAC-seq peaks within ChIP-seq differential peaks compared with a 
background of all consensus ATAC-seq peaks that are within 10 kb of the TSS of any 
gene. 
 

3.5.9 Flow Cytometry 

Neuronal cultures were harvested at day 37 and fixed in suspension with 4% PFA. 
Aliquots of cells were made for FMO (Fluorescence Minus One) and unstained controls 
pooled from all samples incubated for 2 h at room temperature with primary antibody, 
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washed three times, and incubated with secondary antibody for 30 min. Cells were 
washed and resuspended in FACS (fluorescence-activated cell sorting) buffer, pipetted 
through a cell strainer (Falcon), and run on a BD LSRII flow-cytometry machine. Gating 
was performed using BD FACSDiva software. Further analysis was performed using De 
Novo FCS Express 6. 
 

3.5.10 Western Blotting 

Cells for western blots were scraped and harvested in cold PBS-Mg2+/-Ca2+ and flash 
frozen until processing. Analysis was performed using the LI-COR Odyssey CLx 
imaging system (see Supplemental Experimental Procedures). 
 

3.5.11 Statistical Analysis 

Error bars represent the mean ± SEM where stated. One-tailed t tests were used for 
comparison of two groups of data. For dataset comparisons of three or more, one-way 
ANOVA was used; for comparing datasets with two variables among multiple samples, 
two-way ANOVA was used as stated. Statistical analyses were performed using 
GraphPad Prism v.8 using p < 0.05 as significant. Further information from statistical 
tests not in figure legends can be found in Tables S3 and S4. For specific assay 
statistical information, see Supplemental Experimental Procedures. 
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Chapter 4- Omics Integration for Understanding Subtype-
Specific Drug Response in Glioblastoma Cell Lines 

Authors: Maxwell P. Gold and Obada T. Alhalabi 
 
This section includes parts of a manuscript focused on understanding subtype-specific 

response to dasatinib in glioblastoma cell lines. The data was generated and processed 

by Obada Alhalabi and collaborators in the Goidts lab at the German Cancer Research 

Center (DKFZ). My primary contributions were analyzing the proteomics and 

phosphoproteomics data and developing the SamNet 2.0 algorithm to integrate the 

shRNA screen hits with the proteomics data. I have included my sections of the 

manuscript and provided brief summaries of other sections for context. 

 

4.1 Abstract 

Glioblastoma is a highly aggressive brain tumor with a five year survival rate of 5% 
(Stupp et al., 2010). There are three molecular subtypes of IDH-wt glioblastomas 
(classical, mesenchymal, and proneural) and single-cell RNA-sequencing (scRNA-seq) 
studies revealed that the subtypes contain many of the same types of cells, but at 
distinct proportions (Patel et al., 2014, Neftel et al., 2019). It was recently established 
the tyrosine kinase inhibitor dasatinib shows efficacy in mesenchymal-like cells, but not 
proneural-like cells. We used two experimental approaches to better understand this 
subtype-specific response, with the goal of identifying targets for a combination therapy 
that would be more effective against proneural-like cells. First, we collected protein and 
phosphoprotein data from proneural and mesenchymal cell lines treated with dasatinib 
and compared the results to data from untreated controls. We also collected shRNA 
screen data from treated and untreated cells to identify genes that affect dasatinib 
efficacy. These experiments led to many potential targets for combination therapies, so 
we developed a significantly improved version of the SamNet multi-commodity flow 
algorithm to integrate the data and help prioritize hits for validation. Together, these 
analyses highlighted cell cycle genes, and specifically WEE1, as a strong potential 
combination therapy target to affect proneural-like cells. This result was validated by 
showing that WEE1 inhibition has synergistic effects with dasatinib in proneural cell 
lines, but not mesenchymal ones. 
 

4.2 Introduction 

Glioblastoma (GBM) is the most frequent malignancy of the nervous system (Louis et 
al., 2016). Even after aggressive therapies like surgical resection and chemo-
radiotherapy, the patient prognosis is dire, with a median survival of 12 to 15 months 
(Stupp et al., 2005). Genomic, transcriptomic, methylomic, and proteomic studies have 
revealed molecular heterogeneity between GBM samples (Brennan et al., 2013, Patel et 
al., 2014, Sturm et al., 2012; Wang et al., 2018, Verhaak et al., 2010) and the research 
community recognizes three consensus subtypes of GBM: mesenchymal (MES), 



67 
 

proneural (PN) and classical (CL). Additionally, single-cell and lineage-tracing studies 
highlight GBM heterogeneity by showing spatial and temporal diversity of subtypes 
within the same patient (Klughammer et al., 2018; Neftel et al., 2019; Patel et al., 2014). 
This diversity of cells has been implicated in GBM resistance to chemo-radiotherapy 
because even if treatments are effective against one cell type, other resistant 
populations can come dominate the tumor (Bao et al., 2006; Campos et al., 2014; Chen 
et al., 2012).  
 
In a previous study, we showed that the MES subtype was more sensitive to tyrosine-
kinase inhibitor dasatinib than the PN subtype in subtype-specific models of GBM stem 
cells (GSCs) (Alhalabi et al., 2021). Even though dasatinib may eliminate MES GSCs, it 
would be better to have a combination therapy capable of eradicating both MES and PN 
GSCs. In this work, we used two experimental approaches to study dasatinib response 
and identify potential combination therapies to improve efficacy against PN cells. First, 
we collected protein and phosphoprotein expression data from treated and untreated 
cells for both MES and PN models to better understand the molecular response to 
dasatinib. In the second experiment, we used a pooled shRNA screen, which is 
commonly used to study tumor vulnerability in other cancers (D'Alesio et al., 2016,  
Khorashad et al., 2015, Schramm et al., 2019). For these experiments, shRNAs are 
used to reduce the expression of specific genes and determine the effect on cell 
viability. In our case, we performed the experiment on dasatinib-treated and untreated 
cells from both subtypes to identify genes that affect dasatinib efficacy.  
 
We also sought to computationally integrate the data from both assays to prioritize hits 
and get a more comprehensive understanding of subtype-specific dasatinib response.  
Network flow algorithms like ResponseNet (Yeger-Lotem et al., 2009) and SamNet 
(Gosline et al., 2012) have been previously used to integrate data from multiple 
biological assays. These methods work by creating a directed network with hits from 
one assay (e.g. proteomics) at the top and from another assay (e.g. shRNA screen) at 
the bottom. These hits are represented by nodes in a network and are connected 
through a protein-protein interaction network where edges represent physical 
interactions. Flow travels from the top of the network, through some select proteins from 
the PPI, and then down to the bottom, resulting in a subnetwork of particularly important 
proteins that connect the two datasets. These methods have led to biological insights in 
Parksinon’s Disease and non-small cell lung cancer (NSCLC) but are limited because 
they do not adjust for high-degree hub nodes and cannot handle data from more than 
two assays. 
 
In this work, we developed the SamNet 2.0 algorithm to address these flaws and 
integrate the proteomics response data with the shRNA screen hits. Analysis of the 
individual assays and integrated network highlighted cell cycle genes, and specifically 
WEE1, as an attractive target for combination therapy in PN cells. This hypothesis was 
validated in cell line models, suggesting that WEE1 inhibition + Dasatinib could be an 
effective combination for eliminating MES and PN cells in GBM tumors. 
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4.3 Results 

4.3.1 Mesenchymal and Proneural cells have distinct proteomic response to 
dasatinib 

We compared the proteomic response to dasatinib between the mesenchymal and 
proneural cell lines by analyzing the 1617 features that were detected in all samples 
and that map uniquely to a single protein. Dasatinib leads to the significant 
dysregulation of 570 proteins in mesenchymal cells (418 down, 152 up) and 319 
proteins in proneural cells (244 down and 75 up) (one-sample t-test adj-p < 0.01). There 
are 245 proteins significantly downregulated in mesenchymal cell lines, but not in 
proneural cell lines; using TopGO (Alexa and Rahnenführer, 2007), we found that these 
proteins are enriched in many gene sets related to translation (e.g. translational 
initiation, p = 6.7E-3) and the cell cycle (e.g. G1/S transition of mitotic cell cycle, p = 
6.9E-5). The 71 genes significantly downregulated only in the proneural cells are 
enriched for categories related to the nervous system (e.g. Neuron Death, p = 0.015). 
 
We then directly compared the subtypes, identifying 197 proteins with a significantly 
different response to dasatinib (adj-p <0.01). The 80 genes whose mean response to 
dasatinib is lower in the proneural cell lines are enriched for gene sets related to 
metabolism, such as carbohydrate catabolic process (p=0.002). The 117 proteins lower 
in mesenchymal cells are enriched for gene sets related to DNA replication initiation (p 
= 2.5E-5) and complex assembly involved with cell cycle DNA replication (p = 1.3E-7). 
This is consistent with the previous analysis and suggests that proteins necessary for 
the cell cycle and DNA replication are being downregulated more substantially in 
mesenchymal cells than proneural cells.  

4.3.2 Subtype specific phosphoproteomic response to dasatinib 

We performed a similar analysis for the phosphoproteomic data on 1153 unique 
phosphopeptides. When comparing the mesenchymal and proneural cells, we found 
201 phosphosites that differ significantly in their response to dasatinib (adj-p < 0.05). 
We performed hypergeometric tests using the PhosphositePlus database (Hornbeck et 
al., 2015) to determine if these differential phosphosites are enriched for targets of 
particular kinases; Protein Kinase A targets (adj-p = 0.039) and Protein Kinase C targets 
(adj-p = 0.039) are both significantly overrepresented in the differential phosphosites, 
suggesting these kinases may have subtype-specific responses to dasatinib. Figure 1A 
highlights the differential phosphosites that are targets of PKA based on 
PhosphositePlus or Scansite (Obenauer et al., 2003), another database of 
computationally-derived kinase-phosphate targets. 15 of the 201 differential 
phosphosites are phosphorylated by PKA and 10 of those 15 show a lower response in 
the mesenchymal cells.  
 
We also performed PTM-SEA (Krug et al., 2019) , a modification of Gene Set 
Enrichment Analysis (Subramanian et al., 2005), which utilizes all the collected 
phosphoproteomics data to identify relevant sets of phosphosites. We first implemented 
PTM-SEA for the proneural and mesenchymal cells separately; for the mesenchymal 
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cell lines, Casein Kinase 2A1 targets are significantly dysregulated (adj-p = 0.030), 
while there are no significant results for the proneural cells. We then re-ran PTM-SEA 
using the difference in response to dasatinib between the mesenchymal and proneural 
cell lines and CDK7 targets are the top hit. This phosphosite set does not reach 
statistical significance (adj-p= 0.059), but the trend supports the proteomic evidence that 
cell cycle processes may distinguish the mesenchymal and proneural response to 
dasatinib.  
 
Given the PTM-SEA and proteomics results, we further investigated the phosphosites 
on genes related to the cell cycle (Figure 1B). CDK1-T161, the activating phosphosite 
on CDK1  (Li et al., 2016), and RB1-T373, the site on RB1 whose phosphorylation 
releases E2F and promotes the cell cycle(Gorges et al., 2008), are both significantly 
downregulated by dasatinib in the mesenchymal group but not the proneural cells . 
Additionally, multiple phosphosites on MCM2 are significantly downregulated compared 
to baseline and lower in mesenchymal cells than proneural ones (Stead et al., 2012). 
Even though these data suggest downregulation of the cell cycle in mesenchymal cells, 
we also observe significant upregulation of the activating phosphosite (T170) on key cell 
cycle protein CDK7 in mesenchymal cells (Martinez et al., 1997). Overall, these data 
indicate that key cell cycle phosphosites are affected more substantially in the dasatinib-
sensitive mesenchymal cells than the dasatinib-resistant proneural ones. 
 
 

 
Figure 1: Phosphosite analysis of PKA and cell cycle proteins.  
A) Log2 fold-change in response to dasatinib for targets of Protein Kinase A. Blue indicates mesenchymal 
cell lines and green labels proneural cell lines.  
B) Log2 fold-change in response to dasatinib for phosphosites on genes related to the cell cycle. Blue 
stars below chart indicate whether the log2 fold change is significantly different from 0 for either subtype. 
The three black stars indicate that the response is significantly different between mesenchymal and 
proneural cell lines. 
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4.3.3 Brief Summary of shRNA Screen Results from DKFZ 

After analyzing the molecular response to dasatinib in each subtype, we employed a 
pooled shRNA screen to understand what genes affect dasatinib response. This method 
uses a barcoded library of 27500 shRNAs against 5000 genes and relies on the 
transduction of shRNAs cloned into a vector that includes TagRFP for monitoring. The 
transduced cells were randomized to Dasatinib (or DMSO) treatment at an the IC20 
concentration. Additionally, a set of all cells were harvested at 18 hours after 
transduction and used as an untreated baseline. Principal Component Analyses (PCAs) 
of the screen data revealed separation between baseline, PN, and MES GSCs (Figure 
2A). Since the MES cells are already sensitive to dasatinib, we focused our analysis on 
PN cells by comparing the viability in the dasatinib condition to the DMSO-treated 
condition. Figure 2B summarizes the strongest hits from the PN cells. 
 
 

 
 
Figure 2: shRNA screen summary.  
A) shRNA screen Principal Component Analysis. PCA of shRNA screen results shows distinct clustering 
between baseline, DMSO, and Dasatinib conditions. Blue circles are for MES cell lines, while green are 
for PN cell lines.  
B) Top screen hits for PN cells. Chart shows the logCPM values comparing dasatinib, DMSO, and 
baseline conditions. These genes are the top p-values when comparing the Dasatinib and DMSO 
conditions in the PN subtype (see Methods). 
 
 

4.3.4 SamNet 2.0 For Integrating Omics Data Using Multi-Commodity Flow 
Algorithms 

The omics and shRNA data provided new information about how dasatinib affects 
proneural and mesenchymal glioblastoma cell lines. The proteomics and 
phosphoproteomics revealed features whose expression were significantly altered by 
dasatinib, while the shRNA screen highlighted genes that can be targeted to potentially 
enhance the effectiveness of dasatinib. We sought to integrate these data to prioritize 
shRNA screen hits for validation and to better understand how the proteomic effects of 
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dasatinib could lead to shRNA screen hits. To do this, we developed and implemented 
SamNet 2.0, a novel algorithm for data integration.  
 
SamNet 2.0 builds on established network flow methods, such as ResponseNet (Yeger-
Lotem et al., 2009) and SamNet (Gosline et al., 2012), which have been used to 
integrate distinct biological data types. ResponseNet (Figure 3A) works by creating a 
directed graph that connects hits from one assay (e.g. proteomics) to hits from another 
experiment (e.g. shRNA screen), through an established biological network like a 
protein-protein interaction (PPI) network. Each edge in the directed network is assigned 
a specific capacity and penalty based on the experimental data or prior knowledge; 
these values are chosen to encourage flow through strong experimental hits and high-
confidence protein-protein interactions. After the setup, a minimum-cost maximum-flow 
problem is solved, where flow travels through a small number of nodes revealing an 
optimal network of important features that connect the two experiments. By using the 
PPI as prior knowledge, this final network can include key proteins that were not 
measured by either experiment.  
 
SamNet (Figure 3B) is a multi-commodity flow algorithm that was designed to run 
ResponseNet for multiple conditions (e.g. proneural cells and mesenchymal cells) in the 
same optimization. Each condition has specific hits at the top and bottom of the 
network, but the flow through the PPI must be shared among all conditions; Gosline et 

al. (2012) found that this setup reveals more subtype-specific features than 
implementing ResponseNet individually for each condition. For this work, we designed 
and implemented SamNet 2.0 (Figure 3C), which significantly improves upon SamNet in 
two ways. First, SamNet 2.0 penalizes high-degree hub nodes to prevent highly 
connected proteins, like ubiquitin, from dominating the solution. Second, SamNet 2.0 
incorporates baseline expression data so that the optimal network is more likely to 
contain proteins that are present in a condition of interest (see Methods).  
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Figure 3: Summary of network flow algorithms.  
A) ResponseNet Setup. A source node (S) is connected through directed edges to hits from one assay 
(e.g. differential proteins) from one condition (e.g. mesenchymal glioblastoma cells). These hits 
(represented by rectangles) are connected to non-hit proteins (represented by gray circles) through edges 
that represent physical interactions. The network then ends with hits from another assay (e.g. shRNA 
screen hits) represented by diamonds which have outgoing edges into a sink node (T). Each edge in the 
network has an upper limit of flow and a single penalty (wij). The wij penalty is assigned such that stronger 
hits and more confident edges have lower penalties (see Methods)   
B) SamNet Setup: SamNet is setup the same as ResponseNet, except now there are multiple conditions 
represented by different colors (highlighted by the yellow box). The hits have condition-specific edges 
connecting the nodes to the source (S) or the sink (T), but all the internal PPI edges are shared among all 
conditions. Each edge still only has one penalty wij, which follows the same scheme as ResponseNet.  
C) SamNet 2.0 Setup: SamNet 2.0 has the same setup and condition-specific edges as SamNet, but now 
the internal edges have additional penalties to account for node degree and expression (highlighted by 
the red box). The wij penalty is the same as for ResponseNet and SamNet. The Dij penalty is based on 
the degree of the nodes it connects, whereby edges connecting nodes with higher degrees have larger 
penalties. The rijk penalty is reflects the baseline expression of nodes and there is a specific penalty for 
each condition. Thus, an edge that connects genes I and J, which are highly expressed in proneural cells, 
will have a low proneural penalty. If genes I and J have low expression in the mesenchymal cells, the 
mesenchymal specific penalty (rij-mes) will be high. 
 

4.3.5 SamNet 2.0 reveals cell cycle genes as candidate for combination therapy 
in proneural tumors 

We implemented SamNet 2.0 to integrate the proteomics and shRNA screen data 
collected from mesenchymal and proneural cell lines. To identify subtype-specific 
pathways, we treated the mesenchymal and proneural cells as separate commodities. 
We set up the directed graph (Figure 3C) by connecting the source node (S) to 145 
proteins significantly affected by dasatinib (adj-p < 0.01 and abs(log2FC) > 1). This 
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includes 31 mesenchymal-specific proteins, 23 proneural-specific proteins and 91 
proteins represented in both subtypes; even though some hits are present in both 
conditions, they were assigned subtype-specific capacities and penalties based on the 
response to dasatinib in the given condition (see Methods). We connected the terminal 
sink node (T) to the 44 shRNA hits (16 mesenchymal-specific, 28 proneural-specific) 
that cause a significantly different effect on survival in the presence of dasatinib 
compared to DMSO (p <0.05, and abs(log2FC) > 1 compared to baseline). The 
proteomics and shRNA hits were then connected through a protein-protein interaction 
network. This graph setup was designed to understand how proteins affected by 
dasatinib may relate to the shRNA hits that have dasatinib-specific effects; following the 
flow from the dasatinib-affected proteins, through the PPI and to the shRNA hits, can 
help yield hypotheses for how proteins and pathways affected by dasatinib may cause 
an shRNA hit to enhance the effectiveness of dasatinib. 
 
We used Gurobi (Gurobi Optimization, 2020) to solve the optimization outlined above 
(see Methods Equation 3). The algorithm has multiple parameters, so we performed a 
grid search to identify high quality networks (29 out of 288 possible networks). We then 
selected one optimal network that has a substantial number of proteomic and shRNA 
hits, limited flow through high-degree hub nodes, like ubiquitin, and genes with high 
subtype-specific RNA expression (see Methods). 
 
We performed gene ontology analysis with TopGO (Alexa and Rahnenführer, 2007) to 
identify pathways enriched in this optimal network. For the enrichment, we only 
considered proteins that were in the optimal network and were not one of the proteomic 
or shRNA hits; this was done to identify gene sets related to the integration and not 
simply the omics experiments. The proteins that only contain flow for the mesenchymal 
condition are enriched for pathways related to DNA damage, such as “nucleotide 
excision repair, DNA Damage Recognition” (p=3.0E-6) and “apoptotic DNA 
fragmentation” (p = 1.0E-4). Many of these proteins help connect the differential 
proteins to the shRNA hits of DDB2 and DFFB (Figure 4A), suggesting that affecting 
DNA damage repair could potentially make dasatinib more effective in mesenchymal 
cells. 
 
For the proneural-specific proteins, there are multiple top pathways related to the 
nervous system, such as oligodendrocyte development (p=0.0005) and axonogenesis 
(p=0.002). Additionally, many significant ontologies are related to the cell cycle, such as 
“G1/S transition of mitotic cell cycle” (p=0.003) and “regulation of cell cycle” (p=0.02). 
We then assessed all 29 high quality networks to determine whether the enrichment of 
cell cycle genes was robust; we consistently observed enrichment for cell cycle related 
pathways, such as “regulation of cell cycle”, which was significantly enriched (p<0.05) 
for proneural-specific proteins in 27/29 networks. In the optimal network, many of the 
cell cycle nodes connect the differential proteins to the shRNA hits of WEE1 and KIF11, 
which both play key roles in cell cycle (McGowan and Russell, 1995; Wojcik et al., 
2013) (Figure 4B). We also observe many interactions related to cell cycle regulation, 
such as 14-3-3 proteins (like YWHAB) promoting WEE1 stability (Rothblum-Oviatt et al., 
2001) and PIN1 inactivating WEE1 (Okamoto and Sagata, 2007). 
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Figure 4: SamNet Networks for Proneural and Mesenchymal cases  
A) Optimal Network Highlights DNA Damage Proteins for Mesenchymal Subtype: This is a subnetwork of 
the optimal network (gamma-20, epsilon-25, rho-3, capping) that highlights the enrichment of proteins 
with mesenchymal flow that are related to DNA Damage processes. Each node is represented by a pie 
chart, where the blue section is proportional to the amount of mesenchymal flow and the green section 
represents the proportion of proneural flow. The size of the pie chart is related to the amount of total flow 
that travels through the node. Label colors represent the type of node: red is proteomic hit, yellow is an 
shRNA hit, and black is a non-hit protein from the PPI.  
B) Optimal network Highlights Cell Cycle Proteins for Proneural Subtype: the nodes and labels are the 
same as part B. This highlights the enrichment of cell cycle related proteins that connect differential 
proteins to proneural shRNA hits. 
 

4.3.6 WEE1 inhibition produces synergistic effect with dasatinib in PN cell lines 

Proteomic, shRNA screen, and integrative analyses highlighted the relevance of cell 
cycle genes in dasatinib response. Specifically, WEE1 shows up as a strong target for a 
combination therapy targeting PN cells. To validate this hypothesis, we performed a cell 
viability assay using dasatinib combined with Mk1775, a small molecular inhibitor of 
WEE1, on PN and MES cells. We found that PN cells showed a higher synergistic effect 
(δ=49 for NCH644, δ =19 for NCH421k, Figure 5A) compared to the MES cells (δ =5 for 
NCH705, δ =10 for NCH711d, Figure 5B). We are currently performing validation 
experiments to assess whether these differences in viability are from lower proliferation, 
higher cell death, or both. 
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Figure 5: Wee1 Inhibitor Shows Subtype-Specific Efficacy 
A) Dasatinib and Mk1775 effects in PN cell line NCH644: Left panel shows percent of cell viability 
compared to untreated control for each combination of dasatinib and Mk1775. Middle panel shows 3D 
plot of data in left panel. Right plot shows synergy scores calculated by SynergyFinder for each condition. 
The synergy scores are much higher in PN cell line NCH644 than MES cell line NCH705.  
B) Dasatinib and Mk1775 effects in MES cell line NCH705: Same panels as A, except for cell line 
NCH705. Dasatinib shows clear effects on viability that are not dramatically affected by Mk1775. 

4.4 Conclusion 

This work presents progress in our understanding the subtype-specific responses to 
dasatinib in glioblastoma. Our data suggests that the combination of dasatinib and 
WEE1 inhibition could be an effective combination therapy for treating MES-like and 
PN-like cells. Further validation should be performed in mouse models to test this 
hypothesis. This work also details significant advancements in the utilization of network 
flow algorithms for omics data integration. These improvements to the SamNet 
algorithm produce more realistic outputs by reducing flow through hub nodes and 
allowing for the incorporation of baseline expression data. 
 
This work is the product of a collaboration with the Goidts lab the German Cancer 
Research Center (DKFZ). Obada Alhalabi has led the project and Mona Gottmann did 
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significant work for the shRNA screen and validations. My primary contributions were 
analyzing the data and developing the improved SamNet algorithm. This project is still 
ongoing as Obada and Mona are working to better understand the effects of the 
dasatinib/Mk1775 combination. 
 

4.5 Methods 

4.5.1 Differential Analysis 

The proteomics and phosphoproteomics data were filtered down to features present in 
all samples. Additionally, for the proteomics data, features were only included if they 
mapped to a single protein. Ensembl BioMart (Kinsella et al., 2011) was used to 
account for gene synonyms output by MaxQuant. In the case where a feature mapped 
to two proteins, but the first protein product is a part of the second protein product as 
well (e.g. ARPC4 and the ARPC4-TTLL3 readthrough protein), this was considered as 
uniquely mapping to the first protein. For the phosphoproteomics data, phosphosites 
were named according to their amino acid motif (+/- 7 AA from the phosphosite); 
multiple instances containing the same AA motif were collapsed to a single value by 
taking the mean. 
 
Limma (Ritchie et al., 2015) was used for all differential analysis on the log2-normalized 
quantification values for the proteins and phosphosites. The Benjamini-Hochberg 
method (Benjamini and Hochberg, 1995) was used to adjust for multiple hypotheses. 
 

4.5.2 Gene Ontology Enrichment 

The topGO package (Alexa and Rahnenführer, 2007) was implemented for gene 
ontology enrichment using the fisher statistic, elimination algorithm, and hgu95av2.db 
mapping. For the proteomics data, differential proteins were compared to a background 
of all identified proteins. For SamNet 2.0 analysis, the significant proteins for a given 
subtype were ones that only contained flow for that subtype and were not included in 
the proteomics or shRNA hits. This filtering was done to identify gene sets related to the 
integration and not simply the omics assays. These proteins were compared to a 
background of all proteins in the PPI, excluding the proteomics and shRNA hits.  
 

4.5.3 Figure Creation 

Boxplots in Figure 1 were generated using the seaborn python package (version 0.9.0) 
(Waskom, 2021). Networks were generated by the networkx python package (v.2.4)  
(Hagberg et al., 2008) and network images were created using cytoscape (v3.7.2) 
(Shannon et al., 2003). 
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4.5.4 Phosphosite Set Analysis 

PTM-SEA (Krug et al., 2019) was run on the results from the limma analysis of the 
phosphosite data, using the amino acid motifs (+/- 7 amino acids from the phosphosite) 
and the flanking sequence human dataset (v.1.9.0) from PTMSigDB (Krug et al., 2019). 
There were three values tested: 1) the change in response in mesenchymal cells (i.e. 
limma t-value from one-sample t-test of only mesenchymal samples), 2) the change in 
response in proneural cells (i.e. limma t-value from one-sample t-test of only proneural 
samples), and 3) the difference in response between mesenchymal and proneural cells 
(limma t-value from t-test between mesenchymal vs. proneural). The t-statistic was used 
instead of a p-value because PTM-SEA considers directionality of trends. PTM-SEA 
was run with the standard parameters, except the minimum set overlap was reduced 
from 10 to 5 because of the limited number of phosphosite-sets being considered with 
the standard implementation. 
 
Hypergeometric tests were performed using the same flanking sequence PTM-SigDB 
database to identify potential upstream kinases. The input was phosphosites with 
significantly differential response to dasatinib (adj-p < 0.05) between the mesenchymal 
and proneural cells. These phosphosites were compared against the kinase-target sets 
in PhosphoSitePlus (Hornbeck et al., 2015); like PTM-SEA, phosphosite-sets were only 
considered if they contained 5 phosphosites from the whole dataset of 1153 detected 
phosphosites. 
 
When compiling the Scansite phosphosites for PKA (Figure 1), we submitted motifs (+/- 
7 AA) to Scansite (Obenauer et al., 2003) and only considered upstream kinase 
matches that meet “High” stringency. 
 
 

4.5.5 Multi-Commodity Flow Optimization with SamNet 2.0 

 
SamNet 2.0 is a significant improvement compared to the original ResponseNet (Yeger-
Lotem et al., 2009)and SamNet (Gosline et al., 2012) algorithms. As stated above, 
these methods are based on setting up a directed graph where a source node (S) 
connects to hits from one biological experiment (e.g. differential proteins) and a sink 
node (T) receives inputs from hits from another type of experiment (e.g. shRNA screen 
hits). The hits from these experiments are then connected through an established 
biological network, such as a protein-protein interaction network, where bidirectional 
edges (allowing flow either way) connect proteins known to physically interact.  
 
In this graph, every edge has a capacity (upper limit of flow) and a penalty weight. 
Edges that connect experimental hits to the source or sink node have a capacity and 
penalty related to the strength of the hit; stronger hits get a larger capacity and lower 
penalty. For the biological network, every edge has a constant capacity (e.g. 1) and a 
penalty based on the amount of evidence supporting the biological interaction, where 
high-confidence edges receive a lower penalty. With the graph established, linear 
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programming is used to solve the optimization in equation 1. The Gamma (4) term is 
used to control the flow through the network, where higher values increase flow through 
network, counteracting the wij penalty term.  
 
SamNet was originally developed to run ResponseNet for multiple related biological 
conditions using the same optimization. Each condition (e.g. mesenchymal cell lines vs. 
proneural cell lines) is treated as commodity and has subtype-specific edges from the 
source and sink that connect to condition-specific hits. Still, all commodities must share 
the internal edges of the PPI network, which helps reveal subtype-specific features. 
SamNet is solved using equation 2, which is the same formulation as ResponseNet 
except that it accounts for all k conditions. 
 
Two substantial improvements to SamNet were implemented for this work. The first 
change addressed the fact that a disproportionate amount of flow in SamNet solutions 
goes through hub nodes, or nodes with an exceptionally high degree in the protein-
protein interaction network. We implemented our parameter sweep again with no hub 
penalty (Epsilon = 0) and found that for these networks, an average of 33% of the 
network flow goes through hub protein (top 0.1% of nodes by degree). To address this, 
a penalty term (dij) was added to the optimization (Equation 3) where each edge in the 
PPI is penalized based on the mean degree of the two nodes it connects. dij is higher for 
edges that connect high degree nodes and this penalty is the same across all 
commodities. The strength of this penalty compared to other features is controlled by 
the Epsilon (ε) parameter. 
 
The second improvement integrates expression data into the optimization. The original 
SamNet cannot account for baseline expression and thus may yield networks that 
including proteins not present in each biological condition. This was addressed by 
adding another penalty term (rijk) to the optimization. Each edge is assigned an rijk value 
based on the mean expression of the nodes it connects in the condition of interest; 
edges connecting nodes with higher expression have a lower penalty, favoring their 
inclusion in the optimal network. The strength of this term is controlled by the Rho (5) 
parameter (equation 3). 
 
 
Equation 1:  min! ∑ 	#"# × 	%"#	"∈%,	#∈% −	∑ '	 × 	%("	"∈)*+,-.  

 
Equation 2:  min! ∑ ∑ 	#"# × 	%"#"∈%,	#∈%/∈0 − 	 ∑ ∑ '	 × 	%("	"∈)*+,-./∈0  

 
Equation 3:  min! ∑ ∑ 	#"# × 	%"#"∈%,	#∈%/∈0 +∑ ∑ 	)	 × 	*"# × 	%"#"∈%,	#∈%/∈0 + 	∑ ∑ +	 × 	,"#/ × 	%"#"∈%,	#∈%	/∈0 − 	∑ ∑ '	 × 	%("	"∈)*+,-./∈0  
 

4.5.6 Implementation of SamNet 2.0 

 
SamNet 2.0 was implemented to gain a better understanding of the subtype-specific 
effects of dasatinib on glioblastoma cell lines. The SamNet 2.0 graph was designed 
such that proteomic hits received inputs from the source and shRNA hits had outgoing 
edges into the terminal sink node. Proteomics hits for each subtype were proteins 
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significantly affected by dasatinib (i.e. one-sample t-test was significantly different from 
0), with an absolute mean log2FC greater than 1. The shRNA hits were selected on two 
criteria: 1) knockdown of this gene caused significantly different (p<0.01) survival effects 
between the dasatinib-treated cells and the DMSO treated cells 2) the log2FC in survival 
between the dasatinib-treated cells and the untreated cells is more extreme than 1 in 
the same direction as the DMSO comparison.  
 
The edge capacities and penalties were assigned based on the ResponseNet and 
SamNet procedures (Gosline et al., 2012; Yeger-Lotem et al., 2009). For the proteomic 
hits, the capacities of the incoming edges were calculated based on the magnitude of 
the protein’s fold change in response to dasatinib and scaled so that the capacities sum 
to one for the hits in each commodity: ∑ !!"

∑ !!"!∈$!%&#∈%  where Fik is the magnitude of the 
mean dasatinib response fold change for protein i in subtype k. Each edge was then 
assigned a penalty (wSik) of -log2(capacityik); thus, stronger hits with higher absolute fold 
changes had higher capacities and smaller penalties. The same scheme was 
implemented for the shRNA hits and their edges into the sink node (T). In this case, the 
capacities and penalties were based on the magnitude of the fold change in survival 
between the baseline control cells and the dasatinib treated cells. 
 
The proteomic and shRNA hits were connected through the IREF Index v14 (Razick et 
al., 2008) protein-protein interaction network, which has been utilized by other network 
approaches, like OmicsIntegrator (Tuncbag et al., 2016). Protein names for the 
interactome were mapped to gene names using using Biomart (Kinsella et al., 2011) to 
be consistent with the proteomic hits (see differential analysis methods). All internal 
edges of the PPI were bidirectional and assigned a constant capacity of 1. The penalty 
(wij) was -log2(evij) where evij is the evidence score for the interaction between nodes i 
and j provided by IREF Index.  
 
For SamNet 2.0, each edge of the PPI also was assigned a degree penalty (dij) and a 
subtype-specific expression penalty (rijk). First, the degree for each node in the PPI was 
calculated and then transformed to be between 0.01 and 0.99 using a modified min-max 
scaling:  
1	–	(0.01	 + 	(1 − 2 × 0.01) 	× 	 1!2345(1)

381(1)2345(1)); nodes with higher degrees received values closer to 0.01. 
Then for each edge, dij was calculated as -log2(mdegij) where mdegij is the mean of the 
transformed degrees for nodes i  and j. This procedure was chosen to amplify the 
penalty for flow through outlier hub nodes; some other normalizations (such as rank 
normalization) would assign outlier hub nodes, like ubiquitin, very similar penalties to 
non-outlier nodes with a high degree.  
 
The subtype-specific expression penalty (rijk) was calculated using microarray mRNA 
data collected from the cell types. For an edge between nodes i and j, the penalty for 
flow for subtype k (rijk) was -log2(mexpijk) where mexpijk is the mean of the rank-
normalized expression values for genes i and j for condition k. Thus, edges connecting 
genes with lower expression ranks received a higher penalty. In cases where 
expression data was not present for one of the two genes, mexpijk was assigned the 
rank-normalized expression of the present gene. In the limited cases where no 
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expression data was collected for either gene, we assumed the genes ranked in the 
middle of expression and set mexpijk = 0.5. 
 

4.5.7 Parameter Selection for SamNet 2.0 

 
After the implementation of SamNet 2.0, a grid search was performed over the three 
parameters: Gamma (15,20,25,30,35,40), Epsilon (25,50,75,100), and Rho 
(0,3,5,7,10,20,30). Additionally, each run was completed with and without capping, a 
procedure that sets an upper limit to the edge confidence from the IREF PPI. Lan et al 

(Lan et al., 2011) found that ResponseNet can sometimes lead to very long strings of 
high-confidence protein interactions because the wij edge penalty is so low, which can 
be solved by capping the edge confidence scores. In this SamNet 2.0 implementation, 
runs with capping set a maximum edge confidence of 0.8. 
 
High-quality networks were selected based on the following criteria: 
 

1. The network includes a high percentage (>70%) of both proteomic hits and 
shRNA hits  

2. Less than 5% of the network flow goes through hub nodes (defined as top 0.1% 
of nodes based on degree in the interactome) 

3. Less than 1% of the edges in the network are low confidence (confidence score 
<0.3) 

4. The RNA expression levels of the included proteins are significantly higher 
(Mann-Whitney U test adj-p <0.01) than the same parameter set with Rho set to 
0. 

 
These criteria resulted in 29 high quality networks out of 288 possible networks (all 
parameter sets besides Rho = 0 which were used for comparison in criterion 4). The 
optimal network selected has capping and Gamma of 20, Epsilon of 25, and Rho of 3. 
This solution was chosen based on principles from ResponseNet (Yeger-Lotem et al., 
2009) which favored lower gamma values and a small number of low-confidence edges. 
This optimal network was tied for the lowest gamma in any high-quality network (i.e. 20) 
and was the only high-quality network that included zero low-confidence edges.  

4.5.8 Virus production 

HEK 293T cells were seeded into 15 cm plates. After 24 hours, transfection with the 
packaging plasmid mix and plasmids of the decipher shRNA library module 1(figure 7) 
was carried out according to Cellecta’s® user manual: Packaging, Titering, and 
Transduction of Lentiviral Constructs. At 24 hours post-transfection, the medium was 
changed to fresh D-MEM medium supplemented with 10% FCS, DNase I (1 U/ml), 
MgCl2 (5 mM), and 20mM HEPES, pH 7.4. 48 hours post-transfection, the lentiviral 
supernatant was collected and filtered through a Nalgene 0.2 μm PES filter and 
concentrated with Cellecta’s LentiFugeTM Viral Concentration Reagent according to the 
user manual provided by Cellecta. The only deviation was that after incubation with 
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LentiFugeTM, samples were centrifuged for 15000 rpm for 75 mins (rather than 1 hour). 
After concentration and centrifuging, virus pellets were resuspended in PBS and 
aliquoted.  
 

4.5.9 Lentiviral Titer Calculation  

NCH 705 cells were transduced with the lentivirus and medium changed after 24 hours. 
After 72 hours TagRFP-positivity was measured on the measured at 72 hours with the 
LSRFortessa™ flow cytometer (BD biosciences). MOI (Multiplicity of infection) was 
determined using the conversion table provided by CELLECTA®. Lentiviral titer 
calculation was carried out using the following formula: TU/ml = (Number of cells at 

Transduction) × [MOI / (ml of Lentiviral Stock used at Transduction)].  
 

4.5.10 Viability screen 

GSCs (NCH 711d, NCH 705, NCH 421k and NCH 644) were transduced with an aim 
MOI (multiplicity of infection) of 0.5 with the lentiviral constructs containing module 1 of 
the decipher library from Cellecta® with approximately 27500 pooled barcoded shRNAs 
against more than 5000 genes. Half of the transduced GSCs were harvested at 18 
hours post-transduction as a baseline sample. 24 hours after transduction the medium 
was changed. 72 hours after transduction flow cytometry was used to verify correct 
transduction percentage and confirm desired MOI. Transduced GSCS were then split 
into two arms: one was treated with the respective IC20 concentration of dasatinib, the 
other with the corresponding DMSO dilution. GCSs were further cultured until reaching 
8-10 doublings by splitting every 4 days with dasatinib/DMSO reapplied to the 
respective and the TagRFP-positivity monitored. After reaching the desired doubling 
number final pellets of the dasatinib and DMSO arms were harvested for sequencing.  
 

4.5.11 gDNA Extraction 

Pellets were resuspended in 5ml QIAGEN buffer P1 (RNaseA added) and incubated 
with 250 µl of 10% SDS for 5 minutes at room temperature. Samples were then 
sonicated for 5 cycles each with 40% and 10s pulse to shatter the DNA into 10-100kb 
sized fragments and incubated with 10µl of proteinase K for 15 minutes at room 
temperature. Next, 5ml Phenol:Chloroform:Isoamylalcohol solution was added and 
thoroughly mixed. Samples were centrifuged at 8000 rpm for 60min, 20°C in a 
SORVALL RC 5B Plus rotor. The upper phase was then extracted and 500 µl 3M 
Sodium Acetate along with 4ml isopropanol added and incubated for 3 hours. After that, 
samples were spun for 30min, 20°C, at 8000rpm and the supernatant discarded. With 
70% ethanol added and centrifuged again for 10 minutes at 20°C and 8000rpm. The 
supernatant was then decanted with the pellet air-dried for 30 minutes. Dried pellets 
were dissolved in nuclease-free H20 to a concentration of about 2µg/µl. Samples were 
then incubated overnight at 4°C. and then incubated for 15min at 80'C. DNA purity was 
assessed by measuring A260/280 and A260/230 ratios on the Nanodrop®.  
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4.5.12 Amplification and high-throughput sequencing of shRNA barcodes 

Amplification of shRNA barcodes was performed according to Cellecta’s guidelines 
(“Cellecta DECIPHERTM Pooled Lentiviral shRNA Libraries User Manual v9a”) with 
some modification. For each sample, the entire amount of genomic DNA (200 – 1250 
µg) extracted from each screening sample was used in the first round of PCR in order to 
ensure full representation of the barcodes from all cells harvested. Using the Titanium® 
Taq PCR kit (Takara-Clontech), 50 µl PCR reactions with 25 µg genomic DNA each and 
0.3 µM FwdHTS and RevHTS1 primers (FwdHTS: 5’-
TTCTCTGGCAAAAGACGGCATA-3’ and  
RevHTS1: 5’-TAGCCAACGCATCGCACAAGCCA-3’) were set up and run for 16 cycles 
with 65 °C annealing temperature. First round PCR amplified samples were pooled and 
4 µl were used for the second round PCR, in order to reduce the amount of genomic 
DNA carryover and to attach adapters for subsequent high-troughput sequencing. In 
brief, 4 x 50 µl second round PCR reactions with 1µl first round PCR product each and 
0.5 M FwdGex and RevGex2 primers were set up and run for 12, 14 or 16 cycles (65 °C 
annealing temperature), with the optimal number of cycles determined beforehand in 
order to obtain equal band intensities between samples. Second round PCR products 
were pooled, purified using the QIAquick® PCR purification kit (Qiagen) according to the 
manufacturer’s instructions and quantified using a Qubit® 2.0 Fluorometer (Life 
Technologies) and Qubit® dsDNA HS assay kit (Thermo Fisher). Samples were 
adjusted to 5 nM, denatured with 0.1 M NaOH for 5 minutes at room temperature and 
subjected to single-read 18 bp sequencing on a MiSeq System (Illumina) using the 
MiSeq Reagent kit v2 (Illumina) with 11 pM sample and 500 nM HPLC-purified custom 
sequencing primer GexSeqSext. All primers used are specified in Supplementary Table 
S1. 

 

4.5.13 Quality control of high-throughput sequencing data 

Sequenced barcodes were deconvoluted using the Barcode Deconvoluter software 
(Cellecta) with a tolerance of 1 error and correction of N symbols. For complete 
dropouts in endpoint samples, a minimum value of 1 readcount was added. In order to 
adjust for varying total readcounts, all samples were normalized to a constant number of 
total reads (Supplementary Table S2). For each screen, fold change (FC; 
endpoint/baseline) values were calculated for all individual shRNAs. Library internal 
controls, 1) Luciferase (LUC)-targeting control shRNAs and 2) shRNAs with identical 
mRNA target sequence but different barcodes, served as technical quality controls for 
each screen.  
 
After running the reaction, PCR products were purified using the Monarch® PCR & DNA 
Cleanup Kit (#T1030S) and eluted in 30 µL Elution Buffer. Samples were then run on a 
3.5% agarose-gel (after Added 5 µL 6x LD to each sample) at 100V for 70 minutes in 
TAE buffer and made visible using Gelgreen®. The band corresponding to the 282 bp 
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amplicon cut out and subsequently purified the band using Monarch® DNA Gel 
Extraction Kit (#T1020S). This was then eluted to a final volume of 11 µL using elution 
buffer. Concentration was measured using Qubit™ dsDNA HS Assay Kit (Catalog 
number:  Q32854). To quantify the libraries produced for Illumina sequencing, qPCR 
was performed using the KAPA Library Quantification Kit for Illumina platforms 
(#KK4844). Samples were normalized to 10 nM and multiplexed at equimolar 
concentrations. 

 

4.5.14 Sequencing  

Sequencing was carried out using the NextSeq500 (The NextSeq 500/550 High Output 
Kit v2.5 was used). For dilution and denaturation, the NextSeq System Denature and 
Dilute – Libraries Guide was followed. In brief, the library was denatured with 0.2 N 
NaOH for 5 minutes at room temperature and then 200 mM Tris-HCl, pH 7 was added 
(equivalent to the RSB of the kit). After that, libraries were diluted to a final 
concentration of 20pM using the HT1 solution of the kit. The PhiX library (sequencing 
control) was also denatured and diluted using the same reagents. The library was 
combined with PhiX and diluted with HT1 to obtain 1.3 mL of a 1.3 pM library 
concentration containing 15% PhiX. The Seq-12 NGS and Index-12 NGS primers were 
used at 0.3 µM according to the manufacturer’s instructions. Read lengths for 
sequencing and indexing were set to 26 and 6 nt respectively.  
 

4.5.15 Deconvolution 

Sequencing reads were demultiplexed and aligned using the Cellecta Alignment 
software according to the user manual available under 
https://manuals.cellecta.com/ngs-prep-kit-for-sgrna-shrna-dna-barcode-
libraries/v1/de/topic/demultiplex-and-align-sequencing-reads  
 

4.5.16 Data Analysis 

shRNA counts were normalized with results expressed as counts per Million (CPM). For 
baseline samples, a minimal number of 2 CPMs was used as a cut-off pro shRNA. 
Endpoint missing values of shRNAs were treated as zero counts. Next, trimmed mean 
of M values (TMM) normalization was applied.  
To analyse shRNAs for enrichment or depletion, an RNAseq analysis with edgeR (with 
a negative binomial model) was used. Significance testing was carried out on both an 
shRNA- and gene-level for the endpoint compared to baseline. Due to the absence of a 
clear consensus on a gene-wise analysis based on all shRNA targeting a particular 
gene. Each gene was tested based on the shRNAs in a gene-set test approach. Genes 
with a consistent signal across their corresponding shRNAs should therefore be ranked 
high. In addition to comparing PN and MES separately for enriched and depleted 
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shRNAs under dasatinib and DMSO, samples were tested for shRNAs/genes that show 
a significant difference at endpoint between PN and MES, all compared to the baseline.  

4.5.17 Microarray gene expression profiling classification of GSCs 

For the classification of GSCs using the Wang et al. signatures (Wang et al., 2018) were 
used please refer to Alhalabi et al (Alhalabi et al., 2021) for specific details on the 
methodology and the data reposited.  
 

4.5.18 SILAC (stable isotope labeling of amino acids in cell culture) with mass 
spectrometry 

NCH 711d and NCH 705 (MES), NCH 421k and NCH 644 (PN) were cultured with 
SILAC heavy and light medium (DMEM:F12 with Arg-10 and Lys-6) for 6 doublings. 
After that, cell pellets were isolated, and protein extracted according to the 
phosphoprotein isolation protocol (see below) for incorporation percentage check. After 
confirming 95% incorporation in ‘heavy’ samples, GSCs containing ‘heavy’ amino acids 
were treated with 1µM Dasatinib and ‘light’ GSCs with DMSO vehicle control for 72 
hours. After that, 1M cells were isolated for the day-4 time point and cell death 
determined using Propidium Iodide (PI) with flow cytometry. The remaining GCSs were 
further cultured under the same conditions and further reseeded and retreated with the 
same dasatinib concentration on day 8 and cultured for further four days, totaling 12 
days of inhibition. GSC pellets were then harvested, and proteins isolated for 
proteomics and phosphoproteomics.  Cell pellets of samples were resuspended in five 
volumes of SILAC lysis buffer (100 mM Tris-HCl pH 8.5, 7 M Urea, 1 % Triton, 10 U/ml 
DNase I, 1 mM magnesium chloride, 1% benzonase (add 1 µl to 1000 µl buffer), 1 mM 
sodium orthovanadate, phosphoSTOP phosphatases inhibitors and complete mini 
EDTA free protease inhibitors), sonicated at 40% output 3 times for 10s at 4°C with 30s 
breaks between cycles (0.5s-on and 0.5s-off setting on ice-water bath). Residual cell 
debris was removed by ultracentrifugation a 140 000g for 1h at 4°C then incubated at 
room temperature for 2 hours. After that, protein concentration was measured, and 
samples frozen. Frozen samples were submitted for further processing at the DKFZ 
Proteomics core facility. Protein samples were applied to 1D-SDS-PAGE and 
fractionated. Gel pieces were cut out and cysteins reduced by adding DTT and 
carbamidomethylated using iodoacetamide followed by overnight digestion with Trypsin. 
Resulting peptides were loaded on a cartridge trap column, packed with Acclaim 
PepMap300 C18, 5µm, 300Å wide pore (Thermo Scientific) and separated in a 180 min 
gradient from 3% to 40% ACN on a nanoEase MZ Peptide analytical column (300Å, 1.7 
µm, 75 µm x 200 mm, Waters). Eluting peptides were detected by an online coupled Q-
Exactive-HF-X mass spectrometer. 

4.5.19 Proteomics and phosphproteomics data pre-analysis 

Data analysis was carried out by MaxQuant (version 1.6.0.16). In total 79386 
peptides and 8000 proteins were identified by MSMS based on an false discovery rate 
(FDR) cut-off of 0.01 on peptide level and 0.01 on protein level. Match between runs 
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option was enabled to transfer peptide identifications across Raw files based on 
accurate retention time and m/z. Quantification was done using a SILAC duplex 
approach with Arg10;Lys8 as labeled amino acids. A minimum number of quantified 
peptides was required for protein quantification, requantify option was activated to 
enable quantification of proteins with very high ratios. The output provided is a 
heavy/light ratio i. e. Dasatinib treated/control. Peptide and phosphopeptide ratios were 
automatically normalized to the total read count of the median value of peptide ratio 
(H/L) by the MaxQuant software. 

4.6 References 

 
Alexa, A., and Rahnenführer, J. (2007). Gene set enrichment analysis with topGO. 
Bioconductor Improv. 
Alhalabi, O.T., Fletcher, M.N.C., Hielscher, T., Kessler, T., Lokumcu, T., Baumgartner, 
U., Wittmann, E., Schlue, S., Rahman, M.G., Hai, L., et al. (2022). A novel patient 
stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. 
Neuro. Oncol. 24, 39–51. 
Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 
Gorges, L.L., Lents, N.H., and Baldassare, J.J. (2008). The extreme COOH terminus of 
the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-
373 and activation of E2F. Am. J. Physiol. - Cell Physiol. 
Gosline, S.J.C., Spencer, S.J., Ursu, O., and Fraenkel, E. (2012). SAMNet: A network-
based approach to integrate multi-dimensional high throughput datasets. Integr. Biol. 
(United Kingdom). 
Hagberg, A.A., Schult, D.A., and Swart, P.J. (2008). Exploring network structure, 
dynamics, and function using NetworkX. In 7th Python in Science Conference (SciPy 
2008), p. 
Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V., and Skrzypek, E. 
(2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 
Kinsella, R.J., Kähäri, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-
King, J., Staines, D., Derwent, P., Kerhornou, A., et al. (2011). Ensembl BioMarts: A 
hub for data retrieval across taxonomic space. Database. 
Krug, K., Mertins, P., Zhang, B., Hornbeck, P., Raju, R., Ahmad, R., Szucs, M., Mundt, 
F., Forestier, D., Jane-Valbuena, J., et al. (2019). A Curated Resource for Phosphosite-
specific Signature Analysis. Mol. Cell. Proteomics. 
Lan, A., Smoly, I.Y., Rapaport, G., Lindquist, S., Fraenkel, E., and Yeger-Lotem, E. 
(2011). ResponseNet: Revealing signaling and regulatory networks linking genetic and 
transcriptomic screening data. Nucleic Acids Res. 
Li, L., Han, L., Zhang, J., Liu, X., Ma, R., Hou, X., Ge, J., and Wang, Q. (2016). Epsin2 
promotes polarity establishment and meiotic division through activating Cdc42 in mouse 
oocyte. Oncotarget 7. 
Martinez, A.M., Afshar, M., Martin, F., Cavadore, J.C., Labbé, J.C., and Dorée, M. 
(1997). Dual phosphorylation of the T-loop in cdk7: Its role in controlling cyclin H binding 
and CAK activity. EMBO J. 
McGowan, C.H., and Russell, P. (1995). Cell cycle regulation of human WEE1. EMBO 



86 
 

J. 
Obenauer, J.C., Cantley, L.C., and Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide 
prediction of cell signalling interactions using short sequence motifs. Nucleic Acids Res. 
Okamoto, K., and Sagata, N. (2007). Mechanism for inactivation of the mitotic inhibitory 
kinase Wee1 at M phase. Proc. Natl. Acad. Sci. U. S. A. 
Razick, S., Magklaras, G., and Donaldson, I.M. (2008). iRefIndex: A consolidated 
protein interaction database with provenance. BMC Bioinformatics. 
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). 
Limma powers differential expression analyses for RNA-sequencing and microarray 
studies. Nucleic Acids Res. 
Rothblum-Oviatt, C.J., Ryan, C.E., and Piwnica-Worms, H. (2001). 14-3-3 Binding 
regulates catalytic activity of human Wee1 kinase. Cell Growth Differ. 
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 
Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software Environment for 
integrated models of biomolecular interaction networks. Genome Res. 
Stead, B.E., Brandl, C.J., Sandre, M.K., and Davey, M.J. (2012). Mcm2 phosphorylation 
and the response to replicative stress. BMC Genet. 
Stupp, R., Tonn, J.C., Brada, M., and Pentheroudakis, G. (2010). High-grade malignant 
glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. 
Oncol. 
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M. a, 
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550. 
Tuncbag, N., Gosline, S.J.C., Kedaigle, A., Soltis, A.R., Gitter, A., and Fraenkel, E. 
(2016). Network-Based Interpretation of Diverse High-Throughput Datasets through the 
Omics Integrator Software Package. PLoS Comput. Biol. 12. 
Waskom, M. (2021). seaborn: statistical data visualization. J. Open Source Softw. 
Wojcik, E.J., Buckley, R.S., Richard, J., Liu, L., Huckaba, T.M., and Kim, S. (2013). 
Kinesin-5: Cross-bridging mechanism to targeted clinical therapy. Gene. 
Yeger-Lotem, E., Riva, L., Su, L.J., Gitler, A.D., Cashikar, A.G., King, O.D., Auluck, 
P.K., Geddie, M.L., Valastyan, J.S., Karger, D.R., et al. (2009). Bridging high-throughput 
genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. 
Nat. Genet. 
  
 
 
 
 
 
 
 
 
 
 
 



87 
 

Chapter 5- Proteomics, post-translational modifications, and 
integrative analyses reveal heterogeneity of molecular 
mechanisms within medulloblastoma subgroups 

Authors: Tenley C. Archer*, Tobias Ehrenberger*, Filip Mundt*, Maxwell P. Gold, 
Karsten Krug , Clarence K. Mah, Elizabeth L. Mahoney, Colin J. Daniel, Alexander 
LeNail, Divya Ramamoorthy, Philipp Mertins, D. R. Mani, Hailei Zhang, Michael A. 
Gillette, Karl Clauser, Michael Noble, Lauren C. Tang, Jessica Pierre-François, Jacob 
Silterra, James Jensen, Pablo Tamayo, Andrey Korshunov, Stefan M. Pfister, Marcel 
Kool, Paul A. Northcott, Rosalie C. Sears, Jonathan O. Lipton, Steven A. Carr, Jill P. 
Mesirov, Scott L. Pomeroy, Ernest Fraenkel 
 
This was published in Cancer Cell. 2018 Sep 10; 34(3): 396-410. My primary 

contributions were analyzing the SHH-activated medulloblastomas and writing the first 

draft for a significant portion of manuscript. 

5.1 Abstract 

5.1.1 Summary 

There is a pressing need to identify therapeutic targets in tumors with low mutation rates 
such as the malignant pediatric brain tumor medulloblastoma. To address this 
challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 
medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA 
expression vary extensively at the post-transcriptional and post-translational levels. We 
identified distinct pathways associated with two subsets of SHH tumors, and found post-
translational modifications of MYC that are associated with poor outcomes in Group 3 
tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC 
sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a 
more comprehensive, functional readout, providing a foundation for therapeutic 
strategies. 

5.1.2 Significance 

Genomic and epigenomic analyses have revolutionized cancer diagnostics. 
Nevertheless, it has been difficult to identify therapeutic targets for tumors that lack 
recurrent genomic lesions. Here we used global, mass spectrometry-based 
measurements of protein levels and post-translational modifications to identify functional 
pathways associated with subtypes of medulloblastoma. Strong proteomic signals 
revealed altered pathways that were not detected transcriptionally. One molecular 
subgroup of tumors showed marked discordance of RNA and protein levels, suggesting 
global changes in translation and/or proteostasis. We demonstrate the utility of an 
integrative approach for discovery of candidate biomarkers or drug targets and provide 
a multi-omic dataset that will serve as a resource for the community. This study has the 
potential to impact clinical trial design. 
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5.2 Introduction 

Medulloblastoma is one of the most common pediatric brain tumors. Survival rates are 
high, but current therapies can leave lasting side effects including problems with 
speech, cognition and behavior, and increased risks of secondary cancers (Archer, 
Mahoney and Pomeroy, 2017). Identifying the pathways driving medulloblastoma could 
guide development of less toxic and more effective targeted therapies. Previous 
analyses have demonstrated that, at the molecular level, medulloblastoma is extremely 
heterogeneous and comprises at least four major consensus subgroups: wingless 
(WNT), sonic hedgehog (SHH), Group 3, and Group 4 (Cho et al., 2011; Tamayo et al., 
2011; Kool et al., 2012; Pugh et al., 2012; Robinson et al., 2012; Taylor et al., 2012; 
Hovestadt et al., 2014). Almost all WNT tumors carry activating mutations in the β-
catenin gene (CTNNB1) (Pugh et al., 2012). Unfortunately, the ubiquity of WNT 
signaling in non-cancer cells makes this pathway a challenging one for targeted cancer 
therapeutics (Kahn, 2014). Some SHH tumors respond to SMO inhibitors (Kool et al., 
2014; Robinson et al., 2015). Group 3 and Group 4 are the least understood subgroups 
and constitute more than half of all medulloblastoma cases. These tumors have few 
consistent genetic abnormalities amenable to currently available targeted therapies 
(Northcott et al., 2012).  
 
Deeper analysis of the transcriptome and epigenome has revealed subtypes within the 
four consensus subgroups as defined by Taylor et al. (2012). Based on transcriptome 
evidence, we reported two subtypes of Group 3 tumors, including one with a dominant 
MYC-driven signature and exceedingly poor prognosis (Pfister et al., 2009; Cho et al., 
2011; Schwalbe et al., 2017). More recently, Northcott et al. (2017) defined eight 
subtypes of Group 3 and Group 4 tumors based on DNA methylation, including a 
category of MYC-driven samples called subtype II. Similarly, Cavalli et al. (2017) 
proposed a division of Group 3 and Group 4 into a total of six different subtypes. Recent 
evidence suggests that the MYC-driven Group 3 tumors may be susceptible to CDK 
inhibitors or to combinations of PI3K and HDAC inhibitors (Hanaford et al., 2016; Pei et 

al., 2016).  
 
Here, we analyzed the abundance of proteins and their post-translational modifications 
(PTMs) in medulloblastomas, and we integrated the data with previously reported DNA 
methylation, whole genome sequencing, and RNA expression. Since proteins are 
ultimately the functional effectors of biological activity in cancer cells, we hypothesized 
that global proteomic analysis may be an especially sensitive method for identifying 
potential therapeutic targets in medulloblastoma. Recent advances in mass 
spectrometry have allowed for proteomic and phospho-proteomic profiling of other 
cancers, and integration of these data with other biological data developed a more 
complete understanding of specific cancers and their genetic drivers (Zhang et al., 
2014, 2016; Edwards et al., 2015; Lawrence et al., 2015; Mertins et al., 2016; Huang et 

al., 2017). 
 
We show that proteomics provides functional insights into the heterogeneity underlying 
medulloblastoma. We find a split in SHH samples that is caused by post-transcriptional 
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regulation changes, which impact protein abundances but not RNA levels. There are no 
genomic features that fully explain these proteomic subsets. However, one group 
exclusively harbors chromosome 3q gains and mutations in PTCH1, PRKAR1A, and the 
TERT promoter. We also identify a subset of Group 3 samples that are MYC-driven, 
have a poor prognosis, and have PTMs to MYC that can affect its stability. Additionally, 
integrative network and kinome analyses along with functional assays in cell lines 
identify targetable pathways. Functional validation experiments confirm several of these 
predictions in models of medulloblastoma, including providing evidence that inhibition of 
PRKDC may have therapeutic benefit in MYC-driven Group 3 tumors. 

5.3 Results 

5.3.1 Global proteomics reveals medulloblastoma subgroups 

To obtain a comprehensive view of medulloblastoma, we selected 45 primary tumors 
from all consensus subgroups in a cohort that had been previously characterized (Cho 
et al., 2011; Kool et al., 2012; Hovestadt et al., 2014; Northcott et al., 2017). Of these, 
42 had been analyzed for DNA methylation, 41 had preexisting whole genome 
sequencing and 39 had RNA-seq data (Figure 1, Table S1)(Northcott et al., 2017).  
We collected proteomic, phospho-proteomic, and protein acetylation data for all 45 
samples using isobaric labeling with TMT10 mass-tag reagents (Rauniyar and 
Yates 3rd, 2014) followed by high-resolution liquid chromatography-tandem mass 
spectrometry. Phosphorylation events were enriched using metal-affinity enrichment 
(detecting phosphorylated serine, threonine, and tyrosine peptides: pSTY). In addition, 
we used antibodies to enrich for phosphorylated tyrosine peptides (pY) and acetylated 
lysine residues (acK). Over 13,000 proteins, more than 50,000 phosphosites, and 
almost 11,000 acetylated sites were quantified in total. Unless otherwise noted, only the 
complete data sets, in which proteomic features had been measured across all 45 
samples, were used for analyses (Figure 1). 
 
We applied uniform data normalization methods to each type of data and clustered 
samples using each data type separately (Figure 2A). Consensus clustering, principal 
component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) 
carried out separately on each data type predominantly revealed the known subgroups: 
Group 3, Group 4, and SHH (Figures 2A, S1-S3). The proteomic data also identified 
very stable subsets of two known subgroups (Figures S1-S3). Here, we refer to Group 3 
clusters as Group 3a (G3a) and Group 3b (G3b), and SHH clusters as SHHa and SHHb 
(Figure 2A, Table S1). Including WNT samples in any of the clustering approaches on 
the proteomic data revealed the same five subsets with an additional sixth group for 
WNT samples (Figure S3). Performing pairwise statistical comparisons, we found 4,365 
proteins and 2,642 phosphopeptides that differed significantly between these subsets of 
patients (FDR < 0.01, ANOVA; Table S2).  
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Figure 1:Summary of data types included in this study, depth of proteomic data types, and cohort 
composition. The extent of the data from proteomics, including post-translational modifications, is 
summarized at the top. pSTY: phosphorylation on serine, threonine, or tyrosine detected after 
immobilized metal affinity chromatography; pY: phosphorylated tyrosine detected after antibody 
purification; Total: the total number of features identified; All Samples: the number of features measured 
across all samples, i.e. without any missing values. The number of samples covered by each data type 
and their split by subgroups are summarized at the bottom. G3: Group 3; G4: Group 4; WGS: whole 
genome sequencing. Proteomics includes proteome, pSTY, pY, and acetylomics data sets. See also 
Table S1. 
 

 
 

Figure 2: Comparison of clustering results. (A) The optimal clustering of DNA methylation data, 
RNAseq, and proteome, as determined using Pearson correlation as distance metric. k, number of 
clusters. Consensus scores are indicated using a color scale from white (samples never cluster together) 
to blue (samples always cluster together). (B) Comparison of the assignment of samples using the four 
“consensus subgroups” (Taylor et al., 2012), the DNA Methylation-based subtype-calls assigned in 
Northcott et al. (2017), which included most samples used in our study, and RNA expression assignments 
based on application of the classifier described in Cho et al. (2011). NA: no assignment available. See 
also Figures S1-S3 and Tables S1 and S2. 
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5.3.2 Proteome suggests post-transcriptional heterogeneity within SHH 
medulloblastoma  

The SHHa and SHHb subsets that emerged (Figures 2A, S1-S3) are distinct from the 
age-dependent subtypes found in DNA methylation data (Northcott et al., 2011; Kool et 

al., 2014; Cavalli et al., 2017; Schwalbe et al., 2017). All but one of the adult samples 
were found in SHHa, while the pediatric SHH samples were split evenly between SHHa 
and SHHb (Figures 2B, 3, S3, Table S1). We identified 510 proteins that differed 
between the SHHa and SHHb using ANOVA (FDR < 0.005). Proteins higher in SHHa 
were associated with mRNA processing, splicing, and transcription, as well as the MYC 
pathway, chromatin remodeling, and DNA repair (Figure 3A, Table S3). In contrast, 
proteins with higher levels in SHHb were linked to neuronal and neurotransmitter-like 
activity, including CD47, an anti-phagocytic cell surface ligand (Figure S4). Many 
proteins in the glutamatergic synaptic pathway were elevated in SHHb, including 
glutamate, calcium, and MAPK/ERK signaling (Figures 3A, 3B, Table S4). SHHb 
samples consistently clustered closer to Group 4 samples than to SHHa samples 
(Figures 2A, 3A, S1-S3). Despite the differences in neuronal-like gene sets between 
SHHa and SHHb, there were no differences in histology (Figure 3C). 
 
As no transcripts (RNA-seq) differed significantly (FDR < 0.05, ANOVA) between SHHa 
and SHHb (Table S2), we asked whether the subsets differed in post-transcriptional 
regulation. We compared the Spearman correlations for approximately 8,700 mRNA-
protein pairs in every patient sample (Figure 3D). All clusters of samples except SHHb 
have a median Spearman correlation near 0.5, consistent with studies in other systems 
(Zhang et al., 2014; Mertins et al., 2016). However, the median correlation for SHHb 
was 0.38 (p = 0.012, compared to SHHa; Mann-Whitney U test), suggesting that SHHa 
and SHHb differ in translation and/or proteostasis. 
 
We next asked if genetic lesions might account for the observed differences between 
SHHa and SHHb. Gains of chromosome 3q are characteristic of SHH medulloblastoma 
(Cho et al., 2011; Kool et al., 2012; Taylor et al., 2012), and in our cohort they occur in 
several SHHa samples, and do not occur in SHHb samples (Figure 3C). The neural 
progenitor regulator SRY-box 2 gene (SOX2) lies within this region, and its protein 
levels and phosphorylation events (T7, S18, and T26) were all increased in SHHa 
samples compared to SHHb (Figures 3C, S4)(Archer, Jin and Casey, 2011). Mutations 
in PTCH1, PRKAR1A, and in the TERT promoter (Figure 3B) occurred only in SHHa. In 
contrast, other SHH pathway activating alterations were found in both SHHa and SHHb, 
which suggests that there are relatively few differences in the genetic lesions of these 
SHH subsets.  
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Figure 3: Molecular and functional differences between SHHa and SHHb. 
(A) Hierarchical clustering of 510 proteomic features that differ significantly between SHHa and SHHb 
(FDR < 0.005; ANOVA). Summaries of gene sets that significantly differ (FDR < 0.01; hypergeometric 
overlap tests) between SHHa and SHHb are shown alongside the heatmap. (B) A schematic of the 
pathway for the glutamatergic synapse. Each box represents a gene or gene set taken directly from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The left and right boxes summarize SHHa 
and SHHb protein levels, respectively. Grey boxes indicate a lack of proteomic data for the gene product. 
Small white circles represent metabolites, solid directed arrows activation, and lines ending with a bar 
inhibition. Dotted lines indicate transport of metabolites. Solid lines and connected boxes represent 
physical interactions in the cell. Figure adapted from KEGG pathway hsa04724 (Kanehisa et al., 2017). 
(C) Clinical annotations of and recurrent genomic alterations in SHHa and SHHb samples. (D) Box-and-
whisker plots of Spearman correlations between the mRNA and protein levels for approximately 8,700 
genes for each tumor sample. Boxes range from first to third quartile in each group, with line indicating 
the group-median. The whiskers extend to the lowest and highest data points within 1.5 times the 
interquartile range from the box (p value shown from Mann Whitney U test). See also Figure S4 and 
Tables S3 and S4. 
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5.3.3 Post-translational modifications of MYC in Group 3 tumors are predictive of 
patient outcome 

Clustering of the proteomic data identified two subsets of Group 3 samples, which we 
refer to as G3a and G3b (Figures 2, S1-S3). First, we sought to understand how these 
clusters related to the subgroups that had been previously identified using much larger 
cohorts. All G3a samples were assigned to subtype II that was defined by Northcott et 

al. (2017), while the G3b samples were assigned to the Northcott et al. (2017) subtypes 
I, III, IV, and VII (Figure 2B, Table S1). The transcription-based classifier of Cho et al. 
(2011) assigned the G3a samples to the MYC-activated c1 subtype. Two G3b samples 
and one Group 4 sample also were classified as c1 (Figure 2B, Table S1). The 
remaining G3b samples were assigned to c4 and c5. These results suggest that the 
proteomic features associated with G3a likely represent the MYC-activated form of 
medulloblastoma and that the proteomic data for G3b samples represent the known 
Group 3/4 continuum. Indeed, several proteomic signatures in G3a associated with 
MYC activation including significant differences in ribosomal proteins and proteins 
related to ribosome assembly, mitochondrial ribosomal proteins, and proteins involved 
in transcription (Figure S5A)(Morrish and Hockenbery, 2014; Staal et al., 2015).  
 
To identify the sources of MYC activation in G3a, we investigated the MYC events in all 
our data (Figure 4A). While MYC amplification is a “hallmark” of MYC-activated 
medulloblastoma, it does not occur in every tumor of this type (Cho et al., 2011; 
Northcott et al., 2017). Here, only two G3a tumors have a MYC amplification. However, 
all G3a samples have increased post-translational modifications of MYC at multiple 
sites (Figures 4A, S5B). Acetylation of lysine 148 (K148) was pronounced, as was 
increased phosphorylation of serine 71 (S71) and a serine at either position 62 or 64 
(the ambiguity of these nearby sites cannot be resolved in the spectra). Our data also 
revealed peptides that are simultaneously phosphorylated at both serine (S62) and 
threonine 58 (T58). Peptides phosphorylated on T58 and S62 are particularly 
informative for MYC activity, as these sites regulate MYC half-life and transcriptional 
activity (Arnold et al., 2009; Wang et al., 2011). Considering known MYC regulators, our 
data showed significantly increased protein levels of the B55a subunit of PP2A 
(encoded by PPP2R2A, FDR = 0.0085, ANOVA), and the deubiquitinating enzymes 
USP28 (significant with FDR = 0.018, ANOVA) and USP36 (not significant with 
FDR = 0.084, ANOVA) in G3a compared to G3b (Figure S5C). By contrast, we did not 
observe differing levels of PP2A-B56 or the phosphatase inhibitors SET or CIP2A 
(Figure S5C). 
 
To examine the localization of active forms of MYC, we stained formalin-fixed and 
paraffin-embedded (FFPE) slides of the tumors for MYC phosphorylated at S62 or T58 
(Figure 4B). Cell mean immunofluorescence density for phosphorylation of residues 
S62 and T58 MYC (pS62 and pT58) was significantly higher in G3a compared to G3b 
(Figure 4C), while Group 4 tumors showed lower levels of signal. Localization of pS62 
MYC was primarily in the nucleus with exclusion from the nucleolus (Figure 4B). In 
contrast, pT58 MYC localized mainly in the cytoplasm for G3a and G3b tumors. 
Elevated pS62 and pT58 MYC suggest a breakdown in the canonical pathway of MYC 
degradation (Farrell and Sears, 2014), consistent with the increased expression of 
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some kinases upstream of S62 phosphorylation as well as increased expression of 
deubiquitinating enzymes USP36 and USP28. 
 
We sought to understand whether the observed MYC modifications had clinical 
implications. Indeed, G3a and G3b patients differed dramatically in rates of five-year 
progression free (PFS) and overall survival (OS), but these differences were not 
statistically significant, possibly due to the small sample size (Figures 4D). To extend 
our analysis to a larger cohort, we built a binary classifier based on single sample gene 
set enrichment analysis (Barbie et al., 2009) to distinguish G3a and G3b using only 
transcriptional data. We then applied it to the c1 and c5 samples from Cho et al. (2011) 
to give them G3a/G3b labels (see Methods, Figure S5D, Table S1). Surprisingly, while 
we had expected c1 samples from the original Cho cohort to be assigned to G3a and c5 
to G3b, the classifier assigned approximately one quarter of the samples to the other 
subtype. The combined cohort using proteomic labels performed better at predicting 
PFS and OS (Figure 4D, S5E). The difference in PFS using c1 and c5 labels (Figure 2B 
and Table S1) on the combined cohort did not reach statistical significance (p = 0.098), 
while the difference using G3a vs. G3b classification did (p = 0.002). The newly defined 
sets of patients had the same median age (5 years), ruling out that variable as a 
potential trivial explanation for the improved predictor. Taken together, these data 
demonstrate that the proteomic distinctions provide a strong signal of clinical relevance. 
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Figure 4: G3a medulloblastomas have post-translational modifications of MYC protein that 
strongly correlate with MYC downstream activity and patient outcome. (A) Heatmap of multi-omic 
data for MYC, showing protein levels, post-translationally modified peptides, mRNA expression, DNA 
copy number, and DNA methylation. Scale bar is of log2 values for all data sets except DNA methylation, 
which ranges from 0 to 1 on a linear scale. Methylation values, converted to percentages, are 
superimposed on the heatmap. The phosphorylation locations are provided both based on RefSeq (as 
used in our data sets) and Uniprot (frequently used in the literature). S77 or 79: phosphorylated at either 
S77 or S79 but not at T73; S359* / T365: phosphorylated at T365 as well as a proximal site that could not 
be uniquely determined. (B) Representative confocal microscopy images showing pS62 and pT58 MYC in 
G3a, G3b, and Group 4 tumors. (C) Scatter bar charts showing mean immunofluorescence densities 
quantified across 50–100 nuclei in 3–4 fields of view captured at 40x for MYC pS62 and pT58. Error bars 
represent standard error of means (SEM) and significance reported is from two-tailed unpaired t-tests. (D) 
Kaplan-Meier plots of overall survival and progression-free survival of Group 3 medulloblastoma from the 
current cohort (left) and the current cohort combined with Group 3 samples from Cho et al. (2011). The 
survival analysis on the combined cohort was performed using the classifier defined by the proteomic 
clusters G3a and G3b (“Proteome-based Classifier” in the center) and the original classifier from Cho et 
al. (2011) (c1/c5, right, gray scale). In the combined cohort with proteomebased group assignments 
(G3a/G3b), both outcome predictions reached statistical significance (p values as shown; Log-rank test). 
See also Figure S5. 
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5.3.4 Medulloblastoma subgroups differ in activity of kinases 

We developed two approaches to investigate kinase signaling in medulloblastoma (see 
kinome analysis in the Methods). Potential kinases of the phosphopeptides in each 
subset of tumors were first identified by leveraging kinase specificity data from 
PhosphoSitePlus (Hornbeck et al., 2015) and Scansite (Obenauer, Cantley and Yaffe, 
2003). Filtering this list based on the protein levels of the kinases in our data, we 
identified the 38 kinases listed in Figure 5 (Table S5). PRKDC, GSK3B, and CDK5 were 
significant in both our analyses. PRKDC is important for repair of DNA double-stranded 
breaks through non-homologous end-joining (Ma et al., 2004) and downstream targets 
of PRKDC were consistently elevated in Group 3 and WNT samples (Figure 5, 
Scansite). GSK3B is a promising therapeutic target. It is overexpressed in many 
cancers (McCubrey et al., 2014) and its substrates have increased phosphorylation in 
the Group 4 and SHHb samples. CDK5 has been associated with oncogenesis and 
resistance to cancer therapies (Pozo and Bibb, 2016) and its targets had increased 
phosphorylation in Group 4. CDK5 phosphorylates MYC at S62, much like CDK1 and 
CDK7, which were fittingly associated with G3a. AURKB was also linked to this disease 
group. Diaz et al. (2015) previously treated MYC overexpressing medulloblastoma cell 
lines and orthotopic xenografts with an AURKB inhibitor, which led to growth impairment 
and induction of apoptosis in the cell lines, and inhibited intracranial growth and 
prolonged survival in mice. Many kinases were predicted to be active in SHHa, and this 
was the only subgroup with consistent phosphorylation of sites targeted by ATM 
(PhosphoSitePlus) and PIK3R1 (Scansite). G3b was unusual, as only one kinase, 
EEF2K, was associated with this group in our analyses. Overall, these analyses 
highlight potential upstream kinases that may be driving some of the molecular 
differences between medulloblastoma subgroups and that represent possible novel 
targets to explore for future therapeutic gains.  
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Figure 5: Medulloblastoma subtypes differ in kinase regulation and substrate levels. 
Two different methods used to analyze the kinome are shown. On the left, upstream kinases are 
predicted from differential phosphopeptides between subgroups using PhosphoSitePlus database 
(Hornbeck et al., 2015). On the right, kinases are predicted from scoring differential phosphopeptides 
using sequence specificity motifs from Scansite (Obenauer et al., 2003). Heatmaps show the median 
levels of peptides matched to an upstream kinase, with the number of peptides matching each kinase 
shown in parentheses. Kinases found by both methods are annotated with an asterisk. Bars on the side 
of the heatmaps indicate whether target peptides correlate with protein or phosphorylation levels of 
upstream kinases; and if DrugBank (Law et al., 2014) lists any drugs targeting the kinases. See also 
STAR Methods and Table S5. 
 
 

5.3.5 MYC-active medulloblastoma cell lines have phosphorylated MYC and 
PRKDC  

To test the finding that pS62 MYC is enriched in Group 3 MYC-active medulloblastoma, 
we measured MYC expression by Western blot in medulloblastoma cell lines reported to 
be MYC-amplified (D425, D458 and D556) compared to two that are not (DAOY and 
D283)(Bigner et al., 1990). MYC-amplified lines were highly enriched for MYC protein 
and pS62 MYC, while DAOY and D283 were not (Figure 6A-C). Consistent with the 
kinome analysis, pS2056 PRKDC correlates with pS62 MYC and pT58/pS62 MYC in 
these lines (Figures 6A-C). To explore possible functional consequences of this finding, 



98 
 

we first examined the localization of PRKDC and MYC. Immunofluorescence identified 
that pS62 MYC and pS2056 PRKDC co-localize in the nucleus (Figure 6D).  
We next examined the role of PRKDC in MYC-amplified medulloblastoma cell lines. 
PRKDC inhibitors are radio-sensitizing agents, but have limited cytotoxic range 
(Ciszewski et al., 2014; Sunada et al., 2016). We find that that the PRKDC inhibitor 
NU7441 preferentially sensitizes MYC-active cell line D458 to radiation (Figures 6E-F). 
Irradiation reduced the IC50 of the MYC-amplified D458 from 28 µM to 2.7 µM 
(Figure 6G), but did not change the IC50 of NU7441 in DAOY. These data suggest that 
cell lines with pS62 MYC depend on PRKDC activity for survival in response to DNA 
damage, and that PRKDC inhibition may radio-sensitize MYC-active tumors. 
 

 
Figure 6: MYC status correlates with PRKDC phosphorylation, and predicts increased sensitivity 
to PRKDC inhibition with irradiation. (A) Representative Western blots of medulloblastoma cell lines 
performed in at least triplicate. Antibody against pT58/S62 MYC detects either site or both sites. (B) 
Quantification of Western blots represented as fold change compared to expression in DAOY cells. All 
proteins are normalized to β-actin. Significance was determined via one-way ANOVA with a Dunnett 
multiple comparison test to compare the normalized signal for each antibody across the five cells lines; 
**p < 0.001, ***p < 0.0001. Error bars represent mean normalized signal ± SEM. (C) Correlations between 
normalized means for specified antibodies determined by calculating a Pearson correlation coefficient. 
Error bars indicate ± SEM, and are depicted but are not visible for some data points because of scale. (D) 
Representative confocal images of indicated cell lines showing pS62 MYC and pS2056 PRKDC. (E) 
Experimental design of dose-response curve of PRKDC inhibitor NU7441 for 18 hours prior to irradiation. 
(F) Viability assay of medulloblastoma cell lines treated as indicated. Plotted is the mean of 6 biological 
replicates ± SEM for each dose; note, small error bars for D458 are depicted but obfuscated by trend 
lines. (G) Histogram of mean IC50 values ± SEM for DAOY vs D458 treated with NU7441 ± irradiation. *p 
< 0.01; ***p < 0.0001; ns = not significant; IR = irradiation. 
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5.3.6 Integrative modeling 

To search for common patterns in the genomic, proteomic, and phospho-proteomic 
data, we adopted an integrated modeling approach (Figure 7). Omics Integrator 
(Tuncbag et al., 2016) searches a vast network of physical interactions for sets of 
proteins and genes from disparate ‘omic data that are likely to represent pathways 
altered in a disease process. Applied to signals that differ significantly between G3a and 
G3b, it identified coherent proteomic changes in proteins that physically associate with 
MYC, and up-regulation of known MYC transcriptional targets (Figure 7A). In addition, 
the networks highlighted ribosomal, mitochondrial and cell-cycle regulatory proteins. A 
similar analysis for SHH (Figure 7B) identified calcium, glutamate and Ras signaling 
pathways that were upregulated in SHHb. These networks integrated disparate data 
types including: mutated genes (TP53, PIK3R1 and NOTCH1) and kinases with 
genomic/proteomic/PTM changes (CAMKs (CAMK2A/G, CAMK4), protein kinase A and 
C (PRKACB, PRKCA), ERK2 (MAPK1), ribosomal protein kinase 6 (RPSK6KA1/2), 
glycogen synthase kinase B (GSK3B), PI3Ks (PIK3R1, PIK3CA), DGKI, and CDK2). 
The networks also supported the role of several predicted kinases (PIK3R1, CAMK2G, 
GSK3B and MAPK1). 
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Figure 7: Network methods relying on known protein-protein interactions identify pathways 
relating to SHHb and G3a tumors. Omics Integrator output showing network views of proteins, 
posttranslational modifications, and genomic alterations associated with G3a (A) and SHHb (B). Node 
shapes indicate data type and colors indicate log2-based fold change between groups as described in the 
legends. Phosphopeptides are labeled with their phosphorylation sites (based on RefSeq) after the ‘@’ 
symbol. Nodes associated with selected pathways are highlighted with yellow background. Grey nodes 
were added by Omics Integrator and have no associated proteomic data for our samples. (A) mRNA 
levels of transcriptional targets of MYC are shown at the bottom. Thick borders highlight proteins that are 
also shown as direct transcriptional targets of MYC. SNVs, indicated by diamonds, are color-coded to 
show which subtype the genomic alteration was seen in: G3a, red; G3b, blue. (B) Kinases that were also 
found by our independent Kinome Analysis (Figure 5) are highlighted with thick borders. The color of 
genomic lesions (diamonds) indicates the subtype in which they occur: SHHb, red; SHHa, blue. The 
location of color in a diamond indicates the type of genomic lesion: upper triangle, SNV; lower triangle, 
indel. 
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5.4 Discussion 

Molecular subgroups identified using mRNA expression and DNA methylation array 
data have recently been accepted by the WHO as the international standard for 
medulloblastoma diagnosis (Louis, Ohgaki, et al., 2016; Louis, Perry, et al., 2016). Here 
we show that, at the highest level, proteomic and phospho-proteomic data sets revealed 
similar subgroup assignments to these consensus subgroups. This finding contrasts 
with global proteomic studies in breast and colon cancer where molecular subgroups 
were not as consistently durable across data types, and subgroup compositions are 
dependent on the data type used (Zhang et al., 2014; Mertins et al., 2016). The 
consistency of the medulloblastoma subgroups may in part be due to the distinct 
developmental states of the cell of origin of medulloblastoma subgroups, as well as the 
subgroup-specific driver genetic events (Gibson et al., 2010; Northcott et al., 2012).  
 
Our data identify heterogeneous molecular mechanisms within the subgroups that are 
not evident in the transcriptome or genome. The two clusters of SHH samples revealed 
by our proteomic data (SHHa and SHHb) reflect a different distinction from the known 
age-based split in SHH samples (Kool et al., 2014; Cavalli et al., 2017; Schwalbe et al., 
2017). Adult patients in our cohort (ages 23-35) predominantly clustered with SHHa, but 
the infant and childhood patients were spread across both subsets. The different signals 
that emerged from DNA methylation and proteomics may reflect the differing sensitivity 
of these methods to specific biological processes. DNA methylation data likely reflect 
the developmental state of the cells of origin at the onset of oncogenesis (Horvath et al., 
2015; Lu et al., 2016). By contrast, the proteomic data will be strongly affected by post-
transcriptional changes including RNA stability, protein stability, translational regulation, 
and signaling pathways. 
 
The proteomic data we gathered from SHH tumors have important clinical implications. 
SHHa samples had expression signatures and molecular alterations including PTCH1 
mutations that are consistent with activation of the canonical SHH pathway. SHHb 
tumors also had SHH pathway activating mutations, but also were enriched for 
pathways typically associated with Group 4, such as glutamate, calcium, and Ras 
signaling. For example, we saw very consistent increases in many of the proteins 
associated with the glutamatergic synapse (Figures 3C, 7B). While these pathways are 
known features of some gliomas and Group 4 medulloblastoma (Arcella et al., 2005; 
Cavalli et al., 2017), they are not typically associated with SHH medulloblastoma. 
SHHb-like patients may therefore also benefit from any future therapies developed for 
Group 4 tumors. Proteomic data identifies one potential candidate therapeutic target: 
CD47 protein is enriched in Group 4 and SHHb tumors. CD47 is a membrane protein 
involved in several processes, including vesicle-mediated transport, and is an anti-
phagocytic cell surface ligand (Brown and Frazier, 2001; Jaiswal et al., 2009). Currently, 
an anti-CD47 antibody is being tested for efficacy in Group 3 medulloblastoma 
(Gholamin et al., 2017). While CD47 RNA levels are not significantly different between 
the SHH groups (p = 0.06, t-test), the mean CD47 protein level for SHHb samples is 
much higher than the mean for SHHa and Group 3 samples. These data suggest that 
anti-CD47 therapies may be particularly effective on SHHb tumors. The discrepancy 
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between protein and mRNA levels in CD47 is not unique, as the correlation of global 
protein levels with mRNA expression was significantly lower in SHHb samples. It will be 
important for future studies to examine whether there exist fundamental differences in 
the efficiency of protein translation or in the stability of proteins in SHHb tumors. These 
observations highlight the importance of proteomic studies for discovery of biomarkers.  
 
Group 3 medulloblastoma are clinically diverse and it has been clear that MYC 
activation has important therapeutic consequences. Previously, we demonstrated that 
transcriptional profiles can distinguish low- and high-risk Group 3 patients (Cho et al., 
2011; Tamayo et al., 2011). More recent studies have proposed additional subtypes of 
Group 3. Cavalli et al. (2017) proposed three subtypes, and Northcott et al. (2017) 
identified eight subtypes of Group 3 and Group 4. However, genomic, epigenomic, and 
transcriptional data do not directly measure activation of MYC, which can occur through 
several mechanisms. In breast cancer, for example, more than 40% of tumors show 
increased levels of MYC protein, but the fraction with increased MYC mRNA ranges 
from 22-35% and only 13-22% have an amplification of the MYC locus (Chen and 
Olopade, 2008). In breast cancer, higher MYC protein levels without genomic 
amplification have been explained by elevated levels of pS62, a phosphosite associated 
with more stable and transcriptionally active MYC (Janghorban et al., 2014). Using the 
direct measurement of MYC post-translational modifications, we were able to refine the 
transcriptional signature of MYC-activated Group 3 tumors. It is clear from the pathway-
level analysis that G3a tumors have higher levels of MYC activity compared to those in 
the G3b cluster. Consistent with these data, we see pS62 on MYC in the proteomic data 
and by staining both of FFPE tumor sections and medulloblastoma cell lines; and we 
found that pS62 MYC was primarily expressed in the nucleus. More work will be needed 
to understand the functional consequences of the observed post-translational 
modifications.  
 
Through systematic analysis of the phospho-proteomic data, we have identified several 
kinases that should be studied further to understand their therapeutic implications. 
PRKDC was predicted by our kinome analysis and its levels were elevated in many 
Group 3 and WNT samples. While there is no prior evidence for PRKDC’s role in 
medulloblastoma, in vitro experiments with various tumor cell lines show that PRKDC 
promotes MYC stability (An et al., 2008). PRKDC and MYC are known to function 
together in the presence of DNA damage (Cui et al., 2015). Notably, we have shown 
that in the presence of high levels of endogenous MYC activity in medulloblastoma cell 
lines, PRKDC inhibition functions as a radiation sensitizer, but not in cells with low MYC 
levels. Indeed, our data suggest that the radio sensitizing effects of PRKDC inhibitors 
may be dependent on MYC status, and furthermore that PRKDC inhibition may serve as 
radiation sensitizer of MYC-active G3a medulloblastoma in clinical trials. 
 
In conclusion, our results show that quantitative mass spectrometry-based proteomics 
reveals molecular mechanisms within medulloblastoma subgroups that are not evident 
through analysis of genome, epigenome, or transcriptome. Protein expression and post-
translational modifications represent the functional state of the cancer cells, a reflection 
of the influence that somatic mutations and other genetic and epigenetic alterations 
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have to alter the cellular state during progression from normal to a cancerous state. 
Kinome analysis is a particularly sensitive method to identify specific kinases for 
therapeutic targeting. Finally, differential modification of proteins through post-
translational modifications offers new biomarkers for specific medulloblastoma 
subtypes. Our integrative exploration of medulloblastoma furthermore provides the 
clinical and research communities with a wealth of data that may help advance 
strategies for patient selection and treatments for this devastating disease. 
It has come to our attention that a parallel study by Ayrault and colleagues also 
identifies two subgroups of SHH medulloblastoma. Their pathway analysis also finds 
SHHa samples to be enriched for DNA replication processes, and SHHb to be enriched 
for neuronal and neurotransmitter genes.  
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5.7 Methods 

5.7.1 Patient samples 

Primary medulloblastoma patient samples, including FFPE slides, were obtained with 
informed consent as previously published in Northcott et al. (2017). All samples were 
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de-identified. Tumor samples of 50 mg were freeze-fractured using Covaris cryoPREP 
CP02 at setting “impact level 4”. The pulverized samples were aliquoted for the 
downstream methods.  

5.7.2 Cell Lines 

Medulloblastoma cell lines D425, D458 and D556 were a kind gift from Dr. Darell Bigner 
(Duke University). DAOY and D283 were obtained from American Tissue Culture 
Collection. 

5.7.3 Proteomic profiling 

The global proteome and phospho-proteome were processed according to adapted 
protocols from our previous studies (Mertins et al., 2016; Huang et al., 2017). In brief, 
cryo-pulverized tumor tissue from each patient was lysed at 4°C using 8M urea lysis 
buffer. Extracted proteins were reduced using dithiothreitol and alkylated with 
iodoacetamide before digestion using LysC for two hours followed with trypsin 
overnight. Both digestion steps were performed at a 1:50 enzyme:protein ratio. For 
relative quantification of the global proteome and phospho-proteome by liquid 
chromatography tandem mass spectrometry (LC-MS/MS), 400 µg per patient, as 
measured on protein level (BCA protein concentration determination kit; before 
digestion) was labeled with 10-plexing tandem mass tags (TMT-10; Thermo Scientific) 
following the manufactures instructions. All 45 patients were run in 5 total TMT-10 
plexes, with each plex including 9 patient samples and an internal reference sample. 
Samples were assigned to plexes in a semi-randomized manner, such that consensus 
subgroups were split across TMT-10 plexes (assignments in Table S1). The internal 
reference sample was composed of equal amounts of peptide material from 40 of the 45 
patients, representing all subgroups, and was included in each TMT10-plex to provide a 
common standard for precise relative quantitation. Isobarically-labeled peptides were 
combined and fractionated using high-pH reversed phase chromatography into 24 
fractions. From each fraction, 5% of the material was evaluated for its proteomic 
content. The remaining 95% material was combined into 12 fractions which were each 
enriched for phosphopeptides using immobilized metal affinity chromatography 
(IMAC)(Mertins et al., 2013). The flow-throughs after IMAC enrichment were collected 
and further concatenated into 4 fractions that were each enriched using antibodies for 
acetylated peptides (see Key Resource Table). In parallel to the global proteome, 
phospho-proteome, and acetylome, an additional 500ug of TMT-labeled peptides per 
patient were enriched for phosphotyrosine peptides using phospho-tyrosine antibodies 
(see Key Resource Table) and analyzed as a single fraction on the mass spectrometer. 
All proteomic based data were collected on a Lumos mass spectrometer (Thermo 
Fisher Scientific) and the resulting spectra were searched using Spectrum Mill (Agilent, 
version 12.212). All mass spectra contributing to this study can be downloaded in the 
original instrument vendor format from the MassIVE online repository. 
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5.7.4 Sequencing and DNA Methylation Array Data Collection 

Whole genome sequencing and DNA methylation data sets reported here are previously 
published in Northcott et al. (2017). Consensus subgroup assignments (Figure 1) were 
provided by DKFZ, and methylation-based subgroups were assigned previously in 
Northcott et al. (2017).  

5.7.5 Western blots 

Cells were cultured as previously described (Weeraratne et al., 2012). For Western 
blots, 1 million cells were plated in 10 cm dishes and harvested after 48 hours. Proteins 
were normalized using Pierce BCA Protein Assay Kit and 50 μg protein was loaded per 
well into NuPAGE Novex gels with Bolt running buffer (see Key Resource Table for 
specifics). Proteins were transferred using iBlot2 system. Blots were probed for primary 
antibodies and visualized using the Licor Odyssey system on the Odyssey CLx Infrared 
Imaging System according to manufacturer’s directions. Antibodies dilutions for Western 
blots are listed on Key Resource Table. Antibody staining was quantified using Image 
Studio Lite for Western blots. Densitometry was performed by comparing raw 
densitometry for each antibody to actin on unmodified images. 

5.7.6 Immunofluorescence of cell lines  

Immunocytochemistry was performed as previously reported (Weeraratne et al., 2012) 
with the following modifications: cells were plated at 30,000 cells/well in 500 μl of media 
on glass coverslips. Slides were imaged using Zeiss 710 Confocal Microscope in the 
IDDRC and analyzed using Fiji Image J. All antibodies were used at 1:50 concentration 
for immunofluorescence. 

5.7.7 Drug dose response assay 

Adherent DAOY cell lines were plated at 2,500 cells per well and suspended D458 were 
plated at 20,000 cells per well in 96-well plates in 75 μL of culture media. Each sample 
was plated in sextuplicate. NU7441 was added 24 hours after plating at 4x 
concentrations in 25 μL. CellTiter-Glo Luminescent Cell Viability Assay was used to 
measure viability 18 hours after drug addition according to manufacturer’s directions in 
white opaque plates. Luminescence data was measured by EnSight Multimode Plate 
Reader using Kaleido 1.2 software with 0.1 second measurement time. For irradiation, 
the cells were exposed to 200 rads of gamma radiation and assayed for cell viability 5 
hours later.  

5.7.8 Immunofluorescence staining of FFPE slides  

Antigen retrieval was achieved by pressure-cooking in citrate buffer pH 6 (Sigma) for 10 
minutes. Antibodies used for staining are as follows (details in Key Resource Table): 
rabbit polyclonal c-Myc S62 specific phospho-antibody 1:25 (Zhang et al., 2012) and 
rabbit polyclonal c-Myc pT58 antibody 1:50 (Applied Biological Material) incubated 
overnight at 4°C. Secondary antibody was Alexa Fluor 594 1:500 (Invitrogen) and DAPI 
at 1:5000 (Sigma) incubated for 1 hour at room temperature. ProLong Gold mounting 
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media (LifeTech) was used and allowed to cure for at least 24 hours. Images were 
taken with a Hamamatsu digital camera (Japan) mounted on a Leica fluorescence 
microscope (Wetzlar, Germany) at 40x. Representative images (Figure 4B) were 
acquired at 63x on a Zeiss LSM 880 laser-scanning confocal microscope (Germany). 

5.7.9 Processing of DNA Methylation Array Data 

We used the minfi R library (Aryee et al., 2014) to process the IDAT files into quantile 
normalized beta values. The probes’ beta values were then collapsed to gene symbols 
using the means of gene-associated probes. 

5.7.10 Processing of genomics data 

This section describes the (re)processing of genomics data (RNA-seq, WGS) for the 
medulloblastoma cohort that is the subject of this study. All genomics data were 
available prior to this study and published elsewhere (Northcott et al., 2017). Details 
about sequencing protocols can be found in the corresponding publications. We 
decided to re-process all data using the latest best-practice pipelines developed at the 
Cancer Genome Analysis (CGA) group of the Broad Institute.  

5.7.11 Processing of RNA-seq data 

Bam files were unaligned and converted to FASTQ using Picard 
(http://broadinstitute.github.io/picard/). All further RNA-seq data processing described 
below was conducted in FireCloud, a cloud-based computing environment developed 
and maintained at the Broad Institute. Briefly, RNA-seq reads (50 bp) were aligned to 
GRCh37 (UCSC hg19) genome assembly using STAR aligner (Dobin et al., 2013). For 
each sample we assessed QC metrics using RNA-seqC (DeLuca et al., 2012). 
Transcript expression was quantified as Transcripts Per Kilobase Million (TPM) using 
RSEM (Li and Dewey, 2011).  

5.7.12 Processing of Affymetrix expression array data 

Expression array data was quantile normalized using the preprocessCore R library 
(function “normalize.quantiles”).  

5.7.13 Processing of WGS data 

The processing of 44 WGS tumor-normal pairs described below was accomplished by 
chaining together modules implemented in GDAC Firehose 
(http://gdac.broadinstitute.org/). Somatic variant calling modules were based on the 
Genome Analysis Tool Kit v3 (GATK) following ‘GATK Best Practices’ workflows for 
variant discovery (DePristo et al., 2011). 
Paired-end (PE) sequencing reads (100 bp) in FASTQ format were aligned to GRCh37 
(UCSC hg19) genome assembly using BWAMem. Base quality score recalibration 
(BQSR) to correct systematic errors made by the sequencer was done using GATK’s 
‘BaseRecalibrator’ and ‘PrintReads’ programs. Local realignment of insertions and 
deletions (indels) to correct alignment artifacts was performed with GATK’s 
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‘IndelRealigner’ program. Cross-sample contamination was assessed by GATK 
‘ContEst’ program.  
Mutation calling. Somatic single nucleotide variants (SNVs) and indels were called using 
Mutec2. Resulting VCF files were annotated and converted to MAF format by Oncotator 
(Ramos et al., 2015). Oxidative artifacts contributing to SNV calls were assessed by D-
ToxoG. SNVs and indels were further filtered for commonly observed germline variants 
using a panel of normal (PoN)(Costello et al., 2013). 
Copy number calling. To derive somatic copy number variants, we used a GATK v4 
workflow that comprised four steps: 1) Proportional coverage per read group was 
calculated by the ‘CalculateTargetCoverage’ program. 2) A panel of normals (PoN) was 
created from the normal samples which is meant to encapsulate sequencing noise and 
common germline variants. The program ‘CombineReadCounts’ combined proportional 
read counts from all normal samples into a single file. The PoN file stores information 
like the median coverage target and was generated using ‘CreatePanelOfNormals’ 
using Principle Component Analysis (PCA) to calculate systematic noise. 3) 
Normalization of tumor coverage by PoN target medians and PoN principle components 
using ‘NormalizeSomaticReadCounts’. Resulting data were log2 transformed. 4) 
Segmentation of groups of contiguous targets with the same copy ratio using the 
‘PerformSegmentation’ program.  
To derive gene-centric copy number variant calls we used GISTIC2.0. Contiguous gene 
copy number ratios were corrected for diploidy; a value of zero indicates the presence 
of two gene copies. 

5.7.14 Normalization of proteomics data  

Relative expression data derived from proteomics profiling (proteome, phospho-
proteome, acetylome) were separately normalized by sample using robust z-scores (7&): 
7& = (8 −:)/:<=. In this expression, : is the median expression of the sample; and 
:<= is the median absolute deviation of the sample. To allow for a better comparison 
across data types, WNT samples were excluded from these analyses as they lacked all 
but the proteomic data, and there was insufficient high-quality tissue to perform the 
additional assays. 

5.7.15 Normalization of RNA-seq expression data 

TPM values were first converted to relative scale by median-row normalization. 
Resulting ratios were then transformed to robust z-scores as described above. 

5.7.16 Quantification of Immunofluorescence staining 

Mean immunofluorescence densities were generated using OpenLab 5.5 software 
(Improvision) by using the ROI tool to quantify 50 to 100 nuclei in 3 to 4 fields of view at 
40x magnification. Scatter and bar plots were generated using GraphPad Prism. Error 
bars represent SEM and significance reported is from two-tailed unpaired t-tests. 
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5.7.17 Quantification of Western Blots  

Raw densitometry for each antibody was normalized to actin using Image Studio Lite. 
All quantification was performed in at least triplicate on original unmodified blots. 
Normalized signals were compared between cell lines by arbitrarily normalizing samples 
against the DAOY line. One-way ANOVA with a Dunnett multiple comparison test was 
performed to compare the normalized signal for each antibody across the five cells lines 
using GraphPad Prism 5. Error bars represent mean normalized signal ± SEM. 

5.7.18 Dose response curve 

Luminescence for each well was measured and the mean signal for each condition ± 
SEM plotted. Because adherent (DAOY) and suspended (D458) cells were compared, 
we normalized mean luminescence to 100% for the non-irradiated treatment group for 
each cell line. A dose-response curve and the IC50 were determined by non-linear 
regression with GraphPad Prism. 

5.7.19 Survival Curves 

Group 3 samples were divided into G3a and G3b groups. G3a consists of the samples 
in our cohort assigned to G3a and the samples from the Cho et al. (2011) cohort 
predicted to be G3a. The same scheme applies to G3b. Kaplan-Meier curves were 
generated for each of these groups, for both overall survival (OS) and progression-free 
survival (PFS). All Kaplan-Meier curves and log rank test p values were generated with 
the lifelines Python package (Davidson-Pilon et al., 2017). Samples whose death event 
were not observed within the 10 years following initial diagnosis were right-censored for 
Figure 4D, and the full outcome follow up Kaplan-Meier plots are available in 
Figure S5E. 

5.7.20 Group 3 Cohort Expansion 

To expand our PFS and OS analysis for G3a and G3b we used the c1 and c5 samples 
from the Cho et al. (2011) cohort which are most like Group 3. Since only array data 
were available for the Cho samples, we also used array data for our current Group 3 
cohort to better normalize the two data sets.  
Following the methods in Cho et al. (2011), we projected the expression data for both 
cohorts into “gene set space” using a single sample version of GSEA (ssGSEA), using 
the Hallmarks (H), Curated Gene Sets (C2), Motif Gene Sets (C3), and Oncogenic 
Gene Sets (C6) collections from the MSigDB. Using the G3a, G3b labels for the current 
cohort, we determined the 10 most differentially enriched gene sets for each subtype 
(Figure S5D, main text) according to the Information Coefficient (IC) as defined in Kim 
et al. (2016). These top sets were used as features to train a Bayesian cumulative log-
odds predictor as previously described (Tamayo et al., 2011). The predictor was applied 
to the projected Cho et al. (2011) c1 and c5 samples to assign G3a and G3b labels and 
those labels were used to construct a combined cohort PFS and OS analysis. We used 
the Cho et al. (2011) labels for the current cohort as given in Figure 2B of the main text 
to construct a combined c1/c5 labeled cohort for PFS and OS analysis. This analysis 
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did not include sample MB166 and MB278 from G3b which were labeled c4. The c1/c5 
labeling of the current cohort used the classifier developed for Cho et al. (2011), with 
two minor modifications: (1) we restricted the analysis to genes contained in both data 
sets, and (2) the IPA_KCNIP2_DN gene set used as a feature for c5 in Cho et al. (2011) 
was replaced by BIOCARTA_PS1_PATHWAY. 

5.7.21 Glutamate Pathway modeling  

For Figure 3C, the gene sets were collected from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). Protein levels were summarized using the median log2-normalized 
protein level for a gene for all samples in a group (SHHa or SHHb). When multiple 
genes are in a gene set, the average of those gene values is shown. We only included 
genes with data for at least 75% of samples from both groups. A summary of all the 
genes included in Figure 3C is included in Table S4.  

5.7.22 Consensus Clustering 

We used the ConsensusClusterPlus R library (Wilkerson and Hayes, 2010) to perform 
consensus clustering on our data sets. For each data set we varied k, the number of 
clusters, from 2 to 9 and ran the algorithm with 1,000 subsamples for all combinations of 
two clustering methods (hierarchical clustering and k-means) and three distance metrics 
(Euclidean, Spearman, Pearson). All consensus heatmaps are available in the 
Supplement (Figure S1). Consensus clustering of proteomic data indicated that this 
data type produced highly consistent clusters with k = 5. Runs with k < 5 showed a clear 
substructure within the clusters identified. Notably, for all clusterings with k < 5, the 
SHHb samples clustered with Group 4 samples rather than the SHHa group. Runs with 
k > 5 largely included very small clusters or samples that showed pronounced cluster 
promiscuity. We also calculated PAC (proportion of ambiguously clustered pairs) scores 
(Senbabaoglu, Michailidis and Li, 2014) for our consensus clustering runs (Figure S1) 
and found confirmation that, for proteomics data, k = 5 was the optimal number of 
clusters when trying to avoid clusters with three or fewer samples. Using the PAC 
scores we also determined that hierarchical clustering and Pearson-based distance was 
the best parameter setting for this k. With these settings, one sample, MB247, 
frequently shifted between G3a and G3b. We decided to assign it to G3a based on 
results from other unsupervised methods such as PCA. 

5.7.23 Dimensionality Reduction 

Principal component analysis (PCA) and t-distributed stochastic neighbor embedding 
(tSNE) were employed to display our high-dimensional data sets in two dimensions. We 
used the R function “princomp” in the “stats” library for PCA, and the “Rtsne” package 
for tSNE. Running Rtsne, we used the function’s default parameters along with the 
maximum perplexity the program would allow for (perplexity = (number of samples – 1) / 
3).  
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5.7.24 Differential analysis 

We used two types of analyses to find differential features in our proteomic data sets. 
One strategy sought to extract features specific to a single disease group in comparison 
to the rest of the samples; the other approach selected features that differ between 
pairs of groups. We performed univariate t-tests (using “t.test” in R) to find features 
between each disease group and all the other samples. For pairwise comparisons 
across all groups, we performed ANOVA along with R’s “TukeyHSD” method to 
calculate p values. P values from both methods were corrected for multiple hypothesis 
testing using the Benjamini-Hochberg/FDR method implemented in R's “p.adjust” 
function. Due to concerns associated with the small number of samples (in particular for 
comparisons involving SHH samples), we aimed to focus the comparison on the most 
homogeneous groups possible. We therefore withheld sample MB136 from these 
statistical tests, as it clustered stably with SHHb in the proteomic data but showed 
similarities with SHHa in other data types. 
We are aware that the small sizes of our cohort's disease groups present challenges in 
the selection of statistical tests and estimation of significance of results. We selected the 
methods mentioned above as they were able to identify differential features with 
reasonable confidence and allowed us to prioritize features to feed into downstream 
analysis methods (e.g. Omics Integrator). These downstream methods served as a 
second filter and none of our conclusions are directly based on the results of these 
tests. For statistics on individual univariate comparisons we used a Mann Whitney 
U test (these instances are indicated as such in the main text). Across the different 
testing methods, we considered FDR-adjusted p values of less than 0.05 as significant, 
but chose more stringent thresholds for certain analyses to limit the number of features. 

5.7.25 Global Correlation Analysis 

To correlate proteomic and RNAseq data, we considered only those data with no 
missing values and identified matching proteins and transcripts based on gene symbols. 
In doing so, splice isoforms were collapsed by their means. For each sample, we then 
calculated the Spearman correlation for the 8,674 proteins and their corresponding 
mRNAs. 

5.7.26 Functional Annotation of Data Sets 

To project data sets into the space of gene sets representing functional information, we 
performed hypergeometric overlap tests (background size context dependent) and used 
an in-house implementation of single sample Gene Set Enrichment Analysis 
(ssGSEA)(Subramanian et al., 2005; Barbie et al., 2009). For the latter, we used the 
following parameter settings: rank-based sample scoring (“sample.norm.type”: ranks), 
area under curve statistic to calculate scores (“statistic”: area.under.RES), default 
weight (0.75), 500 permutations, z-score pre-processing (“correl.type”: z.score), and 
normalized enrichment score output (“NES”).  
We used the gene sets available in the Molecular Signature Database (MSigDB 
v6.0)(Liberzon, 2014; Liberzon et al., 2015), primarily focusing on canonical pathways 
(C2CP), GO terms (C5), and Hallmark sets (H). P values from these methods were 
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corrected for multiple hypothesis correction using the Benjamini-Hochberg/FDR 
correction implemented in R's “p.adjust” function. FDR-adjusted p values less than 0.05 
were considered significant. 

5.7.27 Integrative Network Analysis 

We used the latest version of Omics Integrator 2 (OI2 v2.24, https://github.com/fraenkel-
lab/OmicsIntegrator2) to construct disease-focused, integrative networks using 
proteomic and genomic data (Tuncbag et al., 2016). Omics Integrator begins by 
mapping a set of proteins of interest onto the nodes in a network of physical interactions 
("interactome") among proteins. The nodes are assigned “prizes”, reflecting their 
importance (see below for details). The interactions were derived from public databases 
using the iRefIndex v14 collection of interactions (Razick, Magklaras and Donaldson, 
2008). Each interaction is associated with a cost that is lowest for the most reliable 
interactions (calculated as 1 minus the edge score provided by iRefIndex). We also 
added previously published site-protein (cost: 0.25) and site-kinase (as published in 
PhosphoSitePlus, (Hornbeck et al., 2015)) edges (cost: 0.4) to the interactome to allow 
the algorithm to find site-kinase interactions in the solution that are not included in the 
iRefIndex interactome. The algorithm seeks to identify subnetworks that contain many 
disease relevant nodes (based on prizes) while still avoiding using too many low 
confidence edges (based on costs). For more details about this method, see Tuncbag et 

al. (2016). 
We tailored the selection and definition of prizes to the type of network we sought to 
detect. We created networks focusing on the differences between G3a and G3b (“G3 
network”), as well as SHHa and SHHb (“SHH network”). Input nodes were selected 
based on differential protein or peptide levels for the relevant sample group comparison 
in each network. For the G3 network, proteomic features needed to pass the same FDR 
threshold (FDR < 0.05) in each data set. For the SHH network, proteins and 
phosphopeptides in pSTY needed to pass a more stringent threshold (FDR < 0.005) 
due to the large number of differential features, while the threshold for acetylated 
peptides and phospho-tyrosine peptides was set to 0.05. Prizes for nodes based on 
proteomic data sets were calculated as the absolute value of the log2-based fold 
changes (based on the sample groups’ means) from pairwise comparisons. Genomic 
events were each assigned a fixed prize at an arbitrary value of 2.5 and each CNA and 
mutation found in at least one sample in the relevant group was given a prize. This 
value was used as we wanted to lend strong weight to genomic alterations, but not have 
them outweigh strong proteomic signals. We therefore opted for a value between the 
median and the 3rd quartile in the proteomic prize distributions. 
Data for protein and acetylation events were collapsed to gene symbols of the relevant 
proteins, keeping the highest prized features as inputs for OI2. Due to the large number 
of differential phosphosites, these sites were treated as individual nodes in the OI2 
network formulation and the required edges were added to the interactome (site-protein 
edges, cost: 0.25), splitting doubly phosphorylated sites into individual sites.  
We ran OI2 with the selected disease-associated nodes and their prizes (see Table S6) 
as inputs on all combinations of the following parameters: Gs = (50k, 100k, 500k, 1M, 
2.5M, 5M, 10M), Bs = (0.5, 1, 10), and Ws = (1, 3, 6, 10). We evaluated these networks 
to find a parameter set (W = 1, B = 1, G = 2.5M) that produced a network that was not 
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dominated by hub-nodes, and had a reasonable balance of input nodes and those 
added by the algorithm for connectivity. Using this parameter set, we performed 
additional calculations to assess the robustness and specificity of nodes in the network. 
To determine the robustness of nodes, we added Gaussian noise (standard deviation: 
0.05, mean: 0) to the edges in the interactome before each of 200 runs. We then 
calculated the robustness score for each node as the fraction of times a node appeared 
across the networks. To calculate specificity, we assigned our prizes to randomly 
selected, degree-matched nodes in the interactome before each of 200 runs. The 
specificity score was then calculated as the one minus the fraction of times a node 
appeared across these networks. (More details on and rationale around these scores 
can be found in (Tuncbag et al., 2016). For downstream analysis, we removed nodes 
from the OI2 output that were neither specific nor robust (threshold: 0.75). To link the 
network clusters to functional annotations we used hypergeometric tests as described 
above.  
We used Cytoscape v3.3 (Shannon et al., 2003) for visualizations of our networks. 
Nodes received log2-fold change-based colors based on the source of their prizes, and 
shapes according to the data type they represent (protein, genomic lesion, phosphosite, 
acetylated protein – see figure legend for details). Nodes in the network that did not 
receive a prize but were still included in the network received the log2-FC based color of 
the corresponding proteomic value if data was available (or were colored grey 
otherwise). For the final display items, we rearranged nodes primarily based on pathway 
associations rather than the clustering of the network used for the initial analysis. 

5.7.28 Kinome Analysis 

This analysis sought to identify the kinases potentially responsible for phosphorylating 
phosphopeptides of interest. We first selected phosphopeptides that were either specific 
to one of the clusters found in proteomic data or significantly different between a pair of 
clusters (FDR < 0.01). We then used two different methods to identify upstream 
kinases: 
(1) PhosphoSitePlus: Cell Signaling Technologies' PhosphoSitePlus database 
(Hornbeck et al., 2015) is a curated resource of experimentally determined peptide 
targets of specific kinases (downloaded February 2017). We searched this database for 
matches to phosphopeptides identified in our analyses.  
(2) Scansite: the Scansite platform (Obenauer, Cantley and Yaffe, 2003) contains 
sequence specificity motifs for kinases that were derived from oriented peptide library 
screens. For this analysis, we used 15 amino acid long peptide sequences (phosphosite 
± 7 amino acids) surrounding our phosphorylation events as input into Scansite 
(Scansite 3 Web Service) and used its most stringent setting (high stringency) to get 
only the best motif matches. For results to be reported with this setting, a motif's score 
for a peptide sequence needs to be in the top percentile of scores from an empirical 
score distribution that is based on all potentially matching sites in the vertebrate 
proteome. 
For each of these two methods, we then collapsed all peptides matched to a kinase 
(median across matching peptides) and calculated the Spearman correlation of this 
'peptide-profile' to the kinase's protein and/or phosphopeptide-levels (if available). If the 
correlation with the kinase's protein levels or any of its phosphopeptides was higher 
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than 0.4 (or less than -0.4 for phosphosites) it was labeled as correlating (or 
anticorrelating).  
We checked DrugBank.ca (Law et al., 2014) for drugs that are known to target any of 
the kinases nominated by our analysis. Whenever this information was available, we 
also annotated whether any FDA approved products were listed for a drug. We provide 
a full table of all kinase-drug matches in the Supplement (Table S5). 
To identify disease-related kinases that we could not associate with peptides (as in the 
analyses described above) due to a lack of supporting data (no kinase motifs or known 
sites), we also extracted significantly differential kinases from all our proteomic data 
sets (FDR < 0.005). These kinases are indicated in Table S2. 
We also used an R implementation (Wagih et al., 2016) of the motif-x algorithm (Chou 
and Schwartz, 2011) to discover motifs. We performed the analysis for 15 amino acid-
long peptide sequence windows around serine (S), threonine (T), and tyrosine (Y) 
residues in our phospho-proteomics data sets. As foreground sets we used peptides 
up/down in only a single proteomic group of samples and ran the algorithm for all our 
groups at various significance thresholds with all S, T, Y-centered peptides in our data 
set as background. The most specific motifs found by this approach were “SP” and 
“TP”. 
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This section is the latest draft of the manuscript describing the developmental basis of 

SHH medulloblastoma. My primary contributions to this work were leading the data 

analysis and hypothesis generation for the project. I relied significantly on many talented 

associates and collaborators for wet lab experiments and data interpretation.  

 
 
 

6.1 Abstract 

 
Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. 
The sonic hedgehog (SHH) subtype accounts for 30% of MB cases and likely arises 
from mutations in granule cell precursors (GCPs), neuronal progenitors of the cerebellar 
cortex that differentiate into granule neurons. SHH MB is extremely heterogeneous, but 
it is unknown whether this heterogeneity relates to the tumors’ developmental origins. 
To investigate this question, we performed single-nucleus RNA-Sequencing on seven 
highly differentiated SHH MB with extensively nodular histology and observed malignant 
cells resembling each stage of granule neuron development. Using novel computational 
approaches, we connected these results to published datasets and found that 
established molecular subtypes of SHH MB are enriched for specific developmental cell 
types. Additionally, some genomic copy number variations are associated with specific 
developmental stages, and we observed distinct metabolic and histological profiles for 
tumors containing cells resembling late-stage granule neurons. This work details 
computational and experimental approaches that can be repurposed for analysis of 
tumor cell differentiation in other cancers. 
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6.2 Introduction 

 
Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. 
The standard treatment regimen of surgical resection, radiation, and chemotherapy has 
led to favorable short-term outcomes in aggregate (Gajjar et al., 2021; Kool et al., 
2012), but unfortunately these therapies can cause neurological side effects and 
increased risks of secondary cancers (Olivier et al., 2019; Salloum et al., 2019). Thus, 
there is an urgent need for more targeted, less toxic therapies, which requires a better 
understanding of the heterogeneity within and between MB tumors (Cavalli et al., 2017; 
Hovestadt et al., 2019; Riemondy et al., 2022; Vladoiu et al., 2019). 
 
The World Health Organization recognizes both histological and molecular 
heterogeneity in MB (Louis et al., 2021; Orr, 2020). The four primary histological 
categories are classic, large cell anaplastic (LCA), desmoplastic/nodular (DNMB), and 
medulloblastomas with extensive nodularity (MBEN). DNMB histology is characterized 
by tightly packed cells interrupted by nodules filled with a lower density of differentiated 
neuron-like cells. Tumors with widespread nodularity are designated as MBENs. 
 
In addition to histological heterogeneity, there are four consensus molecular subgroups 
recognized by the MB research community (Taylor et al., 2012): WNT, SHH, Group 3, 
and Group 4. SHH MBs represent 30% of cases and have an overactive sonic 
hedgehog pathway caused by germline or acquired mutations (Northcott et al., 2012). 
Granule cell precursors (GCPs) of the cerebellum are the proposed cell of origin for 
these tumors (Kim et al., 2003; Schüller et al., 2008; Yang et al., 2008). During normal 
development, the GCPs proliferate in response to SHH in the external granule layer 
(EGL) (Wallace, 1999; Wechsler-Reya and Scott, 1999) before differentiating into 
granule neurons (GN) (Komuro et al., 2001), which then migrate to the internal granule 
layer (IGL) (Komuro and Rakic, 1995; Komuro and Yacubova, 2003; Rakic, 1971). 
 
Many groups have characterized the molecular heterogeneity of SHH MBs. Analysis of 
methylation and transcriptional data revealed four consensus subtypes: SHH-1 (β), 
SHH-2 (ɣ), SHH-3 (⍺), and SHH-4 (δ) (Cavalli et al., 2017; Garcia-Lopez et al., 2021). 
Additionally, Archer et al. found proteomic clusters of SHH MB tumors (Archer et al., 
2018) and Korshunov et al. identified a transcriptional subtype of SHH MBEN tumors 
with exceptionally good outcomes (Korshunov et al., 2020). Multiple single-cell RNA 
sequencing (scRNA-seq) studies have characterized the cell types in SHH MBs 
(Hovestadt et al., 2019; Riemondy et al., 2022; Vladoiu et al., 2019). They observed 
undifferentiated progenitors resembling cerebellar GCPs and differentiated NeuN+ cells. 
 
Since SHH MBs are proposed to originate from GN progenitors, we hypothesized that 
the inter- and intra-tumoral heterogeneity in these samples is related to their 
developmental origins. Single-cell clusters and molecular subtypes have been 
described as “differentiated,” but not associated with specific stages of GN 
development. Precise annotations would allow for more biologically informed 
discussions about the clinical and therapeutic relevance of specific cell types. For 
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example, there is great interest in using differentiation therapy to treat SHH MB by 
inducing cycling progenitors to differentiate into postmitotic neurons (Breitman et al., 
1980; Cheng et al., 2020; Cicconi and Lo-Coco, 2016), and more knowledge about the 
drivers of differentiation in these tumors would help inform target identification. 
 
We reasoned that the relationship between development and intra-tumoral 
heterogeneity would be particularly pronounced in tumors with MBEN histology because 
they contain widespread differentiated nodules. Therefore, we performed single-nucleus 
RNA sequencing (snRNA-seq) on seven SHH MBs with the MBEN histology. We 
identified cells mimicking every stage of cerebellar GN development and then used 
computational techniques to relate these MBEN cell types to previously described 
examples of SHH MB heterogeneity. Specifically, we detail novel insights about tumor 
subtypes, copy number variations, metabolism, and histology. Overall, this work 
highlights computational and experimental approaches that can be used to investigate 
connections between tumor heterogeneity and known developmental trajectories. 
 

6.3 Results 

6.3.1 Tumor Cells in Medulloblastomas with Extensive Nodularity (MBEN) 
Recapitulate Granule Neuron Development 

 
Prior scRNA-seq studies of SHH MB have not included any tumors with MBEN histology 
(Hovestadt et al., 2019; Riemondy et al., 2022; Vladoiu et al., 2019). While rare, such 
tumors are of particular interest due to their occurrence in very young patients and their 
unusual morphology, characterized by large regions of differentiated cells.  We 
reasoned that a deeper analysis of MBEN tumors might provide insight into the 
relationship between normal GN development and tumor differentiation, so we 
performed snRNA-seq on seven MBEN tumors (Supplementary Table 1).  
 
First, we clustered the data and annotated the corresponding cell types (Figure 1A). 
Tumor cells represent 92% of the high-quality nuclei, while the remaining nuclei are 
from cell types that commonly infiltrate SHH MBs, such as macrophages and microglia 
(Figure 1A, Supplementary Figure 1A). The malignant nuclei are heterogeneous and 
Louvain clustering revealed eight groups of cells (Supplementary Figure 2A). Our data 
confirm previous reports of tumor cells resembling non-cycling GCPs (GLI2+/TOP2A-), 
cycling GCPs (GLI2+/TOP2A+), and differentiated cells (NeuN+) (Figure 1B). 
Additionally, we performed pseudotime analysis on the malignant nuclei and identified a 
clear trajectory from cycling GCPs to differentiated cells (Figure 1B).  
 
Despite these patterns, pseudotime and UMAP plots are not necessarily reflective of 
genuine biological differentiation. Fortunately, canonical GN differentiation is well 
studied in both humans and rodents, and there are known marker genes for each 
developmental stage (Figure 1C). GCPs express the SHH pathway marker GLI2 and 
proliferate in the EGL. In the normal developing cerebellum, the actively cycling GCPs 
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(TOP2A+) are located in the outer EGL, while the non-cycling GCPs reside in the inner 
EGL (Legué et al., 2015; Wallace, 1999; Wechsler-Reya and Scott, 1999). The GCPs 
can differentiate into GN, where they are SEMA6A+ for the short time they are migrating 
tangentially within the EGL (Kerjan et al., 2005). The GN then express the GRIN2B 
glutamate receptor as they migrate radially across the molecular layer (ML) (Akazawa et 
al., 1994; Tárnok et al., 2008; Watanabe et al., 1994). Once they reach the IGL and 
start to mature, GRIN2B is replaced by the GRIN2C receptor (Cathala et al., 2000; Cull-
Candy et al., 1998; Losi et al., 2002; Takahashi et al., 1996).  
 
To assess the relationship between our tumor cells and normal GN differentiation, we 
re-analyzed the nuclei along the potential GCP-to-GN trajectory. Remarkably, we 
observed tumor nuclei expressing key markers from every stage of GN differentiation 
and maturation (Figure 1D, Supplementary Figure 1D) (Abe et al., 2011; Miyazaki et al., 
2003; Sato et al., 2005; Suzuki et al., 2005). These transcriptomic patterns suggest that 
some MB tumor cells retain the capacity to recapitulate canonical GN development.  
 
Since there are known biases in single-cell and single-nucleus sequencing (Ding et al., 
2020), we also performed scRNA-seq on fresh cells from one MBEN tumor 
(Supplementary Figure 1E). The scRNA-Seq cells do not express the same exact 
markers as the snRNA-Seq nuclei, but we still observe clusters of malignant cells with 
markers for each stage of GN development (Supplementary Figure 1F). 
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Figure 1) MBEN Tumor Cells Mimic Granule Neuron Development 
A) Summary UMAP of Seven tumors with MBEN histology. Malignant and non-malignant cell types are 
labeled in the legend. 
B) Marker Genes and Pseudotime for Malignant Cells. Tumor cells express markers for cycling GCPs 
(TOP2A+/GLI2+), non-cycling progenitors (TOP2A-/GLI2+), and differentiated neurons (NeuN+). Bottom 
right image shows pseudotime analysis rooted at cycling cells. Pseudotime increases from dark blue to 
white and then dark red. The black lines represent trajectories identified by monocle3. 
C) Summary of Granule Neuron Development. Granule cell precursors (GCPs) proliferate in the outer 
portion of the external granule layer (EGL), while non-cycling progenitors lie in the middle portion of the 
EGL. As the granule neurons (GN) differentiate, they express SEMA6A as they migrate tangentially 
across the inner portion of the EGL. The GN then turn and migrate radially across the molecular layer 
(ML), during which they express the glutamate receptor GRIN2B. Once the GN reach their final location in 
the internal granule layer (IGL), GRIN2C replaces GRIN2B. 
D) MBEN Tumor Cells Resemble Stages of Granule Neuron Development. UMAP plot for malignant 
tumor cells along potential GCP to GN trajectory. There are tumor cells that express markers for each 
stage of GN development: cycling GCPs (TOP2A+), non-cycling GCPs (TOP2A-/GLI2+), premigratory GN 
(SEMA6A+), migrating GN (GRIN2B+), and postmigratory GN (GRIN2C+). Feature plots use a minimum 
cutoff at the 80th percentile for each marker to highlight the cells with the highest expression. 
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6.3.2 Clustering of Gene Set Signatures Reveals Connections Between Granule 
Neuron Development and SHH MB Heterogeneity 

 
Since we observed tumor cells expressing markers from each stage of GN 
development, we sought to understand how these MBEN cell types relate to previously 
published examples of SHH MB heterogeneity. To accomplish this, we developed the 
computational approach outlined in Figure 2A. This method is based on generating 
gene signatures from relevant developmental and tumor datasets and then using a 
large compendium of expression data from SHH MBs to identify which signatures are 
activated in the same patients. 
 
We defined signatures from six SHH MB studies (Supplementary Figure 2A) by 
identifying the top 100 marker genes from each cell type or molecular subtype 
(Supplementary Table 2). Additionally, we generated signatures for each stage of 
canonical GN development using published data from human brain tissue 
(Okonechnikov et al., 2021) and P14 mouse cerebella (Vladoiu et al., 2019)  
(Supplementary Figure 2B). We then used Gene Set Variation Analysis (GSVA) 
(Hänzelmann et al., 2013) to calculate an activation score for each signature in all 223 
SHH MBs from the MAGIC cohort (Cavalli et al., 2017) (Supplementary Table 3). 
 
To identify relationships among the signatures, we performed consensus clustering on 
the signature scores. Figure 2B summarizes the co-clustering pattern for 1000 trials. We 
observe a clear correspondence between the MBEN cell types and the known stages of 
GN development and this pattern holds true across many clustering parameters and 
gene signature sizes (see Methods, Supplementary figure 2D). 
 
Additionally, we analyzed how the signatures of GN development relate to cell types 
identified from SHH MBs with non-MBEN histology. Specifically, we investigated the 
SHH-A, SHH-B, and SHH-C clusters from Riemondy et al. (Riemondy et al., 2022). We 
confirmed their findings that the SHH-A and SHH-B signatures correspond to cycling 
and non-cycling GCPs respectively. We also identified a novel association between the 
SHH-C2 signature and premigratory GN, which is supported by previous studies 
showing that the SHH-C2 cells populate the differentiated nodules in SHH MBs 
(Riemondy et al., 2022).  
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Figure 2) Clustering of Gene Signature Activation Scores 
A) Clustering of Gene Signature Scores Approach. The first step in this method is collecting the bulk or 
single-cell datasets of interest (Supplementary Figure 2A). For each dataset, clustering was used to 
identify relevant cell types or molecular subtypes. Then the top 100 marker genes were identified for each 
cluster and considered the gene signature. Those marker genes were used as gene sets for Gene Set 
Variation Analysis (GSVA), which was run on bulk transcriptomics data from 223 SHH tumors in the 
MAGIC cohort. This method converts the “genes by samples” matrix into a “signatures by samples” matrix 
by scoring each gene set signature for each of the 223 tumors. Consensus clustering was then run on 
those signature scores to identify which signatures are activated in the same SHH tumors. 
B) Signature Score Consensus Clustering Summary. Co-clustering results of 1000 samples of the 
“signatures by samples” output dataset. In each case, signatures were clustered using data from 70% of 
SHH MBs. Beige signifies signatures that never cluster together and stronger red coloring indicates 
signatures that cluster together more often. The legend at the bottom indicates the dataset of origin, the 
species of the cells (human or mouse), the data type (scRNA-Seq, snRNA-Seq, or bulk), and material 
type (SHH MB tumor or healthy cerebellum). The groups of signatures on the right were manually 
annotated using the known cerebellar cell types from human and P14 mouse samples.  
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6.3.3 Consensus Subtypes of SHH MB are Associated with Specific 
Developmental Stages 

 
The signatures we identified from normal GN development and MBEN tumors provide 
an opportunity to connect these cell types to other examples of SHH MB heterogeneity. 
Clustering of DNA methylation and transcriptomics data revealed four consensus 
subtypes of SHH MB with distinct clinical and molecular features: SHH-1 (β), SHH-2 (ɣ), 
SHH-3 (⍺), and SHH-4 (δ) (Cavalli et al., 2017). The 223 SHH tumors from the MAGIC 
cohort are annotated with a SHH subtype, so we re-analyzed the GSVA activation 
scores for our MBEN cell types to investigate potential associations (Figure 3A). The 
SHH-3 samples have the highest average cycling GCP signature scores (0.34 in SHH-3 
vs. -0.11 in others), while the SHH-4 tumors are associated with the GCP signature 
(0.26 vs. -0.10). Both infant subtypes (SHH-1and SHH-2) have high scores for 
differentiated cells but are enriched for specific developmental stages; SHH-1 samples 
have the highest premigratory GN scores (0.43 vs. -0.08), while SHH-2 tumors have 
significant upregulation of the postmigratory GN signature (0.50 vs. -0.21). It is 
noteworthy that the subtype with the least favorable outcomes (SHH-3) also has the 
highest cycling GCP scores (Figure 3A). 
 
We then analyzed the correlations among the MBEN cell type signatures and found that 
the postmigratory GN signature has a strong negative correlation (r = -0.57) with the 
progenitor score (i.e. sum of Cycling GCP score and GCP score) (Figure 3B). This 
suggests that tumors with more postmigratory GNs may have fewer progenitor cells. 
However, this pattern does not exist for the premigratory GN signature, which has no 
significant relationship with the progenitor score GN (r = -0.02) (Figure 3B). 
 

6.3.4 Genomic Associations with Specific Developmental Stages 

 
SHH MB tumors frequently contain copy number variations (CNVs), where large parts of 
chromosomal arms are lost or gained (Kool et al., 2014). Since these chromosomal 
alterations are quite common and affect many genes at once, we hypothesized some 
CNVs could affect tumor cell differentiation. We investigated potential associations 
between large chromosomal CNVs and the MBEN cell types using data from the 
MAGIC cohort. We considered individual cell type signatures and aggregate features 
that combine related developmental stages (see Methods). The strongest association is 
between a loss of chromosome 10q and the proliferation score (cycling GCP score 
minus the GCP score) (t-test p< 0.01) (Figure 3C). This pattern of 10q loss leading to 
higher cycling GCP scores is consistent for every subtype, suggesting that loss of 
chromosome 10q, which contains the SUFU and PTEN genes, may drive progenitor 
cells to remain proliferative. 
 
Moreover, there is a strong negative relationship between a loss of chromosome 9q, 
which contains the PTCH1 and ELP1 genes, and the signature for late-stage GNs (i.e. 
sum of migrating and postmigratory GN scores) (t-test p < 0.01) (Figure 3D). This 
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pattern is most prominent in the SHH-2 patients, where the samples with extremely high 
activation scores for late-stage GNs rarely have loss of chromosome 9q. This trend is 
not observed for other common CNVs or premigratory GNs (Supplementary Figure 3A-
C), suggesting that loss of chromosome 9q may inhibit tumor cells from progressing to 
the later stages of GN differentiation.  
 
 

 
 
Figure 3: Genomic and Transcriptomic Associations Between SHH MB and GN Development 
A) Mean Cell Type Activation Per Cell Type. Each box represents the mean GSVA activation for a given 
consensus subtype and an MBEN cell type resembling a specific GN development stage. Red indicates 
higher activation, while blue signals lower GSVA scores. 
B) Associations Between Progenitor Score and Differentiated Cell Types. For both plots, each dot 
indicates a single sample from the MAGIC cohort and is colored by consensus subtype (SHH-1, SHH-2, 
SHH-3, or SHH-4). The left figure shows the postmigratory GN score on the y axis and the progenitor 
score (cycling GCP + non-cycling GCP) on the x axis. These two features have a significant negative 
correlation. The right plot uses the same x-axis, but the y-axis indicates the premigratory GN score. The 
progenitor score is not significantly correlated with premigratory GN.  
C) Boxplot of Association Between Chromosome 10q and Cycling GCPs. Boxplots reflect GSVA scores 
for SHH MB tumors from MAGIC cohort. Y axis is the Proliferation score (cycling GCP score minus the 
GCP score). The X axis is separated by consensus subtype and further divided by 10q status (loss in 
blue, wt or gain in orange). For all subtypes, samples with 10q loss show higher differences between 
cycling and non-cycling GCP scores. 
D) Boxplot of Association Between Chromosome 9q and Late-Stage GNs. Y axis is the late-stage GN 
score (migrating GN + postmigratory GN). The x-axis is separated by consensus subtype and further 
divided by 9q status (loss in light blue, wt or gain in light orange). SHH-2 samples show a substantial 
difference in postmigratory GN signature based on 9q status.  
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6.3.5 The SHHb Proteomic Subtype is Associated with Tumor Cells Mimicking 
Late-Stage Granule Neurons 

 
Archer et al. identified proteomic subtypes of SHH MB that are not observed when 
clustering RNA or methylation data (Archer et al., 2018). The SHHb subtype is 
characterized by proteins related to specific neuronal functions like glutamatergic 
synapses and axon guidance. We re-analyzed the Archer proteomics data and found 
that even though synaptic proteins, like PCLO and DLG4, are upregulated in SHHb 
tumors, many markers of neuronal differentiation, such as NEUROD1 (Miyata et al., 
1999) and SEMA6A (Kerjan et al., 2005), show similar expression across the groups 
(Figure 4A). This suggests that the SHHb proteomic subtype is not simply a proxy for 
tumors with differentiated cells. 
 
To better understand the relationship between the snRNA-seq results and the SHHb 
phenotype, we used the SHHb proteomic markers (Supplementary Table 2) to calculate 
an activation score for each MBEN nucleus (see Methods). The highest activation 
occurs in tumor cells mimicking the migrating and postmigratory stages of granule 
neuron development (Figure 4B). We then analyzed the cell type composition of each 
tumor individually and observed a striking pattern: most MBEN tumors contain all GN 
cell types, but two samples only contain nuclei resembling GCPs and premigratory GN 
(Figure 4C). These results suggest that the SHHb subtype is driven by the presence of 
cells resembling the latest stages of GN differentiation. This would explain why early 
differentiation markers have similar expression between SHHa and SHHb tumors, while 
proteins related to late-stage developmental processes (e.g. synaptogenesis) are 
significantly enriched in SHHb samples.  
 
We then sought to investigate how common these late-stage GN cells are in non-MBEN 
tumors. We re-analyzed published scRNA-Seq data from 14 SHH MBs and in no 
sample did we observe a cluster with high expression of the postmigratory GN markers 
GABRD and VSNL1 (Supplemental Figure 4B). This lack of expression is unlikely to be 
due to the differences between scRNA-Seq and snRNA-Seq because the one MBEN 
tumor in our cohort with scRNA-Seq data clearly shows a group of GABRD+/VSNL1+ 
cells (Supplemental Figure 4C). It is noteworthy that even though the published non-
MBEN tumors do not contain cells mimicking late-stage GNs, every sample has a 
cluster of SFRP1+ cells resembling undifferentiated progenitors. Additionally, many 
tumors have cells expressing the premigratory GN markers STMN2 and SEMA6A. 
These findings suggest that non-MBEN SHH MBs still contain cells resembling the 
earliest stages of GN development, but MBEN tumors are more likely to have cells 
mimicking late-stage GNs that are associated with the SHHb subtype. 
 

6.3.6 FMRP-Induced Post-Transcriptional Regulation Helps Explain SHHb 
Proteomic Phenotype 
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The association between the proteomic SHHb subtype and late-stage GNs raises 
another question: why does the presence of late-stage GNs result in clear clustering in 
the proteomic data, while having much less of an impact on RNA or methylation data? 
We hypothesized that this could be due to post-transcriptional regulation occurring in 
the SHHb-specific cell types. To test this theory, we re-analyzed 8674 genes from the 
Archer cohort by rank-normalizing the protein and RNA data for each sample and then 
calculating a rank difference (protein rank – RNA rank) for each gene to get a rough 
proxy for post-transcriptional regulation (see Methods).  
 
We explored many gene sets and found that synaptic genes have especially high rank 
differences in the SHHb tumors, but not the SHHa tumors (Supplemental Figure 4A). 
We then specifically analyzed targets of FMRP, a protein encoded by the FMR1 gene 
that regulates translation of RNAs related to synaptic plasticity and axon guidance 
(Antar et al., 2006; Darnell et al., 2011; Napoli et al., 2008). In SHHb tumors, synaptic 
genes targeted by FMRP have significantly higher rank differences than all other genes 
and show significantly higher rank differences than the other synaptic genes (Figure 
4D). No such trend occurs in SHHa tumors where all four gene sets show similar rank 
differences around 0. Thus, positive rank differences for both synaptic genes and FMRP 
targets suggest that the SHHb phenotype may be especially strong in proteomic data 
due to post-transcriptional regulation specific to functions of late-stage GNs. 
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Figure 4: SHHb Proteomic Subtype Associated with Late-stage GNs. 
A) Neuronal Protein Expression in SHH MB. Relative protein expression from Archer et al. data for 
markers of early differentiation (NEUROD1 and SEMA6A) and synapses (DLG4 and PCLO). Synaptic 
proteins are significantly upregulated in SHHb tumors compared to SHHa (t-test adj-p < 0.01), while 
NEUROD1 and SEMA6A are not. 
B) SHHb Signature Scores for MBEN Nuclei. Activation scores for each MBEN nucleus using the top 100 
SHHb marker proteins (see Methods). Scores were filtered using a minimum cutoff of zero. SHHb 
activation is highest in tumor cells mimicking migrating and postmigratory GN. 
C) Tumor Cell Types per Sample. Five MBEN samples contain all types of cells. Two MBEN tumors do 
not contain late-stage GNs (migrating and postmigratory GN).  
D) Rank Differences by Synapse and FMRP status. For each SHH tumor from Archer et al (2018), the 
RNA and Protein data were rank normalized and a rank difference (protein rank – RNA rank) was 
calculated for each gene. For every gene in every SHHa tumor, the mean rank difference was calculated 
across samples and then the same procedure was applied to SHHb tumors. The genes were then divided 
into four categories: Non-synaptic genes not targeted by FMRP (Non-SYN), non-synaptic genes targeted 
by FMRP (Non-SYN FMRP), synaptic genes not targeted by FMRP (SYN) and synaptic genes targeted 
by FMRP (SYN FMRP). For SHHb tumors, “SYN” and “SYN FMRP” genes have high rank differences. 
For SHHa tumors, all categories show rank differences around zero. 
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6.3.7 Desmoplastic/Nodular (DNMB) Histology in SHH MB Reflects Granule 
Neuron Development 

 
We sought to understand how the neuronal MBEN cells from our snRNA-Seq data 
relate to the differentiated nodular regions observed in some SHH MBs. Eberhart et al. 
compared DNMB histology to the layers of the developing cerebellum (Figure 1C) 
(Eberhart et al., 2001), hypothesizing that the cycling internodular regions represent the 
progenitor cells of the EGL and that the nodules themselves represent the differentiated 
GN of the IGL. This model has been a useful framework for understanding DNMB 
histology, but our snRNA-seq data suggests it can be improved since our cohort 
includes two MB tumors with extensive nodularity that contain no cells resembling the 
postmigratory GN that populate the IGL (Figure 3C).  
 
Thus, we propose an alternative model where most SHH MB tumors with DNMB 
histology are composed of nodules containing NeuN+ cells mimicking premigratory GN; 
these regions most closely correspond to the most internal part of the EGL, rather than 
the IGL (Figure 1C). Additionally, we posit that a subset of SHH MBs contain nodules 
that recapitulate the later migrating and postmigratory stages of GN development. 
 
To test this hypothesis, we performed cyclic immunofluorescence (CyCIF) (Lin et al., 
2016, 2018) on SHH MBs to detect relative protein levels for four markers related to GN 
development: Ki67 (cycling cells), MAP2 (all GNs), CNTN1 (late-stage GN axons), and 
VSNL1 (late-stage GN axons and dendrites). These proteins allow us to distinguish 
premigratory GNs (MAP2+/VSNL1-) from late-stage GNs (MAP2+/VSNL1+) 
(Supplementary Figure 5A). We ran this experiment on sections from eight tumors with 
known SHHa/SHHb proteomic subtype calls (Archer et al., 2018). All nodular tumors 
contain cells resembling premigratory GN (MAP2+/VSNL1-), while only the SHHb 
samples have areas resembling late-stage GNs (MAP2+/VSNL1+) (Figure 5A). Three of 
the four SHHb tumors have large VSNL1+ regions, while MB206 only contains a small 
area of VSNL1+ cells. These findings support our proposed model and highlight that MB 
nodules vary in their developmental stage. 
 

6.3.8 Significant Variability in VSNL1 Staining Between and Within Tumors 

 
Korshunov et al. found that the TCL2 transcriptional subtype of MBEN tumors contain 
diffuse VSNL1 staining and have exceptional outcomes (Korshunov et al., 2020). Based 
on our snRNA-seq data, VSNL1 is only expressed in tumor cells mimicking migrating 
and postmigratory GNs (Supplementary Figure 5A). This suggests that the TCL2 
subtype may be identifying samples that are primarily composed of late-stage GNs. 
Given the potential clinical relevance of VSNL1 staining, we wanted to better 
understand the variability of VSNL1+ cells in SHH MBs. We performed 
immunohistochemistry targeting VSNL1 on FFPE slides from an additional seven MB 
with DNMB or MBEN histology and observed significant heterogeneity between and 



132 
 

within tumors (Supplementary Figure 5B). Samples like CHLA-3 contain no VSNL1, 
while others like CHLA-10 are almost entirely composed of VSNL1+ regions. 
 
We further investigated this heterogeneity by running our CyCIF panel on CHLA-5, 
which showed significant regional variability in VSNL1 staining between sections (Figure 
5B). One region is almost entirely composed of MAP2+/VSNL1- nodules, while another 
area contains mostly MAP2+/VSNL1+ cells. This suggests that local microenvironment 
may affect the differentiation stage in distinct regions of the same tumor. 
 
 
 

6.3.9 Tumor Cell Spatial Organization Can Recapitulate the Developing 
Cerebellum 

 
Since we observed tumor cells mimicking the expression patterns of differentiating GNs, 
we also wanted to investigate whether these cells spatially organize like the developing 
cerebellum. First, we confirmed the established phenomenon that Ki67+ cells are 
primarily located in internodular areas (Figure 5B). In multiple samples, we noticed that 
this pattern is more extreme for VSNL1+ nodules, which rarely contain Ki67+ cells, 
compared with MAP2+/VSNL1- nodules which will sometimes be infiltrated by cycling 
cells (Supplementary Figures 5C, 5D). 
 
Additionally, in CHLA-10, tumor cells show a region that closely corresponds to the 
appearance of the developing cerebellum (Figure 5C, 5D). There is an outer layer 
resembling the EGL, which contains Ki67+ cells at the outer edge and MAP2+/VSNL1- 
cells resembling premigratory GNs at the inner edge. Within that area is a region 
analogous to the molecular layer, filled with CNTN1+/VSNL1+ axonal processes and 
very few cells. Lastly, the central region is composed of VSNL1+ cells mimicking the 
postmigratory GNs of the IGL. Of note, this pseudo-cerebellar structure lacks a Purkinje 
cell layer as GCP stem cells are not capable of differentiating into Purkinje neurons.  
 
We also analyzed the staining patterns for many distinctive cellular patterns observed in 
MBEN tumors, such as parallel rows of nuclei surrounded by neuropil. These structures 
also roughly mimic the developing cerebellum by having central VSNL1+ cells 
surrounded by their VSNL1+/CNTN1+ axons (Supplementary Figure 5E). In total, these 
imaging results suggest that both simple and complex nodular structures routinely 
observed in SHH MB can be explained by malignant cells recapitulating specific stages 
GN development. 
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Figure 5: SHH MB Nodules Recapitulate Granule Neuron Development 
A) Examples of VSNL1- and VSNL1+ nodules. Staining for DAPI (blue), MAP2 (red), and VSNL1 (white). 
The top row shows nodules with MAP2+/VSNL1- cells resembling premigratory GN in tumors with SHHa 
proteomic subtype. The three tumors with the SHHb proteomic subtype are on the bottom row and 
contain differentiated regions that are MAP2+/VSNL1+ mimicking the later stages of GN development. 
B) Ki67 and VSNL1 anticorrelate in CHLA-5: Ki67 (yellow), MAP2 (red) and VSNL1 (white). Tissue 
section on bottom left is primarily composed of MAP2+/VSNL1+ cells and has very few cycling cells. The 
larger tissue on the right contains many Ki67+ cells and MAP2+/VSNL1- nodules.  
C) Tumor cells Mimic Cerebellar Structure in CHLA-10: Left image contains H&E stain from pseudo-
cerebellar region in CHLA-5. Right image shows CyCIF staining same region. 
D) Zoomed in region highlights cerebellar layers: Left image is H&E stain from developing cerebellum. 
The right images contain the boxed section from Figure 5C. Outer layer resembles the EGL and contains 
Ki67+ cycling cells and MAP2+/VSNL1- cells mimicking premigratory GN. The next layer is like the 
molecular layer (ML), which has few nuclei and CNTN1+/VSNL1+ axons. The white interior region 
represents the internal granule layer (IGL) and is filled with VSNL1+ cells mimicking postmigratory GN. 
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6.3.10 Tumors with Late-Stage Granule Neurons have Distinct Metabolic Profiles 

We are particularly interested in SHH MB metabolism because many metabolites, like 
glutamate, are drivers of GN migration and differentiation (Consalez et al., 2021; 
Komuro et al., 2013). Genomic and transcriptomic heterogeneity of SHH MBs has been 
well studied, but there are very few published papers analyzing SHH MB metabolism 
and these projects typically focus on tumor type or subtype classification using bulk 
metabolomics(Bennett et al., 2018; Wilson et al., 2009).  
 
We used MALDI Imaging Mass Spectrometry (MALDI-IMS)(Stoeckli et al., 2001) to 
collect spatial metabolomics data on ten tumor sections collected from nine individual 
SHH MB patients (Supplementary Figure 6A). Seven of the nine patients were included 
in the snRNA-seq cohort (Figure 1), while the other two samples are from tumors with 
DNMB histology. From the snRNA-seq data, we know that five samples contain tumor 
cells resembling late-stage GNs and we sought to understand the metabolic differences 
between these tumors and the others. First, we calculated the mean metabolite levels 
for each section and performed differential analysis. The most upregulated metabolite in 
tumors with late-stage GNs is N-Acetylaspartic acid (NAA), which is synthesized by 
neurons and has extremely high concentrations in the brain (Tallan, 1957; Tallan et al., 
1956). The most downregulated metabolites are related to nucleic acids, like UDP and 
adenine. 
 
We then implemented joint graphical lasso (Danaher et al., 2014) (see Methods) to 
generate networks of conditionally dependent metabolites in each tumor to better 
understand how metabolite co-expression patterns change across samples. Some core 
metabolite relationships, like glutamate-glutamine, were observed in the networks from 
every sample. We used betweenness centrality, a metric of a node’s influence within a 
network, to identify metabolites that are especially important for each tumor. When 
comparing the networks from samples with late-stage GNs to the other networks, 
taurine has the largest mean centrality difference. Figure 6A shows select edges and 
highlights metabolic relationships with taurine that are overrepresented in the tumors 
with late-stage GNs. The prominence of taurine in these tumor networks is noteworthy 
because of prior literature linking taurine to GCP differentiation and GN migration (Maar 
et al., 1995; Sturman et al., 1985) . One study specifically shows that depleting dietary 
taurine in mother cats impedes GN development in newborn kittens, a phenotype that 
can be abrogated by directly feeding taurine to the kittens (Sturman et al., 1985).  
 
Given the significance of taurine to the late-stage GN network and GN development, we 
further analyzed the spatial distribution of taurine. We used bivariate Moran’s I statistic 
to assess what metabolites correlate or anticorrelate with taurine expression in a given 
cellular neighborhood (see Methods). We found that there is a strong negative 
association between taurine and guanine in tumors with late-stage GNs (Figure 6B). 
This anticorrelation is visually striking in the tumors with late-stage GNs, but is not 
observed in other samples (Figure 6C). 
 
These results suggest that taurine may be playing a specific role in tumors with late-
stage GNs. We assessed this hypothesis expanding our CyCIF panel to include an 
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antibody that detects taurine and using this new panel on three MBEN tumors. We 
found that taurine staining is more prominent in VSNL1+ regions compared to 
MAP2+/VSNL1- regions. This trend is strongest in CHLA-5 where there is high taurine 
abundance within the VSNL1+ nodules, but not within the MAP2+/VSNL1- nodules 
(Figures 6D). Additionally, we re-stained the pseudo-cerebellar structure from CHLA-10 
with this new panel and observed high taurine staining in the central region mimicking 
the IGL and around the edges of the structure (Supplementary Figure 6C). There 
appears to be a region with strong taurine staining between the pseudo-ML and the 
pseudo-EGL (Figure 6E). These imaging experiments further support that taurine is 
associated with tumor cells mimicking late-stage GNs. 
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Figure 6: Metabolic Features of Differentiation in SHH MBs 
A) Select Edges from Joint Graphical Lasso Analysis: Purple edges appear in at least 50% of the 
networks for tumors with late-stage GNs, but not for the other samples. Green edges only appear in the 
consensus network for the other samples. Black edges appear in consensus networks from both groups.  
B) Barplot of Local Bivariate Moran’s I between Taurine and Guanine: The local bivariate moran’s I was 
calculated between the guanine and the spatial lag of taurine for each spot in each section (see 
Methods). Barplot indicates the mean statistic and error bars were generated through bootstrapping. 
Tumors with late-stage GNs (purple) have a strong negative relationship not consistently observed in the 
other samples (green).  
C) Taurine and Guanine Anti-Correlate in Tumors with late-stage GNs: For four sections, the relative 
expression values are plotted for guanine and taurine. Each plot shows the metabolite values, clipped at 
the 3rd and 97th percentiles. The tumors with late-stage GNs show clear spatial anti-correlation between 
guanine and taurine. This pattern is not consistently found in the other tumors. 
D) Taurine Stains in VSNL1+ Nodules in CHLA-5:  DAPI (blue), MAP2 (red), VSNL1 (white) and taurine 
(cyan) stains. Left panel shows VSNL1+ nodule where internal region is clearly positive for taurine. Right 
panel shows MAP2+/VSNL1- nodule that does not show significant taurine staining. 
E) Vertical layers of pseudo-cerebellar structure from CHLA-10: Zoomed in region from orange box in 
Supplementary Figure 6C. Furthest left region resembles EGL with MAP2+/VSNL1- cells. On the far right 
is a region similar the IGL that contains MAP2, VSNL1, and Taurine. In between is a region divided in 
two, where the right section contains VSNL1+ axons and the left one stains for taurine. There appears to 
be a layer with high taurine levels between the pseudo-ML and pseudo-EGL. 
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6.4 Discussion 

 
We performed snRNA-seq on seven MBEN tumors and found malignant cell types 
mimicking every stage of cerebellar granule neuron development. By re-analyzing 
published data using this developmental perspective, we were able to elucidate the 
causes of previously unexplained molecular and histological phenomena. Specifically, 
we found that each consensus subtype of SHH MB is enriched for a specific 
developmental stage and that the proteomic SHHb subtype is likely caused by the 
presence of tumor cells resembling late-stage GNs. Additionally, a spectrum of 
recognized histological patterns, such as layered nodules and linear arrays of tumor 
nuclei in MBEN tumors, can now be understood as tumor cells mimicking the structure 
of the IGL of the developing cerebellum.  
 
This work is the first to describe tumor cells mimicking late-stage GNs and presents 
significant progress in our understanding of the biological causes of tumor differentiation 
in SHH MBs. While preparing our manuscript, we became aware of a parallel study 
carried out by Ghasemi et al. (personal communication). Strikingly, they identify the 
same cell types that we do and observe similar spatial patterns. Additionally, Ghasemi 
et al. collected snRNA-Seq data from three tumors from the Archer et al. proteomics 
cohort (Archer et al., 2018) and consistent with our predictions, these SHHb tumors 
(MB088, MB266, and MB287) all contain cells resembling late-stage GNs. 
 
It is still not well understood why some SHH MBs are primarily composed of 
differentiated cells and other tumors have none. Based on this study, we believe that 
tumor microenvironment and genomics are important factors. Tumors with extensive 
nodularity rarely contain large CNVs and frequently occur in infants, whose brains are 
actively developing. We hypothesize the tumor microenvironment in these young 
patients may contain pro-development factors that can induce some malignant cells to 
escape the progenitor state and follow GN differentiation. If these tumor cells truly 
recapitulate GN development, they could promote the differentiation of nearby 
malignant cells through the release or expression of factors like glutamate and CNTN1 
(Tárnok et al., 2008; Xenaki et al., 2011). This could induce a feed-forward loop 
whereby more maturation leads to more cells producing pro-differentiation molecules.  
 
We also observed that CNVs are associated with distinct developmental stages. We 
highlighted alterations to chromosome 9q and 10q, which are significant because they 
contain the key SHH pathway genes PTCH1 and SUFU. Loss of 9q or 10q can activate 
the SHH pathway, but these CNVs may also promote tumorigenesis by inhibiting 
differentiation. PTEN and NEURL1 are both located on chromosome 10q and negatively 
regulate GCP cycling (Adachi et al., 2021; Teider et al., 2010; Zhu et al., 2017). 
Additionally, chromosome 9q contains NTRK2, which plays a vital role in granule cell 
migration (Borghesani et al., 2002; Zhou et al., 2007) and maturation (Suzuki et al., 
2005). There are many SNPs and CNVs with unknown effects on SHH MBs and it is 
worth further exploration to determine the potential developmental impact of those 
mutations. 
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Our work reinforces the importance of understanding differentiation state for prognosis. 
Korshunov et al. showed that MBENs with diffuse VSNL1 staining have excellent 
outcomes, while the other MBEN tumors have similar survival rates to samples with 
DNMB histology (Korshunov et al., 2020). Our snRNA-Seq data shows that VSNL1 is 
exclusively expressed in cells resembling late-stage GNs, suggesting these cell types 
may have greater clinical relevance than other differentiated cells. This hypothesis is 
supported by our GSVA analysis, which shows that the late-stage GN score negatively 
correlates with the progenitor score; by contrast, the score for premigratory GNs, an 
earlier stage of differentiation, has no relationship with the progenitor score (Figure 3B). 
Together, these results suggest that not all SHH MB differentiation has the same 
prognostic relevance, and that differentiation stage could potentially be used to stratify 
individual patient risk more accurately. 
 
These molecular and prognostic insights are important for the development of 
therapeutics. The similarities we observe between tumor cells and GN development 
suggest that the current understanding of human cerebellar development can be 
leveraged for target identification for differentiation therapies. Extracellular factors like 
CNTN1, glutamate, and taurine promote differentiation and migration during canonical 
GN development. Unfortunately, there are no established models of MBEN tumors for 
us to use in this study, but future experiments can test whether these molecules can 
also induce differentiation in SHH MBs. 
 
In summary, this work characterizes the differentiated cells in SHH MBs, establishes the 
key transcriptomic and metabolomic patterns of those cells, and uses these findings to 
help explain the biological basis of observed molecular subtypes and histological 
patterns. It is unlikely that this study includes every malignant cell type related to SHH 
MB biology, but we do show that most tumor cells in pediatric SHH MBs can be 
associated with some stage of GN development. We hope that these findings promote 
further research into connections between SHH MB tumorigenesis and cerebellar GN 
development and that a deeper understanding of this relationship will ultimately enable 
novel therapeutic approaches. 
 

6.5 Methods 

6.5.1 Preparation of single-cell suspensions 

 
Fresh patient tumors were collected at the time of surgical resection. Tumor tissue was 
mechanically dissociated followed by collagenase-based enzymatic dissociation as 
previously described (Vladoiu et al., 2019).  
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6.5.2 Preparation of single-nuclei suspensions 

 
Nuclei were isolated from fresh, snap frozen tumor tissues as previously described 
(Nagy et al., 2020). Frozen tissues were dounced in 1 ml of chilled lysis buffer (lysis 
buffer; 10mM Tris-HCl (pH 7.4), 10mM NaCl, 3 mM MgCl2, 0.05% NP-40 detergent) 5 
times with a loose pestle, 10 times with a tight pestle and lysed for 10 minutes on ice. 5 
ml of chilled wash buffer (wash buffer; 5% BSA, 0.04U/µL RNase inhibitor, 0.25% 
glycerol) was added to the sample, passed through a 40 µm cell strainer and 
centrifuged at 500 x g for 5 minutes at 4ºC. After pelleting, the nuclei were resuspended 
in 5-10 ml of wash buffer. After two washes, single-nuclei suspensions were passed 
through a 20 µm cell strainer, pelleted, and resuspended in PBS with 0.05% BSA.  

  

6.5.3 Single-cell and single-cell RNA library preparation and sequencing 

 
Single cell and single nuclei suspensions were assessed with a trypan blue count. For 
each sample, 10,000-15,000 cells or nuclei were loaded using the Chromium Controller 
in combination with the Chromium Single Cell 3' V3 and V3.1 Gel Bead and Chip kits 
(10X Genomics). Individual cells or nuclei were partitioned into gel beads-in-emulsion 
(GEMS), followed by reverse transcription of barcoded RNA and cDNA amplification. 
Individual single-cell libraries with indices and Illumina P5/P7 adapters were generated 
with the Chromium Single Cell 3' Library kit and Chromium Multiplex kit. The libraries 
were sequenced on an Illumina Novaseq6000 sequencer. 
 

6.5.4 Human Medulloblastoma Tissue Collection (CHLA) 

 

6.5.5 VSNL1 immunohistochemistry 

 
VSNL1 staining was performed on a Ventana BenchMark Ultra (Ventana Medical 
Systems, Tuscon, AZ) on 4-micron sections of paraffin-embedded medulloblastoma 
tissue. Briefly, slides were deparaffinized and underwent antigen retrieval protocol with 
cell conditioning 1 (CC1), followed by application of primary antibody (VSNL1, mouse 
monoclonal, OTI4A6, #MA5-26516, Thermo Fisher Scientific Inc.), at a dilution of 
1:1600. 3,3’-diaminobenzidine (DAB) chromogen (ultraView Universal DAB detection 
kit,Ventana Medical Systems, Tucson, AZ) was used for visualization and 
counterstaining with hematoxylin was performed. 
 

6.5.6 Cyclic Immunofluorescence 
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FFPE slides of medulloblastoma samples were processed before antibody staining by 
performing baking, deparaffinization, antigen retrieval, tissue permeabilization, 
autofluorescence photobleaching, and background imaging with DAPI staining.  Slides 
were baked at 60 °C for one hour.  Deparaffinization was completed with the following 
washes, each at three minutes: xylene (2x), 1:1 ratio of xylene to ethanol, ethanol (2x), 
95% ethanol, 70% ethanol, 50% ethanol, RODI water (2x).  Slides were submerged in 
1x Tris-EDTA and heated in boiling water under pressure of a pressure cooker, then 
washed in 1x PBS for 10 minutes.  The tissue was permeabilized with 1x PBS + 0.1% 
TritonX-100 for 10 minutes.  Slides were washed in three changes of 1x PBS + 0.1% 
Tween20 for 10 minutes/wash.   
 
Autofluorescence photobleaching was carried out by submerging slides in a solution of 
4.5% hydrogen peroxide, 25 mM sodium hydroxide, and 1x PBS, while heating the 
samples and solution to 37 °C and exposing the tissue to direct full visible spectrum 
LED light.  Slides were then washed three times in 1x PBS + 0.1% Tween20 for 10 
minutes/wash. 
 
Endogenous non-target proteins were blocked with a one-hour wash of Odyssey 
Blocking Buffer (PBS).  Slides were then washed (1x PBS + 0.1% Tween20, 10 min), 
incubated in DAPI for 10 minutes, and then washed again (1x PBS + 0.1% Tween20, 10 
min). 
 
Glycerol (10% in 1x PBS) was used to mount coverslips onto the slides for imaging.  
Background imaging was captured with the same excitation and emission settings as 
was later used for fluorescent antibody imaging: (ex,em); D360/40x, ET460/50M; 
HQ480/40X, 535/50M; 560/40X, D630/60M; 628/40X, 692/40M. 
 
Following background autofluorescence imaging with DAPI staining for registration, 
samples were incubated in the unconjugated primary antibodies AB1, AB2, AB3 
overnight at 4 °C.  Samples were then washed three times in 1x PBS + 0.1% Tween20 
for 10 minutes/wash.  Secondary antibodies with their respective fluorophores were 
added for one hour at room temperature in a dark humidity chamber.   
 
Fluorescently-labeled tissue slides were imaged on a TE2000 inverted microscope 
using the excitation emission filters described above with 10x magnification and 0.30 
NA lens with a resolution of 1.546 pixels/µm. 
 
After the final round of IHC imaging, slides were photobleached and then stained with 
hematoxylin and eosin.  The slides stained with H&E were imaged on an Aperio AT2 
slide scanner at 40x magnification. 
 

6.5.7 Antibody Validation and Panels 

 
Antibodies were validated using reference tissues (Supplementary Figure 6C). Two 
CyCIF panels were used for this study and are described below. Panel 1 includes 
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taurine and was run on FFPE tissue from CHLA-5, CHLA-10, and BCH-96. The other 
CyCIF images were generated using Panel 2. MAP2, VSNL1, and Taurine were 
detected using secondary antibodies. Ki67 was directly conjugated to AF647 before 
purchasing, while CNTN1 was directly conjugated after purchase using the AF555 kit 
from Abcam (ab269820). 
 
These antibodies allow for detecting stages of GN development. Ki67 is marker of the 
cycling progenitor cells (Gerdes et al., 1983, 1984) and MAP2 is expressed by 
postmitotic granule neurons (Przyborski and Cambray-Deakin, 1995). CNTN1 is a cell 
surface marker localized the GN dendrites and axons during development, but the 
dendritic expression is lost as the GNs mature (Virgintino et al., 1999). VSNL1 is a 
calcium-sensor expressed in GNs (Braunewell and Klein-Szanto, 2009) and our snRNA-
Seq data indicates it expressed exclusively in late-stage GNs. 
 
Panel 1: 
Round 1: DAPI, MAP2 (488), VSNL1 (555), Taurine (647) 
Round 2: DAPI, CNTN1 (555), Ki67 (647) 
 
Panel 2: 
Round 1: DAPI, MAP2 (488), VSNL1 (647) 
Round 2: DAPI, CNTN1 (555), Ki67 (647) 

 

6.5.8 MALDI Slide preparation and Matrix Coating 

 
Fresh tissues were harvested and flash-frozen on dry ice, then stored at 80°C. 10µm-
thin tissue sections were cut on a cryostat (Leica CM3050S, Wetzlar, Germany) in serial 
sections for MALDI and IF. Tissue sections were thaw-mounted on indium tin oxide 
(ITO)-coated glass slides (Bruker Daltonics, Bremen, Germany) and desiccated under 
vacuum for 10 mins before matrix coating. 
  
Slides were subsequently sprayed with negative ionization matrix N-(1-Naphthyl) 
ethylenediamine dihydrochloride (NEDC, Sigma #222488) using an HTX TM-Sprayer 
(HTX Technologies, LLC). Concentration of 10 mg/ml was used in 70% MeOH. The 
sprayer parameter used was 80°C temperature, 0.1 ml/min flow rate, 1000 mm/min 
velocity, 2 mm track spacing, 10 psi pressure, and 3 liters/min gas flow rate. Slides were 
coated on the same day as MALDI imaging. 
  

6.5.9 MALDI imaging 

 
For MALDI-FTICR scanning, the matrix-coated slides were immediately loaded into a 
slide adapter (Bruker Daltonics, Bremen, Germany) and then into a solariX XR FTICR 
mass spectrometer with a 9.4T magnet (Bruker Daltonics, Bremen, Germany) with 
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resolving power of 120,000 at m/z 500. The laser focus was set to ‘small,’ and the x-

y raster stepsize of 50µm was used using Smartbeam-II laser optics. A spectrum was 
accumulated from 200 laser shots at 1000 Hz. The ions were accumulated using the 
“cumulative accumulation of selected ions mode” (CASI) within an m/z range of 70-300 
Daltons before being transferred to the ICR cell for a single scan. 
  

6.5.10 Hematoxylin and Eosin (H&E) staining for MALDI slides 

 
Histological staining was performed on the same slides after MALDI using Meyer and 
Briggs’ Hematoxylin (Sigma #MHS32) and Eosin (Sigma #HT110332). Matrix was 
washed off and slide was fixed with cold MeOH for 5 minutes, washed with PBS 3 times 
and water, then submerged in hematoxylin for 15 minutes. Slides were transferred into 
warm water for 15 minutes, then dehydrated in 95% EtOH for 30 seconds, incubated 
with eosin for 1 minute, then dehydrated again stepwise with 95% for 1 minute and 
100% EtOH for 1 minute, and cleared using Xylene for 2 minutes. Slides were mounted 
using Cytoseal 60 mounting media (Thermo Scientific #8310-4) and imaged and 
visualized using a Hamamatsu Nanozoomer with NDP.view2 software (Hamamatsu). 
  
 

6.5.11 snRNA-Seq and scRNA-Seq data processing 

 
Quality control was performed for each tumor individually. The filtered counts matrix 
was used to create a Seurat object (version 4.1.0) (Hao et al., 2021), removing any 
genes present in less than five nuclei and any nuclei that contain less than 300 features. 
Nuclei were removed from the dataset if they met any of the following criteria: below 5th 
percentile of UMI or features detected, above 95th percentile of UMI or features 
detected, mitochondrial genes represent more than 5% of the counts, or in the top 10% 
of DoubletScore determined by Scrublet (Wolock et al., 2019). These strong filters left 
71,008 high-quality nuclei for analysis. 
 
For the seven snRNA-seq samples, the filtered objects were merged and log-
normalized using a scale factor of 10000. The top 2500 variable genes were identified 
and the number of UMI counts were regressed out during scaling. Integration was 
performed using Harmony (Korsunsky et al., 2019) and the top 50 dimensions were 
used for UMAP plotting and Louvain clustering (resolution = 0.25). Non-malignant cells 
were annotated using marker genes (Supplementary Figure 1A). Tumor cells were 
identified by their clustering pattern and expression of known SHH MB genes 
(Riemondy et al., 2022). Additionally, Gashemi et al. observed similar cell types in their 
cohort and detected copy number variations in these cells providing further evidence of 
their malignant status (personal communication). Clusters 6 and 12 were not included in 
re-clustering of malignant cells because each cluster was primarily associated with a 
single sample (MB4113 for 6 and MB2112 for 12) (Supplementary Figure 1B). 
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Supplementary Figure 1C details the re-clustering of the snRNA-seq MBEN samples. 
To generate this plot, nuclei in clusters 0,1,2,3,4 or 5 were selected and the first 50 
harmony dimensions were used to calculate nearest neighbors and a UMAP plot. 
Louvain clustering was then performed on these cells with a resolution of 0.25. Almost 
every new cluster could be associated with a developmental stage using known marker 
genes (Figure 1D). Cluster 6 was merged with cluster 0 to represent the postmigratory 
GN. For cluster 4, the top marker genes are related to ribosomes. It is unknown whether 
this cluster corresponds to stage of GN development, so it was excluded from 
development-related figures. The high ribosomal content indicates these cells could be 
a sequencing artifact, but similar ribosomal cells are found in our scRNA-seq MBEN 
sample, the SHH-B2 cells from the Riemondy cohort (Riemondy et al., 2022) , and the 
P14 mouse cerebella (Vladoiu et al., 2019) (Supplementary Figure 2C) suggesting they 
may be biologically relevant.  
 
The scRNA-seq datasets were processed using similar filters and parameters. The 
same quality control metrics were used, except the mitochondrial percentage filter was 
set to 25%. The two scRNA-seq datasets (one MBEN tumor and the P14 mouse 
dataset from GSE118068), were each analyzed by themselves, so no integration 
methods were used. Instead, these sample were log-normalized using a factor 10,000 
and scaled, and then dimensionality reduction was performed using Principal 
Component Analysis on the 2500 most variable genes. The top 40 PCs were used for 
clustering and UMAP plots. For the SHH MBEN tumor, malignant cells were identified 
by their clustering pattern and expression of SHH MB markers, and these cells were re-
clustered using a resolution of 0.2 (Supplementary Figure 1E). For the P14 mouse, the 
granule neuron lineage was identified using marker genes and these cells were re-
clustered with a resolution of 0.3 and annotated using known markers of GN 
development (Supplementary Figure 2B). 
 
 

6.5.12 Pseudotime Analysis 

 
Pseudotime analysis was performed using monocle3 (Trapnell et al., 2014) with a 
minimal branch length of 15 cells. The root node was set by selecting the nuclei from 
the cycling GCP cluster (cluster 5) with the highest value for UMAP component 2. 
 

6.5.13 Plotting with Seurat 

 
Plots from Seurat were made using the DimPlot and FeaturePlot functions, adding on 
specific parameters from ggplot2 (Ginestet, 2011) that are described in the code. For all 
feature plots, the baseline plot was re-made with a custom function that orders the cells 
by their expression of the relevant gene to help ensure that cells expressing a given 
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marker are visible in the plot. Some feature plots use a minimum cutoff to highlight cells 
with high expression and these instances are described in the figure legends. 
 

6.5.14 Clustering of Gene Set Signature Scores 

 
Gene set signatures were created for 8 datasets (Supplementary Figure 2A): Archer 
proteomic subtypes (Archer et al., 2018), Consensus SHH MB subtypes (Cavalli et al., 
2017), Korshunov MBEN transcriptional subtypes (Korshunov et al., 2020), human GN 
development (Okonechnikov et al., 2021), MBEN snRNA-seq, MBEN scRNA-seq, 
Riemondy SHH MB scRNA-seq (Riemondy et al., 2022), and P14 Mouse scRNA-seq 
(Vladoiu et al., 2019). For the snRNA-seq and scRNA-seq MBEN datasets, marker 
genes were identified using the Seurat FindMarkers function with default parameters. 
For these cases, we performed down-sampling before differential analysis so that each 
cluster was represented by an equal number of cells. The same procedure was used for 
the P14 mouse to identify the top differential genes for each stage of granule neuron 
development. Mouse genes were mapped to human orthologs using the biomartR 
package (Drost and Paszkowski, 2017). In a small number of instances, genes were not 
in the BioMart database. In those cases, if the capitalized version of the mouse gene 
was present in the MAGIC cohort transcriptomic data, that gene was also included. 
Otherwise, the gene was not included and the next highest-ranking gene took its place 
in the signature.  
 
For the consensus subtypes, the transcriptomic microarray data from Cavalli et al. was 
rank normalized and marker genes were identified by performing t-tests between the 
subtype of interest and the other SHH tumors (Cavalli et al., 2017). For the Archer et al. 
subtypes, t-tests was used to identify the differential proteins between SHHa and SHHb 
(Archer et al., 2018). The markers for the Riemondy single-cell clusters and Korshunov 
et al. MBEN subtypes were taken from their respective supplemental materials 
(Supplementary Table 3 for Riemondy et al. and Supplementary Tables 1 & 2 for 
Korshunov et al.).  
 
From these marker gene lists, a gene signature was created by taking the top n genes 
(50,100, 150, & 200). In some cases, n was larger than the number of marker genes for 
published datasets. When this occurred, all marker genes were included for the given 
signature. These signatures are summarized in Supplementary Table 2. 
 
All genes sets of size n were used together as inputs for Gene Set Variation Analysis 
(GSVA), which takes in gene-level data and calculates enrichment scores for each gene 
set (Hänzelmann et al., 2013; Sonja et al., 2014). GSVA was run on transcriptomic data 
from the 223 SHH tumors of the MAGIC cohort (Cavalli et al., 2017). 
ConsensusClusterPlus was used to run consensus clustering on the activation scores to 
better understand what signatures are activated in the same samples (Wilkerson and 
Hayes, 2010). This method repeatedly subsamples items (i.e. gene signatures) and 
features (i.e. SHH tumors) and clusters the data to determine which signatures cluster 



145 
 

together. 1000 sub-samplings were run using the k-means algorithm and Euclidean 
distance metric. For each run, all of the gene signatures were used, but the SHH 
samples (i.e. features) were subsampled for the following percentages: 0.3, 0.5, 0.7 and 
0.9. For each parameter set, the method was run from k=2 to k=10 and the optimal k 
was found to be 5 clusters for all parameter sets using an elbow plot.  
 
The consensus clustering plots were made using the clustermap function in seaborn 
(Waskom, 2021) using “correlation” as the distance metric. All gene set sizes and 
subsampling percentages revealed similar high-level trend (Supplementary Figure 2D) 
with four primary groups representing developmental stages: cycling progenitors, non-
cycling progenitors, premigratory GN, and migrating/postmigratory GN (late-stage GNs).  

 

6.5.15 Copy number variation (CNV) analysis 

 
Copy number variation data for chromosomal arms was included in the MAGIC cohort 
data from Cavalli et al. (Cavalli et al., 2017). T-tests were performed to determine 
associations between CNVs and GSVA gene set signatures from MBEN snRNA-seq 
cohort. The following gene sets were considered: Cycling GCP, GCP, Ribosomal, 
Premigratory GN, Migrating GN, Postmigratory GN, Proliferation (Cycling GCP score – 
GCP score), Progenitor (Cycling GCP score + GCP score), and Late-Stage GN 
(Migrating GN score + Postmigratory GN score). For each CNV/signature pair two t-
tests were performed. First, all samples with a loss of the chromosome arm were 
compared with tumors having a WT or Gain, and then a second t-test was performed to 
compare the samples with a gain to the other tumors. If no tumors had a loss or gain, 
that test was not performed, leaving 648 comparisons. Multiple associations were 
significant using the Bonferroni-corrected alpha of 1.54 E -5. These analyses were 
performed using gene set signature scores based on 100 genes, but the relationships 
shown in Figure 3C are also significant for signatures of size 50, 100, and 200. 
 

6.5.16 Post-transcriptional regulation analysis 

 
Proteomic and transcriptomic data from Archer et al. (Archer et al., 2018) was re-
analyzed, considering the 8674 genes identified in all tumors for both assays. For each 
sample, the protein and RNA values were rank-normalized from 0 to 1 and a rank 
difference (protein rank – RNA rank) was calculated for each gene as a proxy for post-
transcriptional regulation. Thus, a gene with a high protein rank in a given sample and a 
low RNA rank would have a strong positive rank difference, suggesting possible post-
transcriptional upregulation. Genes were categorized as synaptic if they appear in the 
GO_SYNAPSE gene set from MSIGDB (Subramanian et al., 2005) and as FMRP 
targets if they appear in the stringent list in Supplementary Figure 2A from Darnell et al. 
(Darnell et al., 2011). 
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For SHHb analysis, the mean protein rank, RNA rank, and rank difference were 
calculated for every gene by taking the average value for the five SHHb tumors. The 
same procedure was applied to the nine SHHa tumors for SHHa analysis. Synaptic and 
non-synaptic gene ranks were compared using a two sample t-test in scipy (Oliphant, 
2007). To determine potential post-transcriptional regulation, rank differences were 
compared to mean of 0 using a one-sample t-test. 
 

6.5.17 Image registration and processing 

 
Individual images were taken with 10% horizontal and vertical overlap and then stitched 
together with the Microscopy Image Stitching Tool (MIST) (Chalfoun et al., 2017) 
through FIJI (Schindelin et al., 2012). Image registration between CyCIF rounds was 
performed using the MultiStackReg plugin in FIJI (Schindelin et al., 2012) using the 
DAPI channels and the rigid body transformation. When the two images were not 
identical sizes, the two images were cropped slightly around the edges to enforce 
identical sizing. In a small number of select images, there were clear visual artifacts with 
extremely high fluorescence. In such cases, a mask was created and subtracted from 
the original image.  
 

6.5.18 MALDI Data Processing 

 
MALDI intensity data was analyzed for 4677 consensus m/z peaks identified by the 
Isoscope package (Wang et al., 2022). For each m/z value in each MALDI spot, the 
intensity was assigned to the maximum intensity of peaks within 2 PPM of the m/z 
value. These data were then loaded into a scanpy object (Wolf et al., 2018), and each 
spot was normalized using the total ion count (TIC) method, whereby every m/z 
intensity is divided by the sum of the intensities for that spot. The data was then scaled, 
and dimensionality reduction was performed using PCA. The spots were clustering 
using leiden clustering with a resolution of 0.2 and considering the 10 nearest neighbors 
and first 10 PCs. Some clusters (2,4,9,10,11,12,13,&14) were primarily around the 
edges and thus removed as they were likely artifacts. Additionally, there were clusters 
of spots in each sample that were visible artifacts compared to H&E staining and these 
clusters were removed as well. This resulted in 52,393 high-quality spots that strongly 
resemble the tissue structure from H&E stains (Supplementary Figure 6A).  
 
Our analysis was focused on high-quality annotated metabolites. First, m/z peaks were 
associated with known metabolites using the database from Supplementary Table 4 and 
a window of 2 PPM. These features were then further filtered to only include metabolites 
that have an intensity greater than 100,000 in more than 50% of the MALDI spots. 
These cutoffs produced 56 high-quality metabolites for network and correlation analysis. 
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6.5.19 Joint graphical lasso 

 
Joint graphical lasso (Danaher et al., 2014) analysis was performed using the gglasso 
python package (version 0.1.9). Graphical lasso (Friedman et al., 2008) uses 
observational data to learn a sparse approximation of the precision matrix, where each 
0 represents two metabolites whose expression levels are independent of each other 
when considering the intensities of the other metabolites. This leaves of matrix of non-
zero values, which can be represented as a network with edges between conditionally 
dependent metabolites. Joint graphical lasso allows for approximating multiple precision 
matrices at one time, while sharing information between the related datasets.  
 
The group graphical lasso algorithm was used for the TIC-normalized MALDI for the 56 
annotated metabolites. A parameter sweep was performed for lambda1, which controls 
sparsity, and lambda2, which promotes similarity across networks, using the following 
parameters: lambda1 (0.05, 0.1, 0.15, 0.2, 0.25) and lambda2 (0.01, 0,02, 0,03, 0,04 
and 0.05). The optimal parameters (lambda1 = 0.1, and lambda2 = 0.01) were the 
minimal empirical bayes score, which was calculated using the ebic function from the 
gglasso package with a gamma parameter of 20 to promote sparser networks.  
 
A consensus network was created for the sections with late-stage GNs by considering 
any edge present in at least 50% of those sections and the same procedure was 
applied to generate a network for the other four sections. Betweenness centrality was 
calculated for these consensus networks using the networkx python package (version 
2.6.3). The union of the two consensus networks was output to a gml file and uploaded 
into Cytoscape (version 3.7.2) (Shannon et al., 2003), which was used to create Figure 
6A. 

6.5.20 Bivariate Moran’s I analysis 

 
Bivariate Moran’s I analysis was performed using the pysal (version 2.4.0) package to 
analyze what metabolites correlate with the spatial lag of taurine. Weights were 
determined using the 24 nearest spots (i.e. two levels out on the MALDI spot grid) and 
then row normalized. The Local Moran’s Bivariate I statistic was calculated between 
guanine and taurine for each spot using the Moran_Local_BV function. The resulting 
local bivariate Moran’s I values were plotted with seaborn with error bars determined 
through the default bootstrapping approach implemented in the package. 
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Chapter 7 - Conclusions 

This thesis highlights many applications for machine learning methods in neurological 
disease research. In this chapter, I detail the main conclusions, limitations, and potential 
future directions for each project. 
 

7.1 Shallow Sparsely-Connected Autoencoders 

Chapter 2 discusses SSCA, on a novel auto-encoder based method for gene set 
scoring. This method converts gene level expression data into scores for predefined 
gene sets, while simultaneously creating a biologically informed latent space that can be 
utilized for clustering or visualization. The gene set scores produced by SSCA lead to 
better supervised and unsupervised classification of blood cell types compared to 
existing methods. Additionally, the version of SSCA that uses a variational autoencoder 
(SSCVA) consistently outperforms the method using a standard autoencoder. 
 
This work represents an exciting new algorithm for gene set scoring, but more work is 
necessary to characterize the advantages and limitations of these autoencoder-based 
approaches. First, we need to investigate the best way to use these autoencoders to get 
final gene set scores. In this thesis, I simply performed a parameter sweep over 
autoencoder parameters and used the encoder function from the optimal network to get 
gene set scores. Follow-up work has shown that the scores can be affected by the 
number of gene sets and their individual sizes, so better scoring metrics should account 
for these features. One potential solution would be through permutation testing, where 
the optimal network is retrained many times using shuffled edges and a gene set score 
is based on its activation in the real gene set node compared to the scores from the null 
distribution of randomly created gene sets. 
 
The other primary limitation of this method is run time. Even though we have shown 
evidence that SSCVA can produce more meaningful latent spaces for scRNA-seq data 
than ssGSEA or GSVA, it still takes significantly longer to run than these rank-based 
methods. The biggest hurdle is the time it takes for hyperparameter optimization and 
network training. The run time of SSCVA limits its utility and engineering work to speed 
up identification of optimal parameters would greatly improve this method. 
 
When this method was developed in 2018, there were not many published scRNA-seq 
studies from neurological conditions. In the last few years, however, many groups have 
published scRNA-seq datasets from the diseases studied in this thesis (Al-Dalahmah et 
al., 2020; Neftel et al., 2019; Vladoiu et al., 2019) and from other neurological 
conditions, such as Alzheimer’s Disease (Mathys et al., 2019). Future work can apply 
the SSCVA method to study heterogeneity in these neurological conditions. 
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7.2 Cycling Cells in iPSC-derived neurons from HD 

Chapter 3 focuses on multi-omic analysis of iPSC-derived neurons from HD and control 
samples. The most significant finding in this work is the identification of a neural stem 
cell like population of cycling cells that are observed in the HD models but not the 
control models. This finding is supported by epigenomic analysis, where ChIP-Seq for 
H3K4me3 shows that sites of active transcription are enriched for TFs related to the cell 
cycle. Additionally, validation experiments show that WNT signaling is driving the cell 
cycling in HD models. 
 
These findings raise important questions about the developmental effects of the HTT 
mutation, but the clinical implications of these results are limited given the model system 
being used. It is not known whether this population of cycling cells exists in human HD 
or even mouse HD models, as it may simply be a product of the differentiation protocols 
being used. It will be crucial to follow up on these results by analyzing single-cell 
transcriptomics data from HD mouse models and human postmortem brains to 
determine if an analogous cell population is present. Additionally, single-cell ATAC-Seq 
(scATAC-Seq) could be used to better understand this cell population. One possible 
experiment would be to compare the cycling cells from HD iPSC-derived neurons to 
similar cells that exist from an earlier stage of differentiation in the control model. This 
would first require a longitudinal experiment, staining for markers of the cycling NSCs, 
to identify when these cells appear. Once this is determined, we could perform scATAC-
Seq on the cells from this stage in control models and on the HD iPSC-derived neurons. 
Comparing the cycling cells in the HD model with the healthy NSCs, could reveal 
differentially accessible genomic regions and help us better understand the 
developmental implications of the HTT mutation. 

7.3  SamNet 2.0 For Drug Response Analysis in Glioblastoma 

Chapter 4 details subtype-specific responses to dasatinib in glioblastoma cell lines. 
Proteomic and phosphoproteomic data was collected from treated and untreated cell 
lines and the results highlight features of cell cycle inhibition in the sensitive 
mesenchymal cell lines, but not the resistant proneural cell lines. Additionally, an 
shRNA viability screen was performed in treated and untreated cells to identify targets 
for improving dasatinib efficacy in proneural samples. There were many significant 
screen hits, so we used a substantially improved version of the SamNet multicommodity 
flow algorithm to help prioritize targets for validation. This new SamNet 2.0 method 
discourages flow through hub nodes and incorporates baseline expression data to 
produce more realistic final networks. The resulting proneural network was significantly 
enriched for cell cycle genes, which suggested a focus on the shRNA hit WEE1. 
Validation experiments found that WEE1 inhibition significantly improved dasatinib 
efficacy in proneural models, but not in mesenchymal cell lines. 
 
This work has biological and computational implications. For glioblastoma, this research 
presents an exciting new direction for potentially treating proneural glioblastomas. Still, 
it is not known how these results will translate to actual patients since the experiments 
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were performed in cell line models. The next step in this project would be to reproduce 
the validation experiments using mouse models of proneural glioblastoma.  
 
The biggest computational contribution from this work was the newly developed 
SamNet 2.0 algorithm. The most significant change is the penalty term that discourages 
flow through hub nodes. Without this penalty, 33% of network flow goes through high-
degree hub nodes, significantly biasing the final solutions toward highly-connected 
proteins that may not have any biological relevance. Additionally, SamNet 2.0 includes 
a term that allows for the incorporation of baseline RNA expression data in the 
algorithm. This biases the final network solutions away from genes with low expression, 
leading to output networks that favor genes that are expressed in a given subtype. 
 
In addition to these changes, future work can make even more improvements to the 
SamNet framework. One project that was considered, but ultimately not completed, was 
to allow for the incorporation of phosphoproteomic data into the method. This would 
work by having each phosphosite assigned to a node in the directed network. These 
phosphosite nodes would have an incoming edge from any kinase that affected it and 
an outgoing edge to the associated protein (e.g. PKA -> FYN@S21 -> FYN). To make 
this work with the multicommodity flow framework, the incoming edges for phosphosites 
would have constraints, only allowing for flow if the phosphosite was a hit for the given 
subtype. This addition would allow for an even more comprehensive understanding of 
the subtype-specific effects of dasatinib and could serve as a framework for other 
phosphoproteomic studies. 
 

7.4 Medulloblastoma Heterogeneity 

Chapters 5 and 6 present significant advancements in our understanding of 
medulloblastoma tumor heterogeneity. Chapter 5 details proteomic and 
phosphoproteomic analysis of MB tumors. There are clear subdivisions in the SHH and 
G3 subtypes that are not observed when clustering RNA or methylation data. The Prize-
Collecting Steiner Forest algorithm was helpful in integrating multiple omics data types 
to better understand the drivers of these new proteomic clusters. The SHH tumors are 
divided into SHHa, which resembles standard SHH-activated MB, and SHHb, which are 
enriched for genes related to neuronal pathways, like glutamatergic synapses. The 
Group 3 samples split into G3a and G3b, where the G3a samples has higher levels of 
phosphorylated MYC and worse outcomes than the G3b tumors.  
 
Chapter 6 details a snRNA-seq study of medulloblastoma tumors with MBEN histology. 
These tumors contain cells that recapitulate cerebellar granule neuron development and 
I used computational approaches to connect these findings to existing single-cell 
studies and molecular subtypes of MB. The consensus subtypes of SHH MB are each 
associated with a specific developmental state and the SHHb proteomic subtype 
discussed in Chapter 5 is likely caused by the presence of tumor cells mimicking 
postmigratory granule neurons. We also showed this developmental perspective helps 
explain genomic, histologic, and metabolic heterogeneity in SHH MB. 
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These medulloblastoma projects are the most significant contributions from this thesis. 
The proteomic subtypes presented in Chapter 5 detail novel groups of MB tumors. 
There are clear implications for the Group 3 split as G3a samples have significantly 
worse outcomes, but it is unknown whether the SHHa/SHHb split is clinically relevant. 
The primary limitation of this work is the small sample size (45 tumors total), so a larger 
proteomics cohort is necessary to test the robustness of these subtypes and to better 
understand any potential clinical relevance of the SHH tumors. 
 
The finding from Chapter 6 that SHH-activated MB tumor cells retain their capacity to 
follow granule neuron differentiation has led to meaningful insights about SHH MB 
tumor heterogeneity. Like the proteomics study, these findings are also based on a 
small sample size. This is understandable since the work focuses on one rare 
histological subtype of a rare brain tumor, but future validation experiments on 
additional tumors would be valuable. The most important implication of this work is the 
possibility of using these developmental findings for designing therapeutics. There is 
great interest in treating SHH MB by inducing tumor cells to differentiate into non-
malignant neurons and this thesis suggests that we can use principles from canonical 
human granule neuron development for target identification. We present evidence that 
factors like CNTN1 and taurine, which drive granule neuron differentiation in the 
cerebellum, are also highly expressed in these tumors. Still, validation studies are 
required to show whether these molecules (or similar ones) could be used to induce 
tumor cell differentiation. It is particularly challenging to perform these validation 
experiments as there are not great cell line models for SHH MB and it is not known if 
the mouse models recapitulate this developmental phenotype. The next step in this 
project would be to analyze scRNA-seq data from MB mouse models to better 
understand the developmental potential of these cells. If these experiments show 
promising results, validation experiments can be performed on MB mice to test 
molecules for their capacity to induce tumor cell differentiation. 

7.5 Overall Conclusions 

For this thesis, I want to emphasize two primary conclusions. The first is that it is 
incredibly important to consider multiple biological data types when studying complex 
diseases. I show many examples of how the collection and integration of multiple 
biological data types yielded conclusions not possible from a single modality. The 
second conclusion is the importance of machine learning methods for neurological 
disease research. It can be extremely challenging to generate hypotheses from such 
small, noisy datasets and these methods are a valuable tool for gaining biological 
insights about these complicated conditions. 
  
 


