
Scalable Structure Learning, Inference, and Analysis
with Probabilistic Programs

by

Feras Ahmad Khaled Saad

S.B., Massachusetts Institute of Technology (2016)
M.Eng., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by .
Vikash K. Mansinghka

Principal Research Scientist
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Scalable Structure Learning, Inference, and Analysis with Probabilistic Programs
by

Feras Ahmad Khaled Saad

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

How can we automate and scale up the processes of learning accurate probabilistic models of complex
data and obtaining principled solutions to probabilistic inference and analysis queries? This thesis
presents efficient techniques for addressing these fundamental challenges grounded in probabilistic pro-
gramming, that is, by representing probabilistic models as computer programs in specialized program-
ming languages. First, I introduce scalable methods for real-time synthesis of probabilistic programs
in domain-specific data modeling languages, by performing Bayesian structure learning over hierarchies
of symbolic program representations. These methods let us automatically discover accurate and inter-
pretable models in a variety of settings, including cross-sectional data, relational data, and univariate
and multivariate time series data; as well as models whose structures are generated by probabilistic
context-free grammars. Second, I describe SPPL, a probabilistic programming language that integrates
knowledge compilation and symbolic analysis to compute sound exact answers to many Bayesian infer-
ence queries about both hand-written and machine-synthesized probabilistic programs. Third, I present
fast algorithms for analyzing statistical properties of probabilistic programs in cases where exact infer-
ence is intractable. These algorithms operate entirely through black-box computational interfaces to
probabilistic programs and solve challenging problems such as estimating bounds on the information
flow between arbitrary sets of program variables and testing the convergence of sampling-based algo-
rithms for approximate posterior inference. A large collection of empirical evaluations establish that,
taken together, these techniques can outperform multiple state-of-the-art systems across diverse real-
world data science problems, which include adapting to extreme novelty in streaming time series data;
imputing and forecasting sparse multivariate flu rates; discovering commonsense clusters in relational
and temporal macroeconomic data; generating synthetic satellite records with realistic orbital physics;
finding information-theoretically optimal medical tests for liver disease and diabetes; and verifying the
fairness of machine learning classifiers.

Thesis Supervisor: Vikash K. Mansinghka
Title: Principal Research Scientist

2

�	á�
Ö�

�
Ï A

�
ª

�
Ë
�
@

��
H.

�P é�

��
<Ë�

�
Y

�
Ò

�
m

�
Ì'

�
@

Acknowledgements

I am fortunate to have benefited from many advisers, colleagues, and friends during my time at MIT.
My advisor, Vikash Mansinghka, has provided exceptional mentorship that greatly advanced my

personal and professional development. His persistence in light of my frequent objections guided us
through many joyful research journeys that would have otherwise never materialized. I thank Vikash
for helping me establish essential foundations during my early years in the group and for making prudent
interventions every now and then as I began to draw out an independent research program.

Collaborating with Martin Rinard shaped my graduate career in several ways. Martin Rinard is a
fountain of rare knowledge and unconventional wisdom. His strenuous Socratic interrogations helped
us together distill the durable ideas at the intellectual core of our own research endeavors. I am grateful
to Martin for strengthening the quality of my research and academic writing and for many memorable
conversations about the wilderness in the wider world beyond academia and MIT.

Joshua Tenenbaum and Armando Solar-Lezama served on my thesis committee and stepped in
with crucial support when it was most needed. Several themes around Bayesian structure learning for
automated model discovery in Part I of this thesis build directly on arguments that Josh has been
making for the better part of two decades now. Armando’s graduate programming languages course
formally introduced me to the field and enabled me to integrate PL as a pillar in my research approach.
I wish to also thank Nick Roy, who gave an expansive end-of-semester speech that had all the ingredients
to encourage a curious but hesitant undergraduate to join graduate school.

The wonderful environment at the MIT Probabilistic Computing Project made working in lab a
pleasure. Michael Chang deserves special recognition for originally connecting me with the group. Ul-
rich Scheachtle was a fun collaborator and formidable debate opponent; our discussions about science,
politics, and culture brought life to the otherwise mundane routine of running experiments or solv-
ing DARPA challenge problems. Taylor Campbell and Alexey Radul patiently fielded my barrage of
questions about unfamiliar software systems and taught me many tricks of the software engineering
trade. Marco Cusumano-Towner was a brilliant research colleague and a dependable friend. Two chap-
ters in this thesis would have remained unpublished research notes without his encouragement. Marco
developed the Gen probabilistic programming system, which is used in this thesis to implement the
online time series learner in Chapter 2 (improving on an earlier version developed with Ulrich) and
to implement the meta-programs for statistical estimation and testing in Chapters 8 and 9. Cameron
Freer and Nate Ackerman derived the proof of Proposition 9.21 in Chapter 9, theoretically establishing
a mathematical conjecture obtained from large-scale computer simulations. Cameron also made central
contributions to other joint work on random variate generation that is not included in this thesis. Alex
Lew provided input that improved several of my research papers; his methodological approach to listen-
ing and collaborative reasoning is an asset to those who work around him. Amanda Brower and Rachel
Paiste were very helpful in managing administrative and organizational matters. Christina Curlette,
Leonardo Casarsa, Jonathan Rees, Veronica Weiner, and Andrew Bolton courageously used prototype
software from my research in their own work, filing many bug reports and usability issues along the
way. Finally, I must acknowledge all the colleagues whose shared an office with me, for tolerating the
near-freezing room temperatures and my ear-shattering mechanical keyboard.

During my visits to CMU, I received a substantial amount of feedback from several people, including
Jan Hoffmann, Matt Fredrikson, Limin Jia, Frank Pfenning, Bob Harper, Marijn Huele, Umut Acar,
Guy Blelloch, Pravesh Kothari, Weina Wang, and Srini Seshan. The madPL group—Aws Albarghouthi,
Thomas Reps, Loris D’Antoni, and Somesh Ja—along with Remzi Arpaci-Dusseau were wonderful hosts
at UW-Madison. I am thankful for all these valuable interactions and am confident that they will serve
me well in the years to come.

Everything I have managed to achieve is a direct result of the support and sacrifices of my family.
To you, my gratitude is eternal.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Contents

1 Introduction 15
1.1 The Path to Scalability . 21
1.2 Outline and Contributions . 23
1.3 Scope . 24
1.4 Software . 24
1.5 Publications . 25

I Probabilistic Structure Learning via Approximate Bayesian Inference 26

2 Synthesizing Models for Univariate Time Series 27
2.1 Background: Gaussian Processes . 28
2.2 Gaussian Process DSL for Modeling Univariate Time Series 29
2.3 Online Learning of Time Series Structure from Data . 29
2.4 Evaluation . 39

3 Synthesizing Probabilistic Programs in Domain-Specific Modeling Languages 43
3.1 Probabilistic Domain-Specific Modeling Languages . 43
3.2 Bayesian Synthesis in Probabilistic DSLs . 45
3.3 Algorithms for Bayesian Synthesis . 47
3.4 Bayesian Synthesis for Context-Free Probabilistic DSLs 53
3.5 Formalizing the Gaussian Process DSL . 61
3.6 Related Work . 64

4 Synthesizing Models for Cross-Sectional Data 69
4.1 MultiMixture DSL for Modeling Data Tables . 71
4.2 Algorithms for Posterior Inference . 72
4.3 Evaluation . 74

5 Synthesizing Models for Multivariate Time Series 81
5.1 Temporally-Reweighted Chinese Restaurant Mixture Model 82
5.2 Algorithms for Posterior Inference . 88
5.3 Forecasting, Clustering, and Imputation with TR-CRP Mixtures 93
5.4 Applications to Macroeconomic and Flu Data . 93
5.5 Related Work . 96

6 Synthesizing Models for Relational Data 99
6.1 Background: Infinite Relational Model . 101
6.2 Limitations of the Infinite Relational Model . 102

5

6.3 Hierarchical Infinite Relational Model . 104
6.4 Algorithms for Posterior Inference . 105
6.5 Applications to Object-Attribute, Political, and Genomics Data 108
6.6 Related Work . 114

II Exact Bayesian Inference via Symbolic Program Analysis 116

7 Sum-Product Probabilistic Language 117
7.1 Tutorial Examples . 120
7.2 Core Calculus for Sum-Product Expressions . 124
7.3 Conditioning Sum-Product Expressions on Events . 130
7.4 Translating Probabilistic Programs to Sum-Product Expressions 133
7.5 Evaluation . 137
7.6 Related Work . 142
7.A Representing Gaussian Process DSL Programs in SPPL 143
7.B Definitions of Auxiliary Functions . 144
7.C Transforms of Random Variables . 144
7.D Conditioning Sum-Product Expressions . 150
7.E Translating Sum-Product Expressions to SPPL . 158

III Statistical Estimation and Testing via Dynamic Program Analysis 160

8 Estimators of Entropy and Information 161
8.1 Overview of EEVI . 162
8.2 Extending Entropy Bounds to Information-Theoretic Quantities 163
8.3 Sampling Bounds on Log Marginal Probabilities . 165
8.4 Applications to Optimal Data Acquisition . 171
8.5 Related Work . 177
8.6 Implementation as Probabilistic Meta-Programs in Gen 178

9 Goodness-of-Fit Tests 183
9.1 Background: The Goodness-of-Fit Problem . 185
9.2 The Stochastic Rank Statistic . 186
9.3 Simulation Studies . 201
9.4 Applications to Convergence Analysis of Approximate Samplers 206
9.5 Implementation as a Probabilistic Meta-Program in Gen 209

IV Conclusion 211

10 Future Directions 213
10.1 Human-In-The-Loop Model Discovery . 213
10.2 Extracting Causal Structure from Phenomenological Models 214
10.3 Is Sampling Superior to Optimization? . 214
10.4 Metalinguistic Abstractions for Building DSLs . 214
10.5 Probabilistic Programming Abstractions for Structure Learning 215
10.6 Theorem Proving and Verification for Probabilistic Programs 215
10.7 Broader Applications to the Social and Natural Sciences 216

6

List of Figures

1.1 Overview of probabilistic structure learning and inference in probabilistic programs. . . . 16
1.2 Hierarchical Bayesian framework for probabilistic structure learning. 17
1.3 Example of Bayesian synthesis for univariate time series data. 19
1.4 Example of Bayesian synthesis for cross-sectional tabular data. 19
1.5 Example of Bayesian synthesis for multivariate time series data. 20

2.1 Monthly airline revenue passenger miles in the United States from Jan 2009 to Feb 2020. 27
2.2 Samples of Gaussian process time series for various covariance expressions 𝐾 and noise 𝜖. 31
2.3 Number of covariance expressions, excluding numeric parameters, by depth of parse tree. 33
2.4 Broad prior distribution over covariance expressions. 33
2.5 Online time series structure learning and forecasting for airline data. 34
2.6 Comparison of airline passenger forecasts. 35
2.7 Monthly airline revenue passenger miles in the United States from Jan 2009 to Oct 2021. 37
2.8 Online time series structure learning and forecasting for airline data with novelty. 37
2.9 Comparison of airline passenger forecasts with novelty. 38
2.10 Eight econometric time series. 40
2.11 Runtime versus prediction accuracy for eight econometric time series. 42

3.1 Components of Bayesian synthesis of probabilistic programs for automatic data modeling. 46
3.2 Markov chain Monte Carlo with 𝑀 parallel chains executed for 𝑛 iterations. 51
3.3 Resample-move sequential Monte Carlo with 𝑀 particles and 𝑛 rejuvenation iterations. . 51

4.1 Representing a program in the MultiMixture DSL as a sum-product network. 71
4.2 Space of all structures in the MultiMixture DSL for a 3×3 cross-sectional data table. . . 72
4.3 Example transition operators for the MultiMixture DSL. 73
4.4 Sixteen variable pairs in the UCI repository that exhibit various dependence structures. 75
4.5 Ground-truth versus predictive probabilities on held-out data. 76
4.6 Online Bayesian synthesis in the MultiMixture DSL. 78
4.7 Comparison of synthetic data quality using MultiMixture and baselines. 79

5.1 Graphical representation of the TR-CRP mixture model. 83
5.2 Bimodal forecasts from the TR-CRP mixture model. 84
5.3 Multivariate TR-CRP mixture model applied to flu data. 86
5.4 Learning independence relationships delivers more concise probabilistic model structures. 87
5.5 Using the TR-CRP mixture model to discover interpretable clusters in GDP data. . . . 94
5.6 Discovering changepoint locations in cell phone subscriptions. 95
5.7 Jointly imputing missing flu data in 10 US Regions over eight seasons. 96
5.8 Comparison of flu forecasts in US Region 6. 97

6.1 Relational systems for political and genomics data. 100

7

6.2 Limitations of the standard IRM when clustering relations. 102
6.3 Learning independence relationships delivers more concise probabilistic model structures. 103
6.4 Runtime versus log joint probability of latent variables and observed data. 107
6.5 Graphs for 56 interactions between countries in the “Dimensionality of Nations” data. . . 109
6.6 Subsystems inferred by the HIRM on the “Dimensionality of Nations” data. 110
6.7 Clusters inferred by the IRM on the “Dimensionality of Nations” data. 111
6.8 Posterior co-clustering probabilities for various relational domains in yeast genome data. 113

7.1 SPPL system architecture. 118
7.2 Analyzing the Indian GPA problem in SPPL. 121
7.3 Fast smoothing in a hierarchical hidden Markov model using SPPL. 123
7.4 Geometric decomposition of conditioning region during SPPL inference. 131
7.5 Inference on a stochastic many-to-one transformation of a real random variable in SPPL. 132
7.6 Exploiting independencies and repeated structure during translation of SPPL programs. 136
7.7 Comparison of multi-stage and single-stage workflows for exact probabilistic inference. . 139
7.8 Distribution of end-to-end runtime for four benchmark problems using SPPL and PSI. . 140
7.9 Runtime comparison for computing rare event probabilities using SPPL and BLOG. . . 141
7.10 Upper bound on disjoint rectangles in worst-case partition of conditioning region. 153

8.1 Target, proposal, and auxiliary proposal distributions used in EEVI. 162
8.2 Composing EEVI bounds to obtain bounds on derived information measures. 164
8.3 Estimation gaps of upper and lower entropy bounds obtained by EEVI. 165
8.4 EEVI bounds for multivariate normal entropy using prior and variational proposals. . . 169
8.5 HEPAR liver disease model. 173
8.6 Runtime for estimating entropies in the HEPAR liver disease model using EEVI. 174
8.7 Variance reduction for EEVI via non-i.i.d. sampling. 175
8.8 Using EEVI to compute optimal times to take blood glucose measurements. 176

9.1 Overview of the SRS-based goodness-of-fit test. 184
9.2 Power analysis for Poisson mixtures. 201
9.3 Uniformity of stochastic rank statistic for testing distributions over binary strings. . . . 202
9.4 Comparison of SRS and bootstrap goodness-of-fit tests. 204
9.5 Using the SRS to assess convergence of MCMC samplers for Dirichlet process mixtures. 206
9.6 Using the SRS to assess convergence of MCMC samplers for Ising models. 208

8

List of Tables

2.1 Description of parameters in the time series structure DSL. 30
2.2 Root mean squared forecasting error of held-out data for econometric time series. 40
2.3 Posterior probabilities of various temporal structures in econometric time series. 41
2.4 Performance comparison of one MCMC step over covariance expression 𝐾. 42

4.1 Comparison of detected dependencies for 16 variable pairs. 75
4.2 Comparison of density estimation error using MultiMixture and KDE. 76
4.3 Ten records from the satellites dataset showing 21 numeric and nominal variables. 77

5.1 Mean absolute imputation errors in 10 United States flu regions using various baselines. 96
5.2 Mean absolute error of flu predictions for 10 forecast horizons averaged over US flu regions. 97

6.1 Comparison of prediction error on object-attribute benchmarks. 107
6.2 Summary of the number wins, ties, and losses of HIRM on object-attribute benchmarks. 107
6.3 Data for gene G235131 . 113
6.4 Data for gene G234936 . 113
6.5 Posterior co-clustering probabilities for gene G235131 . 113

7.1 Measurements of SPE graph size with and without the factorization and deduplication. . 136
7.2 Runtime measurements for 15 fairness verification tasks using SPPL and baselines. . . . 137
7.3 Comparison of PSI and SPPL on seven exact inference problems. 140

8.1 Using EEVI to rank medical tests in HEPAR liver disease model. 173

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Listings

2.1 Context-free grammar defining a domain-specific language of time series structures. . . 30
2.2 Semantics of covariance expressions 𝐾 in the time series structure DSL. 30

3.1 Resample-move sequential Monte Carlo for Bayesian synthesis. 50
3.2 Context-free grammar expressing the Gaussian process DSL for univariate time series. . 61

4.1 MultiMixture DSL for cross-sectional data tables. 70

5.1 Multivariate TR-CRP mixture model. 86

7.1 Syntax of core calculus for sum-product expressions and related domains. 125
7.2 Semantics of core calculus for sum-product domains. 126
7.3 Example of random variable with mixed-type distribution. 128
7.4 Five technical conditions required for elements of the SPE domain to be well defined. . . 129
7.5 Source syntax of SPPL. 133
7.6 Translating an SPPL command 𝐶 to an element of SPE. 134
7.7 Examples of valid and invalid SPPL programs. 135
7.8 Example of synthesized Gaussian process probabilistic program in SPPL. 144
7.9 Implementation of complement on the sum domain Outcomes. 145
7.10 Implementation of vars, which returns the variables in a Transform or Event. 145
7.11 Implementation of scope, which returns the set of variables in an element of SPE. 145
7.12 Implementation of subsenv , which rewrites 𝑒 as an Event 𝑒′ on one variable 𝑥. 145
7.13 Implementation of negate, which applies De Morgan’s laws to an Event. 146
7.14 dnf converts and Event to DNF. 146
7.15 disjoint? returns #t if two Events are disjoint. 146
7.16 Semantics of Transform. 147
7.17 domainof returns the Outcomes on which a Transform is defined. 147
7.18 preimg computes the generalized inverse of a many-to-one Transform. 148
7.19 finv computes the generalized inverse of a many-to-one transform at a single Real. 148
7.20 polyLim computes the limits of a polynomial limits at the infinities. 149
7.21 polySolve computes the set of values at which a polynomial is equal to a specific value 𝑟. 149
7.22 polyLte computes the set of values at which a polynomial is less than a given value 𝑟. . . 149
7.23 Event preprocessing algorithms used by condition. 152
7.24 Implementation of condition for Leaf, Sum, and Product expressions in SPE. 156
7.25 Implementation of condition0 for Leaf, Sum, and Product expressions in SPE. 157
7.26 Translating an element of SPE to an SPPL command 𝐶. 158

8.1 Gen implementation of EEVI upper bound using custom proposal. 179
8.2 Gen implementation of EEVI lower bound using custom proposal. 180
8.3 Gen implementation of EEVI upper bound using SIR with default proposal. 181

11

8.4 Gen implementation of EEVI lower bound using SIR with default proposal. 182

9.1 Gen implementation of SRS goodness-of-fit test for probabilistic programs. 210

12

List of Algorithms

3.1 Markov chain Monte Carlo algorithm for Bayesian synthesis. 47
3.2 Resample-move sequential Monte Carlo algorithm for Bayesian synthesis. 52
3.3 Transition operator for a context-free language. 57

5.1 Metropolis-Hastings sampler for hidden state assignments in the TR-CRP mixture. . . . 90
5.2 Sequential Monte Carlo sampler for hidden state assignments in the TR-CRP mixture. . 91
5.3 Metropolis-Hastings sampler for partition assignments in the TR-CRP mixture. 92

6.1 Scan of Gibbs sampling for HIRM (sketch). 105

8.1 EEVI upper bound. 166
8.2 EEVI lower bound. 166
8.3 EEVI upper bound using SIR proposal without auxiliary variables. 168
8.4 EEVI lower bound using SIR proposal without auxiliary variables. 168
8.5 SMC proposal 𝑞(𝑣, 𝑥; 𝑦). 170
8.6 Auxiliary SMC proposal 𝑟(𝑣;𝑥, 𝑦). 170
8.7 EEVI upper bound using SIR proposal with auxiliary variables. 171
8.8 EEVI lower bound using SIR proposal with auxiliary variables. 171

9.1 Exact goodness-of-fit test using the Stochastic Rank Statistic. 186
9.2 Total order on the set of partitions over {1, . . . , 𝑁}. 205

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 1

Introduction

“When it is evening, you say, ‘It will be fair
weather, for the sky is red.’ And in the morning,
‘It will be stormy today, for the sky is red and
threatening.’ You know how to interpret the
appearance of the sky, but you cannot interpret
the signs of the times.”

Matthew 16:2–3 (ESV)

The problem of inferring knowledge that enables prediction and interpretation of complex empirical
phenomena is central to many studies in the social, physical, and natural sciences. Consider, for
example, a time series, where the value of a noisily measured variable such as daily rainfall is evolving
over time. A useful model of this data might reveal the underlying temporal structures—such as linear
trends, periodic components, or changepoints—that explain the variation in the observed data and help
predict future data. These problems are far from new: well before the advent of modern science, ancient
civilizations attempted to solve these problems using techniques such as astrology, physiognomy, and
other forms of divination. While such techniques have largely given way to scientific and computerized
approaches, the foundational problems of “discovering” and “querying” models of complex data are two
recurring themes that appear under various guises across research disciplines, for example:

• In artificial intelligence—as “knowledge acquisition” of a rule base [Marcus, 1988] and “automated
reasoning” in an inference engine [Portoraro, 2021] within an expert system.

• In statistics—as “structure learning” [Heckerman, 1999] and “latent variable inference” [Cowell,
1999] within a family of probabilistic models.

• In cognitive science—as “inductive learning” [Smith, 1989] and “deductive reasoning” [Johnson-
Laird, 1999] within an intuitive theory.

• In programming languages—as “program synthesis” [Gulwani et al., 2017] and “program analy-
sis” [Nielson et al., 1999] within a class of computer programs.

This thesis is concerned with two primary research questions that tie these themes together:

How can we build systems that automatically discover probabilistic models of noisy empirical data?
How can we build systems that return principled answers to queries about probabilistic models?

Our research questions are centered around “probabilistic models” because the data generating
processes we are interested in discovering and reasoning about are, as with most empirical real-world
phenomena, inherently uncertain and produce noisy observed data.

15

Observed
Data

Structure
Learning
(Part I)

Synthesized Model
Structures & Parameters

in Domain-Specific Language

Synthesized Programs
in Probabilistic

Programming Language

Exact
Inference
(Part II)

Query

Results
Syntactic

Translation

Figure 1.1: Overview of probabilistic structure learning and inference in probabilistic programs.

The main contributions of this thesis are given in three parts.

• Part I shows how to automatically learn the structure and parameters of probabilistic models
given complex observational data in multiple real-world domains, by using approximate Bayesian
inference over symbolic expressions in probabilistic domain-specific data modeling languages.

• Part II shows how to efficiently obtain sound exact solutions to Bayesian inference queries about
machine-synthesized and hand-crafted probabilistic models, by representing models as probabilis-
tic programs and leveraging specialized compilers and symbolic analyses to compute answers.

• Part III shows how to accurately solve high-dimensional statistical estimation and testing problems
in probabilistic programs, by performing dynamic analyses of execution traces obtained via black-
box computational interfaces for stochastic simulation.

Figure 1.1 shows that automatically discovered models obtained using the structure learning tech-
niques in Part I can be translated into probabilistic programs for which many Bayesian inference queries
are tractable to solve exactly using the symbolic analysis techniques in Part II. The methods in Part III
connect with both of these areas. First, they can be used to test the convergence of approximate
Bayesian inference algorithms for structure learning. Second, they can deliver approximate solutions to
estimation queries about probabilistic programs that are fundamentally intractable to solve exactly.

Why Automatically Learn Probabilistic Models? It is often said that traditional statistics
operates best in the “small data” regime [Lazer et al., 2014, Broderick, 2014, Faraway and Augustin,
2018] whereas machine learning shines in “big data” [Al-Jarrah et al., 2015, Zhou et al., 2017]. The
line of demarcation between “small data” and “big data” is, of course, elusive at best, as these terms
mean different things to different people. Faraway and Augustin [2018] suggest the following contrast:
“Big data deals with the large, observational, and machine analyzed. Small data results from the
experimental or intentionally collected data of a human scale, where the focus is on causation and
understanding rather than prediction”. Whereas a typical small data problem is associated with a
strong domain theory of how the observed data was generated, in big data problems the sheer number
of variables and observations and tangled interactions between them make it too unwieldy for a human
to manually build a model that accurately represents the data generating process. While pattern
recognition approaches for classification and regression work well in many applications, they are not
able to predict structure that can be used to obtain a systematic understanding of the data, as grimly
embodied by the Tough Luck outcome in the visual user guide of the world’s most popular machine
learning software library [Pedregosa et al., 2011]. Moreover, conventional unsupervised learning methods
such as principal component analysis or biclustering assume a fixed form of structure, which imposes
strong limits on the type of theories that can be discovered from data and the ability to adapt to
novel observations. The so-called “Parable of Google Flu” [Lazer et al., 2014]—in which a sophisticated
flu tracking system developed by Google was vastly over-predicting the proportion of doctor visits for
influenza and missed the peak of the 2013 flu season by 140 percent—illustrate the pitfalls of forgoing
a structured understanding of the data in favor of high capacity prediction algorithms. It should be

16

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Univariate Time Series DSL
Chapters 2 and 3

Cross-Sectional Tables DSL
Chapter 4

Multivariate Time Series DSL
Chapter 5

Relational Systems DSL
Chapter 6

Structure & Parameters Structure & Parameters Structure & Parameters Structure & Parameters

Observed Data Observed Data Observed Data Observed Data

×

+

SMOOTH

𝜑3

LINEAR

𝜑2

PERIODIC

𝜑12𝜑11

time

𝑃ℒ(𝑠, 𝜃)

𝑃ℒ(𝑥 | 𝑠, 𝜃)

𝑓2

𝜃21

𝑤21

𝑓3

𝜃32𝜃31

𝑓1

𝜃12𝜃11

𝑤11 𝑤12

features

in
di

vi
du

al
s

𝛼1

𝛼2

𝛼3 𝛼4

𝜃11 𝜃12 𝜃13 𝜃14

𝜃21 𝜃22 𝜃23 𝜃24

𝛽1

𝛽2

𝜃31 𝜃32

𝑓1 𝑓2 𝑓3

features

in
di

vi
du

al
s

time

𝑅2

𝑅3

𝑅1

𝜈12 𝜈21

𝜈23

𝜈32

𝜈13
𝜈31

𝜈11

𝜈22 𝜈33

𝜉12 𝜉21

𝜉11

𝜉22

Figure 1.2: Hierarchical Bayesian framework for synthesizing probabilistic generative model structures
and parameters in four example domains from Part I. Unlike traditional techniques that fit the pa-
rameters of a fixed model structure, the proposed approach is to instead define domain-specific data
modeling languages ℒ (top row) whose constituent expressions form a large family of model structures
and parameters. Each domain-specific language ℒ is associated with a prior distribution 𝑃ℒ(𝑠, 𝜃) over
latent model structure 𝑠 and parameters 𝜃 (middle row), which together induce a probabilistic genera-
tive model 𝑃ℒ(𝑥 | 𝑠, 𝜃) over datasets 𝑥 in the domain (bottom row). For a given dataset 𝑥, the structure
learning problem is to obtain an ensemble of plausible model structures and parameters that explain
the data by generating samples from the posterior distribution 𝑃ℒ(𝑠, 𝜃 |𝑥) ∝ 𝑃ℒ(𝑠, 𝜃)𝑃ℒ(𝑥 | 𝑠, 𝜃). These
posterior samples are used for two purposes: first, obtaining qualitative insights, by syntactic analysis
of the discovered model structures and parameters; second, solving prediction problems, by translating
domain-specific expressions into probabilistic programs in SPPL (Chapter 7) which provides fast and
automated machinery for computing provably sound exact solutions to Bayesian inference queries.

unsurprising to those familiar with the arguments of Hand [2006] that a simple model which projected
lagged two-week data performed better than Google’s system [Goel et al., 2010].

It is thus our motivation to develop automatic model discovery systems that go beyond pattern
recognition by using observational data to synthesize probabilistic model structures and parameters
that make accurate predictions while supporting explanation and understanding. These model dis-
covery systems explore spaces of structured theories to find good explanations of the observed data.
Each theory is formally represented as a symbolic expression in a probabilistic domain-specific data
modeling language, which defines a family of model structures and parameters for explaining datasets
within a domain. To enable understanding, the discovered models are designed to retain interpretable
semantics, answer not one but an open-ended set of queries, and produce well-calibrated results, i.e.,
when producing inaccurate predictions, they report broad error bars to reflect lack of confidence.

17

Bayesian Inference The approach to automatic model discovery pursued in this thesis is firmly
rooted in Bayesian inference, which gives a rational framework for updating beliefs about latent vari-
ables in generative models given observed data [Savage, 1954]. A full account of the breadth of the
Bayesian paradigm across disciplines is impossible to summarize succinctly. In brief, Bayesian in-
ference has enabled decades of fruitful progress in many research fields that include artificial intelli-
gence [Pearl, 1988], information theory [MacKay, 2003], statistics [Gelman et al., 2014], robotics [Thrun
et al., 2005], machine learning [Murphy, 2012, Ghahramani, 2015], epistemology [Landes, 2021], human
cognition [Griffiths et al., 2008], and the bioinformatics [Lesaffre and Lawson, 2012].

Bayesian modeling specifies a universe of possible explanations of some observed data 𝑥 through
a space Θ of hypotheses, sometimes called parameters or latent variables. Each hypothesis 𝜃 ∈ Θ
is associated with a prior probability denoted 𝑃 (𝜃) as well as a probability distribution 𝑃 (𝑥 | 𝜃) over
datasets 𝑥 ∈ 𝑋 that can be observed. The joint probability distribution 𝑃 (𝜃, 𝑥) ::= 𝑃 (𝑥 | 𝜃)𝑃 (𝜃) over
latent variables and data is referred to as a generative model, or simply a model. Given a specific dataset
𝑥, the Bayes rule updates the prior probability 𝑃 (𝜃) to posterior probabilities 𝑃 (𝜃 |𝑥) according to

𝑃 (𝜃 |𝑥) ::= 𝑃 (𝑥 | 𝜃)𝑃 (𝜃)∑︀
𝜃′∈Θ 𝑃 (𝑥 | 𝜃′)𝑃 (𝜃′)

∝ 𝑃 (𝜃, 𝑥) (𝜃 ∈ Θ). (1.1)

Eq. (1.1) quantifies how plausible each hypothesis 𝜃 is given the data 𝑥, which is a combination of its prior
probability before observing 𝑥, as measured by 𝑃 (𝜃), and the degree to which it explains 𝑥, as measured
by 𝑃 (𝑥 | 𝜃). The Bayesian inference problem is then to “compute” the posterior distribution (1.1),
which usually means either deriving a computational process that generates a random hypothesis 𝜃
with probability 𝑃 (𝜃 |𝑥) or deriving an algorithm that returns the real number 𝑃 (𝜃 |𝑥) for any 𝜃.

A central contribution of this thesis is to show that Bayesian inference gives a practical and scalable
approach not only to solving inference problems within a fixed model, but also to discovering plausible
model structures in real-world data science applications where the appropriate model to use is itself
uncertain. This contribution builds on a line of research in the cognitive science literature that uses
Bayesian inference over structured spaces to explain and predict human behavior [Tenenbaum et al.,
2011, Lake et al., 2017, Ullman and Tenenbaum, 2020] toward engineering more commonsense machine
intelligence. The Bayesian paradigm invites the view that discovering models from observed data
and solving queries about latent variables within a fixed model (box on Page 15) are both instances of
Bayesian inference that operate at different levels of abstraction. A prior distribution 𝑃 (𝑠) is introduced
over unknown model structure 𝑠 ∈ 𝑆, which itself is a latent variable at the highest level of abstraction
that induces generative models 𝑃 (𝜃, 𝑥 | 𝑠). The overall model is then 𝑃 (𝑠, 𝜃, 𝑥) = 𝑃 (𝑠)𝑃 (𝜃 | 𝑠)𝑃 (𝑥 | 𝑠, 𝜃),
and the inference problem is to generate samples from 𝑃 (𝑠, 𝜃 |𝑥). This problem is referred to as “Bayesian
synthesis” throughout the thesis, as the goal is to “synthesize” a collection {(𝑠𝑖, 𝜃𝑖)} of model structures
and parameters that together form explanations of the observed data. Figure 1.2 shows hierarchical
Bayesian models for structure learning in four representative domains covered in Part I.

Probabilistic Programing Languages The centrality of Bayesian inference has brought about
substantial interest in probabilistic programming [Russell and Norvig, 2021, Chapter 18; van de Meent
et al., 2021], an emergent research field that tightly integrates probability into the design and implemen-
tation of programming languages. Probabilistic programs provide specialized modeling languages for
expressing rich probabilistic models and reusable computational machinery for solving inference prob-
lems. This approach lets us integrate central ideas from computer science—such as language design,
semantics, compilers, symbolic execution, and dynamic analysis—to more effectively express models and
perform inference. Recent years have seen a surge in applications of probabilistic programming in areas
such as computer vision [Kulkarni et al., 2015, Gothoskar et al., 2021], programmable networks [Gehr
et al., 2018], high-energy physics [Baydin et al., 2019], and bioinformatics [Merrell and Gitter, 2020].

18

1948 1950 1952 1954 1956 1958 1960 1962

Year

0

100

200

300

400

500

600

700
Airline Passenger Volume

Observed Data
Held-Out Data

Bayesian Synthesis

Forecasts

GP (SE Kernel)

Forecasts

ARIMA

Forecasts

Facebook Prophet

Forecasts

HDP-HMM

Forecasts

Linear Regression

Forecasts

Forecasts from Bayesian synthesis programs versus several baselines

Figure 1.3: Bayesian synthesis techniques for learning models of univariate time series discover detailed
temporal patterns in the observed data and produce substantially more accurate forecasts as compared
to widely used methods from statistics and machine learning. Discovering models for univariate time
series data is the subject of Chapter 2.

0 80000 160000

Apogee km

0

15000

30000

P
er

ig
ee

km

GaussianCopula
(16.6 mins)

0 80000 160000

Apogee km

CTGAN
(16.1 mins)

0 80000 160000

Apogee km

TVAE
(15.8 mins)

0 80000 160000

Apogee km

Bayesian Synthesis
(<10 sec)

0 80000 160000

Apogee km

0

1500

3000

4500

P
er

io
d

m
in

ut
es

0 80000 160000

Apogee km
0 80000 160000

Apogee km
0 80000 160000

Apogee km

0 8000 16000

Power watts

0

8

16

24

A
nt

ic
ip

at
ed

L
if

et
im

e

0 8000 16000

Power watts
0 8000 16000

Power watts
0 8000 16000

Power watts

0 2500 5000

Period minutes

LEO

GEO

Elliptical

MEO

C
la

ss
of

O
rb

it

0 2500 5000

Period minutes
0 2500 5000

Period minutes
0 2500 5000

Period minutes

Observed Data Synthetic Data

Figure 1.4: Bayesian synthesis techniques for learning models of cross-sectional data tables produce more
realistic synthetic data as compared to statistical baselines such as Gaussian copulas and deep learning
baselines such as conditional tabular generative adversarial networks (CTGAN) and tabular variational
autoencoders (TVAE)—using 100x less runtime. The plots above show a pair of variables describing
the orbital physics of satellites from a dataset of 21 variables and 1167 satellites, where observed data
is in black and synthetic data in orange. Synthetic data from models discovered by Bayesian synthesis
closely matches the marginal distribution of this pair of variables, whereas the baseline methods produce
synthetic data in artificial regimes where no true data exists or fail to produce synthetic data in regimes
where true data exists. Discovering models for cross-sectional data tables is the subject of Chapter 4.

19

1960 1970 1980 1990 2000 2010

All 170 GDP per capita time series from 1960 to 2010 in the Gapminder dataset

1960 1970 1980 1990 2000 2010

GDP cluster 1

USA
Canada
France
Italy
Japan

1960 1970 1980 1990 2000 2010

GDP cluster 2

China
Bangladesh
Nepal
India
Vietnam

1960 1970 1980 1990 2000 2010

GDP cluster 3

Russia
Romania
Serbia
Ukraine

1960 1970 1980 1990 2000 2010

GDP cluster 4

Libya
Togo
Cote dIvoire
Gambia

1960 1970 1980 1990 2000 2010

GDP cluster 5

Brazil
Ecuador
Honduras
Algeria

1960 1970 1980 1990 2000 2010

GDP cluster 6

Niger
Madagascar
Central African Rep.

1960 1970 1980 1990 2000 2010

GDP cluster 7

Poland
Slovenia
Slovakia
Belarus

1960 1970 1980 1990 2000 2010

GDP cluster 8

Equatorial Guinea
Samoa

1960 1970 1980 1990 2000 2010

GDP cluster 9

North Korea

Figure 1.5: Bayesian synthesis techniques for learning models of multivariate time series discover in-
terpretable groups of countries whose economic indicators—in this case the GDP per capita—evolved
through similar temporal processes over 50 years, which include linear trends, exponential growth, and
changepoints. Discovering models for multivariate time series data is the subject of Chapter 5.

How can we realize the broad promise of probabilistic programming for more automated and scalable
probabilistic approaches to analyzing structured data? There are certainly many challenges that prac-
titioners face when leveraging the probabilistic modeling and inference toolkit. A main challenge is the
expertise in statistical modeling and programming needed to build suitable probabilistic models [Hen-
ley et al., 2020]. Automatic model discovery can reduce these burdens, provided that the learning
techniques scale well in real-world problems and deliver accurate and interpretable solutions. Another
challenge is the lack of accuracy, soundness, or runtime stability in existing inference engines, largely
due to their lack of specialization. Third, the lack of abstraction in the usual approach of representing
models as ad-hoc data structures in languages such as C or Python requires custom query solvers to be
implemented over and over, which simply does not scale as a reliable engineering methodology.

The approach to structure learning and inference in probabilistic programs shown in Figure 1.1 goes
beyond existing probabilistic programming languages such as BUGS [Gilks et al., 1994], Stan [Carpenter
et al., 2017], Gen [Cusumano-Towner et al., 2019], or Pyro [Bingham et al., 2019], which do not contain
automatic model discovery systems. That said, probabilistic programming has a central role to play in
both components of Figure 1.1. First, the process of synthesizing model structures and parameters in
domain-specific languages can itself be implemented using probabilistic programming, as illustrated in
Saad et al. [2019a] using the Venture language [Mansinghka et al., 2014] and in Cusumano-Towner et al.
[2020] using the Gen language [Cusumano-Towner, 2020]. Second, the learned models are translated
from domain-specific languages into probabilistic programming languages with reusable and optimized
inference machinery. This thesis introduces SPPL in Chapter 7, a probabilistic programming language
that delivers sound, exact, and fully-automated solutions for all domain-specific models from Part I.

20

1.1 The Path to Scalability

The idea of using Bayesian inference gngnbghbbhbvglearn the structure of generative models builds
on a line of research in the cognitive science and probabilistic machine learning literature, which is
surveyed in Section 3.6. Even though there are many benefits to pursuing a coherent probabilistic
approach to structure learning, a recurring challenge that has impeded the broader adoption of these
methods is the lack of a design and engineering methodology that is both mathematically principled and
practically scalable. Similarly, while many probabilistic programming systems provide a universal or
“Turing-complete” language for expressing arbitrarily sophisticated probabilistic models, the question
of how to design abstractions that enable tractable solutions remains an open problem. This thesis
uses several techniques that improve the scalability of structure learning and inference in probabilistic
programs, where “scaling” refers not only to the number of variables and observations, but also to the
range of problem domains that can be analyzed and to the types of queries that can be efficiently solved.

1.1.1 Specialization via Probabilistic Domain-Specific Languages

Specialization in this context means carefully restricting the class of models under consideration for a
given modeling problem and the class of queries that can be asked. Lack of specialization is a funda-
mental reason that research endeavors such as learning the structure of arbitrary Bayesian networks,
searching for neural network architectures, or synthesizing programs in Turing-complete programming
languages have largely failed to scale to meaningful real-world applications. The route pursued in Part I
is to design probabilistic domain-specific data modeling languages with (i) simple modeling primitives
and composition operators, for defining model structures with interpretable surface syntax; (ii) nonpara-
metric probabilistic semantics, so that the model structures are flexible enough to express a wide range
of data patterns; and (iii) efficient algorithms for solving a broad class of Bayesian inference queries
about observed data, such as computing marginal and conditional probabilities. Each DSL presented
in Part I is specialized in all these ways. In Part II, the SPPL system from Chapter 7 is also specialized
in that it syntactically rules out a large class of probabilistic models and Bayesian inference queries for
which obtaining exact solutions is fundamentally intractable.

1.1.2 Flexible Model Families via Nonparametric Bayesian Priors

Traditional modeling approaches in statistics and machine learning are based on a fixed model structure,
which imposes limits on the type of structure that can be learned from data and the ability to adapt to
novel data. These approaches also provide no built-in support for improving their own structure in the
presence of severe model misspecification. The probabilistic DSLs introduced in Part I instead define
entire families of many model structures by using Bayesian nonparametric distributions, reviewed in
forthcoming chapters, which compactly specify rich priors over infinite-dimensional spaces of functions,
partitions, and other combinatorial structures. Bayesian nonparametric distributions are used in two
different ways. First, they are used to specify prior distributions over expressions in the DSL. Second,
they are used to specify prior distributions over datasets that a given DSL expression defines. The
resulting models have unbounded size, in the sense that their internal structure can automatically
adapt as new and novel observations become available (Figure 2.8). Within these DSLs, inference over
the unknown model structure and parameters is performed via approximate posterior sampling—as
opposed to greedy optimization methods such as cross-validation or variational learning—for quantifying
the inherent uncertainty about the latent data generating process.

21

1.1.3 Exploiting Sparsity via Independence Discovery

Each probabilistic DSL in Part I includes modeling constructs for expressing independence relation-
ships, that is, groups of variables or observations that can be modeled completely separately from one
another. Exploiting probabilistic independencies can enable large improvements in scalability. Consider
10 variables each with 10 outcomes—a joint probability distribution that assumes all these variables are
dependent requires 10 billion parameters to be fully specified; if the variables factorize into two sepa-
rate groups then 200,000 parameters are needed; and if all 10 variables are mutually independent then
only 100 parameters suffice. The Bayesian nonparametric priors over DSL expressions allow structural
independencies to be inferred from observations, provided that there is sufficient evidence to suggest
that such independencies are likely to exist. These inductive biases often lead to more concise and
interpretable explanations of the data as compared to assuming full dependence (Figures 5.4 and 6.3).

1.1.4 Online Structure Learning via Sequential Monte Carlo

Computing the posterior distribution (1.1) is intractable for all but the simplest of problems, which
means that approximate algorithms for Bayesian structure learning are needed. Most approaches either
use simulation-based algorithms such as Markov chain Monte Carlo (MCMC), which provide sound
approximations but converge slowly, or abandon sound approximations and instead adopt heuristics
such as greedy search. Chapter 3 shows how to design more scalable learning algorithms using sound
techniques known as “resample-move sequential Monte Carlo” (SMC), which can perform Bayesian
structure learning in real time and greatly improve upon MCMC (Figure 2.11). SMC-based structure
learning composes well with the Bayesian nonparametric priors over DSL expressions: an initial batch
of observations is used to synthesize a starting set of plausible model structures which are incrementally
refined and adapted as more data is observed (Figures 2.5 and 4.6).

1.1.5 Exact Bayesian Inference via Compilers and Symbolic Program Analysis

While supervised learning methods are trained to solve only a single query, a generative model obtained
by structure learning can be used to solve an open-ended set of queries, such as simulating forecasts,
computing probabilities, quantifying information flow, or finding probable outliers. However, it quickly
becomes impractical to develop, optimize, and prove the correctness of custom inference algorithms for
solving each new query within a DSL, let alone many queries across many DSLs. Chapter 7 develops
the SPPL probabilistic programming language, which provides provably sound and exact answers to
many probabilistic inference queries about programs expressed in the language. SPPL can also serve as
a unified probabilistic program synthesis target language for the probabilistic DSLs presented in Part I,
which enables substantial reuse of its inference machinery across multiple models, datasets, and queries.

1.1.6 Statistical Estimation and Testing via Dynamic Program Analysis

Many queries about probabilistic programs are fundamentally intractable to solve exactly. One ex-
ample is estimating conditional mutual information among groups of program variables, which SPPL
either syntactically rules out (for numerical variables) or can only solve exactly by enumeration over
an exponentially large state space (for discrete variables). Another example is testing the convergence
of sampling-based algorithms for approximate posterior inference such as MCMC or SMC used for
Bayesian structure learning. Chapters 8 and 9 introduce fast and theoretically principled methods, im-
plemented as meta-programs in the Gen probabilistic programming language (Listings 8.1–8.4 and 9.1),
for solving two such inference problems: estimating information measures between random variables
and testing convergence of approximate sampling algorithms. These chapters show how to design statis-
tical inference procedures with good frequentist properties by simulating probabilistic programs using
black-box interfaces and performing dynamic analyses of the weighted traces.

22

1.2 Outline and Contributions

This thesis is comprised of three main parts that integrate the themes for engineering scalable systems
described in Section 1.1.

Part I describes scalable structure learning techniques for synthesizing generative models of complex
observational data in multiple real-world domains.

Chapter 2 shows how to learn accurate and interpretable models for univariate time series data.
Chapter 3 formalizes the problem of Bayesian structure learning for synthesizing probabilistic pro-

grams in domain-specific data modeling languages; presents sound synthesis algorithms for approximate
posterior inference; and establishes a class of DSLs generated by context-free grammars where sound
Bayesian synthesis can be fully automated end-to-end.

Chapters 4–6 present structure learning methods for synthesizing generative models of cross-
sectional data tables, multivariate time series, and relational data; and uses them to solve challenging
tasks in exploratory, inferential, and predictive data analytics.

Part II addresses the problem of efficiently computing exact solutions to Bayesian inference queries
by leveraging probabilistic program compilers and symbolic analysis techniques.

Chapter 7 presents the SPPL probabilistic programming language that delivers exact answers to a
range of Bayesian inference queries. SPPL returns provably sound answers, is fully automated, and has
substantially more efficient and predictable performance as compared to state-of-the-art solvers. The
evaluations show runtime gains of up to 105x on challenging benchmark problems from the literature.
Each DSL from Part I admits a formal translation into SPPL syntax, which also allows the language
to serve as a unified synthesis target with reusable machinery for fast probabilistic inference.

Part III shows how to solve challenging statistical estimation and testing problems via dynamic
analyses of execution traces obtained by simulating probabilistic programs.

Chapter 8 presents interval estimators of entropy and many related information-theoretic quantities
for arbitrary sets of variables in a probabilistic program. These estimators apply to substantially more
general queries than traditional “model-based” estimators, scale better than “model-free” nonparametric
estimators, and solve challenging queries in optimal experimental design.

Chapter 9 presents a family of goodness-of-fit tests for high-dimensional discrete data structures
to assess how well observed an dataset matches the distribution defined by a probabilistic program. A
central application of these tests is in diagnosing the convergence of simulation-based algorithms for
approximate posterior inference, such as those used for structure learning in Part I.

Chapter 10 offers concluding remarks and discusses directions for future work.

Evaluations A large number of empirical results establish that the proposed approach to structure
learning and inference can deliver substantial improvements over widely used baselines across diverse
data science problems. Three representative examples are shown in Figures 1.3–1.5. Further evaluations
include adapting to extreme novelty in streaming time series data (Figure 2.8); imputing and forecast-
ing sparse multivariate flu rates (Tables 5.1 and 5.2 and Figures 5.7 and 5.8); finding commonsense
structure in temporal and relational macroeconomic data (Figures 5.5 and 6.6); generating synthetic
satellite records with realistic orbital physics (Figure 4.7); assessing the convergence of MCMC samplers
for Dirichlet process mixtures and Ising models (Figures 9.5 and 9.6) ranking medical tests for liver
disease and diabetes by their value of information about a patient’s latent illnesses (Figures 8.5 and 8.8
and Table 8.1); and verifying the fairness of machine learning classifiers (Table 7.2).

23

1.3 Scope

• While the general principles and methods developed in this thesis are applicable to several problem
domains, the main focus is on “structured” data science problems, which include time series, cross-
sectional data tables, and relational systems, as opposed to “unstructured” data such as videos
or text documents. Within structured data problems, the evaluations cover breadth across many
domains and datasets rather than depth within a given domain.

• No attempt is made to automatically learn entire probabilistic domain-specific languages from
data, using, for example, yet another level of abstraction in the hierarchical Bayesian framework
from Figure 1.2. In particular, all the DSLs in Part I have been manually designed and then used
repeatedly to solve structure learning and inference problems across many datasets and queries.
While learning DSLs from data is conceptually appealing, there are many bottlenecks in scaling
such approaches to online structure learning and inference for real-world data science problems.

• While all the DSLs in Part I have interpretable generative semantics and internally specify causal
relationships between model variables, they should be understood as phenomenological models:
their internal structures do not necessarily reflect the true causal structure in the underlying data
generating process. Discovering causal relationships from purely observational data is generally
impossible without stronger assumptions on the data generating process or experimenter-driven
interventions during the data collection phase, which are both beyond the scope of this thesis.

• To avoid excessive formalisms that do not result in essential theorems, several technical details
are omitted. Example omissions include the formal syntax of the underlying probabilistic domain-
specific languages for multivariate time series in Chapter 5 and relational systems in Chapter 6,
as well as formalisms of the program translators from each DSL in Part I to the source syntax of
the SPPL probabilistic programming language in Chapter 7.

1.4 Software

Reference implementations of the methods described in this thesis are available online.

1. Chapter 2: DSL for univariate time series
https://doi.org/10.1145/3291623
https://github.com/probcomp/pldi2019-gen-experiments

2. Chapter 4: DSL for cross-sectional data
https://doi.org/10.1145/3291623
https://github.com/probcomp/cgpm

3. Chapter 5: DSL for multivariate time series
https://github.com/probcomp/trcrpm

4. Chapter 6: DSL for relational data
https://github.com/probcomp/hierarchical-irm

5. Chapter 7: Sum-Product Probabilistic Language
https://github.com/probcomp/sppl

6. Chapter 8: Estimators of entropy and information
https://proceedings.mlr.press/v151/saad22a/saad22a-supp.zip

24

https://doi.org/10.1145/3291623
https://github.com/probcomp/pldi2019-gen-experiments
https://doi.org/10.1145/3291623
https://github.com/probcomp/cgpm
https://github.com/probcomp/trcrpm
https://github.com/probcomp/hierarchical-irm
https://github.com/probcomp/sppl
https://proceedings.mlr.press/v151/saad22a/saad22a-supp.zip

1.5 Publications

This thesis is based on research presented in the following publications.

[Saad et al., 2022] Feras A. Saad, Marco Cusumano-Towner, and Vikash K. Mansinghka. Estimators
of entropy and information via inference in probabilistic models. In Proceedings of the 25th
International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of
Machine Learning Research, pages 5604–5621. PMLR, 2022

[Saad and Mansinghka, 2021] Feras A. Saad and Vikash K. Mansinghka. Hierarchical infinite re-
lational model. In Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence,
volume 161 of Proceedings of Machine Learning Research, pages 1067–1077. PMLR, 2021

[Saad et al., 2021] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: Probabilis-
tic programming with fast exact symbolic inference. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Design and Implementation, pages 804–819. Associa-
tion for Computing Machinery, 2021. doi:10.1145/3453483.3454078

[Saad et al., 2019b] Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, and Vikash K. Mans-
inghka. A family of exact goodness-of-fit tests for high-dimensional discrete distributions. In Pro-
ceedings of the 22nd International Conference on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pages 1640–1649. PMLR, 2019b

[Saad et al., 2019a] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Ri-
nard, and Vikash K. Mansinghka. Bayesian synthesis of probabilistic programs for automatic
data modeling. Proceedings of the ACM on Programming Languages, 3(POPL):37.1–37.32, 2019a.
doi:10.1145/3290350

[Saad and Mansinghka, 2018] Feras A. Saad and Vikash K. Mansinghka. Temporally-reweighted
Chinese restaurant process mixtures for clustering, imputing, and forecasting multivariate time
series. In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 755–764. PMLR, 2018

25

https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1145/3290350

Part I

Probabilistic Structure Learning
via Approximate Bayesian Inference

26

Chapter 2

Synthesizing Models for Univariate Time
Series

It is difficult to make predictions, especially
about the future.

Danish Proverb

Consider the data in Figure 2.1, which shows the number of miles traveled by paying airline pas-
sengers in the United States between 2009 and 2020, according to the U.S. Bureau of Transportation
Statistics. Several patterns can be identified from a close inspection of the time series, including:

1. There is an overall increasing linear trend.
2. There is a yearly peak in airline travel during the summer months.
3. There is a yearly dip in airline travel during the first two months of the year.
4. The peak-to-peak amplitude between the winter and summer is increasing over time.
5. There is a single smaller peak in the spring, before the summer peak.
6. There are two smaller peaks in the fall, after the summer peak.

Even without constructing a statistical model of the data, humans are can rapidly identify inter-
pretable structure of this form. This chapter shows how to automatically learn statistical models for
time series that reflect interpretable patterns in the observed data and generate accurate forecasts for
future data. Section 2.1 reviews Gaussian process models. Section 2.2 describe a domain-specific data
modeling language based on Gaussian processes that can be used to express a rich class of time series

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
25

30

35

40

45

50

Airline Revenue Passenger Miles (Millions)

Figure 2.1: Monthly airline revenue passenger miles in the United States from Jan 2009 to Feb 2020.

27

structures. Section 2.3 presents a tutorial of how to use Bayesian inference to synthesize expressions in
this DSL given an observed data stream. Section 2.4 quantitatively benchmarks these automatic data
modeling techniques on multiple real-world econometric time series and shows that they outperform
widely used statistical baselines.

2.1 Background: Gaussian Processes

Definition 2.1. Let T be an arbitrary index set. A collection 𝑋 ::= {𝑋(𝑡) | 𝑡 ∈ T} of random variables
is said to be a Gaussian process if for any length 𝑛 tuple t = [𝑡1, . . . , 𝑡𝑛] of distinct indexes, the random
vector 𝑋(t) ::= [𝑋(𝑡1), . . . , 𝑋(𝑡𝑛)] has a joint Gaussian distribution. «

Remark 2.2. A Gaussian process is completely specified by its mean function 𝑚 : T → R and
covariance function 𝑘 : T× T→ R≥0, where for all 𝑡, 𝑡′ ∈ T,

𝑚(𝑡) = E [𝑋(𝑡)] (2.1)
𝑘(𝑡, 𝑡′) = cov(𝑋(𝑡), 𝑋(𝑡′)) = E

[︀
(𝑋(𝑡)−𝑚(𝑡))(𝑋(𝑡′)−𝑚(𝑡′))

]︀
. (2.2)

The joint distribution of 𝑋(t) is thus
⎡
⎢⎣
𝑋(𝑡1)

...
𝑋(𝑡𝑛)

⎤
⎥⎦ ∼ MultivariteNormal

⎛
⎜⎝

⎡
⎢⎣
𝑚(𝑡1)

...
𝑚(𝑡𝑛)

⎤
⎥⎦ ,

⎡
⎢⎣
𝑘(𝑡1, 𝑡1) . . . 𝑘(𝑡1, 𝑡𝑛)

...
. . .

...
𝑘(𝑡𝑛, 𝑡1) . . . 𝑘(𝑡𝑛, 𝑡𝑛)

⎤
⎥⎦

⎞
⎟⎠ . (2.3)

«

The notation 𝑋 ∼ GP(𝑚, 𝑘) indicates that 𝑋 is a Gaussian process with mean 𝑚 and covariance
𝑘. The shorthand 𝑚(t) ::= [𝑚(𝑡1), . . . ,𝑚(𝑡𝑛)] denotes the mean vector. Further, if t′ ::= [𝑡′1, . . . , 𝑡

′
𝑚] is

a set of 𝑚 indexes, then 𝑘(t, t′) denotes the 𝑛 ×𝑚 covariance matrix whose 𝑖𝑗 entry is 𝑘(𝑡𝑖, 𝑡
′
𝑗). The

covariance matrix in Eq. (2.3) is then precisely 𝑘(t, t). This chapter focuses on random processes 𝑋
that are one-dimensional continuous time series, so that the index set T = R.

Prior and Posterior Densities Equipped with the mean vector 𝑚(t) and covariance matrix 𝑘(t, t),
the joint probability density of 𝑋(t) evaluated at a realization 𝑥(t) ::= [𝑥(𝑡1), . . . , 𝑥(𝑡𝑛)] ∈ R𝑛 is

log 𝑝(𝑥(t)) = −1

2

[︁
[𝑥(t)−𝑚(t)]⊤𝑘(t, t)−1[𝑥(t)−𝑚(t)]− log (det(𝑘(t, t)))− 𝑛 log (2𝜋)

]︁
. (2.4)

As multivariate Gaussians are closed under conditioning, given observations 𝑥(t), the posterior distri-
bution of 𝑋(t′) at new time points t′ is also a multivariate Gaussian

𝑋(t′) | {𝑋(t) = 𝑥(t)} ∼ MultivariateNormal(𝑚post(t′), 𝑘post(t′, t′)) (2.5)

𝑚post(t′) ::= 𝑘(t′, t)𝑘(t, t)−1𝑥(t) (2.6)

𝑘post(t′, t′) ::= 𝑘(t′, t′)− 𝑘(t′, t)𝑘(t, t)−1𝑘(t, t′). (2.7)

The posterior joint density 𝑝(𝑥(t′) | 𝑥(t)) is then readily computed as in Eq. (2.4) by using the expres-
sions for the conditional mean (2.6) and conditional covariance (2.7).

Observation Noise Suppose that 𝑍 ∼ GP(𝑚, 𝑘) is a Gaussian process. A new Gaussian pro-
cess 𝑋 can be formed by setting 𝑋(𝑡) ::= 𝑍(𝑡) + 𝛾(𝑡) for all 𝑡 ∈ R, where 𝛾(𝑡) ∼ Normal(0, 𝜖) are
i.i.d. Gaussian innovations. Then 𝑋 is said to be a Gaussian process with output noise 𝜖, denoted
𝑋 ∼ NoisyGP(𝑚, 𝑘, 𝜖). As any linear combination of independent Gaussian random variables is itself
Gaussian, it can be seen that 𝑋 ∼ GP(𝑚, 𝑘′) where 𝑘′(𝑡, 𝑡′) = 𝑘(𝑡, 𝑡′) + 1[𝑡 = 𝑡′]𝜖, for all 𝑡, 𝑡′ ∈ R.

28

2.2 Gaussian Process DSL for Modeling Univariate Time Series

Gaussian process are powerful statistical models. The covariance function dictates the structure of the
time series 𝑋 and provides the inductive bias that lets Gaussian processes capture complex patterns
across many different datasets. Listing 2.1 shows a domain-specific modeling language ℒ of symbolic
expressions that describe the noise level 𝜖 and covariance expression 𝐾 of a zero-mean noisy Gaussian
process. There are four primitive covariance structures {Constant, Smooth, Linear, Periodic} and three
composition operators {*, +, ChangePoint} that together produce an open set of more complex time
series structures—several additions to this basic language are possible, as discussed in Duvenaud [2014,
Chapter 2]. Listing 2.2 shows the semantics of the covariance expressions 𝐾, which define functions
𝑘(𝑡, 𝑡′) that take a pair of time points and return the covariance (2.2) between 𝑋(𝑡) and 𝑋(𝑡′). Table 2.1
explains the meaning of each numeric parameter in the covariance expressions.

Example 2.3. Figure 2.2 shows several realizations of noisy Gaussian process 𝑋 ∼ NoisyGP(0, 𝑘, 𝜖)
evaluated at 100 time points spaced linearly between 𝑡 = 0 and 𝑡 = 10, for various covariance functions
𝑘 ::= J𝐾K and noise levels 𝜖. The resulting time series have the following structure:

Figure 2.2a 𝐾 = Linear(1)
Random straight lines whose time intercept is always 1.

Figure 2.2b 𝐾 = Smooth(3.4)
Random smooth functions.

Figure 2.2c 𝐾 = Periodic(60, 3) * Linear(0.1)
Random periodic waves whose amplitude increases over time, with an overall upward
or downward linear trend whose time intercept is always 0.1.

Figure 2.2d 𝐾 = ChangePoint(5, 0.001, Constant(2), Linear(6))
Random functions whose behavior changes rapidly at time 𝑡 = 5. For 𝑡 < 5, the data
is a random constant, whose value is distributed as Gaussian with mean zero and
variance 2. For 𝑡 > 5, the data is a random straight line with time intercept of 6.

«

2.3 Online Learning of Time Series Structure from Data

In traditional time series modeling, practitioners manually construct a covariance structure for a given
dataset using a combination of statistical expertise, heuristics, and domain knowledge [Littell et al.,
2000, Kincaid, 2005]. This section shows how to automatically discover the covariance structure for
a time series. In particular, given a time series such as the airline data in Figure 2.1, the goal is to
synthesize expressions 𝐸 = NoisyGP(0, 𝐾, 𝜖) in the DSL from Listing 2.1 such that the choice of 𝐾
and 𝜖 capture patterns in the observed data and produce accurate forecasts for future data.

2.3.1 Formulation as a Bayesian Inference Problem

The proposed approach to synthesizing DSL expressions uses probabilistic inference over the unknown
covariance and noise level of a Gaussian process time series model. Following the Bayesian approach of
modeling unknown quantities in the DSL expression NoisyGP(0, 𝐾, 𝜖) as random variables, for any
set of 𝑛 > 0 distinct time points t = [𝑡1, . . . , 𝑡𝑛] the generative model is

29

𝐸 ::= NoisyGP(0, 𝐾, 𝜖)

𝐾 ::= Constant(𝜙) | Linear(𝜃) | Smooth(𝜙) | Periodic(𝜙1,𝜙2)

| 𝐾1 * 𝐾2 | 𝐾1 + 𝐾2 | ChangePoint(𝜃,𝜙,𝐾1,𝐾2)

𝜖 ∈ R>0 𝜃 ∈ R 𝜙 ∈ R>0

Listing 2.1: Context-free grammar defining a domain-specific language of time series structures.

JConstant(𝜙)K ::= 𝜆𝑡.𝜆𝑡′.𝜙

JLinear(𝜃)K ::= 𝜆𝑡.𝜆𝑡′.(𝑡− 𝜃)(𝑡′ − 𝜃)

JSmooth(𝜙)K ::= 𝜆𝑡.𝜆𝑡′. exp(−(𝑡− 𝑡′)2/2𝜙)

JPeriodic(𝜙1,𝜙2)K ::= 𝜆𝑡.𝜆𝑡′. exp(− sin2(2𝜋/𝜙2)|𝑡− 𝑡′|)/𝜙1)

J(𝐾1 * 𝐾2)K ::= 𝜆𝑡.𝜆𝑡′. J𝐾1K (𝑡, 𝑡′)× J𝐾2K (𝑡, 𝑡′)
J(𝐾1 + 𝐾2)K ::= 𝜆𝑡.𝜆𝑡′. J𝐾1K (𝑡, 𝑡′) + J𝐾2K (𝑡, 𝑡′)

JChangePoint(𝜃,𝜙,𝐾1,𝐾2)K ::= 𝜆𝑡.𝜆𝑡′.let 𝑓 = 𝜆𝑥.(1 + tanh((𝜃 − 𝑥)/𝜙))/2

𝑢1 = 𝑓(𝑡)× J𝐸1K (𝑡, 𝑡′)× 𝑓(𝑡′)

𝑢2 = (1− 𝑓(𝑡))× J𝐸2K (𝑡, 𝑡′)× (1− 𝑓(𝑡′))

in 𝑢1 + 𝑢2

Listing 2.2: Semantics of covariance expressions 𝐾 in the time series structure DSL from Listing 2.1.

Table 2.1: Description of parameters in the time series structure DSL from Listing 2.1.

𝐾 Parameter Description

Constant 𝜃 Variance of constant process around 0
Linear 𝜃 Time intercept of linear process, i.e., 𝑋(𝜃) = 0 with probability 1
Smooth 𝜙 Length scale of stationary smooth process
Periodic 𝜙1 Length scale of periodic process

𝜙2 Frequency of periodic process
ChangePoint 𝜃 Time location of changepoint

𝜙 How rapidly change occurs

30

x
(t

)

ε = 0.29 ε = 0.01

t

x
(t

)

ε = 1.71

t

ε = 0.00

(a) 𝐾 = Linear(1)

x
(t

)

ε = 0.01 ε = 0.10

t
x

(t
)

ε = 0.25

t

ε = 0.07

(b) 𝐾 = Smooth(3.4)

x
(t

)

ε = 0.43 ε = 0.00

t

x
(t

)

ε = 0.17

t

ε = 0.04

(c) 𝐾 = Periodic(60, 3) * Linear(0.1)

x
(t

)

ε = 0.14 ε = 0.83

t

x
(t

)

ε = 0.21

t

ε = 0.00

(d) 𝐾 = ChangePoint(5, 0.001,Constant(2),

Linear(6))

Figure 2.2: Samples of Gaussian process time series for various covariance expressions 𝐾 and noise 𝜖.

31

(I1) Sample a noise level 𝜖 ∼ 𝑃 (𝜖).

(I2) Sample a covariance expression 𝐾 ∼ 𝑃 (𝐾).

(I3) Sample time series data 𝑋(t) ∼ NoisyGP(0, J𝐾K , 𝜖).
𝑋(t)

t
𝐾 𝜖

The graphical model representation of the joint distribution 𝑃 (𝜖,𝐾,𝑋(t)) is shown above, where
latent variables are white nodes, observed variables are shaded nodes, and fixed inputs are solid squares.
Figure 2.3 shows the combinatorial space of expressions 𝐾 and Figure 2.4 shows a broad prior distribu-
tion 𝑃 (𝐾) over the space of expressions. This prior encodes a state of ignorance about the time series
structure while penalizing large, complex expressions that can overfit the data. If 𝜖 and 𝐾 are fixed,
then probability density of a realization {𝑋(t) = 𝑥(t)} follows Eq. (2.4):

𝑃 (𝑥(t) | 𝐾, 𝜖) = exp

(︂
−1

2

[︁
𝑥(t)⊤𝑊−1𝑥(t)− log (det(𝑊))− 𝑛 log (2𝜋)

]︁)︂
, (2.8)

where

𝑊 ::=

⎡
⎢⎣

J𝐾K (𝑡1, 𝑡1) + 𝜖 . . . J𝐾K (𝑡1, 𝑡𝑛)
...

. . .
...

J𝐾K (𝑡𝑛, 𝑡1) . . . J𝐾K (𝑡𝑛, 𝑡𝑛) + 𝜖

⎤
⎥⎦ (2.9)

is the 𝑛×𝑛 covariance matrix encoded by (𝜖,𝐾). As these terms are not known, the Bayes rule is used
to update their prior probabilities to posterior probabilities conditioned on the observation:

𝑃 (𝜖,𝐾 | 𝑥(t)) ::= 𝑃 (𝜖,𝐾, 𝑥(t))

𝑃 (𝑥(t))
=

𝑃 (𝑥(t) | 𝐾, 𝜖)𝑃 (𝐾)𝑃 (𝜖)

𝑃 (𝑥(t))
. (2.10)

The denominator of Eq. (2.10) is known as the marginal likelihood of 𝑥(t), which is obtained by inte-
grating out (𝐾, 𝜖) over the joint distribution,

𝑃 (𝑥(t)) ::=

∫︁
𝑃 (𝜖,𝐾, 𝑥(t)) d𝜖d𝐾. (2.11)

Problem 2.4 (Informal). Given a time series data stream 𝑥(t) = [𝑥(𝑡1), . . . , 𝑥(𝑡𝑛)], generate a set

{(𝜖(𝑗)𝑖 ,𝐾
(𝑗)
𝑖) | 𝑖 = 1, . . . ,𝑀} ∼i.i.d. 𝑃 (𝜖,𝐾 | 𝑥(t1:𝑗)) (2.12)

of 𝑀 ≥ 1 posterior samples of (𝜖,𝐾) given observations at t1:𝑗 ::= [𝑡1, . . . , 𝑡𝑗], for each 𝑗 = 1, . . . , 𝑛. «

Problem 2.4 is informal, as there are several technical details that need to be specified for the setup
to be well defined, which include:

• How can a valid probability distribution 𝑃 (𝐾) over covariance expressions be constructed?
• In what sense does 𝑃 (𝜖,𝐾 | 𝑥(t)) in Eq. (2.10) induce a probability distribution over (𝜖,𝐾)?
• How is the integral over (𝜖,𝐾) in Eq. (2.11) defined?
• Assuming the integral in Eq. (2.11) is well defined, under what conditions is it a finite number?

All these questions will be answered in Chapter 3, which presents a formal description of Bayesian
inference over probabilistic domain-specific data modeling languages, establishes sufficient conditions
for the problem to be well defined, and derives sound approximation algorithms for sampling from the
sequence of posteriors (2.12). For now, it is assumed that the model (I1)–(I3) defines a valid prior
distribution over (𝜖,𝐾,𝑋(t)) and, conditioned on an observation {𝑋(t) = 𝑥(t)}, induces a well-defined
posterior distribution (2.10) over (𝜖,𝐾) from which it is possible to draw (approximate) samples.

32

Constant Linear Smooth Periodic

(a) Depth ≤ 1 (4 Expressions) (b) Depth ≤ 2 (52 Expressions)

(c) Depth ≤ 3 (8116 Expressions)

Maximum Depth Number of Expressions

1 4
2 52
3 8116
4 199944576
5 ≈ 1.2× 1017

6 ≈ 4.3× 1034

7 ≈ 5.4× 1072

8 ≈ 9.4× 10139

9 ≈ 2.5× 10280

Figure 2.3: Number of covariance expressions, excluding numeric parameters, by depth of parse tree.

0 1000 2000 3000 4000 5000 6000 7000 8000

Covariance Expression K

10−7

10−6

10−5

10−4

10−3

10−2

10−1

P
ri

or
P

ro
b

ab
ili

ty

Figure 2.4: Broad prior distribution over covariance expressions. The horizontal axis shows the first
8116 expressions in the DSL from Figures 2.3a–2.3c, ordered by decreasing probability.

33

𝐸 = Linear(0.89)

𝜖 = 0.58

Observed Data

Predictions

𝐸 = Periodic(0.56, 0.18)
+ Constant(0.14)

𝜖 = 0.18

𝐸 = Periodic(0.17, 0.17)
* Linear(0.99)

𝜖 = 0.07

𝐸 = Periodic(0.10, 0.18)
+ (Linear(0.65)
+ Smooth(0.48))

𝜖 = 0.08

(a) Forecasts using a single synthesized DSL expression and noise level.

(b) Forecasts using a stochastic ensemble of 100 synthesized DSL expressions and noise levels.

Figure 2.5: Online time series structure learning and forecasting for airline passenger data from Fig-
ure 2.1. The green regions show 95% prediction intervals.

2.3.2 Online Structure Learning for Airline Data

Learning a Single Structure Figure 2.5a shows posterior samples of the covariance expression 𝐾
and noise level 𝜖 (using 𝑀 = 1 in Problem 2.4) for the airline data in Figure 2.1 given data up to times
t1:𝑗 (𝑗 = 8, 28, 60, 66). The green regions represent the 95% prediction interval around the posterior
mean (2.6) of the predictive distribution (2.5) at a set of probe points t′. The samples of (𝜖,𝐾) are
obtained using the sequential Monte Carlo learning algorithm described in Section 3.3, with a single
particle. In the first panel, which includes only eight data points, the data is explained using a linear
covariance and large noise level. In the second panel, after a full period is observed, a periodic signal is
detected along with a constant offset. In the third panel, the upward trend is modeled using a product
of a periodic and linear function, however the amplitude is incorrectly inferred to decrease over time.
In the fourth panel, which includes an six additional data points, the inferred covariance is a sum of
periodic, linear, and smooth components, which together produce predictions that accurately reflect
the patterns in the data. The plots in Figure 2.5a reflect a shortcoming with inferring only a single
covariance expression and noise level: while the predictions in the first three panels are plausible given
the data observed so far, they do not reflect the inherent inferential uncertainty over (𝜖,𝐾) which leads
to inaccurate forecasts. The interpretable surface syntax of the synthesized model structures makes it
particularly easy to understand the reason for these inaccurate predictions.

34

Observed Data

Future Data

Predictions

(a) Gaussian Process DSL
100 Synthesized Structures

Observed Data

Future Data

Predictions

(b) Facebook Prophet
Additive Seasonality (Default)

Observed Data

Future Data

Predictions

(c) Facebook Prophet
Multiplicative Seasonality (Custom)

Observed Data

Future Data

Predictions

(d) Neural Prophet
Additive Seasonality (Default)

Observed Data

Future Data

Predictions

(e) Neural Prophet
Multiplicative Seasonality (Custom)

Figure 2.6: Comparison of airline passenger forecasts using (a) an ensemble of 100 synthesized programs
in the Gaussian process DSL; (b)–(c) Facebook Prophet; and (d)–(e) Neural Prophet. All methods
return results in less than 2 seconds of computation.

35

Learning Multiple Structures Figure 2.5b shows the same experiment as in Figure 2.5a, except
with an ensemble of 𝑀 = 100 posterior samples of noise levels and covariance expressions. The green
regions now show an overlay of 100 prediction intervals, one for each (𝜖𝑖,𝐾𝑖) in the ensemble. In the
first panel, there is broad uncertainty which includes a mix of periodic, linear, and smooth structures, as
opposed to the single linear structure in the corresponding panel from Figure 2.5a. In the second panel,
the periodic structure is captured as before, except that there are now structures in the ensemble that
also hypothesize an increase in amplitude over time. The ensembles in the third and forth panels contain
similar hypotheses. However, the predictions in the fourth panel are less noisy as the six additional
data points are consistent with the inferred structure so far, thereby reducing the uncertainty in the
later forecasts. By synthesizing an ensemble of 𝑀 = 100 DSL expressions in Figure 2.5b, the system
maintains a collection of plausible explanations for the data that together deliver more robust predictions
as compared to the 𝑀 = 1 case in Figure 2.5a.

Comparison to Time Series Baselines To assess the quality of the forecasts from the proposed
technique, predictions were compared to those obtained from two machine learning baselines: Facebook
Prophet [Taylor and Letham, 2018] and Neural Prophet [Triebe et al., 2021]. Facebook Prophet is
a widely used statistical forecasting package that formulates time series modeling as a curve fitting
problem by using three components that depend only on time: trend, seasonality, and holiday effects.
Neural Prophet extends Facebook Prophet with deep learning methods for modeling autoregressive
effects and exogenous covariates, and is shown in Triebe et al. [2021] to outperform Facebook Prophet
across many datasets. As with the proposed method for time series structure discovery, the two Prophet
baselines are designed to automatically learn models for a wide range of time series patterns.

Figure 2.6 shows a comparison of the forecasts on the airline data given the first 𝑗 = 50 observations.
Figure 2.6a shows forecasts obtained from an ensemble of 100 synthesized expressions in the Gaussian
process DSL. The held-out future data (red dots) lie cleanly within the 95% forecast intervals. In
contrast, both Facebook Prophet in Figure 2.6b and Neural Prophet in Figure 2.6d model the data using
additive seasonality by default, which leads to a constant amplitude for the periodic component and
forecasts that are too low and insufficiently uncertain to cover the true data. Figures 2.6c and 2.6e show
forecasts when manually specifying multiplicative seasonality, which means the amplitude of the periodic
component is no longer constant. However, Facebook Prophet in Figure 2.6c infers a multiplicative factor
that is too small and Neural Prophet in Figure 2.6e infers a multiplicative factor that is too large, which
lead to forecasts that are too small and too large, respectively, and have poorly calibrated uncertainties.
In all four cases (Figures 2.6b–2.6e) the baselines fail to generate accurate forecasts, as they only
specify a single time series structure and parameter setting, whereas the Bayesian ensemble of 100 DSL
expressions in Figure 2.6a reflects posterior uncertainty in the time series structure, parameters, and
forecasts. While these comparisons focus on the automated modeling capabilities of Facebook Prophet
and Neural Prophet, these systems also support an “analyst-in-the-loop” workflow that lets users further
customize the learned structure for more accuracy, at the expense of the modeling expertise and iterative
testing that are needed by the user to make the appropriate modeling changes.

2.3.3 Online Adaption to Extreme Novelty

The model forecasts in Figure 2.5 indicate that the inferred linear trend with seasonal variations in the
airline data will repeat indefinitely. While this hypothesis is plausible based on previously observed
airline data, many real-world econometric time series are influenced by unpredictable external shocks
that cause a sudden change in the underlying structure [Olaberria, 2010]. Consider Figure 2.7, which
shows the same airline passenger volume as in Figure 2.1 over a longer time horizon that now includes
a crash in demand on March 2020 caused by the onset of the global COVID-19 pandemic. In absence
of broader information such as macroeconomic indicators, text analysis of news articles, or public

36

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0.0

10

20

30

40

50

COVID-19
Pandemic

Airline Revenue Passenger Miles (Millions)

Figure 2.7: Monthly airline revenue passenger miles in the United States from Jan 2009 to Oct 2021.

CP No CP

0.98

0.02

(a) 134 observations

CP No CP

0.98

0.02

(b) 135 observations

CP No CP

0.84

0.16

(c) 136 observations

CP No CP

0.08

0.92

(d) 139 observations

Figure 2.8: Online time series structure learning and forecasting for airline passenger data from Fig-
ure 2.7, which includes the crash in demand due to the global COVID-19 pandemic. In each panel, the
bar chart in the top left shows the approximate posterior probability of a changepoint (CP), computed
across the ensemble of 100 synthesized DSL expressions.

37

Observed Data

Future Data

Predictions

(a) Gaussian Process DSL
100 Synthesized Structures

Observed Data

Future Data

Predictions

(b) Facebook Prophet
No ChangePoint (Default)

Observed Data

Future Data

Predictions

(c) Facebook Prophet
With ChangePoint (Custom)

Observed Data

Future Data

Predictions

(d) Neural Prophet
No ChangePoint (Default)

Observed Data

Future Data

Predictions

(e) Neural Prophet
With ChangePoint (Custom)

Figure 2.9: Comparison of airline passenger forecasts with novelty using (a) an ensemble of 100 synthe-
sized programs in the Gaussian process DSL; (b)–(c) Facebook Prophet; and (d)–(e) Neural Prophet.

38

health statistics, in the lead up to March 2020, a crash of this severity is impossible to predict from
historical airline data alone. However, online structure learning can dynamically adapt the expressions
{(𝜖(𝑗)𝑖 ,𝐾

(𝑗)
𝑖)}𝑀𝑖=1 in the ensemble as novel data is encountered at times 𝑗 ≥ March 2020. Using the

Gaussian process DSL in Listing 2.1, the crash can be modeled using a ChangePoint(𝜃, 𝜙, 𝐾1, 𝐾2)
covariance expression, where 𝜃 is the time location of the crash, 𝜙 dictates how rapidly the change
occurs, and 𝐾1 and 𝐾2 are the covariance structures before and after the crash, respectively.

Figure 2.8a shows the model forecasts given data up to February 2020, where the approximate
posterior probability of a changepoint is 2% (i.e., two of the 100 synthesized DSL expressions contain a
ChangePoint subexpression). The locations of the changepoint in these two expressions both lie beyond
the latest observed data point, representing a small probability of future novelty. Figure 2.8b shows the
first novel data point, which causes no change in the changepoint probabilities but a higher noise level
in the forecasts as compared to Figure 2.8a. Figure 2.8c contains a novel data point that lies far in the
tails of the predictive distribution, which causes the changepoint probability to rise to 16% and noisier
forecasts in both the pre-crash and post-crash regimes. Figure 2.8d shows the forecasts after observing
five novel data points, where the changepoint probability is now 92% and the prediction intervals form
a broad band over the range of previously observed values.

Figure 2.9 compares these forecasts to those obtained from the Facebook Prophet and Neural
Prophet baselines, which both support automatic changepoint detection and piecewise time series mod-
els. Figure 2.9a shows the results using the ensemble of 100 synthesized Gaussian process models, where
the held-out data again lies well within the prediction interval. Figures 2.9b and 2.9d show forecasts
from Facebook and Neural Prophet, which both fail to automatically detect the March 2020 change-
point and produce highly inaccurate forecasts. Figures 2.9c and 2.9e show forecasts from the Prophet
baselines when a changepoint has been manually specified. Despite encoding the correct structure, both
baselines incorrectly predict that the airline demand will spiral towards zero. It should also be noted
that the Prophet baselines cannot handle streaming data and must be retrained from scratch each time
a new observation is available, whereas online Bayesian structure learning leverages sequential Monte
Carlo inference (Section 3.3.2) for incorporating new observations as they become available in real-time.

2.4 Evaluation

Bayesian synthesis in the Gaussian process time series DSL was evaluated on a benchmark set of
real-world econometric time series that reflect a range temporal structures. Figure 2.10 shows a plot
and description of each of the eight time series in the benchmark set, which are adapted from the
online repository of Lloyd [2014]. Section 2.4.1 compares forecasting accuracy on the held-out data
in Figure 2.10 to multiple baselines and shows that Bayesian synthesis produces time series models
with more accurate forecasts in six out of the eight datasets. Section 2.4.2 verifies the plausibility of
the posterior inferences about the presence of absence of various temporal structures such linearity,
periodicity, and changepoints. Section 2.4.3 presents runtime versus accuracy measurements using the
Markov chain Monte Carlo synthesis algorithm described in Section 3.3.1 and resample-move Sequential
Monte Carlo algorithm described in Section 3.3.2, where the latter algorithm delivers up to two orders
of magnitude improvements in scalability. All experiments were implemented in the Gen probabilistic
programming system [Cusumano-Towner et al., 2019].

2.4.1 Prediction Accuracy

Table 2.2 shows a comparison of the standardized root mean squared forecasting error of held-out data
for the eight benchmark time series and five baselines methods for time series forecasting. Baselines
that meet three criteria were selected: (i) they have open source and reusable implementations; (ii) they
are widely cited in the literature; and (iii) they do not require significant manual tuning of structure or

39

Table 2.2: Standardized root mean squared forecasting error of held-out data for benchmark time series.
Airline Temperature Call Mauna Radio Gas Solar Wheat

Bayesian Synthesis 1.0 1.0 1.0 1.0 1.0 1.0 1.47 1.50
Gaussian Process (Squared Exponential) 2.01 1.70 4.26 1.54 2.03 1.45 1.63 1.37
Auto-Regressive Integrated Moving Average 1.32 1.85 2.44 1.09 2.08 2.00 1.0 1.41
Facebook Prophet 1.83 2.00 5.61 1.23 3.09 1.69 1.73 1.29
Hierarchical-DP Hidden Markov Model 4.61 1.77 2.26 14.77 1.19 — 3.49 1.89
Linear Regression 1.79 1.30 6.23 2.19 2.73 1.33 1.57 1.0

Airline

monthly global airline
passenger volume

(1948–1961)

Temperature

biweekly global
temperature values

(1980–1990)

Call

monthly USA call
center volume
(1962–1976)

Mauna

monthly atmospheric
CO2 concentration

(1958–2004)

Radio

monthly radio
advertising sales

(1935–1954)

Gas

monthly global gas
production
(1956–1995)

Solar

yearly solar
irradiation data

(1610–2011)

Wheat

yearly wheat
production
(1500–1869)

Figure 2.10: Eight econometric time series. Observed data is shown in black and held-out data in red.

hyperparameters on a per-dataset basis. Baselines include Gaussian process with a squared exponential
covariance function; Facebook Prophet [Taylor and Letham, 2018]; autoregressive integrated moving
average (ARIMA) [Hyndman and Khandakar, 2008]; the hierarchical Dirichlet process hidden semi-
Markov Model (HDP-HSMM) [Johnson and Willsky, 2013]; and simple linear regression. In Table 2.2,
bold entries have a statistically significant smallest error. Bayesian synthesis produces more accurate
predictions for six of the eight benchmarks and is competitive with other techniques on the Solar and
Wheat benchmarks. For these two time series, there is substantial novelty in the held-out data which
no method was able to accurately predict from the held-in data alone. Figure 1.3 from Chapter 1 shows
example forecasts from all the baselines for the airline data, demonstrating that the synthesized DSL
programs most accurately capture the underlying structure in the data.

40

Table 2.3: Approximate posterior probabilities of various temporal structures in benchmark time series.

Airline Temperature Call Mauna Radio Gas Solar Wheat

Linear Structure 95% 16% 93% 98% 6% 85% 35% 65%
Periodic Structure 95% 92% 97% 93% 93% 76% 77% 68%
Changepoint Structure 22% 4% 90% 13% 23% 76% 31% 21%

2.4.2 Extracting Qualitative Structure

Each dataset in Figure 2.10 has different temporal structure: for example, the Temperature data is
characterized by a yearly periodic structure and the Call Center data has linear plus periodic structure
until 1973 followed by a sharp drop at the changepoint. Table 2.3 shows the posterior inferences
about the qualitative structure underlying each dataset, where percentages indicate the fraction of the
𝑀 = 100 synthesized expressions in the ensemble that contain a Linear, Periodic, or ChangePoint
subexpression. In the first six time series, the probabilities reflect relatively high certainty about the
absence or presence of each structure (probabilities in the range [0, 25] and [75, 100]). In contrast, the
uncertainty about the structure is highest (probabilities in the range [25, 75]) in the Solar and Wheat
data, where the structure is less apparent and the forecast errors from Table 2.2 are the highest.

2.4.3 Runtime versus Accuracy

Comparison of MCMC and SMC Figure 2.11 shows profiles of the predictive likelihood on held-
out data versus the synthesis runtime (wall clock seconds) for the eight econometric time series from
Figure 2.10. Two strategies for generating the approximate posterior samples {(𝜖𝑖,𝐾𝑖) | 𝑖 =, . . . ,𝑀} ∼
𝑃 (𝜖,𝐾 | 𝑥(t)) are compared: Markov chain Monte Carlo (Section 3.3.1) and resample-move sequential
Monte Carlo (Section 3.3.1). Since both these strategies are asymptotically exact—i.e., they return
arbitrary accurate approximations to the true posterior distribution in the limit of computation—the
long-term accuracy should converge to the same number. However, for finite computational budget,
SMC delivers 1x–1000x improvement in runtime needed to achieve a given accuracy level. SMC provides
the most improvement over MCMC when the underlying structure is apparent from the initial obser-
vations in the time series, which makes it possible for SMC to rapidly discover models before observing
the entire dataset. In contrast, MCMC recomputes the entire data likelihood at each iteration, which
is wasteful in cases where a short prefix of the data is sufficient to infer the structure. Second, the
adaptive resampling step in SMC makes it more robust to the local minima that MCMC chains become
trapped in for an extended period of time, which are the “flat” portions of the MCMC trajectories in
Figure 2.11. Section 3.5.1 provides a complexity analysis for the runtime scaling of these algorithms
and discusses sparse Gaussian process approximations for reducing the 𝑂(𝑛3) cost needed to obtain the
inverse and determinant of the 𝑛× 𝑛 covariance matrix in Eq. (2.8).

Speedups via Incremental Computation The measurements in Figure 2.11 can be further opti-
mized by memoizing covariance terms in Listing 2.2 when recomputing the data likelihood (2.8). For
example, suppose the current expression 𝐾 ::= (𝐾1 * 𝐾2) is a sum of two covariances, and an MCMC
or SMC rejuvenation step proposes a new expression 𝐾 ′ ::= (𝐾1 * 𝐾 ′

2). As 𝐾1 is unchanged and 𝐾2

has changed to 𝐾 ′
2, there is a duplicate expression that can be cached:

J𝐾K (𝑡, 𝑡′) = J𝐾1K (𝑡, 𝑡′) + J𝐾2K (𝑡, 𝑡′),
q
𝐾 ′y (𝑡, 𝑡′) =

q
𝐾 ′

1

y
(𝑡, 𝑡′)⏟ ⏞

cached

+
q
𝐾 ′

2

y
(𝑡, 𝑡′). (2.13)

That is, the matrix J𝐾1K (𝑡𝑖, 𝑡𝑗) (for each 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛) need not be recomputed when computing the
new covariance matrix J𝐾1K. The Gen probabilistic programming language used to implement the exper-

41

Markov Chain Monte Carlo Resample-Move Sequential Monte Carlo

10−1 100 101 102

Runtime (seconds)

−40

−30

−20

−10

0

P
re

di
ct

io
n

A
cc

ur
ac

y

Airline

10−1 100 101 102 103

Runtime (seconds)

−140

−120

−100

−80

−60

Temperature

10−1 100 101 102

Runtime (seconds)

−40

−30

−20

−10

0

10

Call

10−1 100 101 102 103

Runtime (seconds)

−150

−100

−50

0

Mauna

10−1 100 101 102

Runtime (seconds)

−40

−30

−20

−10

0

P
re

di
ct

io
n

A
cc

ur
ac

y

Radio

100 101 102 103

Runtime (seconds)

−125

−100

−75

−50

−25

0

Gas

10−1 100 101 102 103

Runtime (seconds)

−140

−120

−100

−80

−60

−40

Solar

101 102 103

Runtime (seconds)

−100

−80

−60

−40

−20

Wheat

Figure 2.11: Runtime (x-axis, logarithmic scale) versus prediction accuracy (y-axis) measured as the
predictive likelihood of held-out data for the econometric time series in Figure 2.10. The black lines
show measurements from five independent runs of Markov Chain Monte Carlo (Algorithm 3.1) with
1500 iterations, and the red lines show measurements from independent runs of resample-move sequen-
tial Monte Carlo (Algorithm 3.2) whose runtime is a function of the number of particles, number of
rejuvenation steps, and batch size.

iments in this section provides affordances for automatically caching recursive computations [Cusumano-
Towner, 2020, Section 5.3]. Table 2.4 shows the lines of code and runtime of one MCMC step for the
airline data in Figure 2.10 as originally reported in Cusumano-Towner et al. [2019], using four dif-
ferent implementations implementations: Gen with caching in the static modeling language; a native
implementation in the Julia programming language [Bezanson et al., 2017]; Gen without caching in the
dynamic modeling language; and the Venture probabilistic programming language [Schaechtle et al.,
2017, Mansinghka et al., 2018]. Automatic caching in Gen delivers around 1.8x speedup over native
Julia (which does not implement automatic caching), 2.5x speedup over Gen without caching, and 108x
speedup over Venture. This improvement, however, comes at a ∼70% increase in the lines of code as
compared to the Gen implementation without caching, which reflects the common trade-off between
performance optimization and implementation complexity.

Table 2.4: Performance comparison of one MCMC step over covariance expression 𝐾.

Lines of Code Caching Runtime (ms per step)

Gen Static Modeling Language 174 Yes 2.57 (±0.09)
Julia Native Implementation 193 No 4.73 (±0.45)
Gen Dynamic Modeling Language 102 No 6.21 (±0.94)
Venture 70 No 279 (±31)

42

Chapter 3

Synthesizing Probabilistic Programs in
Domain-Specific Modeling Languages

In the earliest days, symbolic manipulation
and abstract languages for knowledge
representation and reasoning were
considered the heart of intelligence. And I
think in many ways they are still the best
idea that anybody has ever had about how
intelligence works in computational terms.

Joshua B. Tenenbaum

Chapter 2 showed an informal tutorial of using Bayesian inference to synthesize probabilistic pro-
grams in specialized data modeling languages for time series, which help automate the process of learning
interpretable and accurate models from data. This chapter formally describes the general “Bayesian
synthesis” framework illustrated in Figure 1.2 from Chapter 1. Section 3.1 introduces probabilistic
domain-specific languages for representing families of generative models. Each expression in the DSL
is assigned two denotational semantics: one for the prior probability distribution of the expression and
another for probability distribution over datasets that it induces. Section 3.2 formalizes the problem
of Bayesian synthesis and identifies sufficient conditions needed for this problem to well defined. Sec-
tion 3.3 describes a class of Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC)
algorithm templates that deliver sound approximate solutions to the Bayesian synthesis problem. Sec-
tion 3.4 introduces a family of probabilistic DSLs that are generated by context-free grammars, outlines
a generic algorithm that implements both the MCMC and SMC algorithm templates for this DSL
family, and proves that it satisfies the preconditions for sound inference, i.e., the solutions converge
asymptotically to the posterior distribution over DSL expressions given the data. Section 3.5 revisits
the univariate time series DSL from Chapter 2, verifying that it meets the conditions needed for sound
synthesis. Section 3.6 discusses related work.

3.1 Probabilistic Domain-Specific Modeling Languages

Definition 3.1. A domain-specific data modeling language is comprised of:

• A countable set 𝑆 called the structure space.
• An indexed family {Θ𝑠, 𝑠 ∈ 𝐴} of sets, called the parameter spaces.
• A set 𝑇 called the input space.
• An indexed family {𝑋𝑡, 𝑡 ∈ 𝑇} of sets, called the data spaces. «

43

Definition 3.2. The set of expressions of a domain-specific data modeling language 𝐷 is

ℒ(𝐷) ::= {(𝑠, 𝜃) | 𝑠 ∈ 𝑆, 𝜃 ∈ Θ𝑠}. (3.1)

For any expression 𝐸 ::= (𝑠, 𝜃) ∈ ℒ(𝐷), the symbol 𝑠 denotes the structure of 𝐸 and 𝜃 denotes the
parameter of 𝐸. When 𝐷 is clear from context, ℒ(𝐷) is written as ℒ. «

Definition 3.3. The set of observations of a domain-specific data modeling language 𝐷 is

𝒳 (𝐷) ::= {(𝑡, 𝑥) | 𝑡 ∈ 𝑇, 𝑥 ∈ 𝑋𝑡}. (3.2)

For any observation 𝑂 ::= (𝑡, 𝑥) ∈ 𝒳 (𝐷), the symbol 𝑡 denotes the input of 𝑂 and 𝑥 denotes the output
of 𝑂. When 𝐷 is clear from context, 𝒳 (𝐷) is written as 𝒳 . «

Definition 3.4. A probabilistic domain-specific data modeling language, or simply a probabilistic DSL,
is a domain-specific data modeling language equipped with:

• For each 𝑠 ∈ 𝑆, a sigma-algebra ℱ𝑠 over Θ𝑠 and a sigma-finite base measure 𝜆𝑠 over (Θ𝑠,ℱ𝑠).
• For each 𝑡 ∈ 𝑇 , a sigma-algebra ℱ𝑡 over 𝑋𝑡 and a sigma-finite base measure 𝜆𝑡 over (𝑋𝑡,ℱ𝑡).
• A semantic function Prior : ℒ → R≥0.
• A semantic function Likelihood : ℒ → 𝒳 → R≥0. «

Definition 3.5. Following Fremlin [2009, 214L], for a probabilistic DSL 𝐷, the “disjoint-sum” sigma-
algebra Σℒ over ℒ has events of the form {(𝑠, 𝜃) | 𝑠 ∈ 𝐴, 𝜃 ∈ 𝐴𝑠} for some 𝐴 ⊂ 𝑆 and 𝐴𝑠 ∈ ℱ𝑠 for each
𝑠 ∈ 𝐴. A generic event in Σℒ is written (𝐴, {𝐴𝑠, 𝑠 ∈ 𝐴}) for short. «

To be well defined, the semantic functions in Definition 3.4 must satisfy four technical conditions.

Condition 3.6 (Normalized Prior). The Prior semantic function induces a probability distribution
over (ℒ,Σℒ), in the sense that

∑︁

𝑠∈𝑆

[︂∫︁

𝜃∈Θ𝑠

Prior J(𝑠, 𝜃)K𝜆𝑠(d𝜃)

]︂
= 1. (3.3)

«

Condition 3.7 (Normalized Likelihood). For each 𝑡 ∈ 𝑇 and 𝐸 ∈ ℒ, the function defined by the rule
𝑥 ↦→ Likelihood J𝐸K (𝑡, 𝑥) induces a probability distribution over (𝑋𝑡,ℱ𝑡), in the sense that

∫︁

𝑥∈𝑋𝑡

Likelihood J𝐸K (𝑡, 𝑥) 𝜆𝑡(d𝑥) = 1. (3.4)
«

Condition 3.8 (Positive Likelihood). For each 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑋, there exists a Prior positive measure
set 𝐴 ⊂ ℒ such that for all 𝐸 ∈ 𝐴, Likelihood J𝐸K (𝑡, 𝑥) > 0. «

Condition 3.9 (Bounded Likelihood). For each 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑋, the function defined by the rule
𝐸 ↦→ Likelihood J𝐸K (𝑡, 𝑥) is measurable and essentially bounded, i.e., there exists a finite positive
constant 𝑐max

𝑡𝑥 such that the set of expressions {𝐸 ∈ ℒ | Likelihood J𝐸K (𝑡, 𝑥) > 𝑐max
𝑡𝑥 } is a subset of a

Prior measure zero set. «

Remark 3.10. If Condition 3.6 holds, then the Prior probability of event (𝐴, {𝐴𝑠, 𝑠 ∈ 𝐴}) ∈ Σℒ is

∑︁

𝑠∈𝐴

[︂∫︁

𝜃∈𝐴𝑠

Prior J(𝑠, 𝜃)K𝜆𝑠(d𝜃)

]︂
. (3.5)

«

44

The following proposition is a straightforward consequence of the fact that the expectation of a
positive essentially bounded random variable lies between zero and its maximum value.

Proposition 3.11. If Conditions 3.6–3.9 hold, then for each 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑋, the marginal likelihood
𝑐𝑡𝑥 is positive and finite, that is

0 < 𝑐𝑡𝑥 ::= .
∑︁

𝑠∈𝑆

[︂∫︁

𝜃∈Θ𝑠

Likelihood J(𝑠, 𝜃)K (𝑡, 𝑥) · Prior J(𝑠, 𝜃)K 𝜆𝑠(d𝜃)

]︂
< 𝑐max

𝑡𝑥 <∞. (3.6)

«

When the semantic functions satisfy the above conditions, they induce a new semantic function
Post : ℒ → 𝒳 → R≥0, called the posterior:

Post J𝐸K (𝑡, 𝑥) ::= Likelihood J𝐸K (𝑡, 𝑥) · Prior J𝐸K /𝑐𝑡𝑥. (3.7)

Integrating Eq. (3.7) over 𝐸 = (𝑠, 𝜃) ∈ ℒ establishes the following proposition.

Proposition 3.12. If Conditions 3.6–3.9 hold, then for any observation (𝑡, 𝑥) ∈ 𝒳 , the function defined
by the rule 𝐸 ↦→ Post J𝐸K (𝑡, 𝑥) induces a probability distribution over (ℒ,Σℒ), such that the probability
of any event (𝐴, {𝐴𝑠, 𝑠 ∈ 𝐴}) ∈ Σℒ is given by

∑︁

𝑠∈𝐴

[︂∫︁

𝜃∈𝐴𝑠

Post J(𝑠, 𝜃)K (𝑡, 𝑥)𝜆𝑠(d𝜃)

]︂
. (3.8)

«

3.2 Bayesian Synthesis in Probabilistic DSLs

The Bayesian synthesis problem can now be stated.

Problem 3.13 (Bayesian Synthesis). Let 𝐷 be a probabilistic domain-specific modeling language as in
Definition 3.4, whose Prior and Likelihood semantics satisfy Conditions 3.6–3.9. Given an observation
𝑂 ∈ 𝒳 (𝐷), generate samples of expressions 𝐸 ∈ ℒ from the posterior distribution over (ℒ,Σℒ) defined
by Post J·K (𝑂) in Eq. (3.7). «

Figure 3.1 shows the workflow of Bayesian synthesis, which is next described in more detail.

3.2.1 Bayesian Synthesis via Sound Approximate Inference

In Figure 3.1, the input to Bayesian synthesis is a probabilistic DSL 𝐷 and observation 𝑂 ∈ 𝒳 . The goal
is to synthesize an ensemble {𝐸1, . . . , 𝐸𝑀} of 𝑀 > 0 DSL programs from the posterior Eq. (3.8), which
collectively represent a set of likely structures and parameters that observation 𝑂. Because generating
exact posterior samples is intractable in most settings, approximate sampling is used instead. The
approximate sampling techniques described in Section 3.3 are sound in the sense that they produce
DSL programs from a distribution that becomes arbitrarily close to the target distribution (3.8) given
enough computational effort.

3.2.2 Querying Synthesized Probabilistic Programs

To discover structure in the observed data and make future predictions, the synthesized DSL programs
are analyzed by solving queries. A query 𝜑 : ℒ → 𝒬 is a mapping from DSL programs to a space 𝒬
that defines the set of allowable results. Recalling that each expression 𝐸 = (𝑠, 𝜃) ∈ ℒ represents the
structure 𝑠 and parameters 𝜃 for a family of statistical models, there are two classes of queries:

45

Bayesian
Synthesis

Observed
Data 𝑂

Probabilistic DSL 𝐷
Prior Semantics Prior J𝐸K
Likelihood Semantics Likelihood J𝐸K (𝑂)
Transition Operator 𝒯 (𝑂,𝐸 → 𝐸′)

DSL
Programs

Program
Translation

Syntactic
Analysis

Property
Query 𝜑

Result

Probabilistic
Programs

e.g., SPPL (Chapter 7)

PPL
Inference

Prediction
Query 𝜑′ Result

Domain-Specific Data Modeling Language Probabilistic Programming System

Figure 3.1: Components of Bayesian synthesis of probabilistic programs for automatic data modeling.

(i) Property Queries. This class of queries can be solved using simple syntactic analyses on
the synthesized DSL expression to extract interpretable patterns. A predicate query has the
signature 𝜑 : ℒ → {0, 1}, where 𝜑 J𝐸K = 1 if 𝐸 satisfies the predicate and 0 otherwise. Using
the ensemble of 𝑀 synthesized DSL expressions, an approximation to the posterior probability
that 𝜑 J𝐸K = 1 is given by

Pr{𝜑 J𝐸K = 1 | 𝑂} ≈ 1

𝑀

𝑀∑︁

𝑖=1

𝜑 J𝐸𝑖K . (3.9)

The probabilities in Table 2.3 are solutions to property queries about the probability that a
given temporal pattern is present.

(ii) Prediction Queries. This class of queries includes simulating new data or computing both
marginal and conditional probabilities of events involving observations (𝑡, 𝑥) ∈ 𝒳 . Rather than
develop custom solvers for each DSL, prediction queries solved by first applying a syntactic
operation Translate : ℒ → ℒ′ that converts domain-specific programs 𝐸 ∈ ℒ into probabilistic
programs 𝐸′ ∈ ℒ′ in a probabilistic programming language. The Sum-Product Probabilistic
Language (SPPL) described in Chapter 7 can serve as the unified target language ℒ′ for all
probabilistic DSLs in Part I. Chapter 7 formalizes the SPPL modeling syntax and the class of
queries that it can solve. Translating DSL expressions into SPPL programs enables substantial
reuse of general-purpose inference machinery to automatically obtain exact results to queries,
irrespective of the original DSL from which the SPPL program was translated. Using the
ensemble of 𝑀 synthesized DSL expressions, an approximation to the posterior probability
that 𝜑 J𝐸K ∈ 𝑄 for some subset 𝑄 ⊂ 𝒬 is given by

Pr{𝜑 J𝐸K ∈ 𝑄 | 𝑂} ≈ 1

𝑀

𝑀∑︁

𝑖=1

1
[︀
𝜑′ JTranslate J𝐸𝑖KK ∈ 𝑄

]︀
, (3.10)

where 𝜑′ is the query in SPPL syntax. The 95% prediction intervals in the top row of Figure 2.5
are solutions to a prediction query.

46

Algorithm 3.1 Markov chain Monte Carlo algorithm for Bayesian synthesis.
Require: observation 𝑂 ::= (𝑡, 𝑥) ∈ 𝒳 , number of iterations 𝑛 ≥ 1

Ensure: sample from ApproxPost
(𝑛)
𝐸0

J·K (𝑂) defined in Eqs. (3.15)–(3.16), for some 𝐸0 ∈ ℒ with
Likelihood J𝐸0K (𝑂) > 0

1: procedure Bayesian-Synthesis-MCMC(𝑂,𝑛)
2: do
3: 𝐸0 ∼ Generate-Expression-From-Prior() ◁ generate 𝐸0 with probability Prior J𝐸K
4: while Evaluate-Likelihood(𝑂,𝐸0) = 0
5: for 𝑖 = 1 . . . 𝑛 do ◁ run 𝑛 sampling iterations
6: 𝐸𝑖 ∼ Generate-New-Expression(𝑂,𝐸𝑖−1)

7: return 𝐸1, . . . , 𝐸𝑛

3.3 Algorithms for Bayesian Synthesis

Solving Problem 3.13 exactly is computationally intractable most settings. Sections 3.3.1 and 3.3.2
describe algorithm templates for randomly sampling expressions 𝐸 ∈ ℒ with probability that approx-
imates Post J𝐸K (𝑂) using Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC),
respectively. These algorithms are sound in the sense that they are guaranteed converge to the poste-
rior distribution in the limit of computation, thereby producing arbitrarily accurate approximations to
queries using estimators of the form (3.9) and (3.10). Both algorithm templates require three procedures
(P1)–(P3), shown below, for synthesis in a given probabilistic DSL. The procedure (P3), which transi-
tions the current DSL expression, is often the main design challenge in engineering synthesis algorithms.
Section 3.4 describes a generic and sound implementation of (P3) that applies to any probabilistic DSL
generated by a context-free grammar.

(P1) Generate-Expression-From-Prior() sample 𝐸 ∈ ℒ with probability Prior J𝐸K

(P2) Evaluate-Likelihood(𝑂,𝐸) evaluate Likelihood J𝐸K (𝑂), for 𝐸 ∈ ℒ, 𝑂 ∈ 𝒳

(P3) Generate-New-Expression(𝑂,𝐸) sample 𝐸′ from 𝐸 with probability 𝒯 (𝑂,𝐸 → 𝐸′)

Remark 3.14. Let 𝐷 be a probabilistic DSL. To avoid excessive measure-theoretic proofs, this section
assumes that for each structure 𝑠 ∈ 𝑆, the parameter space Θ𝑠 = {𝜃𝑠1, 𝜃𝑠2, . . .} is countable, the sigma-
algebra ℱ𝑠 = 2Θ𝑠 , and 𝜆𝑠 is the counting measure. As ℒ(𝐷) is now a countable union of countable sets,
it is also countable. Eq. (3.5) is therefore written as a sum over 𝐸 ∈ ℰ for some ℰ ⊂ ℒ. «

3.3.1 Bayesian Synthesis via Markov Chain Monte Carlo

Algorithm 3.1 shows the template of an MCMC sampling algorithm for generating approximate solutions
to Problem 3.13. In lines 2–4, the algorithm repeatedly calls Generate-Expression-From-Prior
until it obtains an initial expression 𝐸0 ∈ ℒ such that Likelihood J𝐸K (𝑂) > 0. In lines 5–6, the algorithm
iteratively invokes Generate-New-Expression to produce 𝐸𝑖 from 𝐸𝑖−1 using a transition operator
𝒯 . The transition operator takes as input expression 𝐸 and observation 𝑂 and stochastically samples an
expression 𝐸′ with probability denoted 𝒯 (𝑂,𝐸 → 𝐸′), where

∑︀
𝐸′∈ℒ 𝒯 (𝑂,𝐸 → 𝐸′) = 1 for all 𝐸 ∈ ℒ.

The next three conditions on the transition operator 𝒯 are sufficient to prove that Algorithm 3.1 returns
expressions (𝐸1, . . . , 𝐸𝑛) from an arbitrarily close approximation to Post J𝐸K (𝑂).

47

Condition 3.15 (Posterior invariance). If an expression 𝐸 ∈ ℒ is sampled from the posterior distribu-
tion and a new expression 𝐸′ ∈ ℒ is sampled with probability 𝒯 (𝑂,𝐸 → 𝐸′), then 𝐸′ is also a sample
from the posterior distribution:

∑︁

𝐸∈ℒ
Post J𝐸K (𝑂) · 𝒯 (𝑂,𝐸 → 𝐸′) = Post

q
𝐸′y (𝑂). (3.11)

«

Condition 3.16 (Posterior irreducibility). Every expression 𝐸′ ∈ ℒ with nonzero likelihood is reachable
from every 𝐸 ∈ ℒ in a finite number of steps. More specifically, for all pairs of expressions (𝐸,𝐸′) for
which Likelihood J𝐸′K (𝑂) > 0 there exists an integer 𝑛 ≥ 1 and a sequence of expressions 𝐸1, 𝐸2, . . . , 𝐸𝑛

where 𝐸1 = 𝐸 and 𝐸𝑛 = 𝐸′ such that 𝒯 (𝑂,𝐸𝑖−1 → 𝐸𝑖) > 0 for all 𝑖 ∈ {2, . . . , 𝑛}. «

Condition 3.17 (Aperiodicity). There exists some expression 𝐸 ∈ ℒ such that the transition operator
has a nonzero probability of returning to the same expression, i.e., 𝒯 (𝑂,𝐸 → 𝐸) > 0. «

It is next established that Algorithm 3.1 returns asymptotically sound samples whenever these
three conditions hold. First, it is necessary to prove that an initial expression 𝐸0 ∈ ℒ for which
Likelihood J𝐸0K (𝑂) > 0 can be obtained using a finite number of invocations of Generate-Expression-
From-Prior.

Proposition 3.18. The do-while loop of Algorithm 3.1 will terminate with probability 1, and the expected
number of iterations is at most 𝑐max

𝑡𝑥 /𝑐𝑡𝑥. «

Proof. The number of iterations of the loop is geometrically distributed with mean

𝑝 =
∑︁

𝐸∈ℒ
Prior J𝐸K · I[Likelihood J𝐸K (𝑂) > 0] (3.12)

=
1

𝑐max
𝑡𝑥

∑︁

𝐸∈ℒ
Prior J𝐸K · 𝑐max

𝑡𝑥 · I[Likelihood J𝐸K (𝑂) > 0] (3.13)

≥ 1

𝑐max
𝑡𝑥

∑︁

𝐸∈ℒ
Prior J𝐸K · Likelihood J𝐸K (𝑂) =

𝑐𝑡𝑥
𝑐max
𝑡𝑥

. (3.14)

Therefore, the expected number of iterations of the do-while loop is at most 1/𝑝 = 𝑐max
𝑡𝑥 /𝑐𝑡𝑥 <∞. �

The notation 𝒯 𝑛(𝑂,𝐸0 → (𝐸1, . . . , 𝐸𝑛)) denotes the probability that Algorithm 3.1 returns ex-
pressions (𝐸1, . . . , 𝐸𝑛) given 𝑛 ≥ 1 inputs, observation 𝑂 ∈ 𝒳 , and initial expression 𝐸0. For each
𝐸 ∈ ℒ, the marginal probability that the return value of Algorithm 3.1 satisfies 𝐸𝑛 = 𝐸 is denoted
ApproxPost

(𝑛)
𝐸0

J𝐸K (𝑂) and can be defined inductively

ApproxPost
(1)
𝐸0

J𝐸K (𝑂) ::= 𝒯 (𝑂,𝐸0 → 𝐸) (3.15)

ApproxPost
(𝑛)
𝐸0

J𝐸K (𝑂) ::=
∑︁

𝐸′∈ℒ
𝒯 (𝑂,𝐸′ → 𝐸) ·ApproxPost(𝑛−1)

𝐸0

q
𝐸′y (𝑂) (𝑛 > 1). (3.16)

The next two convergence theorems are due to Tierney [1994].

Theorem 3.19 (Convergence of MCMC [Tierney, 1994, Theorem 1]). If Conditions 3.15–3.17 all
hold for language ℒ, transition operator 𝒯 , and observation 𝑂 ∈ 𝒳 , then for all 𝐸0 ∈ ℒ such that
Likelihood J𝐸0K (𝑂) > 0,

sup
ℰ⊂ℒ

⃒⃒
⃒⃒
⃒
∑︁

𝐸∈ℰ

[︁
ApproxPost

(𝑛)
𝐸0

J𝐸K (𝑂)− Post J𝐸K (𝑂)
]︁⃒⃒⃒⃒
⃒ −−−→𝑛→∞

0. (3.17)

«

48

Eq. (3.17) is a very strong form of convergence known as convergence in total variation. It states that
the maximum difference that the probability measures ApproxPost

(𝑛)
𝐸0

J·K (𝑂) and Post J·K (𝑂) assign to
any set ℰ ⊂ ℒ of expressions in the language can be made arbitrarily close to 0, for sufficiently large 𝑛.

Theorem 3.20 (Strong Law of Large Numbers for MCMC [Tierney, 1994, Theorem 3]). If Condi-
tions 3.15–3.17 hold for language ℒ, transition operator 𝒯 , and data 𝑂 ∈ 𝒳 , then for all 𝐸0 ∈ ℒ with
Likelihood J𝐸0K (𝑂) > 0 and any real function 𝜑 : ℒ → R that satisfies

∑︀
𝐸∈ℒ|𝜑(𝐸)| ·Post J𝐸K (𝑂) <∞,

1

𝑛

𝑛∑︁

𝑖=1

𝜑(𝐸𝑖) −−−→
𝑛→∞

∑︁

𝐸∈ℒ
𝜑(𝐸) · Post J𝐸K (𝑂) =: EPost [𝜑(𝐸)] almost surely, (3.18)

where (𝐸1, . . . , 𝐸𝑛) ∼ 𝒯 𝑛(𝐸0 → ·). «

Eq. (3.18) states that the time average of 𝜑(𝐸𝑖) evaluated along a random sample path of the Markov
chain converges with probability one to the expected value EPost [𝜑(𝐸)] under the posterior.

Remark 3.21. It is common to run Algorithm 3.1 several times to obtain 𝑀 ≥ 1 independent MCMC
chains {(𝐸𝑗

1, . . . , 𝐸
𝑗
𝑛)}𝑀𝑗=1. To estimate E [𝜑(𝐸)], the average-of-averages is computed

1

𝑚

𝑚∑︁

𝑗=1

[︃
1

𝑛

𝑛∑︁

𝑖=𝐵

𝜑(𝐸𝑗
𝑖)

]︃
, (3.19)

where 𝐵 ∈ {1, . . . , 𝑛} denotes a “burn-in” period. The heuristics of multiple chains and burn-in may
improve the variance of the estimator and they do not impact the correctness of Theorem 3.20. «

3.3.2 Bayesian Synthesis via Resample-Move Sequential Monte Carlo

In many data modeling problems, the data has a natural interpretation as a stream of observations

(𝑡1, 𝑥1), (𝑡2, 𝑥2), (𝑡3, 𝑥3), . . . (3.20)

where, using the notation from Definition 3.1, each 𝑡𝑖 ∈ 𝑇 and 𝑥𝑖 ∈ 𝑋𝑡𝑖 for 𝑖 ≥ 1. For example, in the
Gaussian process DSL from Chapter 2, 𝑡𝑖 is the list of all time points up to and including step 𝑖 and
𝑥𝑖 is the list of corresponding time series values. When the data has this kind of sequential structure,
the same three primitives (P1)–(P3) can be used to design SMC synthesis algorithms that are more
scalable than the MCMC approach in Algorithm 3.1.

Overview of SMC There are many algorithms that fall under the broad umbrella of “sequential
Monte Carlo”. The specific variant considered here is called “resample-move” SMC [Gilks and Berzuini,
2001]. Let 𝑂𝑗 ::= (𝑡𝑗 , 𝑥𝑗) be the 𝑗th element in the sequence (3.20). The sequence of target distributions

{Post J·K (𝑂𝑗)}𝐽𝑗=0 (3.21)

are all defined over the same space ℒ of DSL expressions1. For 𝑗 = 0, the target distribution Post J·K (𝑂0)
is simply Prior J·K. At each step 𝑗 = 1, . . . , 𝐽 , the SMC algorithm maintains a set {(𝐸ℓ

𝑗 , 𝑤
ℓ
𝑗)}𝑀ℓ=1 of

𝑀 ≥ 1 weighted expressions, where (informally) the weight 𝑤ℓ
𝑗 represents how well the expression 𝐸ℓ

𝑗

1The setting where all the target distributions are defined on the same space is sometimes referred to as “static
sequential Monte Carlo”, to distinguish from the more common setting of state-space models where the dimensionality of
the latent space increases at each step.

49

(S0) At step 𝑗 = 0, initialize for each ℓ = 1, . . . ,𝑀

𝐸ℓ
0 ∼ Generate-Expression-From-Prior(), (3.23)

For iterations 𝑗 = 1, . . . , 𝐽 , run steps (S1)–(S3):

(S1) Reweight: For ℓ = 1, . . . ,𝑀 , incorporate observation 𝑂𝑗 by recomputing the weights:

𝑤ℓ
𝑗 ←

Evaluate-Likelihood(𝑂𝑗 , 𝐸
ℓ
𝑗−1)

Evaluate-Likelihood(𝑂𝑗−1, 𝐸ℓ
𝑗−1)

, (3.24)

(S2) Resample: For ℓ = 1, . . . ,𝑀 ; if 𝑗 < 𝐽 then resample the parents and reset the weights:

𝑢 ∼ Categorical(𝑤1
𝑗 , . . . , 𝑤

𝑀
𝑗), 𝐸ℓ

𝑗 ← 𝐸𝑢
𝑗−1 (3.25)

(S3) Rejuvenate: For ℓ = 1, . . . ,𝑀 , rejuvenate 𝐸ℓ
𝑗 times by running 𝑛 ≥ 0 iterations of MCMC:

𝐸ℓ
𝑗 ∼ Generate-New-Expression(𝑂𝑗 , 𝐸

ℓ
𝑗). (3.26)

Listing 3.1: Resample-move sequential Monte Carlo for Bayesian synthesis.

explains 𝑂𝑗 , relative to other particles. This set of weighted expressions forms a discrete “particle-based”
approximation of the target distribution at step 𝑗,

𝑀∑︁

ℓ=1

𝑤ℓ
𝑗∑︀𝑀

𝑘=1𝑤
𝑘
𝑗

𝛿𝐸ℓ
𝑗
(·) ≈ Post J·K (𝑂𝑗), (3.22)

where 𝛿𝐸 is an atomic probability measure at the expression 𝐸 ∈ ℒ. Listing 3.1 explains how to
sequentially construct such a particle approximation. In (S0), a set of 𝑀 particles are initialized i.i.d.
from the prior, as in line 3 of Algorithm 3.1. For 𝑗 = 1, . . . , 𝐽 , the observations are incorporated,
which involves: (S1) reweighting each particle by the ratio of likelihood of the full new data 𝑋1:𝑗 to
the likelihood of the previous data 𝑋1:𝑗−1; (S2) resampling the particles based on their weights; (S3)
rejuvenating the particles by running 𝑛 ≥ 0 iterations of 𝒯 , as in line 6 of Algorithm 3.1.

Remark 3.22. In the reweighting step (S1) of Listing 3.1, the ratio (3.24) is well defined across all
executions of the SMC algorithm whenever, in addition to Conditions 3.7 and 3.9, the extra condition
Likelihood J𝐸K (𝑂) > 0 for all 𝐸 and 𝑂 holds. Otherwise the particle weights may collapse to zero and
the algorithm as presented would fail. Del Moral et al. [2015] discuss alternative techniques for handling
this type of particle collapse. «

Remark 3.23. In Listing 3.1, elements of the observation sequence (𝑂1, . . . , 𝑂𝑗) need not be incorpo-
rated one by one. Any batch of 𝐵 ∈ {1, . . . , 𝐽} observations can be used. «

Remark 3.24. In the resampling step (S2) of Listing 3.1, a common heuristic is to use an adaptive
resampling strategy rather than resampling at each iteration. Resampling is triggered at step 𝑗 ∈
{1, . . . , 𝐽} if the effective sample size (a measure of the particle diversity) satisfies

ESS(𝑤1:ℓ
𝑗) ::=

1
∑︀𝑀

ℓ=1

[︁
(𝑤ℓ

𝑗/(
∑︀𝑀

𝑘=1𝑤
𝑘
𝑗))

2
]︁ < ESSmin ∈ {1, . . . ,𝑀}. (3.27)

50

𝐸1
1

. . . 𝐸1
𝑛

𝒯 𝒯 𝒯

𝐸2
1

. . .
𝒯 𝒯 𝒯

...
...

. . .
...

𝐸𝑀
1

. . . 𝐸𝑀
𝑛

𝒯 𝒯 𝒯

Figure 3.2: Markov chain Monte Carlo with 𝑀 parallel chains executed for 𝑛 iterations.

𝐸𝑀
𝑗−1

...

𝐸2
𝑗−1

𝐸1
𝑗−1

𝑤𝑀
𝑗

...

𝑤2
𝑗

𝑤1
𝑗

...
...

𝒯
𝒯

𝒯

𝒯

𝒯

. . .𝒯 𝒯

. . .𝒯 𝒯

. . .𝒯 𝒯

.

. . .𝒯 𝒯

. . .𝒯 𝒯

Reweight

step 𝑗

Resample

step 𝑗

Rejuvenate

step 𝑗

Particles
step 𝑗 − 1

Particles
step 𝑗

𝐸1
𝑗

𝐸2
𝑗

𝐸3
𝑗

𝐸𝑀−1
𝑗

𝐸𝑀
𝑗

𝑛 iterations 𝑗 = 1, . . . , 𝐽

Figure 3.3: Resample-move sequential Monte Carlo with 𝑀 particles and 𝑛 rejuvenation iterations.

As with the MCMC heuristic from Remark 3.21, adaptive resampling does not impact correctness and
may reduce variance at later steps. Resampling does not reduce variance at the present step, which is
why resampling at the final step 𝑗 = 𝐽 is avoided in (S2). Algorithm 3.2 shows an implementation of
the resample-move SMC template in Listing 3.1 with adaptive resampling. «

Figures 3.2 and 3.3 show diagrams for MCMC and resample-move SMC, respectively. In situations
where the observed data can be treated sequentially, SMC improves MCMC upon in the following ways:

• In MCMC with 𝑀 ≥ 1 parallel chains (Remark 3.21), each chain operates independently of the
rest, whereas SMC with 𝑀 ≥ 1 particles redirects computational effort to more promising parts
of the DSL ℒ via resampling.

• MCMC does not easily apply to sequences of observations for online or streaming settings, as the
target (posterior) distribution is fixed, whereas SMC handles streaming data through the sequence
of posteriors (3.21).

• SMC delivers unbiased estimates of the marginal likelihood (3.29) of the observed data, which
have many uses; for example, performing model comparison among a collection set of DSLs
{ℒ1, . . . ,ℒ𝑇 } that operate over the same data space 𝒳 .

51

Algorithm 3.2 Resample-move sequential Monte Carlo algorithm for Bayesian synthesis.
Require: observations (𝑂1, . . . , 𝑂𝐽) where 𝑂𝑖 ∈ 𝒳 ; number of move iterations 𝑛 ≥ 0; number of

particles 𝑀 ≥ 1; ESSmin ∈ {1, . . . ,𝑀}
1: procedure Bayesian-Synthesis-SMC(𝑋,𝑛,𝑀)
2: for ℓ = 1 . . .𝑀 do ◁ initialize 𝑀 particles
3: 𝐸ℓ

0 ∼ Generate-Expression-From-Prior()
4: 𝑤ℓ

0 ← 1; �̂�ℓ
𝑗−1 ← 1

5: for 𝑗 = 1 . . . 𝐽 do ◁ for each observation in the sequence
6: // REWEIGHT
7: for ℓ = 1 . . .𝑀 do

8: 𝑤ℓ
𝑗 ← �̂�ℓ

𝑗−1 ·
Evaluate-Likelihood(𝑂𝑗 , 𝐸

ℓ
𝑗−1)

Evaluate-Likelihood(𝑂𝑗−1, 𝐸ℓ
𝑗−1)

9: // RESAMPLE (ADAPTIVE)
10: if ESS(𝑤1:𝑀

𝑗−1) < ESSmin and 𝑗 < 𝐽 then ◁ resampling triggered
11: for ℓ = 1 . . .𝑀 do ◁ resample particle
12: 𝐴ℓ

𝑗 ← Categorical(𝑀 ;𝑤1:𝑀
𝑗) ◁ reset weight

13: �̂�ℓ
𝑗 ← 1

14: else
15: for ℓ = 1 . . .𝑀 do ◁ no resampling triggered
16: 𝐴ℓ

𝑖 ← ℓ ◁ copy particle
17: �̂�ℓ

𝑗 ← 𝑤ℓ
𝑗−1 ◁ reset weight

18: // REJUVENATE
19: for ℓ = 1 . . .𝑀 do
20: 𝐸ℓ

𝑗 ← 𝐸
𝐴ℓ

𝑗

𝑗−1 ◁ set parent to new ancestor
21: for 𝑖 = 1 . . . 𝑛 do
22: 𝐸ℓ

𝑗 ∼ Generate-New-Expression(𝑂𝑗 , 𝐸
ℓ
𝑗) ◁ run transition operator

23: return 𝐸1:𝑀
0:𝐽 , 𝑤1:𝑀

0:𝐽 , 𝐴1:𝑀
1:𝐽

Convergence Properties If the transition operator 𝒯 (𝑂,𝐸 → 𝐸′), which is invoked by calling
Generate-New-Expression in (S3), satisfies Conditions 3.15–3.17 for each target distribution in
the sequence (3.21), then estimates of expectations EPost[𝜑(𝐸)] using the particle-based approxima-
tion (3.22) have a similar consistency property to Theorem 3.20, albeit for a more restricted class of
functions 𝜑. That is for each 𝑗 = 1, . . . , 𝐽 ,

1

𝑀

𝑀∑︁

ℓ=1

𝑊 ℓ
𝑗 𝜑(𝐸

ℓ
𝑗) −−−−→

𝑀→∞

∑︁

𝐸∈ℒ
𝜑(𝐸) · Post J𝐸K (𝑂𝑗) almost surely. (3.28)

Precise statements about a central limit theorem and technical conditions on 𝜑 can be found in Gilks
and Berzuini [2001, Theorem 1], Chopin [2004, Theorem 1], and Del Moral et al. [2006, Proposition 2].
Unlike MCMC, however, SMC has the remarkable property that it also delivers unbiased estimates of
the marginal likelihood of each 𝑂𝑗 (𝑗 = 1, . . . , 𝐽). Using the notation from Algorithm 3.2,

E

⎡
⎣

𝐽∏︁

𝑗=1

[︃
1

∑︀𝑀
ℓ=1 �̂�

ℓ
𝑗−1

𝑀∑︁

ℓ=1

𝑤ℓ
𝑗

]︃⎤
⎦ =

∑︁

𝐸∈ℒ
Likelihood J𝐸K (𝑂𝑗) · Prior J𝐸K . (3.29)

52

3.4 Bayesian Synthesis for Context-Free Probabilistic DSLs

The preceding sections have introduced probabilistic DSLs (Section 3.1), formalized the Bayesian syn-
thesis problem (Section 3.2), and presented MCMC and SMC algorithm templates (Section 3.3) that
deliver sound approximate solutions to Bayesian synthesis under well characterized technical conditions.
This section introduces a new class of context-free grammars that are used to define “context-free”
probabilistic DSLs and outlines a provably sound implementation of the end-to-end Bayesian synthesis
framework that applies to any context-free probabilistic DSL.

• Sections 3.4.1 and 3.4.2 presents a class of context-free grammars for specifying probabilistic DSLs.

• Section 3.4.3 shows how to implement (P1) Generate-Expression-From-Prior for context-
free probabilistic DSLs by defining a Prior semantics that is guaranteed to be normalized as in
Condition 3.6.

• Section 3.4.4 shows how to implement (P3) Generate-New-Expression for any context-free
probabilistic DSL and proves that the transition operator satisfies Conditions 3.15–3.17 which
ensure convergence of the MCMC and SMC algorithms in Section 3.3.

Remark 3.25. The procedure (P2) Evaluate-Likelihood depends on the modeling application (e.g.,
Eq. (3.63))—any semantics that satisfies Conditions 3.7 and 3.9 is sufficient. «

3.4.1 Context-Free Grammars for Specifying Probabilistic DSLs

Formal grammars describe a recipe for how to form strings of a language starting from an alphabet of
terminal symbols [Jelinek et al., 1992]. This section describes a new class of context-free grammars for
defining probabilistic domain-specific data modeling languages whose expressions resemble Lisp-style
symbolic expressions, or “s-expressions”. These context-free grammars have two main properties:

(i) The grammar produces s-expressions that contain a unique phrase tag for each production
rule, which uniquely identifies the production rule that produced a given subexpression;

(ii) Each production rule is associated with a probability distribution over terminal symbols that
are jointly sampled to fill a finite number of “holes” in the production rule.

The first property guarantees that the grammar is unambiguous, i.e., each expression has a unique
parse, which makes it straightforward to compute the probability of generating a given expression
without enumerating over all possible parses. The second property is used to model random parameters.

Definition 3.26. A context-free grammar for a probabilistic DSL consists of six entities.

• 𝑁 ::= {𝑁1, . . . , 𝑁𝑚} is a finite set of non-terminal symbols.

• 𝑅 ::= {𝑟𝑖𝑘 | 𝑖 = 1, . . . ,𝑚; 𝑘 = 1, . . . , 𝑟𝑖} is a set of production rules, where 𝑟𝑖𝑘 is the 𝑘th production
rule of non-terminal 𝑁𝑖. Each production rule 𝑟𝑖𝑘 is a tuple of the form

𝑟𝑖𝑘 ::= (𝑁𝑖, 𝑡𝑖𝑘, ℎ𝑖𝑘, ̃︀𝑁1
𝑖𝑘, . . . ,

̃︀𝑁𝑛𝑖𝑘
𝑖𝑘), (3.30)

where ℎ𝑖𝑘 is the number of holes in the production; 𝑛𝑖𝑘 the number of non-terminals; and ̃︀𝑁 𝑗
𝑖𝑘 ∈ 𝑁

for 𝑗 = 1, . . . , 𝑛𝑖𝑘. If 𝑛𝑖𝑘 = 0 then 𝑟𝑖𝑘 is a non-recursive production rule, otherwise it is recursive.

• 𝑇 ::= {𝑡𝑖𝑘 | 𝑖 = 1, . . . ,𝑚; 𝑘 = 1, . . . , 𝑟𝑖} is a set of phrase tag symbols, disjoint from 𝑁 , where 𝑡𝑖𝑘
is a unique symbol that identifies the production rule 𝑟𝑖𝑘.

53

• 𝑃 ::= {𝑝𝑖𝑘 | 𝑖 = 1, . . . ,𝑚; 𝑘 = 1, . . . , 𝑟𝑖} is a set of probabilities, where each phrase tag 𝑡𝑖𝑘 is
assigned a probability 𝑝𝑖𝑘 ∈ (0, 1] that non-terminal 𝑁𝑖 selects production rule 𝑟𝑖𝑘.

• 𝑊 ::= {(Θ𝑖𝑘,Σ𝑖𝑘, 𝜇𝑖𝑘) | 𝑖 = 1, . . . ,𝑚; 𝑘 = 1, . . . , 𝑟𝑖;ℎ𝑖𝑘 > 0} is a family of probability spaces,
which specify a joint distribution over the allowable valuables that the ℎ𝑖𝑘 holes in the production
rule 𝑟𝑖𝑘 may take.

• 𝑁 start ∈ 𝑁 is a designated start symbol.

«

Example 3.27. Consider the Gaussian process DSL in Listing 2.1 from Chapter 2. Listing 3.2 shows
a context-free grammar that more formally defines this DSL. The start symbol 𝑁 start = 𝑁1 and the
phrase tags 𝑇 = {𝑡11, 𝑡21, 𝑡31, . . . , 𝑡37} are shown in teletype font. The notation 𝐵(𝑈) denotes the Borel
sigma-algebra of a topological space 𝑈 , which is generated by the open sets. «

3.4.2 Defining a Probabilistic DSL from a Context-Free Grammar

This section shows how a context-free grammar 𝐺 (Definition 3.26) defines the structure space 𝑆 and
measure spaces (Θ𝑠,ℱ𝑠, 𝜆𝑠) (for each 𝑠 ∈ 𝑆) of a probabilistic DSL 𝐷 (Definition 3.4).

Eq. (3.30) describes how the production rules of 𝐺 convert non-terminal symbols into tagged s-
expressions with holes. The evaluation 𝑁𝑖 ⇓𝑝𝐺 𝐸 means that, starting from non-terminal 𝑁𝑖, the
s-expression 𝐸 is yielded with probability 𝑝. Recalling that both ℎ𝑖𝑘 and 𝑛𝑖𝑘 in Eq. (3.30) can be zero,
the following rule applies for all 𝑖 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑟𝑖:

(𝑁𝑖, 𝑡𝑖𝑘, ℎ𝑖𝑘, ̃︀𝑁1
𝑖𝑘, . . . ,

̃︀𝑁𝑛𝑖𝑘
𝑖𝑘) ∈ 𝑅 ̃︀𝑁1

𝑖𝑘 ⇓𝑝1𝐺 𝐸1 . . . ̃︀𝑁𝑛𝑖𝑘
𝑖𝑘 ⇓

𝑝𝑛𝑖𝑘
𝐺 𝐸𝑛𝑖𝑘

𝑁𝑖 ⇓
𝑝𝑖𝑘

∏︀𝑛𝑖𝑘
𝑗=1 𝑝𝑗

𝐺 (𝑡𝑖𝑘 �1 . . . �ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

) (3.31)

Remark 3.28. The rule (3.31) always yields an s-expression where the first element is a phrase tag
𝑡𝑖𝑘 that unambiguously identifies the production rule 𝑟𝑖𝑘 that yielded the expression. Thus, every
s-expression has a unique parse tree [Turbak and Gifford, 2008, Section 2.3.3]. «

The language ℒ�(𝐺,𝑁𝑖) denotes the set of all s-expressions with holes that can be yielded start-
ing from non-terminal 𝑁𝑖 (𝑖 = 1, . . . ,𝑚) with positive probability according to the relation defined
by Eq. (3.31). Further, the language ℒ�(𝐺) ::= ℒ�(𝐺,𝑁 start) is the set of all s-expressions derivable
from the start symbol. With these notations, the structure space 𝑆 and probabilities 𝑝𝑠 (𝑠 ∈ 𝑆) are

𝑆 ::= ℒ�(𝐺) (3.32)
𝑝𝑠 ::= 𝑤 ∈ (0, 1] such that 𝑁 start ⇓𝑤𝐺 𝑠. (3.33)

Each probability 𝑝𝑠 is unique by Remark 3.28. Next, the probability spaces {(Θ𝑠,ℱ𝑠, 𝜇𝑠), 𝑠 ∈ 𝑆} of 𝐷
are obtained from a transition relation 𝑠 ⇓𝐺 (Θ𝑠,Σ𝑠, 𝜇𝑠), defined as follows:

(𝑡𝑖𝑘 �1 . . . �ℎ𝑖𝑘
) ⇓𝐺 (Θ𝑖𝑘,Σ𝑖𝑘, 𝜇𝑖𝑘) (Primitive-Production)

𝑠1 ⇓Θ𝐺 (Θ1,ℱ1, 𝜇1) . . . 𝑠𝑛𝑖𝑘
⇓Θ𝐺 (Θ𝑛𝑖𝑘

,ℱ𝑛𝑖𝑘
, 𝜇𝑛𝑖𝑘

)

(𝑡𝑖𝑘 �1 . . . �ℎ𝑖𝑘
𝑠1 . . . 𝑠𝑛𝑖𝑘

) ⇓𝐺 (
∏︀𝑛𝑖𝑘

𝑗=1Θ𝑗 ,⊗𝑛𝑖𝑘
𝑗=1ℱ𝑗 ,×𝑛𝑖𝑘

𝑗=1𝜇𝑗) (Recursive-Production)

54

where
𝑛𝑖𝑘∏︁

𝑗=1

Θ𝑗 ::= {(𝜃1, . . . , 𝜃𝑛𝑖𝑘
) | 𝜃𝑗 ∈ Θ𝑗 , 𝑗 = 1, . . . 𝑛𝑖𝑘} (Cartesian product) (3.34)

⊗𝑛𝑖𝑘
𝑗=1ℱ𝑗 ::= 𝜎

⎛
⎝
⎧
⎨
⎩

𝑛𝑖𝑘∏︁

𝑗=1

𝐴𝑗 | 𝐴𝑗 ∈ ℱ𝑗 , 𝑗 = 1, . . . , 𝑛𝑖𝑘

⎫
⎬
⎭

⎞
⎠ (product sigma-algebra) (3.35)

(×𝑛𝑖𝑘
𝑗=1𝜇𝑗)

⎛
⎝

𝑛𝑖𝑘∏︁

𝑗=1

𝐴𝑗

⎞
⎠ ::=

𝑛𝑖𝑘∏︁

𝑗=1

𝜇𝑗(𝐴𝑗), 𝐴𝑗 ∈ ℱ𝑗 , 𝑗 = 1, . . . , 𝑛𝑖𝑘 (product measure). (3.36)

Remark 3.29. By Billingsley [1995, Theorem 18.2], the product measure (3.36) defined on the gener-
ating sets extends to a unique probability measure on the entire sigma-algebra (3.35). «

Remark 3.30. The context-free property of 𝐺 means that the joint probability distributions for holes
that belong to different subexpressions are obtained in Eq. (Recursive-Production) by taking prod-
uct measures. While the ℎ𝑖𝑘 holes in a s-expression with phrase tag 𝑡𝑖𝑘 have an arbitrary joint distri-
bution 𝜇𝑖𝑘, the holes in different subexpressions are mutually independent. «

Eqs. (3.32)–(3.36) how a context-free grammar 𝐺 uniquely defines the set of expressions (3.1) of a
probabilistic DSL 𝐷.

Definition 3.31. Let 𝐺 be a context-free grammar and 𝐷 a probabilistic DSL whose expressions
match those generated by 𝐺. For each (𝑠, 𝜃) ∈ ℒ(𝐷), the notation 𝑠⊕𝜃 denotes the unique s-expression
obtained by syntactically replacing each hole in 𝑠 with the corresponding parameter in 𝜃. The languages

ℒ(𝐺,𝑁𝑖) ::= {𝑠⊕ 𝜃 | 𝑠 ∈ ℒ�(𝐺,𝑁𝑖), 𝜃 ∈ Θ𝑠} (𝑖 = 1, . . . ,𝑚) (3.37)

are defined to be the set of all s-expressions that can be yielded starting from the non-terminal 𝑁𝑖 and
where the holes are replaced with valid parameter values. Moreover, the language ℒ(𝐺) ::= ℒ(𝐺,𝑁 start).

«

Example 3.32. Let 𝐺 be the grammar in Listing 3.2 and 𝐷 a probabilistic DSL whose expressions
match those generated by 𝐺. Consider the following structure 𝑠 ∈ ℒ�(𝐺) and parameter 𝜃 ∈ Θ𝑠:

𝑠 ::= (GaussianProcess (Noise �) (* (Constant �) (Periodic � �))) (3.38)
𝜃 ::= ((), (0.7, (1.8, (2.1, 3.1)))). (3.39)

As (𝑠, 𝜃) ∈ ℒ(𝐷), applying Definition 3.31 gives

𝑠⊕ 𝜃 = (GaussianProcess (Noise 0.7) (* (Constant 1.8) (Periodic 2.1 3.1))).

The formal definition of 𝑠⊕ 𝜃 is straightforward. The uniqueness of 𝑠⊕ 𝜃 follows from Remark 3.28. «

Remark 3.33. As the languages ℒ(𝐺) and ℒ(𝐷) are in 1-1 correspondence, the expressions (𝑠, 𝜃) and
𝑠 ⊕ 𝜃 will be used interchangeably, whichever is clearer or more notationally compact. Any semantic
function defined on one of these domains is therefore also defined on the other. «

55

3.4.3 A Sound Prior Semantics

Consider a context-free grammar 𝐺 and the corresponding language ℒ�(𝐺) of all derivable s-expressions
with holes. To meet Condition 3.6, setting Prior J(𝑠, 𝜃)K𝜆𝑠(d𝜃) = 𝑝𝑠𝜇𝑠(d𝜃) is sufficient since

∑︁

𝑠∈𝑆

[︂∫︁

𝜃∈Θ𝑠

Prior J(𝑠, 𝜃)K𝜇𝑠(d𝜃)

]︂
=
∑︁

𝑠∈𝑆
𝑝𝑠𝜇(Θ𝑠) = 1. (3.40)

Eq. (3.40) is well formed if and only if the structure probabilities {𝑝𝑠 | 𝑠 ∈ ℒ�(𝐺)} defined in Eq. (3.33)
sum to one. A classic result from Booth and Thompson [1973] can be used to verify this property.

Definition 3.34 (Consistency [Booth and Thompson, 1973]). A context-free grammar 𝐺 is consistent
if the probabilities assigned to all strings derivable from 𝐺 sum to one. «

Theorem 3.35 (Sufficient Condition for Consistency [Booth and Thompson, 1973]). A proper prob-
abilistic context-free grammar 𝐺 is consistent if the largest eigenvalue (in modulus) of the expectation
matrix of 𝐺 is less than one. «

Remark 3.36. Gecse and Kovács [2010] show how to construct the expectation matrix of a context-free
grammar 𝐺 from the production rule probabilities {𝑝𝑖𝑘}. If the production rules enforce finite recursion
depth, then 𝐺 is consistent since ℒ�(𝐺) is finite. If the production rules allow arbitrary recursion
depth, then consistency of 𝐺 is equivalent to having a finite expected number of steps in the rewriting
rule Eq. (3.31). Every context-free grammar is henceforth assumed to be consistent. «

In most modeling applications, the distributions 𝜇𝑖𝑘 for the holes in the context-free grammar 𝐺
have a density 𝛾𝑖𝑘 with respect to a sigma-finite dominating measure 𝜆𝑖𝑘 (e.g., some combination of
Lebesgue and counting measures) over Σ𝑖𝑘. For 𝑠 ∈ ℒ�(𝐺), the measure 𝜆𝑠 is defined to be the product
the measure over (Ω𝑠,ℱ𝑠) analogously to Eq. (3.36) and 𝛾𝑠 : Θ𝑠 → R≥0 denotes the product densities
of 𝜇𝑠. A default denotational semantics Prior : ℒ(𝐺) → R>0 can now be described for this class of
applications. To aid with the construction, the semantic function Expand : ℒ(𝐺) → 𝑁 → R≥0 is used
to map an expression and a non-terminal symbol to the probability density that the non-terminal is
expanded to the given expression:

Expand J(𝑡𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

)K (𝑁𝑖) ::= 𝑝𝑖𝑘

ℎ𝑖𝑘∏︁

𝑗=1

𝛾𝑖𝑘(𝜃1, . . . , 𝜃ℎ𝑖𝑘
)

𝑛𝑖𝑘∏︁

𝑗=1

Expand J𝐸𝑗K (̃︀𝑁 𝑗
𝑖𝑘) (3.41)

for 𝑖 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑟𝑖. The prior probability of an expression 𝐸 is then

Prior J𝐸K ::= Expand J𝐸K (𝑁 start). (3.42)

Proposition 3.37. The prior density of 𝐸 = (𝑠, 𝜃) in Eq. (3.42) factorizes as

Prior J(𝑠, 𝜃)K = 𝑝𝑠𝛾𝑠(𝜃). (3.43)
«

Proof. Combine Eq. (3.31) and Eq. (3.41) and perform structural induction on (𝑠, 𝜃) ∈ ℒ. �

Remark 3.38. The context-free structure of 𝐺 reflects two types of probabilistic independencies.
First, the joint probability of (𝑠, 𝜃) ∈ ℒ(𝐷) factorizes according to 𝑝𝑠𝛾𝑠(𝜃), which means that the entire
structure is sampled independently of the numeric parameters. Second, the parameters (𝜃1, . . . , 𝜃ℎ𝑖𝑘

)
in any subexpression (𝑡𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘

𝐸1 . . . 𝐸𝑛𝑖𝑘
) are independent of the parameters that appear in

𝐸1, . . . , 𝐸𝑛𝑖𝑘
, which are themselves mutually independent of one another. «

56

Algorithm 3.3 Transition operator 𝒯 for a context-free language.
1: procedure Generate-New-Expression(𝑂,𝐸) ◁ observation 𝑂 ∈ 𝒳 and input expression 𝐸 ∈ ℒ
2: 𝑎 ∼ Uniform(𝐴𝐸) ◁ randomly select a node in parse tree
3: (𝑁𝑖, 𝐸sev)← Sever𝑎 J𝐸K ◁ sever parse tree and return non-terminal symbol at sever point
4: 𝐸sub ∼ Expand J·K (𝑁𝑖) ◁ generate random 𝐸sub with probability Expand J𝐸subK (𝑁𝑖)

5: 𝐸′ ← 𝐸sev[𝐸sub] ◁ fill hole in 𝐸sev with expression 𝐸sub

6: 𝐿← Likelihood J𝐸K (𝑂) ◁ evaluate likelihood for expression 𝐸 and observation 𝑂

7: 𝐿′ ← Likelihood J𝐸′K (𝑂) ◁ evaluate likelihood for expression 𝐸′ and observation 𝑂

8: 𝑝accept ← min {1, (|𝐴𝐸 |/|𝐴𝐸′ |) · (𝐿′/𝐿)} ◁ compute the probability of accepting the mutation
9: 𝑟 ∼ Uniform([0, 1]) ◁ draw a random number from the unit interval

10: if 𝑟 < 𝑝accept then ◁ if-branch has probability 𝑝accept

11: return 𝐸′ ◁ accept and return the mutated expression
12: else ◁ else-branch has probability 1− 𝑝accept

13: return 𝐸 ◁ reject the mutated expression and return the input expression

The notation 𝐸 ∼ Expand J·K (𝑁𝑖) is used to mean that 𝐸 is randomly sampled according to the
density defined in Eq. (3.41). That is, to expand 𝑁𝑖, a production rule 𝑟𝑖𝑘 is chosen with probability
𝑝𝑖𝑘, the parameters (𝜃1, . . . , 𝜃ℎ𝑖𝑘

) are sampled jointly from 𝜇𝑠 to fill in the holes, and the subexpressions
(if any) for ̃︀𝑁 𝑗

𝑖𝑘 (𝑗 = 1, . . . , 𝑛𝑖𝑘) are sampled recursively. (P1) Generate-Expression-From-Prior()
returns 𝐸 ∼ Expand J·K (𝑁 start), which is guarnateed to halt whenever 𝐺 is consistent.

3.4.4 A Sound Markov Chain Transition Operator

Remark 3.39. This section makes the countability assumption from Remark 3.14. Following Re-
mark 3.33, it is also assumed that each expression (𝑠, 𝜃) ∈ ℒ(𝐷) is written in its unique s-expression
form (𝑠⊕ 𝜃) ∈ ℒ(𝐺), where the holes in 𝑠 are syntactically replaced with parameters 𝜃. «

This section defines a generic implementation of (P3) Generate-New-Expression for any lan-
guage ℒ ::= ℒ(𝐺) whose structure and parameter spaces are defined by a context-free grammar 𝐺
and proves that the implementation satisfies Conditions 3.15–3.17. Algorithm 3.3 shows the transition
operator. Given an initial expression 𝐸 ∈ ℒ, a randomly selected subexpression in 𝐸 is replaced to
obtain a new expression 𝐸′, which is accepted according to the usual Metropolis-Hastings rule. The
notation 𝒯 (𝑂,𝐸 → 𝐸′) denotes the probability that Generate-New-Expression(𝑂,𝐸) returns 𝐸′.
Before proving correctness, a scheme for uniquely identifying syntactic locations in the parse tree of
expressions is described.

Definition 3.40. Let 𝐴 ::= {(𝑎1, 𝑎2, . . . , 𝑎𝑙) | 𝑎𝑖 ∈ {1, 2, . . . , ℎmax}, 𝑙 ∈ {0, 1, 2, . . .}} be a countably
infinite set whose elements index nodes in parse trees of s-expressions. The integer ℎmax denotes the
maximum number of symbols that appear on the right of any production rule (3.30). Each 𝑎 ∈ 𝐴 is
a sequence of subexpression positions on the path from the root node of a parse tree to another node.
Further, the set 𝐴𝐸 ⊂ 𝐴 denotes the finite subset of nodes that exist in the parse tree of 𝐸 ∈ ℒ. «

Example 3.41. Suppose that 𝐸 = (𝑡0 𝐸1 𝐸2) where 𝐸1 = (𝑡1 𝐸3 𝐸4) and 𝐸2 = (𝑡2 𝐸5 𝐸6). The root
node of the parse tree has index 𝑎root ::= (); the node for 𝐸1 has index (1); the node for 𝐸2 has index
(2); the nodes for 𝐸3 and 𝐸4 have indices (1, 1) and (1, 2), respectively; and the nodes for 𝐸5 and 𝐸6

have indices (2, 1) and (2, 2), respectively. Thus, 𝐴𝐸 = {(), (1), (2), (1, 1), (1, 2), (2, 1), (2, 2)}. «

Definition 3.42. The syntactic operation Sever, parametrized by 𝑎 ∈ 𝐴, takes as input an expression
𝐸. If 𝐸 contains a node 𝑎, then Sever returns a tuple (𝑁𝑖, 𝐸sev) where 𝐸sev is the expression with the

57

subexpression of 𝐸 located at 𝑎 replaced with a symbol △ and where 𝑁𝑖 is the non-terminal symbol
from which the removed subexpression is produced. Otherwise, Sever fails. Define the relation −−−→

sever

𝑎 = ()

(𝑎, (𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

)) −−−→
sever

(𝑁𝑖,△) (3.44)

((𝑎2, 𝑎3, . . .), 𝐸𝑗) −−−→
sever

(𝑁𝑖, 𝐸sev) and 𝑎1 = 𝑗

(𝑎, (𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

)) −−−→
sever

(𝑁𝑖, (𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘

𝐸1 . . . 𝐸𝑗−1 𝐸sev 𝐸𝑗+1 . . . 𝐸𝑛𝑖𝑘
))

(3.45)

for 𝑖 = 1, . . . ,𝑚, 𝑘 = 1, . . . , 𝑟𝑖 and put

Sever𝑎 J(𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

)K ::=

⎧
⎪⎨
⎪⎩

(𝑁𝑖, 𝐸sev) if (𝑎, (𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 . . . 𝐸𝑛𝑖𝑘

))
−−−→
sever

(𝑁𝑖, 𝐸sev)

undefined otherwise.
(3.46)

«

Remark 3.43. For any expression 𝐸 ∈ ℒ, setting 𝑎 = 𝑎root ≡ () gives ((), 𝐸) −−−→
sever

(𝑁 start,△).
Further, every 𝐸sev ̸∈ ℒ because 𝐸sev contains one or more instances of the special symbol △. «

Remark 3.44. To handle s-expressions that contain a △ subexpression, Eq. (3.41) is extended with
the rule Expand J△K (𝑁𝑖) ::= 1 for 𝑖 = 1, . . . ,𝑚. «

Definition 3.45. Let 𝐸sev be an expression that contains a single △ for which (𝑎,𝐸) −−−→
sever

(𝑁𝑖, 𝐸sev)

for some 𝐸 ∈ ℒ, 𝑎 ∈ 𝐴, and 𝑖 ∈ [𝑚]. The replacement 𝐸sev[𝐸sub] ∈ ℒ denotes the expression formed by
replacing △ with 𝐸sub, where 𝐸sub ∈ ℒ(𝐺,𝑁𝑖) «

Definition 3.46. The operation Subexpr, parametrized by 𝑎, takes an expression 𝐸 and extracts the
subexpression corresponding to node 𝑎 in the parse tree. That is, for 𝑖 = 1, . . . ,𝑚 and 𝑘 = 1, . . . , 𝑟𝑖,

Subexpr𝑎 J(𝑇𝑖𝑘 𝜃1 . . . 𝜃ℎ𝑖𝑘
𝐸1 𝐸2 . . . 𝐸𝑛𝑖𝑘

)K ::=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if 𝑎 = () or 𝑎1 > 𝑙

𝐸𝑗 if 𝑎 = (𝑗) for some 1 ≤ 𝑗 ≤ 𝑙

Subexpr(𝑎2,𝑎3,...) J𝐸𝑗K if 𝑎 ̸= (𝑗) and
𝑎1 = 𝑗 for some 1 ≤ 𝑗 ≤ 𝑙.

«

Consider the probability that 𝒯 takes an expression 𝐸 to another expression 𝐸′, which by total
probability is an average over the uniformly chosen node index 𝑎:

𝒯 (𝑂,𝐸 → 𝐸′) =
1

|𝐴𝐸 |
∑︁

𝑎∈𝐴𝐸

𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) =
1

|𝐴𝐸 |
∑︁

𝑎∈𝐴𝐸∩𝐴𝐸′

𝒯 (𝑂,𝐸 → 𝐸′; 𝑎), (3.47)

where

𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) ::=

⎧
⎪⎨
⎪⎩

Expand JSubexpr𝑎 J𝐸′KK (𝑁𝑖) · 𝛼(𝐸,𝐸′) if Sever𝑎 J𝐸K = Sever𝑎
q
𝐸′y

= (𝑁𝑖, 𝐸sev) for some 𝑖 and 𝐸sev,

0 otherwise
(3.48)

𝛼(𝐸,𝐸′) ::= min

{︂
1,
|𝐴𝐸 | · Likelihood J𝐸′K (𝑂)

|𝐴𝐸′ | · Likelihood J𝐸K (𝑂)

}︂
.

58

The second equality in Eq. (3.47) discards terms 𝑎 ∈ 𝐴𝐸 ∖ 𝐴𝐸′ from the sum, as these terms have
Sever𝑎 J𝐸′K = ∅ and 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) = 0.

Proposition 3.47. For 𝐸 ∈ ℒ, if Sever𝑎 J𝐸K = (𝑁𝑖, 𝐸sev) then Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖) > 0. «

Proof. If Sever𝑎 J𝐸K = (𝑁𝑖, 𝐸sev) then Subexpr𝑎 J𝐸K is an expression with tag 𝑡𝑖𝑘 for some 𝑘. Since 𝐸 ∈
ℒ, it must be that Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖) > 0, as otherwise Prior J𝐸K = 0 (a contradiction). �

Proposition 3.48. For 𝐸 ∈ ℒ, if Sever𝑎 J𝐸K = (𝑁𝑖, 𝐸sev) then:

Expand J𝐸K (𝑆) = Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖) · Expand J𝐸sevK (𝑆). (3.49)
«

Proof. Each factor in Expand J𝐸K (𝑆) corresponds to a particular node 𝑎′ in the parse tree. If 𝑎′

is a descendant of 𝑎, then each factor corresponding to 𝑎′ appears in Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖).
Otherwise, it appears in Expand J𝐸sevK (𝑆). �

Proposition 3.49. For any 𝐸,𝐸′ ∈ ℒ where Sever𝑎 J𝐸K = Sever𝑎 J𝐸′K = (𝑁𝑖, 𝐸sev), it holds that

Prior
q
𝐸′y = Prior J𝐸K · Expand JSubexpr𝑎 J𝐸′KK (𝑁𝑖)

Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖)
. (3.50)

«

Proof. Use Prior J𝐸K = Expand J𝐸K (𝑆) and Prior J𝐸′K = Expand J𝐸′K (𝑆). Invoke Proposition 3.48. �

Lemma 3.50. Algorithm 3.3 satisfies Condition 3.15 (posterior invariance). «

Proof. It suffices to establish detailed balance for 𝒯 with respect to the posterior:

Post J𝐸K (𝑂) · 𝒯 (𝑂,𝐸 → 𝐸′) = Post
q
𝐸′y (𝑂) · 𝒯 (𝑂,𝐸′ → 𝐸) (𝐸,𝐸′ ∈ ℒ). (3.51)

First, if Post J𝐸K (𝑂) · 𝒯 (𝑂,𝐸 → 𝐸′) = 0 then Post J𝐸′K (𝑂) · 𝒯 (𝑂,𝐸′ → 𝐸) = 0 as follows. Either
Post J𝐸K (𝑂) = 0 or 𝒯 (𝑂,𝐸 → 𝐸′) = 0. There are two cases.

Case 1. If Post J𝐸K (𝑂) = 0 then Likelihood J𝐸K (𝑂) = 0.
Thus 𝛼(𝐸′, 𝐸) = 0.
Then 𝒯 (𝑂,𝐸′ → 𝐸) = 0.

Case 2. If 𝒯 (𝑂,𝐸 → 𝐸′) = 0 then 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎root) = 0.
Thus, either 𝛼(𝐸,𝐸′) = 0 or Expand

q
Subexpr𝑎root J𝐸′K

y
(𝑆) = 0.

If 𝛼(𝐸,𝐸′) = 0 then Likelihood J𝐸′K (𝑂) = 0 and Post J𝐸′K (𝑂) = 0.
But Expand JSubexpr𝐸′ J𝑎rootKK (𝑆) = 0 is a contradiction since

Expand JSubexpr𝐸′ J𝑎rootKK (𝑆) = Expand
q
𝐸′y (𝑆) = Prior

q
𝐸′y > 0.

Next, consider Post J𝐸K (𝑂) · 𝒯 (𝑂,𝐸 → 𝐸′) > 0 and Post J𝐸′K (𝑂) · 𝒯 (𝑂,𝐸′ → 𝐸) > 0. It suffices
to show that Post J𝐸K (𝑂) · |𝐴𝐸′ | · 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) = Post J𝐸′K (𝑂) · |𝐴𝐸 | · 𝒯 (𝑂,𝐸′ → 𝐸; 𝑎) for all
𝑎 ∈ 𝐴𝐸 ∩𝐴𝐸′ . If 𝐸 = 𝐸′, then this statement is vacuously true. If 𝐸 ̸= 𝐸′, there are two cases:

Case 1. If Sever𝑎 J𝐸K = Sever𝑎 J𝐸′K = (𝑁𝑖, 𝐸sev) for some 𝑖 and 𝐸sev, then it suffices to show that

Post J𝐸K (𝑂) · |𝐴𝐸′ | · Expand
q
Subexpr𝑎

q
𝐸′yy

(𝑁𝑖) · 𝛼(𝐸,𝐸′) (3.52)
= Post

q
𝐸′y (𝑂) · |𝐴𝐸 | · Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖) · 𝛼(𝐸′, 𝐸) (3.53)

59

Both sides are nonzero because

Post J𝐸K (𝑂) > 0 =⇒ Likelihood J𝐸K (𝑂) > 0 =⇒ 𝛼(𝐸′, 𝐸) > 0 (3.54)

by Proposition 3.47, and similarly for Post J𝐸′K (𝑂) > 0. It suffices to show that

𝛼(𝐸,𝐸′)
𝛼(𝐸′, 𝐸)

=
Post J𝐸′K (𝑂) · |𝐴𝐸 | · Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖)

Post J𝐸K (𝑂) · |𝐴′
𝐸 | · Expand JSubexpr𝑎 J𝐸′KK (𝑁𝑖)

(3.55)

=
Prior J𝐸′K · Likelihood J𝐸′K (𝑂) · |𝐴𝐸 | · Expand JSubexpr𝑎 J𝐸KK (𝑁𝑖)

Prior J𝐸K · Likelihood J𝐸K (𝑂) · |𝐴′
𝐸 | · Expand JSubexpr𝑎 J𝐸′KK (𝑁𝑖)

(3.56)

=
Likelihood J𝐸′K (𝑂) · |𝐴𝐸 |
Likelihood J𝐸K (𝑂) · |𝐴′

𝐸 |
, (3.57)

where the last uses Proposition 3.49 to expand Prior J𝐸′K, followed by cancellation of factors.
Note that if 𝛼(𝐸,𝐸′) < 1 then 𝛼(𝐸′, 𝐸) = 1 and

𝛼(𝐸,𝐸′)
𝛼(𝐸′, 𝐸)

=
𝛼(𝐸,𝐸′)

1
=

Likelihood J𝐸′K (𝑂) · |𝐴𝐸 |
Likelihood J𝐸K (𝑂) · |𝐴′

𝐸 |
. (3.58)

If 𝛼(𝐸′, 𝐸) < 1 then 𝛼(𝐸,𝐸′) = 1 and

𝛼(𝐸,𝐸′)
𝛼(𝐸′, 𝐸)

=
1

𝛼(𝐸′, 𝐸)
=

Likelihood J𝐸′K (𝑂) · |𝐴𝐸 |
Likelihood J𝐸K (𝑂) · |𝐴′

𝐸 |
. (3.59)

If 𝛼(𝐸,𝐸′) = 1 = 𝛼(𝐸′, 𝐸) then 𝛼(𝐸,𝐸′)/𝛼(𝐸′, 𝐸) = 1 = 𝛼(𝐸,𝐸′).

Case 2. If Sever𝑎 J𝐸K ̸= Sever𝑎 J𝐸′K, then 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) = 𝒯 (𝑂,𝐸′ → 𝐸; 𝑎) = 0.

If 𝐸 ̸= 𝐸′, then 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) = Prior JSubexpr𝑎 J𝐸′KK · 𝛼(𝐸,𝐸′). Finally, posterior invariance
follows from detailed balance:

∑︀
𝐸∈ℒ Post J𝐸K (𝑂)𝒯 (𝑂,𝐸 → 𝐸′) =

∑︀
𝐸∈ℒ Post J𝐸′K (𝑂)𝒯 (𝑂,𝐸′ → 𝐸) = Post J𝐸′K (𝑂). (3.60)

�

Lemma 3.51. Algorithm 3.3 satisfies Condition 3.16 (irreducibility). «

Proof. It suffices to show that for all 𝐸 ∈ ℒ and for all 𝐸′ ∈ ℒ such that Post J𝐸′K (𝑂) > 0, 𝐸′

is reachable from 𝐸 in one step, i.e., 𝒯 (𝑂,𝐸 → 𝐸′) > 0. By the definition of 𝑎root, it holds that
for all 𝐸,𝐸′ ∈ ℒ, 𝑎root ∈ 𝐴𝐸 ∩ 𝐴𝐸′ and Sever𝑎root J𝐸K = Sever𝑎root J𝐸′K = (𝑆,△). Further, since
Post J𝐸′K (𝑂) > 0, it must hold that Prior J𝐸′K = Expand J𝐸′K (𝑆) > 0 and Likelihood J𝐸′K (𝑂) > 0,
which together imply 𝛼(𝐸,𝐸′) > 0. Finally,

𝒯 (𝑂,𝐸 → 𝐸′) ≥ 1

|𝐴𝐸 |
· 𝒯 (𝑂,𝐸 → 𝐸′; 𝑎) ≥ Expand

q
𝐸′y (𝑆) · 𝛼(𝐸,𝐸′) > 0. (3.61)

�

Lemma 3.52. Algorithm 3.3 satisfies Condition 3.17 (aperiodicity). «

Proof. For all 𝐸 ∈ ℒ,

𝒯 (𝑂,𝐸 → 𝐸) ≥ (1/|𝐴𝐸 |) · Expand J𝐸K (𝑆) = (1/|𝐴𝐸 |) · Prior J𝐸K > 0 (3.62)

The inequality derives from choosing only 𝑎 = 𝑎root in the sum over 𝑎 ∈ 𝐴𝐸 in Eq. (3.47). �

60

(𝑟11) 𝑁1 ::= (NoisyGP 𝑁2 𝑁3)

(𝑟21) 𝑁2 ::= (Noise �) (Θ21,Σ21, 𝜇21) = (R, 𝐵(R),Gamma(1, 1))

(𝑟31) 𝑁3 ::= (Constant �) (Θ31,Σ31, 𝜇31) = (R, 𝐵(R),Uniform(0, 10))

(𝑟32) | (Linear �) (Θ32,Σ32, 𝜇32) = (R, 𝐵(R),Uniform(−10, 10))
(𝑟33) | (Smooth �) (Θ33,Σ33, 𝜇33) = (R, 𝐵(R),Uniform(0, 10))

(𝑟34) | (Periodic � �) (Θ34,Σ34, 𝜇34) = (R2, 𝐵(R2),Uniform(0, 10) ·Uniform(0, 10))

(𝑟35) | (* 𝑁3 𝑁3)

(𝑟36) | (+ 𝑁3 𝑁3)

(𝑟37) | (Changepoint � � 𝑁3 𝑁3) (Θ37,Σ37, 𝜇37) = (R2, 𝐵(R2),Uniform(−10, 10) ·Uniform(0, 10))

Listing 3.2: Context-free grammar expressing the Gaussian process DSL for univariate time series.

Lemmas 3.50–3.52 together establish that the transition operator in Algorithm 3.3 satisfies Condi-
tions 3.15–3.17, which makes it a sound transition operator for synthesis using MCMC (Section 3.3.1)
and resample-move SMC (Section 3.3.2) in any probabilistic DSL defined by a context-free grammar.

3.5 Formalizing the Gaussian Process DSL

Chapter 2 demonstrated a probabilistic DSL for Gaussian process models of univariate time series data,
whose formal definition using a context-free grammar is shown in Listing 3.2. The Prior semantics are
as described in Section 3.4.3, which applies directly to any probabilistic DSL defined by a context-free
grammar. Recalling Definition 3.1, the input space 𝑇 ::= ⊎∞𝑛=1R𝑛 consists of finite sequences of real
numbers. For any input 𝑡 ::= (𝑡1, . . . , 𝑡𝑛) ∈ 𝑇 the output space 𝒳𝑡 ::= R𝑛 contains the corresponding
time series values 𝑥 ::= (𝑥1, . . . , 𝑥𝑛), the sigma-algebra ℱ𝑡 ::= 𝐵(R𝑛) and 𝜆𝑡 is the 𝑛-dimensional
Lebesgue measure. The Likelihood semantics are

Likelihood J(NoisyGP (Noise 𝜖) 𝐾)K (𝑡, 𝑥) ::= exp

(︂
− 1

2

[︁
𝑥⊤𝑊𝑥− log (det(𝑊))− 𝑛 log (2𝜋)

]︁)︂
,

(3.63)

where 𝐾 ∈ ℒ(𝐺,𝑁3) is a covariance expression and 𝑊 is the 𝑛 × 𝑛 covariance matrix encoded by
(𝜖,𝐾) whose entries 𝑊𝑖𝑗 ::= J𝐾K (𝑡𝑖, 𝑡𝑗) + 1[𝑡 = 𝑡′](𝜖 + 𝜖min) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) are obtained from the
covariance semantics in Listing 2.2. The parameter 𝜖min > 0 is a “noise floor” that ensure the likelihood
is bounded. The next two lemmas establish that the Gaussian process DSL satisfies the conditions
needed for Bayesian synthesis described in Problem 3.13 to be well defined.

Proposition 3.53. The Prior and Likelihood semantics of the Gaussian process DSL satisfy Condi-
tions 3.6–3.9. «

Proof for Condition 3.6. Since the non-terminals 𝑁1 and 𝑁2 in Listing 3.2 are non-recursive, it suffices
to show that the language generated by the production rule 𝑁3 satisfies the condition for consistency

61

in Theorem 3.35. A Chomsky normal form of this production rule is

𝑁3 → 𝐻1𝐻0
7/40

| 𝐻2𝐻0
7/40

| 𝐻3𝐻0
7/40

| 𝐻4𝐻0
7/40

| 𝐻5𝑁3
4/40

| 𝐻6𝑁3
4/40

| 𝐻7𝑁3
4/40

𝐻0 → �
𝐻1 → Constant

𝐻2 → Linear

𝐻3 → Smooth

𝐻4 → 𝐻8𝐻0

𝐻5 → 𝐻9𝑁3

𝐻6 → 𝐻10𝑁3

𝐻7 → 𝐻11𝑁3

𝐻8 → Periodic

𝐻9 → *

𝐻10 → +

𝐻11 → 𝐻12𝐻0

𝐻12 → 𝐻13𝐻0

𝐻13 → ChangePoint.

Following the notation from Gecse and Kovács [2010, Eq. (2)], define:

𝑚𝑖𝑗 =
∑︀𝑟𝑖

𝑘=1 𝑝𝑖𝑘𝑛𝑖𝑘𝑗 , where 𝑟𝑖 ::= number of productions with 𝑁𝑖 ∈ 𝑁 premise,
𝑝𝑖𝑘 ::= probability assigned to production 𝑘 of 𝑁𝑖,

𝑛𝑖𝑘𝑗 ::= number of occurrence of 𝑁𝑗 ∈ 𝑁 in production 𝑘 of 𝑁𝑖.

The expectation matrix 𝑀 ::= [𝑚𝑖𝑗] is therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁3 𝐻0 𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7 𝐻8 𝐻9 𝐻10 𝐻11 𝐻12 𝐻13

𝑁 12/40 28/40 7/40 7/40 7/40 7/40 4/40 4/40 4/40 0 0 0 0 0 0
𝐻0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻4 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
𝐻5 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
𝐻6 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
𝐻7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
𝐻8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐻11 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
𝐻12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
𝐻13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The nonzero eigenvalues of 𝑀 are 0.71789089 . . . and −0.41789089 . . . which lie in the interval [−1, 1].
The conclusion follows from Theorem 3.35. �

62

Proof for Conditions 3.7 and 3.8. Since 𝜖min > 0, the Likelihood semantic function is the density of a
non-degenerate multivariate normal, which is normalized and has full support over its domain. �

Proof for Condition 3.9. Let 𝐾 ∈ ℒ(𝐺,𝑁3) be a covariance expression, 𝐶 ::= [J𝐾K (𝑡𝑖, 𝑡𝑗)]𝑛𝑖,𝑗=1 be the
𝑛× 𝑛 covariance matrix induced by 𝐾, and 𝐼 the 𝑛× 𝑛 identity matrix. Eq. (3.63) is then

Likelihood J(NoisyGP (Noise 𝜖) 𝐾)K (𝑡, 𝑥)

::= exp

(︂
− 1

2

[︁
𝑥⊤[𝐶 + (𝜖+ 𝜖min)𝐼]

−1𝑥− log (det(𝐶 + (𝜖+ 𝜖min)𝐼))− 𝑛 log (2𝜋)
]︁)︂

(3.64)

= ((2𝜋)𝑛 det(𝐶 + (𝜖+ 𝜖min)𝐼))
−1/2 exp

(︁
𝑥⊤[𝐶 + (𝜖+ 𝜖min)𝐼]

−1𝑥
)︁

(3.65)

≤ ((2𝜋)𝑛 det(𝐶 + (𝜖+ 𝜖min)𝐼))
−1/2 (3.66)

≤ (det(𝐶 + (𝜖+ 𝜖min)𝐼))
−1/2 (3.67)

≤ (det(𝐶) + det((𝜖+ 𝜖min)𝐼))
−1/2 (3.68)

≤ (det((𝜖+ 𝜖min)𝐼))
−1/2 (3.69)

=
√
𝜖+ 𝜖min (3.70)

≤ √𝜖min, (3.71)

where Eq. (3.66) follows from the positive semi-definiteness of 𝐶 + (𝜖+ 𝜖min)𝐼 and the identity 𝑒−𝑧 < 1
for 𝑧 > 0; Eq. (3.67) from (2𝜋)−𝑛/2 < 1; Eq. (3.68) from Minkowski’s determinant inequality [Marcus
and Minc, 1992, Theorem 4.1.8]; Eq. (3.69) from positive semi-definiteness of 𝐶; Eq. (3.71) from 𝜖 > 0.
As (𝐾, 𝜖) are arbitrary and the upper bound

√
𝜖min is independent of these terms, the result follows. �

Since the Gaussian process DSL is generated by a context-free grammar, the transition operator
from Algorithm 3.3 is sound by Lemmas 3.50–3.52 and can be used within the MCMC (Algorithm 3.1)
and the SMC (Algorithm 3.2) synthesis procedures described in Section 3.3.

3.5.1 Time Complexity Analysis

Each iteration of the transition operator in Algorithm 3.3 takes as an input existing DSL expression
𝐸 ::= (NoisyGP (Noise 𝜖) 𝐾) and proposes a new subexpression 𝐸′ ::= (NoisyGP (Noise 𝜖′) 𝐾 ′)
by applying the following operations:

1. Severing the parse tree at a randomly selected node using Sever (Algorithm 3.3, lines 2 and 3).
The cost is linear in the number of subexpressions in 𝐸, which is denoted |𝐸|.

2. Sampling the PCFG using Expand (3.41) (Algorithm 3.3, line 4). The expected cost is linear
in the average length ℓ𝐺 of strings generated by the PCFG, which can be determined from the
transition probabilities [Gecse and Kovács, 2010, Eq. (3)]).

3. Assessing the likelihood under the existing and proposed expressions using Likelihood J𝐸K (𝑂)
(Algorithm 3.3, line 6). For a Gaussian process with 𝑛 observed time points, the cost of con-
structing the covariance matrix [J𝐾K (𝑡𝑖, 𝑡𝑗)]𝑛𝑖,𝑗=1 is 𝑂(|𝐾|𝑛2) and computing the inverse and
determinant is 𝑂(𝑛3).

The overall time complexity of an iteration of MCMC or rejuvenation step in SMC is thus 𝑂(ℓ𝐺 +
max(|𝐾|, |𝐾 ′|)𝑛2+𝑛3). This term is typically dominated by the 𝑛3 cost of assessing Likelihood. There is
a broad literature in sparse approximations to Gaussian processes that reduce this complexity to 𝑂(𝑚2𝑛)
where 𝑚≪ 𝑛 is a parameter representing the size of a subsample of the full data to be used [Rasmussen
and Williams, 2006, Chapter 8]. These approximations trade off predictive accuracy with substantial

63

improvements in scalability. Quiñonero-Candela and Rasmussen [2005] show that many sparse Gaussian
process approximations correspond to well-defined probabilistic models that have different likelihood
functions than the standard Gaussian process, and so the Bayesian synthesis framework can naturally
incorporate sparse Gaussian processes by adapting the Likelihood semantics. As for the quadratic
factor 𝑂(max(|𝐾|, |𝐾 ′|)𝑛2), this scaling depends largely on the observed data: simpler patterns can
be described fewer components in the covariance expression whereas complex patterns require larger
covariance expressions.

3.6 Related Work

Synthesizing programs from data is a longstanding activity in computer science. This chapter has
established the formal foundations for Bayesian synthesis of programs in both general and context-
specific probabilistic DSLs. Chapter 2 demonstrated Bayesian synthesis for univariate time series data
in a probabilistic context-free DSL and Chapters 4–6 present Bayesian synthesis techniques in context-
sensitive DSLs for cross-sectional data, multivariate time series, and relational data. It should be noted
that the terminology of “Bayesian synthesis” in this thesis is to be understood in the sense used in
programming languages, and should not be confused with unrelated uses of the term such as in Givens
et al. [1994], Green et al. [2000], McAlinn and West [2019], and others.

This section gives a broad literature overview of related work in five related areas: (i) Bayesian syn-
thesis of probabilistic programs where the formalism and proofs in this chapter, a subset of which appear
in Saad et al. [2019a], are the first; (ii) non-Bayesian synthesis of probabilistic programs; (iii) proba-
bilistic synthesis of non-probabilistic programs; (iv) non-probabilistic synthesis of non-probabilistic
programs; (v) probabilistic structure discovery in machine learning.

Bayesian Synthesis of Probabilistic Programs

Within the literature of Bayesian synthesis, the main contributions of this chapter include

(1) Formalizing probabilistic domain-specific data modeling languages, where each expression spec-
ifies the structure and parameters of a given model within a family of probabilistic models for
a given domain.

(2) Identifying sufficient conditions on the prior and likelihood semantics of probabilistic expressions
needed to obtain a well-defined posterior distribution over DSL programs.

(3) Identifying sufficient conditions to obtain a sound Bayesian synthesis algorithm.

(4) Defining a general family of domain-specific languages generated by context-free grammars with
default semantics that ensure the posterior distribution is well defined.

(5) Presenting sound synthesis algorithms using Markov chain Monte Carlo and sequential Monte
Carlo that apply to any language generated by a context-free grammar.

(6) Presenting a specific domain-specific language—the Gaussian process language for modeling time
series data reviewed in Chapter 2—that is verified to satisfy the required soundness conditions.

Nori et al. [2015] introduce PSKETCH, a system designed to complete partial sketches of proba-
bilistic programs for modeling tabular data. The technique is based on applying sequences of program
mutations to a base program written in a probabilistic sketching language. Specifically, Nori et al.
[2015] propose to use Metropolis-Hastings sampling obtain maximum a posteriori (MAP) solutions to
the sketching problem, where the data likelihood is approximated using a mixture of Gaussians. How-
ever, the paper does not establish that the prior or posterior distributions on programs are well defined.

64

In particular, PSKETCH is formalized to use a uniform prior distribution over an unbounded space
of programs, even though there is no valid uniform probability measure over this space. Because the
posterior is defined using the prior and the marginal likelihood of all datasets is not shown to be finite,
the posterior distribution over sketches is also not well defined. The paper also asserts that the synthe-
sis algorithm converges because the MH algorithm always converges, but it does not establish that the
PSKETCH framework satisfies the properties required for MH to converge. And because the posterior
is not well defined, there is no probability distribution to which the MH algorithm can converge. More-
over, while the paper claims to use MH to determine whether a proposed program mutation is accepted
or rejected, there is no tractable algorithm that can be used to compute the reverse probability of going
back from a proposed program to an existing program, which means that MH cannot be used with the
program mutation proposals described in the paper.

Moreover, the PSKETCH system in Nori et al. [2015] is based on a probabilistic sketching language
with constructs drawn from general-purpose programming languages, including such as if-then-else, for
loops, variable assignment, and arithmetic operations. Working with these general constructs produces a
search space that is too unconstrained to yield practical solutions to real-world data modeling problems,
especially in the absence of other sources of information that can more effectively narrow the search.
As with traditional synthesis, domain-specific languages such as the ones presented in this thesis make
it possible to effectively solve automatic data modeling problems. For example, while the PSKETCH
language in Nori et al. [2015] contains general-purpose programming constructs, it does not have domain-
specific constructs that compactly encapsulate Gaussian processes or valid covariance functions.

Hwang et al. [2011] use beam search over programs in a subset of the Church probabilistic program-
ming language [Goodman et al., 2008a] for synthesizing tree-like s-expressions. The resulting search
space is so unconstrained that, as the authors note in the conclusion, the synthesis technique does not
easily scale real-world problems. This drawback highlights the benefit of controlling the search space
via an appropriate domain-specific data modeling language. Although Hwang et al. [2011] also use the
vocabulary of Bayesian synthesis, the proposed program-length prior over an unbounded program space
is not shown to always be probabilistically well formed and may not lead to a valid Bayesian posterior
distribution over programs. In addition, the stochastic approximation of the program likelihood does
not result in a sound synthesis algorithm.

Several papers in the cognitive science literature have used Bayesian inference to synthesize expres-
sions in probabilistic domain-specific languages of intuitive theories [Ullman and Tenenbaum, 2020].
For example, Goodman et al. [2008b] synthesize logical rules in a “concept language” generated by a
context-free grammar; Ullman et al. [2012] synthesize Horn clauses generated by a probabilistic Horn
clause grammar; and Ullman et al. [2018] synthesize Church expressions that define rudimentary rules
of intuitive physics. Cranefield and Dhiman [2021] apply the techniques in this chapter to synthe-
size programs for identifying social norms that govern agent interactions. Inference in these works is
performed using Markov Chain Monte Carlo sampling. Many of these works can be seen as specific
instantiations of the general framework presented in Section 3.4 for Bayesian synthesis over probabilistic
DSLs generated by context-free languages.

Non-Bayesian Synthesis of Probabilistic Programs

Ellis et al. [2015] introduce a method for synthesizing probabilistic programs by using SMT solvers
to optimize the likelihood of the observed data with a regularization term that penalizes the program
length. The research works with a domain-specific language for morphological rule learning. Perov
and Wood [2014] propose to synthesize code for simple random number generators using approximate
Bayesian computation. These two techniques are fundamentally different from the Bayesian synthesis
problem presented in this chapter. Neither technique is based on Bayesian inference and neither presents
soundness proofs or states a soundness property. Moreover, both approaches attempt to find a single

65

highest-scoring program as opposed to synthesizing ensembles of programs that approximate a posterior
distribution over probabilistic programs. As this previous research demonstrates, obtaining soundness
proofs or characterizing the uncertainty of the synthesized programs against the data generating process
is particularly challenging for non-Bayesian approaches.

Lake et al. [2015] learn probabilistic programs that solve challenging one-shot learning of visual
concepts for recognizing handwritten characters. Due to the sophisticated nature of the prior distri-
bution over probabilistic programs that produce handwritten characters, inference is performed using
a combination of discrete approximations, continuous optimization, and MCMC sampling [Lake et al.,
2015, supplementary material, Section S3], which together trade off soundness for runtime performance.
Guimerá et al. [2020] use a Bayesian framework for synthesizing mathematical expressions of noisy re-
gression functions and apply the technique to discover models from finance, systems biology, and physics
data. The prior over mathematical expressions is estimated from a corpus of 4080 expressions mined
from Wikipedia. The likelihood that an expression assigns to observed data is approximated using
the Bayesian information criterion (BIC) heuristic. It is fruitful to explore resample-move sequential
Monte Carlo learning algorithms from Section 3.3.2 for more principled, scalable, and fully-Bayesian
probabilistic program synthesis in these important problems.

Tong and Choi [2016] describe a method which uses the off-the-shelf model discovery system from
Lloyd [2014] to learn Gaussian process models and the render the models in the Stan [Carpenter et al.,
2017] probabilistic programming language. However, the approach in Tong and Choi [2016] does not
formalize the program synthesis problem; nor does it present any formal semantics; nor is it able
to extract posterior probabilities that qualitative properties hold in the data; nor does it apply to
multiple model families in a single problem domain, let alone multiple problem domains. Chasins and
Phothilimthana [2017] present a technique for synthesizing probabilistic programs of tabular datasets in
a subset of BLOG [Milch et al., 2005]. Unlike the probabilistic DSL for cross-sectional tabular data from
Chapter 4, this approach requires the user to manually specify a causal ordering among the variables.
This knowledge is rarely available for real-world data, and it is not obvious how to infer causal orderings
from observational data. Second, the technique of Chasins and Phothilimthana [2017] is based on using
linear correlation, which fail adequately capture complex relationships. Finally, the synthesis technique
uses simulated annealing not Bayesian learning, has no probabilistic interpretation, approximates the
program likelihood using mixtures of Gaussians, and does not provide a notion of soundness.

Probabilistic Synthesis of Non-probabilistic Programs

Schkufza et al. [2013] describe a technique for synthesizing high-performance X86 binaries by using
MCMC to stochastically search through a space of programs. The output is a single X86 program
which satisfies the hard constraint of correctness and the soft constraint of performance improvement.
While both the Bayesian synthesis framework in this chapter and the superoptimization technique from
Schkufza et al. [2013] can leverage MCMC algorithms to implement the synthesis, they use MCMC in
a fundamentally different way. In Schkufza et al. [2013], MCMC is used to search through a space of
deterministic programs that seek to minimize a cost function that has no probabilistic semantics. In con-
trast, Bayesian synthesis uses MCMC (or SMC) to approximately sample from a space of probabilistic
programs whose semantics specify a well-defined posterior distribution over programs.

Bayesian approaches for sampling from a posterior distribution over deterministic programs have
also been investigated. Liang et al. [2010] use adapter grammars [Johnson et al., 2006] to build a
hierarchical nonparametric Bayesian prior over programs specified in combinatory logic [Schönfinkel,
1924]. Ellis et al. [2016] describe a method to sample from a bounded program space with a uniform
prior where the posterior probability of a program is equal to zero if it does not satisfy an observed
input-output constraint, or geometrically decreasing in its length otherwise. This method is used to
synthesize arithmetic operations, text editing routines, and list manipulation programs. Both Liang

66

et al. [2010] and Ellis et al. [2016] specify prior distributions over programs similar to the prior in
this chapter. However, these two techniques assume that the synthesized programs have deterministic
input-output behavior and cannot be easily extended to synthesize programs that have probabilistic
input-output behavior.

Lee et al. [2018] present a technique to speed up program synthesis of non-probabilistic programs,
where A* search is used to enumerate programs that satisfy a set of input-output constraints in order of
decreasing prior probability. The prior distribution over programs is itself learned using a probabilistic
higher-order grammar. The technique is used to synthesize programs in domain-specific languages
for bit-vector, circuit, and string manipulation tasks. Similar to the Bayesian synthesis framework, Lee
et al. [2018] use PCFG priors to specify domain-specific languages. However the fundamental differences
are that the synthesized programs in Lee et al. [2018] are non-probabilistic and the objective is to
enumerate valid programs sorted by their prior probability, while in Bayesian synthesis the programs
are probabilistic and the objective is to sample programs according to their posterior probabilities.

Non-probabilistic synthesis of non-probabilistic programs

Over the last decade program synthesis has become a highly active area of research in programming
languages, and a full literature review is too vast to summarize here. Key techniques include deductive
logic with program transformations [Burstall and Darlington, 1977, Manna and Waldinger, 1979, 1980],
genetic programming [Koza, 1992, Koza et al., 1997], solver and constraint-based methods [Solar-Lezama
et al., 2006, Gulwani et al., 2011, Gulwani, 2011, Alur et al., 2013, Feser et al., 2015, Kim et al., 2021],
and neural networks [Graves et al., 2014, Reed and de Freitas, 2016, Balog et al., 2017, Chaudhuri
et al., 2021]. These approaches have generally focused on areas where uncertainty is not essential or
relevant to the problem being solved. Synthesis tasks in these works apply to programs that exhibit
deterministic input-output behavior, typically for discrete problem domains. The usual formulation
is to define an “optimal” solution and the goal of program synthesis to find this solution or some
approximation of it. In contrast, in Bayesian probabilistic program synthesis, the problem domain
is fundamentally about automatically learning models of non-deterministic data generating processes
given a set of noisy observations. Given this characteristic of the problem domain, the solutions from
Bayesian synthesis capture uncertainty at two levels. First, each synthesized probabilistic program
exhibits noisy, non-deterministic input-output behavior. Second, the ensemble of synthesized programs
characterizes uncertainty over the structure and parameters of expressions in the DSL, which is inherent
in real-world empirical phenomenon.

Probabilistic Structure Discovery

Researchers have developed several probabilistic techniques for discovering statistical model structures
from observed data [Tenenbaum et al., 2011]. Examples include Bayesian network structures [Friedman
and Koller, 2003, Mansinghka et al., 2006]; sparse deep graphical models [Adams et al., 2010]; matrix-
composition models [Grosse et al., 2012]; multivariate data tables [Mansinghka et al., 2016], further
discussed in Chapter 4; univariate time series [Wilson and Adams, 2013, Duvenaud et al., 2013]; multi-
variate time series [Saad and Mansinghka, 2018], further discussed in Chapter 5; relational data [Kemp
et al., 2006, Saad and Mansinghka, 2021], further discussed in Chapter 6. Several of these methods also
approach the structure learning problem in terms of a hierarchical Bayesian inference problem. The
formalism presented in this chapter helps explain, formalize, and unify these methods in terms of syn-
thesizing programs in probabilistic domain-specific data modeling languages. The formalisms establish
general conditions for Bayesian synthesis over structured expressions to be well defined and introduces
sound synthesis algorithms that apply to a broad class of DSLs produced by context-free grammars.
The learned model ensemble can then be used to compute the approximate posterior probability that
various structures are present or absent in the data and a full distribution over predicted values. This

67

capability rests on a distinctive aspect of the presented formalism, namely that soundness is defined in
terms of sampling programs from a distribution that converges to the Bayesian posterior, as opposed
to finding a single “highest scoring” program. These capabilities improve upon the Gaussian process
learning technique in Duvenaud et al. [2013], for example, which leverages greedy search for inferring
covariance structure, does not support online learning with streaming data, and does not rest on any
notion of soundness. The workflow in Figure 3.1 shows one way that probabilistic programming lan-
guages makes structure discovery techniques more usable. Specifically, the proposed approach is to
translate programs from domain-specific languages to probabilistic programming languages (such as
SPPL, described in Chapter 7) that have built-in constructs for solving probabilistic inference queries,
instead of developing new inference engines for each model class.

68

Chapter 4

Synthesizing Models for Cross-Sectional
Data

Dilbert “We need 3 more programmers.”
Boss “Use agile programming methods.”
Dilbert “Agile programming doesn’t just mean

doing more work with fewer people.”
Boss “Find me some words that DO mean

that and ask again.”
Scott Adams

This chapter describes a probabilistic domain-specific modeling language for cross-sectional data
tables called MultiMixture. Programs in this DSL specify generative models of data tables, where rows
represent different “individuals” and columns represent “variables” or “attributes”. A central advantage
of learning generative models for data tables is that they can be reused multiple times to automate many
data analysis tasks that repeatedly arise in applications, for example: (i) computing the probability
of a predicate on the variables; (ii) imputing likely values of missing cells; (iii) quantifying mutual
information between groups of variables, possibly conditioned on others; (iv) finding individuals that
are similar to a given record of interest; (v) identifying anomalous entries; and (vi) generating realistic
synthetic data. A second advantage is that all queries are formally represented as functionals (Eqs. (3.9)
and (3.10)) of a coherent joint probability distribution over model structure, latent variables, and
data. This approach avoids the need for expensive hypothesis tests of significance or multiple testing
corrections across many queries as in frequentist analyses.

A key challenge in modeling cross-sectional data tables is designing a family of models that is
flexible enough to emulate a broad range of data generating process while also being tractable enough
for Bayesian synthesis and fast querying. Traditional approaches based on learning the structure of
Bayesian networks [Friedman and Koller, 2003, Daly et al., 2011] specify a vastly unconstrained space
of directed graphical models that is computationally infeasible to search effectively. In addition, the
resulting Bayesian network models cannot always be queried efficiently. The approach taken here is
to instead synthesize generative models in a domain-specific language for sum-product networks [Poon
and Domingos, 2011], which belong to the class of probabilistic circuits [Darwiche, 2021] that specify
“deep” probabilistic mixture models. The MultiMixture DSL goes beyond previous work in structure
learning for sum-product networks [Gens and Domingos, 2013, Vergari et al., 2019, Trapp et al., 2019] by
introducing a Bayesian nonparametric prior over the structure. The variables are first nonparametrically
divided into independent groups (Product node) using a Chinese restaurant process and the rows are
then nonparametrically divided (Sum nodes) using Dirichlet process mixture models.

69

Syntax Rules

𝑛 ::= number of rows
𝑚 ::= number of columns
𝑎 ∈ {1, . . . ,𝑚} 𝑠 ∈ {1, . . . , 𝑛} 𝜇 ∈ R 𝜎 ∈ R>0 𝛾 ∈ R>0 𝑤 ∈ [0, 1]

𝑃 ::= (factorize 𝑀1) | (factorize 𝑀1 𝑀2) | · · · | (factorize 𝑀1 . . . 𝑀𝑚)

𝐵 ::= (sum 𝐶1) | (sum 𝐶1 𝐶2) | · · · | (sum 𝐶1 . . . 𝐶𝑛)

𝐶 ::= (product 𝑠 𝑉1) | (product 𝑠 𝑉1 𝑉2) | · · · | (product 𝑠 𝑉1 . . . 𝑉𝑚)

𝑉 ::= (leaf 𝑎 𝐷)

𝐷 ::= (gaussian 𝜇 𝜎) | (poisson 𝛾) | (bernoulli 𝑤) | . . .

Prior Denotation

Prior J(factorize 𝑀1 . . . 𝑀𝑘)K ::= 1/𝑚!
∏︀𝑘

𝑖=1 Prior J𝑀𝑘K (𝑘 = 1, . . . ,𝑚)

Prior J(sum 𝐶1 . . . 𝐶𝑘)K ::= (𝑘 − 1)!/𝑛!
∏︀𝑘

𝑖=1 Prior J𝐶𝑘K (𝑘 = 1, . . . , 𝑛)

Prior J(product 𝑠 𝑉1 . . . 𝑉𝑘)K ::= (𝑠− 1)!
∏︀𝑘

𝑖=1 Prior J𝑉𝑖K (𝑘 = 1, . . . ,𝑚)

Prior J(leaf 𝑎 𝐷)K ::= Prior J𝐷K

Prior J(gaussian 𝜇 𝜎)K ::=

√︂
𝜆

𝜎22𝜋

𝛽𝛼

Γ(𝛼)

(︂
1

𝜎2

)︂𝛼+1

exp

(︂−(2𝛽 + 𝜆(𝜇− 𝜂)2)

2𝜎2

)︂

Prior J(poisson 𝛾)K ::=
𝜉𝜈𝛾𝜈−1𝑒−𝜉𝛾

Γ(𝜈)

Prior J(bernoulli 𝑤)K ::= 𝑤𝜏−1(1− 𝑤)𝜅−1/𝐵(𝜏, 𝜅)

where 𝜆, 𝛼, 𝛽, 𝜈, 𝜉, 𝜏, 𝜅 are statistical constants

Likelihood Denotation

Likelihood J(factorize 𝑀1 . . . 𝑀𝑘)K ((𝑛,𝑚), 𝑥) ::=
∏︀𝑘

𝑖=1 Likelihood J𝑀𝑘K ((𝑛,𝑚), 𝑥)

(𝑘 = 1, . . . ,𝑚)

Likelihood J(sum 𝐶1 . . . 𝐶𝑘)K ((𝑛,𝑚), 𝑥) ::=
∏︀𝑛

𝑖=1

∑︀𝑘
𝑗=1 Likelihood J𝐶𝑗K (𝑥[𝑖, :])

(𝑘 = 1, . . . , 𝑛)

Likelihood J(product 𝑠 𝑉1 . . . 𝑉𝑘)K ((𝑛,𝑚), 𝑥) ::=
𝑠

𝑛

∏︀𝑘
𝑖=1 Likelihood J𝑉𝑖K ((𝑛,𝑚), 𝑥)

(𝑘 = 1, . . . ,𝑚)

Likelihood J(leaf 𝑎 𝐷)K ((𝑛,𝑚), 𝑥) ::= Likelihood J𝐷K (𝑥[1, 𝑎])

Likelihood J(gaussian 𝜇 𝜎)K ((𝑛,𝑚), 𝑥) ::=
1√
2𝜋𝜎2

exp

(︂
−𝑥[1, 1]− 𝜇√

2𝜎

)︂2

Likelihood J(poisson 𝛾)K ((𝑛,𝑚), 𝑥) ::=

{︃
𝛾𝑥[1,1]𝑒−𝛾/(𝑥[1, 1]!) if 𝑥[1, 1] ∈ Z≥0

0 otherwise

Likelihood J(bernoulli 𝑤)K ((𝑛,𝑚), 𝑥) ::=

{︃
𝑤𝑥[1,1](1− 𝑤)(1−𝑥[1,1]) if 𝑥[1, 1] ∈ {0, 1}
0 otherwise

Listing 4.1: MultiMixture DSL for cross-sectional data tables. This DSL is context-sensitive as the
constituent expressions are subject to several syntactic constraints described in the main text.

70

(factorize
(sum
(product 6 (leaf 2 (gaussian 0.6 2.1)))
(product 4 (leaf 2 (gaussian 2.3 1.7))))

(sum
(product 2 (leaf 1 (gaussian 7.6 1.9)

(leaf 3 (gaussian -1.2 12))))
(product 3 (leaf 1 (gaussian 1.1 0.5)

(leaf 3 (gaussian 8.2 1))))
(product 5 (leaf 1 (gaussian -0.6 2.9)

(leaf 3 (gaussian 4.2 4))))))

(a) DSL Program

×

+

×

𝑁(4.2, 4)
𝑋3

𝑁(−0.6, 2.9)
𝑋1

×

𝑁(8.2, 1)
𝑋3

𝑁(1.1, 0.5)
𝑋1

×

𝑁(−1.2, 12)
𝑋3

𝑁(7.6, 1.9)
𝑋1

.2
.3

.5

+

𝑁(2.6, 1.7)
𝑋2

𝑁(0.6, 2.1)
𝑋2

.6 .4

(b) Sum-Product Network Representation

Figure 4.1: Representing a program in the MultiMixture DSL as a sum-product network.

4.1 MultiMixture DSL for Modeling Data Tables

Following the terminology of probabilistic DSLs from Definition 3.1, the input space 𝑇 is all pairs
𝑡 ::= (𝑛,𝑚) of positive integers and the corresponding data space 𝑋𝑡 is a matrix 𝑥 with 𝑛 columns
and 𝑚 rows. Each column 𝑐 represents a distinct random variable and each row [𝑥[𝑟, 1], . . . , 𝑥[𝑟,𝑚]]
(for 𝑟 = 1, . . . , 𝑛) represents a joint instantiation of all the 𝑚 random variables, possibly with missing
values. The DSL describes the data generating process for cells in this table using a variant of the “Cross-
Categorization” model [Shafto et al., 2011, Mansinghka et al., 2016] which was originally introduced
in the cognitive science and machine learning literature and later integrated into multiple Bayesian
database systems [Mansinghka et al., 2015, Saad and Mansinghka, 2016a,b, 2017, Saad et al., 2017,
Schaechtle et al., 2022].

Listing 4.1 shows the syntax , Prior denotation, and Likelihood denotation for the MultiMixture
DSL. The syntax is parameterized by (𝑛,𝑚) to ensure the normalization property in Condition 3.6.
Each program in this DSL represents a sum-product network [Poon and Domingos, 2011] with three
levels, as shown in the example from Figure 4.1. Sum-product networks are a type of probabilistic
graphical model that specify deep probabilistic mixtures—this class of models will be explained in
Chapter 7. Briefly, each leaf node in a sum-product network represent a primitive random variable
such as a normal, Poisson, or geometric distribution. Each sum node represents a probabilistic mixture
model, whose weights are written along directed edges to the children. Each product node represents
probabilistic factorization (independence). For a 3× 3 data table, there are possibly structures

In terms of the sum-product network representation in Figure 4.1b, each DSL program specifies a
different structure and set of parameters for modeling the data table, which together determine:

1. The number of branches under the product node at the root (between 1 and 𝑚).
2. An assignment of each of the 𝑚 variables to exactly one subtree of the product at the root.
3. The number of branches under each sum node in the second level (between 1 and 𝑛).
4. The weights of the children of all the sum nodes.
5. The numeric parameters at the leaf nodes.

Figure 4.2 shows an enumeration of all 57 structures in the MultiMixture DSL for modeling a data
table with 𝑚 = 3 columns and 𝑛 = 3 rows. More generally, the number of possible structures for an
𝑛×𝑚 data table is

∑︁

𝑏∈𝐵(𝑚)

𝑛|𝑏| =
𝑚∑︁

𝑘=1

{︂
𝑚
𝑘

}︂
𝑛𝑘, (4.1)

where 𝐵(𝑚) is the set of all partitions of {1, . . . ,𝑚} and
{︂
𝑚
𝑘

}︂
is a Stirling number of the second kind.

71

×

+

×

𝑋31𝑋21𝑋11

×

+

×

𝑋32𝑋22𝑋12

×

𝑋31𝑋21𝑋11

×

+

×

𝑋33𝑋23𝑋13

×

𝑋32𝑋22𝑋12

×

𝑋31𝑋21𝑋11

×

+

×

𝑋31𝑋21

+

×

𝑋11

×

+

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋11

×

+

×

𝑋33𝑋23

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋11

×

+

×

𝑋31𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋33𝑋23

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋31𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋33𝑋23

×

𝑋32𝑋22

×

𝑋31𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋21𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋21𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋21𝑋11

×

+

×

𝑋31

+

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋31

+

×

𝑋23𝑋13

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋23𝑋13

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋23𝑋13

×

𝑋22𝑋12

×

𝑋21𝑋11

×

+

×

𝑋31𝑋11

+

×

𝑋21

×

+

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋21

×

+

×

𝑋33𝑋13

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋21

×

+

×

𝑋31𝑋11

+

×

𝑋22

×

𝑋21

×

+

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋22

×

𝑋21

×

+

×

𝑋33𝑋13

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋22

×

𝑋21

×

+

×

𝑋31𝑋11

+

×

𝑋23

×

𝑋22

×

𝑋21

×

+

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋23

×

𝑋22

×

𝑋21

×

+

×

𝑋33𝑋13

×

𝑋32𝑋12

×

𝑋31𝑋11

+

×

𝑋23

×

𝑋22

×

𝑋21

×

+

×

𝑋31

+

×

𝑋21

+

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋11

×

+

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋11

×

+

×

𝑋31

+

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

×

+

×

𝑋33

×

𝑋32

×

𝑋31

+

×

𝑋23

×

𝑋22

×

𝑋21

+

×

𝑋13

×

𝑋12

×

𝑋11

Figure 4.2: The space of all 57 structures in the MultiMixture DSL for a 3×3 cross-sectional data table.

Listing 4.1 shows only three primitive distributions, whereas the reference implementation (Sec-
tion 1.4) contains eight primitives—Bernoulli, beta, categorical, exponential, Gaussian, geometric,
Poisson, and von Mises—for modeling a range statistical data types. The Prior semantics recursively
describes the joint probability of all terms in a MultiMixture expression. The Likelihood semantics
decompose the full probability of an 𝑛 ×𝑚 data table 𝑥 into the cell wise probabilities, computed by
summing out each mixture component. MultiMixture improves on Cross-Categorization by using a sum-
product network representation that removes exchangeable coupling between the rows, which makes the
model easier to interpret and easier to translate into the SPPL system presented in Chapter 7.

4.2 Algorithms for Posterior Inference

Recall from Problem 3.13 that the goal of Bayesian synthesis is to generate expressions 𝐸 ∈ ℒ given
an observation 𝑂 ::= (𝑡, 𝑥). In MultiMixture, 𝑡 ::= (𝑛,𝑚) specifies the dimensions of the data table 𝑥.
As discussed in Section 3.3, both MCMC and resample-move SMC algorithms for Bayesian synthesis
require an implementation of the procedure Generate-New-Expression(𝑂,𝐸), which returns a new
expression 𝐸′ from the current expression 𝐸 and observation 𝑂. Figure 4.3 shows five examples of
program mutation operators that are used to generate new expressions in the MultiMixture DSL.
These mutations are interleaved over the course of inference. For the MultiMixture DSL, the likelihood
ratio (3.24) can be efficiently computed without revisiting the entire data, by using standard properties
of sampling-based inference for Dirichlet process mixture models [Escobar and West, 1995, Neal, 2000].
A formal description of the transition operators, which are based on the Gibbs kernels described in
Mansinghka et al. [2016, Section 2.4], as well as correctness proofs are beyond the scope of this thesis.

72

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

→

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1))

(leaf 3 (gaussian -0.3 0.9)))
(product 4 (leaf 1 (gaussian 0.3 1.7)

(leaf 3 (gaussian -6.1 4.8)))
(sum
(product 10 (leaf 2 (gaussian 7.6 1.9)))))

(a) Move a variable into an existing sum node and sample new distribution parameters.

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

→

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))))

(sum
(product 7 (leaf 3 (gaussian 8.4 0.9)))
(product 3 (leaf 3 (gaussian 0.1 2.9)))))

(b) Move a variable into a new sum node of its own and sample new distribution parameters.

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

→

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 8.3 0.6))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

(c) Change the parameters of a variable’s distribution at a leaf node.

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

→

(factorize
(sum
(product 7 (leaf 1 (gaussian 0.6 2.1)))
(product 3 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

(d) Within one sum node, increase the weight of a branch by 1 and decrease the weight of another by 1.

(factorize
(sum
(product 6 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

→

(factorize
(sum
(product 5 (leaf 1 (gaussian 0.6 2.1)))
(product 4 (leaf 1 (gaussian 0.3 1.7)))
(product 1 (leaf 1 (gaussian -5.0 2.3))))

(sum
(product 10 (leaf 2 (gaussian 7.6 1.9))

(leaf 3 (gaussian -2.6 7.7)))))

(e) Within one sum node, create a new branch with weight 1 and decrease the weight of an existing branch by 1.

Figure 4.3: Examples of transition operators applied to a program in the MultiMixture DSL during
Bayesian synthesis via MCMC or resample-move SMC.

73

4.3 Evaluation

MultiMixture DSL programs produced by Bayesian synthesis are evaluated in three ways. Section 4.3.1
checks how well the learned DSL programs are able to detect complex nonlinear dependence structures
between multiple pairs of variables obtained from datasets in the UCI Machine Learning repository. Sec-
tion 4.3.2 computes the predictive accuracy on held-out observations using MultiMixture DSL programs
learned from data produced from a benchmark of 14 ground-truth probabilistic programs. Section 4.3.3
compares the quality of synthetic data generated from synthesized MultiMixture programs to those from
statistical and deep learning baselines on a dataset of real-world earth satellites. All three evaluations
include distributions with discrete and continuous variables. The results confirm that the synthesized
MultiMixture programs deliver accurate solutions for all these data analysis tasks.

4.3.1 Detecting Dependence Relationships

A central goal of data analysis for cross-sectional data is identifying predictive relationships between
variables [Ezekiel, 1930]. Recall from Section 4.1 that each MultiMixture program specifies a partition
of the 𝑚 variables into independent groups that factorize under the product node at the root. In
Figure 4.1, for example, 𝑋2 is independent of 𝑋1 and 𝑋3. Figure 4.4 shows scatter plots for sixteen
pairs of variables selected from six datasets in the UCI machine learning repository [Dheeru and Graff,
2017]: automobile data (26 variables), wine data (14 variables), hepatitis data (20 variables), heart
disease data (15 variables), and census data (15 variables). The variable pairs exhibit a broad class
of relationships, including linear, nonlinear, heteroskedastic, and multi-modal patterns. Four of the
benchmarks, shown in the final row, have no predictive relationship. Table 4.1 compares the ability of
the MultiMixture programs produced by Bayesian synthesis to detect dependencies between variables
to that of Pearson correlation. Using Eq. (3.9) from Section 3.2.2, a dependence between a pair of
variables is reported whenever a 80% of the programs in the ensemble assign these variable to the same
subexpression under the root. For Pearson correlation, dependence is reported if the value exceeds 0.20
and is statistically significant at the 5% level, with Bonferroni correction for multiple testing. The last
two columns in Table 4.1 show these numbers in the final columns. MultiMixture programs deliver
10/12 true positives and 4/4 true negatives, whereas Pearson correlation delivers 4/12 true positives
and 4/4 true negatives. The 8/12 false negatives from Pearson correlation are for variable pairs that
exhibit nonlinear, bimodal, or heteroskedastic relationships. The evaluation in Section 4.3.3 shows that
MultiMixture programs can not only detect the presence of complex predictive relationships between
variables but also generate synthetic data that matches patterns in the observed data.

4.3.2 Estimating Probabilities

Another central goal of data analysis for cross-sectional data tables is learning probability distributions
that can be used to accurately compute the probability (density) of new data, which is a task known as
“density estimation” [Silverman, 1986]. Accurate density estimation enables several tasks, as discussed
in the beginning of this chapter. After synthesizing programs in the MultiMixture DSL, the probability
of new data records is computed by translating the programs into SPPL (right column of 3.1) and using
the exact inference engine to automatically solve density evaluation queries. Density estimates from
MultiMixture programs are compared to the widely used multivariate kernel density estimation (KDE)
method from Racine and Li [2004] which supports both continuous and discrete data.

The quality of the density estimates are assessed on a benchmark of 14 programs adapted from Chasins
and Phothilimthana [2017], listed in the first column in Table 4.2. For each benchmark problem, a train-
ing set of 10,000 data records was generated from a ground-truth probabilistic program expressed in the
BLOG language [Milch et al., 2005]. These data records were used to learn MultiMixture programs and
to fit KDE models. To measure how well each method captures the true distribution, 10,000 new data

74

Table 4.1: Comparison of detected dependencies for the 16 variable pairs in Figure 4.4.
Detected Dependence Structure

Variable 1 Variable 2 True Dependence Structure Pearson Correlation Bayesian Synthesis

(a) flavanoids color-intensity X linear + bimodal × (0.03) X (0.97)
(b) A02 A07 X linear + heteroskedastic × (0.16) X (0.89)
(c) A02 A03 X linear + bimodal + heteroskedastic × (0.03) × (0.66)
(d) proline od280-of-wines X nonlinear + missing regime × (0.09) X (0.97)
(e) compression-ratio aspiration Xmean shift × (0.07) X (0.98)
(f) age income X different group tails × (0.06) X (0.90)
(g) age varices X scale shift × (0.00) X (0.90)
(h) capital-gain income X different group tails × (0.05) × (0.77)
(i) city-mpg highway-mpg X linearly increasing X (0.95) X (1.00)
(j) horsepower highway-mpg X linearly decreasing X (0.65) X (1.00)
(k) education-years education-level X different group means X (1.00) X (1.00)
(l) compression-ratio fuel-type X different group means X (0.97) X (0.98)
(m) cholesterol max-heart-rate × none (+ outliers) × (0.00) × (0.08)
(n) cholesterol st-depression × none (+ outliers) × (0.00) × (0.00)
(o) blood-pressure sex × none × (0.01) × (0.26)
(p) st-depression electrocardiography × none × (0.04) × (0.00)

0 1 2 3 4 5 6

flavanoids

0

2

4

6

8

10

12

14

co
lo

r-
in

te
ns

ity

Dataset: wine

(a) Linear + Bimodal

10 20 30 40 50 60 70 80

A02

−5

0

5

10

15

20

25

A
07

Dataset: credit

(b) Linear + Heteroskedastic

10 20 30 40 50 60 70 80

A02

−5

0

5

10

15

20

25

30

A
03

Dataset: credit

(c) Bimodal + Heteroskedastic

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

od280-od315-of-diluted-wines

200

400

600

800

1000

1200

1400

1600

1800

pr
ol

in
e

Dataset: wine

(d) Missing Regime

6 8 10 12 14 16 18 20 22 24

compression-ratio

std

turbo

as
pi

ra
tio

n

Dataset: automobiles

(e) Mean Shift

10 20 30 40 50 60 70 80 90

age

¡=50K

¿50K

in
co

m
e

Dataset: census

(f) Scale Shift

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

capital-gain ×105

¡=50K

¿50K

in
co

m
e

Dataset: census

(g) Different Tails

0 10 20 30 40 50 60 70 80 90

age

2.0

1.0

va
ric

es

Dataset: hepatitis

(h) Different Tails

10 15 20 25 30 35 40 45 50 55

city-mpg

10

20

30

40

50

60

hi
gh

w
ay

-m
pg

Dataset: automobiles

(i) Linearly Increasing

0 50 100 150 200 250 300 350

horsepower

10

20

30

40

50

60

hi
gh

w
ay

-m
pg

Dataset: automobiles

(j) Linearly Decreasing

0 2 4 6 8 10 12 14 16 18

education-num

10th
11th
12th

1st-4th
7th-8th

9th
Assoc-acdm

Assoc-voc
Bachelors
Doctorate

HS-grad
Masters

Preschool
Prof-school

Some-college

ed
uc

at
io

n

Dataset: census

(k) Different Group Means

6 8 10 12 14 16 18 20 22 24

compression-ratio

diesel

gas

fu
el

-ty
pe

Dataset: automobiles

(l) Different Group Means

100 200 300 400 500 600

cholesterol

60

80

100

120

140

160

180

200

220

m
ax

-h
ea

rt
-r

at
e

Dataset: disease

(m) No Dependence + Outliers

−1 0 1 2 3 4 5 6 7

st-depression

0.0

1.0

2.0

re
st

in
g-

el
ec

tro
ca

rd
io

gr
ap

hy

Dataset: disease

(n) No Dependence + Outliers

80 100 120 140 160 180 200 220

resting-blood-pressure

0.0

1.0

se
x

Dataset: disease

(o) No Dependence

100 200 300 400 500 600

cholesterol

−1

0

1

2

3

4

5

6

7

st
-d

ep
re

ss
io

n

Dataset: disease

(p) No Dependence

Figure 4.4: Sixteen variable pairs in the UCI repository that exhibit various dependence structures.

75

Table 4.2: Median absolute error of estimates of the log probability of held-out data using kernel density
estimation and Bayesian synthesis for 14 density estimation benchmarks.

Median Absolute Error

Distributions Kernel Density Estimation Bayesian Synthesis

biasedtugwar Discrete–Continuous 1.58× 10−1 3.13× 10−2

burglary Discrete 4.25× 10−1 1.45× 10−3

csi Discrete 1.00× 10−1 4.35× 10−4

easytugwar Discrete–Continuous 2.96× 10−1 9.96× 10−2

eyecolor Discrete 4.69× 10−2 5.31× 10−3

grass Discrete–Continuous 3.91× 10−1 4.49× 10−2

healthiness Discrete 1.35× 10−1 3.00× 10−3

hurricane Discrete 1.30× 10−1 2.11× 10−4

icecream Discrete–Continuous 1.51× 10−1 7.07× 10−2

mixedCondition Continuous 1.06× 10−1 1.43× 10−2

multipleBranches Continuous 4.12× 10−2 1.22× 10−2

students Discrete–Continuous 1.74× 10−1 5.47× 10−2

tugwarAddition Discrete–Continuous 2.60× 10−1 1.38× 10−1

uniform Continuous 2.72× 10−1 1.26× 10−1

−8 −7 −6 −5 −4 −3 −2 −1 0

True Log Likelihood

−8

−7

−6

−5

−4

−3

−2

−1

0

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

csi

−16−14−12−10 −8 −6 −4 −2

True Log Likelihood

−16

−14

−12

−10

−8

−6

−4

−2

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

easytugwar

−10 −8 −6 −4 −2

True Log Likelihood

−10

−8

−6

−4

−2

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d
eyecolor

−14−12−10 −8 −6 −4 −2 0

True Log Likelihood

−14

−12

−10

−8

−6

−4

−2

0

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

grass

−10 −8 −6 −4 −2

True Log Likelihood

−10

−8

−6

−4

−2

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

healthiness

−14 −12 −10 −8 −6 −4 −2

True Log Likelihood

−14

−12

−10

−8

−6

−4

−2

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

multipleBranches

−18−16−14−12−10 −8 −6 −4

True Log Likelihood

−18

−16

−14

−12

−10

−8

−6

−4

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

students

−6.0 −5.5 −5.0 −4.5 −4.0

True Log Likelihood

−6.0

−5.5

−5.0

−4.5

−4.0

P
re

di
ct

iv
e

L
og

L
ik

el
ih

o
o

d

uniform

Figure 4.5: Comparing ground-truth probabilities of held-out data to estimated probabilities according
to synthesized programs, for eight of the 14 density estimation benchmarks in Table 4.2. Each dot
represents one held-out observation. The error in each estimated probability is the horizontal distance
between the diagonal blue line and the dot. Error bars are computed across the ensemble of synthesized
programs. In most cases, the estimates are most accurate and certain in the bulk of the distribution
and are less accurate and certain in the tails.

records were used to assess the held-out predictive probabilities according to KDE and MultiMixture.
To compute the estimation errors, the predictive probabilities were compared to the actual probabilities
from the ground-truth BLOG programs used to generate the training data. The results in Table 4.2

76

Name Country of Operator Operator Owner Users Purpose Class of Orbit Type of Orbit
1 Prometheus 1A USA Los Alamos Nati Military Technology Develo LEO Sun-Synchronous
2 Eutelsat 28A Multinational European Teleco Commercial Communications GEO NaN
3 SMDC-ONE 1.2 USA U.S. Army Space Military Technology Develo LEO NaN
4 Lacrosse/Onyx USA National Reconn Military Surveillance LEO Intermediate
5 SMOS (Soil Mo ESA Centre National Government Earth Observation LEO Sun-Synchronous
6 Compass G-11 China (PR) Chinese Defense Military Navigation/Global GEO NaN
7 Echostar 6 USA Echostar Techno Commercial Communications GEO NaN
8 INMARSAT 4 F2 United Kingdom INMARSAT, Ltd. Commercial Communications GEO NaN
9 Eutelsat 25C Multinational European Teleco Commercial Communications GEO NaN
10 Vinasat 2 Vietnam Vietnamese Post Government Communications GEO NaN

Perigee km Apogee km Eccentricity Period minutes Launch Mass kg Dry Mass kg Power watts
1 500 506 0.00044 94.68 NaN NaN NaN
2 35788 35794 0.00007 1436.10 2950 1375 5900
3 483 789 0.02184 97.40 3 NaN NaN
4 574 676 0.00729 97.21 14500 NaN NaN
5 759 760 0.00007 100.00 658 630 1065
6 35776 35799 0.00027 1436.15 2300 NaN NaN
7 35775 35798 0.00027 1436.12 3700 1493 11000
8 35773 35800 0.00032 1436.11 5458 NaN 13000
9 35780 35790 0.00012 1436.04 3170 1900 5900
10 35742 35776 0.00040 1434.69 2970 NaN NaN

Date of Launch Anticipated Lifetime Contractor Launch Site Launch Vehicle Longitude Radians Inclination radians
1 41597 NaN Los Alamos Nation Wallops Island Fl Minotaur 1 NaN 0.707033
2 36958 12 Alcatel Space Ind Guiana Space Cent Ariane 5 0.498466 0.001222
3 41165 NaN Miltec Vandenberg AFB Atlas 5 NaN 1.127483
4 36755 9 Lockheed Martin A Vandenberg AFB Titan IV NaN 1.186824
5 40119 3 Thales Alenia Spa Plesetsk Cosmodro Breeze KM NaN 1.717404
6 40963 8 Space Technology Xichang Satellite Long March 3A 1.029744 0.032638
7 36721 12 Lockheed Martin M Cape Canaveral Atlas 2 AS -1.269029 0.001222
8 38664 15 EADS Astrium Sea Launch (Odyss Zenit 3SL -0.920836 0.040666
9 37580 12 Alcatel Space Ind Cape Canaveral Atlas 2 AS 0.445059 0.000349
10 41044 15 Lockheed Martin C Guiana Space Cent Ariane 5 ECA 2.300344 0.001396

Table 4.3: Ten records from the satellites dataset showing 21 numeric and nominal variables.

show that the synthesized programs deliver more accurate density estimates, with improvement ranging
between 10x–1000x. Moreover, an advantage of Bayesian synthesis over frequentist methods like KDE
is that the ensemble of synthesized programs makes it possible to approximate the full posterior dis-
tribution over model structure and parameters, which can be used to compute error bars for predicted
probability values. In contrast, KDE only gives point estimates of predictive probabilities that are not
associated with any measure of uncertainty. Figure 4.5 shows that the reported uncertainties around
the predictions are generally well calibrated, in the sense that the error bars are wider for held-out
data records where the estimates are less accurate. The uniform benchmark is the most challenging.
Because the MultiMixture DSL does not contain a primitive uniform distribution over a continuous do-
main, it must form an approximation using a mixture of one of the eight existing nonuniform primitives
mentioned in Section 4.1, which requires a very large number of components approximate accurately.

4.3.3 Generating Synthetic Data

Synthetic data generation is an emerging application area of machine learning where the goal is to
simulated “virtual” datasets that accurately emulate the statistical characteristics of an observed dataset.
The ability to learn accurate synthetic data generators has broad applications in privacy [Near and
Darais, 2021], software testing and reliability analysis [Soltana et al., 2017], and generating new training
data to improve the performance of machine algorithms [Jahanian et al., 2021].

This evaluation assess the quality of synthetic data produced by MultiMixture programs that are
learned from an open-science dataset of 1167 earth satellites [Union of Concerned Scientists, 2016].
Table 4.3 shows ten example satellite data records and all 21 variables. There are numeric variables,
such as the orbital period and launch mass; nominal variables, such as the class and type of orbit; and
arbitrary patterns of missing data (NaN). Figure 4.6 shows a snapshot of online Bayesian synthesis of
MultiMixture programs at various iterations of resample-move SMC inference (Algorithm 3.2), where

77

(a) 1 Observed Row

(b) 7 Observed Rows

(c) 9 Observed Rows

(d) 12 Observed Rows

(e) 90 Observed Rows

Figure 4.6: Online Bayesian synthesis in the MultiMixture DSL using resample-move sequential Monte
Carlo for the satellites data in Table 4.3. Each panel shows a graphical representation of the ensemble
of synthesized DSL programs and the subset of the data table observed so far (1167 total rows).

78

0 80000 160000

Apogee km

0

15000

30000

P
er

ig
ee

km

GaussianCopula
(16.6 mins)

0 80000 160000

Apogee km

CTGAN
(16.1 mins)

0 80000 160000

Apogee km

TVAE
(15.8 mins)

0 80000 160000

Apogee km

Bayesian Synthesis
(<10 sec)

0 80000 160000

Apogee km

0

1500

3000

4500

P
er

io
d

m
in

ut
es

0 80000 160000

Apogee km
0 80000 160000

Apogee km
0 80000 160000

Apogee km

0 8000 16000

Power watts

0

8

16

24

A
nt

ic
ip

at
ed

L
if

et
im

e

0 8000 16000

Power watts
0 8000 16000

Power watts
0 8000 16000

Power watts

0 2500 5000

Period minutes

LEO

GEO

Elliptical

MEO

C
la

ss
of

O
rb

it

0 2500 5000

Period minutes
0 2500 5000

Period minutes
0 2500 5000

Period minutes

Observed Data Synthetic Data

Figure 4.7: Comparison of synthetic data quality. Each row shows observed data (black) for a pair
of satellite variables and synthetic data (orange) produced by various methods. Bayesian synthesis of
MultiMixture programs is faster and produces more accurate data as compared to the baselines.

79

the rejuvenation operators are shown in Figure 4.3. The structure of the synthesized programs in the
ensemble adapts to handle the increasing statistical complexity as more satellite records are observed,
which is enabled by the nonparametric Prior denotation in Listing 4.1. In particular, the number of
possible structures (4.1) grows with the number 𝑛 of observed rows. After observing all 1167 rows,
synthetic data is generated by sampling from the Likelihood defined in Listing 4.1.

Baselines Figure 4.7 compares synthetic data for four pairs of satellite variables generated using four
techniques: multivariate Gaussian copulas [Patki et al., 2016], conditional tabular generative adversarial
networks [CTGAN; Xu et al., 2019], tabular variational autoencoder [TVAE; Xu et al., 2019], and
synthesized MultiMixture programs. Implementations of the three baselines were obtained from an
open-source online repository [Synthetic Data Vault, 2022].

Runtime Comparison The top row of Figure 4.7 shows the runtime required to learn models of
satellites data table, which takes around 16 minutes for the three baselines. In contrast, the resample-
move SMC strategy from Figure 4.6 takes less than 10 seconds to complete a full streaming pass over
the data. In all cases, runtime is dominated by learning models rather than producing synthetic data.

Synthetic Data Comparison The plots in Figure 4.7 show qualitatively that synthetic data pro-
duced by MultiMixture programs more accurately emulate the observed data than those from the three
baselines. For Gaussian copula, the simulations follow a unimodal distribution with large variance that
is spread over more multiple modes in the data. CTGAN produces an artificial grid of simulations (rows
1, 2, and 4) obtained from the Cartesian product of the modes in the observed data or an artificial
vertical line (row 3), which means that the synthetic data appears in areas of the two-dimensional
plane where there is no observed data. The TVAE suffers from a similar issue to CTGAN. In row 2,
TVAE produces a subgrid of nine modes, four of which are artificial, and it fails to capture the linear
tail for apogee values greater than 80,000. In row 4, TVAE produces an artificial mode for the MEO
orbital class. The synthesized MultiMixture programs consistently capture modes in the data and do
not produce artificial modes or other artifacts such as vertical or horizontal lines. The simulations from
MultiMixture in row 3, however, appear too noisy around the anticipated lifetime values of 16, which
can be improved by running additional steps of parameter inference.

80

Chapter 5

Synthesizing Models for Multivariate
Time Series

Although the future is not predictable in
any detail, it is manageable as an aggregate
phenomenon.

Herbert A. Simon

Multivariate time series data is ubiquitous, arising in domains such as macroeconomics, neuro-
science, and public health. Unfortunately, data analysis problems such forecasting, imputation, and
clustering are exceptionally difficult to solve when there are dozens or hundreds of time series. One
challenge in these settings is that the data may reflect underlying processes with widely varying and
nonstationary dynamics [Fulcher and Jones, 2014]. Another challenge is that standard parametric ap-
proaches such as state-space models or vector autoregression often become numerically unstable in
sparse high-dimensional data [Koop, 2013]. These approaches also require users to perform significant
custom modeling for each dataset or search over a large number of possible parameter settings. As
discussed in Gruber and West [2017], there is an increasing need for multivariate methods that exploit
sparsity, are computationally efficient, and can simultaneously model many hundreds time series jointly.

This chapter presents the temporally-reweighted Chinese restaurant mixture (TR-CRPM), a non-
parametric Bayesian model family multivariate time series that is designed to address some of the above
challenges. The model is based on two extensions to traditional Dirichlet process mixture models [Lo,
1984]. The first extension is a recurrent version of the Chinese restaurant process mixture model for
capturing temporal dependencies in the data. The second extension is a structure learning prior for
discovering groups of time series whose underlying dynamics are modeled independently from one an-
other. The TR-CRPM is designed to interpolate in regimes where it has seen similar history before and
reverts to a broad ignorance prior in novel regimes. This inductive bias does not sacrifice predictive
accuracy when there is sufficient signal in the previous data to make forecasts or impute missing data.

The TR-CRPM is applied to solve challenging flu forecasting problems using data from the US
Center for Disease Control and Prevention (CDC). The TR-CRPM outperforms several baselines, in-
cluding Facebook Prophet, multi-output Gaussian processes, seasonal ARIMA, and the HDP-HMM,
by integrating multiple sources of information that include historical flu rates, weather measurements,
and Twitter data. Imputation accuracy for missing data is also highly competitive with the state-of-
the-art Amelia method [Honaker et al., 2011]. Finally, the TR-CRPM is shown to detect interpretable
clusters that correspond to commonsense categories given hundreds of macroeconomic time series from
the Gapminder Foundation [2022] database.

81

5.1 Temporally-Reweighted Chinese Restaurant Mixture Model

Notation Let x𝑛 ::= {𝑥𝑛𝑡 | 𝑡 = 1, . . . , 𝑇}, 𝑛 = 1, . . . , 𝑁 , be a set of 𝑁 time series, each observed
during 𝑇 discrete time points. Subsequences of variables are indexed using slice notation, so that
x𝑛
𝑡1:𝑡2

::= (𝑥𝑛𝑡1 , 𝑥
𝑛
𝑡1+1, . . . , 𝑥

𝑛
𝑡2−1, 𝑥

𝑛
𝑡2) whenever 𝑡1 ≤ 𝑡2 and is empty if 𝑡2 < 𝑡1. The superscript 𝑛 is

omitted when discussing a single time series. This section develops a nonparametric Bayesian model
that describes the joint distribution of {x𝑛 | 𝑛 = 1, . . . , 𝑁}, which is presented in stages.

5.1.1 Background: Chinese Restaurant Process Mixtures Models

The Dirichlet process mixture (DPM) is a Bayesian nonparametric model of an exchangeable sequence
(𝑥1, . . . , 𝑥𝑚) of 𝑚 data points. Given a a measurable space Θ, a probability distribution 𝜋Θ over Θ,
and a real-valued concentration parameter 𝛼 > 0, the generative process of the DPM is

𝑃 ∼ DirichletProcess(𝛼, 𝜋Θ), 𝜃*𝑗 | 𝑃 ∼ 𝑃, 𝑥𝑗 | 𝜃*𝑗 ∼ 𝐹 (· | 𝜃*𝑗), (5.1)

where 𝑃 is an almost-surely discrete random probability measure whose atoms are drawn from 𝜋Θ and 𝐹
is a probability distribution over the space in which the data 𝑥𝑗 take their values that is parameterized
by 𝜃 ∈ Θ. The random measure 𝑃 is a draw from a Dirichlet process in the sense that, for any
finite partition 𝐴1, . . . , 𝐴𝑛 of Θ into measurable 𝑛 subsets, the random vector [𝑃 (𝐴1), . . . , 𝑃 (𝐴𝑛)] ∼
Dirichlet(𝛼𝜋Θ(𝐴1), . . . , 𝛼𝜋Θ(𝐴𝑛)). A constructive representation of the generative process (5.1) can
be obtained in terms of a distribution over partitions called the Chinese restaurant process [Aldous,
1985]. As 𝑃 is almost-surely discrete, the draws {𝜃*𝑗} ∼ 𝑃 may contain repeated values with positive
probability, which induces a clustering among data 𝑥𝑗 (𝑗 = 1, . . . ,𝑚). In particular, let {𝜃𝑘} be unique
values among the {𝜃*𝑗} and 𝑧𝑗 denote the cluster assignment of 𝑥𝑗 which satisfies 𝜃*𝑗 = 𝜃𝑧𝑗 . Define 𝑛𝑗𝑘

to be the number of observations 𝑥𝑖 with 𝑧𝑖 = 𝑘 for 𝑖 < 𝑗. Using the conditional distribution of 𝑧𝑗 given
previous cluster assignments z1:𝑗−1, an equivalent generative process to Eq. (5.1) is

{𝜃𝑘} iid∼ 𝜋Θ(· | 𝜆𝐹) (5.2)

𝑧𝑗 | z1:𝑗−1 ∼
𝑀𝑗∑︁

𝑘=1

𝑛𝑗𝑘

𝛼+ 𝑗 − 1
𝛿𝑘 +

𝛼

𝛼+ 𝑗 − 1
𝛿𝑀𝑗+1 (𝑗 = 1, 2, . . .) (5.3)

𝑥𝑗 | 𝑧𝑗 , {𝜃𝑘} ∼ 𝐹 (· | 𝜃𝑧𝑗) (𝑗 = 1, 2, . . .), (5.4)

where 𝛿𝑘 denotes an atomic measure at 𝑘; 𝑀𝑗 ::= max(z1:𝑗−1) is the total number of clusters among
the first 𝑗 − 1 data items; and 𝜆𝐹 are hyperparameters of the base measure 𝜋Θ.

5.1.2 TR-CRP Mixtures for Modeling a Single Time Series

Overview The traditional CRP mixture model has no notion of temporal dependence between the
observations 𝑥𝑗 and is therefore inappropriate for modeling a nonexchangeable discrete-time series
(𝑥1, 𝑥2, . . .), where the ordering among the variables induces temporal dependencies. Instead of as-
suming that (𝑥𝑡, 𝑧𝑡) are conditionally independent of previous data x1:𝑡−1 given z1:𝑡−1 and {𝜃𝑘} as in
Eqs. (5.3) and (5.4), temporal dependencies can be introduced by using the previous observations x1:𝑡−1

when simulating 𝑧𝑡. The main idea is to modify the CRP prior by letting the cluster probability that
{𝑧𝑡 = 𝑘} at step 𝑡 additionally account for (i) the 𝑝 most recent observations x𝑡−𝑝:𝑡−1; and (ii) the
collection of all lagged values 𝐷𝑡𝑘 := {x𝑡′−𝑝:𝑡′−1 | 𝑧𝑡′ = 𝑘, 1 ≤ 𝑡′ < 𝑡} of earlier data points 𝑥𝑡′ that are

82

𝛼, 𝜆𝐺

𝑧1 𝑧2 𝑧4𝑧3 · · ·

𝑥1 𝑥2 𝑥3 𝑥4 · · ·𝑥0𝜃𝑘

𝑘=1, 2, . . .

𝜆𝐹

Figure 5.1: Graphical representation of the TR-CRP mixture model for a single time series x =
(𝑥1, 𝑥2, . . .). The window size 𝑝 = 1.

assigned to cluster 𝑘. The distribution of (𝑥1, 𝑥2, . . .) in the TR-CRP mixture is thus

{𝜃𝑘} iid∼ 𝜋Θ(· | 𝜆𝐹) (5.5)

𝑧𝑡 | z1:𝑡−1,x1:𝑡−1 ∼
𝑀𝑡∑︁

𝑘=1

𝑛𝑡𝑘𝛾𝑡𝑘
𝑍

𝛿𝑘 +
𝛼𝛾𝑀𝑡+1

𝑍
𝛿𝑀𝑡+1

where

{︃
𝛾𝑡𝑘 ::= 𝐺(x𝑡−𝑝:𝑡−1;𝐷𝑡𝑘, 𝜆𝐺)

𝑍 ::=
∑︀𝑀𝑡

𝑘=1 𝑛𝑡𝑘𝛾𝑡𝑘 + 𝛼𝜆′
𝑡

(𝑡 = 1, 2, . . .) (5.6)

𝑥𝑡 | 𝑧𝑡, {𝜃𝑘} ∼ 𝐹 (· | 𝜃𝑧𝑡) (𝑡 = 1, 2, . . .) (5.7)

where 𝑀𝑡 ::= max(z1:𝑡−1) is the total number of clusters among the first 𝑡−1 elements in the time series.
The main difference between the standard CRP mixture in Eqs. (5.2)–(5.4) and TR-CRP mixture in
Eqs. (5.5)–(5.7) is the reweighting terms 𝛾𝑡𝑘 ::= 𝐺(x𝑡−𝑝:𝑡−1;𝜆𝐺, 𝐷𝑡𝑘), where 𝐺 : R𝑝 → R+ is a “cohesion”
function parametrized by the previous data 𝐷𝑡𝑘 at cluster 𝑘 and parameters 𝜆𝐺. The function 𝐺
measures how well the current lagged values x𝑡−𝑝:𝑡−1 match the collection of lagged values of earlier
data 𝐷𝑡𝑘 in each cluster 𝑘, thereby introducing temporal dependence to the model. The smoothness
of the process depends on the choice of the window size 𝑝: if 𝑡1 and 𝑡2 are close in time (relative to
𝑝) then they have overlapping lagged values x𝑡1−𝑝:𝑡1−1 and x𝑡2−𝑝:𝑡2−1, so 𝐺 increases the probability
that {𝑧𝑡1 = 𝑧𝑡2}. More generally, any pair of time points 𝑡1 and 𝑡2 that share similar lagged values are
a-priori more likely to have similar distributions for generating 𝑥𝑡1 and 𝑥𝑡2 , because 𝐺 increases the
probability that {𝑧𝑡1 = 𝑧𝑡2 = 𝑘}, so that 𝑥𝑡1 and 𝑥𝑡2 are both drawn from 𝐹 (· | 𝜃𝑘).

Graphical Model Figure 5.1 shows a graphical model for the TR-CRP mixture with window size
𝑝 = 1. The initial 𝑝 observations (𝑥−𝑝+1, . . . , 𝑥0) are assumed to be given. At step 𝑡, the cluster
assignment 𝑧𝑡 is sampled, whose probability of joining cluster 𝑘 is a product of (i) the CRP probability for
{𝑧𝑡 = 𝑘} given all previous cluster assignments z1:𝑡−1, and (ii) the “cohesion” term 𝐺(x𝑡−𝑝:𝑡−1;𝜆𝐺, 𝐷𝑡𝑘).
In Figure 5.1, edges between the 𝑧𝑡’s denote the CRP probabilities, while edges from 𝑥𝑡−1 up to 𝑧𝑡
represent reweighting the CRP by 𝐺. Cluster assignment 𝑧𝑡 identifies a hidden temporal state that
dictates the distribution of 𝑥𝑡 ∼ 𝐹 (· | 𝜃𝑧𝑡). If 𝑝 = 0 or 𝐺 ∝ 1, then the temporal model reduces to
a standard CRP mixture model for exchangeable data, since (𝑧𝑡, 𝑥𝑡) are conditionally independent of
the entire time series history x1:𝑡−1 given z1:𝑡−1. The model does not have Markov structure due to
the infinite coupling among the hidden states 𝑧𝑡, which is different than the recurrent switching linear
dynamical system described in Barber [2006]. Figure 5.2 shows an example of how observation of the

83

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Timestep

−4

−2

0

2

4

6

8

10

similar window
(increase)

similar window
(decrease)

similar window
(decrease)

similar window
(increase)

current window

Bimodal
Forecasts

Previous increase after window
Previous decrease after window
Forecasts predicting increase
Forecasts predicting decrease

Figure 5.2: Bimodal forecasts from the TR-CRP mixture model with a window size 𝑝 = 10. The
observed time series data is shown as a solid black line. At time 𝑡 = 280, the current size-𝑝 window
of lagged values contains the observations (𝑥271, . . . , 𝑥280), which are highlighted in gray. The model
detects four previous time windows of length 10 that are most similar to the current window, also
highlighted in gray, which are [20, 30), [95, 105), [150, 159), and [210, 219). The time series values
increased in two of these windows (solid orange line) and decreased in two of these windows (solid blue
line). The model hypothesizes that the future data after the current window is equally likely to be
either of these two possibilities, which produces bimodal forecasts for the future data (𝑥281, . . . , 𝑥290)
in the next window (dashed orange and blue lines).

dynamics after previous size-𝑝 windows that are “similar” to the present window (as measured by 𝐺)
are used to generate the hidden state and time series data for the next window.

Data Distribution The distribution 𝐹 in Eq. (5.7) that governs the time series values can be arbi-
trary, depending on the data type of the observations. Examples include Bernoulli, Poisson, categorical,
normal, gamma, and beta distributions. For the real-valued time series analyzed in this chapter, the
distribution 𝐹 is a Normal distribution with Normal-InverseGamma prior 𝜋Θ:

𝜋Θ(𝜇𝑘, 𝜎
2
𝑘 | 𝑚,𝑉, 𝑎, 𝑏) = N(𝜇𝑘 | 𝑚,𝜎2

𝑘𝑉)InverseGamma(𝜎2
𝑘 | 𝑎, 𝑏) (5.8)

𝐹 (𝑥𝑡 | 𝜇𝑘, 𝜎𝑘) = N(𝑥𝑡 | 𝜇𝑘, 𝜎
2
𝑘), (5.9)

where 𝜃𝑘 = (𝜇𝑘, 𝜎
2
𝑘) are the parameters of 𝐹 within cluster 𝑘 and 𝜆𝐹 = (𝑚,𝑉, 𝑎, 𝑏) are hyperparameters

of 𝜋Θ. As 𝐹 and 𝜋Θ are conjugate [Bernardo and Smith, 1994], the parameters 𝜃𝑘 can be marginalized
out of the generative model as discussed in Section 5.2.

Cohesion Function The cohesion function 𝐺 must be nonnegative but otherwise arbitrary. However,
to ensure good performance, 𝐺 must be able to assign a high value to lagged data vectors x𝑡−𝑝:𝑡−1 and
x′
𝑡−𝑝:𝑡−1 of length 𝑝 that are similar to one another, so that the cluster probabilities are reweighted appro-

priately. Previous approaches in Bayesian nonparametric regression leveraged kernel-based reweighting
schemes [Dunson et al., 2007]. The TR-CRP mixture takes a different approach, where 𝐺 is a product
of 𝑝 Student-T distributions whose location, scale, and degrees of freedom depend on the previous data

84

𝐷𝑡𝑘 assigned to cluster 𝑘:

𝐺(x𝑡−𝑝:𝑡−1;𝐷𝑡𝑘, 𝜆𝐺) ::=

𝑝∏︁

𝑖=1

𝐺𝑖(𝑥𝑡−𝑖;𝐷𝑡𝑘𝑖, 𝜆𝐺𝑖) (5.10)

𝐺𝑖(𝑥𝑡−𝑖;𝐷𝑡𝑘𝑖, 𝜆𝐺𝑖) ::= T2𝑎𝑡𝑘𝑖

(︂
𝑥𝑡−𝑖;𝑚𝑡𝑘𝑖, 𝑏𝑡𝑘𝑖

1 + 𝑉𝑡𝑘𝑖

𝑎𝑡𝑘𝑖

)︂
(5.11)

𝐷𝑡𝑘𝑖 ::= {𝑥𝑡′−𝑖 : 𝑧𝑡′ = 𝑘, 1 ≤ 𝑡′ < 𝑡} (5.12)
𝑛𝑡𝑘𝑖 ::= |𝐷𝑡𝑘𝑖| (5.13)
�̄�𝑡𝑘𝑖 ::=

∑︀
𝑡′∈𝐷𝑡𝑘𝑖

𝑥𝑡′−𝑖/𝑛𝑡𝑘𝑖 (5.14)

𝑉𝑡𝑘𝑖 ::= 1/(𝑉 −1
𝑖0 + 𝑛𝑡𝑘𝑖) (5.15)

𝑚𝑡𝑘𝑖 ::= 𝑉𝑡𝑘𝑖(𝑉
−1
𝑖0 𝑚𝑖0 + 𝑛𝑡𝑘𝑖�̄�𝑡𝑘𝑖) (5.16)

𝑎𝑡𝑘𝑖 ::= 𝑎𝑖0 + 𝑛𝑡𝑘𝑖/2 (5.17)

𝑏𝑡𝑘𝑖 ::= 𝑏𝑘0 +
(︀
𝑚2

𝑖0𝑉
−1
𝑖0 +

∑︀
𝑡′ 𝑥

2
𝑡′−𝑖 −𝑚2

𝑖𝑡𝑘𝑉
−1
𝑡𝑘𝑖

)︀
/2. (5.18)

The function 𝐺 is used for reweighting only: it does not define a probability distribution over the lagged
data. Mathematically, 𝐺 attracts 𝑥𝑡 towards a cluster 𝑘 that assigns x𝑡−𝑝:𝑡−1 a high density value under
the posterior predictive of an axis-aligned multivariate Gaussian conditioned on 𝐷𝑡𝑘 [Murphy, 2007].

5.1.3 TR-CRP Mixtures for Modeling Multiple Dependent Time Series

The univariate TR-CRP mixture can be extended to model a collection x1, . . . ,x𝑁 of 𝑁 > 0 time series,
which for now are assumed to be all dependent with one another. At time 𝑡, there is a single hidden
state assignment 𝑧𝑡 shared among all the time series. The lagged values of all 𝑁 time series are used
to reweight the CRP probabilities by the cohesion term 𝐺. Listing 5.1 shows the generative process
for the multivariate TR-CRP mixture and Figure 5.3 applies the model to flu data. While there is a
single hidden state 𝑧𝑡 at time 𝑡, each time series has its own cluster parameters {𝜃𝑛𝑘} since the dynamics
within each state might be different. Moreover, the model makes a “naive Bayes” assumption that data
{𝑥𝑛𝑡 }𝑁𝑛=1 at time 𝑡 are conditionally independent given 𝑧𝑡 and that the reweighting term 𝐺 in step 5.1
of Listing 5.1 factorizes as a product. This independence assumption improves numerical stability in
sparse high-dimensional settings as compared to assuming arbitrary covariance structure, and maintains
the ability to produce complex temporal patterns through the infinite mixture model.

5.1.4 Discovering Independence Structure Between Multiple Time Series

The multivariate TR-CRP mixture described in Listing 5.1 makes the restrictive assumption that all
𝑁 time series {x1, . . . ,x𝑁} are probabilistically dependent with one another. However, when modeling
dozens or hundreds of time series with widely varying dynamics, forcing a shared hidden state 𝑧𝑡 at
each step 𝑡 for all time series will cause the CRP to over-segment the time course and produce a large
number of duplicate parameters to explain the data. The assumption that there is a single hidden state
is relaxed by introducing a structure learning prior to determine which subsets of the 𝑁 time series
are well modeled by a joint TR-CRP mixture. This prior induces sparsity in the dependencies between
the 𝑁 time series as it first nonparametrically partitions them using an “outer” CRP. Each group of
dependent time series is then modeled using the multivariate TR-CRP mixture described in Listing 5.1:

(𝑐1, 𝑐2, . . . , 𝑐𝑁) ∼ CRP (· | 𝛼0) (5.19)

{x𝑛 | 𝑐𝑛 = 𝑘} ∼ TR-CRP Mixture
(︀
𝑘 = 1, . . . ,max c1:𝑁

)︀
, (5.20)

where 𝑐𝑛 is the cluster assignment of x𝑛 and 𝛼0 > 0 the concentration parameter of the “outer” CRP.

85

1. Sample concentration parameter of CRP.
𝛼 ∼ Gamma(1,1)

2. Sample model hyperparameters.
𝜆𝑛
𝐺 ∼ 𝐻𝑛

𝐺 (𝑛 = 1, . . . , 𝑁)

𝜆𝑛
𝐹 ∼ 𝐻𝑛

𝐹 (𝑛 = 1, . . . , 𝑁)

3. Sample distribution parameters of 𝐹

𝜃𝑛1 , 𝜃
𝑛
2 , . . .

iid∼ 𝜋Θ(·|𝜆𝑛
𝐹) (𝑛 = 1, . . . , 𝑁)

4. Assume first 𝑝 values are known
x𝑛
−𝑝+1:0 ::= (𝑥𝑛

−𝑝+1, . . . , 𝑥
𝑛
0) (𝑛 = 1, . . . , 𝑁)

5. Sample time series for 𝑡 = 1, 2, . . .

5.1 Sample temporal cluster assignment 𝑧𝑡

𝑃 (𝑧𝑡 = 𝑘 | . . .) ∝ CRP(𝑘|𝛼, z1:𝑡−1)

𝑁∏︁
𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑘, 𝜆

𝑛
𝐺)

where 𝐷𝑛
𝑡𝑘 ::= {x𝑛

𝑡′−𝑝:𝑡′−1 | 𝑧𝑡′ = 𝑘, 1 ≤ 𝑡′ < 𝑡}
and 𝑘 = 1, . . . ,max (z1:𝑡−1) + 1

5.2 Sample data 𝑥𝑛
𝑡

𝑥𝑛
𝑡 | 𝑧𝑡, {𝜃𝑛𝑘 } ∼ 𝐹 (·|𝜃𝑛𝑧𝑡) (𝑛 = 1, . . . , 𝑁)

2011 2012 2013 2014 2015

1

3

5

7

Incidence of Flu (% Population)

2011 2012 2013 2014 2015

2

4

6

8

Messages about Flu on Twitter (1000s)

2011 2012 2013 2014 2015

−4

2

8

14

20

Minimum Temperature (◦F)

zt = 1

zt = 2

zt = 3

zt = 4

zt = 5

zt = 6

Listing 5.1: Multivariate TR-CRP mixture model. Figure 5.3: Applying the TR-CRP mixture with
𝑝 = 10 weeks to model xflu, xtweet, and xtemp

in US Region 4. Six regimes describing the sea-
sonal behavior are detected in this posterior sam-
ple. Purple, gray, and red are the pre-peak rise,
peak, and post-peak decline during the flu sea-
son; and yellow, brown, and green represent the
rebound in between successive seasons. In 2012,
the model reports no post-peak regime (red), re-
flecting the relatively mild flu season that year.

Figure 5.4 compares the learned model structures given EEG time series using the TR-CRP mix-
ture with full dependence (Section 5.1.3) and the TR-CRP mixture with independence discovery (Sec-
tion 5.1.4). As both model variants use nonparametric CRP priors over the hidden states, the number
of parameters {𝜃𝑛𝑘} for 𝑛 = 1, . . . , 𝑁 are inferred from data. Figure 5.4a shows the five observed EEG
time series. Figure 5.4b shows the learned model structure assuming full dependence, which explains the
data using 300 parameters. In Figure 5.4c, using the independence discovery prior to model the EEG
data delivers a more concise model structure with only 47 parameters. The independence prior learns a
separate segmentation of the time course into hidden states within each group of dependent time series.
In contrast, the full dependence model produces the cross-product of the hidden states, which causes
many excessive duplicated parameters. Synthesizing model structures that have independent groups of
time series leads to fewer parameters, improving both interpretability and data efficiency. While there
is a risk of learning spurious independencies that lead to under-fitting and weaker predictive perfor-
mance, synthesizing an ensemble of model structures rather than a single structure effectively quantifies
posterior uncertainty over the factorization structure. The applications in Section 5.4 further show that
the independence discovery prior learns interpretable groups of independent time series given real-world
GDP and cell phone subscriber data.

86

1 2 3 4 5

(a) Six electroencephalogram (EEG) time series.

𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1𝑤1
8𝑤1

7𝑤1
6𝑤1

5𝑤1
4𝑤1

3𝑤1
2𝑤1

1
5

𝜃548𝜃547𝜃546𝜃545𝜃544𝜃543𝜃542𝜃541𝜃540𝜃539𝜃538𝜃537𝜃536𝜃535𝜃534𝜃533𝜃532𝜃531𝜃530𝜃529𝜃528𝜃527𝜃526𝜃525𝜃524𝜃523𝜃522𝜃521𝜃520𝜃519𝜃518𝜃517𝜃516𝜃515𝜃514𝜃513𝜃512𝜃511𝜃510𝜃59𝜃58𝜃57𝜃56𝜃55𝜃54𝜃53𝜃52𝜃51

𝜆5
𝐹𝜆5

𝐺

4

𝜃448𝜃447𝜃446𝜃445𝜃444𝜃443𝜃442𝜃441𝜃440𝜃439𝜃438𝜃437𝜃436𝜃435𝜃434𝜃433𝜃432𝜃431𝜃430𝜃429𝜃428𝜃427𝜃426𝜃425𝜃424𝜃423𝜃422𝜃421𝜃420𝜃419𝜃418𝜃417𝜃416𝜃415𝜃414𝜃413𝜃412𝜃411𝜃410𝜃49𝜃48𝜃47𝜃46𝜃45𝜃44𝜃43𝜃42𝜃41

𝜆4
𝐹𝜆4

𝐺

3

𝜃348𝜃347𝜃346𝜃345𝜃344𝜃343𝜃342𝜃341𝜃340𝜃339𝜃338𝜃337𝜃336𝜃335𝜃334𝜃333𝜃332𝜃331𝜃330𝜃329𝜃328𝜃327𝜃326𝜃325𝜃324𝜃323𝜃322𝜃321𝜃320𝜃319𝜃318𝜃317𝜃316𝜃315𝜃314𝜃313𝜃312𝜃311𝜃310𝜃39𝜃38𝜃37𝜃36𝜃35𝜃34𝜃33𝜃32𝜃31

𝜆3
𝐹𝜆3

𝐺

2

𝜃248𝜃247𝜃246𝜃245𝜃244𝜃243𝜃242𝜃241𝜃240𝜃239𝜃238𝜃237𝜃236𝜃235𝜃234𝜃233𝜃232𝜃231𝜃230𝜃229𝜃228𝜃227𝜃226𝜃225𝜃224𝜃223𝜃222𝜃221𝜃220𝜃219𝜃218𝜃217𝜃216𝜃215𝜃214𝜃213𝜃212𝜃211𝜃210𝜃29𝜃28𝜃27𝜃26𝜃25𝜃24𝜃23𝜃22𝜃21

𝜆2
𝐹𝜆2

𝐺

1

𝜃148𝜃147𝜃146𝜃145𝜃144𝜃143𝜃142𝜃141𝜃140𝜃139𝜃138𝜃137𝜃136𝜃135𝜃134𝜃133𝜃132𝜃131𝜃130𝜃129𝜃128𝜃127𝜃126𝜃125𝜃124𝜃123𝜃122𝜃121𝜃120𝜃119𝜃118𝜃117𝜃116𝜃115𝜃114𝜃113𝜃112𝜃111𝜃110𝜃19𝜃18𝜃17𝜃16𝜃15𝜃14𝜃13𝜃12𝜃11

𝜆1
𝐹𝜆1

𝐺

(b) Posterior sample of TR-CRP mixture structure assuming full dependence (300 parameters).

1

c = 1

2

c = 2

4

c = 3

3 5

𝑐 = 3

𝑤3
2𝑤3

2𝑤3
2𝑤3

1
5

𝜃54𝜃53𝜃52𝜃51

𝜆5
𝐹𝜆5

𝐺

2

𝜃24𝜃23𝜃22𝜃21

𝜆2
𝐹𝜆2

𝐺

𝑐 = 2

𝑤2
2𝑤2

1
4

𝜃42𝜃41

𝜆4
𝐹𝜆4

𝐺

𝑐 = 1

𝑤1
7𝑤1

6𝑤1
5𝑤1

4𝑤1
3𝑤1

2𝑤1
1

3

𝜃37𝜃36𝜃35𝜃34𝜃33𝜃32𝜃31

𝜆3
𝐹𝜆3

𝐺

1

𝜃17𝜃16𝜃15𝜃14𝜃13𝜃12𝜃11

𝜆1
𝐹𝜆1

𝐺

(c) Posterior sample of TR-CRP mixture model structure with dependence discovery (47 parameters).

Figure 5.4: Learning independence relationships delivers more concise probabilistic model structures.

87

5.2 Algorithms for Posterior Inference

The goal of posterior inference in the TR-CRP mixture is to sample from the conditional distribution
over all latent variables, given observed time series values 𝑥𝑛1 , . . . 𝑥

𝑛
𝑇 for 𝑛 = 1, . . . , 𝑁 . Because the

factorization prior (5.19) produces 𝑀 = max(c1:𝑁) separate TR-CRP mixtures, all latent variables in
Listing 5.1 will include a subscript 𝑚 = 1, . . . ,𝑀 . In particular, 𝛼𝑚 is the CRP concentration parameter
and z𝑚1:𝑇 the hidden state vector for all time series x𝑛 such that 𝑐𝑛 = 𝑚. Further, let 𝐾𝑚 = max(z𝑚1:𝑇)
denote the number of unique states in z𝑚1:𝑇 . Given window size 𝑝 and the initial observations x𝑛

−𝑝+1:0

for each 𝑛 = 1, . . . , 𝑁 , the full data likelihood is

𝑃
(︀
𝛼0, c

1:𝑁 , 𝛼1:𝑀 , 𝜆1:𝑁
𝐺 , 𝜆1:𝑁

𝐹 , {𝜃𝑛𝑗 | 1≤𝑗≤𝐾𝑐𝑛}𝑁𝑛=1, z
1:𝑀
1:𝑇 ,x1:𝑁

1:𝑇 ;x1:𝑁
−𝑝+1:0, 𝑝

)︀

= Γ(𝛼0; 1, 1)CRP(c1:𝑁 | 𝛼0)

(︃
𝑁∏︁

𝑛=1

𝐻𝑛
𝐺(𝜆

𝑛
𝐺)

)︃(︃
𝑁∏︁

𝑛=1

𝐻𝑛
𝐹 (𝜆

𝑛
𝐹)

)︃⎛
⎝

𝑁∏︁

𝑛=1

𝐾𝑐𝑛∏︁

𝑗=1

𝜋𝑛
Θ(𝜃

𝑛
𝑗)

⎞
⎠

𝑀∏︁

𝑚=1

⎛
⎝Γ(𝛼𝑚; 1, 1)

𝑇∏︁

𝑡=1

⎡
⎣𝑏𝑚𝑡 CRP(𝑧𝑚𝑡 | z𝑚1:𝑡−1, 𝛼

𝑚)
∏︁

𝑛|𝑐𝑛=𝑚

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑧𝑚𝑡

, 𝜆𝑛
𝐺)𝐹 (𝑥𝑛𝑡 | 𝜃𝑛𝑧𝑚𝑡)

⎤
⎦
⎞
⎠ .

(5.21)

The 𝑏𝑚𝑡 terms normalizes the term between the square brackets and are obtained by summing over
𝑘𝑚𝑡 = 1, . . . ,max (z𝑚1:𝑡−1) + 1. Eq. (5.21) defines the unnormalized posterior distribution of all latent
variables given the data. Inference is based on both Markov chain Monte Carlo and sequential Monte
Carlo methods, discussed in Section 3.3 of Chapter 3. At a high level, the hidden state assignments
(𝑧𝑚𝑡 | z𝑚1:𝑇∖𝑡 . . .) are sampled using a variant of Neal [2000, Algorithm 3], taking care to handle the
temporal coupling term 𝑏𝑚𝑡 which is not found in traditional DPM samplers. An alternative SMC
scheme to sample (z𝑚1:𝑇 | . . .) jointly as a block is also described. Time series cluster assignments
(𝑐𝑛 | c1:𝑁∖𝑛, . . .) are transitioned by proposing to migrate x𝑛 into either an existing or a new cluster,
and computing the MH acceptance ratio for each case. Model hyperparameters are sampled using
an empirical Bayes approach [Robbins, 1964] and a discrete approximation that resembles the “griddy
Gibbs” method of Ritter and Tanner [1992].

Collapsed Model Representation When 𝐹 and 𝜋Θ in Eq. (5.9) are conjugate, the parameters 𝜃𝑛𝑘
can be analytically marginalized. The TR-CRP mixture model from Listing 5.1 becomes

𝛼 ∼ Gamma(1,1)
𝜆𝑛
𝐺 ∼ 𝐻𝑛

𝐺 𝑛 = 1, 2, . . . , 𝑁

𝜆𝑛
𝐹 ∼ 𝐻𝑛

𝐹 𝑛 = 1, 2, . . . , 𝑁

x𝑛
−𝑝+1:0 ::= (𝑥𝑛−𝑝+1, . . . , 𝑥

𝑛
0) 𝑛 = 1, 2, . . . , 𝑁

and for each 𝑡 = 1, 2, . . .

𝑃
(︀
𝑧𝑡 = 𝑘 | z1:𝑡−1,x

1:𝑁
𝑡−𝑝:𝑡−1, 𝛼, 𝜆

1:𝑁
𝐺

)︀
∝ CRP(𝑘 | 𝛼, z1:𝑡−1)

∏︀𝑁
𝑛=1𝐺(x𝑛

𝑡−𝑝:𝑡−1;𝐷
𝑛
𝑡𝑘, 𝜆

𝑛
𝐺)

where 𝐷𝑛
𝑡𝑘 ::= {x𝑛

𝑡′−𝑝:𝑡′−1 | 𝑧𝑡′ = 𝑘, 1 ≤ 𝑡′ < 𝑡}
and 𝑘 = 1, . . . ,max (z1:𝑡−1) + 1

𝑛 = 1, . . . , 𝑁

𝑥𝑛𝑡
⃒⃒
{𝑧𝑡 = 𝑘,x1:𝑁

1:𝑡−1} ∼
∫︁

𝜃
𝐹 (·|𝜃)𝜋Θ(𝜃 | 𝐷′𝑛

𝑡𝑘, 𝜆
𝑛
𝐹)d𝜃

where 𝐷′𝑛
𝑡𝑘 ::= {x𝑛

𝑡′ | 𝑧𝑡′ = 𝑘, 1 ≤ 𝑡′ < 𝑡}.

𝑛 = 1, . . . , 𝑁

Integrating the likelihood 𝐹 against the prior 𝜋Θ yields a Student-T distribution as in Eq. (5.10), whose
hyperparameter updates given 𝐷′𝑛

𝑡𝑧𝑡 and 𝜆𝑛
𝐹 are identical to those in Eqs. (5.14)–(5.18) with 𝑖 = 0.

88

Inferring Hidden State Assignments (𝑧𝑡 | z1:𝑇∖𝑡, . . .) Since the factorization prior (5.19) for
learning independence gives 𝑀 = max(c1:𝑁) separate TR-CRP mixtures, it suffices to describe how to
infer z1:𝑇 in one component assuming all 𝑁 time series are dependent. The joint probability is then

𝑃
(︀
𝛼, 𝜆1:𝑁

𝐺 , 𝜆1:𝑁
𝐹 , z1:𝑇 ,x

1:𝑁
1:𝑇 ; x1:𝑁

−𝑝+1:0, 𝑝
)︀

= Γ(𝛼; 1, 1)

(︃
𝑁∏︁

𝑛=1

𝐻𝑛
𝐺(𝜆

𝑛
𝐺)

)︃(︃
𝑁∏︁

𝑛=1

𝐻𝑛
𝐹 (𝜆

𝑛
𝐹)

)︃
𝑇∏︁

𝑡=1

[︂
𝑏𝑡CRP(𝑧𝑡 | z1:𝑡−1, 𝛼)

𝑁∏︁

𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑧𝑡 , 𝜆

𝑛
𝐺)𝐹 (𝑥𝑛𝑡 | 𝐷′𝑛

𝑡𝑧𝑡 , 𝜆
𝑛
𝐹)

]︂
.

(5.22)

The normalizing terms for times 𝑡 = 1, . . . , 𝑇 are

𝑏𝑡(x
1:𝑁
1:𝑡−1, z1:𝑡−1) ::=

(︃
𝐾𝑡∑︁

𝑘=1

CRP(𝑘 | 𝛼, z1:𝑡−1)
𝑁∏︁

𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑘, 𝜆

𝑛
𝐺)

)︃−1

, (5.23)

where 𝐾𝑡 ::= max(z1:𝑡−1) + 1. These normalizing terms ensure that distribution over hidden states
sums to one. It will also be convenient to define the predictive density 𝑞𝑡 at time 𝑡 of data x1:𝑁

𝑡 , which
is obtained by summing out all possible values of 𝑧𝑡:

𝑞𝑡(x
1:𝑁
1:𝑡 , z1:𝑡−1) ::= 𝑏𝑡(x

1:𝑁
1:𝑡−1, z1:𝑡−1)

𝐾𝑡∑︁

𝑘=1

[︁
CRP(𝑘 | 𝛼, z1:𝑡−1)

𝑁∏︁

𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑘, 𝜆

𝑛
𝐺)𝐹 (𝑥𝑛𝑡 | 𝐷′𝑛

𝑡𝑘, 𝜆
𝑛
𝐹)
]︁
.

(5.24)

Let the current state of the Markov chain be (𝛼, 𝜆1:𝑁
𝐺 , 𝜆1:𝑁

𝐹 , z1:𝑇). Algorithm 5.1 shows a single-
site Metropolis-Hastings procedure that targets (𝑧𝑡 | z1:𝑇∖𝑡, . . .). Algorithm 5.2 show an SMC scheme
to block sample (z1:𝑇 | . . .) using particle learning [Carvalho et al., 2010]. In both cases, arbitrary
observations may be missing as they are sampled over the course of inference.

There are several computational trade-offs between MH (Algorithm 5.1) and SMC (Algorithm 5.2)
for inferring the hidden states. In step 1 of Algorithm 5.1, the terms in Eq. (5.25) must be computed
𝐾 = 𝑂(max(z1:𝑇)) times. Each assessment requires 𝑂(𝑁𝑝) computations, where the factor of 𝑁 is the
product over the time series, and the factor of 𝑝 is the cost of assessing 𝐺 in Eq. (5.10). In step 3,
computing the terms 𝑏𝑡′ in Eq. (5.26) requires revisiting 𝑂(𝑇) data points. Therefore a single iteration
requires 𝑂(𝑇𝐾𝑁𝑝) computations, so that the cost of a full sweep over all 𝑇 time points is 𝑂(𝑇 2𝐾𝑁𝑝).
It is not necessary to sum over 𝐾𝑡 in Eq. (5.23) when computing the 𝑏𝑡′ terms in Eq. (5.26), since
the data in at most two clusters will change when proposing 𝑧𝑡 to 𝑧𝑡′ . The sufficient statistics can be
updated in constant time using a simple dynamic programming approach.

Computational approximations can help improve the scalability of single-site MH in Algorithm 5.1.
In Eq. (5.25), the term 𝐷𝑛

𝑇𝑘 in the expression 𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑇𝑘∖{𝑥𝑛𝑡 }, 𝜆𝑛

𝐺) for the cohesion function
includes both observed and imputed data. An alternative approach is to define a “data-dependent” prior
following the strategy described by Dunson et al. [2007] in the context of Bayesian density regression.
Namely, letting 𝑜𝑛𝑡 be the indicator for having observed 𝑥𝑛𝑡 , the reweighting function 𝐺 considers only
those data points that have actually been observed. With this approximation, Eq. (5.10) becomes

𝐺(x𝑡−𝑝:𝑡−1;𝐷𝑡𝑘, 𝜆𝐺) =

𝑝∏︁

𝑖=1

(𝐺𝑖(𝑥𝑡−𝑖;𝐷𝑡𝑘𝑖, 𝜆𝐺𝑖))
𝑜𝑛𝑡−𝑖 . (5.29)

which reduces the cost of computing Eqs. (5.25) and (5.26) in the presence of missing data. Second,

89

Algorithm 5.1 Metropolis-Hastings sampler for hidden state assignments in the TR-CRP mixture.
This algorithm resamples (𝑧𝑡|z1:𝑇∖𝑡, . . .). Let 𝑜𝑛𝑡 be the “observation indicator” so that 𝑜𝑛𝑡 = 1 if 𝑥𝑛𝑡 is
observed and 0 if it is missing (𝑛 = 1, 2, . . . , 𝑁 ; 𝑡 = 1, 2, . . . , 𝑇).

1. Propose 𝑧′𝑡 from the categorical distribution:

𝑃
(︀
𝑧′𝑡 = 𝑘 | z1:𝑇∖𝑡,x

1:𝑁 , 𝛼
)︀
∝ CRP(𝑘 | 𝛼, z1:𝑇∖𝑡)

𝑁∏︁

𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑇𝑘∖{𝑥𝑛𝑡 }, 𝜆𝑛

𝐺)
(︀
𝐹 (𝑥𝑛𝑡 | 𝐷′𝑛

𝑇𝑘∖{𝑥𝑛𝑡 }, 𝜆𝑛
𝐹)
)︀𝑜𝑛𝑡 ,

(5.25)

for 𝑘 ∈ unique(z1:𝑇∖𝑡) ∪ {max(z1:𝑇∖𝑡) + 1}.

2. For each 𝑛 = 1, . . . , 𝑁 , if 𝑜𝑛𝑡 = 0, then propose 𝑥′𝑛𝑡 ∼ 𝐹 (· | 𝜃𝑛𝑧𝑡) otherwise set 𝑥′𝑛𝑡 ← 𝑥𝑛𝑡 .

3. Compute the MH acceptance ratio 𝑟, using 𝑏𝑡 defined in Eq. (5.23):

𝑟 =

∏︀
𝑡′>𝑡 𝑏𝑡′(z1:𝑡′−1∖𝑡 ∪ 𝑧′𝑡,x

1:𝑁
1:𝑡′−1∖𝑡 ∪ x′1:𝑁

𝑡:𝑡)
∏︀

𝑡′>𝑡 𝑏𝑡′(z1:𝑡′ ,x
1:𝑁
1:𝑡′−1)

. (5.26)

4. Set (𝑧𝑡,x
1:𝑁
𝑡:𝑡)← (𝑧′𝑡,x

′1:𝑁
𝑡:𝑡) with probability min(1, 𝑟), otherwise leave unchanged. unchanged.

the MH proposal (5.25) resembles the Gibbs proposal in Neal [2000, Algorithm 3], except that it
additionally accounts for the temporal coupling which is needed to ensure that the transition leaves
Eq. (5.22) invariant. Empirical evidence suggests that, when using the proposal (5.25), the acceptance
ratio centers around one. This observation suggests a good initialization or “warm-up” strategy for the
Markov chain, prior to running the full MH algorithm, is to run several rounds of step 1 and always
accepting the proposal without computing Eq. (5.26), which removes the additional 𝑂(𝑇) factor.

Unlike single-site MH in Algorithm 5.1, SMC in Algorithm 5.2 requires 𝑂(𝐾𝑁𝑝) to assess Eq. (5.27)
in step 2.1.1. The total cost of a complete pass through all 𝑇 data points (step 2) and all 𝐽 particles
(step 2.1) is therefore 𝑂(𝐽𝑇𝐾𝑁𝑝). In SMC, the normalizers 𝑏𝑡 need not to be retroactively computed,
which is the main overhead of single-site MH in Algorithm 5.1. In addition to its linear scaling in
𝑇 , SMC more tractably handles missing data. Particle rejuvenation can also be added to the SMC
algorithm by applying the MH strategy from Algorithm 5.1 in between observing batches of data (e.g.,
every 10 time steps), which delivers more accurate inference at the expense of more computation.

Inferring Time Series Cluster Assignments (𝑐𝑛 | c1:𝑁∖𝑛, . . .) MCMC is used to infer the cluster
assignments in Eq. (5.19) that factorize the time series into independent groups. Let 𝐵 ⊆ [𝑁] and put

𝐿𝑚(z1:𝑇 ,x
𝐵
1:𝑇) ::=

𝑇∏︁

𝑡=1

[︃
𝑏𝑡CRP(𝑧𝑡 | z1:𝑡−1, 𝛼

𝑚)
𝑁∏︁

𝑛=1

𝐺(x𝑛
𝑡−𝑝:𝑡−1;𝐷

𝑛
𝑡𝑧𝑡 , 𝜆

𝑛)𝐹 (𝑥𝑛𝑡 | 𝐷′𝑛
𝑡𝑧𝑡 , 𝜆

𝑛
𝐹)

]︃
. (5.31)

The term 𝐿𝑚 is a shorthand for the product from 𝑡 = 1 to 𝑇 in the full model likelihood (5.22) for a
single TR-CRP mixture with latent sequence z1:𝑇 , data x𝐵

1:𝑇 , and CRP concentration 𝛼𝑚. Further, let
𝐴𝑚 ::= {𝑛 | 𝑛 = 1, . . . , 𝑁, 𝑐𝑛 = 𝑚} be the indices of the time series currently assigned to cluster 𝑚.

Algorithm 5.3 shows an MH transition operator for resampling 𝑐𝑛 given all other variables. Proposing
the hidden state vector 𝑧𝑀+1 for a singleton from the conditional prior in step 1 avoids the need for
transdimensional adjustments such as those in reversible jump MCMC [Green, 1995]. When computing

90

Algorithm 5.2 Sequential Monte Carlo sampler for hidden state assignments in the TR-CRP mixture.
This algorithm block samples (z1:𝑇 | . . .). Let 𝑜𝑛𝑡 be the “observation indicator” so that 𝑜𝑛𝑡 = 1 if 𝑥𝑛𝑡 is
observed and 0 if it is missing (𝑛 = 1, 2, . . . , 𝑁 ; 𝑡 = 1, 2, . . . , 𝑇). Let 𝐽 > 0 be the number of particles.
As missing values are simulated over the course of inference, all data has a superscript 𝑗 to identify any
imputed values by particle 𝑗.

1. Set 𝑤𝑗 ← 1 for 𝑗 = 1, 2, . . . , 𝐽

2. Repeat for 𝑡 = 1, 2, . . . , 𝑇

2.1. Repeat for 𝑗 = 1, 2, . . . , 𝐽

2.1.1. Sample 𝑧𝑗𝑡 from the multinomial distribution:

𝑃
(︁
𝑧𝑗𝑡 = 𝑘 | z𝑗1:𝑡−1,x

𝑗,1:𝑁 , 𝛼
)︁
∝ CRP(𝑘 | 𝛼, z𝑗1:𝑡−1)

𝑁∏︁

𝑛=1

𝐺(x𝑛,𝑗
𝑡−𝑝:𝑡−1;𝐷

𝑛,𝑗
𝑡𝑘 , 𝜆𝑛

𝐺)

𝑁∏︁

𝑛=1

(︁
𝐹 (𝑥𝑛𝑡 | 𝐷′𝑛,𝑗

𝑡𝑘 , 𝜆𝑛
𝐹)
)︁𝑜𝑛𝑡

,

(5.27)

for 𝑘 = 1, 2, . . . ,max(z𝑗1:𝑡−1) + 1.

2.1.2. Update particle weight using predictive density 𝑞𝑡 defined in Eq. (5.24):

𝑤𝑗 ← 𝑤𝑗𝑞𝑡

(︁
x𝑗,1:𝑁
1:𝑡−1 ∪ {𝑥𝑛𝑡 | 𝑜𝑛𝑡 = 1}, z𝑗1:𝑡−1

)︁
. (5.28)

2.1.3. For each 𝑛 such that 𝑜𝑛𝑡 = 0, simulate a value 𝑥𝑛,𝑗𝑡 ∼ 𝐹 (· | 𝐷′𝑛
𝑡𝑧𝑗𝑡

, 𝜆𝑛
𝐹).

2.2. If resampling criterion met, then:

2.2.1. Resample (z𝑗1:𝑡,x
𝑗,1:𝑁
1:𝑡) proportionally to 𝑤𝑗 , 𝑗 = 1, 2, . . . , 𝐽 .

2.2.2. Renormalize weights 𝑤𝑗 ← 𝑤𝑗/
∑︀

𝑗′ 𝑤
𝑗′ , 𝑗 = 1, 2, . . . , 𝐽 .

3. Resample 𝑗 ∼ Categorical(𝑤1, . . . , 𝑤𝐽) and return (z𝑗1:𝑇 ,x
𝑗,1:𝑁
1:𝑇).

the MH acceptance ratio (5.30) in step 5, it is not necessary to recompute all the 𝐿𝑚 terms at each
iteration. Writing out the full products in Eq. (5.31) reveals several duplicate terms in the numerator
and denominator of Eq. (5.30) that cancel one another. The 𝑏𝑚𝑡 terms that do not cancel contain several
duplicated components, which can be cached and reused from one transition to the other. Empirical
evidence suggests that a similar initialization heuristic to the one described for Algorithm 5.1 provides
good transitions with a lower computational overhead, given the similarities between Algorithm 5.3 and
the Gibbs proposal in Neal [2000, Algorithm 8].

91

Algorithm 5.3 Metropolis-Hastings sampler for partition assignments in the TR-CRP mixture.
Let the current state of the Markov chain be (𝛼0, c

1:𝑁 , 𝛼1:𝑀 , 𝜆1:𝑁
𝐺 , 𝜆1:𝑁

𝐹 , z1:𝑀1:𝑇) with observations x1:𝑁
1:𝑇 .

This algorithm resamples the assignment (𝑐𝑛 | c1:𝑁∖𝑛, . . .) for time series x𝑛.

1. If 𝑐𝑛 is not a singleton cluster (|𝐴𝑐𝑛 | > 1), then generate a proposal sequence by forward sampling
z𝑀+1
1:𝑇 from the conditional prior where the data x𝑛

1:𝑇 fixed at the observed values. Otherwise, if
𝑐𝑛 is a singleton (|𝐴𝑐𝑛 | = 1) then reuse the current hidden states by setting z𝑀+1

1:𝑇 ::= z𝑐
𝑛

1:𝑇 .

2. For 𝑚 ∈ unique(c1:𝑁∖𝑛), compute

𝑝𝑚 =

{︃
|𝐴𝑚|𝐿𝑚 (z𝑚1:𝑇 ,x

𝑛
1:𝑇) if 𝑐𝑛 ̸= 𝑚,

(|𝐴𝑚| − 1)𝐿𝑚 (z𝑚1:𝑇 ,x
𝑛
1:𝑇) if 𝑐𝑛 = 𝑚.

3. Compute the singleton proposal probability:

𝑝𝑀+1 = 𝛼0𝐿𝑚+1

(︁
z𝑀+1
1:𝑇 ,x𝑛

1:𝑇

)︁

4. Sample 𝑐′ ∼ Categorical(𝑝1, . . . , 𝑝𝑀+1).

5. Compute the MH acceptance ratio

𝑟 =

(︃
𝐿𝑐′(z𝑐

′
1:𝑇 ,x

𝐴𝑐′

1:𝑇 ∪ x𝑛
1:𝑇)𝐿

𝑐𝑛(z𝑐
𝑛

1:𝑇 ,x
𝐴𝑐𝑛

1:𝑇 ∖x𝑛
1:𝑇)

𝐿𝑐′(z𝑐
′
1:𝑇 ,x

𝐴𝑐′

1:𝑇)𝐿
𝑐𝑛(z𝑐

𝑛

1:𝑇 ,x
𝐴𝑐𝑛

1:𝑇)

)︃(︂
𝐿𝑐𝑛(z𝑐

𝑛

1:𝑇 ,x
𝑛
1:𝑇)

𝐿𝑐′(z𝑐
′
1:𝑇 ,x

𝑛
1:𝑇)

)︂
. (5.30)

6. Set 𝑐𝑛 ← 𝑐′ with probability min(1, 𝑟), else leave 𝑐𝑛 unchanged.

Inferring Hyperparameters (𝛼0, {𝛼𝑚}, {𝜆𝑛
𝐺}, {𝜆𝑛

𝐹 } | . . .) For each hyperparameter, a grid of 30
data-dependent logarithmically-spaced bins is constructed as follows:

grid(𝛼0) = logspace(1/𝑁,𝑁) (Outer CRP Concentration) (5.32)
grid(𝛼𝑚) = logspace(1/𝑇, 𝑇) (TR-CRP Concentration) (5.33)
grid(𝑚𝑛

0) = logspace(min(x𝑛
1:𝑇)− 5,max(x𝑛

1:𝑇) + 5) (Normal-InverseGamma Location) (5.34)
grid(𝑉 𝑛

0) = logspace(1/𝑇, 𝑇) (Normal-InverseGamma Variance) (5.35)
grid(𝑎𝑛0) = logspace(ssqdev(x𝑛

1:𝑇)/100, ssqdev(x
𝑛
1:𝑇)) (Normal-InverseGamma Shape) (5.36)

grid(𝑏𝑛0) = logspace(1, 𝑇), (Normal-InverseGamma Scale) (5.37)

where ssqdev denotes the sum of squared deviations from the mean. The grids for the Normal-
InverseGamma hyperparameters are used for both 𝜆𝑛

𝐹 and 𝜆𝑛
𝐺 (𝑛 = 1, 2, . . . , 𝑁). The sampler cycles

through the grid points of each hyperparameter and assess the full likelihood at each bin using Eq. (5.21).
This method is simple, computationally feasible, and finds reasonable hyperparameter settings. Alter-
native approaches based on expectation-maximization or slice sampling are also possible, although they
require more complex implementations such as gradient computation, inverse densities, or numerical
methods to compute slices. It is also possible to normalize the time series values to the unit interval be-
fore performing inference, which would make it easier to specify a broad prior over valid hyperparameter
values for data within that range.

92

5.3 Forecasting, Clustering, and Imputation with TR-CRP Mixtures

A collection of 𝑆 approximate posterior samples {𝜉1, . . . , 𝜉𝑆} of all latent variables can be used to solve
a variety of predictive inference queries about the time series x1, . . . ,x𝑁 .

Forecasting For future time points 𝑇+1, . . . , 𝑇+ℎ over an ℎ step horizon, the forecasts 𝑥𝑛𝑇+1, . . . , 𝑥
𝑛
𝑇+ℎ

(𝑛 = 1, . . . , 𝑁) are generated by ancestral sampling. That is, first draw 𝑠 ∼ Uniform[1 . . . 𝑆], then sim-
ulate step 5 of Listing 5.1 using the latent variables in chain 𝜉𝑠.

Clustering For a pair of time series (x𝑖,x𝑗), the posterior probability that they are dependent is the
fraction of samples in which they are in the same cluster:

𝑃
(︁
𝑐𝑖 = 𝑐𝑗

⃒⃒
⃒x1:𝑁

)︁
≈ 1

𝑆

𝑆∑︁

𝑠=1

I
[︀
𝑐𝑖,𝑠 = 𝑐𝑗,𝑠

]︀
. (5.38)

Imputation Posterior inference yields samples of each hidden state 𝑧·,𝑠𝑡 for all in-sample time points
1 ≤ 𝑡 ≤ 𝑇 . The posterior distribution of a missing value is thus:

𝑃
(︁
𝑥𝑛𝑡 ∈ 𝐵

⃒⃒
⃒x1:𝑁 ∖ {𝑥𝑛𝑡 }

)︁
≈ 1

𝑆

𝑆∑︁

𝑠=1

𝐹 (𝐵 | 𝜃𝑛,𝑠
𝑧𝑐

𝑛,𝑠
𝑡

). (5.39)

5.4 Applications to Macroeconomic and Flu Data

The TR-CRP mixture model can be used to effectively solve challenging data analysis tasks that
involve multivariate time series. Section 5.4.1 shows how the TR-CRP mixture is able to automatically
detect clusters of interpretable temporal patterns in macroeconomic time series from the Gapminder
Foundation [2022] database. Sections 5.4.2 and 5.4.3 apply the TR-CRP mixture to solve imputation
and forecasting tasks on seasonal flu data from the US CDC, with quantitative results that outperform
several widely used baselines on these challenging problems.

5.4.1 Clustering Macroeconomic Data

The Gapminder Foundation [2022] database contains dozens of macroeconomic time series for 170
countries spanning 50 years. Because fluctuations due to events such as natural disasters, financial
crises, or healthcare epidemics are poorly described by parametric or hand-designed causal models that
ignore these unpredictable events, a key objective is to automatically discover the number and kinds
of patterns in the data. The top panel of Figure 5.5 shows all 170 GDP time series in the Gapminder
dataset and the remaining nine panels show inferred clusters from the TR-CRP mixture (𝑝 = 5 years).
These clusters reflect commonsense and visually distinct patterns: within each group of dependent
time series there is a similar 50-year trajectory of GDP, which include temporal patterns such as linear
growth, exponential growth, boom-and-bust cycles, and outliers.

Figure 5.6 shows discovered structure in historical cell phone subscription data. The left-most plot
in Figure 5.6a shows the observed 170 time series and the remaining plots show three representative
clusters in one posterior sample of the TR-CRP mixture. Each cluster corresponds to countries whose
changepoint in cell phone subscribers from zero to nonzero lies in a distinct window: 1985–1995 in
cluster 1, 1995–2000 in cluster 2, and 2000–2005 in cluster 3. Figures 5.6b and 5.6c compare the
pairwise dependence probability matrix with the pairwise cross-correlation matrix for the 170 time
series, which show that the TR-CRP mixture captures more refined independence structure in the data.

93

1960 1970 1980 1990 2000 2010

All 170 GDP per capita time series from 1960 to 2010 in the Gapminder dataset

1960 1970 1980 1990 2000 2010

GDP cluster 1

USA
Canada
France
Italy
Japan

1960 1970 1980 1990 2000 2010

GDP cluster 2

China
Bangladesh
Nepal
India
Vietnam

1960 1970 1980 1990 2000 2010

GDP cluster 3

Russia
Romania
Serbia
Ukraine

1960 1970 1980 1990 2000 2010

GDP cluster 4

Libya
Togo
Cote dIvoire
Gambia

1960 1970 1980 1990 2000 2010

GDP cluster 5

Brazil
Ecuador
Honduras
Algeria

1960 1970 1980 1990 2000 2010

GDP cluster 6

Niger
Madagascar
Central African Rep.

1960 1970 1980 1990 2000 2010

GDP cluster 7

Poland
Slovenia
Slovakia
Belarus

1960 1970 1980 1990 2000 2010

GDP cluster 8

Equatorial Guinea
Samoa

1960 1970 1980 1990 2000 2010

GDP cluster 9

North Korea

Figure 5.5: Given GDP per capita data for 170 countries from 1960–2010, the TR-CRP mixture detects
groups of time series with qualitatively distinct temporal patterns. The top panel shows an overlay
of all the GDP time series and nine representative clusters in the remaining panels. Countries within
each cluster, of which a subset are labeled, share similar political, economic, and/or geographic charac-
teristics. For instance, cluster 1 contains Western democracies with steady economic growth. Cluster
2 includes China and India, whose GDP growth rates have outpaced those of industrialized nations.
Cluster 3 contains former communist nations, whose economies crashed after fall of the Soviet Union.
Outliers such as Samoa, Equatorial Guinea, and North Korea can be seen in clusters 8 and 9.

5.4.2 Imputing Multivariate Flu Rates

Predicting flu rates is a fundamental task in public health. The US CDC maintains an extensive dataset
of flu rates and related time series such as temperature measurements and vaccination rates.

Figure 5.3 shows the influenza-like-illness rate (ILI, or flu), tweets, and minimum temperature time
series in United States Region 4, as well as six temporal regimes detected by one posterior sample of the
TR-CRP mixture model (𝑝 = 10 weeks). Measurements are taken weekly from January 1998 to June
2015. To investigate the performance of the TR-CRP mixture on multivariate imputation, windows
of length 10 were dropped at a rate of 5% from flu time series in US Regions 1–10. Figure 5.7 shows
flu time series for US Regions 2, 4, 7, and 9, as well joint imputations obtained from the TR-CRP
mixture using Eq. (5.39) and example imputations for the 2013 flu season in Region 9. Table 5.1 shows
a quantitative comparison of imputation accuracy to several baselines, where statistically significant
lowest errors are shown in bold. The results show that the TR-CRP mixture achieves comparable
accuracy to the state-of-the art Amelia II [Honaker et al., 2011] baseline, although neither method is
consistently more accurate across all regions.

94

1980 1985 1990 1995 2000 2005 2010

ce
ll

ph
on

e
su

bs
cr

ip
tio

ns
All 170 cellphone time series

1980 1985 1990 1995 2000 2005 2010

Changepoints
1985-1995

Cell phone cluster 1

Canada
France
Italy
Japan
South Korea
USA

1980 1985 1990 1995 2000 2005 2010

Changepoints
1995-2000

Cell phone cluster 2

Brazil
China
Jordan
Poland
Romania
Uruguay

1980 1985 1990 1995 2000 2005 2010

Changepoints
2000-2005

Cell phone cluster 3

Afghanistan
Bangladesh
Chad
Ghana
Nepal
Sudan

(a) Three posterior clusters in the TR-CRP mixture correspond to three non-overlapping changepoint windows.

(b) Pairwise dependence probability heatmap (c) Pairwise cross-correlation heatmap

Figure 5.6: Discovering changepoint locations in cell phone subscriptions for 170 countries in the Gap-
minder dataset. (a) The three clusters, extracted from one posterior sample, correspond to three regimes
each with non-overlapping changepoint windows, annotated by red boxes. The representative countries
in each cluster have similar adoption times of cell phone technology, a feature which differs across the
clusters. (b)–(c) Comparison of pairwise dependence probabilities, averaged over 60 posterior samples
using Eq. (5.38), and the matrix of pairwise cross-correlations (bottom) between all pairs 170 time
series. Each row and column is a time series, and the color of a cell is a value between 0 and 1 that
indicates the posterior dependence probability, resp. the cross-correlation coefficient (if significant at
the 0.05 level with Bonferroni correction). The TR-CRP mixture detects more refined dependence
structures than those captured by linear correlation.

5.4.3 Forecasting Multivariate Flu Rates

To quantitatively assess the forecasting quality of the TR-CRPM mixture, the entire 2015 season for all
10 US regions was held out. Forecasts for the unobserved weeks were generated on a rolling basis. In
particular, for each week 𝑡 = 2014.40, . . . , 2015.20 the task is to generate a forecast for x𝑛,flu

𝑡:𝑡+ℎ, conditioned
on x𝑛,flu

1:𝑡−2 and all available covariate data up to time 𝑡, where the horizon ℎ = 1, . . . , 10. A key challenge
is that when forecasting x𝑛,flu

𝑡:𝑡+ℎ, the most recent flu measurement 𝑥𝑛,flu𝑡−2 is two weeks old. Moreover,
covariate time series are themselves sparsely observed in the training data; for example, all Twitter data
is missing before June 2013, as shown in the top panel of Figure 5.3. Table 5.2 shows the forecasting
accuracy from several widely used and domain-general baselines that do not require custom modeling
for obtaining forecasts. Not all baselines can include the weather and tweets covariate information, as

95

Table 5.1: Mean absolute imputation errors in 10 United States flu regions using various baselines.

United States CDC Flu Region

R01 R02 R03 R04 R05 R06 R07 R08 R09 R10

Mean Imputation 0.65 0.85 0.91 1.07 0.66 1.20 1.17 0.75 0.80 1.10
Linear Interpolation 0.43 0.63 0.57 0.42 0.44 0.71 0.71 0.35 0.43 0.72
Cubic Splines 1.01 0.72 0.61 0.89 0.69 1.68 1.42 0.63 0.99 1.47
Multi-output GP 0.36 0.57 0.32 0.58 0.30 0.57 0.62 0.34 0.43 0.56
Amelia II 0.29 0.52 0.25 0.45 0.29 0.53 0.53 0.37 0.39 0.51
TR-CRP Mixture 0.23 0.47 0.23 0.49 0.31 0.55 0.75 0.34 0.37 0.67

R
02

.%
IL

I
R

04
.%

IL
I

R
07

.%
IL

I

2008 2009 2010 2011 2012 2013 2014 2015

R
09

.%
IL

I

(a) Example joint imputations in four US regions.

Linear interpolation: R09.%ILI, YR2013

True Data
Imputations

TRCRP imputation: R09.%ILI, YR2013

True Data
Imputations

(b) Example imputations in R09.

Figure 5.7: Jointly imputing missing flu data in 10 US Regions over eight seasons.

indicated in the legend of Table 5.2. For example, the seasonal ARIMA [Hyndman and Khandakar,
2008] baseline is not able to handle missing covariates in either the training set or over the course of
the forecast horizon. The multivariate TR-CRP mixture, which uses the flu, weather, and tweet data,
consistently produces the most accurate forecasts for all horizons, with statistically significant lowest
errors in bold. Figure 5.8 compares the forecasts using various baselines at two timepoints in the 2014–
2015 flu season. Both Facebook Prophet [Taylor and Letham, 2018] and ARIMA incorrectly forecast
the peak behavior and produced biased forecasts in the post-peak regime. The HDP-HSMM [Johnson
and Willsky, 2013] is able to include weather data because it is is fully observed but fails to accurately
detect flu peaks. The univariate TR-CRP mixture, which only models the flu, produces similar errors
to the Gaussian process with periodic kernel, although the latter gives wider posterior error bars even
in the relatively noiseless post-peak regime. The multi-output GP [Alvarez and Lawrence, 2008] uses
both weather and tweet covariates, but does not deliver an improvement in predictive accuracy over
univariate methods. The multivariate TR-CRP mixture produces the most accurate and calibrated
forecasts on this benchmark set.

5.5 Related Work

The TR-CRP mixture is a time series extension of product partition models for cross-sectional data
[Ishwaran and James, 2003, Shahbaba and Neal, 2009, Park and Dunson, 2010, Mueller and Quintana,
2010, Mueller et al., 2011]. Product partition models apply to an exchangeable sequence (𝑥1, . . . , 𝑥𝑚)
of random variables with exogenous covariates (𝑦1, . . . , 𝑦𝑚) by reweighting the prior CRP cluster prob-

96

Table 5.2: Mean absolute error of flu predictions for 10 forecast horizons averaged over US flu regions.
Length of forecast horizon (weeks)

Covariates 1 2 3 4 5 6 7 8 9 10

Linear Extrapolation – 0.65 0.79 0.93 1.08 1.24 1.39 1.55 1.70 1.86 2.01
GP(SE+PER+WN) – 0.53 0.60 0.66 0.71 0.75 0.79 0.82 0.85 0.87 0.89
GP(SE×PER+WN) – 0.50 0.57 0.62 0.67 0.71 0.74 0.78 0.81 0.84 0.86
Facebook Prophet – 0.83 0.84 0.85 0.85 0.85 0.86 0.86 0.87 0.87 0.87
Seasonal ARIMA – 0.64 0.76 0.84 0.92 0.98 1.04 1.08 1.13 1.16 1.19
TR-CRP Mixture – 0.54 0.58 0.62 0.67 0.71 0.76 0.80 0.83 0.86 0.89
HDP-HSMM Weather 0.69 0.72 0.76 0.79 0.82 0.84 0.86 0.88 0.89 0.90
Multi-output GP Weather + Tweets 0.70 0.77 0.84 0.88 0.91 0.93 0.95 0.97 0.99 1.01
TR-CRP Mixture Weather + Tweets 0.46 0.49 0.51 0.53 0.56 0.58 0.59 0.61 0.62 0.64

R
06

.%
IL

I

Gaussian Process Facebook Prophet Seasonal ARIMA HDP-HSMM Univariate TRCRP Multivariate TRCRP

R
06

.%
IL

I

Observed Data Held-Out Data Mean Forecast 95% Forecast Interval

Top row: Forecast week 2014.51 Bottom row: Forecast week 2015.10

Figure 5.8: Comparison of forecasts in US Region 6 for week 2014.51 (pre-peak) and week 2015.10 (post-
peak) using the TR-CRP mixture and several baselines. The multivariate TR-CRP mixture accurately
forecasts seasonal dynamics in both cases, whereas baseline methods produce inaccurate forecasts or
miscalibrated uncertainties.

ability 𝑃 (𝑧𝑖 = 𝑘) for each observation 𝑥𝑖 using the covariate 𝑦𝑖. The TR-CRP mixture extends this
idea to time series, where the prior CRP cluster probability 𝑃 (𝑧𝑡 = 𝑘) for 𝑥𝑡 is reweighted based on the
𝑝 most recent values x𝑡−1:𝑡−𝑝. Moreover, when using the independence discovery prior in Section 5.1.4
and removing all temporal dependencies by setting 𝑝 = 0 or 𝐺 ∝ 1, the TR-CRP mixture coincides
with the CrossCat model [Mansinghka et al., 2016] and generalizes the MultiMixture DSL in Chapter 4.

Zhu et al. [2005] and Ahmed and Xing [2008] develop temporal extensions to Chinese restaurant
process mixtures for dynamic clustering. The latter work derives a recurrent CRP as the limit of a finite
dynamic mixture model. Unlike the TR-CRP mixture, these models are used to cluster batched data
and dynamic topic modeling [Blei and Lafferty, 2006] rather than data analysis tasks such as forecasting
or imputing multivariate time series.

Nonparametric Bayesian techniques for modeling multivariate time series include dependent Dirich-
let processes [Rodriguez and ter Horst, 2008]; hierarchical Dirichlet process hidden Markov models [Fox
et al., 2008, Johnson and Willsky, 2013]; Dirichlet Process and Pitman-Yor mixtures of nonlinear state-
space models [Nieto-Barajas and Contreras-Cristan, 2014, Lin et al., 2019]; and linear dynamic models
with Dirichlet Process mixture and Polya tree priors over the innovations [Caron et al., 2008, Nieto-
Barajas and Quintana, 2016]. As extensions of state-space models, these techniques support explicit
temporal structures, such as periodicity, trends, and autoregression, for modeling a specific dataset
pattern. These features are useful if the practitioner has strong prior knowledge about the underly-

97

ing structure, but they require more expensive inference algorithms such as running forward-filtering
backward-smoothing in the inner loop of MCMC. In contrast to these methods, the TR-CRP mixture
is a purely empirical model that detects and emulates patterns in the data by effectively maintaining
an infinite memory, as illustrated in Figure 5.2. The resulting model is designed to provide a good
baseline explanation of many datasets with widely varying structures, such as the GDP trajectories in
Figure 5.5, where expert modeling knowledge is either not available or too expensive to obtain. Another
distinction is that the TR-CRP mixture leverages a Bayesian nonparametric structure learning prior
(Section 5.1.4) to infer groups of independent time series that can be modeled separately, which many
of these previous techniques do not discover.

Recent methods in the literature have also extended the TR-CRP mixture. Tong and Torenvliet
[2020], for example, describe an alternative learning algorithm for the TR-CRP mixture based on online
variational inference using a stick-breaking representation and apply the method to solve anomaly
detection tasks in streaming data from industrial processes.

98

Chapter 6

Synthesizing Models for Relational Data

Learning models for relational data is a widely studied problem that arises in a number of settings
such as business intelligence [Chaudhuri et al., 2011], social networks [Carrington et al., 2005], bioinfor-
matics [Rual et al., 2005], and recommendation systems [Su and Khoshgoftaar, 2009], amongst many
others [Džeroski and Lavrač, 2001]. In this setting, the data consists of (i) a set of entities; (ii) a set of
attributes of these entities; and (iii) a set of interactions that occur between one more entities. The goal
is to learn models that are useful for explaining or making predictions about the data. Figure 6.1 shows
examples of relational systems from politics and genomics. In the political data, one problem could be
to discover what attributes of a particular country and interactions with other countries are likely to
make it an attractive tourist hub. In the genomics data, the objective could be to predict which com-
plexes a particular gene is likely to form, given information about its motifs, functions, and interactions
with other genes. This chapter addresses the problem of automatically learning probabilistic models
for a variety of relational systems, given a dataset of noisy sparse observations.

Learning probabilistic models for relational data, which generalize cross-sectional data (Chapter 4),
is an exceptionally difficult task. One approach to simplify the relational learning problem is to posit
a collection of hidden variables that decouple the relationships between observed variables. Using
Bayesian nonparametrics, the values and dimensionality of these hidden variables can be inferred from
data. Several papers have explored Bayesian nonparametric models for relational data [Kemp et al.,
2006, Xu et al., 2006, Roy and Teh, 2008, Sutskever et al., 2009, Kim et al., 2013, Nakano et al., 2014,
Xuan et al., 2017, Fan et al., 2018]; refer to Fan et al. [2021] for a survey. The technique presented in this
chapter builds on the infinite relational model [IRM; Kemp et al., 2006, Xu et al., 2006], a widely used,
flexible, and lightweight Bayesian nonparametric method for modeling a variety relational systems. The
IRM is a cluster-based model: informally, to decide whether a binary relation 𝑅 holds between a pair
of entities 𝑖 and 𝑗, the IRM flips a coin whose weight depends on the (latent) cluster assignments of 𝑖
and 𝑗. A strength of the IRM, reviewed in Section 6.1, is its ability to extract meaningful partitions
from observational data. However, as shown in Section 6.2, two limitations inherent to the IRM make
the model susceptible to combinatorial over-clustering and fail to discover certain predictive structure
between dependent but non-identically distributed relations.

To address these limitations, Section 6.3 introduces the hierarchical infinite relational model (HIRM),
which combines the flexibility of the IRM with a structure learning prior that infers subsets of relations
that are probably independent of one another. By allowing different relations to be explained by
different models, the HIRM specifies a large hypothesis space that includes the standard IRM as well as
more compact models that can only be approximated by an IRM using a combinatorially large number
of clusters. Section 6.4 presents algorithms for posterior inference. The evaluations in 6.5 show that
the HIRM makes more accurate predictions and discovers more interpretable clustering structure as
compared to the IRM, while retaining a highly flexible framework for automatic Bayesian structure
discovery in a variety of relational systems.

99

Country {Poland, India, USSR,
Egypt, Brazil, US, . . . }

LiteracyDemocracyArea Purges GDP. . .
106

ExportsTourismAllies Treaties NGOs. . .51

(a) Political Data [Rummel, 1999]

Gene

Belong

Class
{histones, cyclins, tubulins, adaptins, . . . }

Have Function
{energy, metabolism,
protein synthesis, . . . }

Contain Motif
{PS00012, PS00013,
. . . , PS01280, PS01281}

ObservePhenotype
{auxotrophies, morphology,
stress response defects, . . . }

FormComplex
{calcineurin B, arginase,
Gim complexes, proteasome, . . . }

At

Localization

{cytoplasm, golgi, nucleus, vacuole, endosome, . . . }

IsEssential
{essential, non-essential,
ambiguous-essential}

Lives Chromosome
{1,2,. . . ,16}

Interact

(b) Yeast Genomics Data [Cheng et al., 2002]

Figure 6.1: Two relational systems analyzed using the hierarchical infinite relational model introduced
in this chapter. Domains appear in rectangular boxes, relations appear in round ellipses, and the entities
within a domain are written between curly braces. (a) One domain, five unary relations, and five binary
relations. (b) Nine domains and nine binary relations. Unary relations represent “attributes” of entities
in a domain. Binary and higher-order relations represent “interactions” between domain entities.

100

6.1 Background: Infinite Relational Model

This section reviews the IRM using a generalization of the relational systems originally described
in Kemp et al. [2006] and Xu et al. [2006].

Definition 6.1. A relational system 𝑆 consists of 𝑛 domains 𝐷1, . . . , 𝐷𝑛 and 𝑚 relations 𝑅1, . . . , 𝑅𝑚.
Each domain 𝐷𝑖 ::= {𝑒𝑖1, 𝑒𝑖2, . . .} (1 ≤ 𝑖 ≤ 𝑛) is a countably infinite set of distinct entities. Each relation
𝑅𝑘 is a map from the Cartesian product of 𝑡𝑘 domains to an arbitrary codomain 𝐶𝑘 (1 ≤ 𝑘 ≤ 𝑚). The
symbol 𝑑𝑘𝑖 denotes the index of the domain for the 𝑖th argument of 𝑅𝑘 (1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑡𝑘). «

Example 6.2. Suppose system 𝑆 has 𝑛 = 4 domains 𝐷1, 𝐷2, 𝐷3, 𝐷4; and 𝑚 = 3 relations 𝑅1, 𝑅2, 𝑅3:

𝑅1 : 𝐷1 ×𝐷1 → {0, 1}, (6.1)
𝑅2 : 𝐷1 ×𝐷3 ×𝐷4 → {1, 2, . . .}, (6.2)
𝑅3 : 𝐷2 → (−∞,∞). (6.3)

That is, 𝑅1 is a binary relation taking binary values, 𝑅2 is a ternary relation taking positive integer
values, and 𝑅3 is a unary relation taking real values. The following quantities can be directly read off
from Eqs. (6.1)–(6.3):

𝑡1 = 2; 𝑑11 = 1, 𝑑12 = 1; 𝐶1 = {0, 1};
𝑡2 = 3; 𝑑21 = 1, 𝑑22 = 3, 𝑑23 = 4; 𝐶2 = {1, 2, . . .};
𝑡3 = 1; 𝑑31 = 2; 𝐶3 = (−∞,∞). «

Remark 6.3. To simplify notation, for a given relation 𝑅 : 𝐷1 × · · · × 𝐷𝑛 → 𝐶 and entity indexes
𝑖1, . . . , 𝑖𝑛 ∈ N, the notation 𝑅(𝑖1, . . . , 𝑖𝑛) means 𝑅(𝑒1𝑖1 , . . . , 𝑒

𝑛
𝑖𝑛
). «

Consider a system 𝑆 with 𝑛 domains and 𝑚 relations. For each 𝑖 = 1, . . . , 𝑛, the IRM assumes
that the entities {𝑒𝑖1, 𝑒𝑖2, . . .} in domain 𝐷𝑖 have integer cluster assignments {𝑧𝑖1, 𝑧𝑖2, . . .} =: 𝑧𝑖. The IRM
defines a joint probability distribution over cluster assignments and relation values with the following
factorization structure:

𝑃 (𝑧1, . . . , 𝑧𝑛, 𝑅1, . . . , 𝑅𝑚) =
𝑛∏︁

𝑖=1

𝑃 (𝑧𝑖)
𝑚∏︁

𝑘=1

𝑃 (𝑅𝑘 | 𝑧1, . . . , 𝑧𝑛). (6.4)

To allow the IRM to discover an arbitrary number of clusters, the cluster assignments 𝑧𝑖 for the
entities in 𝐷𝑖 are given a nonparametric prior that assigns a positive probability to all possible partitions
using the Chinese restaurant process [CRP; Aldous, 1985]. For each 𝑖 = 1, . . . , 𝑛, the cluster assignment
probabilities 𝑃 (𝑧𝑖) = 𝑃 (𝑧𝑖1, 𝑧

𝑖
2, . . .) in Eq. (6.4) are defined inductively with 𝑧𝑖1 ::= 1, and

𝑃 (𝑧𝑖ℓ = 𝑗 | 𝑧𝑖1, . . . , 𝑧𝑖ℓ−1) ::=
1

(ℓ− 1) + 𝛼

{︃
𝑛𝑗 if 1 ≤ 𝑗 ≤𝑀

𝛼 if 𝑗 = 𝑀 + 1,
(ℓ = 2, 3, . . .) (6.5)

where 𝑛𝑗 ::=
∑︀ℓ−1

𝑐=1 1
[︀
𝑧𝑖𝑐 = 𝑗

]︀
is the number of previous entities at cluster 𝑗; 𝑀 ::= max{𝑧𝑖1, . . . , 𝑧𝑖ℓ−1}

is the number of clusters among the first ℓ − 1 entities; and 𝛼 > 0 is the concentration parameter.
The cluster assignments 𝑧1, . . . , 𝑧𝑛 across the 𝑛 domains are mutually independent, each drawn from
a separate CRP (6.5). Next, for each relation 𝑅𝑘 (1 ≤ 𝑘 ≤ 𝑚), a set of parameters 𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) is
used to dictate the distribution of 𝑅𝑘(𝑖1, . . . , 𝑖𝑡𝑘), where 𝑗1, . . . , 𝑗𝑡𝑘 , 𝑖1, . . . , 𝑖𝑡𝑘 ∈ N. The relation values
depend only the cluster assignments, i.e., 𝑅𝑘(𝑖1, . . . , 𝑖𝑡𝑘) and 𝑅𝑘(𝑖

′
1, . . . , 𝑖

′
𝑡𝑘
) share the same parameter

101

D1

D1

R1

D1

R2 Relational System IRM Encoding

𝑅1 : 𝐷1 ×𝐷1 → {0, 1}
𝑅2 : 𝐷1 ×𝐷1 → {0, 1}

𝑅′ : 𝐷′ ×𝐷1 ×𝐷1 → {0, 1}
where 𝐷′ ::= {𝑅1, 𝑅2}

Figure 6.2: When used to cluster relations, the standard IRM uses a higher-ordering encoding that
requires relations to be defined on the same domain and assumes that all relations within a cluster are
identically distributed. While the relations 𝑅1 and 𝑅2 shown above are based on identical partitions of
𝐷1 they are not identically distributed and thus assigned to different clusters by the IRM. In contrast,
the HIRM can learn clusters of relations defined on different domains and can assign non-identically
distributed relations to the same cluster. Refer to Figure 6.6a for a real-world example.

whenever 𝑧𝑑𝑘ℓ𝑖ℓ
= 𝑧𝑑𝑘ℓ

𝑖′ℓ
for each ℓ = 1, . . . , 𝑡𝑘. Therefore, the generative model of the IRM is

{𝑧𝑖1, 𝑧𝑖2, . . .} ∼ CRP(𝛼𝑖) (𝑖 = 1, . . . , 𝑛) (6.6)
𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) ∼ 𝜋𝑘(𝜆𝑘) (𝑘 = 1, . . . ,𝑚; 𝑗1, . . . , 𝑗𝑡𝑘 ∈ N) (6.7)

𝑅𝑘(𝑖1, . . . , 𝑖𝑡𝑘) ∼ 𝐿𝑘(𝜃𝑘(𝑧
𝑑𝑘1
𝑖1

, . . . , 𝑧
𝑑𝑘𝑡𝑘
𝑖𝑡𝑘

)) (𝑘 = 1, . . . ,𝑚; 𝑖1, . . . , 𝑖𝑡𝑘 ∈ N), (6.8)

where {𝛼𝑖}𝑛𝑖=1 and {𝜆𝑘}𝑚𝑘=1 are hyperparameters. Eq. (6.8) ensures that all entities within the same
cluster are identically distributed. The prior 𝜋𝑘 and likelihood 𝐿𝑘 distributions in Eqs. (6.7) and (6.8)
can be set depending on the codomain 𝐶𝑘 of 𝑅𝑘 (e.g., beta-Bernoulli for binary data, gamma-Poisson
for counts, chisquare-normal for real values, etc.). Kemp et al. [2006] used the IRM to discover structure
in a variety of real-world relational systems, including:

(a) Random graphs, with one domain 𝐷 representing the vertices and one relation 𝑅 : 𝐷 ×𝐷 →
{0, 1} representing the edges, so that 𝑅(𝑖, 𝑗) = 1 if there is an edge from 𝑒𝑖 to 𝑒′𝑗 .

(b) Object-attribute data (Chapter 4), where 𝐷1 are the objects (individuals), 𝐷2 are the attributes
and the relation 𝑅 : 𝐷1 ×𝐷2 → {0, 1} is such that 𝑅(𝑖, 𝑗) = 1 if entity 𝑒1𝑖 has attribute 𝑒2𝑗 .

(c) Political data with multiple attributes and interactions (Figure 6.1a), where 𝐷1 are countries,
𝐷2 are attributes, and 𝐷3 are interactions. Attributes are represented by the relation 𝑅1 :
𝐷1×𝐷2 → {0, 1} and interactions are represented by the relation 𝑅2 : 𝐷1×𝐷1×𝐷3 → {0, 1}
where 𝑅2(𝑖, 𝑗, 𝑘)= 1 if countries 𝑒1𝑖 and 𝑒1𝑗 perform interaction 𝑒3𝑘.

6.2 Limitations of the Infinite Relational Model

There are two fundamental modeling limitations of the standard IRM that motivate the hierarchical
IRM with independence discovery presented in Section 6.3.

Enforcing Shared Domain Clustering Leads to Overfitting The IRM assumes that each domain
𝐷𝑖 has a single clustering 𝑧𝑖 = {𝑧𝑖1, 𝑧𝑖2, . . .} that globally dictates the partition of its entities {𝑒𝑖1, 𝑒𝑖2, . . .}.
That is, the same cluster assignments 𝑧𝑖 are used for all of the relations in which 𝐷𝑖 participates.
Figure 6.3 shows that this inductive bias can lead to substantial over-clustering of the domain entities
and a failure to accurately model data when there exists structural independencies between relations.

102

𝑅1 : 𝐷1 ×𝐷1 → {0, 1}
𝑅2 : 𝐷1 ×𝐷2 → {0, 1}
𝑅3 : 𝐷1 ×𝐷3 → {0, 1}

Relational System

D1

D1

Relation R1

D2

D1

Relation R2

D3

D1

Relation R3

(a) Three binary relations defined on three domains.

𝑅1 : 𝐷1 ×𝐷1 → {0, 1}
𝑅2 : 𝐷1 ×𝐷2 → {0, 1}
𝑅3 : 𝐷1 ×𝐷3 → {0, 1}

Relation Partition

𝑅1

𝑅3

𝑅2

D1

D1

Relation R1

D2

D1

Relation R2

D3

D1

Relation R3

𝑅3

𝜃3(4, 3)𝜃3(4, 2)𝜃3(4, 1)𝜃3(3, 3)𝜃3(3, 2)𝜃3(3, 1)𝜃3(2, 3)𝜃3(2, 2)𝜃3(2, 1)𝜃3(1, 3)𝜃3(1, 2)𝜃3(1, 1)

𝑅2

𝜃2(4, 4)𝜃2(4, 3)𝜃2(4, 2)𝜃2(4, 1)𝜃2(3, 4)𝜃2(3, 3)𝜃2(3, 2)𝜃2(3, 1)𝜃2(2, 4)𝜃2(2, 3)𝜃2(2, 2)𝜃2(2, 1)𝜃2(1, 4)𝜃2(1, 3)𝜃2(1, 2)𝜃2(1, 1)

𝑅1

𝜃1(4, 4)𝜃1(4, 3)𝜃1(4, 2)𝜃1(4, 1)𝜃1(3, 4)𝜃1(3, 3)𝜃1(3, 2)𝜃1(3, 1)𝜃1(2, 4)𝜃1(2, 3)𝜃1(2, 2)𝜃1(2, 1)𝜃1(1, 4)𝜃1(1, 3)𝜃1(1, 2)𝜃1(1, 1)

𝐷3

𝑤3
3𝑤3

2𝑤3
1

𝐷2

𝑤2
4𝑤2

3𝑤2
2𝑤2

1

𝐷1

𝑤1
4𝑤1

3𝑤1
2𝑤1

1

(b) Posterior sample of IRM structure assuming full dependence (55 parameters).

𝑅1 : 𝐷1 ×𝐷1 → {0, 1}
𝑅2 : 𝐷1 ×𝐷2 → {0, 1}
𝑅3 : 𝐷1 ×𝐷3 → {0, 1}

Relation Partition

𝑅1

𝑅2

𝑅3

D1

D1

Relation R1

D2

D1

Relation R2

D3

D1

Relation R3

𝑐 = 2

𝑅3

𝜃3(2, 4)𝜃3(2, 3)𝜃3(2, 2)𝜃3(2, 1)𝜃3(1, 4)𝜃3(1, 3)𝜃3(1, 2)𝜃3(1, 1)

𝐷3

𝑤3
4𝑤3

3𝑤3
2𝑤3

1

𝐷1

𝑤1
2𝑤1

1

𝑐 = 1

𝑅2

𝜃2(2, 3)𝜃2(2, 2)𝜃2(2, 1)𝜃2(1, 3)𝜃2(1, 2)𝜃2(1, 1)

𝑅1

𝜃1(2, 2)𝜃1(2, 1)𝜃1(1, 2)𝜃1(1, 1)

𝐷3

𝑤3
3𝑤3

2𝑤3
1

𝐷1

𝑤1
2𝑤1

1

(c) Posterior sample of HIRM structure with dependence discovery ((𝑅1, 𝑅2) ⊥ 𝑅3) (39 parameters).

Figure 6.3: Learning independence relationships delivers more concise probabilistic model structures.
(b) The IRM forces all relations to be dependent and learns, for each domain, a single clustering (red
lines) shared by all the relations. This inductive bias leads to many spurious clusters. (c) The HIRM
infers that 𝑅3 is independent of (𝑅1, 𝑅2) and learns two separate clusterings of 𝐷1. While both (b)
and (c) are in the HIRM hypothesis space, the structure in (c) is ≈ 7×1013 times more likely under the
posterior than (c), since the prior over structure penalizes excessively complex hypotheses.

103

Restrictions When Clustering Multiple Relations Kemp et al. [2006] applied the IRM to clus-
tering multiple relations (i.e., interactions) by treating the relations themselves as entities in a domain.
More specifically, consider a system with relations 𝑅1, . . . , 𝑅𝑚 all defined on same domain and codomain,
say 𝐷 and 𝐶. This system can be encoded using a single higher-order relation 𝑅′ : 𝐷′×𝐷 → 𝐶, where
the entities of 𝐷′ are relations over 𝐷, i.e., 𝑅′(𝑗, 𝑖) ::= 𝑅𝑗(𝑖) (for 1 ≤ 𝑗 ≤ 𝑚, 𝑖 ∈ 𝐷). While an IRM for
𝑅′ will learn a clustering of both 𝐷′ (the relations) and 𝐷 (the original domain), there are at least two
restrictions with this modeling approach: (i) it only applies to relations defined on the same domain and
codomain; and (ii) it clusters relations 𝑅𝑖 and 𝑅𝑗 together only if they are dependent and identically
distributed, which follows from Eq. (6.8). Figure 6.2 shows an illustrative example of this limitation.

6.3 Hierarchical Infinite Relational Model

The hierarchical infinite relational model (HIRM) is designed to address the aforesaid limitations of
the IRM by using a structure learning prior to infer probable independencies among relations. This
factorization cannot be represented by the model structure of a standard IRM. Given a system 𝑆
with domains 𝐷1, . . . , 𝐷𝑛 and relations 𝑅1, . . . , 𝑅𝑚, the HIRM first nonparametrically partitions the 𝑚
relations using a CRP (6.5), where the cluster assignments of the relations are denoted 𝑐 ::= (𝑐1, . . . , 𝑐𝑚).
This partition induces a random number 𝐾 ::= max (𝑐1, . . . , 𝑐𝑚) of subsystems 𝑆1, . . . , 𝑆𝐾 of 𝑆. For
each ℓ = 1, . . . ,𝐾, the relations {𝑅𝑖 | 1 ≤ 𝑖 ≤ 𝑚, 𝑐𝑖 = ℓ} assigned to subsystem 𝑆ℓ are modeled jointly
by an IRM (6.6)–(6.8), independently of all relations assigned to another subsystem 𝑆ℓ′ (ℓ′ ̸= ℓ). The
HIRM thus defines a distribution over relation clusters, entity clusters, and relation values as follows:

𝑃 (𝑐1, . . . , 𝑐𝑚, {𝑧ℓ1, . . . , 𝑧ℓ𝑛}𝐾ℓ=1, 𝑅1, . . . , 𝑅𝑚) = 𝑃 (𝑐)
𝐾∏︁

ℓ=1

𝑛∏︁

𝑖=1

𝑃 (𝑧ℓ𝑖)
∏︁

𝑘|𝑐𝑘=ℓ

𝑃 (𝑅𝑘 | 𝑧ℓ1, . . . , 𝑧ℓ𝑛). (6.9)

The generative specification of the HIRM is

{𝑐1, . . . , 𝑐𝑚} ∼ CRP(𝛼0) (6.10)

{𝑧ℓ𝑖1 , 𝑧ℓ𝑖2 , . . .} ∼ CRP(𝛼ℓ𝑖) (ℓ = 1, . . . ,max(𝑐1, . . . , 𝑐𝑚); 𝑖 = 1, . . . , 𝑛) (6.11)
𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) ∼ 𝜋𝑘(𝜆𝑘) (𝑘 = 1, . . . ,𝑚; 𝑗1, . . . , 𝑗𝑡𝑘 ∈ N) (6.12)

𝑅𝑘(𝑖1, . . . , 𝑖𝑡𝑘) ∼ 𝐿𝑘(𝜃𝑘(𝑧
𝑐𝑘,𝑑𝑘1
𝑖1

, . . . , 𝑧
𝑐𝑘,𝑑𝑘𝑡𝑘
𝑖𝑡𝑘

)) (𝑘 = 1, . . . ,𝑚; 𝑖1, . . . , 𝑖𝑡𝑘 ∈ N), (6.13)

where 𝛼0, {{𝛼ℓ𝑖}𝑛𝑖=1}𝐾ℓ=1, and {𝜆𝑘}𝑚𝑘=1 are hyperparameters.
The HIRM (6.10)–(6.13) generalizes and extends the IRM (6.6)–(6.8). When 𝛼0 = 0, the HIRM

recovers the IRM. For 𝛼0 > 0, Eq. (6.10) specifies a CRP partition prior to factorize the relations, where
relations in the same block are modeled jointly using a standard IRM. In Eq. (6.11), each domain 𝐷𝑖 is
associated with a different partition 𝑧ℓ𝑖 for each subsystem 𝑆ℓ in which it participates. This inductive
bias allows the HIRM to express structural independencies between relations and avoid modeling a
Cartesian product of domain partitions when the data for (a subset of) relations in the system are
not well aligned (Figure 6.3). Eq. (6.10) allows the HIRM to directly cluster dependent relations
together, without using higher-order encodings discussed that are limited to relations defined on the
same domain as in the IRM (Figure 6.2). Eqs. (6.12) and (6.13) also imply that any relations 𝑅𝑘 and
𝑅𝑘′ clustered together in a subsystem 𝑆ℓ need not be identically distributed (resp. Figure 6.2), as they
each have their own parameters 𝜃𝑘 and 𝜃𝑘′ , respectively. The dependence is instead modeled by the
shared domain partitions {𝑧ℓ1, . . . , 𝑧ℓ𝑛} within subsystem 𝑆ℓ. In total, the structure learning prior (6.10)
retains the benefits of the standard IRM while addressing the limitations discussed in Section 6.2, all
within a Bayesian nonparametric model discovery framework.

104

Algorithm 6.1 Scan of Gibbs sampling for HIRM (sketch).

Require: Markov chain state 𝒮 containing relation cluster assignments (𝑐1, . . . , 𝑐𝑚), entity cluster
assignments {𝑧ℓ𝑖1 , . . . , 𝑧ℓ𝑖𝑁𝑖

}, and parameters {𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘)}, for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ ℓ ≤ 𝐾, and
1 ≤ 𝑘 ≤ 𝑚; dataset 𝑟.

1: for 𝑘 = 1, . . . ,𝑚 do ◁ For each relation 𝑅𝑘;
2: resample 𝑐𝑘 given (𝑟,𝒮 ∖ {𝑐𝑘}) ◁ resample partition assignment.
3: for ℓ = 1, . . . ,max(𝑐1, . . . , 𝑐𝑚) do ◁ For each subsystem 𝑆ℓ;
4: 𝐼ℓ ← {𝑑𝑘𝑗 | 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑡𝑘, 𝑐𝑘 = ℓ} ◁ 𝐼ℓ is the set of domains in subsystem 𝑆ℓ;
5: for 𝑖 ∈ 𝐼ℓ do ◁ for each domain 𝐷𝑖 in 𝑆ℓ;
6: for 𝑗 = 1, . . . , 𝑁𝑖 do ◁ for each entity 𝑒𝑖𝑗 in domain 𝐷𝑖;
7: resample 𝑧ℓ𝑖𝑗 given (𝑟,𝒮 ∖ {𝑧ℓ,𝑖𝑗 }) ◁ resample cluster assignment.

8: 𝑇ℓ ← {𝑘 | 1≤ 𝑘≤𝑚, 𝑐𝑘 = ℓ, (𝜋𝑘, 𝐿𝑘) nonconjugate} ◁ 𝑇ℓ is the set of relations in subsystem 𝑆ℓ

9: for 𝑘 ∈ 𝑇ℓ do ◁ For each relation 𝑅𝑘 in 𝑆ℓ;
10: for 𝑗1 = 1, . . . ,max(𝑧ℓ𝑑𝑘11 , . . . , 𝑧ℓ𝑑𝑘1𝑁𝑑𝑘1

) do ◁ for each cluster in the first domain of 𝑅𝑘;
11: . . . ◁ . . .
12: for 𝑗𝑡𝑘 = 1, . . . ,max(𝑧

ℓ𝑑𝑘𝑡𝑘
1 , . . . , 𝑧

ℓ𝑑𝑘𝑡𝑘
𝑁𝑑𝑘𝑡𝑘

) do ◁ for each cluster in the last domain of 𝑅𝑘;

13: resample 𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) given (𝑟,𝒮) ◁ resample cluster parameter.

6.4 Algorithms for Posterior Inference

An observed dataset for a relational system (Definition 6.1) consists of a finite number of realizations
of relation values, i.e., observations of random variables of the form {𝑅𝑘(𝑖1, . . . , 𝑖𝑡𝑘) = 𝑟𝑘(𝑖1, . . . , 𝑖𝑡𝑘)},
written {𝑟1, . . . , 𝑟𝑚} for short. Without loss of generality, it is assumed in this section that the relation
values are fully observed for 𝑁𝑖 ≥ 1 entities {𝑒𝑖1, . . . , 𝑒𝑖𝑁𝑖

} of each domain 𝐷𝑖 (𝑖 = 1, . . . , 𝑛) across all
relations that it participates in. Thus, the number of observations of 𝑅𝑘 : 𝐷𝑑𝑘1 × · · · ×𝐷𝑑𝑘𝑡𝑘

→ 𝐶𝑘 is
precisely 𝑁𝑑𝑘1 × · · · ×𝑁𝑑𝑘𝑡𝑘

, for 𝑘 = 1, . . .𝑚. The reference implementation of the HIRM (Section 1.4)
relaxes this requirement and can handle arbitrary index combinations with missing data.

Posterior inference in the HIRM is performed by simulating an ergodic Markov chain that converges
to the conditional distribution of Eq. (6.9) given the observed dataset. The state 𝒮 of the chain contains:

(S1) cluster assignments {𝑐1, . . . , 𝑐𝑚} of the relations, which define a partition of {𝑅1, . . . , 𝑅𝑚} into
𝐾 ::= max{𝑐1, . . . , 𝑐𝑚} subsystems (𝑆1, . . . , 𝑆𝑀);

(S2) cluster assignments {𝑧ℓ𝑖1 , . . . , 𝑧ℓ𝑖𝑁𝑖
} of the items in domain 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑛) within subsystem 𝑆ℓ

(1 ≤ ℓ ≤𝑀), which define a partition of {𝑒𝑖1, . . . 𝑒𝑖𝑁𝑖
} into 𝑊ℓ𝑖 ::= max{𝑧ℓ𝑖1 , . . . , 𝑧ℓ𝑖𝑁𝑖

} clusters;

(S3) cluster parameters 𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) for relation indexes 𝑘 = 1, . . . ,𝑚 and cluster indexes 𝑗𝑠 =

1, . . . ,max(𝑧ℓ𝑑𝑘𝑠1 , . . . , 𝑧ℓ𝑑𝑘𝑠𝑁𝑑𝑘𝑠
) (1 ≤ 𝑠 ≤ 𝑡𝑘), whenever (𝜋𝑘, 𝐿𝑘) do not form a conjugate pair.

An initial state 𝒮 can be obtained by sampling from the prior (6.10)–(6.12) and then iterating using
Gibbs sampling. Algorithm 6.1 shows one full Gibbs scan through all the variables in a given state 𝒮.
The transition operators for the updates in lines 2, 7 and 13 of Algorithm 6.1 are described next. It is
straightforward to embed these Gibbs kernels within a resample-move sequential Monte Carlo algorithm
that incorporates batches of observations one at a time rather than all the data at once.

Resampling Relation Cluster Assignments 𝑐𝑘 This kernel uses the auxiliary Gibbs sampler [Neal,
2000, Algorithm 8]. Let 𝐶ℓ ::= |{𝑘 | 1 ≤ 𝑘 ≤ 𝐾, 𝑐𝑘 = ℓ}| be the number of relations in 𝑆ℓ and
𝑊ℓ𝑖 ::= max{𝑧ℓ𝑖1 , . . . , 𝑧ℓ𝑖𝑁𝑖

} be the number of clusters for domain 𝐷𝑖 within 𝑆ℓ (1 ≤ ℓ ≤ 𝐾).

105

Case 1. If 𝑐𝑘 is a singleton (𝐶𝑘 = 1), then it is resampled from the categorical distribution

𝑃 (𝑐new𝑘 = ℓ | 𝒮 ∖ {𝑐𝑘}) = 𝑡𝑘ℓ

𝑊ℓ𝑑𝑘1∏︁

𝑗1=1

· · ·
𝑊ℓ𝑑𝑘𝑡𝑘∏︁

𝑗𝑡𝑘=1

𝑤𝑘ℓ(j, 𝜃𝑘) (ℓ = 1, . . . ,𝐾), (6.14)

where j ::= (𝑗1, . . . , 𝑗𝑡𝑘) and

𝑡𝑘ℓ ::=

{︃
𝛼0/(𝑚− 1 + 𝛼0) if ℓ = 𝑐𝑘

𝐶ℓ/(𝑚− 1 + 𝛼0) otherwise,
(6.15)

𝑤𝑘ℓ(j, 𝜃𝑘) ::=
∏︁

i∈𝐴𝑘ℓ(j)

𝐿𝑘(𝑟𝑘(i); 𝜃𝑘(j)). (6.16)

Eq. (6.15) is the conditional probability from the CRP prior (6.5), and in Eq. (6.16)

𝐴𝑘ℓ(j) ::= {i | 𝑧ℓ𝑑𝑘1𝑖1
= 𝑗1, . . . , 𝑧

ℓ𝑑𝑘𝑡𝑘
𝑖𝑡𝑘

= 𝑗𝑡𝑘} (6.17)

denotes the set of entity indexes i ::= (𝑖1, . . . , 𝑖𝑡𝑘) for domains (𝑑𝑘1, . . . , 𝑑𝑘𝑡𝑘) that are
assigned to cluster j of subsystem 𝑆ℓ (where 1 ≤ 𝑘 ≤ 𝑚; 1 ≤ ℓ ≤ 𝑀 ; 1 ≤ 𝑗1 ≤ 𝑊ℓ𝑑𝑘1 ; . . . ;
1 ≤ 𝑗𝑡𝑘 ≤ 𝑊ℓ𝑑𝑘𝑡𝑘

). If (𝜋𝑘, 𝐿𝑘) is a conjugate pair, the parameters 𝜃𝑘 can be analytically
integrated out, and Eq. (6.16) becomes

𝑤𝑘ℓ(j) ::=

∫︁

𝜃

[︁ ∏︁

i∈𝐴𝑘ℓ(j)

𝐿𝑘(𝑟𝑘(i); 𝜃)
]︁
𝜋𝑘(𝜃;𝜆𝑘)𝑑𝜃. (6.18)

Case 2. If 𝑐𝑘 is not a singleton (𝐶𝑘 > 1), then

1. For domain indexes 𝑖 = 1, . . . , 𝑛, draw cluster assignments for a fresh entity partition:

{𝑧𝐾+1,𝑖
1 , . . . , 𝑧𝐾+1,𝑖

𝑁𝑖
} ∼ CRP(𝛼), (6.19)

𝑊𝐾+1,𝑖 ::= max{𝑧𝐾+1,𝑖
1 , . . . 𝑧𝐾+1,𝑠

𝑁𝑖
}. (6.20)

2. Draw parameters 𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) for relation indexes 𝑘 = 1, . . . ,𝑚 and cluster indexes
𝑗1 = 1, . . . ,𝑊𝐾+1,𝑑𝑘1 ; . . . ; 𝑗𝑡𝑘 = 1, . . . ,𝑊𝐾+1,𝑑𝑘𝑡𝑘

.

3. Resample 𝑐𝑘 to take a new value ℓ ∈ {1, . . . ,𝐾 + 1} using the same terms in
Eqs. (6.14)–(6.16) from the previous case, except the CRP weight 𝑡𝑘ℓ in Eq. (6.15) is

𝑡𝑘ℓ ::=

⎧
⎪⎨
⎪⎩

(𝐶ℓ − 1)/(𝑚− 1 + 𝛼0) if ℓ = 𝑐𝑘

𝐶ℓ/(𝑚− 1 + 𝛼0) if ℓ ̸= 𝑐𝑘, ℓ ≤ 𝐾

𝛼0/(𝑚− 1 + 𝛼0) if ℓ = 𝐾 + 1.

(6.21)

Resampling Entity Cluster Assignments 𝑧ℓ𝑖𝑗 Within each subsystem 𝑆ℓ, the entity cluster as-
signments are transitioned using the collapsed Gibbs sampler [Neal, 2000, Alg. 3]. Alternatively, the
split-merge algorithm [Jain and Neal, 2004] can be used. Xu et al. [2007] discuss additional sampling-
based and variational approaches for inferring these variables.

Resampling Cluster Parameters 𝜃𝑘(𝑗1, . . . , 𝑗𝑡𝑘) Sample 𝜃′𝑘(j) ∼ 𝑞𝑘(𝜃𝑘(j)) from a proposal distri-
bution, such as the prior 𝜋𝑘(𝜆𝑘) or Gaussian drift 𝒩 (𝜃𝑘(j), 𝜎𝑘), and accept the move according to the

106

Table 6.1: Comparison of average log-likelihood of held-out test data on a benchmark of 20 binary
object-attribute datasets using the HIRM and two Bayesian nonparametric baselines.

Dataset Statistics Average Test Log-Likelihood

𝑁cols 𝑁 train
rows 𝑁 test

rows HIRM IRM DPMM

NLTCS 16 18338 3236 -06.00 -06.01 ∙ -06.01 ∙
MSNBC 17 330212 58265 -06.19 -06.27 ∙ -06.22 ∙
KDDCup 2000 64 199999 34955 -02.13 -02.13 ∙ -02.13 ∙
Plants 69 19733 3482 -13.75 -14.23 ∙ -13.81
Audio 100 17000 3000 -39.99 -40.34 -40.02

Jester 100 10000 4116 -52.91 -52.96 -52.92
Netflix 100 3500 3000 -56.96 -57.48 ∙ -56.96
Accidents 111 14458 2551 -33.85 -39.43 ∙ -38.93 ∙
Retail 135 24979 4408 -10.90 -10.99 -10.92
Pumsb-star 163 13897 2452 -32.77 -38.95 ∙ -38.02 ∙
DNA 180 2000 1186 -87.65 -97.44 ∙ -97.62 ∙
Kosarek 190 37825 6675 -10.91 -10.99 -10.95
MSWeb 294 62191 5000 -10.23 -11.20 ∙ -10.26
Book 500 9859 1739 -34.43 -34.52 -34.76
EachMovie 500 5526 591 -52.23 -52.09 -54.86

WebKB 839 3361 838 -156.67 -157.27 -158.26
Reuters-52 889 7560 1540 -90.22 -90.06 -89.34
20 Newsgroup 910 15057 3764 -153.52 -156.46 ∙ -153.95
BBC 1058 1895 330 -253.36 -253.86 -254.59
Ad 1556 2788 491 -45.19 -46.17 -52.40 ∙
∙ indicates significantly worse than HIRM (𝑝 = 0.05 Mann-Whitney U test).

Table 6.2: Summary of the number wins, ties, and losses of HIRM on benchmarks from Table 6.1,
compared to two Bayesian nonparametric baselines and two probabilistic deep learning baselines.

IRM DPMM LearnSPN RAT-SPN

HIRM # better 11 7 6 4
HIRM # tie 9 13 8 13
HIRM # worse 0 0 6 3

Figure 6.4: Runtime versus log joint probability of latent variables and observed data using the HIRM
(red) and IRM (black) in four representative object-attribute benchmarks from Table 6.1. Each subplot
shows measurements for two independent runs of posterior inference in each method.

107

MH probability

min

(︂
1,

𝜋𝑘(𝜃
′
𝑘(j);𝜆𝑘)𝑤𝑘ℓ(j, 𝜃

′
𝑘)

𝜋𝑘(𝜃𝑘(j);𝜆𝑘)𝑤𝑘ℓ(j, 𝜃𝑘)
· 𝑞𝑘(𝜃𝑘(j); 𝜃

′
𝑘(j))

𝑞𝑘(𝜃
′
𝑘(j); 𝜃𝑘(j))

)︂
, (6.22)

where is 𝑤𝑘ℓ (Eq. (6.16)) is the data likelihood for cluster j = (𝑗1, . . . , 𝑗𝑡𝑘).

Resampling Hyperparameters (𝛼0, {𝛼ℓ𝑖}𝑛𝑖=1, {𝜆𝑘}𝑚𝑘=1) Broad exponential hyperpriors are used for
all the hyperparameters that appear in Eqs. (6.10)–(6.12) and are resampled using an empirical Bayes
approach similar to Eqs. (5.32)–(5.37) from Chapter 5.

6.5 Applications to Object-Attribute, Political, and Genomics Data

The HIRM is evaluated on three problems. Section 6.5.1 benchmarks the predictive accuracy on object-
attribute (cross-sectional) data tables against several baselines. Sections 6.5.2 and 6.5.3 applies the
HIRM to make discoveries in the relational systems for politics and genomics shown in Figure 6.1,
which discovers interpretable relationships between the entities in these challenging domains.

6.5.1 Predictive Accuracy on Object-Attribute Benchmarks

This evaluation assesses the predictive performance of the HIRM on a benchmark of 20 object-attribute
datasets from Gens and Domingos [2013] and compares the results to various baselines. In Table 6.1,
the first four columns summarize the dataset statistics, which range between 16–1556 columns and
2000–330212 rows. The last three columns show the test log-likelihood from the HIRM, IRM [Kemp
et al., 2006, Xu et al., 2006], and Dirichlet process mixture model [DPMM; Lo, 1984]. As in Kemp et al.
[2006], the IRM encodes object-attribute data using one binary relation 𝑅 : Attr×Obj→ {0, 1}. The
HIRM encodes each dataset using 𝑁cols unary relations {𝑅𝑖 : Obj → {0, 1} | 𝑖 ∈ Attr} with structure
learning over the dependence between these attributes. The DPMM uses the same encoding as the
HIRM but without structure learning, so all attributes are modeled as dependent. In Table 6.1, the
black dots indicate significantly worse accuracy than the HIRM. The HIRM consistently outperforms
these baselines—it is significantly better in 17 cases and worse in zero cases. Figure 6.4 shows a plot
of inference runtime versus held-in data log score using the HIRM and IRM on four of the benchmarks
from Table 6.1. Despite the structure learning prior, the runtime of the HIRM matches or outperforms
the IRM. In fact, the HIRM often infers simpler partitions within the independent subsystems, which
can improve not only runtime scaling but also model accuracy.

To further assess the density estimation results, Table 6.2 compares the HIRM test log-likelihood to
those obtained from two probabilistic deep learning baselines for object-attribute data: LearnSPN [Gens
and Domingos, 2013] and RAT-SPN [Peharz et al., 2019]. A win, loss, and tie means statistically
significant better, worse, or equal test log likelihoods as compared to the HIRM. The results show that
the HIRM, which is a relatively shallow Bayesian model, is competitive on object-attribute data with
higher capacity probabilistic deep learning baselines that fit the data using greedy optimization. The
HIRM is distinguished by being additionally applicable to more general relational systems, presented
in the next two subsections, which LearnSPN and RAT-SPN cannot handle.

6.5.2 Political Interactions

Figure 6.1a shows the schema for political data from the “Dimensionality of Nations” project [Rummel,
1999] and Figure 6.5 shows the observations for a subset of 56 interactions and 15 countries, using the
version of the dataset from Kemp et al. [2006]. In each graph, a directed edge from one country to
another indicates an observed interaction; the absence of an edge means either there is no interaction

108

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

accusation

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

aidenemy

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

attackembassy

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

blockpositionindex

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

booktranslations

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

boycottembargo

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

commonbloc0

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

commonbloc1

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

commonbloc2

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

conferences

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

dependent

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

duration

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

economicaid

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

embassy

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

emigrants3

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

emigrants rel

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

expeldiplomats

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

exportbooks

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

exports3

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

exports rel

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

independence

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

intergovorgs

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

intergovorgs3

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

lostterritory

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

militaryactions

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

militaryalliance

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

negativebehavior

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

negativecomm

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

ngo

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

ngoorgs3

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

nonviolentbehavior

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

officialvisits

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

protests rel

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relbooktranslations

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

reldiplomacy

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

releconomicaid

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relemigrants

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relexportbooks

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relexports

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relintergovorgs

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relngo

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

relstudents

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

reltourism

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

reltreaties

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

severdiplomatic

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

students

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

timesinceally

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

timesincewar

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

tourism

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

tourism3

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

treaties

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

unoffialacts

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

unweightedunvote

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

violentactions

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

warning

Brazil

Burma

China

CubaEgypt

India

Indonesia

Israel

Jordan

Netherlands

Poland UK

USA

USSR

weightedunvote

Figure 6.5: Graphs for 56 interactions between countries in the “Dimensionality of Nations” data.

109

B
u

rm
a

In
d

on
es

ia
Is

ra
el

E
gy

p
t

Jo
rd

an
In

d
ia

C
h

in
a

U
S

S
R

P
ol

an
d

C
u

b
a

B
ra

zi
l

N
et

h
er

la
n

d
s

U
S

A
U

K

Burma
Indonesia

Israel
Egypt

Jordan
India

China
USSR

Poland
Cuba

Brazil
Netherlands

USA
UK

Neutral

B
u

rm
a

In
d

on
es

ia
Is

ra
el

E
gy

p
t

Jo
rd

an
In

d
ia

C
h

in
a

U
S

S
R

P
ol

an
d

C
u

b
a

B
ra

zi
l

N
et

h
er

la
n

d
s

U
S

A
U

K

Burma
Indonesia

Israel
Egypt

Jordan
India

China
USSR

Poland
Cuba

Brazil
Netherlands

USA
UK

Allies

B
u

rm
a

In
d

on
es

ia
Is

ra
el

E
gy

p
t

Jo
rd

an
In

d
ia

C
h

in
a

U
S

S
R

P
ol

an
d

C
u

b
a

B
ra

zi
l

N
et

h
er

la
n

d
s

U
S

A
U

K

Burma
Indonesia

Israel
Egypt

Jordan
India

China
USSR

Poland
Cuba

Brazil
Netherlands

USA
UK

Rivals
(a) Subsystem 1 (Geopolitical Blocs)

C
u

b
a

E
gy

p
t

In
d

on
es

ia
In

d
ia

N
et

h
er

la
n

d
s

P
ol

an
d

Jo
rd

an
B

u
rm

a
Is

ra
el

C
h

in
a

B
ra

zi
l

U
S

A
U

K
U

S
S

R

Cuba
Egypt

Indonesia
India

Netherlands
Poland
Jordan
Burma

Israel
China
Brazil

USA
UK

USSR

Tourism

C
u

b
a

E
gy

p
t

In
d

on
es

ia
In

d
ia

N
et

h
er

la
n

d
s

P
ol

an
d

Jo
rd

an
B

u
rm

a
Is

ra
el

C
h

in
a

B
ra

zi
l

U
S

A
U

K
U

S
S

R

Cuba
Egypt

Indonesia
India

Netherlands
Poland
Jordan
Burma

Israel
China
Brazil

USA
UK

USSR

Book Translations

C
u

b
a

E
gy

p
t

In
d

on
es

ia
In

d
ia

N
et

h
er

la
n

d
s

P
ol

an
d

Jo
rd

an
B

u
rm

a
Is

ra
el

C
h

in
a

B
ra

zi
l

U
S

A
U

K
U

S
S

R

Cuba
Egypt

Indonesia
India

Netherlands
Poland
Jordan
Burma

Israel
China
Brazil

USA
UK

USSR

Exports
(b) Subsystem 2 (Economy and Culture)

Is
ra

el
P

ol
an

d
C

u
b

a
E

gy
p

t
U

K
In

d
ia

B
ra

zi
l

U
S

S
R

C
h

in
a

B
u

rm
a

N
et

h
er

la
n

d
s

Jo
rd

an
In

d
on

es
ia

U
S

A

Israel
Poland

Cuba
Egypt

UK
India

Brazil
USSR
China

Burma
Netherlands

Jordan
Indonesia

USA

Emigration

Is
ra

el
P

ol
an

d
C

u
b

a
E

gy
p

t
U

K
In

d
ia

B
ra

zi
l

U
S

S
R

C
h

in
a

B
u

rm
a

N
et

h
er

la
n

d
s

Jo
rd

an
In

d
on

es
ia

U
S

A
Israel

Poland
Cuba

Egypt
UK

India
Brazil
USSR
China

Burma
Netherlands

Jordan
Indonesia

USA

Students
(c) Subsystem 3 (USA Outlier)

In
d

on
es

ia
C

u
b

a
U

S
S

R
C

h
in

a
B

u
rm

a
P

ol
an

d
U

S
A

In
d

ia
N

et
h

er
la

n
d

s
E

gy
p

t
U

K
Jo

rd
an

B
ra

zi
l

Is
ra

el

Indonesia
Cuba

USSR
China

Burma
Poland

USA
India

Netherlands
Egypt

UK
Jordan
Brazil
Israel

Attack Embassy

In
d

on
es

ia
C

u
b

a
U

S
S

R
C

h
in

a
B

u
rm

a
P

ol
an

d
U

S
A

In
d

ia
N

et
h

er
la

n
d

s
E

gy
p

t
U

K
Jo

rd
an

B
ra

zi
l

Is
ra

el

Indonesia
Cuba

USSR
China

Burma
Poland

USA
India

Netherlands
Egypt

UK
Jordan
Brazil
Israel

Sever Relations
(d) Subsystem 4 (Sparse Interactions)

Figure 6.6: Subsystems inferred by the HIRM on the “Dimensionality of Nations” data. Each panel
shows an independent system of interactions that has its own partition of the nations. Interactions are
represented as binary adjacency matrices of the graphs in Figure 6.5.

110

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Emigration

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Students

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Sever Relations

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Attack Embassy
(a) Cluster 1

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Neutral
(b) Cluster 2

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Allies
(c) Cluster 3

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Rivals
(d) Cluster 4

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Book Translations
(e) Cluster 5

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Tourism

P
ol

an
d

U
S

S
R

C
h

in
a

C
u

b
a

Is
ra

el
In

d
ia

E
gy

p
t

B
u

rm
a

In
d

on
es

ia
Jo

rd
an

U
K

U
S

A
B

ra
zi

l
N

et
h

er
la

n
d

s

Poland
USSR
China
Cuba
Israel
India

Egypt
Burma

Indonesia
Jordan

UK
USA

Brazil
Netherlands

Exports
(f) Cluster 6

Figure 6.7: Clusters of interactions inferred by the IRM on the “Dimensionality of Nations” data. Since
the IRM uses a shared partition of the nations across all relations (red lines), the concepts discovered
are more complicated and less interpretable than those of the HIRM in Figure 6.6.

111

or the data is missing. There are also 111 country attributes (not shown) encoded as unary relations
on the Country domain.

Figure 6.6 shows four independent subsystems of relations discovered by the HIRM. Each relation
is shown as an adjacency matrix (white means 0, black means 1, and gray means missing data) of the
corresponding graph in Figure 6.5. Red lines show the country partition inferred for each subsystem,
which capture varying properties of the data. For example, in Figure 6.6a, the HIRM infers a subsystem
representing three geopolitical interactions for whether countries are allies, rivals, or have neutral rela-
tions. The attributes assigned to this subsystem include “electoral system”, “political leadership”, and
“constitutional”.1 In Figure 6.6b, which represents economic and cultural ties, the learned attributes
include “absolute income”, “agricultural population”, and “arts and culture NGOs”. This subsystem
reflects the fact that tourists from the UK and USA travel to countries from all clusters; all countries
translate books from the USA and UK; and UK and USA translate books from the USSR. Figure 6.6c
represents a subsystem of relations in which the USA is unique, due to its exceptionally high number
of immigrants and foreign students. The HIRM has inferred that immigration and foreign students are
independent of the geopolitical interactions in Figure 6.6a. This discovery corresponds to commonsense:
the geopolitical rivalry between the USA and China/USSR does not impact the flow of immigrants and
students between the latter to the former. Finally, Figure 6.6d contains sparse relations such as “Attack
Embassy” and “Sever Relations”, which form a subsystem with a single country cluster with a small
probability for the presence of a hostile event.

In contrast to the HIRM, the IRM cannot detect subsystem structure because it uses a single
country partition for all interactions, as shown in Figure 6.7. These clusters provide a less interpretable
explanation of the data. For example, Figure 6.7a shows that the IRM explains the four interactions of
emigration, foreign students, sever relations, and embassy attacks using a single latent process, which is
less plausible than the HIRM explanation in Figures 6.6c and 6.6d. Moreover, the IRM cannot detect
dependence between the geopolitical interactions in Figure 6.6a and instead assigns them to separate
clusters (Figures 6.7b–6.7d) due to the limitation described in Figure 6.2.

6.5.3 Genomic Properties

The final experiment applies the HIRM to structure discovery in a dataset of yeast genomes [Cheng et al.,
2002]. Figure 6.1b shows the relational schema. The Gene domain has 1,243 unique identifiers and there
is a binary relation Interact : Gene×Gene→ {0, 1} between gene pairs. Moreover, there is a binary
relation between Gene and each of the eight other domains, for example At : Gene×Localization→
{0, 1} specifies whether a given gene is at a specific location (cytoplasm, golgi, etc.). Each gene is
associated with exactly one entity in the Essential and Chromosome domains, and possibly multiple
entities in the Complex, Phenotype, Class, Motif, and Function. Tables 6.3 and 6.4 show
example records for genes G235131 and G234936. Gene G235131 has a missing Class; it is associated
with two entities in the Complex domain; two entities in the Function domain; five entities in the
Phenotype domain; and interacts with 11 other genes (three of which are listed).

Figure 6.8a shows two heatmaps that summarize the clusters of genes learned by the HIRM under
two different contexts. Each row and column in these heatmaps represents a unique Gene and the
color of a cell is the posterior probability (between 0 and 1) that the two genes are assigned to the
same latent cluster, estimated by an ensemble of 100 posterior HIRM samples. The top (resp. bottom)
heatmap in Figure 6.8a shows posterior co-clustering probabilities within the subsystem that contains
the “Gene At Localization” (resp. “Gene Belong Class”) relation. These heatmaps reflect the
fact that the HIRM discovers context-specific clusters that are different across the learned subsystems.

1In Figure 6.6a, the Cuba–Brazil relationship is neutral despite the countries belonging to rival geopolitical blocs.
This outlier is explained by the so-called the American–Brazilian–Cuban “triangular diplomacy” during the 1962 missile
crisis [Hershberg, 2004].

112

Table 6.3: Data for gene G235131
Field Value

Gene G235131
Essential Non-Essential
Class ?
Complex Histone Acetyltransferase

— Transcriptosome
Phenotype Auxotrophies

— Carbohydrate & Lipid Biosynth.
— Conditional Phenotypes
— Mating & Sporulation Defects
— Nucleic Acid Metab. Defects

Motif PS00633
Chromosome 2
Function Transcription

— Cellular Organization
Localization Nucleus
Interactions G234980, G235780, G235278, . . .

Table 6.4: Data for gene G234936
Field Value

Gene G234936
Essential Ambiguous
Class Protein-Kinases
Complex Casein Kinase
Phenotype Cell Morphology Organelle Mutants

— Conditional Phenotypes
— Nucleic Acid Metab. Defects

Motif PS00108
— PS00107

Chromosome 15
Function Transcription

— Cellular Organization
— Cellular Growth

Localization Nucleus
Interactions G238510, G235309, G234122, . . .

At Localization

Belong Class

(a) Gene Clusters

lip
id

-p
ar

ti
cl

es

in
te

gr
al

-m
em

br
an

e

ex
tr

ac
el

lu
la

r

ce
ll-

w
al

l

en
do

so
m

e

p
er

ox
is

om
e

tr
an

sp
or

t-
ve

si
cl

es

va
cu

ol
e

cy
to

sk
el

et
on

m
it

oc
ho

nd
ri

a

go
lg

i

E
R

pl
as

m
a-

m
em

br
an

e

cy
to

pl
as

m

nu
cl

eu
s

lipid-particles

integral-membrane

extracellular

cell-wall

endosome

peroxisome

transport-vesicles

vacuole

cytoskeleton

mitochondria

golgi

ER

plasma-membrane

cytoplasm

nucleus

(b) Localization Clusters

H
is

to
ne

s
M

ot
or

pr
ot

ei
ns

C
yc

lin
s

T
ub

ul
in

s
D

eh
yd

ro
ge

na
se

s
A

da
pt

in
s

A
ct

in
-r

el
at

ed
-p

ro
te

i
A

ct
in

s
G

T
P

/G
D

P
-d

is
so

ci
at

io
n

N
uc

le
as

es
P

ro
te

in
-p

ho
sp

ha
ta

se
s

G
T

P
/G

D
P

-e
xc

ha
ng

e-
fa

c
P

ep
ti

dy
l-

P
ro

ly
l-

Is
om

G
T

P
as

e-
ac

ti
va

ti
ng

-p
r

O
th

er
-k

in
as

es
P

ro
te

as
es

U
bi

qu
it

in
-s

ys
te

m
-p

ro
M

aj
or

-f
ac

ili
ta

to
r-

su
M

ol
ec

ul
ar

-c
ha

p
er

on
es

T
ra

ns
cr

ip
ti

on
-f

ac
to

r
P

ol
ym

er
as

es
G

T
P

-b
in

di
ng

-p
ro

te
in

s
A

T
P

as
es

P
ro

te
in

-K
in

as
es

Histones
Motorproteins
Cyclins
Tubulins
Dehydrogenases
Adaptins
Actin-related-protei
Actins
GTP/GDP-dissociation
Nucleases
Protein-phosphatases
GTP/GDP-exchange-fac
Peptidyl-Prolyl-Isom
GTPase-activating-pr
Other-kinases
Proteases
Ubiquitin-system-pro
Major-facilitator-su
Molecular-chaperones
Transcription-factor
Polymerases
GTP-binding-proteins
ATPases
Protein-Kinases

(c) Class Clusters

Figure 6.8: Posterior co-clustering probabilities for various relational domains in yeast genome data.

Table 6.5: Posterior co-clustering probabilities for gene G235131 (Table 6.3) and five other genes within
two of the subsystems (Figure 6.8a) inferred by the HIRM.

Co-clustering probability within subsystem for

Gene 1 Gene 2 Localization Class Pattern

G235131 G235278 0.98 0.87 Low–Low
G235131 G239017 0.52 0.47 Med–Med
G235131 G236063 0.03 0.13 Low–Low
G235131 G235388 0.83 0.27 High–Low
G235131 G240065 0.03 0.68 Low–High

113

Table 6.5 lists various co-clustering probabilities between G235131 and five other genes, which show
that a pair of genes that are similar in the Localization context need not be similar in the Class
context. Further, even though G235131 belongs to an unknown Class, the HIRM can compute its co-
clustering probabilities within this context by using observations of other properties that are inferred
to be predictive of the missing value.

Figure 6.8b shows posterior co-clustering probabilities for entities in domains that describe gene
properties. The HIRM infers a likely cluster of Localization entities that includes cell wall, extracel-
lular, integral membrane, and lipid particles, whereas cytoplasm and nucleus are inferred as singletons.
Figure 6.8c shows co-clustering probabilities for Class, which reflect a probable cluster (cyclins, tublins,
adaptins, . . .) embedded within a larger more noisy cluster, as well as singletons such as transcription
factor and polymerases. These heatmaps show quantitative estimates of posterior uncertainty in the
partition structures detected by the HIRM, which cannot be captured using inference approaches such
as maximum a posteriori estimation or variational inference, and highlight an advantage of using fully
Bayesian sampling for probabilistic structure learning in complex domains.

6.6 Related Work

Several variations of the standard IRM have been developed in the literature on nonparametric relational
Bayesian models [Ishiguro et al., 2012, Ohama et al., 2013, Jonas and Kording, 2015, Briercliffe, 2016].
The hierarchical IRM is distinguished by being the first extension that uses a nonparametric structure
learning prior over the relations themselves to improve modeling capacity and address shortcomings
of the IRM identified in Section 6.2, which include combinatorial over-clustering and failing to detect
relationships between dependent but non-identically distributed relations. These limitations have not
been addressed by previous extensions of the IRM and, as shown in Sections 6.5.2 and 6.5.3, enable
new types of discoveries to be made from data. An advantage of the hierarchical IRM is that it can
be easily composed with many variants of the IRM that are designed to address other shortcomings,
such as (i) the subset IRM [Ishiguro et al., 2012], which detects and filters out irrelevant observations in
the presence of extreme sparsity; and (ii) the logistic regression IRM [Jonas and Kording, 2015], which
improves predictive accuracy for semi-supervised tasks that specify one or more target variables as well
as exogenous (non-probabilistic) covariates.

Other approaches to relational modeling include relational extensions of Bayesian networks [Hecker-
man et al., 2004, Koller and Pfeffer, 1997, Friedman et al., 1999, Getoor et al., 2007] and Markov random
fields [Muggleton and de Raedt, 1994, Taskar et al., 2002, Richardson and Domingos, 2006]. While these
approaches may be more expressive than purely nonparametric models, they inherit traditional chal-
lenges of structure learning and model selection. In directed models [Daly et al., 2011], for example,
there is a super-exponential number of graphs to consider [Robinson, 1977]. In undirected models,
structure learning requires expensive tuning of evaluation measures, clause construction operators, or
search strategies [Kok and Domingos, 2005]. The HIRM instead builds on Bayesian nonparametric re-
lational models that use latent variables to simplify the learning problem as compared to searching over
arbitrary graphical structures. This approach makes it possible to use principled Bayesian structure
learning algorithms that deliver uncertainty over model structure, latent variables, and predictions.

Deep generative models have also been developed for relational data [Kipf and Welling, 2016, Mehta
et al., 2019, Fan et al., 2019, Qu et al., 2019]. These methods generally assume that there is one binary
adjacency matrix being modeled (i.e., a random graph relation) or operate in a semi-supervised setting
of predicting labels. In contrast, the HIRM discovers generative models for datasets with more complex
relational schemas than a single binary matrix (e.g., Figure 6.1) and operates in a fully unsupervised
setting. This approach allows the HIRM to model sparse and noisy systems with multiple entities,
attributes, and interactions in Sections 6.5.2 and 6.5.3. Table 6.2 shows that, in the special case of
object-attribute (cross-sectional) data, density estimates of the HIRM are competitive with modeling

114

techniques from probabilistic deep learning that cannot handle more expressive relational structure.
Using the Chinese restaurant process as a structure learning prior (Eq. (6.10)), which is a recurring

theme in this thesis that also appears in Chapters 4 and 5, has been considered by Salakhutdinov et al.
[2013], Blei et al. [2010], Mansinghka et al. [2016] in other contexts. The same insight of using an outer
CRP to partition relations in the IRM can also be applied to relational models such as the Mondrian
process [Roy and Teh, 2008]. More broadly, it would be fruitful to investigate a representation theorem
for the ergodic distributions of a relational system modeled by an HIRM within the framework of
exchangeable random structures from Orbanz and Roy [2015].

In addition to generalizing the IRM, the HIRM generalizes several other Bayesian nonparametric
models which include the MultiMixture DSL from Chapter 4, the infinite hidden relational model [Xu
et al., 2006], the infinite mixture model [Rasmussen, 1999], the Dirichlet process mixture model [Lo,
1984], and the Cross-Categorization model [Mansinghka et al., 2016]. By generalizing the likelihood
term (6.13) to include regression on relation values that are endogenous to the system, the HIRM could
be further extended to express a relational variant of Dirichlet process mixtures of generalized linear
models [Hannah et al., 2011].

115

Part II

Exact Bayesian Inference
via Symbolic Program Analysis

116

Chapter 7

Sum-Product Probabilistic Language

The most important thing in a programming
language is the name. A language will not
succeed without a good name. I have
recently invented a very good name, and
now I am looking for a suitable language.

Donald Knuth

This chapter presents the Sum-Product Probabilistic Language (SPPL), a probabilistic programming
language that automatically delivers exact solutions to a broad range of probabilistic inference queries.
SPPL translates probabilistic programs into sum-product expressions, a new symbolic representation and
associated semantic domain that extends standard sum-product networks to support mixed-type distri-
butions, numeric transformations, logical formulas, and pointwise and set-valued constraints. SPPL is
formalized via a novel translation strategy from probabilistic programs to sum-product expressions and
give sound exact algorithms for conditioning on and computing probabilities of events. The language
imposes certain syntactic restrictions on probabilistic programs to ensure they can be translated into
sum-product expressions, which can be used to efficiently solve queries. The four probabilistic DSLs
from Part I of this thesis can be translated into SPPL source syntax, which enables substantial reuse
of the underlying inference machinery and eliminates the need to develop custom prediction engines
for each DSL. Evaluations on benchmarks the system targets show that it obtains orders of magnitude
speedup over state-of-the-art exact solvers across several challenging tasks.

Several probabilistic programming languages leverage approximate inference techniques [Gilks et al.,
1994, Goodman et al., 2008a, Wingate and Weber, 2013] which have been used effectively in diverse set-
tings [Sankaranarayanan et al., 2013, Carpenter et al., 2017, Cusumano-Towner et al., 2019]. Drawbacks
of approximate inference, however, include a lack of accuracy and/or soundness guarantees [Dagum and
Luby, 1993, Lew et al., 2020]; difficulties with programs that combine continuous, discrete, or mixed-
type distributions [Carpenter et al., 2017, Wu et al., 2018]; challenges assessing the quality of iterative
solvers [Brooks and Gelman, 1998]; and the substantial expertise needed to write custom inference pro-
grams that deliver acceptable performance [Mansinghka et al., 2018, Cusumano-Towner et al., 2019]. To
address the shortcomings of approximate inference, other probabilistic programming languages lever-
age exact symbolic techniques [Bhat et al., 2013, Narayanan et al., 2016, Gehr et al., 2016, Carette
and Shan, 2016, Zhang and Xue, 2019]. These languages use some form of computer algebra to solve
inference queries. However, the generality of the symbolic representation causes them to fail frequently,
even on problems with tractable solutions. SPPL occupies a new point in the expressiveness vs. per-
formance trade-off space for exact symbolic inference. A key idea in SPPL is to incorporate certain
modeling restrictions that avoid the need for general computer algebra, instead using a new, specialized

117

SPPL
Translator

Probabilistic
Program

Sum-
Product

Expression

Probability
Distribution

SPPL
Inference
Engine

simulate(Vars)
prob(Event)

condition(Event)

Inference Queries

Event
Probability
Values

Sum-
Product

Expression

Conditioned
Probability
Distribution

Simulated
Program
Variables

condition

prob

simulate

Figure 7.1: SPPL system architecture. Probabilistic programs, either machine-synthesized (Part I) or
handwritten, are translated into symbolic sum-product expressions that can be used to deliver exact
solutions to many probabilistic inference queries.

class of “sum-product” symbolic expressions to exactly represent probability distributions specified by
SPPL programs. These new symbolic expressions extend and generalize sum-product networks [Poon
and Domingos, 2011], which are computational graphs that have received widespread attention for
their clear probabilistic semantics and tractable properties for exact inference [Darwiche, 2021]. The
sum-product expressions used in SPPL are used to automatically obtain exact solutions to probabilistic
inference queries about probabilistic programs, which are fast and scalable in tractable regimes.

System Overview Figure 7.1 shows an overview of SPPL. Given a probabilistic program expressed
in the source syntax from Listing 7.1, a program translator produces a sum-product expression that
represents the prior distribution over all program variables. Given this expression and a query specified
by the user, the SPPL inference engine returns an exact answer, where:

simulate(Vars) returns random samples of program variables from their joint distribution;

prob(Event) returns the probability of an event, which is a predicate on program variables;

condition(Event) returns a new sum-product expression that represents the posterior distribution
over all program variables given that the specified event is true.

The system architecture is designed to be modular, in the sense that modeling, conditioning, and
querying are factored into distinct stages that reflect the essential components of a Bayesian workflow.
Moreover, the dashed back-edge in Figure 7.1 indicates that the new sum-product expression returned
by condition can be reused to invoke additional queries on the posterior distribution. This “closure-
under-conditioning” property enables substantial runtime gains across multiple datasets and queries.

Trade-offs SPPL imposes restrictions on probabilistic programs that specifically rule out the following
constructs: (i) unbounded loops; (ii) multivariate numeric transformations; and (iii) arbitrary prior
distributions on continuous parameters. As a result, SPPL is not designed to express model classes
such as regression with a prior on real coefficients, neural networks, support-vector machines, spatial
Poisson processes, urn processes, or hidden Markov models with unknown transition matrices. These
model classes cannot be represented as sum-product expressions and most of them do not have tractable
algorithms for exact predictive inference.

The restrictions in SPPL ensure that the probabilistic programs can always be translated into finite
sum-product expressions, thereby avoiding the need for more general computer algebra to represent

118

probability distributions. The sum-product expressions produced by SPPL have a number of charac-
teristics that make them a particularly useful translation target for probabilistic programs:

• Completeness and Decomposibility: By satisfying completeness (C3) and decomposabil-
ity (C4) conditions from the literature [Poon and Domingos, 2011, Definitions 3 and 6], sum-
product expressions are guaranteed to represent normalized probability distributions.

• Efficient Factorization: By specifying multivariate probability distributions compositionally in
terms of sums and products of simpler distributions, sum-product expressions can be made more
compact by applying algebraic “factorization” operations (Figures 7.3d and 7.6a).

• Efficient Deduplication: When an SPPL program specifies a generative model with conditional
independence structure, the translated sum-product expression contains duplicate subexpressions
that can be “deduplicated” to again produce a more compact symbolic expression (Figures 7.3d
and 7.6b).

• Efficient Caching: Inference algorithms for sum-product expressions proceed from root to leaves
to root, allowing intermediate results to be cached and quickly retrieved at internal subexpressions
in a depth-first traversal of the computation graph.

• Closure Under Conditioning: Sum-product expressions are closed under probabilistic condi-
tioning (Theorem 7.5), which allows them to be reused across multiple datasets and inference
queries about the same probabilistic program.

• Linear-Time Exact Inference: For a well-defined class of queries, inference scales linearly in the
expression size (Theorem 7.7). As a result, when SPPL constructs delivers a “small” sum-product
expression, inference is also guaranteed to be fast.

It is well known that a very large class of tractable models can be cast as sum-product networks [Poon
and Domingos, 2011, Theorem 2]. SPPL automatically constructs these representations from generative
probabilistic programs that include standard constructs such as arrays, if/else branches, for-loops,
and numeric and logical operators. To enable this translation, SPPL introduces a new class of sum-
product expressions and inference algorithms that extend standard sum-product networks by supporting
(many-to-one) univariate transformations, mixed-type base measures, and pointwise and set-valued
constraints. These constructs make SPPL expressive enough to solve prominent inference tasks in the
PPL literature [Albarghouthi et al., 2017, Nori et al., 2014, Wu et al., 2018, Laurel and Misailovic, 2020]
for which standard sum-product networks have not been previously used. Example model classes that
can be expressed include most finite discrete models, latent variable models with discrete hidden states
and arbitrary observed states, and decision trees over discrete and continuous variables. They also
include expressions in the probabilistic DSLs from Part I. Taken together, these characteristics make
SPPL particularly effective for automatic and fast inference on tractable problems. The evaluations in
Section 7.5 indicate that SPPL delivers these benefits on the problems it is designed to solve, whereas
more general and expressive techniques in previous solvers [Gehr et al., 2016, Albarghouthi et al., 2017,
Bastani et al., 2019] can exhibit orders of magnitude worse performance on these problems, runtime
has higher variance, or return an unusable result.

Key Contributions This chapter makes the following contributions

• New semantic domain for sum-product expressions (Section 7.2) that extends the model-
ing expressiveness of sum-product networks by including mixed-type distributions, numeric trans-
forms, logical formulas, and events with pointwise and set-valued constraints.

119

• Provably sound exact symbolic inference algorithms (Section 7.3) based on a proof that
sum-product expressions are closed under conditioning on any event that can be specified in the
domain. These algorithms enable an efficient and multi-stage inference architecture that separates
model translation, conditioning, and querying into distinct stages, enabling interactive workflows
and substantial computation reuse.

• The Sum-Product Probabilistic Language (Section 7.4), a probabilistic programming lan-
guage built on a novel translation semantics from generative code to sum-product expressions.
Several optimization techniques are introduced to improve the scalability of translation and in-
ference by exploiting conditional independence structure.

• Empirical measurements of efficacy (Section 7.5) on inference tasks from the literature that
SPPL targets, which show that it delivers substantial improvements over existing baselines. Ex-
amples include 20x–550, 000x speedups over state-of-the-art fairness verification methods [Al-
barghouthi et al., 2017, Bastani et al., 2019] and computer algebra solvers [Gehr et al., 2016]; and
many orders of magnitude speedup over sampling-based inference in [Milch et al., 2005].

7.1 Tutorial Examples

7.1.1 Indian GPA Problem

The Indian GPA problem, originally posed by Michael I. Jordan in a personal communication to Stuart
J. Russell, has been widely considered in the probabilistic programming literature [Nitti et al., 2016,
Srivastava et al., 2017, Wu et al., 2018, Riguzzi, 2018, Narayanan and Shan, 2020] for containing
a “mixed-type” random variable that takes both continuous and discrete values. Most probabilistic
programming languages fail to deliver sound inference in this setting.

Specifying the Prior Figure 7.2a shows the generative process for three variables (Nationality,
Perfect and GPA) of a student. The student’s nationality is either India or USA with equal probability
(line 1). Students from India (line 2) have a 10% probability of a perfect 10 GPA (lines 3-4), otherwise
the GPA is uniform over [0, 10] (line 5). Students from USA (line 6) have a 15% probability of a perfect
4 GPA (lines 6-7), otherwise the GPA is uniform over [0, 4] (line 8). Recall that typical schools in India
use a GPA scale between 0 and 10, whereas typical schools in the USA use a scale between 0 and 4.

Prior Sum-Product Expression The graph in Figure 7.2d shows the translated sum-product ex-
pression for this program, which represents a sampler for the distribution over program variables as
follows: (i) if a node is a sum (+), visit a random child with probability equal to the weight of the di-
rected edge to the child; (ii) if a node is a product (×), visit each child exactly once, in no specific order;
(iii) if a node is a leaf, sample a value from the distribution at the leaf and assign it to corresponding
variable. Similarly, the graph encodes the joint distribution of the variables by treating (i) each sum
node as a probabilistic mixture; (ii) each product node as a probabilistic factorization; and (iii) each
leaf node as a primitive random variable. Thus, the prior distribution specified by the program is:

Pr[Nationality = 𝑛, Perfect = 𝑝, GPA ≤ 𝑔] = 0.5
[︀
𝛿India(𝑛) · (0.1[(𝛿True(𝑝) · 1[10 ≤ 𝑔])]

+ 0.9[(𝛿False(𝑝) · (𝑔/10 · 1[0 ≤ 𝑔 < 10] + 1[10 ≤ 𝑔]))])
]︀

+ 0.5
[︀
𝛿USA(𝑛) · (0.15[(𝛿True(𝑝) · 1[4 ≤ 𝑔])]

+ 0.85[(𝛿False(𝑝) · (𝑔/4 · 1[0 ≤ 𝑔 < 4] + 1[4 ≤ 𝑔]))])
]︀
.

(7.1)

120

1 Nationality ~ choice({'India': 0.5, 'USA': 0.5})
2 if (Nationality == 'India'):
3 Perfect ~ bernoulli(p=0.10)
4 if Perfect: GPA ~ atom(10)
5 else: GPA ~ uniform(0, 10)
6 else: # Nationality is 'USA'
7 Perfect ~ bernoulli(p=0.15)
8 if Perfect: GPA ~ atom(4)
9 else: GPA ~ uniform(0, 4)

(a) Probabilistic Program

prob (Nationality == 'USA');
prob (Perfect == 1);
prob (GPA <= x/10) # for x = 0, ..., 120

(b) Example Queries on Marginal Probabilities

prob ((Perfect == 1)
or (Nationality == 'India') and (GPA > 3))

(c) Example Query on Joint Probabilities

+

×

𝛿USA
Nationality

+

×

𝑈(0, 4)
GPA

𝛿False
Perfect

×

𝛿4
GPA

𝛿True
Perfect

.15 .85

×

𝛿India
Nationality

+

×

𝑈(0, 10)
GPA

𝛿False
Perfect

×

𝛿10
GPA

𝛿True
Perfect

.1 .9

.5 .5

(d) Prior Sum-Product Expression

USA India

Nationality

0.50 0.50

False True

Perfect

0.88

0.13

0 5 10

GPA

0.00

0.25

0.50

0.75

1.00

C
u

m
u

la
ti

ve
P

ro
b

ab
ili

ty

(e) Prior Marginal Distributions

condition ((Nationality == 'USA') and (GPA > 3)) or (8 < GPA < 10)

(f) Conditioning the Program

+

×

𝛿USA
Nationality

+

×

𝑈(3, 4)
GPA

𝛿False
Perfect

×

𝛿4
GPA

𝛿True
Perfect

.41 .59

×

𝑈(8, 10)
GPA

𝛿False
Perfect

𝛿India
Nationality

.33 .67

(g) Posterior Sum-Product Expression

USA India

Nationality

0.67

0.33

False True

Perfect

0.72

0.28

0 5 10

GPA

0.00

0.25

0.50

0.75

1.00

C
u

m
u

la
ti

ve
P

ro
b

ab
ili

ty
(h) Posterior Marginal Distributions

Figure 7.2: Analyzing the Indian GPA problem in SPPL.

Figure 7.2b shows SPPL queries for the prior marginal distributions of the three variables, plotted in
Figure 7.2e. The jumps in the cumulative distribution function (CDF) of GPA at 4 and 10 correspond
to the atoms that occur when Perfect is true and the Nationality is USA and India, respectively.

Conditioning the Program Figure 7.2f shows an example of the condition query, which specifies
an event 𝑒 on which to constrain executions of the program. An event is a predicate on (possibly trans-
formed) program variables that can be used for both condition (Figure 7.2f) and prob (Figure 7.2c)
queries. SPPL is the first system with inference algorithms for sum-product expressions that handle

121

predicates of this form. Given 𝑒, the object of inference is to compute full posterior distribution:

Pr[Nationality = 𝑛, Perfect = 𝑝, GPA ≤ 𝑔 | 𝑒] ::= Pr[Nationality=𝑛, Perfect= 𝑝, GPA ≤ 𝑔, 𝑒]

Pr[𝑒]
.

(7.2)

Posterior Sum-Product Expression Given the prior expression (Figure 7.2d) and conditioning
event 𝑒 (Figure 7.2f), SPPL produces a new expression (Figure 7.2g) that specifies a distribution which
is precisely equal to Eq. (7.2), From Theorem 7.5, conditioning an SPPL program on any event that can
be specified in the language results in a posterior distribution that can be represented as a sum-product
expression. Conditioning on 𝑒 performs several transformations on the prior expression, including:

1. Eliminating the subtree rooted at the parent of leaf 𝛿10, which is inconsistent with the condition.

2. Rescaling the distribution 𝑈(0, 10) at the leaf node in the India subtree to 𝑈(8, 10).

3. Rescaling the distribution 𝑈(0, 4) at the leaf node in the USA subtree to 𝑈(3, 4).

4. Reweighting the branch probabilities of the sum node in the USA subtree from [.15, .85] to
[.41, .59], where .41 = .15/(.15 + .2125) is the posterior probability of {Perfect = 1, GPA = 4}
given the condition 𝑒:

Pr[Perfect = 1, GPA = 4 | Nationality = 'USA', GPA > 3] = (0.15× 1)/𝑐 = 0.15/𝑐

Pr[Perfect = 0, 3 < GPA < 4 | Nationality = 'USA', GPA > 3] = (0.85× 0.25)/𝑐 = 0.2125/𝑐.

5. Reweighting the branch probabilities at the root from [.5, .5] to [.33, .67], using the same rules as
in the previous step.

Figure 7.2g shows the posterior expression obtained by applying these symbolic transformations.
Using the posterior expression, the right-hand side of Eq. (7.2) is

Pr[Nationality = 𝑛, Perfect = 𝑝, GPA ≤ 𝑔 | 𝑒]

= 0.33

[︂
𝛿India(𝑛) · 𝛿False(𝑝) ·

(︂
𝑔 − 8

2
· 1[8 ≤ 𝑔 < 10] + 1[10 ≤ 𝑔]

)︂]︂

+ 0.67

[︂
𝛿USA(𝑛) ·

(︁
0.41 [𝛿True(𝑝) · 1[4 ≤ 𝑔]]

+ 0.59
[︁
𝛿False(𝑝) ·

(︁𝑔
4
· 1[0 ≤ 𝑔 < 4] + 1[4 ≤ 𝑔]

)︁]︁)︁]︂
.

(7.3)

(Floats are written to two decimal places.) The prob queries in Figure 7.2b can be executed again on
the conditioned program to plot the posterior marginal distributions, which are shown in Figure 7.2h.
The example in Figure 7.2 illustrates a typical modular workflow in SPPL (Figure 7.1), where modeling
(Figure 7.2a), conditioning (Figure 7.2f) and querying (Figures 7.2b and 7.2c) are separated into distinct
and reusable stages that together express the main components of Bayesian modeling and inference.

7.1.2 Scalable Inference in a Hierarchical HMM

The next example shows how to perform efficient inference in a hierarchical hidden Markov model
[HMM; Murphy and Paskin, 2001] and illustrates optimization techniques used by the SPPL translator
(Section 7.4.1), which exploit conditional independence to ensure that the size of the sum-product
expression grows linearly in the number of time steps. The code box in Figure 7.3a shows a hierarchical

122

1 p_transition = [.2, .8]
2 mu_x = [[5, 7], [5, 15]]
3 mu_y = [[5, 8], [3, 8]]
4
5 n_step = 100
6 Z = array(n_step)
7 X = array(n_step)
8 Y = array(n_step)
9

10 separated ~ bernoulli(p=.4)
11 switch separated cases (s in [0,1]):
12 Z[0] ~ bernoulli(p=.5)
13 switch Z[0] cases (z in [0, 1]):
14 X[0] ~ normal(mu_x[s][z], 1)
15 Y[0] ~ poisson(mu_y[s][z])
16 for t in range(1, n_step):
17 switch Z[t-1] cases (z in [0, 1]):
18 Z[t] ~ bernoulli(p_transition[z])
19 switch Z[t] cases (z in [0, 1]):
20 X[t] ~ normal(mu_x[s][z], 1)
21 Y[t] ~ poisson(mu_y[s][z])

(a) Probabilistic Program

0 20 40 60 80 100
0

5

10

15

20

O
b

se
rv

ed
V

al
u

e
X

True Hidden State

Z = 0 Z = 1

0 20 40 60 80 100
0

5

10

15

20

25

O
b

se
rv

ed
V

al
u

e
Y

True Hidden State

Z = 0 Z = 1

0 20 40 60 80 100

Time

0.00

0.25

0.50

0.75

1.00

In
fe

rr
ed

H
id

d
en

S
ta

te
Z Posterior

Probability
of Z = 1

(b) Observed Data and Posterior Inferences

+

×

𝑃 (8)
𝑌 [1]

𝑁(15)
𝑋[1]

𝛿1
𝑍[1]

𝑃 (8)
𝑌 [0]

𝑁(15)
𝑋[0]

𝛿1
𝑍[0]

𝛿1
sep

×

𝑃 (8)
𝑌 [1]

𝑁(15)
𝑋[1]

𝛿1
𝑍[1]

𝑃 (3)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

𝛿1
sep

×

𝑃 (3)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

𝑃 (3)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

𝛿1
sep

×

𝑃 (5)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

𝑃 (5)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

𝛿1
sep

×

𝑃 (8)
𝑌 [1]

𝑁(7)
𝑋[1]

𝛿1
𝑍[1]

𝑃 (8)
𝑌 [0]

𝑁(7)
𝑋[0]

𝛿1
𝑍[0]

𝛿0
sep

×

𝑃 (5)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

𝑃 (8)
𝑌 [0]

𝑁(7)
𝑋[0]

𝛿1
𝑍[0]

𝛿0
sep

×

𝑃 (8)
𝑌 [1]

𝑁(7)
𝑋[1]

𝛿1
𝑍[1]

𝑃 (5)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

𝛿0
sep

×

𝑃 (5)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

𝑃 (5)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

𝛿0
sep

.24 .06 .06 .24 .16 .04 .04 .16

(c) Naive Sum-Product Expression (Scales Exponentially)

+

×

𝛿1
sep

+

×

𝑃 (8)
𝑌 [0]

𝑁(15)
𝑋[0]

𝛿1
𝑍[0]

+

×

+

×

𝑃 (8)
𝑌 [1]

𝑁(15)
𝑋[1]

𝛿1
𝑍[1]

×

𝑃 (3)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

.8 .2
𝑃 (3)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

.5 .5

×

𝛿0
sep

+

×

𝑃 (8)
𝑌 [0]

𝑁(7)
𝑋[0]

𝛿1
𝑍[0]

+

×

+

×

𝑃 (8)
𝑌 [1]

𝑁(7)
𝑋[1]

𝛿1
𝑍[1]

×

𝑃 (5)
𝑌 [1]

𝑁(5)
𝑋[1]

𝛿0
𝑍[1]

.8 .2
𝑃 (5)
𝑌 [0]

𝑁(5)
𝑋[0]

𝛿0
𝑍[0]

.5 .5

.6 .4

.2
.8

.2
.8

(d) Optimized Sum-Product Expression (Scales Linearly)

Figure 7.3: Fast smoothing in a hierarchical hidden Markov model using SPPL. The systems constructs
an efficient sum-product expression that exploits conditional independencies in the generative process.

HMM with Bernoulli hidden states 𝑍𝑡 and Normal–Poisson observations (𝑋𝑡, 𝑌𝑡). The separated
variable indicates whether the mean values of 𝑋𝑡 and 𝑌𝑡 at 𝑍𝑡 = 0 and 𝑍𝑡 = 1 are well separated. For
example, mu_x specifies that if separated = 0, then the mean of 𝑋𝑡 is 5 when 𝑍𝑡 = 0 and 7 when
𝑍𝑡 = 1; otherwise if separated = 1, then the mean of 𝑋𝑡 is 4 when 𝑍𝑡 = 0 and 15 when 𝑍 = 1. The
p_transition vector specifies that the current state 𝑍𝑡 switches from the previous state 𝑍𝑡−1 with 20%
probability. This example shows the SPPL array, for, and switch-cases statements, where the latter

123

is a macro that expands to if-else statements (as in, e.g., the C language):

switch 𝑥 cases (𝑥′ in values) {𝐶}
desugar
 if (𝑥 in values[0]) {𝐶[𝑥′/values[0]]}

elif . . .

elif (𝑥 in values[𝑛−1]) {𝐶[𝑥′/values[𝑛− 1]]},

(7.4)

where 𝑛 is the length of values and 𝐶[𝑥/𝐸] indicates syntactic replacement of the variable 𝑥 with the
expression 𝐸 in command 𝐶.

The top and middle plots in Figure 7.3b show a realization of 𝑋 and 𝑌 that result from simulating
the process for 100 time steps. The blue and orange regions along the horizontal axes indicate whether
the true hidden state 𝑍 is 0 or 1, respectively. The goal of inference is to compute posterior probabilities
over 𝑍 given 𝑋 and 𝑌 ; the ground-truth values of 𝑍 are shown for illustration only. The bottom plot in
Figure 7.3b shows the exact posterior marginal probabilities Pr[𝑍𝑡 = 1 | 𝑥0:99, 𝑦0:99] for each 𝑡 = 0, . . . , 99
as inferred by SPPL, which is an inference known as “smoothing”. These probabilities track the true
hidden state, i.e., the probability 𝑍𝑡 = 1 is low in the blue regions and high in the orange regions.

Figure 7.3c shows a “naive” sum-product expression for the distribution of all program variables
up to the first two time steps. This expression is a sum-of-products. The products in the second
level are an enumeration of all possible realizations of program variables, which causes the number of
terms to scale exponentially in the number of time steps. Figure 7.3d shows the optimized expression
constructed by SPPL, which is based on factoring and sharing common terms in the two level sum-
of-products in Figure 7.3c. These factorization and deduplication optimizations exploit conditional
independencies and repeated structure in the program, which for the hierarchical HMM delivers a
expression whose size scales linearly in the number of time points. SPPL can also efficiently solve the
following queries using the same underlying inference machinery: (i) filtering: Pr[𝑍𝑡 | 𝑋1:𝑡, 𝑌1:𝑡], for all
𝑡; (ii) smoothing: Pr[𝑍𝑡 | 𝑋1:𝑛, 𝑌1:𝑛], for all 𝑡 < 𝑛; (iii) full joint: Pr[𝑍1:𝑛 | 𝑋1:𝑛, 𝑌1:𝑛]; (iv) forecasting:
Pr[𝑋𝑛+1:𝑛+𝑘, 𝑌𝑛+1:𝑛+𝑘, | 𝑋1:𝑛, 𝑌1:𝑛] , for all 𝑘; and (v) marginal likelihood: Pr[𝑋1:𝑛, 𝑌1:𝑛], for all 𝑛.

7.2 Core Calculus for Sum-Product Expressions

SPPL is formalized in terms of a semantic domain of sum-product expressions which generalizes sum-
product networks and enables precise probabilistic reasoning. This domain will be used to (i) establish
the closure of sum-product expressions under conditioning on events expressible in the calculus (Theo-
rem 7.5); (ii) describe sound algorithms for exact Bayesian inference (Section 7.3 and Appendix 7.D);
and (iii) describe a procedure for translating generative probabilistic programs into sum-product ex-
pressions in the core calculus (Section 7.4). Listing 7.1 shows the domains in the core calculus, which
includes basic sets (Listing 7.1a) outcomes (Listing 7.1b); real transforms (Listing 7.1c); predicates with
pointwise and set-valued constraints (Listing 7.1d); primitive distributions (Listing 7.1e); and multivari-
ate distributions specified compositionally as sums and products of primitive distributions (Listing 7.1f).
Listing 7.2 shows the semantics of the core calculus, which are described next in detail.

Basic Outcomes Random variables in the calculus take values in the Outcome ::= Real + String
domain. The symbol + here indicates a sum (disjoint-union) data type, whose elements are formed by
the injection operation, e.g., ↓ Real

Outcome 𝑟 for 𝑟 ∈ Real ↓ String
Outcome

𝑠 for 𝑠 ∈ String This domain is used to
model mixed-type random variables, such as X in the SPPL program from Listing 7.3. The Outcomes
domain denotes a subset of Outcome as defined by the valuation function V shown in Listing 7.2a. For
example, ((𝑏1 𝑟1) (𝑟2 𝑏2)) specifies a (open, closed, or clopen) real interval and {𝑠1 . . . 𝑠𝑚}𝑏 is a set of
strings, where 𝑏 = #t indicates the complement. In this notation, meta-variables such as 𝑚 indicate an
arbitrary but finite number of repetitions of a domain variable or subexpression. The operations union,

124

𝑥 ∈ Var
𝑛 ∈ Natural
𝑏 ∈ Boolean ::= {#t, #f}
𝑢 ∈ Unit ::= {#u}
𝑤 ∈ [0, 1]
𝑟 ∈ Real ∪ {−∞,∞}
𝑠 ∈ String ::= Char*

(a) Basic Sets

rs ∈ Outcome ::= Real+ String
𝑣 ∈ Outcomes
::= ∅ [Empty]

| {𝑠1 . . . 𝑠𝑚}𝑏 [FiniteStr]
| {𝑟1 . . . 𝑟𝑚} [FiniteReal]
| ((𝑏1 𝑟1) (𝑟2 𝑏2)) [Interval]
| 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 [Union]

(b) Outcomes

𝑡 ∈ Transform
::= Id(𝑥) [Identity]
| Reciprocal(𝑡) [Reciprocal]
| Abs(𝑡) [AbsValue]
| Root(𝑡 𝑛) [Radical]
| Exp(𝑡 𝑟) [Exponent]
| Log(𝑡 𝑟) [Logarithm]
| Poly(𝑡 𝑟0 . . . 𝑟𝑚) [Polynomial]
| Piecewise((𝑡1 𝑒1)

. . .
(𝑡𝑚 𝑒𝑚))

[Piecewise]

(c) Transformations

𝑒 ∈ Event
::= (𝑡 in 𝑣) [Containment]
| 𝑒1 ⊓ · · · ⊓ 𝑒𝑚 [Conjunction]
| 𝑒1 ⊔ · · · ⊔ 𝑒𝑚 [Disjunction]

(d) Events

𝐹 ∈ CDF ⊂ Real → [0, 1]
::= Norm(𝑟1, 𝑟2) | Poisson(𝑟) . . .
where 𝐹 is càdlàg;

lim
𝑟→∞

𝐹 (𝑟) = 1; lim
𝑟→−∞

𝐹 (𝑟) = 0;

and 𝐹−1(𝑢) ::= inf{𝑟 | 𝑢 ≤ 𝐹 (𝑟)}.
𝑑 ∈ Distribution
::= DistR(𝐹 𝑟1 𝑟2) [DistReal]
| DistI(𝐹 𝑟1 𝑟2) [DistInt]
| DistS((𝑠1 𝑤1) . . . (𝑠𝑚 𝑤𝑚)) [DistStr]

(e) Primitive Distributions

𝜎 ∈ Environment ::= Var → Transform
𝑆 ∈ SPE
::= Leaf(𝑥 𝑑 𝜎) [Leaf]
| (𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚) [Sum]
| 𝑆1 ⊗ · · · ⊗ 𝑆𝑚 [Product]

(f) Sum-Product

Listing 7.1: Syntax of core calculus for sum-product expressions and related domains.

intersection, and complement operate on Outcomes in the usual set-theoretic way, while preserving the
semantic invariants described in Appendix 7.B.

A Sigma Algebra of Outcomes To speak precisely about random variables and measures on
Outcome, a sigma-algebra ℬ(Outcome) ⊂ 𝒫(Outcome) is constructed as follows:

1. Let 𝜏Real be the usual topology on Real.

2. Let 𝜏String be the discrete topology on String.

3. Let 𝜏Outcome ::= 𝜏Real⊎𝜏String be the disjoint-union topology on Outcome, where a set 𝑈 ⊂ Outcome
is open iff {𝑟 | (↓ Real

Outcome 𝑟) ∈ 𝑈} is open in Real and {𝑠 | (↓ String
Outcome

𝑠) ∈ 𝑈} is open in String.

4. Let ℬ(Outcome) be the Borel sigma-algebra of 𝜏Outcome.

Remark 7.1. As measures on Real are defined by their values on open intervals and measures on String
on singletons, mappings from Outcomes to [0, 1] induce probability measures on ℬ(Outcome). «

Real Transformations Listing 7.2b describes real transformations that can be applied to variables
in the core calculus. The Identity domain, written Id(𝑥), is a terminal subexpression of any Transform
𝑡 and contains a single variable name that specifies the “dimension” over which 𝑡 is defined. The main
operation involving transforms is computing the preimage of Outcomes 𝑣 under 𝑡 using the preimg :
Transform→ Outcomes→ Outcomes operation, which satisfies the following properties:

(↓ Real
Outcome 𝑟) ∈ V Jpreimg 𝑡 𝑣K ⇐⇒ T J𝑡K (𝑟) ∈ V J𝑣K (7.5)

(↓ String
Outcome

𝑠) ∈ V Jpreimg 𝑡 𝑣K ⇐⇒ (𝑡 ∈ Identity) ∧ (𝑠 ∈ V J𝑣K). (7.6)

125

V : Outcomes→ 𝒫(Outcome)
V J∅K ::= ∅ [Empty]

V
r
{𝑠1 . . . 𝑠𝑚}𝑏

z
::= if 𝑏 then ∪𝑚𝑖=1 {(↓ String

Outcome
𝑠𝑖)}

else {(↓ String
Outcome

𝑠) | ∀𝑖.𝑠 ̸= 𝑠𝑖}
[FiniteStr]

V J{𝑟1 . . . 𝑟𝑚}K ::= ∪𝑚𝑖=1{(↓ Real
Outcome 𝑟𝑖)} [FiniteReal]

V J((𝑏1 𝑟1) (𝑟2 𝑏2))K ::= {(↓ Real
Outcome 𝑟) | 𝑟1<𝑏1𝑟<𝑏2𝑟2}

where <#t::=<;<#f::=≤; 𝑟1 < 𝑟2

[Interval]

V J𝑣1 ⨿ · · · ⨿ 𝑣𝑚K ::= ∪𝑚𝑖=1V J𝑣𝑖K [Union]

(a) Outcomes

T : Transform→ Real→ Real
T JId(𝑥)K ::= 𝜆𝑟′.𝑟′; T JReciprocal(𝑡)K ::= 𝜆𝑟′.1/ (T J𝑡K (𝑟′)) ;
T JAbs(𝑡)K ::= 𝜆𝑟′.|T J𝑡K (𝑟′)|;T JRoot(𝑡 𝑛)K ::= 𝜆𝑟′. 𝑛

√︀
T J𝑡K (𝑟′);

T JPoly(𝑡 𝑟0 . . . 𝑟𝑚)K ::= 𝜆𝑟′.
∑︀𝑚

𝑖=0 𝑟𝑖 (T J𝑡K (𝑟′))𝑖 ; . . .

(b) Transformations

E : Event→ Var→ Outcomes
E J(𝑡 in 𝑣)K𝑥 ::= if (vars 𝑡) = {𝑥} then (preimg 𝑡 𝑣) else∅ [Containment]
E J𝑒1 ⊓ · · · ⊓ 𝑒𝑚K𝑥 ::= (intersection E Je1K𝑥 . . . E Je𝑚K𝑥) [Conjunction]
E J𝑒1 ⊔ · · · ⊔ 𝑒𝑚K𝑥 ::= (union E Je1K𝑥 . . . E Je𝑚K𝑥) [Disjunction]

(c) Events

D : Distribution→ Outcomes→ [0, 1]

D JDistS((𝑠𝑖 𝑤𝑖)𝑚𝑖=1)K 𝑣 ::= match (intersection 𝑣 {𝑠1 . . . 𝑠𝑚}#f) [DistStr]
B ∅ | {𝑟′1 . . . 𝑟′𝑚} | ((𝑏1 𝑟1) (𝑟2 𝑏2))⇒ 0
B 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 ⇒

∑︀𝑚
𝑖=1 D JDistS((𝑠𝑖 𝑤𝑖)𝑚𝑖=1)K 𝑣𝑖

B {𝑠′1 . . . 𝑠′𝑘}
𝑏 ⇒ let𝑤 be

∑︀𝑚
𝑖=1(𝑤𝑖 if 𝑠𝑖 ∈ {𝑠′𝑗}𝑘𝑗=1 else 0)

in if �̄� then𝑤 else 1− 𝑤

D JDistR(𝐹 𝑟1 𝑟2)K 𝑣 ::= match (intersection ((#f 𝑟1) (𝑟2 #f)) 𝑣) [DistReal]

B ∅ | {𝑟′1 . . . 𝑟′𝑚} | {𝑠′1 . . . 𝑠′𝑘}
𝑏 ⇒ 0

B 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 ⇒
∑︀𝑚

𝑖=1 D JDistR(𝐹 𝑟1 𝑟2)K 𝑣𝑖

B ((𝑏′1 𝑟
′
1) (𝑟

′
2 𝑏

′
2))⇒

𝐹 (𝑟′2)− 𝐹 (𝑟′1)
𝐹 (𝑟2)− 𝐹 (𝑟1)

D JDistI(𝐹 𝑟1 𝑟2)K 𝑣 ::= match (intersection ((#f 𝑟1) (𝑟2 #f)) 𝑣) [DistInt]

B ∅ | {𝑠′1 . . . 𝑠′𝑘}
𝑏 ⇒ 0

B 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 ⇒
∑︀𝑚

𝑖=1 D JDistI(𝐹 𝑟1 𝑟2)K 𝑣𝑖

B {𝑟′1 . . . 𝑟
′
𝑚}⇒

𝑚∑︁

𝑖=1

[︂
if (𝑟′𝑖 = ⌊𝑟′𝑖⌋) ∧ (𝑟1 ≤ 𝑟′𝑖 ≤ 𝑟2)
then𝐹 (𝑟′)− 𝐹 (𝑟′ − 1) else 0

]︂

𝐹 (⌊𝑟2⌋)− 𝐹 (⌈𝑟1⌉ − 1)
B ((𝑏′1 𝑟

′
1) (𝑟

′
2 𝑏

′
2))⇒ let 𝑟1 be ⌊𝑟′1⌋ − 1

[︀
(𝑟′1 = ⌊𝑟′1⌋) ∧ 𝑏′1

]︀

in let 𝑟2 be ⌊𝑟′2⌋ − 1
[︀
(𝑟′2 = ⌊𝑟′2⌋) ∧ 𝑏′2

]︀

in
𝐹 (𝑟2)− 𝐹 (𝑟1)

𝐹 (⌊𝑟2⌋)− 𝐹 (⌈𝑟1⌉ − 1)

(d) Primitive Distributions

Listing 7.2: Semantics of core calculus for sum-product domains.

126

P0 J𝑆K : SPE→ Event→ Natural× [0,∞)

P0 JLeaf(𝑥 𝑑𝜎)K (Id(𝑥) in {rs}) ::= match 𝑑 [Leaf]

B DistR(𝐹 𝑟1 𝑟2)⇒ match rs

B 𝑟 ⇒ (1,1[𝑟1 ≤ 𝑟 ≤ 𝑟2]𝐹
′(𝑟)/ [𝐹 (𝑟2)− 𝐹 (𝑟1)])

B 𝑠⇒ (1, 0)

B else⇒ let𝑤 beP JLeaf(𝑥 𝑑𝜎)K (Id(𝑥) in {rs}) in (1[𝑤 = 0], 𝑤)

P0 J(𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚)K ⊓ℓ𝑖=1 (Id(𝑥𝑖) in {rsi}) ::=

let1≤𝑖≤𝑚 (𝑑𝑖, 𝑝𝑖)beP0 J𝑆𝑖K
(︀
⊓ℓ𝑖=1(Id(𝑥𝑖) in {rsi})

)︀

in if ∀1≤𝑖≤𝑚. 𝑝𝑖 = 0 then (1, 0)

else let 𝑑* be min{𝑑𝑖 | 1 ≤ 𝑖 ≤ 𝑚, 0 < 𝑝𝑖}
in (𝑑*,

∑︀𝑚
𝑖=1 1[𝑑𝑖 = 𝑑*]𝑤𝑖𝑝𝑖)

[Sum]

P0 J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K ⊓ℓ𝑖=1 (Id(𝑥𝑖) in {rsi}) ::= [Product]

let1≤𝑖≤𝑚 (𝑑𝑖, 𝑝𝑖)bematch {𝑥1, . . . , 𝑥𝑚} ∩ (scope 𝑆𝑖)

B {𝑛1, . . . , 𝑛𝑘} ⇒ P0 J𝑆𝑖K ⊓𝑘𝑡=1 (Id(𝑥𝑛𝑡) in {rst})
B {} ⇒ (0, 1)

in (
∑︀𝑛

𝑖=1 𝑑𝑖,
∏︀𝑚

𝑖=1 𝑝𝑖)

(e) Sum-Product Expressions (Density Semantics)

P : SPE→ Event→ [0, 1]

P JLeaf(𝑥 𝑑𝜎)K 𝑒 ::= D J𝑑K (E J(subsenv 𝑒 𝜎)K𝑥) [Leaf]

P J(𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚)K 𝑒 ::= let𝑍 be
∑︀𝑚

𝑖=𝑖 𝑤𝑖

in
∑︀𝑚

𝑖=1(P J𝑆𝑖K 𝑒)𝑤𝑖/𝑍

[Sum]

P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒 ::= match (dnf 𝑒) [Product]

B (𝑡 in 𝑣)⇒ let 𝑛 be min{1≤𝑖≤𝑚 | (vars 𝑒) ⊂ (scope 𝑆𝑖)}
in P J𝑆𝑛K 𝑒

B (𝑒1 ⊓ · · · ⊓ 𝑒ℓ)⇒
∏︁

1≤𝑖≤𝑚

⎡
⎣
match {1 ≤ 𝑗 ≤ ℓ | (vars 𝑒𝑗) ⊂ (scope 𝑆𝑖)}
B {𝑛1, . . . , 𝑛𝑘} ⇒ P J𝑆𝑖K (𝑒𝑛1

⊓ · · · ⊓ 𝑒𝑛𝑘
)

B {} ⇒ 1

⎤
⎦

B (𝑒1 ⊔ · · · ⊔ 𝑒ℓ)⇒
∑︁

𝐽⊂[ℓ]

[︁
(−1)|𝐽|−1 P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K (⊓𝑖∈𝐽 𝑒𝑖)

]︁

(f) Sum-Product Expressions (Distribution Semantics)

Listing 7.2: Semantics of core calculus for sum-product domains (continued).

127

Z ~ normal(0, 1)
if (Z <= 0):

X ~ choice({"negative": 1}) # string-valued
elif (0 < Z < 4):

X ~ 2 * exp(Z) # real-valued
elif (4 <= Z):

X ~ atomic(4) # integer-valued

Listing 7.3: The random variable X in the SPPL program above is string-valued, integer-valued, or
real-valued, depending on the stochastic execution path as determined by the random value of Z.

Appendix 7.C formalizes this domain and presents a robust semi-symbolic solver that implements
preimg for each Transform, which enables exact probabilistic inferences about transformed variables.
Example 7.8 further illustrates these concepts.

Events Listing 7.2c shows the semantics of the Event domain, which specifies predicates on variables.
The valuation E J𝑒K : Var→ Outcomes of an Event takes a variable 𝑥 and returns the set 𝑣 ∈ Outcomes
of elements that satisfy the predicate along dimension 𝑥, based on Eqs. (7.5) and (7.6).

Example 7.2. The predicate

𝜑(𝑋1, 𝑋2) ::= {0≤𝑋1< 1}∪ {1/𝑋2> 6} (7.7)
corresponds in the core calculus to

𝑒 = (Id(X1) in ((#f 0) (1 #t)))⊔ (1/Id(X2) in ((#t 6) (∞ #t))) ∈ Event. (7.8)

Therefore E J𝑒K X1 = ((#f 0) (1 #t)) and E J𝑒K X2 = ((#f−∞) (6 #f)). «

The Event domain is used to specify measurable sets of an 𝑛-dimensional distribution on variables
{𝑥1, . . . , 𝑥𝑛} as follows: let 𝜎gen({𝐴1, 𝐴2, . . .}) be the sigma-algebra generated by 𝐴1, 𝐴2, . . . , and define

ℬ𝑛(Outcome) ::= 𝜎gen({
∏︀𝑛

𝑖=1 𝑈𝑖 | ∀1≤𝑖≤𝑛. 𝑈𝑖 ∈ ℬ(Outcomes)}). (7.9)

In other words, ℬ𝑛(Outcome) is the 𝑛-fold product sigma-algebra generated by open rectangles of
Outcomes. Any 𝑒 ∈ Event specifies a measurable set 𝑈 ∈ ℬ𝑛(Outcome) whose 𝑖th coordinate 𝑈𝑖 ::=
E J𝑒K𝑥𝑖 if 𝑥𝑖 ∈ (vars 𝑒) and 𝑈𝑖 ::= Outcomes otherwise. Any Transform subexpression in 𝑒 is solved and
any Var that does not appear in 𝑒 is marginalized, as illustrated in the next example.

Example 7.3. Let {X, Y, Z} be elements of Var. Then

𝑒 ::= Reciprocal(Id(X)) in ((#f 1) (2 #f))

corresponds to the ℬ3(Outcome)-measurable set

{
(︀
↓ Real

Outcome 𝑟
)︀
| 1/2 ≤ 𝑟 ≤ 1} × Outcomes× Outcomes. «

As in Remark 7.1, mappings from Event to [0, 1] induce probability distributions on ℬ𝑛(Outcome).

Primitive Distributions Listing 7.2d presents the primitive distributions out of which multivariate
distributions are constructed. The CDF domain contains cumulative distribution functions 𝐹 , whose
quantile function is denoted 𝐹−1 and derivative 𝐹 ′. From Billingsley [1995, Theorems 12.4, 14.1],

128

(C1) Every leaf subexpression must have its label map to the identity transform

∀ Leaf(𝑥 𝑑 𝜎) ∈ Leaf. 𝑥 ∈ 𝜎, 𝜎(𝑥) = Id(𝑥).

(C2) There are no cyclic dependencies between transformed variables

∀ Leaf(𝑥 𝑑 𝜎) ∈ Leaf.dom(𝜎) = {𝑥, 𝑥1, . . . , 𝑥𝑚} for some 𝑚 > 0

=⇒ ∀1≤𝑡≤𝑚. (vars 𝜎(𝑥𝑡)) ⊂ {𝑥, 𝑥1, . . . , 𝑥𝑡−1}.

(C3) Children of sum nodes must contain identical variables

∀(𝑆1𝑤1)⊕ · · · ⊕ (𝑆𝑚𝑤𝑚) ∈ Sum. ∀1≤𝑖≤𝑛. (scope 𝑆𝑖) = (scope 𝑆1).

(C4) Children of product nodes must contain distinct variables

∀(𝑆1 ⊗ · · · ⊗ 𝑆𝑚) ∈ Product. ∀1≤𝑖<𝑗≤𝑛. (scope 𝑆𝑖) ∩ (scope 𝑆𝑗) = ∅.

(C5) Children of sum nodes must have at least one positive weight

∀(𝑆1𝑤1)⊕ · · · ⊕ (𝑆𝑚𝑤𝑚) ∈ Sum. ∃1≤𝑖≤𝑛. 𝑤𝑖 > 0.

Listing 7.4: Five technical conditions required for elements of the SPE domain to be well defined.

the CDF domain is in 1-1 correspondence with the collection of all probability distributions and the
collection of all random variables on Real. The Distribution domain specifies continuous real, atomic
real (on the integers) and nominal distributions. The denotation D J𝑑K of a Distribution is a distribution
on Outcomes. For example, DistR(𝐹 𝑟1 𝑟2) is the restriction of 𝐹 to the positive measure interval
[𝑟1, 𝑟2]. The distributions specified by DistR and DistI can be simulated using a variant of the integral
probability transform, as described in the following proposition.

Proposition 7.4. Let 𝐹 be a CDF and 𝑟1, 𝑟2 real numbers such that 𝐹 (𝑟1) < 𝐹 (𝑟2). Let 𝑈 ∼
Uniform(𝐹 (𝑟1), 𝐹 (𝑟2)) and define the random variable 𝑋 ::= 𝐹−1(𝑈). Then for all real numbers 𝑟,

̃︀𝐹 (𝑟) ::= Pr[𝑋 ≤ 𝑟] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if 𝑟 < 𝑟1
𝐹 (𝑟)− 𝐹 (𝑟1)

𝐹 (𝑟2)− 𝐹 (𝑟1)
if 𝑟1 ≤ 𝑟 ≤ 𝑟2

1 if 𝑟2 < 𝑟.

«

Proof. Immediate from Pr[𝑋 ≤ 𝑟] = Pr[𝑈 ≤ 𝐹 (𝑟)] and the uniformity of 𝑈 on [𝑟1, 𝑟2]. �

Sum-Product Expressions Listings 7.2e and 7.2f show the probability density and distribution
semantics of the SPE domain. An element of SPE is well defined if and only if it satisfies the conditions
in Listing 7.4. For Leaf, (C1) ensures that 𝜎 maps the leaf variable 𝑥 to the Identity Transform and
(C2) ensures there are no cyclic dependencies or undefined variables in Environment 𝜎. Condition (C3)
ensures the scopes of all children of a Sum are identical and (C4) ensures the scopes of all children
of a Product are disjoint. which together ensure completeness and decomposability from sum-product
networks [Poon and Domingos, 2011, Definitions 4 and 6].

In Listing 7.2f, the denotation P J𝑆K of 𝑆 ∈ SPE is a map from 𝑒 ∈ Event to its probability under
the 𝑛-dimensional distribution defined by 𝑆, where 𝑛 ::= |scope 𝑆| is the number of variables in 𝑆. A
terminal node Leaf(𝑥 𝑑𝜎) is comprised of 𝑥 ∈ Var, 𝑑 ∈ Distribution, and 𝜎 ∈ Environment, where 𝜎 maps

129

other variables to a Transform of 𝑥. An example mapping in 𝜎 is Z ↦→ Poly(Root(Id(X) 2) [11, 5]).
When assessing the probability of 𝑒 at a Leaf, subsenv (Listing 7.12 in Appendix 7.B) rewrites 𝑒 as

an Event 𝑒′ on the base variable 𝑥. Therefore, probability of the Outcomes that satisfy 𝑒 is precisely
D J𝑑K (E J𝑒′K𝑥). The scope function (Listing 7.11 in Appendix 7.B) returns the list of variables in 𝑆.
For a Sum, the probability of 𝑒 is a weighted average of the probabilities under each subexpression.
For a Product, the semantics are defined in terms of (dnf 𝑒) (Listing 7.14 in Appendix 7.B), leveraging
inclusion-exclusion.

In Listing 7.2e, the denotation P0 J𝑆K defines the density semantics of SPE, which correctly handles
measure zero events such as {𝑋 = 3, 𝑌 = 𝜋, 𝑍 = "foo"} under a mixed-type base measure that has
both discrete and continuous components, as in Section 7.1.1. These semantics, which define the density
as a pair, adapt the approximate inference “lexicographic likelihood-weighting” algorithm for discrete-
continuous Bayes Nets [Wu et al., 2018] to exact “lexicographic enumeration” inference for the SPE
domain.

7.3 Conditioning Sum-Product Expressions on Events

This section describes the main theoretical result for exact inference on probability distributions de-
fined by an expression 𝑆 ∈ SPE and presents the inference algorithm for conditioning on an Event
(Listing 7.1d) in the core calculus.

Theorem 7.5 (Closure under conditioning). Let 𝑆 ∈ SPE and 𝑒 ∈ Event be given, where P J𝑆K 𝑒 > 0.
There exists an algorithm which, given 𝑆 and 𝑒, returns 𝑆′ ∈ SPE such that, for all 𝑒′ ∈ Event, the
probability of 𝑒′ according to 𝑆′ is equal to the conditional probability of 𝑒′ given 𝑒 according to 𝑆, i.e.,

P
q
𝑆′y 𝑒′ ≡ P J𝑆K (𝑒′ | 𝑒) ::= P J𝑆K (𝑒 ⊓ 𝑒′)

P J𝑆K 𝑒
. (7.10)

«

Theorem 7.5 is a structural conjugacy property [Diaconis and Ylvisaker, 1979] for the family of
probability distributions defined by the SPE domain, where both the prior and posterior are elements
of SPE. The closure property (7.10) is established constructively, using an algorithm condition : SPE→
Event→ SPE that satisfies

P J(condition 𝑆 𝑒)K 𝑒′ = P J𝑆K (𝑒′ | 𝑒) (𝑒, 𝑒′ ∈ Event,P J𝑆K 𝑒 > 0). (7.11)

The proof is given in Appendix 7.D. Figure 7.4 shows a conceptual example of how condition works,
where the prior distribution is a Product 𝑆 and the conditioned distribution is a Sum-of-Product 𝑆’.

Remark 7.6. Theorem 7.5 refers to a positive probability Event 𝑒. As with sum-product networks, SPE
is also closed under conditioning on a single Conjunction of possibly measure zero equality constraints
on non-transformed variables, which appear in many PPL interfaces [Saad and Mansinghka, 2016a,
Cusumano-Towner et al., 2019, Molina et al., 2020]. Appendix 7.D.3 presents the condition0 algorithm
for conditioning on such events, leveraging the generalized mixed-type density semantics in Listing 7.2e.

«

The next result states a sufficient requirement for (condition 𝑆 𝑒) to scale linearly in the size of 𝑆,
which holds for both zero and positive measure events.

Theorem 7.7. The runtime of (condition 𝑆 𝑒) scales linearly in the number of nodes in the graph repre-
senting 𝑆 whenever 𝑒 = (𝑡1 in 𝑣1)⊓ · · · ⊓(𝑡𝑚 in 𝑣𝑚) is a single Conjunction of Containment constraints,
where each 𝑡𝑖 represents a non-transformed program variable. «

130

condition
(Listing 7.24)

invokes
disjoin

(Listing 7.23)

Appendix 7.D

x−5
0

5
y −5

0

5

z

−2

0

2

Conditioning Region

x−5
0

5
y −5

0

5

z

−2

0

2

Disjoined Region

×𝑆

𝑍𝑌𝑋

+𝑆′

×
𝑆5

𝑍𝑌𝑋

...×
𝑆1

𝑍𝑌𝑋

Prior SPE Conditioned SPE

Figure 7.4: Conditioning a Product 𝑆 on an Event 𝑒 that defines a union of hyperrectangles in Real3. The
inference algorithm partitions the region into a disjoint union, in this case converting two overlapping
regions into five disjoint regions. The result is a Sum-of-Product, where each child is the restriction of
𝑆 to one of the disjoint hyperrectangles.

Example 7.8. Figure 7.5a shows an SPPL program that defines a pair of random variables (𝑋,𝑍),
where 𝑋 is normally distributed; and 𝑍 = −𝑋3 +𝑋2 + 6𝑋 if 𝑋 < 1, otherwise 𝑍 = 5

√
𝑋 + 1. The

first plot of Figure 7.5c shows the prior distribution of 𝑋; the middle plot shows the transformation 𝑡
that defines 𝑍 = 𝑡(𝑋), which is a piecewise sum of 𝑡if and 𝑡else; and the final plot shows the distribution
of 𝑍 = 𝑡(𝑋). Figure 7.5b shows the sum-product expression representing this program, where the
root node is a sum whose left and right children have weights 0.691... and 0.309..., which corresponds
to the prior probabilities of {𝑋 < 1} and {1 ≤ 𝑋}. Nodes labeled 𝑋 ∼ 𝑁(𝜇, 𝜎) with an incoming
directed edge from a node labeled (𝑟1, 𝑟2) denotes that the random variable is constrained to the interval
(𝑟1, 𝑟2). Deterministic transformations are denoted using red directed edges from a leaf node (i.e., 𝑋)
to a numeric expression (e.g., 5

√
𝑋 + 11), with the name of the transformed variable along the edge

(i.e., 𝑍). In Figure 7.5b, the environments at the leaves in the left and right subtrees are thus:

𝜎left = {X ↦→ Id(X), Z ↦→ Poly(Id(X) [0, 6, 1,−1])} (7.12)
𝜎right = {X ↦→ Id(X), Z ↦→ Poly(Root(Id(X) 2) [11, 5])}. (7.13)

Figure 7.5c shows the prior distribution induced by this program and Figure 7.5d shows an SPPL
query that conditions the program on an event {𝑍2 ≤ 4} ∩ {𝑍 ≥ 0} involving the transformed variable
𝑍. The inference engine performs the following analysis on the query:

{𝑍2 ≤ 4}∩ {𝑍 ≥ 0} (7.14)
≡ {𝑍 ∈ [0, 2]} (simplifying the event) (7.15)

≡ {𝑋 ∈ 𝑡−1([0, 2])} (using 𝑍 ::= 𝑡(𝑋)) (7.16)

≡ {𝑋 ∈ 𝑡−1
if ([0, 2])} ∪ {𝑋 ∈ 𝑡−1

else([0, 2])} (inverting the event) (7.17)
≡ {−2.174... ≤ 𝑋 ≤ −2} ∪ {0 ≤ 𝑋 ≤ .321...}⏟ ⏞

constraints from left subtree

∪ {81/25 ≤ 𝑋 ≤ 121/25}⏟ ⏞
constraint from right subtree

(7.18)

Eq. (7.15) shows the first stage of inference, which solves all transformations in the conditioning event
and yields {0 ≤ 𝑍 ≤ 2}. The conditional distribution of 𝑍 is shown in the final plot of Figure 7.5f. The
next step is to dispatch the simplified event to the left and right subtrees. Each subtree will compute the
constraint on 𝑋 implied by the event under the transformation in that branch, as shown in Eq. (7.17).
The middle plot of Figure 7.5f shows the preimage computation under 𝑡if from the left subtree, which
gives two intervals, and 𝑡else from the right subtree, which gives one interval.

The final step is to transform the prior expression (Figure 7.5b) by conditioning each subtree on

131

X ~ normal(0, 2)
if X < 1:
Z ~ -X**3 + X**2 + 6*X

else:
Z ~ 5*sqrt(X) + 11

(a) SPPL Program

+

𝑋∼𝑁(0, 2)

[1,∞)

5
√
𝑋+11

𝑍

𝑋∼𝑁(0, 2)

(−∞, 1)

−𝑋3+𝑋2+6𝑋

𝑍

.69 .31

(b) Prior Sum-Product Expression

−4 −2 0 2 4

x

X ∼ Normal(0, 2)

−4 −2 0 2 4

x

−5

0

5

10

15
z

Transformation z = t(x)

tif(x) = −x3 + x2 + 6x

telse(x) = −5
√
x+ 11

−5 0 5 10 15

z

Z ∼ t(X)

(c) Prior Marginal Distributions

condition
Z**2 <= 4
and Z >= 0

(d) Condition Expression

+

𝑋∼𝑁(0, 2)

[3.2, 4.8]

5
√
𝑋+11

𝑍

𝑋∼𝑁(0, 2)

[0, 0.32]

−𝑋3+𝑋2+6𝑋

𝑍

𝑋∼𝑁(0, 2)

[−2.2,−2]

−𝑋3+𝑋2+6𝑋

𝑍

.16
.49

.35

(e) Conditioned Sum-Product Expression

−4 −2 0 2 4

x

X | (0 < Z < 2)

−4 −2 0 2 4

x

−5

0

5

10

15

z

Transformation z = t(x)

tif(x) = −x3 + x2 + 6x

telse(x) = −5
√
x+ 11

z ∈ [0, 2]

x ∈ t−1([0, 2])

−5 0 5 10 15

z

Z | (0 < Z < 2)

(f) Conditioned Marginal Distributions

Figure 7.5: Inference on a stochastic many-to-one transformation of a real random variable in SPPL.

132

𝑥 ∈ Var 𝑦 ∈ ArrayVar 𝑛 ∈ Natural 𝑏 ∈ Boolean 𝑟 ∈ Real 𝑠 ∈ String

𝑜arith ∈ {+, -, *, /, **} 𝑜bool ∈ {and, or} 𝑜neg ∈ {not} 𝑜rel ∈ {<=, <, >, >=, ==, in}
𝐷 ∈ {normal, poisson, choice, bernoulli, . . .}
𝐸 ∈ Expr ::= 𝑥 | 𝑛 | 𝑏 | 𝑟 | 𝑠 | 𝑦[𝐸] | 𝐷(𝐸*) | (𝐸1, . . . , 𝐸𝑚)

| 𝐸1 𝑜arith𝐸2 | 𝑜neg 𝐸 | 𝐸1 𝑜bool𝐸2 | 𝐸1 𝑜rel𝐸2

𝐶 ∈ Command ::= 𝑥 =𝐸 | 𝑦[𝐸1] =𝐸2 | 𝑥 ~𝐸 | 𝑦[𝐸1] ~𝐸2 | 𝑦 = array(𝐸)

| skip | 𝐶1;𝐶2 | if 𝐸 {𝐶1} else {𝐶2} | condition(𝐸)

| for 𝑥 in range(𝐸1, 𝐸2) {𝐶} | switch 𝑥1 cases (𝑥2 in 𝐸) {𝐶}

Listing 7.5: Source syntax of SPPL.

the intervals in Eq. (7.18), which gives the posterior expression (Figure 7.5e). The left subtree in
Figure 7.5b, which originally corresponded to {𝑋 < 1}, is split in Figure 7.5e into two subtrees that
represent the events {−2.174... ≤ 𝑋 ≤ −2} and {0 ≤ 𝑋 ≤ 0.321...}, respectively, and whose weights
0.159... and 0.494... are the renormalized probabilities of these regions under the prior distribution
in Figure 7.5c. The right subtree in Figure 7.5b, which originally corresponded to {1 ≤ 𝑋}, is now
restricted to {81/25 ≤ 𝑋 ≤ 121/25} in Figure 7.5e and its weight 0.347... is again the renormalized prior
probability of the region. The graph in Figure 7.5e represents the distribution of (𝑋,𝑍) conditioned on
the query in Eq. (7.15). The new sum-product expression be used to run further queries, such as using
simulate to generate random samples from the posterior distributions in Figure 7.5f. «

7.4 Translating Probabilistic Programs to Sum-Product Expressions

Probabilistic programs in SPPL are translated to sum-product expressions 𝑆 ∈ SPE that symbolically
represent the probability distribution over all program variables. As in Figure 7.1, the translated
expression 𝑆 is used to answer queries:

simulate(𝑥1, . . . , 𝑥𝑛) using standard sampling semantics of Sum and Product from sum-product
networks; the technique from Proposition 7.4 for constrained simulation at
the Leaf nodes; and syntactic replacement for transformed variables.

prob(𝑒) using the distribution semantics P J𝑆K 𝑒 from Listing 7.2f or density semantics
P0 J𝑆K 𝑒 from Listing 7.2e, depending on the form of 𝑒 ∈ Event.

condition(𝑒) using the condition operation (7.11) from Theorem 7.5.

Listing 7.5 shows the source syntax of SPPL, which contains standard constructs of an imperative
language such as array data structures, if-else statements, and bounded for loops. The switch-
case macro is defined in Eq. (7.4). Random variables are defined using “sample” (~) commands. The
condition(𝐸) command is used to constrain program executions to those for which 𝐸 ∈ Expr evaluates
to #t. Listing 7.6 defines a formal relation ⟨𝐶, 𝑆⟩ →SPE 𝑆′ that translates the “current” expression
𝑆 ∈ SPE and program fragment 𝐶 ∈ Command into 𝑆′ ∈ SPE. The ⇓ relation evaluates 𝐸 ∈ Expr
to terminal values in other domains in the core calculus, using standard programming evaluation for
arithmetic and logical expressions.

To ensure SPPL programs translate to well-defined elements of SPE as defined in (C1)–(C5), each
program must satisfy the following syntactic properties:

133

𝐸 ⇓ 𝑑;where 𝑥 ̸∈ scope 𝑆

⟨𝑥 ~𝐸,𝑆⟩ →SPE 𝑆 ⊗ (𝑥 𝑑 {𝑥 ↦→ Id(𝑥)}) (Sample)

𝐸 ⇓ 𝑡; where vars 𝑡∈dom(𝜎), 𝑥 ̸∈ dom(𝜎)

⟨𝑥 =𝐸, Leaf(𝑥′ 𝑑 𝜎)⟩ →SPE Leaf(𝑥′ 𝑑 (𝜎 ∪ {𝑥 ↦→ 𝑡})) (Transform-Leaf)

𝐸 ⇓ 𝑡,∀1≤𝑖≤𝑚.⟨𝑥 = 𝐸,𝑆𝑖⟩ →SPE 𝑆′
𝑖

⟨𝑥 = 𝐸,⊕𝑚
𝑖=1(𝑆𝑖𝑤𝑖)⟩ →SPE ⊕𝑚

𝑖=1(𝑆
′
𝑖 𝑤𝑖) (Transform-Sum)

𝐸 ⇓ 𝑡, ⟨𝑥 = 𝐸,𝑆𝑗⟩ →SPE 𝑆′
𝑗 ; where 𝑗 ::= min{𝑖 | (vars 𝐸)∈ scope 𝑆𝑖}

⟨𝑥 =𝐸,⊗𝑚
𝑖=1𝑆𝑖⟩ →SPE ⊗𝑚

𝑖=1,𝑖 ̸=𝑗𝑆𝑖 ⊗ 𝑆′
𝑗 (Transform-Prod)

𝐸 ⇓ 𝑒

⟨condition(𝐸), 𝑆⟩ →SPE condition 𝑆 𝑒 (Condition)

⟨𝐶1, 𝑆⟩ →SPE 𝑆1, ⟨𝐶2, 𝑆1⟩ →SPE 𝑆′

⟨𝐶1;𝐶2, 𝑆⟩ →SPE 𝑆′ (Sequence)

𝐸 ⇓ 𝑒, ⟨𝐶1, condition 𝑆 𝑒⟩ →SPE 𝑆1, ⟨𝐶2, condition 𝑆 (negate 𝑒)⟩ →SPE 𝑆2

⟨if 𝐸 {𝐶1} else {𝐶2}, 𝑆⟩ →SPE (𝑆1 P J𝑆K 𝑒)⊕ (𝑆2 (1− P J𝑆K 𝑒)) (If-Else)

𝐸1 ⇓ 𝑛1, 𝐸2 ⇓ 𝑛2;where 𝑛2 ≤ 𝑛1

⟨for 𝑥 in range(𝐸1, 𝐸2) {𝐶}, 𝑆⟩ →SPE 𝑆 (For-Exit)

𝐸1 ⇓ 𝑛1, 𝐸2 ⇓ 𝑛2;where 𝑛1 < 𝑛2

⟨for 𝑥 in range(𝐸1, 𝐸2) {𝐶}, 𝑆⟩
→SPE ⟨𝐶[𝑥/𝑛1]; for 𝑥 in range(𝑛1 + 1, 𝐸2) {𝐶}, 𝑆⟩

(For-Repeat)

Listing 7.6: Translating an SPPL command 𝐶 (Listing 7.5) to an element of SPE (Listing 7.2f).

134

(a) Invalid program (infinite-sized SPE)

mu ~ beta(a=4, b=3, scale=7)
num_loops ~ poisson(mu) # invalid
for i in range(0, num_loops): # invalid

[... commands ...]

(b) Valid program (finite-sized SPE)

mu ~ beta(a=4, b=3, scale=7)
binspace partitions [0,7] into 10 intervals
switch (mu) cases (m in binspace(0, 7, n=10)):

num_loops ~ poisson(m.mean()) # discretization
condition (num_loops < 50) # truncation
switch num_loops cases (n in range(50)):

for i in range(0, n):
[... commands ...]

Listing 7.7: Examples of valid and invalid SPPL programs.

(R1) Variables defined by 𝑥 ~𝐸 or 𝑥 =𝐸 must have fresh (new) names, to ensure (C1), (C2) and (C4)
hold. The programs X ~ normal(0,1); X ~ normal(0,2) and X ~ normal(0,1); X = X + 1
are thus forbidden.

(R2) Branches in an if-else statement must define identical variables, to ensure (C3) and (C5) hold.
The program if (X < 0) {Y ~ normal(0,1)} else {Z ~ normal(0,1)} is thus forbidden.

(R3) Derived random variables are obtained via transformation of a single variable only. The
program X = Z + Y is thus forbidden.

(R4) Parameters of distributions 𝐷 or range must be either constants or random variables with
finite support. The program X ~ poisson(2); Y ~ normal(X, 1) is thus forbidden.

Restriction (R3) ensures that the program has a valid representation in SPE, since the Transform
domain from the core calculus in Listing 7.1 does not contain multivariate transformations. Multivariate
transformations are in general intractable and their distributions do not factor as Sum and Product
expressions. Such transformations are also semantically ill-defined, even in superficially simple cases
[Proschan and Presnell, 1998]. Restriction (R4) ensures that the translated SPE has finite-size, since
distributional parameters with infinite support require integrals (uncountable support) or infinite series
(countable support) to represent exactly. Listing 7.7a shows an example of an invalid SPPL program
which is forbidden because the mu beta random variable is used to parameterize the mean of the
num_loops Poisson random variable and the num_loops random variable is unbounded and used in the
for loop. Listing 7.7b shows one modification of the model to work around these restrictions, where the
switch-cases (defined in Eq. (7.4)) discretizes mu and condition sets an upper bound on num_loops.

7.4.1 Compiler Optimizations of Memory and Runtime

Are All SPPL Programs Tractable? No. As discrete Bayesian networks can be encoded as
SPPL programs, inference queries are NP-Hard [Cooper, 1990]. Such programs correspond to the com-
piled SPE being exponentially large. For example, an SPPL program for an noisy-OR network over
Boolean variables [Pearl, 1988] can be compactly specified, but exact inference scales exponentially in
the number of variables. Static analysis techniques that report whether exact inference in an SPPL
program is tractable are not possible either. The complexity of exact inference in Bayesian networks
scales exponentially in the treewidth, which is the only structural restriction that can ensure tractabil-
ity [Chandrasekeran et al., 2008]. As computing treewidth is NP-Complete [Arnborg et al., 1987], for
fundamental theoretical reasons it is impossible to verify whether SPPL programs, even simple ones, ad-
mit tractable inference. However, many models contain conditional independence relationships [Koller
and Friedman, 2009] that induce a compact factorization of the model into tractable subparts, as in Sec-
tion 7.1.2. SPPL uses several optimization techniques to improve scalability of translation (Listing 7.6)

135

Table 7.1: Measurements of SPE graph size with and without the factorization and deduplication.

Benchmark Number of Nodes in Translated SPE Data Compression
Ratio (unopt/opt)Unoptimized Optimized

Hiring [Albarghouthi et al., 2017] 33 27 1.2
Alarm [Nori et al., 2014] 58 45 1.3
Grass [Nori et al., 2014] 130 59 2.2
NoisyOR [Nori et al., 2014] 783 132 4.1
ClinicalTrial [Nori et al., 2014] 43761 4131 10.6
HeartDisease [Spiegelhalter et al., 1993] 1041235 6257 166.4
Hierarchical HMM (Section 7.1.2) 2.92× 1016 1787 1.64× 1014

+

×

𝑆′
1𝑆

×

𝑆1𝑆

Original

×

+

𝑆′
1𝑆1

𝑆

Factorized

(a) Factorization

+

×

𝑌𝑋𝑆

×

+

×

𝑆𝑌

. . .

𝑋

Original

+

×

𝑌𝑋

×

+

×

𝑆𝑌

. . .

𝑋

Deduplicated

(b) Deduplication

Figure 7.6: Exploiting independencies and repeated structure during translation of SPPL programs to
build compact sum-product expressions. Blue subtrees are identical components.

and conditioning (Eq. (7.11)) by exploiting independencies and repeated structure, when they exist, to
build compact sum-product expressions. Three optimizations are discussed next.

Factorization Using standard algebraic manipulations, a sum-product expression can be made smaller
without changing its semantics by “factoring out” common terms, provided that the new expression
satisfies (C1)–(C5). Factorization plays a central role in optimizing the (If-Else) rule of →SPE in
Listing 7.6: since all statements before the if-else statement are shared by the bodies of the if and
else branches, statements outside the branch that are independent of statements inside the branch
typically produce subexpressions that can be factored out.

Deduplication When a sum-product expression contains duplicate subexpressions that cannot be
factored out without violating the definedness conditions, the duplicates can be represented using a
single physical data structure. Figure 7.6b shows an example where the left and right components of
the original expression contain an identical subexpression 𝑆 (in blue), but factorization would lead to
an invalid sum-product expression. The optimizer represents the computation graph of this expression
using a single data structure 𝑆 shared by the left and right subtrees (see also Figures 7.3c and 7.3d).

Memoization While deduplication reduces memory overhead, memoization reduces runtime over-
head. Consider either SPE in Figure 7.6b: calling condition on the Sum root will dispatch the query
to the left and right subexpressions. The values (condition 𝑆 𝑒) or P J𝑆K 𝑒 are cached when 𝑆 is visited
by the parent in the left subtree, to avoid recomputing the value when 𝑆 is visited again by the parent
in the right subtree. Memoization delivers large runtime gains not only for solving queries but also for
detecting duplicates returned by condition in the (If-Else) translation step.

136

Table 7.2: Runtime measurements and speedup for 15 fairness verification tasks using SPPL,
FairSquare [Albarghouthi et al., 2017], VeriFair [Bastani et al., 2019], and PSI [Gehr et al., 2016].
Decision
Program

Population
Model

Lines
of Code

Fairness
Result

Wall-Clock Runtime (seconds) SPPL Speedup Factor

FairSquare VeriFair PSI SPPL Min Max

Independent 15 Unfair 1.4 16.0 22.7 0.01 140x 2270x
DT4 Bayes Net. 1 25 Unfair 2.5 1.27 61.2 0.03 40x 2040x

Bayes Net. 2 29 Unfair 6.2 0.91 1783 0.03 30x 594500x

Independent 32 Fair 2.7 105 11.9 0.03 90x 3500x
DT14 Bayes Net. 1 46 Fair 15.5 152 118 0.07 221x 2171x

Bayes Net. 2 50 Fair 70.1 151 2069 0.08 876x 25863x

Independent 36 Fair 4.1 13.6 57.7 0.03 136x 1923x
DT16 Bayes Net. 1 49 Unfair 12.3 1.58 144 0.08 20x 1800x

Bayes Net. 2 53 Unfair 30.3 2.02 2342 0.08 25x 29275x

Independent 62 Fair 5.1 2.01 79.3 0.06 35x 1322x
DT𝛼

16 Bayes Net. 1 58 Fair 15.4 21.6 191 0.12 127x 1591x
Bayes Net. 2 45 Fair 53.8 24.5 2284 0.12 204x 29033x

Independent 93 Fair 15.6 23.1 15.2 0.05 303x 644x
DT44 Bayes Net. 1 109 Unfair 264.1 19.8 68.3 0.09 220x 2933x

Bayes Net. 2 113 Unfair timeout 20.1 1651 0.09 233x 18344x

Measurements Table 7.1 shows measurements of performance gains delivered by the factorization
and deduplication optimizations on seven benchmark programs. The compression ratio, which is the
unoptimized size divided by the optimized size is highest in the presence of independence or repeated
structure. In addition, deduplication and memoization together enable fast detection of duplicate
subtrees by comparing logical memory addresses of internal nodes in 𝑂(1) time, instead of computing
hash functions that require an expensive subtree traversal.

7.5 Evaluation

The prototype implementation of SPPL (Section 1.4) was evaluated on benchmark problems from the
literature. Section 7.5.1 compares the runtime for verifying fairness properties of decision trees using
SPPL to three solvers: FairSquare [Albarghouthi et al., 2017], VeriFair [Bastani et al., 2019], and
PSI [Gehr et al., 2016]. Section 7.5.2 compares the runtime of conditioning and querying probabilistic
programs using SPPL to PSI, which is a state-of-the-art solver for exact symbolic inference. Section 7.5.3
compares the runtime of computing exact rare event probabilities in SPPL to sampling-based estimation
in BLOG [Milch et al., 2005]. Experiments were run on Intel i7-8665U 1.9GHz CPU with 16GB RAM.

7.5.1 Fairness Benchmarks

Characterizing the fairness of classification algorithms is a growing application area in machine learn-
ing [Dwork et al., 2012]. Albarghouthi et al. [2017] precisely cast the problem of verifying the fairness of
a classifier in terms of computing ratios of conditional probabilities in a pair of probabilistic programs
that specify the data generating and classification processes. Briefly, if (i) 𝐷 is a decision program that
classifies whether applicant 𝐴 should be hired; (ii) 𝐻 is a population program that generates random
applicants; and (iii) 𝜑m (resp. 𝜑q) is a predicate on 𝐴 that is true if the applicant is a minority (resp.

137

qualified), then 𝐷 is said to be 𝜖-fair on 𝐻 (where 𝜖 > 0) if

Pr𝐴∼𝐻 [𝐷(𝐴) | 𝜑m(𝐴) ∧ 𝜑q(𝐴)]

Pr𝐴∼𝐻 [𝐷(𝐴) | ¬𝜑m(𝐴) ∧ 𝜑q(𝐴)]
> 1− 𝜖. (7.19)

Eq. (7.19) is a “group fairness” property comparing the probability of hiring a qualified minority appli-
cant is to that of hiring a qualified non-minority applicant.

This evaluation compares the runtime needed by SPPL to obtain a fairness judgment (7.19) in a
benchmark set of machine-learned decision and population programs against the FairSquare [Albargh-
outhi et al., 2017], VeriFair [Bastani et al., 2019], and PSI solvers. Fifteen benchmark problems for
decision tree classifiers are adapted from Albarghouthi et al. [2017, Section 6.1], which are one-third
of the full benchmark set. SPPL cannot express neural networks and support-vector machines be-
cause they contain multivariate transforms which do not have exact tractable solutions and are ruled
out by the SPPL restriction (R3). FairSquare and VeriFair are able to solve these benchmarks using
approximate inference.

Table 7.2 shows the runtime results. The first column shows the classification program, where DT𝑛

means “decision tree” with 𝑛 conditionals. The second column shows the population model used to
generate data. The third column shows the lines of code (in SPPL). The fourth column shows the result
of the fairness analysis, where all four systems produce the same judgment on the fifteen benchmarks.
The remaining columns show the runtime and speedup factors. The measurements indicate that SPPL
consistently delivers solutions in milliseconds, whereas the baselines can require tens, hundreds, or
thousands of seconds. The SPPL speedup factors (20x–594, 500x) are substantial. Furthermore, the
runtime variance in the FairSquare, VeriFair, and PSI baselines is very high. For example, VeriFair
uses rejection sampling to estimate Eq. (7.19) with a stopping rule to determine when the estimate is
close enough, leading to unpredictable runtime (e.g., >100 seconds for DT14 but <1 second for DT4,
Bayes Net. 2). FairSquare, which uses symbolic volume computation and hyperrectangle sampling to
approximate Eq. (7.19), is faster than VeriFair in some cases (e.g., DT14), but times out in others
(DT44, Bayes Net. 2). PSI uses computer algebra whose scaling is extremely unpredictable, ranging
from 11.9 seconds to 2284 seconds. In contrast, the runtime is SPPL does not vary significantly across
the benchmark problems. The performance–expressiveness trade-off here is that SPPL computes exact
probabilities and is substantially faster in verifying decision trees. FairSquare and VeriFair compute
approximate probabilities that enable them to express more fairness problems, at the cost of a higher
and less predictable runtime.

7.5.2 Comparison to Symbolic Integration

The second evaluation compares SPPL to the PSI [Gehr et al., 2016] symbolic solver on benchmark
problems that include discrete, continuous, and transformed random variables. PSI can express more
inference problems than SPPL because it uses general computer algebra and does not impose restric-
tions (R3) and (R4). As a result, SPPL can solve 14/21 benchmarks listed in Gehr et al. [2016, Table 1].

Workflow Comparison In SPPL, the multi-stage modeling and inference workflow demonstrated in
Figure 7.7a involves three steps that reflect the key elements of a Bayesian inference problem:

(S1) Translating the model program into a prior SP 𝑆.
(S2) Conditioning 𝑆 on data to obtain a posterior SP 𝑆′.
(S3) Querying 𝑆′, using, e.g., prob or simulate.

An advantage of this multi-stage workflow is that multiple tasks can be run at a given stage without
rerunning previous stages. For example, multiple datasets can be observed in (S2) without translating
the prior expression in (S1) once per dataset; and, similarly, multiple queries can be run in (S3) without

138

SPPL
Translator

sample(vars)
. . .
condition(constraint)
. . .
sample(vars)

SPPL Program
(Prior)

Sum
Product

Expression

(Prior)

SPPL
Inference
Engine

condition(data)

SPPL Program (Data)

Sum
Product

Expression

(Posterior)

SPPL
Inference
Engine

query

SPPL Program (Query)

0.17123
Result

(S1) (S2) (S3)

(a) Multi-Stage Workflow in SPPL

PSI

sample(variables)
. . .
condition(constraint)
condition(data)
. . .
return query

PSI Program
(Prior+Data+Query)

Computer Algebra Expression
(Posterior)

(b) Single-Stage Workflow in PSI

Figure 7.7: Comparison of multi-stage and single-stage workflows for exact probabilistic inference. In
SPPL, modeling, observing data, and querying are separated into multiple distinct stages, which enables
large efficiency gains from computation reuse across many datasets or queries. In PSI [Gehr et al., 2016],
the workflow consists of a single stage that combines all these tasks into one large symbolic computation.
Refer to Table 7.3 for performance comparison.

conditioning on data in (S2) once per query. In contrast, PSI adopts a single-stage workflow, shown
in Figure 7.7b, where a single program contains the prior distribution over variables, “observe” (i.e.,
“condition”) statements for conditioning on a dataset, and a “return” statement for the query. PSI
converts the program into a symbolic expression for the distribution over the return value: if this
expression is “complete” (i.e., it does not contain unevaluated symbolic integrals) then it can be used
to obtain interpretable answers for plotting or tabulating; otherwise, the result is “partial” and is too
complex to be used for practical purposes. A consequence of the single-stage workflow in systems like
PSI is that the entire solution is recomputed from scratch on a per-dataset or per-query basis.

Runtime Comparison Table 7.3 compares the runtime of SPPL and PSI on seven benchmarks prob-
lems: Digit Recognition [Gehr et al., 2016]; TrueSkill [Laurel and Misailovic, 2020]; Clinical Trial [Gehr
et al., 2016]; Gamma transforms (described below); Student Interviews [Laurel and Misailovic, 2020]
(two variants); and Markov Switching (two variants, from Section 7.1.2); The second column shows
the distributions in each benchmark, which include continuous, discrete, and transformed variables.
The third column shows the number of datasets on which to condition the program. The next three
columns show the time needed to translate the program (stage (S1)), condition the program on a dataset
(stage (S2)), and query the posterior (stage (S3))—entries in the latter two columns are written as 𝑛×𝑡,
where 𝑛 is the number of datasets and 𝑡 the average time per dataset. For PSI, (S1) and (S2) are im-
plemented in a single stage, shown in the merged gray cell; and (S3) takes less than 0.01 seconds if the
result is a simplified symbolic expression that can be evaluated to obtain a numeric answer, otherwise
it times out. The last column shows the overall runtime for solving all 𝑛 tasks.

For benchmarks that both systems solve completely, SPPL realizes speedups between 3x (Digit

139

Table 7.3: Comparison of PSI [Gehr et al., 2016] and SPPL on seven exact inference problems.

Benchmark Distribution Datasets System Wall-Clock Runtime of Inference Stages Overall
Time

Translation (S1) Conditioning (S2) Querying (S3)

Digit
C×B784 10 SPPL 6.9 sec 10× 7.7 sec 10× (<0.01 sec) 84 sec

Recognition PSI 10× 24.3 sec 10× (<0.01 sec) 244 sec

TrueSkill P×Bi2 2 SPPL 3.4 sec 2× 0.7 sec 2× 0.1 sec 4.9 sec
PSI 2× 41.60 sec timeout —

Clinical B×U3

×B50×B50 10 SPPL 9.5 sec 10× 2.2 sec 10× (<0.01 sec) 31 sec
Trial PSI 10× 107.3 sec 10× (<0.01 sec) 1073 sec

Gamma G×T
×(T+T) 5 SPPL 0.02 sec 5× 0.52 sec 5× 0.03 sec 2.8 sec

Transforms PSI 5× 0.68 sec; i/e timeout —

Student P×B2×Bi4
×(A+Be)2

10 SPPL 4.0 sec 10× 0.7 sec 10× 0.2 sec 13.5 sec
Interviews2 PSI 10× 540 sec timeout —

Student P×B10×Bi20
×(A+Be)10

10 SPPL 24.6 sec 10× 3.9 sec 10× 1.2 sec 75 sec
Interviews10 PSI out of memory (64GB+) — —

Markov B×B3

×N3×P3 10 SPPL 0.05 sec 10× (<0.01 sec) 10× (<0.01 sec) 0.5 sec
Switching3 PSI 10× 182.9 sec 10× (<0.01 sec) 1829 sec

Markov B×B100

×N100×P100 10 SPPL 4.1 sec 10× 6.5 sec 10× 0.5 sec 74 sec
Switching100 PSI out of memory (64GB+) — —

A:Atomic B:Bernoulli Be:Beta Bi:Binomial C:Categorical
N:Normal G:Gamma P: Poisson T: Transform U:Uniform

SPPL
µ = 15.85s
σ = 0.48s

Psi
µ = 26.52s
σ = 1.28s

23

24

25

R
u

n
ti

m
e

(s
ec

)

(a) Digit Recognition

SPPL
µ = 0.13s
σ = 0.00s

Psi
µ = 22.51s
σ = 3.77s

2−4

2−1

22

25

(b) Markov Switching3

SPPL
µ = 7.81s
σ = 0.16s

Psi
µ = 539.85s
σ = 663.93s

22

25

28

211

(c) Student Interviews2

SPPL
µ = 12.74s
σ = 0.29s

Psi
µ = 107.32s
σ = 153.16s

20

23

26

29

(d) Clinical Trial

Figure 7.8: Distribution of end-to-end runtime for four benchmark problems from Table 7.3 using SPPL
and PSI. For each benchmark, one inference query is repeated over ten distinct datasets (dots).

Recognition) to 3600x (Markov Switching3). The measurements also show the advantage of the multi-
stage workflow in SPPL. For example, in TrueSkill, SPPL translation (3.4 seconds) is more expensive
than both conditioning on data (0.7 seconds) and querying (0.1 seconds), which amortizes the translation
cost over several datasets or queries. In PSI, solving TrueSkill takes 2× 41.6 seconds, but the solution
contains unsimplified integrals and is thus unusable. The Markov Switching and Student Interviews
benchmarks show that PSI does not perform well in problems that contain many discrete random
variables.

The Gamma Transform benchmark tests the robustness of many-to-one transformations (List-
ing 7.2b), where 𝑋 ∼Gamma(3, 1); 𝑌 =1/ exp𝑋2 if 𝑋 < 1 and 𝑌 =1/ ln𝑋 otherwise; and 𝑍 = −
𝑌 3 + 𝑌 2 + 6𝑌 . Each of the 𝑛 = 5 datasets specifies a different constraint 𝜑(𝑍) and a query about the
posterior 𝑌 |𝜑(𝑍), which needs to compute and integrate out 𝑋 |𝜑(𝑍). PSI reports that there is an
error in its answer for all five datasets, whereas SPPL, using the semi-symbolic transform solver from
Appendix 7.C, solves all five problems effectively.

Figure 7.8 compares the runtime variance using SPPL and PSI for four of the benchmarks in

140

0 5 10 15 20

Runtime (sec)

−7.80

−7.65

−7.50

−7.35

E
st

im
at

e
Log Prob: -7.43

True Value
SPPL
BLOG

0 5 10 15 20

Runtime (sec)

−10.0

−9.9

−9.8

−9.7

−9.6

Log Prob: -9.63

0 5 10 15 20

Runtime (sec)

−11.50

−11.25

−11.00

−10.75

−10.50

−10.25
Log Prob: -10.48

0 5 10 15 20

Runtime (sec)

−13.50

−13.25

−13.00

−12.75

Log Prob: -12.73

0 50 100 150 200

Runtime (sec)

−14.25

−14.00

−13.75

E
st

im
at

e

Log Prob: -13.64

0 50 100 150 200

Runtime (sec)

−14.5

−14.0

−13.5

−13.0

−12.5

Log Prob: -14.48

0 50 100 150 200

Runtime (sec)

−15.75

−15.50

−15.25

−15.00

−14.75

Log Prob: -15.83

0 50 100 150 200

Runtime (sec)

−17.5

−17.0

−16.5

Log Prob: -17.32

Figure 7.9: Runtime comparison for computing rare event probabilities using exact inference in SPPL
and rejection sampling in BLOG in eight probabilistic programs from Table 4.2. As the probability of
the event decreases, the runtime needed to obtain an accurate estimate using sampling-based inference
in BLOG increases, whereas SPPL delivers exact answers in milliseconds for all events.

Table 7.3, where one query is repeated over 10 datasets. In all benchmarks, the SPPL variance is lower
than that of PSI, with a maximum standard deviation 𝜎 = 0.5 sec. In contrast, the spread of PSI
runtime is high for Student Interviews (𝜎 = 540 sec, range 64–1890 sec) and Clinical Trial (𝜎 = 153 sec,
range 2.75–470 sec). In PSI, the analyses are sensitive to the numeric values in the observations, which
leads to unpredictable runtime across different datasets even for a fixed query pattern. In SPPL, the
runtime depends on the query pattern not the observed data and therefore behaves predictably across
different observations.

As with the fairness benchmarks in Section 7.5.1, PSI trades off expressiveness with efficacy on
tractable problems. The results show that its runtime and memory do not scale well and are unpre-
dictable on benchmarks that SPPL solves very efficiently. Moreover, PSI may return unusable solutions
to the user and it needs to recompute entire symbolic solutions from scratch for each new dataset or
query. While SPPL is less expressive than PSI, it carries neither of these limitations.

7.5.3 Comparison to Sampling-Based Estimates

The final evaluation compares the runtime and accuracy of estimating probabilities of rare events in
a canonical Bayesian network from Koller and Friedman [2009] using SPPL and BLOG [Milch et al.,
2005]. As discussed in Koller and Friedman [2009, Section 12.13], rare events are the rule, not the
exception, in many applications, as the probability of a predicate 𝜑(𝑋) decreases exponentially with
the number of observed variables in 𝑋. Small estimation errors can magnify substantially when, e.g.,
taking ratios of probabilities, such as Eq. (7.19).

In Figure 7.9, each subplot shows the runtime and probability estimates for a low probability event
𝜑. In BLOG, the rejection sampler estimates the probability of 𝜑 by computing the fraction of times it
holds in a size 𝑛 i.i.d. random sample from the prior. The horizontal red line shows the ground-truth
probability. The x marker shows the runtime needed by SPPL to (exactly) compute the probability

141

and the dots show the estimates from BLOG with increasing runtime (i.e., more samples 𝑛). SPPL
consistently returns an exact answer in less than 2ms. The accuracy of BLOG estimates improve as the
runtime increases: by the strong law of large numbers, these estimates converge to the true value for any
sample path, but the fluctuations for any single run can be large (the standard error decays as 1/

√
𝑛).

Each “jump” corresponds to a new sample 𝑋(𝑗) that satisfies 𝜑(𝑋(𝑗)), which increases the estimate.
Without ground truth, it is hard to predict how much computation is needed for BLOG to obtain
accurate results. For example, the estimates for predicates with log 𝑝 = −12.73 and log 𝑝 = −17.32 did
not converge within the allotted time, while those for log 𝑝 = −14.48 converged after 180 seconds.

7.6 Related Work

SPPL is distinguished by being the first system to deliver exact symbolic inference by translating
probabilistic programs to sum-product expressions, which are a new member of the class of probabilistic
circuits [Darwiche, 2021] that extend and generalize sum-product networks. Several related approaches
in the literature are discussed below.

Symbolic Integration Many systems aim to deliver exact inference by translating a probabilistic
program and observed dataset into a symbolic expression that answers the query [Bhat et al., 2013,
Narayanan et al., 2016, Gehr et al., 2016, Carette and Shan, 2016, Zhang and Xue, 2019]. The approach
to exact inference in SPPL uses sum-product expressions instead of general computer algebra, which is
less expressive but enables highly effective performance on the models and queries that can be expressed.
The PSI solver, for example, can express many inference problems that SPPL cannot express due to
restrictions (R1)–(R4), which include certain higher-order programs [Gehr et al., 2020]. However,
comparisons on benchmarks that SPPL targets in Section 7.5.2 find PSI has less scalable and higher
variance runtime, and can return unusable results with unsimplified symbolic integrals. In contrast,
SPPL exploits conditional independencies when they exist to improve scalability (Section 7.4.1) and
delivers usable answers to users. Moreover, SPPL’s multi-stage workflow in Figure 7.7 allows expensive
computations such as translation and conditioning to be amortized over multiple datasets or queries,
whereas PSI recomputes the symbolic solution from scratch each time. Hakaru [Narayanan et al.,
2016] is a symbolic solver that delivers exact inference in a multi-stage workflow based on program
transformations and can disintegrate distributions against a variety of base measures [Narayanan and
Shan, 2020]. SPPL is compared to PSI because the reference Hakaru implementation crashes or delivers
incorrect or partial results on several benchmark problems [Gehr et al., 2016, Table 1] and does not
support constructs such as arrays needed to support dozens or hundreds of observations.

Symbolic Execution and Volume Computation Several works have addressed the problem of
computing the probability of a predicate by integrating a distribution defined by a program [Geldenhuys
et al., 2012, Sankaranarayanan et al., 2013, Toronto et al., 2015, Albarghouthi et al., 2017]. While
SPPL can model a variety of distributions, due to restriction (R3) it only supports predicates that
specify rectangular regions, whereas several of the aforementioned systems can (approximately) handle
non-rectangular regions. More specifically, predicates in SPPL may include combinations of nonlinear
transforms, each of a single variable, which are then solved into linear expressions that specify unions
of disjoint hyperrectangles (Appendix 7.C.2). Table 7.2 shows that SPPL delivers substantial speedup
on the hyperrectangular regions from decision trees, which are central to many applications.

Sum-Product Networks The SPFlow library [Molina et al., 2020] is an object-oriented “graphical
model toolkit” in Python for constructing and querying sum-product networks. SPPL leverages a new

142

and more general sum-product representation (Listings 7.1 and 7.2) and solves probability and condition-
ing queries (Theorem 7.5) that are not supported by SPFlow. These queries include mixed-type random
variables, numeric transforms, and logical predicates with set-valued constraints. In addition, SPPL
uses a novel translation strategy (Section 7.4) that allows users to specify models as generative code in
a PPL (using e.g., variables, arrays, arithmetic and logical expressions, loops, branches) without having
to manually manipulate low-level data structures. “Factored sum-product networks” [Stuhlmüller and
Goodman, 2012] have been used as intermediate representations for converting a probabilistic program
and any functional interpreter into a system of equations whose solution is the marginal probability
of the program’s return value. These algorithms handle recursive procedures and leverage dynamic
programming, but only apply to discrete variables, cannot handle transforms, and require solving fixed-
points. Moreover, they have not been quantitatively evaluated on PPL benchmark problems.

Knowledge Compilation Weighted-model counting (WMC) and weighted model integration (WMI)
are knowledge compilation techniques for solving probabilistic inference queries via algorithmic reduc-
tions [Darwiche and Marquis, 2002, Chavira and Darwiche, 2008, Fierens et al., 2011, Vlasselaer et al.,
2015, Belle et al., 2015, Darwiche, 2021]. SPPL can be seen as an instance of knowledge compilation from
probabilistic programs to sum-product expressions; its inference algorithms, however, are not based on
WMC or WMI but instead leverage highly effective semi-symbolic solvers described in Appendices 7.B–
7.D. Symbo [Zuidberg Dos Martires et al., 2019] and Dice [Holtzen et al., 2020] are two probabilistic
programming systems that also compile programs to probabilistic circuits. Symbo delegates all contin-
uous variables to the PSI solver, and thereby inherits many of the challenges with computer algebra
shown in the evaluation from Section 7.5. As compared to Dice, SPPL uses a more expressive rep-
resentation based on sum-product expressions rather than boolean decision diagrams, which let the
system handle a broader range of modeling constructs such as continuous random variables, mixed-type
random variables, and numeric many-to-one transforms.

7.A Representing Gaussian Process DSL Programs in SPPL

It is relatively straightforward to translate programs from the probabilistic DSLs for cross-sectional
data tables (Chapter 4), multivariate time series (Chapter 5), and relational data (Chapter 6) into the
standard SPPL source syntax (Listing 7.5), as the Likelihood semantics of expressions in these DSLs are
based on hierarchical factorial mixtures. For example, the MultiMixture DSL from Chapter 4 admits a
direct representation as a member of the SPE domain, as shown in Figure 4.1. Translating programs from
the Gaussian process DSL for univariate time series (Chapters 2 and 3) into SPPL is less straightforward
because the joint distribution of random variables generated by a multivariate normal with non-diagonal
covariance (2.3) does not factor into sums and products. Representing Gaussian processes in SPPL is
done by extending the core calculus to include multivariate primitives that generalize the univariate
Distribution domain from Listing 7.1e. While the formal details are beyond the scope of this thesis,
the reference implementation of SPPL listed in Section 1.4 provides a Gaussian process library for
modeling covariance functions (Listing 2.1) and a Gaussian process leaf node. Listing 7.8 shows a
representative Gaussian process probabilistic program in SPPL. Regarding the syntactic domains in
Listing 7.5, the SPPL variable X in Listing 7.8 is neither a Var nor ArrayVar, but rather a ProcessVar
which can be indexed at arbitrary numbers. For any 𝑟 ∈ Real, the variable X[𝑟] represents the value
of the time series at time point 𝑟 and can be queried as a standard SPPL variable, for example in
prob or constrain queries. While SPE elements with Gaussian process leaves are closed under the
condition0 operation (Appendix 7.D.3) for pointwise constraints, they are not closed under the more
general condition operation (7.11). Further, it is not possible to draw random variables from truncated
multivariate Gaussians in closed form using inverse CDF tricks as in Proposition 7.4, but can be
performed exactly using rejection sampling or approximately using Gibbs sampling.

143

Synthesized Program
covariance = ChangePoint(

5, 0.5,
Linear(1) * SquaredExponential(0.01),
Periodic(10, 2))

epsilon = 0.147
X ~ GaussianProcess(

mu=lambda x: 0,
cov=covariance + WhiteNoise(epsilon))

Observed Time Series Data
constrain({

X[0.0] : -1.97,
X[0.1] : -6.18,
X[0.2] : -3.18,
...
X[9.8] : 1.92,
X[9.9] : 2.12,
})

Listing 7.8: Example of synthesized Gaussian process probabilistic program in SPPL.

7.B Definitions of Auxiliary Functions

Section 7.2 refers to the following operations on the Outcomes domain:

union : Outcomes* → Outcomes, (7.20)
intersection : Outcomes* → Outcomes, (7.21)
complement : Outcomes→ Outcomes, (7.22)

where any implementation satisfies the following invariants:

(𝑣1 ⨿ · · · ⨿ 𝑣𝑚) = union 𝑣* ⇐⇒ ∀𝑖 ̸= 𝑗. (intersection 𝑣𝑖 𝑣𝑗) = ∅ (7.23)
(𝑣1 ⨿ · · · ⨿ 𝑣𝑚) = intersection 𝑣* ⇐⇒ ∀𝑖 ̸= 𝑗. (intersection 𝑣𝑖 𝑣𝑗) = ∅ (7.24)
(𝑣1 ⨿ · · · ⨿ 𝑣𝑚) = complement 𝑣 ⇐⇒ ∀𝑖 ̸= 𝑗. (intersection 𝑣𝑖 𝑣𝑗) = ∅. (7.25)

Listing 7.9 shows an implementation of the complement function, which operates separately on the Real
and String components; union and intersection are implemented similarly. Listing 7.10 shows the vars
function, which returns the variables in a Transform or Event expression. Listing 7.13 shows the negate
function, which returns the logical negation of an Event.

7.C Transforms of Random Variables

This appendix describes the Transform domain in the core calculus, expanding Listings 7.2b and 7.1c,
which expresses numerical transformations of real random variables.

144

complement {𝑠1 . . . 𝑠𝑚}𝑏 ::= {𝑠1 . . . 𝑠𝑚}¬𝑏

complement ((𝑏1 𝑟1) (𝑟2 𝑏2)) ::= ((#f −∞) (𝑟1 ¬𝑏1))⨿ ((¬𝑏2 𝑟2) (∞ #f))

complement {𝑟1 . . . 𝑟𝑚} ::= ((#f −∞) (𝑟1 #t))

⨿
[︀
⨿𝑚

𝑗=2((#t 𝑟𝑗−1) (𝑟𝑗 #t))
]︀

⨿ ((#t 𝑟𝑚) (∞ #f))

complement ∅ ::= {}#t ⨿ ((#f−∞) (∞ #f))

Listing 7.9: Implementation of complement on the sum domain Outcomes.

vars : (Transform+ Event)→ 𝒫(Vars)
vars te = match te

B 𝑡⇒match 𝑡

B Id(𝑥)⇒ {𝑥}
B Root(𝑡′ 𝑛) | Exp(𝑡′ 𝑟) | Log(𝑡′ 𝑟) | Abs(𝑡′)
| Reciprocal(𝑡′) | Poly(𝑡′ 𝑟0 . . . 𝑟𝑚)

⇒ vars 𝑡′

B Piecewise((𝑡𝑖 𝑒𝑖)𝑚𝑖=1)⇒ ∪𝑚𝑖=1((vars 𝑡𝑖) ∪ (vars 𝑒𝑖))

B (𝑡 in 𝑣)⇒ vars 𝑡

B (𝑒1 ⊓ · · · ⊓ 𝑒𝑚) | (𝑒1 ⊔ · · · ⊔ 𝑒𝑚)⇒ ∪𝑚𝑖=1vars 𝑒𝑖

Listing 7.10: Implementation of vars, which returns the variables in a Transform or Event.

scope : SPE→ 𝒫(Var)
scope (𝑥 𝑑𝜎) ::= dom(𝜎)

scope (𝑆1 ⊗ · · · ⊗ 𝑆𝑚) ::= ∪𝑚𝑖=1(scope 𝑆𝑖)

scope ((𝑆1𝑤1)⊕ · · · ⊕ (𝑆𝑚𝑤𝑚)) ::= (scope 𝑆1)

Listing 7.11: Implementation of scope, which returns the set of variables in an element of SPE.

subsenv : Event→ Environment→ Event

subsenv 𝑒 𝜎 ::= let {𝑥, 𝑥1, . . . , 𝑥𝑚} = dom(𝜎)

in let 𝑒1 be subs 𝑒 𝑥𝑚 𝜎(𝑥𝑚)

. . .

in let 𝑒𝑚 be subs 𝑒𝑚−1 𝑥1 𝜎(𝑥1)

in 𝑒𝑚

Listing 7.12: Implementation of subsenv , which rewrites 𝑒 as an Event 𝑒′ on one variable 𝑥.

145

negate : Event→ Event

negate (𝑡 in 𝑣) ::= match (complement 𝑣)

B 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 ⇒ (𝑡 in 𝑣1) ⊔ · · · ⊔ (𝑡 in 𝑣𝑚)
B 𝑣 ⇒ (𝑡 in 𝑣)

negate (𝑒1 ⊓ · · · ⊓ 𝑒𝑚) ::= ⊔𝑚𝑖=1(negate 𝑒𝑖)

negate (𝑒1 ⊔ · · · ⊔ 𝑒𝑚) ::= ⊓𝑚𝑖=1(negate 𝑒𝑖)

Listing 7.13: Implementation of negate, which applies De Morgan’s laws to an Event.

dnf : Event→ Event
dnf (𝑡 in 𝑣) ::= (𝑡 in 𝑣)
dnf 𝑒1 ⊔ · · · ⊔ 𝑒𝑚 ::= ⊔𝑚𝑖=1(dnf 𝑒𝑖)
dnf 𝑒1 ⊓ · · · ⊓ 𝑒𝑚 ::= let1≤𝑖≤𝑚 (𝑒′𝑗1 ⊓ · · · ⊓ 𝑒′𝑗,𝑘𝑖) be dnf 𝑒𝑖

in
⨆︁

1≤𝑗1≤𝑘1
...

1≤𝑗𝑚≤𝑘𝑚

𝑚l

𝑖=1

𝑒′𝑖,𝑗𝑖

Listing 7.14: dnf converts and Event to DNF (Definition 7.9).

disjoint? : Event× Event→ Boolean
disjoint? ⟨𝑒1, 𝑒2⟩ ::= match ⟨𝑒1, 𝑒2⟩
B ⟨⊓𝑚1

𝑖=1(Id(𝑥1,𝑖) in 𝑣1,𝑖),⊓𝑚2
𝑖=1(Id(𝑥2,𝑖) in 𝑣2,𝑖)⟩

⇒ [∃1≤𝑖≤2.∃1≤𝑗≤𝑚𝑖 .𝑣𝑖𝑗 = ∅)] ∨
[︂
let {⟨𝑛1𝑖, 𝑛2𝑖⟩}𝑘𝑖=1 be {⟨𝑖, 𝑗⟩ | 𝑥1,𝑖=𝑥2,𝑗}
in (∃1≤𝑖≤𝑘.(intersection 𝑣1,𝑛1,𝑖 𝑣2,𝑛2,𝑖) = ∅)

]︂

B else⇒ undefined

Listing 7.15: disjoint? returns #t if two Events are disjoint (Definition 7.13).

146

T : Transform→ (Real→ Real)

T JId(𝑥)K ::= 𝜆𝑟′. 𝑟′

T JReciprocal(𝑡)K ::= 𝜆𝑟′. 1/
(︀
T J𝑡K (𝑟′)

)︀

T JAbs(𝑡)K ::= 𝜆𝑟′. |T J𝑡K (𝑟′)|
T JRoot(𝑡 𝑛)K ::= 𝜆𝑟′. 𝑛

√︀
T J𝑡K (𝑟′)

T JExp(𝑡 𝑟)K ::= 𝜆𝑟′. 𝑟(TJ𝑡K(𝑟′)) (iff 0 < 𝑟)

T JLog(𝑡 𝑟)K ::= 𝜆𝑟′. log𝑟
(︀
T J𝑡K (𝑟′)

)︀
(iff 0 < 𝑟)

T JPoly(𝑡 𝑟0 . . . 𝑟𝑚)K ::= 𝜆𝑟′.
∑︀𝑚

𝑖=0 𝑟𝑖 (T J𝑡K (𝑟′))𝑖

T JPiecewise((𝑡𝑖 𝑒𝑖)𝑚𝑖=1)K ::= 𝜆𝑟′. if
[︀
(↓ Real

Outcome 𝑟
′) ∈ V JE J𝑒1K𝑥K

]︀
then T J𝑡1K 𝑟′

else if . . .

else if
[︀
(↓ Real

Outcome 𝑟
′) ∈ V JE J𝑒𝑚K𝑥K

]︀
then T J𝑡𝑚K 𝑟′

else undefined

(iff (vars 𝑡1) = . . . = (vars 𝑡𝑚)

= (vars 𝑒1) = · · · = (vars 𝑒𝑚) =: {𝑥}

Listing 7.16: Semantics of Transform.

domainof : Transform→ Outcomes

domainof Id(𝑥) ::= ((#f −∞) (∞ #f))

domainof Reciprocal(𝑡) ::= ((#f 0) (∞ #f))

domainof Abs(𝑡) ::= ((#f −∞) (∞ #f))

domainof Root(𝑡 𝑛) ::= ((#f 0) (∞ #f))

domainof Exp(𝑡 𝑟0) ::= ((#f −∞) (∞ #f))

domainof Log(𝑡 𝑟0) ::= ((#f 0) (∞ #f))

domainof Poly(𝑡 𝑟0 . . . 𝑟𝑚) ::= ((#f −∞) (∞ #f))

domainof Piecewise((𝑡𝑖 𝑒𝑖)𝑚𝑖=1) ::= union [(intersection (domainof 𝑡𝑖) (E J𝑒K𝑥)]𝑚𝑖=1

where {𝑥} ::= vars 𝑡1

Listing 7.17: domainof returns the Outcomes on which a Transform is defined.

147

preimg 𝑡 𝑣 ::= preimage ′ 𝑡 (intersection (domainof 𝑡) 𝑣)

preimage ′ Id 𝑣 ::= 𝑣

preimage ′ 𝑡 ∅ ::= ∅
preimage ′ 𝑡 (𝑣1 ⨿ · · · ⨿ 𝑣𝑚) ::= union (preimg 𝑡 𝑣1) . . . (preimg 𝑡 𝑣𝑚)

preimage ′ 𝑡 {𝑟1 . . . 𝑟𝑚} ::= preimg 𝑡′ (union (finv 𝑡 𝑟1) . . . (finv 𝑡 𝑟𝑚))

preimage ′ 𝑡 ((𝑏left 𝑟left) (𝑟right 𝑏right)) ::= match 𝑡

B Radical(𝑡′ 𝑛) | Exp(𝑡′ 𝑟) | Log(𝑡′ 𝑟)⇒ let {𝑟′left} be finv 𝑡 𝑟left

in let {𝑟′right} be finv 𝑡 𝑟right

in preimg 𝑡′ ((𝑏left 𝑟′left) (𝑟
′
right 𝑏right))

B Abs(𝑡′)⇒ let 𝑣′pos be ((𝑏left 𝑟left) (𝑟right 𝑏right))

in let 𝑣′neg be ((𝑏right −𝑟right) (−𝑟left 𝑏left))
in preimg 𝑡′ (union 𝑣′pos 𝑣

′
neg)

B Reciprocal(𝑡′)⇒ let ⟨𝑟′left, 𝑟′right⟩ be if (0 ≤ 𝑟left < 𝑟right)

then ⟨if (0 < 𝑟left) then 1/𝑟left else∞,

if (𝑟right <∞) then 1/𝑟right else 0⟩
else ⟨if (−∞ < 𝑟left) then 1/𝑟left else 0,

if (𝑟right < 0) then 1/𝑟right else −∞⟩
in preimg 𝑡′ ((𝑏right 𝑟′right) (𝑟

′
left 𝑏left))

B Polynomial(𝑡 𝑟0 . . . 𝑟𝑚)⇒ let 𝑣′left be polyLte ¬𝑏left 𝑟left 𝑟0 . . . 𝑟𝑚

in let 𝑣′right be polyLte 𝑏right 𝑟right 𝑟0 . . . 𝑟𝑚

in preimg 𝑡′ (intersection 𝑣′right (complement 𝑣′left))

B Piecewise((𝑡𝑖 𝑒𝑖)𝑚𝑖=1)⇒ let1≤𝑖≤𝑚 𝑣′𝑖 be preimg 𝑡𝑖 ((𝑏left 𝑟left) (𝑏right 𝑟right))

in let1≤𝑖≤𝑚 𝑣𝑖 be intersection 𝑣′𝑖 (E J𝑒𝑖K𝑥),
in union 𝑣1 . . . 𝑣𝑚 where {𝑥} ::= vars 𝑡1

Listing 7.18: preimg computes the generalized inverse of a many-to-one Transform.

finv : Transform→ Real→ Outcomes

finv Id(𝑥) 𝑟 ::= {𝑟}

finv Reciprocal(𝑡) 𝑟 ::= if (𝑟 = 0) then {−∞∞}else {1/𝑟}

finv Abs(𝑡) 𝑟 ::= {−𝑟 𝑟}

finv Root(𝑡 𝑛) 𝑟 ::= if (0 ≤ 𝑟) then {𝑟𝑛} else ∅
finv Exp(𝑡 𝑟0) 𝑟 ::= if (0 ≤ 𝑟) then {log𝑟0(𝑟)} else ∅
finv Log(𝑡 𝑟0) 𝑟 ::= {𝑟𝑟0}

finv (Polynomial 𝑡 𝑟0 . . . 𝑟𝑚) 𝑟 ::= polySolve 𝑟 𝑟0 𝑟1 . . . 𝑟𝑚

finv (Piecewise (𝑡𝑖 𝑒𝑖)𝑚𝑖=1) ::= union [(intersection (finv 𝑡𝑖 𝑟) (E J𝑒𝑖K𝑥))]𝑚𝑖=0,

where {𝑥} ::= vars 𝑡1

Listing 7.19: finv computes the generalized inverse of a many-to-one transform at a single Real.

148

polyLim : Real+ → Real2

polyLim 𝑟0 ::= ⟨𝑟0, 𝑟0⟩
polyLim 𝑟0 𝑟1 . . . 𝑟𝑚 ::=

let 𝑛 be max{𝑗 | 𝑟𝑗 > 0}
in if (even 𝑛) then (if (𝑟𝑛 > 0) then ⟨∞,∞⟩ else ⟨−∞,−∞⟩)

else (if (𝑟𝑛 > 0) then ⟨−∞,∞⟩ else ⟨∞,−∞⟩)

Listing 7.20: polyLim computes the limits of a polynomial limits at the infinities.

polySolve : Real→ Real+ → Set

polySolve : 𝑟 𝑟0 . . . 𝑟𝑚 ::= match 𝑟

B (∞ | −∞) ⇒ let ⟨𝑟neg, 𝑟pos⟩ be polyLim 𝑟0 . . . 𝑟𝑚

in let f be 𝜆𝑟′. if (𝑟 =∞) then (𝑟′ =∞) else (𝑟′ = −∞)

in let 𝑣neg be if (f 𝑟neg) then {−∞} else ∅
in let 𝑣pos be if (f 𝑟pos) then {∞} else ∅
in union 𝑣pos 𝑣neg

B else ⇒ (roots (𝑟0 − 𝑟) 𝑟1 . . . 𝑟𝑚)

Listing 7.21: polySolve computes the set of values at which a polynomial is equal to a specific value 𝑟.

polyLte : Boolean→ Real→ Real+ → Outcomes

polyLte 𝑏 𝑟 𝑟0 . . . 𝑟𝑚 ::= match 𝑟

B −∞ ⇒ if 𝑏 then ∅ else (polySolve 𝑟 𝑟0 . . . 𝑟𝑚)

B∞ ⇒ if ¬𝑏 then ((#t −∞) (∞ #t))

else let ⟨𝑟left, 𝑟right⟩ be polyLim 𝑟0 . . . 𝑟𝑚

in let ⟨𝑏left, 𝑏right⟩ be ⟨𝑟left =∞, 𝑟right =∞⟩
in ((𝑏left −∞) (∞𝑏right))

B else ⇒ let [𝑟s,𝑖]
𝑘
𝑖=1 be roots (𝑟0 − 𝑟) 𝑟1 . . . 𝑟𝑚

in let [⟨𝑟′left,𝑖, 𝑟′right,𝑖⟩]𝑘𝑖=0 be [⟨−∞, 𝑟s,0⟩, ⟨𝑟s,1, 𝑟s,2⟩, . . . , ⟨𝑟s,𝑘−1, 𝑟s,𝑘⟩, ⟨𝑟s,𝑘,∞⟩]
in let fmid be 𝜆𝑟𝑟′. if (𝑟 = −∞) then 𝑟′

elseif (𝑟′ =∞) then 𝑟

else (𝑟 + 𝑟′)/2

𝑡′ be Poly(Id(x) (𝑟0 − 𝑟) 𝑟1 . . . 𝑟𝑚)

in union

[︃
if T

q
𝑡′
y
(fmid 𝑟′left,𝑖 𝑟

′
right,𝑖) then ((𝑏 𝑟′left,𝑖) (𝑟

′
right,𝑖 𝑏))

else ∅

]︃𝑘

𝑖=0

Listing 7.22: polyLte computes the set of values at which a polynomial is less than a given value 𝑟.

149

7.C.1 Valuation of Transforms

Listing 7.16 shows the valuation function T which defines each 𝑡 as a Real function on Real. Each real
function J𝑇 K 𝑡 is defined on an input 𝑟′ if and only if

(︀
↓ Real

Outcome 𝑟
′)︀ ∈ (domainof 𝑡). Listing 7.17 shows

the implementation of domainof .

7.C.2 Preimage Computation

Listing 7.18 shows the implementation of

preimg : Transform→ Outcomes→ Outcomes, (7.26)

which, as discussed in Section 7.2, satisfies

(↓ Real
Outcome 𝑟) ∈ V Jpreimg 𝑡 𝑣K ⇐⇒ T J𝑡K (𝑟) ∈ V J𝑣K , (7.27)

(↓ String
Outcome

𝑠) ∈ V Jpreimg 𝑡 𝑣K ⇐⇒ (𝑡 ∈ Identity) ∧ (𝑠 ∈ V J𝑣K). (7.28)

The implementation of preimg uses several helper functions:

(Listing 7.19) finv : computes the preimage of each 𝑡 ∈ Transform at a single Real.

(Listing 7.20) polyLim: computes the limits of a polynomial at the infinities.

(Listing 7.21) polySolve: computes the set of values at which a polynomial is equal to a given value
(possibly positive or negative infinity).

(Listing 7.22) polyLte: computes the set of values at which a polynomial is less than or equal a
given value.

In addition, a root finding algorithm roots : Real+ → Real* (whose definition is not shown) is
assumed to be available, which takes as input a list of 𝑚 + 1 coefficients and returns list of roots of
the corresponding degree-𝑚 polynomial. In the reference implementation of SPPL, the roots function
uses symbolic analysis for polynomials whose degree is at most two and a semi-symbolic solver for
higher-order polynomials.

7.D Conditioning Sum-Product Expressions

This section presents algorithms for exact inference, that is, conditioning the distribution defined by an
element of SPE from Listings 7.1f and 7.2f. Recall Theorem 7.5, which establishes that SPE is closed
under conditioning on any positive probability Event.

Theorem 7.5 (Closure under conditioning). Let 𝑆 ∈ SPE and 𝑒 ∈ Event be given, where P J𝑆K 𝑒 > 0.
There exists an algorithm which, given 𝑆 and 𝑒, returns 𝑆′ ∈ SPE such that, for all 𝑒′ ∈ Event, the
probability of 𝑒′ according to 𝑆′ is equal to the conditional probability of 𝑒′ given 𝑒 according to 𝑆, i.e.,

P
q
𝑆′y 𝑒′ ≡ P J𝑆K (𝑒′ | 𝑒) ::= P J𝑆K (𝑒 ⊓ 𝑒′)

P J𝑆K 𝑒
. (7.10)

«

Appendix 7.D.2 presents an algorithm for conditioning on a positive probability Event (Listings 7.2c
and 7.1d). Appendix 7.D.3 presents an algorithm for conditioning on a Conjunction of equality con-
straints involving only non-transformed variables, such as {𝑋 = 3} ∩ {𝑌 = 4}, as described in Re-
mark 7.6. Before presenting the proofs, several preprocessing algorithms are needed.

150

7.D.1 Algorithms for Event Preprocessing

Normalizing an Event The dnf function (Listing 7.14) converts an Event 𝑒 to DNF, defined below.

Definition 7.9. An Event 𝑒 is said to be in disjunctive normal form (DNF) if and only if one of the
following holds:

(7.9.1) 𝑒 ∈ Containment

(7.9.2) 𝑒 = 𝑒1 ⊓ · · · ⊓ 𝑒𝑚 ∈ Conjunction =⇒ ∀1≤𝑖≤𝑚. 𝑒𝑖 ∈ Containment

(7.9.3) 𝑒 = 𝑒1 ⊔ · · · ⊔ 𝑒𝑚 ∈ Disjunction =⇒ ∀1≤𝑖≤𝑚. 𝑒𝑖 ∈ Containment ∪ Conjunction

Terms 𝑒 and 𝑒𝑖 in items (7.9.1) and (7.9.2) are called “literals” and terms 𝑒𝑖 in item (7.9.3) are called
“clauses”. «

Definition 7.10. An Event 𝑒 is in solved DNF if all the following conditions hold: (i) 𝑒 is in DNF;
(ii) all literals within a clause 𝑒𝑖 of 𝑒 have different variables; and (iii) each literal (𝑡 in 𝑣) of 𝑒 satisfies
𝑡 ∈ Identity and 𝑣 ̸∈ Union. «

Example 7.11. Using informal notation, the solved DNF form of the event

{𝑋2 ≥ 9} ∩ {|𝑌 | < 1} (7.29)

is a disjunction with two conjunctive clauses:

[{𝑋 ∈ (−∞,−3)} ∩ {𝑌 ∈ (−1, 1)}] ∪ [{𝑋 ∈ (3,∞)} ∩ {𝑌 ∈ (−1, 1)}]. (7.30)
«

Listing 7.23a shows the normalize operation, which converts an Event 𝑒 to solved DNF. In particular,
predicates with (possibly nonlinear) arithmetic expressions are converted to predicates that contain
only linear expressions, as in Eqs. (7.15)–(7.18). The next result, Proposition 7.12, follows from E J𝑒K =
E Jdnf 𝑒K and denotations of Union (Listing 7.2a) and Disjunction (Listing 7.2c).

Proposition 7.12. ∀𝑒 ∈ Event, E J𝑒K ≡ E J(normalize 𝑒)K. «

Disjoining an Event Suppose that 𝑒 ∈ Event is in DNF and has 𝑚 ≥ 2 clauses. A key inference
subroutine is to rewrite 𝑒 in solved DNF (Definition 7.10) where all the clauses are disjoint.

Definition 7.13. Let 𝑒 ∈ Event be in DNF. Two clauses 𝑒𝑖 and 𝑒𝑗 of 𝑒 are said to be disjoint if both
𝑒𝑖 and 𝑒𝑗 are in solved DNF and at least one of the following conditions holds:

∃𝑥 ∈ (vars 𝑒𝑖). E J𝑒𝑖𝑥K𝑥 ≡ ∅ (7.31)
∃𝑥 ∈ (vars 𝑒𝑗). E J𝑒𝑗𝑥K𝑥 ≡ ∅ (7.32)

∃𝑥 ∈ (vars 𝑒𝑖) ∩ (vars 𝑒𝑗). E J𝑒𝑖𝑥 ⊓ 𝑒𝑗𝑥K𝑥 ≡ ∅ (7.33)

where 𝑒𝑖𝑥 denotes the unique literal of 𝑒𝑖 that contains variable 𝑥 (for 𝑥 ∈ vars 𝑒𝑖), and similarly for
𝑒𝑗 . «

Listing 7.15 shows the disjoint? procedure, which given a pair of clauses 𝑒𝑖 and 𝑒𝑗 that are in solved
DNF (as produced by normalize), returns true if and only if one of the conditions in Definition 7.13 hold.
Listing 7.23b presents the main algorithm disjoin, which decomposes an arbitrary Event 𝑒 into solved
DNF whose clauses are mutually disjoint. Proposition 7.14 establishes the correctness and worst-case
complexity of disjoin.

151

normalize : Event→ Event
normalize (𝑡 in 𝑣) ::= match preimg 𝑡 𝑣
B 𝑣′1 ⨿ · · · ⨿ 𝑣′𝑚 ⇒ ⊔𝑚𝑖=1(Id(𝑥) in 𝑣

′
𝑖)

B 𝑣′ ⇒ (Id(𝑥) in 𝑣′), where {𝑥} ::= vars 𝑡

normalize (𝑒1 ⊓ · · · ⊓ 𝑒𝑚) ::= dnf ⊓𝑚𝑖=1 (normalize 𝑒𝑖)
normalize (𝑒1 ⊔ · · · ⊔ 𝑒𝑚) ::= dnf ⊔𝑚𝑖=1 (normalize 𝑒𝑖)

(a) normalize

disjoin : Event→ Event
disjoin 𝑒 ::= let (𝑒1 ⊔ · · · ⊔ 𝑒𝑚) be normalize 𝑒 (7.34a)
in let2≤𝑖≤𝑚 𝑒 be

l

1≤𝑗<𝑖 | ¬(disjoint? ⟨𝑒𝑗 ,𝑒𝑖⟩)
(negate 𝑒𝑗) (7.34b)

in let2≤𝑖≤𝑚 𝑒𝑖 be (disjoin (𝑒𝑖 ⊓ 𝑒𝑖)) (7.34c)
in 𝑒1 ⊔ 𝑒2 ⊔ · · · ⊔ 𝑒𝑚

(b) disjoin

Listing 7.23: Event preprocessing algorithms used by condition.

Proposition 7.14. Let 𝑒 be an Event with ℎ ::= |vars 𝑒| variables, and suppose that 𝑒1 ⊔ · · · ⊔ 𝑒𝑚 ::=
(normalize 𝑒) has exactly 𝑚 ≥ 1 clauses. Put 𝑒 ::= (disjoin 𝑒). Then:

(7.14.1) 𝑒 is in solved DNF.

(7.14.2) ∀1≤𝑖 ̸=𝑗≤ℓ. disjoint? ⟨𝑒𝑖, 𝑒𝑗⟩.
(7.14.3) E J𝑒K = E J𝑒K.

(7.14.4) The number ℓ of clauses in 𝑒 satisfies ℓ ≤ (2𝑚− 1)ℎ.

«

Proof. Suppose first that (normalize 𝑒) has 𝑚 = 1 clause 𝑒1. Then 𝑒 = 𝑒1, so (7.14.1) holds since
𝑒1 = normalize 𝑒; (7.14.2) holds trivially; (7.14.3) holds by Proposition 7.12; and (7.14.4) holds since
ℓ = (2−1)ℎ = 1. Suppose now that (normalize 𝑒) has 𝑚 > 1 clauses. To employ set-theoretic reasoning,
fix some 𝑥 ∈ Var and define E′ J𝑒K ::= V JE J𝑒K𝑥K ⊂ Outcome, for all 𝑒 ∈ Event. Then

E′ J𝑒1 ⊔ · · · ⊔ 𝑒𝑚K (7.35)
= ∪𝑚𝑖=1E′ J𝑒𝑖K (7.36)

= ∪𝑚𝑖=1

(︁
E′ J𝑒𝑖K ∩ ¬

[︁
∪𝑖−1
𝑗=1(E

′ J𝑒𝑗K)
]︁)︁

(7.37)

= ∪𝑚𝑖=1

(︁
E′ J𝑒𝑖K ∩

[︁
∩𝑖−1
𝑗=1(¬E′ J𝑒𝑗K)

]︁)︁
(7.38)

= ∪𝑚𝑖=1

(︀
E′ J𝑒𝑖K ∩

[︀
∩𝑗∈𝑘(𝑖)(¬E′ J𝑒𝑗K)

]︀)︀
(7.39)

where, for each 𝑖 = 1, . . . ,𝑚,

𝑘(𝑖) ::=
{︀
1 ≤ 𝑗 ≤ 𝑖− 1 | E′ J𝑒𝑖K ∩ E′ J𝑒𝑗K ̸= ∅

}︀
.

Eq. (7.39) follows from the fact that for any 𝑖 = 1, . . . ,𝑚 and 𝑗 < 𝑖,

𝑗 /∈ 𝑘(𝑖) =⇒
[︀(︀
E′ J𝑒𝑖K ∩ ¬E′ J𝑒𝑗K

)︀
≡ E′ J𝑒𝑖K

]︀
. (7.40)

152

(a) Conditioning Region (b) Partition into Disjoint Rectangles

Figure 7.10: Illustration of the upper bound (7.14.4) on the number of disjoint rectangles in a worst-case
partition of a conditioning region of axis-aligned rectangles that live in the two-dimensional Real plane.

As negate (Listing 7.13) computes set-theoretic complement ¬ in the Event domain and 𝑗 /∈ 𝑘(𝑖) if and
only if (disjoint? 𝑒𝑗 𝑒𝑖), it follows that the Events 𝑒′𝑖 ::= 𝑒𝑖 ⊓ 𝑒𝑖 (𝑖 = 2, . . . ,𝑚) in Eq. (7.34c) are pairwise
disjoint and are also disjoint from 𝑒1, so that E J𝑒K = E J𝑒1 ⊔ 𝑒′2 ⊔ · · · ⊔ 𝑒′𝑚K. Thus, if disjoin halts, then
all of (7.14.1)–(7.14.3) follow by induction.

It is next established that disjoin halts by proving an upper bound on the number ℓ of clauses
returned by any call to disjoin. Recalling that ℎ ::= |vars 𝑒|, assume without loss of generality that all
clauses 𝑒𝑖 (𝑖 = 1, . . . , 𝑛) in Eq. (7.34a) have the same variables {𝑥1, . . . , 𝑥ℎ}, by “padding” each 𝑒𝑖 with
vacuously true literals of the form (Id(𝑥𝑖) inOutcomes). Next, recall that clause 𝑒𝑖 in Eq. (7.34a) is in
solved DNF and has 𝑚𝑖 ≥ 1 literals 𝑒𝑖𝑗 = (Id(𝑥𝑖𝑗) in 𝑣𝑖𝑗) where 𝑣𝑖𝑗 /∈ Union (Definition 7.10). Thus, 𝑒𝑖
specifies exactly one hyperrectangle in ℎ-dimensional space, where 𝑣𝑖𝑗 is the “interval” (possibly infinite)
along the dimension specified by 𝑥𝑖𝑗 in literal 𝑒𝑖𝑗 (𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . ,𝑚𝑖). A sufficient condition
to produce the worst-case number of pairwise disjoint primitive sub-hyperrectangles that partition the
region 𝑒1 ⊔ · · · ⊔ 𝑒𝑚 is when the previous clauses 𝑒1, . . . , 𝑒𝑚−1 (i) are pairwise disjoint (Definition 7.13);
and (ii) are strictly contained in 𝑒𝑚, i.e., ∀𝑥. E J𝑒𝑗K (E J𝑒𝑚K, (𝑗 = 1, . . . ,𝑚−1). If these two conditions
hold, then disjoin partitions the interior of the ℎ-dimensional hyperrectangle specified by 𝑒𝑚 into no
more than 2(𝑚 − 1)ℎ sub-hyperrectangles that do not intersect one another (and thus, produce no
further recursive calls), thereby establishing (7.14.4). �

Example 7.15. Figure 7.10a shows 𝑚 = 4 rectangles in Real × Real. Figure 7.10b shows a grid
that induces (2𝑚 − 1)2 = 49 primitive rectangular regions that are pairwise disjoint from one another
and whose union over-approximates the union of the 4 rectangles. In this case, 29 of these primitive
rectangular regions are sufficient (but excessive) to exactly partition the union of the rectangles into a
disjoint union. No more than 49 primitive rectangles are ever needed to partition any 4 rectangles in
Real2, and this bound is tight. The bound in (7.14.4) generalizes this idea to hyperrectangles that live
in ℎ-dimensional space. «

Remark 7.16. When defining 𝑒 in Eq. (7.34b) of disjoin, ignoring previous clauses that are disjoint
from 𝑒𝑖 is essential for disjoin to halt, so as to avoid recursing on a primitive sub-rectangle in the interior.
That is, filtering out such clauses ensures that disjoin makes a finite number of recursive calls. «

153

7.D.2 Conditioning Sum-Product Expressions on Positive Measure Events

Having established the background results, Theorem 7.5 is proved next.

Proof of Theorem 7.5. Eq. (7.10) is shown by presenting the algorithm

condition : SPE→ Event→ SPE (7.41)

which satisfies

P J(condition 𝑆 𝑒)K 𝑒′ =
P J𝑆K (𝑒 ⊓ 𝑒′)

P J𝑆K 𝑒
(7.42)

for all 𝑒′ ∈ Event and 𝑒 ∈ Event for which P J𝑆K 𝑒 > 0.
The condition algorithm is defined separately for each of the three domains Leaf, Sum, and Product

from Listing 7.1f. The proof is by structural induction, where Leaf is the base case and Sum and Product
are the recursive cases.

Conditioning Leaf Listing 7.24a shows the base cases of condition. The case of 𝑑 ∈ DistStr is
straightforward. For 𝑑 ∈ DistReal, if the intersection (defined in second line of Listing 7.24a) of 𝑣 with
the support of 𝑑 is an interval ((𝑏′1 𝑟′1) (𝑟′2, 𝑏′2)), then it suffices to return a Leaf restricting 𝑑 to the
interval. If the intersection is a Union 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 (recall from Eq. (7.24) that intersection ensures
the 𝑣𝑖 are disjoint), then the conditioned SPE is a Sum, whose 𝑖th child is obtained by recursively
calling condition on 𝑣𝑖 and 𝑖th (relative) weight is the probability of 𝑣 under 𝑑, since, for any new
𝑣′ ∈ Outcomes,

D J𝑑K (intersect 𝑣′ (𝑣1 ⨿ · · · ⨿ 𝑣𝑚))

D J𝑑K (𝑣1 ⨿ · · · ⨿ 𝑣𝑚)
=

D J𝑑K⨿𝑚
𝑖=1(intersect 𝑣

′ 𝑣𝑖)∑︀𝑚
𝑖=1D J𝑑K 𝑣𝑖

. (7.43)

Eq. (7.43) follows from the additivity of D J𝑑K. The plots of 𝑋 in Figures 7.5c and 7.5f illustrate
the equality (7.43), where conditioning the unimodal normal distribution results in a mixture of three
constrained Gaussian whose weights are given by the relative prior probabilities of the three regions.

For 𝑑 ∈ DistInt, if the positive probability Outcomes are {𝑟1 . . . 𝑟𝑚}, then the conditioned SPE
is a Sum of “delta”-CDFs whose atoms are located on the integers 𝑟𝑖 and weights are the (relative)
probabilities D J𝑑K {𝑟𝑖} (𝑖 = 1, . . . ,𝑚). Since the atoms of 𝐹 for DistInt are integers, it suffices to
restrict 𝐹 to the interval (𝑟𝑖 − 1/2, 𝑟𝑖), for each 𝑟𝑖 with a positive weight. Correctness again follows
from Eq. (7.43), since finite sets are unions of disjoint singleton sets. For other positive probability
Outcomes, the conditioning procedure DistInt is the same as that for DistReal.

Conditioning Sum Listing 7.24b shows condition for 𝑆 ∈ Sum. Recalling the denotation P J𝑆K for
𝑆 ∈ Sum in Listing 7.2f, the correctness follows from

P J(𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚)K (𝑒 ⊓ 𝑒′)
P J(𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚)K 𝑒

=

∑︀𝑚
𝑖=1𝑤𝑖P J𝑆𝑖K (𝑒 ⊓ 𝑒′)∑︀𝑚

𝑖=1𝑤𝑖P J𝑆𝑖K 𝑒
(7.44)

=

∑︀𝑚
𝑖=1𝑤𝑖(P J𝑆𝑖K 𝑒)P J(condition 𝑆𝑖 𝑒)K 𝑒′∑︀𝑚

𝑖=1𝑤𝑖P J𝑆𝑖K 𝑒
(7.45)

= P J⊕𝑚
𝑖=1((condition 𝑆𝑖 𝑒) , 𝑤𝑖P J𝑆𝑖K 𝑒)K 𝑒′, (7.46)

where Eq. (7.45) has applied Eq. (7.42) inductively for each 𝑆𝑖. Eqs. (7.44) and (7.45) assume for
simplicity that P J𝑆𝑖K 𝑒 > 0 for each 𝑖 = 1, . . . ,𝑚, whereas Listing 7.24a does not make this assumption.

154

Conditioning Product Listing 7.24c how condition operates on 𝑆 ∈ Product. The first step is to
invoke disjoin to rewrite (dnf 𝑒) as ℓ ≥ 1 disjoint clauses 𝑒′1 ⊔ · · · ⊔ 𝑒′ℓ (recall from Proposition 7.14
that disjoin is semantics-preserving). The first pattern in the match statement corresponds ℓ = 1, and
the result is a new Product, where the 𝑖th child is conditioned on the literals of 𝑒1 whose variables are
contained in scope 𝑆𝑖 (if any). The second pattern returns a Sum of Product, since

P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K (𝑒 ⊓ 𝑒′)
P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒

=
P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K ((𝑒1 ⊔ · · · ⊔ 𝑒ℓ) ⊓ 𝑒′)

P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K (𝑒1 ⊔ · · · ⊔ 𝑒ℓ)
(7.47)

=
P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K ((𝑒1 ⊓ 𝑒′) ⊔ · · · ⊔ (𝑒ℓ ⊓ 𝑒′))

∑︀ℓ
𝑖=1 P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒𝑖

(7.48)

=

∑︀ℓ
𝑖=1 P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K (𝑒𝑖 ⊓ 𝑒′)
∑︀ℓ

𝑖=1 P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒𝑖
(7.49)

=

∑︀ℓ
𝑖=1 P J𝑆K 𝑒𝑖 P J(condition (𝑆1 ⊗ · · · ⊗ 𝑆𝑚) 𝑒𝑖)K 𝑒′∑︀ℓ

𝑖=1 P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒𝑖
(7.50)

= P
r
⊕ℓ

𝑖=1((condition 𝑆 𝑒𝑖) P J𝑆K 𝑒𝑖)
z
𝑒′. (7.51)

Eq. (7.50) follows from the induction hypothesis Eq. (7.42) and the idempotence (disjoin 𝑒𝑖) ≡ 𝑒𝑖, so
that (disjoin 𝑒𝑖 ⊓ 𝑒′) ≡ (disjoin 𝑒𝑖) ⊓ (disjoin 𝑒′) ≡ 𝑒𝑖 ⊓ (disjoin 𝑒′).

Theorem 7.5 is thus established. �

Figure 7.4 shows an example of the closure property from Theorem 7.5, where conditioning on a
hyperrectangle changes the structure of the SPE from a Product into a Sum-of-Product. The algorithms
in this section are the first to describe probabilistic inference and closure properties for conditioning an
SPE on a query that involves transforms of random variables and predicates with set-valued constraints.

Theorem 7.7 is established next, which gives a sufficient condition for the runtime of condition
(Listing 7.24) to scale linearly in the number of nodes in 𝑆. An identical result holds for computing
Event probabilities (P J𝑆K 𝑒, Listing 7.2f) and probability densities (P0 J𝑆K 𝑒, Listing 7.2e).

Theorem 7.7. The runtime of (condition 𝑆 𝑒) scales linearly in the number of nodes in the graph repre-
senting 𝑆 whenever 𝑒 = (𝑡1 in 𝑣1)⊓ · · · ⊓(𝑡𝑚 in 𝑣𝑚) is a single Conjunction of Containment constraints,
where each 𝑡𝑖 represents a non-transformed program variable. «

Proof. There are three cases to consider. Suppose 𝑆 ∈ Leaf. Then there are zero subcalls, independently
of 𝑒. Suppose 𝑆 ∈ Sum with 𝑚 children. Then (condition 𝑆 𝑒) makes no more than 𝑚 subcalls to
condition, one per child. Suppose 𝑆 ∈ Product with 𝑚 children. Since each node in 𝑆 has exactly one
parent, it will be shown that each node is visited exactly once by showing that the hypothesis on 𝑒
implies there are makes at most 𝑚 subcalls to condition. Since 𝑒 is a single Conjunction (𝑡1 in 𝑣1) ⊓
· · · ⊓ (𝑡𝑚 in 𝑣𝑚) of Containment constraints on non-transformed variables, it must hold that (disjoin 𝑒)
returns a single Conjunction. Then the first pattern of the match statement in Listing 7.24c is matched,
resulting in 𝑚 subcalls to condition. �

7.D.3 Conditioning Sum-Product Expressions on Equality Constraints

Recall from Remark 7.6 that SPE is also closed under conditioning on a Conjuction of possibly measure
zero equality constraints of non-transformed variable, such as {𝑋 = 3, 𝑌 = 𝜋, 𝑍 = "foo"}. This section
describes the conditioning algorithm for this case, which is implemented by

condition0 : SPE→ Event→ SPE, (7.52)

where 𝑒 ∈ Event satisfies the follows requirements with respect to 𝑆 ∈ SPE:

155

condition Leaf(𝑥 𝑑𝜎) 𝑒 ::= let 𝑣 be E J(subsenv 𝑒 𝜎)K𝑥 in match 𝑑
B DistS((𝑠𝑖𝑤𝑖)𝑚𝑖=1)⇒match 𝑣

B {𝑠′1 . . . 𝑠
′
𝑙}

𝑏 ⇒ let1≤𝑖≤𝑚 𝑤′
𝑖 be if �̄� then 𝑤𝑖1[∃1≤𝑗≤ℓ.𝑠

′
𝑗 = 𝑠𝑖]

else 𝑤𝑖1[∀1≤𝑗≤ℓ.𝑠
′
𝑗 ̸= 𝑠𝑖]

in Leaf(𝑥 DistS((𝑠𝑖 𝑤′
𝑖)

𝑚
𝑖=1) 𝜎)

B else undefined

B DistR(𝐹 𝑟1 𝑟2)⇒match (intersection ((#f 𝑟1) (𝑟2 #f)) 𝑣)
B ∅ | {𝑟1 . . . 𝑟𝑚}⇒ undefined
B ((𝑏1 𝑟′1) (𝑟

′
2 𝑏2))⇒ Leaf(𝑥 DistR(𝐹 𝑟′1 𝑟

′
2) 𝜎)

B 𝑣1 ⨿ · · · ⨿ 𝑣𝑚 ⇒ let1≤𝑖≤𝑚 𝑤𝑖 be D J𝑑K 𝑣𝑖
in let {𝑛1, . . . , 𝑛𝑘} be {𝑛 | 0 < 𝑤𝑛}
in let1≤𝑖≤𝑘 𝑆𝑖 be (condition Leaf(𝑥 𝑑𝜎) (Id(𝑥) in 𝑣𝑛𝑖))

in if (𝑘 = 1) then 𝑆1 else ⊕𝑘
𝑖=1 (𝑆

′
𝑖 𝑤𝑛𝑖)

B DistI(𝐹 𝑟1 𝑟2)⇒match (intersection ((#f 𝑟1) (𝑟2 #f)) 𝑣)
B {𝑟1 . . . 𝑟𝑚}⇒ let1≤𝑖≤𝑚 𝑤𝑖 be D J𝑑K {𝑟𝑖}
in let {𝑛1, . . . , 𝑛𝑘} be {𝑛 | 0 < 𝑤𝑛}
in let1≤𝑖≤𝑘 𝑆𝑖 = (𝑥 DistI(𝐹 (𝑟𝑛𝑖−1/2) 𝑟𝑛𝑖) 𝜎)
in if (𝑘 = 1) then 𝑆1 else ⊕𝑘

𝑖=1 (𝑆
′
𝑖 𝑤𝑛𝑖)

B else // same as last two cases forDistR

(a) Conditioning Leaf

condition ((𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚)) 𝑒 ::= let1≤𝑖≤𝑚 𝑤′
𝑖 be 𝑤𝑖 (P J𝑆𝑖K 𝑒)

in let {𝑛1, . . . , 𝑛𝑘} be {𝑛 | 0 < 𝑤′
𝑛}

in let1≤𝑖≤𝑘 𝑆′
𝑖 be (condition 𝑆𝑛𝑖 𝑒)

in if (𝑘 = 1) then 𝑆′
1 else ⊕𝑘

𝑖=1 (𝑆
′
𝑖 𝑤

′
𝑛𝑖
)

(b) Conditioning Sum

condition (𝑆1 ⊗ · · · ⊗ 𝑆𝑚) 𝑒 ::= match disjoin 𝑒
//one ℎ-dimensional hyperrectangle
B 𝑒1 ⊓ · · · ⊓ 𝑒ℎ ⇒ //one ℎ-dimensional hyperrectangle

⨂︁

1≤𝑖≤𝑚

⎡
⎢⎢⎣

match {1 ≤ 𝑗 ≤ ℎ | (vars 𝑒𝑗) ⊂ (scope 𝑆𝑖)}
B {𝑛1, . . . , 𝑛𝑘}
⇒ condition 𝑆𝑖 (𝑒𝑛1 ⊓ · · · ⊓ 𝑒𝑛𝑘

)
B {} ⇒ 𝑆𝑖

⎤
⎥⎥⎦

//ℓ ≥ 2 disjoint hyperrectangles
B 𝑒1 ⊔ · · · ⊔ 𝑒ℓ ⇒
let1≤𝑖≤ℓ 𝑤𝑖 be P J𝑆1 ⊗ · · · ⊗ 𝑆𝑚K 𝑒𝑖
in let {𝑛1, . . . , 𝑛𝑘} be {𝑛 | 0 < 𝑤𝑛}
in let1≤𝑖≤𝑘 𝑆′

𝑖 be (condition (𝑆1 ⊗ · · · ⊗ 𝑆𝑚) 𝑒𝑛𝑖)

in if (𝑘 = 1) then 𝑆′
1 else ⊕𝑘

𝑖=1 (𝑆
′
𝑖 𝑤𝑛𝑖)

(c) Conditioning Product

Listing 7.24: Implementation of condition for Leaf, Sum, and Product expressions in SPE.

156

condition0 Leaf(𝑥 𝑑𝜎) (Id(𝑥) in {rs}) ::= match 𝑑

B DistR(𝐹 𝑟1 𝑟2)⇒ match rs

B 𝑟 ⇒match (P0 JLeaf(𝑥 𝑑𝜎)K (Id(𝑥) in {rs}))
B (1, 0)⇒ undefined

B else let 𝐹 be
(︀
𝜆𝑟′. 1

[︀
𝑟 ≤ 𝑟′

]︀)︀
in DistI(𝐹 (𝑟 − 1/2) 𝑟)

B 𝑠⇒ undefined

B else⇒ condition Leaf(𝑥 𝑑𝜎) (Id(𝑥) in {rs})

(a) Conditioning Leaf

condition0 ((𝑆1 𝑤1)⊕ · · · ⊕ (𝑆𝑚 𝑤𝑚))
(︁
⊓ℓ𝑖=1(Id(𝑥𝑖) in {rsi})

)︁
::=

let1≤𝑖≤𝑚 (𝑑𝑖, 𝑝𝑖) be P0 J𝑆𝑖K
(︁
⊓ℓ𝑖=1(Id(𝑥𝑖) in {rsi})

)︁

in if ∀1≤𝑖≤𝑚. 𝑝𝑖 = 0 thenundefined

else let1≤𝑖≤𝑚𝑤′
𝑖 be 𝑤𝑖𝑝𝑖

in let 𝑑* be min{𝑑𝑖 | 1 ≤ 𝑖 ≤ 𝑚, 0 < 𝑝𝑖}
in let{𝑛1, . . . , 𝑛𝑘} be {𝑛 | 0 < 𝑤′

𝑛, 𝑑𝑖 = 𝑑*}
in let1≤𝑖≤𝑘 𝑆′

𝑖 be
(︁
condition0 𝑆𝑛𝑖

(︁
⊓ℓ𝑖=1(Id(𝑥𝑖) in {rsi})

)︁)︁

in if (𝑘 = 1) then 𝑆′
1 else ⊕𝑘

𝑖=1 (𝑆
′
𝑖 𝑤𝑛𝑖)

(b) Conditioning Sum

condition0 (𝑆1 ⊗ · · · ⊗ 𝑆𝑚) ⊓ℓ𝑖=1 (Id(𝑥𝑖) in {rsi}) ::=

let1≤𝑖≤𝑚 𝑆′
𝑖 bematch {𝑥1, . . . , 𝑥𝑚} ∩ (scope 𝑆𝑖)

B {𝑛1, . . . , 𝑛𝑘} ⇒ condition0 𝑆𝑖 ⊓𝑘𝑡=1 (Id(𝑥𝑛𝑡) in {rst})
B {} ⇒ 𝑆𝑖

in𝑆′
1 ⊗ · · · ⊗ 𝑆′

𝑚

(c) Conditioning Product

Listing 7.25: Implementation of condition0 for Leaf, Sum, and Product expressions in SPE.

1. Either 𝑒 ≡ (Id(𝑥) ; in ; {rs}) or 𝑒 is a Conjunction of such literals, where ≡ here denote syntactic
(not semantic) equivalence.

2. Every Var 𝑥 in each literal of 𝑒 is a non-transformed variable; i.e., for each Leaf expression 𝑆 such
that 𝑥 ∈ scope 𝑆, it holds that 𝑆 ≡ Leaf(𝑥 𝑑𝜎) for some 𝑑 and 𝜎.

With these requirements on 𝑒, Listing 7.25 presents the implementation of condition0, leveraging the
generalized density semantics from Listing 7.2e. The inference rules closely match those for standard
sum-product networks, except for the fact that a density from P0 J𝑆K is a pair, whose first entry is the
number of continuous distributions participating in the weight of the Event 𝑒 which must be correctly
accounted for by condition0. In the reference implementation of SPPL, condition invokes condition
and constrain invokes condition0. Analogously to the prob query, which returns probabilities using the
distribution semantics P in Listing 7.1e, SPPL also includes the density query, which returns densities
using the generalized semantics P0 in Listing 7.2e.

157

𝑑 ⇑ 𝐷(𝐸), 𝑡1 ⇑ 𝐸1, . . . , 𝑡𝑚 ⇑ 𝐸𝑚

(𝑥 𝑑 {𝑥 ↦→ Id(𝑥), 𝑥1 ↦→ 𝑡1, . . . , 𝑥𝑚 ↦→ 𝑡𝑚})
→SPPL 𝑥 ~𝐷(𝐸);𝑥1 =𝐸1; . . . ;𝑥𝑚 =𝐸𝑚

(Leaf)

𝑆1 →SPPL 𝐶1, . . . , 𝑆𝑚 →SPPL 𝐶𝑚

⊗𝑚
𝑖=1𝑆𝑖 →SPPL 𝐶1; . . . ;𝐶𝑚 (Product)

𝑆1 →SPPL 𝐶1, . . . , 𝑆𝑚 →SPPL 𝐶𝑚; where 𝑏 is a fresh Var

⊕𝑚
𝑖=1(𝑆𝑖𝑤𝑖)→SPPL

⎡
⎢⎢⎢⎣

𝑏 ~ choice({'1':𝑤1, . . . ,'𝑚':𝑤𝑚})

if (𝑏 == '1') {𝐶1}

elif . . .

elif (𝑏 == '𝑚') {𝐶𝑚}

⎤
⎥⎥⎥⎦ (Sum)

Listing 7.26: Translating an element of SPE (Listing 7.1f) to an SPPL command 𝐶 (Listing 7.5).

7.E Translating Sum-Product Expressions to SPPL

Listing 7.6 in Section 7.4 presents the relation →SPE, which translates 𝐶 ∈ Command (i.e., SPPL
source syntax, Listing 7.5) to a sum-product expression 𝑆 ∈ SPE in the core language (Listing 7.1).
Listing 7.26 defines a relation→SPPL that reverses the→SPE relation by converting expression 𝑆 ∈ SPE
to 𝐶 ∈ Command. Briefly, (i) a Product is converted to a sequence Command; (ii) a Sum is converted
to an if-else Command; and (iii) a Leaf is converted to a sequence of sample (~) and transform (=).

The symbol ⇑ (whose formal definition is omitted) in the Leaf rule converts semantic elements
such as 𝑑 ∈ Distribution and 𝑡 ∈ Transform from the core calculus to an SPPL expression 𝐸 ∈ Expr in a
straightforward way, e.g.,

(Poly(Id(X) 1 2 3)) ⇑ (1 + 2*X + 3*X**2). (7.53)

Chaining→SPE (Listing 7.6) and→SPPL (Listing 7.26) for a given SPPL program does not preserve
either SPPL or core syntax, that is1

((𝐶 →*
SPE 𝑆)→*

SPPL 𝐶 ′) does not imply 𝐶 = 𝐶 ′ (7.54)
((𝐶 →*

SPE 𝑆)→*
SPPL 𝐶 ′)→*

SPE 𝑆′ does not imply 𝑆 = 𝑆′. (7.55)

Rather, →SPPL is a semantics-preserving inverse of →SPE, in the sense that for all 𝑒 ∈ Event

((𝐶 →*
SPE 𝑆)→*

SPPL 𝐶 ′)→*
SPE 𝑆′ =⇒ P J𝑆K 𝑒 = P

q
𝑆′y 𝑒. (7.56)

Eq. (7.56) establishes a formal semantic correspondence between the SPPL language and the class
of sum-product expressions. Each SPPL program admits a representation as an SPE, and each valid
element of SPE that satisfies conditions (C1)–(C5) corresponds to some SPPL program.

The translation strategy in Listing 7.26 makes it possible to synthesize SPPL programs using a range
of techniques for learning the structure and parameters of sum-product networks [Gens and Domingos,
2013, Vergari et al., 2019, Trapp et al., 2019]. SPPL integrates with these techniques by provides users
a uniform representation language for sum-product networks as generative programs in a formal PPL.

1The symbol 𝐶 →*
SPE 𝑆 means ⟨𝐶, 𝑆∅⟩ translates to 𝑆 in zero or more steps of →SPE, where 𝑆∅ is an “empty” SPE used

for the initial translation step, and similarly for →*
SPPL .

158

SPPL also lets users extend these learned programs with modeling extensions supported by the core
calculus (Listing 7.2), such as predicates for decision trees and numeric transformations. Finally, SPPL,
delivers exact answers to an extended set of probabilistic inference queries that involve predicates and
mixed-type base random variables, for example, which other libraries for sum-product networks such
SPFlow [Molina et al., 2020] do not support.

159

Part III

Statistical Estimation and Testing
via Dynamic Program Analysis

160

Chapter 8

Estimators of Entropy and Information

Seldom do more than a few of nature’s
secrets give way at one time.

Claude E. Shannon

The Shannon entropy 𝐻(𝑌) ::= −E [log 𝑝(𝑌)] of a random variable 𝑌 is a fundamental information-
theoretic quantity that characterizes the inherent randomness contained in 𝑌 [Shannon, 1948]. Entropy
is a basic building block of several information-theoretic quantities and has received widespread atten-
tion in information theory [Cover and Thomas, 1991] statistics [MacKay, 2003], as well as in diverse
application domains that include quantitative finance [Zhou et al., 2013], systems biology [Borowska,
2016], computational neuroscience [Rieke et al., 1997] hydraulic engineering [Chiu, 1987], and image
processing [Pun, 1980]. This chapter presents a new computational technique that addresses the funda-
mental problem of estimating the Shannon entropy 𝐻(𝑌) in situations where its marginal distribution
involves an intractable multidimensional integral over a known joint probability distribution:

𝑝(𝑦) =

∫︁

𝒳
𝑝(𝑥, 𝑦) d𝑥 (𝑦 ∈ 𝒴). (8.1)

In Eq. (8.1), the term 𝑝(𝑥, 𝑦) refers to a probabilistic generative model that can be sampled from
and whose joint density can be computed pointwise, as is common in a broad class of probabilistic
systems including Bayesian networks [Pearl, 1988], deep generative models [Kingma and Welling, 2019],
generative probabilistic programs, and all four probabilistic DSLs from Part I of this thesis. This class
of queries are generally not tractable to solve exactly, even using the sum-product representations in
SPPL from Chapter 7. The key challenge is that the expression

𝐻(𝑌) = −
∫︁

𝒴
log

[︂∫︁

𝒳
𝑝(𝑥, 𝑦) d𝑥

]︂
𝑝(𝑦) d𝑦 (8.2)

contains an intractable integral inside the logarithm, which rules out the unbiased simple Monte Carlo
estimator −1/𝑛∑︀𝑛

𝑖=1 log 𝑝(𝑌𝑖) (for 𝑌𝑖 ∼ 𝑝(𝑦), 1 ≤ 𝑖 ≤ 𝑛).
To address these challenges, the chapter presents a new class of estimators of entropy via infer-

ence (EEVI) that return interval estimates of doubly intractable entropies as in Eq. (8.2). EEVI uses
auxiliary-variable importance sampling constructs similar to those from pseudo-marginal methods [An-
drieu and Roberts, 2009] to first compute unbiased estimates of the intractable quantities 𝑝(𝑦) and
1/𝑝(𝑦) for the inner integral. Under the log transform, these estimates become lower and upper bounds
of log 𝑝(𝑦), which are then embedded in a simple Monte Carlo estimator for the outer integral to form
an interval estimate of 𝐻(𝑌). In the limit of computation, the interval width can be driven to zero,

161

𝑦𝑥

(a) Target Distribution
𝑝(𝑥, 𝑦)

𝑦𝑥

𝑣

(b) Proposal Distribution
𝑞(𝑣, 𝑥; 𝑦)

𝑦𝑥

𝑣

(c) Auxiliary Proposal Distribution
𝑟(𝑣;𝑥, 𝑦)

Figure 8.1: Target, proposal, and auxiliary proposal distributions. These distributions are inputs to
the EEVI Algorithms 8.1 and 8.2, which provide compute bounds on 𝐻(𝑌) = −E [log 𝑝(𝑌)], 𝑌 ∼ 𝑝(𝑦).

squeezing the true entropy value at a rate that depends on the quality of the importance sampling
proposal. The main contribution of this chapter is a family of entropy estimators that

(C1) Apply to arbitrary random variables in any probability distribution that can be sampled from
and whose full joint density is tractable; no marginals or conditionals need to be tractable.

(C2) Guarantee upper and lower bounds in expectation, which can be composed (Figure 8.2) to
squeeze many information quantities, e.g., Eqs. (8.12)–(8.16).

(C3) Leverage a broad family of proposal distributions that includes both variational and Monte
Carlo inference for increasing accuracy as a function of computational effort.

The rest of the chapter is organized as follows: Sections 8.1 and 8.2 describe EEVI and explains how
interval estimates of entropy can be composed to form interval estimates of several other information
quantities, such as conditional mutual information and interaction information. Section 8.3 presents
theoretical properties of importance sampling-based estimators of log marginal probabilities of the form
given in Eq. (8.1), and gives examples of inference-based variational and Monte Carlo auxiliary-variable
proposals to deliver accurate upper and lower bounds. Section 8.4 illustrates the scalability and efficacy
of EEVI for two optimal-design tasks in a probabilistic expert system for diagnosing liver disorders and
a dynamic model of carbohydrate metabolism in diabetic patients. Section 8.5 discusses related work.

8.1 Overview of EEVI

Let 𝑝(𝑧1, . . . , 𝑧𝑑) be a 𝑑-dimensional probability density (with respect to an appropriate 𝜎-finite measure)
for which it is possible to sample 𝑍 ::= (𝑍1, . . . , 𝑍𝑑) ∼ 𝑝(𝑧1, . . . , 𝑧𝑑) and evaluate density values. Let
𝐴 ⊂ {1, . . . , 𝑑} be a subset of indexes and let 𝑌 ::= {𝑍𝑖, 𝑖 ∈ 𝐴} and 𝑋 ::= {𝑍𝑖, 𝑖 /∈ 𝐴} be the
corresponding partition of variables in 𝑍. The goal is to estimate the marginal entropy 𝐻(𝑌) as defined
in Eq. (8.2), where 𝒴 and 𝒳 are the sets in which 𝑌 and 𝑋 take values, respectively. As the partition
𝐴 is arbitrary, neither the marginal densities 𝑝(𝑥) and 𝑝(𝑦) nor conditional densities 𝑝(𝑥 | 𝑦) and 𝑝(𝑦 |𝑥)
are assumed to tractable, which poses a key challenge for estimating 𝐻(𝑌).

Suppose it is possible to compute two measurable real functions 𝑤,𝑤′ : 𝒰 × 𝒴 → R such that for
some random variables 𝑈,𝑈 ′ taking values in a set 𝒰 and all 𝑦 ∈ 𝒴 except for a 𝑝-measure zero set,

E [𝑤(𝑈, 𝑦)] = 𝑝(𝑦) E
[︀
𝑤′(𝑈 ′, 𝑦)

]︀
= 1/𝑝(𝑦). (8.3)

If 𝑤 and 𝑤′ are nonnegative a.e., then concavity of log and Jensen’s inequality gives bounds

E [log𝑤(𝑈, 𝑦)] ≤ logE [𝑤(𝑈, 𝑦)] = log 𝑝(𝑦), (8.4)
E
[︀
log𝑤′(𝑈 ′, 𝑦)

]︀
≤ logE

[︀
𝑤′(𝑈 ′, 𝑦)

]︀
= − log 𝑝(𝑦), (8.5)

162

which together imply that

E [log𝑤(𝑈, 𝑦)] ≤ log 𝑝(𝑦) ≤ E
[︀
− log𝑤′(𝑈 ′, 𝑦)

]︀
. (8.6)

If the real functions 𝑦 ↦→ E [log𝑤(𝑈, 𝑦)] and 𝑦 ↦→ −E [log𝑤′(𝑈 ′, 𝑦)] defined on 𝒴 are themselves
both measurable then monotonicity of expectation gives

E [log𝑤(𝑈, 𝑌)] ≤ E [log 𝑝(𝑌)] ≤ E
[︀
− log𝑤′(𝑈 ′, 𝑌)

]︀
(8.7)

The expectations in (8.7) that squeeze E [log 𝑝(𝑌)] can be estimated unbiasedly via simple Monte Carlo:

ℒ𝑛,𝑚 ::=
1

𝑛

𝑛∑︁

𝑖=1

⎡
⎣ 1

𝑚

𝑚∑︁

𝑗=1

log𝑤(𝑈𝑖𝑗 , 𝑌𝑖)

⎤
⎦ , (8.8)

𝒯𝑛,𝑚 ::=
1

𝑛

𝑛∑︁

𝑖=1

⎡
⎣ 1

𝑚

𝑚∑︁

𝑗=1

− log𝑤′(𝑈 ′
𝑖𝑗 , 𝑌

′
𝑖)

⎤
⎦ , (8.9)

where 𝑌𝑖, 𝑌
′
𝑖 are identically distributed to 𝑌 ; 𝑈𝑖𝑗 identically to 𝑈 ; and 𝑈 ′

𝑖𝑗 identically to 𝑈 ′ (𝑖 =
1, . . . , 𝑛; 𝑗 = 1, . . . ,𝑚).

Letting �̌�𝑌 ::= −𝒯𝑛,𝑚 and �̂�𝑌 ::= −ℒ𝑛,𝑚, Eq. (8.7) implies that the means of �̌�𝑌 and �̂�𝑌 satisfy

E[�̌�𝑌] ≤ 𝐻(𝑌) ≤ E[�̂�𝑌]. (8.10)

If using i.i.d. samples in Eqs. (8.8) and (8.9), under mild conditions the central limit theorem and
Eq. (8.10) imply the interval estimator [�̌�𝑌 , �̂�𝑌] has coverage probability

Pr[�̌�𝑌 ≤ 𝐻(𝑌) ≤ �̂�𝑌] ≈ Φ
(︁√

𝑡�̌�/�̌�
)︁
Φ
(︁√

𝑡�̂�/�̂�
)︁
, (8.11)

where Φ is the standard normal cumulative distribution function; 𝑡 = 𝑛𝑚; �̌� ::= E [− log𝑤′(𝑈 ′, 𝑌)] −
E [log 𝑝(𝑌)] and �̂� ::= E [log 𝑝(𝑌)] − E [log𝑤(𝑈, 𝑌)] are the biases in Eq. (8.10); and �̌� and �̂� are the
standard deviations of the random variables log𝑤′(𝑈 ′, 𝑌) and log𝑤(𝑈, 𝑌), respectively.

The preceding discussion has assumed access to functions 𝑤 and 𝑤′ that satisfy Eq. (8.3). Obtaining
functions that satisfy these properties, however, is itself a challenging inference problem that must be
solved for computing the estimators (8.8) and (8.9) Section 8.3 revisits this problem and shows how
to construct functions 𝑤 and 𝑤′ using importance sampling-based techniques that deliver unbiased
estimates of marginal likelihoods and their inverses.

8.2 Extending Entropy Bounds to Information-Theoretic Quantities

The lower and upper bounds on entropy in Eq. (8.10) can be composed to obtain bounds on several
derived information-theoretic quantities that measure the degree of relationship between arbitrary sub-
collections of variables in a model, possibly conditioned on others. As discussed in Section 8.5, the
class of queries that can be solved using these compositions is substantially more general than existing
model-based estimators in the literature, since no assumptions about the tractability of marginals or
conditionals are needed. Recall that the target generative model 𝑝(𝑧1, . . . , 𝑧𝑑) has 𝑑 variables. Define
the shorthand notation 𝐻(𝐴) ::= 𝐻({𝑍𝑖, 𝑖 ∈ 𝐴}) for 𝐴 ⊂ [𝑑]. By adding and subtracting upper and
lower bounds on 𝐻(𝐴) it is possible to obtain interval estimators of the following quantities defined in
terms of the Shannon entropy (in all cases, setting 𝐴0 ::= ∅ gives unconditional versions):

163

𝐴0

𝐴1

𝐴2

(a) Generative model 𝑝(𝑧1, . . . , 𝑧𝑑).

𝐼(𝐴1 : 𝐴2 | 𝐴0) ::= 𝐻(𝐴0 ∪𝐴1)

+𝐻(𝐴0 ∪𝐴2)

−𝐻(𝐴0 ∪𝐴1 ∪𝐴2)

−𝐻(𝐴0)

(b) Conditional mutual information query.

E[�̂�𝑌]
(Algorithm 8.1)

E[�̌�𝑌]
(Algorithm 8.2)

𝐻(𝑌)

Eq. (8.30)

Eq. (8.31)

(c) Bounding entropy using EEVI.

{𝑌 ::= 𝐴0;𝑋 ::= [𝑑] ∖ 𝑌 } EEVI−−−→
[︀ 1

�̌�𝐴0 ,
2
�̂�𝐴0

]︀
{𝑌 ::= 𝐴0 ∪𝐴1;𝑋 ::= [𝑑] ∖ 𝑌 } EEVI−−−→

[︀ 3
�̌�𝐴0∪𝐴1 ,

4
�̂�𝐴0∪𝐴1

]︀
{𝑌 ::= 𝐴0 ∪𝐴2;𝑋 ::= [𝑑] ∖ 𝑌 } EEVI−−−→

[︀ 5
�̌�𝐴0∪𝐴2 ,

6
�̂�𝐴0∪𝐴2

]︀
{𝑌 ::= 𝐴0 ∪𝐴1 ∪𝐴2;𝑋 ::= [𝑑] ∖ 𝑌 } EEVI−−−→

[︀ 7
�̌�𝐴0∪𝐴1∪𝐴2 ,

8
�̂�𝐴0∪𝐴1∪𝐴2

]︀
(d) Interval estimates of entropy for four marginal distributions of 𝑝.

E[𝐼𝐴1:𝐴2|𝐴0
]

𝐼(𝐴1 : 𝐴2 | 𝐴0)

E[𝐼𝐴1:𝐴2|𝐴0
]

𝐼𝐴1:𝐴2|𝐴0
=

4
�̂�𝐴0∪𝐴1 +

6
�̂�𝐴0∪𝐴2 −

7
�̌�𝐴0∪𝐴1∪𝐴2 −

1
�̌�𝐴0

𝐼𝐴1:𝐴2|𝐴0
=

3
�̌�𝐴0∪𝐴1 +

5
�̌�𝐴0∪𝐴2 −

8
�̂�𝐴0∪𝐴1∪𝐴2 −

2
�̂�𝐴0

(e) Interval estimate of conditional mutual information (b) derived from interval estimates of entropy in (d).

Figure 8.2: Composing interval estimators of entropy to obtain bounds on derived information measures.

• Conditional Entropy [Shannon, 1948]

𝐻(𝐴1 | 𝐴2) ::= 𝐻(𝐴1 ∪𝐴2)−𝐻(𝐴2) (8.12)

• Conditional Mutual Information [Shannon, 1948]

𝐼(𝐴1 : 𝐴2 | 𝐴0) ::= 𝐻(𝐴1 | 𝐴0)−𝐻(𝐴1 | 𝐴2, 𝐴0) (8.13)

• Conditional Total Correlation [Watanabe, 1960]

𝐶({𝐴𝑖}𝑛𝑖=1 | 𝐴0) ::=
𝑛∑︁

𝑖=1

𝐻(𝐴𝑖 | 𝐴0)−𝐻(
𝑛∪

𝑖=1
𝐴𝑖 | 𝐴0) (8.14)

• Conditional Interaction Information [Ting, 1962]

𝑇 ({𝐴𝑖}𝑛𝑖=1 | 𝐴0) ::=
∑︁

𝑆⊂[𝑛]

−1|𝑆|𝐻(∪𝑖∈𝑆𝐴𝑖 | 𝐴0) (8.15)

• Conditional Dual Correlation [Han, 1978]

𝐷({𝐴𝑖}𝑛𝑖=1 | 𝐴0) ::= 𝐻(∪𝑛𝑖=1𝐴𝑖 | 𝐴0)−
𝑛∑︁

𝑖=1

𝐻(𝐴𝑖 | ∪𝑛𝑗=0,𝑗 ̸=𝑖𝐴𝑖). (8.16)

164

𝐻(𝑌)E [log𝑤′(𝑋 ′, 𝑌 ′)]E [log𝑤′(𝑉 ′, 𝑋 ′, 𝑌 ′)] −E [log𝑤(𝑋,𝑌)] −E [log𝑤(𝑉,𝑋, 𝑌)]

E [DKL [𝑟
′(𝑣;𝑋 ′, 𝑌 ′)||𝑞′(𝑣|𝑋 ′;𝑌 ′)]]

E [DKL [𝑝(𝑥|𝑌 ′)||𝑞′(𝑥;𝑌 ′)]] E [DKL [𝑞(𝑥;𝑌)||𝑝(𝑥|𝑌)]]

E [DKL [𝑞(𝑣|𝑋;𝑌)||𝑟(𝑣;𝑋,𝑌)]]

𝑤′(𝑥, 𝑦) =
𝑞′(𝑥; 𝑦)
𝑝(𝑥, 𝑦)

𝑤′(𝑣, 𝑥, 𝑦) =
𝑞′(𝑣, 𝑥; 𝑦)

𝑝(𝑥, 𝑦)𝑟′(𝑣;𝑥, 𝑦)

𝑋 ′, 𝑌 ′ ∼ 𝑝(𝑥, 𝑦)

𝑉 ′ ∼ 𝑟′(𝑣;𝑋 ′, 𝑌 ′)

Monte Carlo Lower Bound E[�̌�𝑌]
proposal 𝑞′(𝑣, 𝑥; 𝑦)

auxiliary proposal 𝑟′(𝑣;𝑥, 𝑦)

𝑤(𝑥, 𝑦) =
𝑝(𝑥, 𝑦)

𝑞(𝑥; 𝑦)

𝑤(𝑣, 𝑥, 𝑦) =
𝑝(𝑥, 𝑦)𝑟(𝑣;𝑥, 𝑦)

𝑞(𝑣, 𝑥; 𝑦)

𝑌 ∼ 𝑝(𝑥, 𝑦)

𝑉,𝑋 ∼ 𝑞(𝑣, 𝑥;𝑌)

Monte Carlo Upper Bound E[�̂�𝑌]
proposal 𝑞(𝑣, 𝑥; 𝑦)

auxiliary proposal 𝑟(𝑣;𝑥, 𝑦)

Figure 8.3: Estimation gaps for upper and lower bounds �̂�𝑌 and �̌�𝑌 from EEVI Algorithms 8.1 and 8.2.

8.3 Sampling Bounds on Log Marginal Probabilities

Importance Sampling in Log Space Implementing the estimators �̂�𝑌 , �̌�𝑌 in Eq. (8.10) requires
functions 𝑤,𝑤′ that satisfy Eq. (8.3). The starting point to obtaining these functions is an identity
from importance sampling. Let ℎ and 𝑔 be two probability densities on a common set 𝒳 such that ℎ is
absolutely continuous with respect to 𝑔 (written ℎ≪ 𝑔); i.e.,

∫︀
𝐴 𝑔(𝑥) d𝑥 = 0 =⇒

∫︀
𝐴 ℎ(𝑥) d𝑥 = 0 for all

measurable 𝐴. Suppose ℎ(𝑥) = ℎ̃(𝑥)/𝑍ℎ, 𝑔(𝑥) = 𝑔(𝑥)/𝑍𝑔, where 𝑍ℎ and 𝑍𝑔 are unknown normalizing
constants needed to ensure that the densities are normalized. Then, for 𝑋 ∼ 𝑔,

E
[︁
ℎ̃(𝑋)/𝑔(𝑋)

]︁
= 𝑍ℎ/𝑍𝑔. (8.17)

Under log transform, the ratio (8.17) is a lower bound on log(𝑍ℎ/𝑍𝑔) in expectation, with a gap equal
to the KL divergence from ℎ to 𝑔:

E
[︁
log
(︁
ℎ̃(𝑋)/𝑔(𝑋)

)︁]︁
= log (𝑍ℎ/𝑍𝑔)−DKL [𝑔||ℎ] (8.18)

Eq. (8.18) does not require ℎ≪ 𝑔. However, the expectation is well defined only if 𝑔 ≪ ℎ and is finite
only if DKL [𝑔||ℎ] <∞. Moreover, the variance

Var
[︁
log(ℎ̃(𝑋)/𝑔(𝑋))

]︁
= E

[︀
log2(ℎ(𝑋)/𝑔(𝑋))

]︀
− (DKL [𝑔||ℎ])2 (8.19)

is finite only if DKL [𝑔||ℎ] < ∞ and log2(ℎ(𝑋)/𝑔(𝑋)) has finite expectation. Applying Markov’s in-
equality to Eq. (8.17) gives a right tail bound for log ℎ̃(𝑋)/𝑔(𝑋):

Pr
[︁
ℎ̃(𝑋)/𝑔(𝑋) ≥ 𝑒𝑡(𝑍ℎ/𝑍𝑔)

]︁
≤ 𝑒−𝑡 =⇒ Pr

[︁
log(ℎ̃(𝑋)/𝑔(𝑋)) ≥ 𝑡+ log(𝑍ℎ/𝑍𝑔)

]︁
≤ 𝑒−𝑡 (8.20)

165

Algorithm 8.1 EEVI upper bound.

Require: Target distribution 𝑝(𝑥, 𝑦);
Proposal distribution 𝑞(𝑣, 𝑥; 𝑦);
Aux. proposal distribution 𝑟(𝑣;𝑥, 𝑦);
Number of samples 𝑛, 𝑚.

Ensure: Monte Carlo upper bound �̂�𝑌 on 𝐻(𝑌)
1: for 𝑖 = 1 . . . 𝑛 do
2: (̃︀𝑋,𝑌) ∼ 𝑝(𝑥, 𝑦) ◁ ̃︀𝑋 is discarded
3: for 𝑗 = 1 . . .𝑚 do
4: (𝑉,𝑋) ∼ 𝑞(𝑣, 𝑥;𝑌)

5: 𝑢𝑗 ← log
𝑝(𝑋,𝑌)𝑟(𝑉 ;𝑋,𝑌)

𝑞(𝑉,𝑋; 𝑦)

6: 𝑡𝑖 ← 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

7: return − 1
𝑛

∑︀𝑛
𝑖=1 𝑡𝑖

Algorithm 8.2 EEVI lower bound.

Require: Target distribution 𝑝(𝑥, 𝑦);
Proposal distribution 𝑞′(𝑣, 𝑥; 𝑦);
Aux. proposal distribution 𝑟′(𝑣;𝑥, 𝑦);
Number of samples 𝑛, 𝑚.

Ensure: Monte Carlo lower bound �̌�𝑌 on 𝐻(𝑌)
1: for 𝑖 = 1 . . . 𝑛 do
2: (𝑋 ′

1, 𝑌) ∼ 𝑝(𝑥, 𝑦)
3: (𝑋 ′

2:𝑚) ∼ Markov chain targeting 𝑝(𝑥 | 𝑌)
starting at 𝑋 ′

1 (optional step)
4: for 𝑗 = 1 . . .𝑚 do
5: 𝑉 ′ ∼ 𝑟′(𝑣;𝑋 ′

𝑗 , 𝑌)

6: 𝑢𝑗 ← log
𝑞′(𝑉 ′, 𝑋 ′

𝑗 ;𝑌)

𝑝(𝑋 ′
𝑗 , 𝑌)𝑟′(𝑉 ′;𝑋 ′

𝑗 , 𝑌)

7: 𝑡𝑖 ← − 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

8: return − 1
𝑛

∑︀𝑛
𝑖=1 𝑡𝑖

for any 𝑡 > 0. The mean absolute deviation satisfies

E
[︁⃒⃒
⃒log(ℎ̃(𝑋)/𝑔(𝑋))− 𝜇

⃒⃒
⃒
]︁
≤ 2 + 2DKL [𝑔||ℎ] , (8.21)

where 𝜇 ::= E[log(ℎ̃(𝑋)/𝑔(𝑋))]. This upper bound is two plus twice the bias in Eq. (8.18), which
decreases as 𝑔 more closely matches ℎ.

Interval Estimators of Entropy Recalling the distribution 𝑝(𝑥, 𝑦) from Section 8.1, suppose that
𝑞(𝑥; 𝑦) and 𝑞′(𝑥; 𝑦) are normalized proposal densities over 𝒳 parameterized by 𝒴. From Eq. (8.17), for
fixed 𝑦 ∈ 𝒴, setting ℎ̃(𝑥) = 𝑝(𝑥, 𝑦) and 𝑔(𝑥) = 𝑞(𝑥; 𝑦) gives an unbiased estimate of 𝑍ℎ ≡ 𝑝(𝑦);

E
[︂
𝑝(𝑋, 𝑦)

𝑞(𝑋; 𝑦)

]︂
= 𝑝(𝑦). (8.22)

Similarly, setting ℎ(𝑥) = 𝑞′(𝑥; 𝑦) and 𝑔(𝑥) = 𝑝(𝑥, 𝑦) gives an unbiased estimate of 1/𝑍𝑔 ≡ 1/𝑝(𝑦):

E
[︂
𝑞′(𝑋 ′; 𝑦)
𝑝(𝑋 ′, 𝑦)

]︂
= 1/𝑝(𝑦). (8.23)

These expressions provide the estimators needed for Eq. (8.3), by defining 𝑤(𝑥, 𝑦) ::= 𝑝(𝑥, 𝑦)/𝑞(𝑥; 𝑦)
and 𝑤′(𝑥, 𝑦) ::= 𝑞′(𝑥; 𝑦)/𝑝(𝑥, 𝑦) and letting 𝑋 ∼ 𝑞(𝑥; 𝑦) be 𝑈 and 𝑋 ′ ∼ 𝑝(𝑥 | 𝑦) be 𝑈 ′. Then Eq. (8.8)
yields the Monte Carlo upper bound �̂�𝑌 in Eq. (8.10); and Eq. (8.9) yields the Monte Carlo lower bound
�̌�𝑌 in Eq. (8.10). While sampling 𝑋 ′ ∼ 𝑝(𝑥 | 𝑦) given a fixed value 𝑦 is generally intractable under
the stated assumptions on 𝑝, since 𝐻(𝑌) is the expectation of random values − log 𝑝(𝑌) for 𝑌 ∼ 𝑝, it
suffices to use joint samples (𝑋 ′, 𝑌 ′) ∼ 𝑝(𝑥, 𝑦) to obtain the lower bound. In particular,

∫︁

𝒳×𝒴
log
[︀
𝑞′(𝑥; 𝑦)/𝑝(𝑥, 𝑦)

]︀
𝑝(𝑥, 𝑦) d𝑥 d𝑦 =

∫︁

𝒴

[︂∫︁

𝒳
log
[︀
𝑞′(𝑥; 𝑦)/𝑝(𝑥, 𝑦)

]︀
𝑝(𝑥 | 𝑦) d𝑥

]︂
𝑝(𝑦) d𝑦 (8.24)

≤
∫︁

𝒴
[− log 𝑝(𝑦)] 𝑝(𝑦) d𝑦 = 𝐻(𝑌). (8.25)

166

The second line follows from Schervish [1995, Theorems B.46 and B.52] and third line from Eq. (8.18).
Given an initial sample (𝑋 ′

1, 𝑌) ∼ 𝑝(𝑥, 𝑦), an additional 𝑚 − 1 samples 𝑋 ′
2, . . . , 𝑋

′
𝑚 from 𝑝(𝑥 | 𝑌 ′) to

use for 𝒯𝑛,𝑚 in Eq. (8.9) can be obtained by simulating a Markov chain initialized at 𝑋 ′
1 that leaves

𝑝(𝑥 | 𝑌 ′) invariant. These samples reduce Var [𝒯𝑛,𝑚] if and only if Pr[𝑋 ′
𝑖 ̸= 𝑋 ′

1] > 0 for some 𝑖.

8.3.1 Constructing Accurate Proposals

Estimators of normalizing constants and their inverses in direct space as in Eqs. (8.22) and (8.23)
can suffer from notoriously high variance, especially when using proposals that do not closely match
the target [Neal, 2008]. However, Eq. (8.20) suggests that log space estimators can be more stable.
By Eqs. (8.18) and (8.21), the quality of the entropy bounds obtained via importance sampling depends
on constructing proposal distributions 𝑞(𝑥; 𝑦) and 𝑞′(𝑥; 𝑦) that have small expected biases (over 𝑌 ∼ 𝑝):

E[�̂�𝑌]−𝐻(𝑌) = E [DKL [𝑞(𝑥;𝑌)||𝑝(𝑥 | 𝑌)]] , (8.26)

𝐻(𝑌)− E[�̌�𝑌] = E
[︀
DKL

[︀
𝑝(𝑥 | 𝑌)||𝑞′(𝑥;𝑌)

]︀]︀
. (8.27)

Two families of approaches that leverage probabilistic inference algorithms to construct accurate pro-
posals are described next.

Amortized Variational Inference Proposals 𝑞(𝑥; 𝑦) and 𝑞′(𝑥; 𝑦) for use in Eqs. (8.22) and (8.23)
can be trained from a dataset {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 simulated from 𝑝. In particular, variational inference can
be used to learn recognition networks 𝑞𝜑(𝑥; 𝑦) and 𝑞′𝜙(𝑥; 𝑦) that each specify a family of distributions
over 𝒳 , parametrized by 𝑦 ∈ 𝒴 and 𝜑, 𝜙, respectively. Training 𝑞 via “exclusive” amortized variational
inference, as in variational autoencoders [Kingma and Welling, 2013], minimizes both the bias and an
upper bound on the mean absolute deviation (MAD) of �̌�𝑌 in Algorithm 8.1. Similarly, training 𝑞′ via
“inclusive” amortized variational inference, as in the “sleep” phase of the wake-sleep algorithm [Hinton
et al., 1995], minimizes both the bias and an upper bound on the MAD of �̂�𝑌 in Algorithm 8.2. Thus,
EEVI can leverage advances in training neural networks via stochastic gradient descent to improve
estimation accuracy. Refer to Figure 8.4 for an example of variationally trained proposals.

Auxiliary Variable Monte Carlo Another approach to constructing accurate proposals, which can
be composed with variational learning [Salimans et al., 2015], is Monte Carlo methods such as annealed
importance sampling [AIS; Neal, 2001] and sequential Monte Carlo [SMC; Del Moral et al., 2006] that
define proposal distributions on extended state-spaces. These methods yield state-of-the-art estimates
of normalizing constants. In particular, the proposals 𝑞(𝑣, 𝑥; 𝑦) are defined over an extended space
𝒱×𝒳 , such that the marginal density 𝑞(𝑥; 𝑦) =

∫︀
𝒱 𝑞(𝑣, 𝑥; 𝑦) d𝑣 is an integral auxiliary random variables

𝑣 sampled by 𝑞. As the ratios in Eqs. (8.22) and (8.23) can no longer be evaluated, a tractable “auxiliary
proposal distribution” 𝑟(𝑣;𝑥, 𝑦) over 𝒱 parameterized by 𝒳 ×𝒴 (Figure 8.1) is used instead, such that

𝑤(𝑣, 𝑥, 𝑦) ::= [𝑝(𝑥, 𝑦)𝑟(𝑣;𝑥, 𝑦)] /𝑞(𝑣, 𝑥; 𝑦), (8.28)
𝑤′(𝑣, 𝑥, 𝑦) ::= 𝑞′(𝑣, 𝑥; 𝑦)/

[︀
𝑝(𝑥, 𝑦)𝑟′(𝑣;𝑥, 𝑦)

]︀
. (8.29)

By Eq. (8.17), these weight functions satisfy Eq. (8.3) by letting (𝑉,𝑋) ∼ 𝑞(𝑣, 𝑥; 𝑦) serve as 𝑈 and
(𝑋 ′, 𝑉 ′) ∼ 𝑝(𝑥 | 𝑦)𝑟(𝑣;𝑥, 𝑦) as 𝑈 ′. From Eq. (8.18), the gap when lower bounding log 𝑝(𝑦) using these
extended weights 𝑤 and 𝑤′ must account for the accuracy of the auxiliary proposals 𝑟 and 𝑟′

E[�̂�𝑌]−𝐻(𝑌) = E [DKL [𝑞(𝑥;𝑌)||𝑝(𝑥|𝑌)]] + E [DKL [𝑞(𝑣 | 𝑋;𝑌)||𝑟(𝑣;𝑋,𝑌)]] , (8.30)

𝐻(𝑌)− E[�̌�𝑌] = E
[︀
DKL

[︀
𝑝(𝑥 | 𝑌)||𝑞′(𝑥;𝑌)

]︀]︀
+ E

[︀
DKL

[︀
𝑟(𝑣′;𝑋 ′, 𝑌)||𝑞′(𝑣 | 𝑋 ′;𝑌)

]︀]︀
. (8.31)

167

Algorithm 8.3 EEVI upper bound using SIR
proposal without auxiliary variables.

Require:
Target distribution 𝑝(𝑥, 𝑦)
Base proposal distribution 𝑞0(𝑥; 𝑦)
Number of samples 𝑛, 𝑚, 𝑃

Ensure: Monte Carlo upper bound �̂�𝑌 on 𝐻(𝑌)
1: for 𝑖 = 1 . . . 𝑛 do
2: (̃︀𝑋,𝑌) ∼ 𝑝(𝑥, 𝑦)
3: for 𝑗 = 1 . . .𝑚 do
4: for 𝑘 = 1 . . . 𝑃 do
5: 𝑋 ∼ 𝑞0(𝑥;𝑌)

6: 𝜉𝑘 ←
𝑝(𝑋,𝑌)

𝑞0(𝑋;𝑌)

7: 𝑢𝑗 ← log
[︁
1
𝑃

∑︀𝑃
𝑘=1 𝜉𝑘

]︁

8: 𝑡𝑖 ← 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

9: return − 1
𝑛

∑︀𝑛
𝑖=1 𝑡𝑖

Algorithm 8.4 EEVI lower bound using SIR
proposal without auxiliary variables.

Require:
Target distribution 𝑝(𝑥, 𝑦)
Base proposal distribution 𝑞0(𝑥; 𝑦)
Number of samples 𝑛, 𝑚, 𝑃

Ensure: Monte Carlo lower bound �̂�𝑌 on 𝐻(𝑌)
1: for 𝑖 = 1 . . . 𝑛 do
2: (𝑋1, 𝑌) ∼ 𝑝(𝑥, 𝑦)
3: (𝑋2:𝑚) ∼ Markov chain targeting 𝑝(𝑥 | 𝑌)

starting at 𝑋 ′
1 (optional step)

4: for 𝑗 = 1 . . .𝑚 do
5: 𝑋 ′

1 ← 𝑋𝑗

6: for 𝑘 = 2 . . . 𝑃 do
7: 𝑋 ′

𝑘 ∼ 𝑞0(𝑥;𝑌)

8: for 𝑘 = 1 . . . 𝑃 do
9: 𝜉𝑘 ←

𝑝(𝑋 ′
𝑘, 𝑌)

𝑞0(𝑋 ′
𝑘; 𝑦)

10: 𝑢𝑗 ← log

[︃
1

1
𝑃

∑︀𝑃
𝑘=1 𝜉𝑘

]︃

11: 𝑡𝑖 ← − 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

12: return − 1
𝑛

∑︀𝑛
𝑖=1 𝑡𝑖

Figure 8.3 shows the estimation gaps of EEVI when using the standard weights (8.26) and (8.27)
and extended weights (8.30) and (8.31) Algorithms 8.1 and 8.2 give interval estimators [�̌�𝑌 , �̂�𝑌] that
implement Eqs. (8.8) and (8.9) with extended weights 𝑤 and 𝑤′ (8.28) and (8.29). Standard proposals
without auxiliary variables are a special case, where 𝒱 = {𝜔} is a singleton and 𝑟(𝑣;𝑥, 𝑦) = 𝛿(𝑣;𝜔).

Example 8.1 (SIR Proposals). To fix ideas, consider a base proposal 𝑞0(𝑥; 𝑦) that has no auxiliary
variables, which may have been hand constructed or trained variationally. The proposal 𝑞0 can be
embedded in a sampling-importance-resampling (SIR) scheme that generates 𝑃 variables 𝑥1:𝑃 i.i.d.
from 𝑞0 and a selection index 𝑘 taking value 𝑖 with relative probability 𝑝(𝑥𝑖, 𝑦)/𝑞0(𝑥𝑖; 𝑦) (i.e., the
auxiliary variables 𝑣 ::= (𝑥1:𝑃 , 𝑘)), then sets 𝑥← 𝑥𝑘:

𝑞((𝑥1:𝑃 , 𝑘), 𝑥; 𝑦) =

𝑃∏︁

𝑗=1

𝑞0(𝑥𝑗)

⎡
⎣

𝑝(𝑥𝑘,𝑦)
𝑞0(𝑥𝑘;𝑦)∑︀𝑃
𝑖=1

𝑝(𝑥𝑖,𝑦)
𝑞0(𝑥𝑖;𝑦)

⎤
⎦ 𝛿(𝑥;𝑥𝑘).

The task of the auxiliary proposal 𝑟((𝑥1:𝑃 , 𝑘);𝑥, 𝑦) is to infer 𝑣 for an (𝑥, 𝑦) pair as follows:

𝑟((𝑥1:𝑃 , 𝑘);𝑥, 𝑦) =

𝑃∏︁

𝑗=1
𝑗 ̸=𝑘

𝑞0(𝑥𝑗 ; 𝑦)

[︂
1

𝑃

]︂
𝛿(𝑥𝑘;𝑥).

The weight (8.28) is then precisely the usual SIR estimate of the marginal density of 𝑦,

𝑝(𝑥, 𝑦)𝑟(𝑣;𝑥, 𝑦)

𝑞(𝑣, 𝑥; 𝑦)
=

1

𝑃

𝑃∑︁

𝑗=1

𝑝(𝑥𝑗 , 𝑦)

𝑞0(𝑥𝑗 ; 𝑦)
. (8.32)

By Burda et al. [2015, Theorem 1], if 𝑝(𝑥, 𝑦)/𝑞0(𝑥; 𝑦) is bounded then DKL [𝑞(𝑣, 𝑥; 𝑦)||𝑝(𝑥 | 𝑦)𝑟(𝑥)]→ 0

168

100 101 102 103

No. of SIR Particles P

100

101

E
nt

ro
py

d = 4 Dimensions

Ground Truth

Prior Proposal

Amortized VI Proposal

100 101 102 103

No. of SIR Particles P

102

103
d = 100 Dimensions

Figure 8.4: Lower and upper bounds on the entropy of 𝑑/2 dimensions 𝑌 of a 𝑑-dimensional Gaussian
(𝑋,𝑌) using the SIR scheme from Example 8.1 and Algorithms 8.3 and 8.4. The base proposals 𝑞0(𝑥; 𝑦)
are the prior and an amortized variational approximation to the posterior that specifies a separate
regression for each dimension of 𝑋 given 𝑌 . While the bounds converge to the ground truth (known
in closed form for Gaussians) as the number 𝑃 of SIR particles increases using both proposals, the
variational proposal is closer in “exclusive” and “inclusive” KL to the posterior, resulting in a higher
accuracy at each 𝑃 . At 𝑑 = 100, the lower bounds exhibit much lower bias and variance as compared
to the upper bounds, especially for small 𝑃 .

(i.e., the bias in Eq. (8.18)) as 𝑃 → ∞. Algorithms 8.3 and 8.4 present EEVI with SIR, which are
special cases of Algorithms 8.1 and 8.2, respectively. «

Example 8.2 (SMC Proposals). The SIR proposal from Example 8.1 can be generalized to the setting
of a sequence {𝑝𝑡(𝑥; 𝑦)}𝑇𝑡=0 with 𝑇 intermediate (unnormalized) target densities such that 𝑝𝑇 (𝑥, 𝑦) =
𝑝(𝑥, 𝑦). Such a sequence might arise in dynamic state-space models (as partial posteriors up to some
time point) [Doucet and Johansen, 2011] or in static models (via tempering or sequential Bayesian
updating) [Neal, 2001, Del Moral et al., 2006]. Algorithm 8.5 shows the proposal 𝑞(𝑣, 𝑥; 𝑦) from a
run of SMC with initial kernel 𝑞0(𝑥0; 𝑦); forward kernels 𝑞𝑡(𝑥𝑡;𝑥𝑡−1, 𝑦) (𝑡 = 1 . . . 𝑇); backward kernels
𝑙𝑡(𝑥𝑡;𝑥𝑡+1, 𝑦) (𝑡 = 0 . . . 𝑇−1); and 𝑃 particles. Here, 𝑣 ::= (𝐼𝑇 , 𝑎

1:𝑃
1:𝑇 , 𝑥

1:𝑃
0:𝑇) contains all auxiliary variables

and 𝑥 ∼ 𝛿(𝑥𝐼𝑇𝑇) is the selected final particle. Algorithm 8.6 shows the auxiliary proposal 𝑟(𝑣;𝑥, 𝑦), which
infers 𝑣 given (𝑥, 𝑦) using generalized “conditional SMC” [Andrieu et al., 2010, Cusumano-Towner and
Mansinghka, 2017]. Simplifying the weights (8.28) and (8.29) gives

𝑤(𝑣, 𝑥, 𝑦) =

𝑇∏︁

𝑡=0

⎡
⎣ 1

𝑃

𝑃∑︁

𝑗=1

𝑤𝑗
𝑡

⎤
⎦ (8.33)

𝑤′(𝑣, 𝑥, 𝑦) =
1

𝑤(𝑣, 𝑥, 𝑦)
, (8.34)

where 𝑤𝑗
𝑡 terms are defined in line 6 of Algorithm 8.5 for 𝑤(𝑣, 𝑥, 𝑦) and line 12 of Algorithm 8.6 for

𝑤′(𝑣, 𝑥, 𝑦). It also possible to learn the kernels 𝑞𝑡 using variational inference [Maddison et al., 2017]. «

Example 8.3 (SMC+SIR Proposals). Multiple runs of the SMC proposals in Example 8.2 can be
embedded within the SIR scheme described in Example 8.1. In this case, the base proposal 𝑞0(𝑣, 𝑥; 𝑦)

169

Algorithm 8.5 SMC proposal 𝑞(𝑣, 𝑥; 𝑦).

Require: Target distribution 𝑝(𝑥, 𝑦)
Observation 𝑦
Unnormalized target densities
{𝑝𝑡(𝑥𝑡; 𝑦)}𝑇𝑡=0 such that
𝑝𝑇 (𝑥; 𝑦) = 𝑝(𝑥, 𝑦)

Initial kernel 𝑞0(𝑥0; 𝑦)
Kernels 𝑞𝑡(𝑥𝑡;𝑥𝑡−1, 𝑦) (1 ≤ 𝑡 ≤ 𝑇)
Kernels 𝑙𝑡(𝑥𝑡;𝑥𝑡+1, 𝑦) (0 ≤ 𝑡 ≤ 𝑇 − 1)
Number of particles 𝑃
ESS threshold 𝛾

Ensure: Approximate sample 𝑥 from 𝑝𝑇 (𝑥; 𝑦) and
record 𝑣 of all the sampled auxiliary random
variables.

1: 𝑥𝑖0 ∼ 𝑞0(−; 𝑦) (𝑖 = 1 . . . 𝑃)
2: 𝑤𝑖

0 ← 𝑝0(𝑥
𝑖
0; 𝑦)/𝑞0(𝑥

𝑖
0; 𝑦) (𝑖 = 1 . . . 𝑃)

3: for 𝑡 = 1 . . . 𝑇 do
4: 𝑎𝑖𝑡 ← Categorical(𝑤1:𝑃

𝑡−1) (𝑖 = 1 . . . 𝑃)

5: 𝑥𝑖𝑡 ∼ 𝑞𝑡(−;𝑥𝑎
𝑖
𝑡

𝑡−1, 𝑦) (𝑖 = 1 . . . 𝑃)

6: 𝑤𝑖
𝑡 ←

𝑝𝑡(𝑥
𝑖
𝑡; 𝑦)𝑙𝑡−1(𝑥

𝑎𝑖𝑡
𝑡−1;𝑥

𝑖
𝑡, 𝑦)

𝑝𝑡−1(𝑥𝑎
𝑖

𝑡 ; 𝑦)𝑞𝑡(𝑥𝑖𝑡;𝑥
𝑎𝑖𝑡
𝑡−1, 𝑦)

(𝑖 = 1 . . . 𝑃)

7: 𝐼𝑇 ∼ Categorical(𝑤1:𝑃
𝑇)

8: return (𝑣, 𝑥) ::= ((𝐼𝑇 , 𝑎
1:𝑃
1:𝑇 , 𝑥

1:𝑃
0:𝑇), 𝑥

𝐼𝑇)

Algorithm 8.6 Auxiliary SMC proposal 𝑟(𝑣;𝑥, 𝑦).

Require: Target distribution 𝑝(𝑥, 𝑦)
Observation (𝑥, 𝑦)
Unnormalized target densities
{𝑝𝑡(𝑥𝑡; 𝑦)}𝑇𝑡=0 such that
𝑝𝑇 (𝑥; 𝑦) = 𝑝(𝑥, 𝑦)

Initial kernel 𝑞0(𝑥0; 𝑦)
Kernels 𝑞𝑡(𝑥𝑡;𝑥𝑡−1; 𝑦) (1 ≤ 𝑡 ≤ 𝑇)
Kernels 𝑙𝑡(𝑥𝑡;𝑥𝑡+1; 𝑦) (0 ≤ 𝑡 ≤ 𝑇 − 1)
Number of particles 𝑃
ESS Threshold 𝛾

Ensure: Approximate sample 𝑣 of all auxiliary
variables generated by a run of Algorithm 8.5
that returned 𝑥.

1: 𝐼𝑇 ∼ Uniform(1 . . . 𝑃)
2: 𝑥𝐼𝑇𝑇 ← 𝑥
3: for 𝑡 = 𝑇 − 1 . . . 0 do
4: 𝐼𝑡 ∼ Uniform(1 . . . 𝑃)

5: 𝑥𝐼𝑡𝑡 ∼ 𝑙𝑡(−;𝑥𝐼𝑡+1

𝑡+1 , 𝑦)

6: 𝑎
𝐼𝑡+1

𝑡+1 ← 𝐼𝑡

7: 𝑥𝑖0 ∼ 𝑞0(−; 𝑦) (𝑖 = 1 . . . 𝑃 ; 𝑖 ̸= 𝐼0)
8: 𝑤𝑖

0 ← 𝑝0(𝑥
𝑖
0; 𝑦)/𝑞0(𝑥

𝑖
0; 𝑦) (𝑖 = 1 . . . 𝑃)

9: for 𝑡 = 1 . . . 𝑇 do
10: 𝑎𝑖𝑡 ← Categorical(𝑤1:𝑃

𝑡−1) (𝑖 = 1 . . . 𝑃, 𝑖 ̸= 𝐼𝑡)

11: 𝑥𝑖𝑡 ∼ 𝑞𝑡(−;𝑥𝑎
𝑖
𝑡

𝑡−1)(𝑖 = 1 . . . 𝑃 ; 𝑖 ̸= 𝐼𝑡)

12: 𝑤𝑖
𝑡 ←

𝑝𝑡(𝑥
𝑖
𝑡; 𝑦)𝑙𝑡−1(𝑥

𝑎𝑖𝑡
𝑡−1;𝑥

𝑖
𝑡, 𝑦)

𝑝𝑡−1(𝑥𝑎
𝑖

𝑡 ; 𝑦)𝑞𝑡(𝑥𝑖𝑡;𝑥
𝑎𝑖𝑡
𝑡−1, 𝑦)

(𝑖 = 1 . . . 𝑃)

13: return 𝑣 ::= (𝐼𝑇 , 𝑎
1:𝑃
1:𝑇 , 𝑥

1:𝑃
0:𝑇)

for SIR has auxiliary variables 𝑣 and the corresponding base auxiliary proposal is denoted 𝑟0(𝑣;𝑥, 𝑦).
If 𝑞0 and 𝑟0 are from the SMC scheme in Example 8.2 and Algorithms 8.5 and 8.6, then the overall
SIR scheme corresponds to 𝑃 independent runs of SMC and conditional SMC, which themselves use 𝑃 ′

particles internally. The resampling step selects one of these 𝑃 independent runs. The overall proposal
𝑞(𝑣, 𝑥; 𝑦) and auxiliary proposal 𝑟(𝑣;𝑥, 𝑦) on the extended space are then

𝑞(𝑣1:𝑃 , 𝑥; 𝑦) =
1

𝑃

𝑃∑︁

𝑘=1

𝑞0(𝑣𝑘, 𝑥; 𝑦)

𝑃∏︁

𝑡=1
�̸�=𝑘

𝑟0(𝑣𝑡;𝑥, 𝑦), (8.35)

𝑟(𝑣1:𝑃 ;𝑥, 𝑦) =
𝑃∏︁

𝑡=1

𝑟0(𝑣𝑡;𝑥, 𝑦). (8.36)

170

Algorithm 8.7 EEVI upper bound using SIR
proposal with auxiliary variables.

Require:

Target distribution 𝑝(𝑥, 𝑦)
Base proposal distribution 𝑞0(𝑣, 𝑥; 𝑦)
Base auxiliary proposal dist 𝑟0(𝑣;𝑥, 𝑦)
Number of samples 𝑛, 𝑚, 𝑃

1: for 𝑖 = 1 . . . 𝑛 do
2: (�̃�, 𝑌) ∼ 𝑝(𝑥, 𝑦)
3: for 𝑗 = 1 . . .𝑚 do
4: (𝑉1, 𝑋) ∼ 𝑞0(𝑣, 𝑥;𝑌)
5: for 𝑘 = 2 . . . 𝑃 do
6: 𝑉𝑘 ∼ 𝑟0(𝑣;𝑋,𝑌)

7: for 𝑘 = 1 . . . 𝑃 do
8: 𝜉𝑘 ←

𝑞(𝑉𝑘, 𝑋;𝑌)

𝑟(𝑉𝑘;𝑋,𝑌)

9: 𝑢𝑗 ← log
𝑝(𝑋,𝑌)

1
𝑃

∑︀𝑃
𝑘=1 𝜉𝑘

10: 𝑡𝑖 ← 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

11: return − 1
𝑛

∑︀𝑛
𝑖=1 𝑡𝑖

Algorithm 8.8 EEVI lower bound using SIR
proposal with auxiliary variables.

Require:

Target distribution 𝑝(𝑥, 𝑦)
Base proposal distribution 𝑞0(𝑣, 𝑥; 𝑦)
Base auxiliary proposal dist 𝑟0(𝑣;𝑥, 𝑦)
Number of samples 𝑛, 𝑚, 𝑃

1: for 𝑖 = 1 . . . 𝑛 do
2: (𝑋1, 𝑌) ∼ 𝑝(𝑥, 𝑦)
3: (𝑋2:𝑚) ∼ MCMC𝑋1 targeting 𝑝(𝑥 | 𝑌)
4: for 𝑗 = 1 . . .𝑚 do
5: for 𝑘 = 1 . . . 𝑃 do
6: 𝑉𝑘 ∼ 𝑟(𝑣;𝑋𝑗 , 𝑌)

7: 𝜉𝑘 ←
𝑞(𝑉𝑘, 𝑋𝑗 ;𝑌)

𝑟(𝑉𝑘;𝑋𝑗 , 𝑌)

8: 𝑢𝑗 ← log
1
𝑃

∑︀𝑃
𝑘=1 𝜉𝑘

𝑝(𝑋𝑗 , 𝑌)

9: 𝑡𝑖 ← − 1
𝑚

∑︀𝑚
𝑗=1 𝑢𝑗

10: return 1
𝑁

∑︀𝑁
𝑖=1 𝑡𝑖

The extended weight Eq. (8.28), which appears in line 9 of Algorithm 8.7, is then

𝑤(𝑣1:𝑃 , 𝑥; 𝑦) =

𝑝(𝑥, 𝑦)
𝑃∏︁

𝑘=1

𝑟0(𝑣𝑘;𝑥, 𝑦)

1

𝑃

𝑃∑︁

𝑘=1

𝑞0(𝑣𝑘, 𝑥; 𝑦)
𝑃∏︁

𝑡=1
�̸�=𝑘

𝑟0(𝑣𝑡;𝑥, 𝑦)

=
𝑝(𝑥, 𝑦)

1

𝑃

𝑃∑︁

𝑘=1

𝑞0(𝑣𝑘, 𝑥; 𝑦)

𝑟(𝑣𝑘;𝑥, 𝑦)

. (8.37)

The extended weight (8.29), which appears in line 8 of Algorithm 8.8, is the reciprocal of the weight
Eq. (8.37). The extended proposal 𝑞(𝑣1:𝑃 , 𝑥; 𝑦) generates samples (𝑉1:𝑃 , 𝑋) as follows:

• sample (𝑉0, 𝑋) ∼ 𝑞0(𝑣, 𝑥; 𝑦);
• sample selection index 𝑘 ∼ Uniform(1 . . . 𝑃);
• set 𝑉𝑘 ← 𝑉0;
• sample 𝑉𝑗 ∼ 𝑟0(𝑣;𝑋, 𝑦) from the base auxiliary proposal for 𝑗 = 1, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑃 .

The extended auxiliary proposal 𝑟(𝑣1:𝑃 ;𝑥, 𝑦) generates 𝑃 i.i.d. samples from 𝑟0(𝑣;𝑥, 𝑦). «

8.4 Applications to Optimal Data Acquisition

Information estimates delivered by EEVI are evaluated on two challenging data acquisition problems.
Section 8.4.1 shows how to rank medical tests in an expert system for liver disorders according to
their conditional mutual information with diseases of interest, given a pattern of symptoms and patient
attributes. Section 8.4.2 analyzes a dynamic insulin model for diabetes and shows how to compute
optimal times to take blood glucose measurements that maximize information about a patient’s insulin
sensitivity, given their insulin intake and meal schedule.

171

8.4.1 HEPAR Liver Disease Network

HEPAR [Lucas et al., 1989] is a medical expert system that helps physicians diagnose complex disorders
in the liver and biliary tract. This evaluation analyzes the Bayesian network variant of HEPAR [Oniśko,
2003] shown in Figure 8.5. The model contains three types of nodes, which represents a patient’s (i) at-
tributes, such as age and obesity; (ii) latent liver diseases, such as PBC and cirrhosis; and (iii) symptoms,
such as nausea and blood pressure. Consider the following inference problem:

Given a patient with a set {𝑜𝑖} of observed attributes and symptoms, which medical tests
{𝑡𝑗} for symptoms should the physician conduct to maximize information about the presence
of a disease 𝑑?

This problem can be formalized as computing a ranking of the tests {𝑡𝑗} according to the their
conditional mutual information (CMI) with 𝑑, which is defined as

𝐼(𝑑 : 𝑡𝑗 | {𝑜𝑖}) = 𝐻(𝑑 | {𝑜𝑖})−𝐻(𝑑 | 𝑡𝑗 , {𝑜𝑖}). (8.38)

As 𝐻(𝑑 | {𝑜𝑖}) in Eq. (8.38) is the same for all tests 𝑡𝑗 , it can be ignored for ranking. For computational
efficiency, tests are ranked by increasing conditional entropy 𝐻(𝑑 | 𝑡𝑗 , {𝑜𝑖}) as defined in Eq. (8.12).

Results Figure 8.5 shows a pattern of 20 observed nodes (red), 31 medical tests for symptoms (yellow),
and two liver diseases (blue). Table 8.1 shows the top 10 tests ranked by 𝐻(𝑑 | 𝑡𝑗 , {𝑜𝑖}) for the PBC
and cirrhosis diseases. In Tables 8.1a and 8.1b, the first and second columns show the top 10 most
informative tests and conditional entropy values for PBC and cirrhosis, respectively The conditional
entropies are computed as the midpoint of interval estimates from EEVI (Algorithms 8.1 and 8.2), using
SIR auxiliary variable proposal (Example 8.1) with ancestral sampling base proposal. The number of
particles 𝑃 is sufficient to drive the interval width to below 10−3 nats. To assess how useful these
rankings might be to a physician, the third columns in Tables 8.1a and 8.1b show median prediction
errors for each disease in 5000 random patients, obtained from conditioning on the symptoms, attributes,
and one additional medical test. That is, for each candidate test 𝑡𝑗 , the prediction error is defined as the
log loss between the posterior 𝑝(𝑑 | 𝑡𝑗 , {𝑜𝑖}) and the ground-truth label. For reference, prediction errors
using 𝑝(𝑑 | {𝑜𝑖}) (denoted “no test”) and 𝑝(𝑑) (denoted “no test or obs”) are also shown. Tables 8.1a
and 8.1b confirm that tests with higher information values produce lower errors. Conditional entropy
estimates from EEVI can thus serve as a useful decision-making tool in this expert system.

Runtime Figure 8.6 compares runtime versus accuracy profiles of EEVI to exact inference using SPPL
(Chapter 7) and the nonparametric estimator of Kraskov et al. [2004]. The query is estimating the joint
entropy 𝐻({𝑜𝑖}𝑘𝑖=1) of 𝑘-dimensional random variables in the HEPAR network (𝑘 = 10, 15, 20, 40). For
these queries, upper and lower bounds from EEVI converge in 1–10 seconds for each 𝑘. Unsurprisingly,
the runtime needed for the bounds to meet grows as 𝑘 increases. In contrast, the estimator of Kraskov
et al. [2004] converges slower, as it is “model-free” and estimates log probabilities from simulated data
without leveraging model structure. Exact inference in SPPL does not scale well beyond 15 dimensions
for computing entropies in the HEPAR network for two reasons: first, computing exact probabilities of
observations at the leaves of Figure 8.5 requires summing over all possible parent configurations given
the lack of conditional independencies; second, computing the outer expectation for entropy requires
enumerating over exponentially many variable states. The plots also highlight a key feature of EEVI:
the width of the interval quantifies the accuracy of the estimate at any given level of computation and
can squeeze the true value. In contrast, the nonparametric estimator provides point estimates (typically
lower bounds) whose accuracy at a given level of computation is unknown.

172

PBC

Cirrhosis

hepatotoxi
THepatitis

alcoholism

gallstones
choledocho

hospital
injectionssurgery
transfusio ChHepatiti

vh amn

sex

age

fibrosis

diabetes obesity Steatosis

Hyperbilir

triglyceri

RHepatitis

fatigue

bilirubin

itching

upper pain

fat

pain ruq

pressure r

phosphatas

skin

ama

le cells

joints
pain

proteins

edema

platelet

inr

bleeding

flatulence

alcohol

encephalop

urea

ascites

hepatomega hepatalgia

density

ESR

alt

ast

amylase

ggtp

cholestero

hbsag hbsag anti

anorexia

nausea

spleen

consciousn

spiders

jaundice

albumin

edge

irregular

hbc anti

hcv anti

palms

hbeag

carcinoma

Observed Symptoms

Medical Tests

Liver Diseases

Figure 8.5: HEPAR liver disease model [Oniśko, 2003].

Table 8.1: Using EEVI to rank diagnostic medical tests (yellow) in the HEPAR liver disease network
by how informative they are about diseases (blue) given a pattern of observations (red). For both the
PBC disease in (a) and cirrhosis diseases in (b), conducting medical tests that give lower conditional
entropy 𝐻(𝑑 | 𝑡, {𝑜𝑖}20𝑖=1) of the disease (i.e., higher conditional mutual information) results in lower
prediction errors about its presence or absence.

D
ec

re
as

in
g

In
fo

rm
at

io
n

V
al

ue

(a) Top 10 tests for disease 𝑑 = PBC.

Medical Test 𝑡 𝐻(𝑑 | 𝑡, {𝑜𝑖}20𝑖=1) Prediction Error

ama 0.274 0.030
ESR 0.346 0.094
cholesterol 0.385 0.126
ggtp 0.397 0.131
carcinoma 0.402 0.144
pain 0.404 0.148
pressure ruq 0.410 0.174
le cells 0.411 0.172
irregular liver 0.413 0.173
edge 0.415 0.175
no test 0.418 0.175
no test or obs 0.663 0.486

(b) Top 10 tests for disease 𝑑 = Cirrhosis.

Medical Test 𝑡 𝐻(𝑑 | 𝑡, {𝑜𝑖}20𝑖=1) Prediction Error

irregular liver 0.225 0.035
edge 0.247 0.036
spiders 0.253 0.037
spleen 0.256 0.043
palms 0.261 0.043
carcinoma 0.261 0.049
edema 0.262 0.056
triglycerides 0.264 0.056
albumin 0.268 0.068
phosphatase 0.272 0.068
no test 0.290 0.070
no test or obs 0.320 0.080

173

10−1 100 101 102

Runtime (seconds)

−1

0

1

2

3

4

5

6
E

nt
ro

py
(N

at
s)

10 Dimensions

EEVI Alg. 2

EEVI Alg. 1

Kraskov

SPPL (Chapter 7)

10−1 100 101 102

Runtime (seconds)

0

2

4

6

8

10

12
15 Dimensions

10−1 100 101 102

Runtime (seconds)

0

2

4

6

8

10

12
20 Dimensions

10−1 100 101 102

Runtime (seconds)

0

4

8

12

16

20

24
40 Dimensions

Figure 8.6: Runtime for estimating entropies in the HEPAR network using EEVI Algorithms 8.1 and 8.2,
exact inference in SPPL (Chapter 7) and the baseline nonparametric estimator of Kraskov et al. [2004].
For EEVI, the runtime increases with number 𝑃 of SIR samples for EEVI (Eq. (8.32)). For the Kraskov
et al. estimator, the runtime increases with number of observations from 𝑝(𝑥, 𝑦). For SPPL, the
runtime is constant, but exact inference scales poorly beyond 15 dimensions because computing the exact
marginal probabilities is expensive and entropy is a sum over exponentially many variable configurations.

Variance Control Following Eq. (8.12), bounds on the conditional entropy 𝐻(𝑑 | 𝑡𝑗 , {𝑜𝑖}) in Fig-
ure 8.5 are a difference of two marginal entropy bounds (see also Figure 8.2)

�̌�(𝑑 | 𝑡𝑗 , {𝑜𝑖}) = �̌�(𝑑, 𝑡𝑗 , {𝑜𝑖})− �̂�(𝑡𝑗 , {𝑜𝑖}), (8.39)

�̂�(𝑑 | 𝑡𝑗 , {𝑜𝑖}) = �̂�(𝑑, 𝑡𝑗 , {𝑜𝑖})− �̌�(𝑡𝑗 , {𝑜𝑖}). (8.40)

Figure 8.7a shows 18 realizations of interval estimates of conditional entropy using shared samples
(non-i.i.d. estimator) and independent samples (i.i.d. estimator) for the random random variables used
to estimate each of the two terms in the right-hand sides of Eqs. (8.39) and (8.40). The non-i.i.d.
estimator has lower variance as compared to the i.i.d. estimator and ensures that the realized lower
bound is smaller than the realized upper bound. Figure 8.7b explains this behavior in terms of the
correlation of the random weights Eqs. (8.28) and (8.29) used to estimate the four marginal entropies
in Eqs. (8.39) and (8.40) (recall that Var[𝐴 − 𝐵] = Var[𝐴] + Var[𝐵] − 2Cov[𝐴,𝐵] for any pair of real
random variables 𝐴 and 𝐵). It is recommended that practitioners empirically assess the variance and
width of the interval estimators as in Figure 8.7b, as well as inspect scatter plots of the weights when
adding/subtracting EEVI bounds to bound derived information measures.

8.4.2 Dynamic Insulin Model for Diabetes

Adjusting the insulin dosage for diabetic patients is a challenging clinical process. While most medica-
tions have two or three standard dosing options, insulin dose is highly individualized to each patient.
Finding the correct dose is an iterative process that must account for the patient’s insulin response
to a test dose, their latent insulin sensitivities, and changing clinical conditions. Commercial software
such as Glytec and EndoTool for insulin management have been developed to aid clinicians with this
nuanced and costly process. The application in this section shows how to use EEVI for solving a data
acquisition task in a differential equation model of carbohydrate metabolism [Andreassen et al., 1991]
for insulin adjustment in diabetic patients.

Figure 8.8a shows a dynamic Bayesian network that represents a discretization of the differential
equation. The “insulin sensitivity” node (blue) is a global latent parameter that dictates how effectively
the patient converts released insulin (e.g., from oral medications or injections) into biologically usable

174

Realization Index
0.225

0.250

0.275

0.300

0.325

E
n

tr
op

y
(N

at
s)

H(PBC | ama, {oi}) Estimates
using non-i.i.d. estimator

Upper Bound
Lower Bound

Realization Index

H(PBC | ama, {oi}) Estimates
using i.i.d. estimator

(a) 36 independent realizations of estimators of conditional entropy using non-i.i.d. and i.i.d. sampling.

−15 −10 −5 0

log
p(W ′,PBC′, ama, {oi})
q(W ′,PBC′; ama, {oi})

−15

−10

−5

0

−
lo

g
q(
W

;P
B

C
,a

m
a
,{
o i
})

p
(W

,P
B

C
,a

m
a
,{
o i
})

H(PBC | ama, {oi})
Lower Bound Weights

W,PBC, ama, {oi} ∼ p
W ′,PBC′ ∼ q(w; ama, {oi})

−15 −10 −5 0

− log
q(W,PBC; ama, {oi})
p(W,PBC, ama, {oi})

lo
g
p
(W
′ ,

P
B

C
,a

m
a
,{
o i
})

q(
W
′ ;

P
B

C
,a

m
a
,{
o i
})

H(PBC | ama, {oi})
Upper Bound Weights

W,PBC, ama, {oi} ∼ p
W ′ ∼ q(w; PBC, ama, {oi})

(b) Scatter plot of random log importance weights. Positive covariance reduces variance of non-i.i.d. sampling.

Figure 8.7: (a) Reducing the variance of interval estimators of 𝐻(PBC | ama, {𝑜𝑖}) (Table 8.1a, row 1)
by non-i.i.d. sampling. (b) As conditional entropy bounds Eqs. (8.39) and (8.40) are average differences
(x-axes minus y-axes) of random weights that here are positively correlated, computing differences using
non-i.i.d. samples reduces variance by twice the covariance. The variable 𝑊 refers to all other variables
in the HEPAR network from Figure 8.5.

175

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

Time of Day

Insulin Sensitivity
Blood Glucose Level
Insulin Release
Meal

(a) Carbohydrate metabolism
model [Andreassen et al., 1991]

0

5
Insulin Release

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

Time of Day

0

50 Meal

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

t1: Time of 1st Measurement

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
0
1
2
3
4
5
6

t 2
:T

im
e

of
2n

d
M

ea
su

re
m

en
t

I
(

: (t1 , t2) | {(i, i,)}24
i=0

)

0.0

0.1

0.2

0.3

0.4

0.5

(b) Meal and Insulin Scenario 1

0

5
Insulin Release

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

Time of Day

0

100 Meal

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6

t1: Time of 1st Measurement

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
0
1
2
3
4
5
6

t 2
:T

im
e

of
2n

d
M

ea
su

re
m

en
t

I
(

: (t1 , t2) | {(i, i,)}24
i=0

)

0.0

0.1

0.2

0.3

0.4

(c) Meal and Insulin Scenario 2

Figure 8.8: Inferring optimal pairs of times to measure blood glucose level (red) that maximize infor-
mation about a patient’s latent insulin sensitivity (blue). Each heatmap in (b)–(c) shows estimates
from EEVI of the conditional mutual information of insulin sensitivity with a pair of blood glucose
measurements for all pairs of times, under a certain scenario of the patient’s insulin release (yellow) and
meal (green) schedule. Each scenario has a different optimal pair of times to measure blood glucose:
12pm/1am and 9am/3pm, respectively.

insulin. The “meal” (green) and “insulin release” (yellow) nodes are intervention variables based on the
patient’s victual and medication intake over a 25-hour period. At time 𝑡, the blood glucose level is a
noisy function of insulin sensitivity and several variables at 𝑡 − 1, namely: blood glucose level, meal,
insulin release, and 14 intermediate biological latent variables (white nodes). Refer to Andreassen et al.
[1991] for full details about the model. Suppose a diabetic patient is having their insulin adjusted and
the physician is interested in the following problem:

Given the patient’s meal and insulin release schedule, at which pairs of times should blood
glucose level be measured to maximize information about insulin sensitivity?

More formally, the problem is to rank pairs of times (𝑡1, 𝑡2) by decreasing CMI values with insulin
sensitivity (for 0 ≤ 𝑡1 < 𝑡2 ≤ 24), given the meal and insulin release schedule:

𝐼(ins sens : (BG𝑡1 ,BG𝑡2) | {(meal𝑡, ins rel𝑡)}24𝑡=0), (8.41)

where BG𝑡 denotes blood glucose measured at time 𝑡 and “ins sense” denotes the latent insulin sensitivity.
Given the temporal structure in the model, entropy bounds are computed using the SMC proposals
in Example 8.2 and Algorithms 8.5 and 8.6, with a number 𝑃 of particles that squeezes the interval
width to 10−2 nats. Figures 8.8b and 8.8c show CMI estimates for all pairs of time points under two
different scenarios of meal and insulin release. Assuming that the model of Andreassen et al. [1991]
is accurate, the optimal times from these heatmaps can provide valuable insights to the physician, as
insulin sensitivity relates to blood glucose level through complex dynamics of carbohydrate metabolism
that are challenging and costly to assess heuristically. EEVI enables quantitative analysis of information
values of time points by probabilistic inference in the model for any meal and insulin schedule.

176

8.5 Related Work

Model Based Entropy Estimation Several works have derived variational bounds of information
measures for a known target distribution [Barber and Agakov, 2003, Alemi and Fischer, 2018, Foster
et al., 2019, Poole et al., 2019]. Unlike EEVI, these estimators do not not apply to arbitrary subsets
of random variables in a generative model and do not report interval estimates. The proposed EEVI
method can compute two-sided bounds and solve queries not handled previously. For example, the
upper bounds on 𝐼(𝑋 : 𝑌) in Poole et al. [2019, Figure 1] and Foster et al. [2019, Eq. (9)] assume
that 𝑝(𝑦 | 𝑥) is tractable. In contrast, Algorithms 8.1 and 8.2 can be used to obtain interval estimates
of 𝐼(𝑋 : 𝑌) even when 𝑝(𝑦 | 𝑥) and 𝑝(𝑥 | 𝑦) are both intractable, as in Figure 8.2. The applications
in Section 8.4 solve such queries for analyzing medical data.

Model-Free Entropy Estimation Many nonparametric entropy estimators given i.i.d. data from
an unknown distribution have also been developed [Kozachenko and Leonenko, 1987, Paninski, 2003,
Kraskov et al., 2004, Pérez-Cruz, 2008, Belghazi et al., 2018, Goldfeld et al., 2020]. In contrast to these
methods, EEVI is a “model-based” estimator in the sense that it requires that the target distribution
is known. Nonparametric estimators can typically be used in model-based settings by applying them
to i.i.d. data simulated from the model. A drawback of using nonparametric estimators in this way,
however, is that they ignore the known model structure. Figure 8.6 suggests that EEVI scales better
in these cases, because the model structure is used to build a suitable proposal. A second advantage of
EEVI is that the interval width indicates the quality of the estimate at a given level of computational
effort, whereas nonparametric methods do not deliver two-sided bounds. The flip side is that building
accurate proposals for EEVI needs more expertise as compared to purely nonparametric methods.

Nested and Recursive Monte Carlo Rainforth et al. [2018] give a thorough treatment of con-
sistency and convergence properties of a very general class of nested Monte Carlo estimators. The
expressions in Eqs. (8.8) and (8.9) used for EEVI are instances of nested Monte Carlo, where the inner
expectation is obtained via pseudo-marginal methods [Andrieu and Roberts, 2009] and the nonlinear
mapping is log. The recursive auxiliary-variable inference (RAVI) method from Lew et al. [2022] can be
used to construct EEVI algorithms with deeper levels of nesting than just a pair (𝑞, 𝑟) of a proposal and
auxiliary proposal for a given model 𝑝 (Figure 8.1). Such extensions, however, must be accompanied
with a careful characterization of the underlying runtime and accuracy trade-offs.

Bounds on Marginal Probabilities Grosse et al. [2015] introduced the idea of using annealed
importance sampling or sequential harmonic mean to “sandwich” marginal log probabilities. Grosse
et al. [2016] and Wu et al. [2016] apply these estimators to diagnose MCMC inference algorithms
and analyze deep generative models, respectively. EEVI builds on log probability bounds for the new
problem of forming interval estimators of entropy and composing the estimates to bound many derived
information-theoretic quantities. Cusumano-Towner and Mansinghka [2017] use a similar family of
auxiliary-variable importance samplers from Section 8.3.1 to upper bound symmetric KL divergences
between a pair of distributions—in that setting, the normalizing constants in Eq. (8.18) are irrelevant
as they cancel out so the weights Eqs. (8.28) and (8.29) are only needed up to normalizing constants.
In contrast, the normalizing constants in EEVI cannot be ignored as they are the essential quantities
needed to bound entropies.

Probabilistic Programming All EEVI experiments were implemented in the Gen probabilistic
programming system [Cusumano-Towner et al., 2019, Cusumano-Towner, 2020], by representing Al-
gorithms 8.1 and 8.2 as meta-programs that operate on probabilistic model programs (Sections 1.4
and 8.6). These implementations make it easy to apply EEVI to a broad set of generative models in

177

Gen, provided that the target random variables correspond to random choices at addresses that exist
in each execution of the program. Moreover, EEVI is more widely applicable than previous probabilis-
tic programming-based estimators for information-theoretic quantities, such as Saad and Mansinghka
[2017, Algorithm 2a], Gehr et al. [2020, Figure 11], and Narayanan and Shan [2020, Section 8.2]. These
estimators assume that the probabilistic programming system can exactly compute any marginal or
conditional density, which is rarely possible except in languages that restrict modeling expressiveness
to enable exact inference [Saad and Mansinghka, 2016a, Gehr et al., 2016, Narayanan et al., 2016, Saad
et al., 2021]. Even when the marginal probabilities can be computed exactly and relatively efficiently,
the outer integral in the entropy expression (8.2) remains intractable, so a (nonexact) simple Monte
Carlo estimator is required.

To increase the level of automation and accuracy of EEVI, it may be worthwhile to leverage prob-
abilistic programming methods for learning amortized proposal distributions [Paige and Wood, 2016,
Ritchie et al., 2016, Le et al., 2017], as discussed in Section 8.3.1. Another direction is using EEVI to
extend the class of models and queries that can be handled by existing probabilistic programming-based
frameworks for tasks such as searching structured databases [Saad et al., 2017] and optimal experimental
design [Ouyang et al., 2018], which both need accurate estimates of entropy and information.

8.6 Implementation as Probabilistic Meta-Programs in Gen

Listings 8.1 and 8.2 show how to implement EEVI upper and lower bounds (Algorithms 8.1 and 8.2)
with custom proposal distributions as meta-programs in Gen. These functions take as input a model
program and proposal program, both of type GenerativeFunction. The targets input is a selection
of the trace addresses in the model program whose marginal entropy is being queried. The proposal
program takes as input a ChoiceMap whose addresses are precisely those specified by the targets
variable. The proposal must make random choices at all trace addresses in model other than those in
targets. The user is responsible for ensuring that proposal is valid with respect to model in terms of
the absolute continuity requirements discussed in Section 8.3.

In terms of the notation in Figure 8.1, the model is 𝑝(𝑥, 𝑦), the targets are 𝑌 , and the proposal is
𝑞(𝑥, 𝑣; 𝑦). While proposal may make auxiliary random choices 𝑣 that are not part of model, the Gen
specification for a GenerativeFunction type ensures that these choices are transparent to the user. In
particular, the proposal object carries a default internal proposal 𝑟(𝑣;𝑥, 𝑦) that furnishes the required
terms for computing the log weight ratios (8.28) and (8.29). In Listing 8.2, the (optional) MCMC
kernel in line 30 is resimulation Metropolis-Hastings from the prior, though it is possible for the kernel
to instead be customized by the user [Cusumano-Towner, 2020, Section 3.4.2].

EEVI can also be fully automated in Gen without custom proposals. In this case, the proposal
𝑞(𝑥; 𝑦) is the default internal proposal of model, which uses ancestral sampling. To increase accuracy,
the default internal proposal is used as the base proposal within the SIR scheme (Algorithms 8.3
and 8.4) discussed in Example 8.1. Listings 8.3 and 8.4 show the resulting Gen implementations of
the fully automated EEVI bounds. The user only needs to provide the model probabilistic program,
the targets whose marginal entropy is being queried, the number N of outer samples, the number M of
inner samples, and the number P of SIR particles. In line 30 of Listing 8.3, an error is thrown when
the model program is such that the ancestral sampling proposal 𝑞(𝑥; 𝑦) is not absolutely continuous
with respect the posterior 𝑝(𝑥 | 𝑦), which might happen when the observed value {𝑌 = 𝑦} has zero
conditional probability given some setting of {𝑋 = 𝑥}. Programs where the support of a random choice
at a given address varies across different executions are referred to as “undisciplined” in Gen parlance.
While users are able to write undisciplined programs, they are not supported by the formal semantics
of the Gen language and using can result in undefined program behavior.

178

1 import Gen
2
3 """Entropy upper bound using custom proposal."""
4 function entropy_upper_bound(
5 model::Gen.GenerativeFunction,
6 model_args::Tuple,
7 proposal::Gen.GenerativeFunction,
8 proposal_args::Tuple,
9 targets::Gen.Selection,

10 N::Integer,
11 M::Integer
12)
13 wi_list = []
14 for i=1:N
15 # Sample observations from model.
16 trace_p = Gen.simulate(model, model_args) : model_traces[i]
17 observations = Gen.get_selected(Gen.get_choices(trace_p), targets)
18 wj_list = []
19 for j=1:M
20 # Sample latents from proposal and compute score.
21 trace_q = Gen.simulate(proposal, (proposal_args..., observations,))
22 log_q = Gen.get_score(trace_q)
23 # Compute score of latents + observations under model.
24 choices = merge(observations, Gen.get_choices(trace_q))
25 _, log_p = Gen.generate(model, model_args, choices)
26 # Compute importance weight.
27 log_w = log_p - log_q
28 push!(wj_list, log_w)
29 end
30 wj_avg = mean(wj_list)
31 push!(wi_list, wj_avg)
32 end
33 return -mean(wi_list)
34 end

Listing 8.1: Gen implementation of EEVI upper bound using custom proposal (Algorithm 8.1).

179

1 import Gen
2
3 """Entropy lower bound using custom proposal."""
4 function entropy_lower_bound(
5 model::Gen.GenerativeFunction,
6 model_args::Tuple,
7 proposal::Gen.GenerativeFunction,
8 proposal_args::Tuple,
9 targets::Gen.Selection,

10 N::Integer,
11 M::Integer
12)
13 wi_list = []
14 for i=1:N
15 # Sample latents + observations from model and compute score.
16 trace_p = Gen.simulate(model, model_args)
17 wj_list = []
18 for j=1:M
19 # Compute score of latents + observations under model.
20 log_p = Gen.get_score(trace_p)
21 # Compute score of latents under proposal.
22 observations = Gen.get_selected(Gen.get_choices(trace_p), targets)
23 latents = Gen.get_selected(Gen.get_choices(trace_p), Gen.complement(targets))
24 _, log_q = Gen.generate(proposal, (proposal_args..., observations,), latents)
25 # Compute importance weight.
26 log_w = log_q - log_p
27 push!(wj_list, log_w)
28 # MCMC step iterating the latents in trace_p
29 if j < M
30 trace_p = Gen.metropolis_hastings(trace_p, Gen.complement(targets);
31 observations=observations)
32 end
33 end
34 wj_avg = -mean(wj_list)
35 push!(wi_list, wj_avg)
36 end
37 return -mean(wi_list)
38 end

Listing 8.2: Gen implementation of EEVI lower bound using custom proposal (Algorithm 8.2).

180

1 import Gen
2
3 """Entropy upper bound using default ancestral sampling proposal."""
4 function entropy_upper_bound(
5 model::Gen.GenerativeFunction,
6 model_args::Tuple,
7 targets::Gen.Selection,
8 N::Integer,
9 M::Integer,

10 P::Integer
11)
12 wi_list = []
13 for i=1:N
14 # Sample observations from model.
15 trace_p = Gen.simulate(model, model_args)
16 observations = Gen.get_selected(Gen.get_choices(trace_p), targets)
17 wj_list = []
18 for j=1:M
19 wk_list::Vector{Float64} = []
20 for k=1:P
21 # Sample latents (particle k) from ancestral sampling proposal
22 # and retrieve weight w_k,
23 # which is p(observations | latents)
24 trace_q, log_w = Gen.generate(model, model_args, observations)
25 push!(wk_list, log_w)
26 end
27 # Compute overall log importance weight,
28 # which is log [1/P sum w_k]
29 wk_avg = (Gen.logsumexp(wk_list) - log(length(wk_list)))
30 !isinf(wk_avg) || throw("Invalid proposal (infinite log weight)")
31 push!(wj_list, wk_avg)
32 end
33 wj_avg = mean(wj_list)
34 push!(wi_list, wj_avg)
35 end
36 return -mean(wi_list)
37 end

Listing 8.3: Gen implementation of EEVI upper bound using SIR with default proposal (Algorithm 8.3).

181

1 import Gen
2
3 """Entropy lower bound using default ancestral sampling proposal."""
4 function entropy_lower_bound(
5 model::Gen.GenerativeFunction,
6 model_args::Tuple,
7 targets::Gen.Selection,
8 N::Integer,
9 M::Integer,

10 P::Integer)
11 wi_list = []
12 for i=1:N
13 # Sample latents + observations from model.
14 trace_p = Gen.simulate(model, model_args) : model_traces[i]
15 observations = Gen.get_selected(Gen.get_choices(trace_p), targets)
16 wj_list = []
17 for j=1:M
18 trace_pk = trace_p
19 wk_list::Vector{Float64} = []
20 # Retrieve weight of exact posterior sample (particle 1)
21 # using ancestral sampling proposal, which is
22 # p(observations | latents)
23 log_w = Gen.project(trace_pk, targets)
24 push!(wk_list, log_w)
25 for k=2:P
26 # Sample latents (particle k) from ancestral sampling proposal
27 # and retrieve weight w_k,
28 # which is p(observations | latents)
29 trace_pk, log_w = Gen.generate(model, model_args, observations)
30 push!(wk_list, log_w)
31 end
32 # Compute overall log importance weight, which is
33 # log [1 / (1/P sum w_k)] = - log [1/P sum w_k]
34 wk_avg = -(Gen.logsumexp(wk_list) - log(length(wk_list)))
35 push!(wj_list, wk_avg)
36 # MCMC step iterating latents in trace_p.
37 if j < M
38 trace_p = Gen.metropolis_hastings(trace_p, Gen.complement(targets);
39 observations=observations)
40 end
41 end
42 wj_avg = -mean(wj_list)
43 push!(wi_list, wj_avg)
44 end
45 return -mean(wi_list)
46 end

Listing 8.4: Gen implementation of EEVI lower bound using SIR with default proposal (Algorithm 8.4).

182

Chapter 9

Goodness-of-Fit Tests

It has been said that “all models are wrong
but some models are useful.” In other
words, any model is at best a useful
fiction—there never was, or ever will be, an
exactly normal distribution or an exact
linear relationship. Nevertheless, enormous
progress has been made by entertaining such
fictions and using them as approximations.

George E. P. Box

This chapter presents a new method to test whether a dataset of observed samples 𝑦1, . . . , 𝑦𝑚 is
likely to have been drawn from a candidate probability distribution p, where the only interface to p is
generating random variables via stochastic simulation. Distributions that match these assumption arise
in many settings, which include: (i) probabilistic programs, where probability distributions are repre-
sented as executable stochastic simulators; (ii) simulation-based algorithms for approximate posterior
inference such as MCMC (Section 3.3.1) and SMC (Section 3.3.2), where a forward run of the algorithm
produces an output whose marginal probability is intractable to compute. The general problem of test-
ing whether a set of samples was drawn from a given distribution is known as goodness-of-fit testing.
This fundamental problem has applications in a variety of fields including Bayesian statistics [Gelman
et al., 1996, Talts et al., 2018], high-energy physics [Williams, 2010], astronomy [Peacock, 1983], genetic
association studies [Lewis and Knight, 2009], and psychometrics [Andersen, 1973].

The family of rank-based tests are a common approach to testing goodness-of-fit of data to a stochas-
tic simulator [Lehmann and D’Abrera, 1975]. However, most existing rank-based tests operate with
continuous distributions in Euclidean space [Lehmann and Romano, 2005, VI.8]. Analogous methods
for distributions over combinatorially large discrete spaces that are theoretically rigorous, customizable
using domain knowledge, and practical to implement remain relatively less investigated.

The method presented in this chapter makes a new connection between rank-based tests and dis-
tributions on high-dimensional discrete spaces. By algorithmically specifying an ordering on the data
domain, the practitioner can quantitatively assess how typical the observed samples are with respect to
simulated data from the candidate distribution. This ordering is leveraged by the test to effectively sur-
face distributional differences between the observed data and candidate distribution. More specifically,
the proposed method tests whether observations 𝑦1, . . . , 𝑦𝑛 taking values in a set 𝒯 were drawn from a
given distribution p on the basis of the rank of each 𝑦𝑖 with respect to 𝑚 i.i.d. samples 𝑥1, . . . , 𝑥𝑚 ∼ p.
If 𝑦𝑖 was drawn from p then its rank should be uniformly distributed over 0, 1, . . . ,𝑚. When the ranks
show a deviation from uniformity, it is unlikely that the 𝑦𝑖 were drawn from p. For distributions with
discrete atoms, however, the ranks are no longer uniform. A key step in the proposed method is to

183

q

unknown
distribution

p

hypothesized
distribution

≺

total order
on 𝒯

Uniform(0, 1)

random number
generator

𝑦1

...
𝑦𝑛

observed
data

𝑋1,1, . . . , 𝑋1,𝑚

...
𝑋𝑛,1, . . . , 𝑋𝑛,𝑚

simulated
data

Stochastic Ranking

𝑟1

...
𝑟𝑛

Histogramming

 0 1 2 … m

Rank

Fr
eq

ue
nc

y

 0 1 2 … m

Rank

p ≈ q
uniform

p ̸≈ q
non-uniform

Figure 9.1: Overview of the proposed goodness-of-fit test. Step 1: Observations 𝑦1, . . . , 𝑦𝑛 are assumed
to be drawn i.i.d. from an unknown discrete distribution q over a set 𝒯 . Step 2: For each 𝑦𝑖 (𝑖 =
1, . . . , 𝑛), 𝑚 samples 𝑋𝑖,1, . . . , 𝑋𝑖,𝑚 are simulated i.i.d. from the hypothesized distribution p over 𝒯 .
Step 3: Given a total order ≺ on 𝒯 and the observed and simulated data, a stochastic ranking procedure
returns the rank 𝑟𝑖 of each 𝑦𝑖 within 𝑋𝑖,1, . . . , 𝑋𝑖,𝑚, using uniform random numbers to ensure the ranks
are unique. Step 4: The histogram of the ranks 𝑟1, . . . , 𝑟𝑛 is analyzed for uniformity over 0, 1, . . . ,𝑚.

use continuous uniform random variables 𝑈𝑖 that are paired with each 𝑦𝑖 and 𝑥𝑖 to break ties when
computing the ranks. The resulting statistic is called the Stochastic Rank Statistic (SRS) and has
multiple desirable properties when used for testing goodness-of-fit:

1. The SRS is distribution-free, meaning that its sampling distribution under the null hypothesis
does not depend on p. There is thus no need to construct approximate tables or use expensive
Monte Carlo estimates of rejection regions.

2. The test is consistent against all alternatives. In particular, the SRS is distributed as a discrete
uniform if and only if 𝑦1, . . . , 𝑦𝑛 ∼iid p.

3. The exact (non-asymptotic) sampling distribution of the SRS is a discrete uniform. This property
obviates the need to apply asymptotic approximations in small sample or sparse data regimes.

4. The test gives the practitioner flexibility to specify the properties of the data that are checked
to agree with samples from p. This flexibility comes from the ordering on the domain used to
compute the ranks.

5. The test is readily implemented using a procedure that is linear time in the number of obser-
vations. The test is simulation-based and does not require explicitly computing p(𝑥), which is
essential for distributions with intractable probabilities.

While the test is consistent for any linear ordering ≺ over the domain 𝒯 , the power of the test
depends on the choice of ≺. Strategies to obtain useful orderings are demonstrated for a variety of
domains, which include defining procedures that traverse discrete data structures; composing probe
statistics that reflect numerical properties of the data; and using randomization to generate orderings.

184

The remainder of the chapter is organized as follows. Section 9.1 reviews the goodness-of-fit problem
and discusses related work. Section 9.2 presents the proposed test and establishes several theoretical
properties. Section 9.3 presents simulation studies for distributions over integers, binary strings, and
partitions. Section 9.4 applies the SRS to compare approximate Bayesian sampling algorithms over
mixture assignments in a Dirichlet process mixture model and to assess the sample quality of random
lattices produced by MCMC samplers for the Ising model.

9.1 Background: The Goodness-of-Fit Problem

Problem Statement The goodness-of-fit problem considered in this chapter can be informally de-
scribed as follows: Let p be a discrete distribution over a finite or countably infinite domain 𝒯 . Given
observations 𝑦1, . . . , 𝑦𝑛 drawn i.i.d. from an unknown distribution q over 𝒯 , is there sufficient evidence
to reject the hypothesis p = q?

More formally, the parlance of statistical testing, the null and alternative hypotheses are

H0 ::= [p = q] H1 ::= [p ̸= q]. (9.1)

A statistical test 𝜑𝑛 : 𝒯 𝑛 → {reject, not reject} maps each size 𝑛 dataset to a decision as to whether the
null hypothesis H0 should be rejected or accepted. The significance level

𝛼 ::= Pr [𝜑𝑛(𝑌1:𝑛) = reject | H0] (9.2)

is the probability of incorrectly declaring reject. For a given significance level 𝛼, the performance of the
test 𝜑𝑛 is characterized by its power

𝛽 ::= Pr [𝜑𝑛(𝑌1:𝑛) = reject | H1] , (9.3)

which is the probability of correctly declaring reject.

Related Work There are many goodness-of-fit tests for nominal (unordered) data, which include the
multinomial test [Horn, 1977]; Pearson chi-square test [Pearson, 1900]; likelihood-ratio test [Williams,
1976]; nominal Kolmogorov–Smirnov test [Hoeffding, 1965, Pettitt and Stephens, 1977]; and power-
divergence statistics [Read and Cressie, 1988]. For ordinal data, goodness-of-fit test statistics include
the ordinal Watson, Cramér–von Mises, and Anderson–Darling tests [Choulakian et al., 1994] as well
as the ordinal Kolmogorov–Smirnov test [Conover, 1972, Arnold and Emerson, 2011]. These methods
have several challenges for large domains; for example, many of them assume that p(𝑥) is tractable to
compute, which is rarely possible in modern machine learning applications. These tests also require
that each discrete outcome 𝑥 ∈ 𝒯 has a non-negligible expectation 𝑛p(𝑥) [Maydeu-Olivares and Garcia-
Forero, 2010], which can require a very large number of observations 𝑛. Moreover, the rejection regions
of the statistics used in these tests are either distribution-dependent, which requires estimating the
region for each new candidate distribution p, or only known asymptotically, which gives inexact results
for finite-sample data. The Mann–Whitney U [Mann and Whitney, 1947], which is also a rank-based
test that bears some similarity to the SRS, is only consistent under median shift, whereas the SRS is
consistent under arbitrary distributional differences.

Results in the theoretical computer science literature have established computational and sample
complexity bounds for testing approximate equality of discrete distributions Batu et al. [2000]. These
methods have been primarily studied from a theoretical perspective and have not been applied to
yield practical goodness-of-fit tests, nor have they attained widespread adoption among practitioners or
implemented in statistical software packages. For instance, the test in Acharya et al. [2015] is based on a
variant of Pearson chi-square. It requires some form of enumeration over the domain 𝒯 and representing

185

Algorithm 9.1 Exact goodness-of-fit test using the Stochastic Rank Statistic.

Require:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

simulator for candidate distribution p over 𝒯 ;
i.i.d. samples {𝑦1, 𝑦2, . . . , 𝑦𝑛} from distribution q;
strict total order ≺ on 𝑇 , of any order type;
number 𝑚 ≥ 1 of datasets to resimulate;
significance level 𝛼 of hypothesis test;

Ensure: Decision to reject the null hypothesis H0 : p = q versus alternative hypothesis H1 : p ̸= q.
1: for 𝑖 = 1, 2, . . . , 𝑛 do
2: 𝑈0 ∼ Uniform(0, 1)
3: 𝑟𝑖 ← 0
4: for 𝑗 = 1, . . . ,𝑚 do
5: 𝑋 ∼ p
6: if 𝑋 = 𝑦𝑖 then
7: 𝑈 ∼ Uniform(0, 1)
8: if 𝑈 < 𝑈0 then
9: 𝑟𝑖 ← 𝑟𝑖 + 1

10: else if 𝑋 ≺ 𝑦𝑖 then
11: 𝑟𝑖 ← 𝑟𝑖 + 1

12: Use a hypothesis test to compute the 𝑝-value of data 𝑟1, . . . , 𝑟𝑛 under a Uniform({0, . . . ,𝑚}) null.
13: return reject if 𝑝 ≤ 𝛼 else not reject.

p(𝑥) explicitly. The test in Valiant and Valiant [2011] requires specifying and solving a linear program.
While these algorithms may obtain asymptotically sample-optimal limits, they do not account for any
structure in the domain 𝒯 that can be leveraged by the practitioner to effectively surface distributional
differences that are of interest in a given application.

Permutation and bootstrap resampling of test statistics give another family of approaches for
goodness-of-fit testing [Good, 2004]. Principled and consistent tests can be obtained using kernel
methods, for example, including the maximum mean discrepancy [Gretton et al., 2012] and discrete
Stein discrepancy [Yang et al., 2018]. Since the null distribution is unknown, rejection regions are
estimated by bootstrap resampling, which may be inexact due to discreteness of the data. Instead of
bootstrapping, the method proposed in this chapter can be used with kernel methods to obtain an
exact, distribution-free test by defining an ordering using the norm induced by the kernel. That is, if
the observation space 𝒯 has a norm ‖·‖, then a strict partial ordering ̃︀≺ can be defined by 𝑥 ̃︀≺ 𝑥′ if
and only if ‖𝑥‖ < ‖𝑥′‖ for 𝑥, 𝑥′ ∈ 𝒯 . The ordering ̃︀≺ can then be elevated to an almost-surely linear
ordering ≺ by using a lazily generated stochastic process 𝑈𝑥, 𝑥 ∈ 𝒯 of i.i.d. Uniform(0, 1) random
variables, where 𝑥 ≺ 𝑥′ holds if and only if 𝑈𝑥 < 𝑈𝑥′ for all 𝑥, 𝑥′ ∈ 𝒯 such that ‖𝑥‖ = ‖𝑥′‖.

9.2 The Stochastic Rank Statistic

This section describes the Stochastic Rank Statistics and shows how it can be used for goodness-of-fit
testing. The proposed test combines (i) the intuition from existing methods for ordinal data [Choulakian
et al., 1994] that the deviation between the expected CDF and empirical CDF of the sample serves as a
good signal for goodness-of-fit, with (ii) the flexibility of probe statistics in Monte Carlo-based resam-
pling tests [Good, 2004] to define, using an linear ordering ≺ on 𝒯 , characteristics of the distribution
that are of interest to the experimenter. Figure 9.1 shows the step-by-step workflow of the proposed
test and Algorithm 9.1 formally describes the testing procedure.

The method does not assume that p(𝑥) is tractable to compute and is not based on comparing

186

the expected frequency of each 𝑥 ∈ 𝒯 with its observed frequency. Furthermore, the stochastic ranks
𝑟𝑖 Algorithm 9.1 have an exact and distribution-free sampling distribution. The following theorem
establishes that the 𝑟𝑖 are uniformly distributed if and only if p = q. Proofs of all results are given in
Sections 9.2.1–9.2.5.

Theorem 9.1. Let 𝒯 be a finite or countably infinite set, ≺ be a strict total order on 𝒯 , p and q be two
probability distributions on 𝒯 , and 𝑚 be a positive integer. Consider the following random variables:

𝑋0 ∼ q (9.4)

𝑋1, 𝑋2, . . . , 𝑋𝑚 ∼iid p (9.5)

𝑈0, 𝑈1, 𝑈2, . . . , 𝑈𝑚 ∼iid Uniform(0, 1) (9.6)
𝑅 =

∑︀𝑚
𝑗=1 1[𝑋𝑗 ≺ 𝑋0] + 1[𝑋𝑗 = 𝑋0, 𝑈𝑗 < 𝑈0]. (9.7)

Then p = q if and only if for all 𝑚≥ 1, the rank 𝑅 is distributed as a discrete uniform random variable
on the set of integers [𝑚+ 1] ::= {0, 1, . . . ,𝑚}. «

Note that the 𝑟𝑖 in Algorithm 9.1 are 𝑛 i.i.d. samples of the random variable 𝑅 in Eq. (9.7), which
is the rank of 𝑋0 ∼ q within a size 𝑚 sample (𝑋1, . . . , 𝑋𝑚) ∼iid p. Theorem 9.1 only holds if ties are
broken by pairing each 𝑋𝑖 with a uniform random variable 𝑈𝑖, as opposed to, for example, breaking
each tie independently with probability 1/2, as demonstrated by the next example.

Example 9.2. Let 𝒯 contain a single element. Then all the 𝑋𝑖 (for 0 ≤ 𝑖 ≤ 𝑚) are equal almost surely.
Break each tie between 𝑋0 and 𝑋𝑗 by flipping a fair coin. Then 𝑅 is binomially distributed with 𝑚
trials and weight 1/2, not uniformly distributed over [𝑚+ 1]. «

In the case where the 𝑋𝑖 are almost-surely distinct, the forward direction of Theorem 9.1, which
establishes that if p = q then the rank 𝑅 is uniform for all 𝑚 ≥ 1, is well known in the statistics
literature [Ahsanullah et al., 2013]. However, to the best of found knowledge, no existing methods in
the literature use rank-based goodness-of-fit tests based on an embedding of atomic distributions into
continuous ones using stochastic ranks. Nor do they establish that p = q is a necessary condition for
uniformity of 𝑅 across all 𝑚 beyond some integer, and can therefore be used as the basis of a consistent
goodness-of-fit test. The next result is a straightforward consequence of Theorem 9.1.

Corollary 9.3. If p ̸= q, then there is some 𝑀 ≥ 1 such that 𝑅 is not uniformly distributed on
[𝑀 + 1]. «

The next theorem significantly strengthens Corollary 9.3 by showing that if p ̸= q, the rank statistic
is nonuniform for all but finitely many 𝑚.

Theorem 9.4. Let p ̸= q and 𝑀 be defined as in Corollary 9.3. Then for all 𝑚 ≥ 𝑀 , the rank 𝑅 is
not uniformly distributed on [𝑚+ 1]. «

In fact, unless p and q satisfy an adversarial symmetry relationship under the selected ordering ≺,
the rank is nonuniform for all 𝑚 ≥ 1.

Corollary 9.5. Let C denote the lexicographic order on 𝒯 × [0, 1] induced by (𝒯 ,≺) and ([0, 1], <).
Suppose Pr [(𝑋,𝑈1) C (𝑌, 𝑈0)] ̸= 1/2 for 𝑌 ∼ q, 𝑋 ∼ p, and 𝑈0, 𝑈1 ∼iid Uniform(0, 1). Then for all
𝑚 ≥ 1, the rank 𝑅 is not uniformly distributed on [𝑚+ 1]. «

The next theorem establishes the existence of a linear ordering on 𝒯 that satisfies the hypothesis
of Corollary 9.5.

Theorem 9.6. If p ̸= q, then there is an ordering ≺* whose associated rank statistic 𝑅 is nonuniform
for 𝑚 = 1 (and hence by Theorem 9.4 for all 𝑚 ≥ 1). «

187

Intuitively, the ordering ≺* sets elements 𝑥 ∈ 𝒯 that have a high probability under q to be “small”
in the linear order, and elements 𝑥 ∈ 𝒯 that have a high probability under p to be “large” in the linear
order. More precisely, ≺* maximizes the sup-norm distance between the induced cumulative distribution
functions p̃ and q̃ of p and q, respectively (Figure 9.3). Under a slight variant of this ordering, for finite
𝒯 , the next theorem establishes the sample complexity required to obtain exponentially high power in
terms of the statistical distance 𝐿∞(p,q) = sup𝑥∈𝒯 |p(𝑥)− q(𝑥)| between p and q.

Theorem 9.7. Given significance level 𝛼 = 2Φ(−𝑐) for 𝑐 > 0, there is an ordering for which the
proposed test with 𝑚 = 1 achieves power 𝛽 ≥ 1− Φ(−𝑐) using

𝑛 ≈ 4𝑐2/𝐿∞(p,q)4 (9.8)

samples from q, where Φ is the cumulative distribution function of a standard normal. «

Theorem 9.7 is independent of the domain size and establishes a lower bound for any ordering ≺
because it is based on the provably optimal ordering ≺*. The next theorem derives the exact sampling
distribution for any pair of distributions (p,q), which is useful for simulation studies, such as the one
in Figure 9.3, that characterize the power of the SRS against known alternatives.

Theorem 9.8. The distribution of 𝑅 is given by

Pr [𝑅 = 𝑟] =
∑︁

𝑥∈𝒯
𝐻(𝑥,𝑚, 𝑟)q(𝑥) (9.9)

for 0 ≤ 𝑟 ≤ 𝑚 where

𝐻(𝑥,𝑚, 𝑟) ::=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚∑︁

𝑒=0

{︃[︃
𝑒∑︁

𝑗=0

(︂
𝑚− 𝑒

𝑟 − 𝑗

)︂[︂
p̃(𝑥)

1− p(𝑥)

]︂𝑟−𝑗 [︂
1− p̃(𝑥)

1− p(𝑥)

]︂(𝑚−𝑒)−(𝑟−𝑗)

(︂
1

𝑒+ 1

)︂]︃(︂
𝑚

𝑒

)︂
[p(𝑥)]𝑚 [1− p(𝑥)]𝑒−𝑚

}︃
if 0 < p(𝑥) < 1,

(︂
𝑟

𝑚

)︂
[p̃(𝑥)]𝑟 [1− p̃(𝑥)]𝑚−𝑟 if p(𝑥) = 0,

1

𝑚+ 1
if p(𝑥) = 1,

and p̃(𝑥) ::=
∑︀

𝑥′≺𝑥 p(𝑥) is the cumulative distribution function of p. «

Sections 9.2.1–9.2.5 establish several background results and prove Theorems 9.1, 9.4 and 9.6–9.8.

9.2.1 Proof: Uniformity of Rank

Before proving Theorem 9.1, several supporting lemmas are established. The first lemma proves that
an i.i.d. sequence yields a uniform rank distribution.

Lemma 9.9. Let 𝑇0, 𝑇1, . . . , 𝑇𝑚 be an i.i.d. sequence of random variables. If Pr [𝑇𝑖 = 𝑇𝑗] = 0 for all
distinct 𝑖 and 𝑗, then the rank statistics 𝑆𝑖 ::=

∑︀𝑚
𝑗=0 1[𝑇𝑗 ≺ 𝑇𝑖] for 0 ≤ 𝑖 ≤ 𝑚 are each uniformly

distributed on [𝑚+ 1]. «

Proof. Since 𝑇0, 𝑇1, . . . , 𝑇𝑚 is i.i.d., it is a finitely exchangeable sequence, and so the rank statistics
𝑆0, . . . , 𝑆𝑚 are identically (but not independently) distributed. Fix an arbitrary 𝑘 ∈ [𝑚 + 1]. Then
Pr [𝑆𝑖 = 𝑘] = Pr [𝑆𝑗 = 𝑘] for all 𝑖, 𝑗 ∈ [𝑚 + 1]. By hypothesis, Pr [𝑇𝑖 = 𝑇𝑗] = 0 for distinct 𝑖 and 𝑗.
Therefore the rank statistics are almost surely distinct, and the events {𝑆𝑖 = 𝑗} (for 0 ≤ 𝑖 ≤ 𝑚) are

188

mutually exclusive and exhaustive. Since these events partition the outcome space, their probabilities
sum to 1, and so Pr [𝑆𝑖 = 𝑘] = 1/(𝑚 + 1) for all 𝑖 ∈ [𝑚 + 1]. As 𝑘 was arbitrary, 𝑆𝑖 is uniformly
distributed on [𝑚+ 1] for all 𝑖 ∈ [𝑚+ 1]. �

The next result states a convergence property for discrete uniform random variables to continuous
uniform random variables.

Lemma 9.10. Let (𝑉𝑚)𝑚≥1 be a sequence of discrete random variables such that 𝑉𝑚 is uniformly
distributed on {0, 1/𝑚, 2/𝑚, . . . , 1}, and let 𝑈 be a continuous random variable uniformly distributed on
the interval [0, 1]. Then (𝑉𝑚)𝑚≥1 converges in distribution to 𝑈 , i.e., for all 𝑢 ∈ [0, 1],

lim
𝑚→∞

Pr [𝑉𝑚 < 𝑢] = Pr [𝑈 < 𝑢] = 𝑢. (9.10)

Furthermore, the convergence (9.10) is uniform in 𝑢. «

Proof. Let 𝜖 > 0. The distribution function 𝐹𝑚 of 𝑉𝑚 is given by

𝐹𝑚(𝑢) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/(𝑚+ 1) 𝑢 ∈ [0, 1/𝑚)

2/(𝑚+ 1) 𝑢 ∈ [1/𝑚, 2/𝑚)

· · ·
(𝑎+ 1)/(𝑚+ 1) 𝑢 ∈ [𝑎/𝑚, (𝑎+ 1)/𝑚)

· · ·
𝑚/(𝑚+ 1) 𝑢 ∈ [(𝑚− 1)/𝑚, 1)

1 𝑢 = 1.

(9.11)

For 0 ≤ 𝑎 < 𝑚, the value 𝐹𝑚(𝑢) lies in the interval [𝑎/𝑚, (𝑎+1)/𝑚) because (𝑎/𝑚) < (𝑎+1)/(𝑚+
1) < (𝑎+ 1)/𝑚. Since 𝑢 also lies in this interval,

|𝐹𝑚(𝑢)− 𝑢| ≤ (𝑎+ 1)/𝑚− 𝑎/𝑚 = 1/𝑚 < 𝜖 (9.12)

whenever 𝑚 > 1/𝜖, for all 𝑢. �

The next lemma gives an intermediate value property for step functions on the rationals.

Lemma 9.11. Let 𝑝 : (Q ∩ [0, 1]) → [0, 1] be a function satisfying 𝑝(0) = 0 and
∑︀

𝑥∈Q∩[0,1] 𝑝(𝑥) = 1.
Then for each 𝛿 ∈ (0, 1), there is some 𝑤 ∈ Q ∩ [0, 1] such that

∑︁

𝑥∈Q∩(0,𝑤)

𝑝(𝑥) ≤ 𝛿 ≤
∑︁

𝑥∈Q∩(0,𝑤]

𝑝(𝑥). (9.13)

«

Remark 9.12. The infinite sums in Lemma 9.11 whose index 𝑥 ranges over a subset of the rationals
can be formally defined as follows: Consider an arbitrary enumeration {𝑞1, 𝑞2, . . . , 𝑞𝑛, . . .} of Q ∩ [0, 1],
and define the summation over the integer-valued index 𝑛 ≥ 1. Since the series consists of positive
terms, it converges absolutely, and so all rearrangements of the enumeration converge to the same sum
[Rudin, 1976, Theorem 3.55]. One can show that the Cauchy criterion holds in this setting. Namely,
suppose that a sum

∑︀
𝑎<𝑥<𝑐 𝑝(𝑥) of non-negative terms converges. Then for all 𝜖 > 0 there is some

rational 𝑏 ∈ (𝑎, 𝑐) such that
∑︀

𝑎<𝑥≤𝑏 𝑝(𝑥) < 𝜖. «

Proof of Theorem 9.1. As 𝒯 is countable, by a standard Cantor “back-and-forth” argument, the total
order (𝒯 ,≺) is isomorphic to (𝐵,<) for some set 𝐵 ⊆ Q ∩ (0, 1). Without loss of generality, it will be
assumed that 𝒯 = Q ∩ [0, 1] and that p(0) = p(1) = 0.

189

Consider the unit square [0, 1]2 equipped with the dictionary order Cd, which gives a total order
with the least upper bound property. For each 𝑖 ∈ [𝑚 + 1], let 𝑇𝑖 ::= (𝑋𝑖, 𝑈𝑖), which is a random pair
that takes values in [0, 1]2. The rank 𝑅 in Eq. (9.7) of Theorem 9.1 is therefore equivalent to the rank∑︀𝑚

𝑖=0 1[𝑇𝑖 Cd 𝑇0] of 𝑇0 taken according to the dictionary order.

Necessity Suppose p = q. Then 𝑇0, . . . , 𝑇𝑚 are independent and identically distributed. Since
𝑈0, . . . , 𝑈𝑚 are continuous random variables, Pr [𝑇𝑖 = 𝑇𝑗] = 0 for all 𝑖 ̸= 𝑗. Apply Lemma 9.9.

Sufficiency Suppose that for all 𝑚 > 0, the rank 𝑅 is uniformly distributed on {0, 1, 2, . . . ,𝑚}. Let
p̃ : [0, 1]→ [0, 1] be the “left-closed right-open” cumulative distribution function of p, defined by

p̃(𝑥) ::=
∑︁

𝑦∈Q∩[0,𝑥)
p(𝑦) (𝑥 ∈ [0, 1]). (9.14)

Define p′ to be the probability measure on [0, 1] that is equal to p on subsets of Q ∩ [0, 1] and zero
elsewhere. Define distribution function 𝐹p : [0, 1]

2 → [0, 1] on 𝑆 by

𝐹p(𝑥, 𝑢) ::= p̃(𝑥) + 𝑢p′(𝑥) ((𝑥, 𝑢) ∈ [0, 1]2). (9.15)

To establish that 𝐹p is a valid probability distribution function, it is sufficient to show that (i) its
range is [0, 1]; (ii) it is monotonically non-decreasing in each of its variables; and (iii) it is right-contin-
uous in each of its variables. It is immediate that 𝐹p(0, 0) = 0 and 𝐹p(1, 1) = 1. To establish that 𝐹p

is monotonically non-decreasing, put 𝑥 < 𝑦 and 𝑢 < 𝑣. Then

𝐹p(𝑥, 𝑢) = p̃(𝑥) + 𝑢p′(𝑥) (9.16)
≤ p̃(𝑥) + p′(𝑥) (9.17)
≤∑︀𝑧∈Q∩[0,𝑦) p

′(𝑧) (9.18)

= p̃(𝑦) (9.19)
≤ 𝐹p(𝑦, 𝑢) (9.20)

and
𝐹p(𝑥, 𝑢) = p̃(𝑥) + 𝑢p′(𝑥) (9.21)

≤ p̃(𝑥) + 𝑣p′(𝑥) (9.22)
= 𝐹p(𝑥, 𝑣). (9.23)

It remains to establish right-continuity. For fixed 𝑥, the function 𝑢 ↦→ 𝐹p(𝑥, 𝑢) is linear in 𝑢 and so
continuity is immediate. For fixed 𝑢, 𝐹p(𝑥, 𝑢) has been shown to be nondecreasing so it is sufficient to
show that for any 𝑥 and for any 𝜖 > 0 there exists 𝑥′ > 𝑥 such that

𝜖 > 𝐹 (𝑥′, 𝑢)− 𝐹 (𝑥, 𝑢) (9.24)
= p̃(𝑥′) + 𝑢p′(𝑥′)− p̃(𝑥)− 𝑢p(𝑥) (9.25)
= p̃(𝑥′) + 𝑢p′(𝑥′)− p̃(𝑥)− 𝑢p(𝑥) (9.26)

=
∑︁

𝑦∈Q∩[𝑥,𝑥′]

p(𝑦), (9.27)

which is immediate from the Cauchy criterion.
Finally, Lemma 9.11 and the continuity of 𝐹p for fixed 𝑥 and variable 𝑢 together imply that 𝐹p

obtains all intermediate values. That is, for any 𝛿 ∈ [0, 1] there is some (𝑥, 𝑢) such that 𝐹 (𝑥, 𝑢) = 𝛿.

190

Next define the inverse 𝐹−1
p : [0, 1]→ [0, 1]2, also known as the quantile function of p, by

𝐹−1
p (𝑠) ::= inf{(𝑥, 𝑢) | 𝐹p(𝑥, 𝑢) = 𝑠} (𝑠 ∈ [0, 1]), (9.28)

where the infimum is taken with the respect to the dictionary order Cd. The set in Eq. (9.28) is
nonempty since 𝐹p obtains all values in [0, 1]. Moreover, 𝐹−1

p (𝑠) ∈ [0, 1]2 since Cd has the least upper
bound property. This “generalized” notion of an inverse is required since 𝐹p is one-to-one only under
the stronger assumption that p(𝑥) > 0 for all 𝑥 ∈ Q ∩ (0, 1). Analogously define 𝐹q in terms of q.

Define the rank function

𝑟(𝑎0, {𝑎1, . . . , 𝑎𝑚}) ::=
𝑚∑︁

𝑖=0

1[𝑎𝑖 < 𝑎0], (9.29)

so that 𝑅 ≡ 𝑟(𝑇0, {𝑇1, . . . , 𝑇𝑚}). By the hypothesis of Theorem 9.1, 𝑟(𝑇0, {𝑇1, . . . , 𝑇𝑚})/𝑚 is uniformly
distributed on {0, 1/𝑚, 2/𝑚, . . . , 1} for all 𝑚 > 0. Applying Lemma 9.10 gives, for any 𝑠 ∈ [0, 1],

lim
𝑚→∞

Pr

[︂
1

𝑚
𝑟(𝑇0, {𝑇1, . . . , 𝑇𝑚}) < 𝑠

]︂
= Pr [𝑈0 < 𝑠] = 𝑠. (9.30)

For any 𝑡 ∈ [0, 1] and 𝑚 ≥ 1, the random variable 𝐹𝑚
p (𝑡) ::= 𝑟(𝑡, {𝑇1, . . . , 𝑇𝑚})/𝑚 is the empirical

distribution of 𝐹p. By the Dehardt [1971, Corollary of Theorem 4], which generalizes the Glivenko–
Cantelli theorem to empirical distribution functions on 𝑘-dimensional Euclidean space, the random
sequence (𝐹𝑚

p (𝑡))𝑚≥1 converges almost surely to the real number 𝐹p(𝑡) uniformly in 𝑡. Thus, the
random sequence (𝐹𝑚

p (𝑇0))𝑚≥1 converges almost surely to the random variable 𝐹p(𝑇0), so that for any
𝑠 ∈ [0, 1],

lim
𝑚→∞

Pr

[︂
1

𝑚
𝑟(𝑇0, {𝑇1, . . . , 𝑇𝑚}) < 𝑠

]︂
= lim

𝑚→∞
Pr
[︁
𝐹𝑚
p (𝑇0) < 𝑠

]︁
(9.31)

= Pr [𝐹p(𝑇0) < 𝑠] (9.32)

= Pr
[︀
𝑇0 Cd 𝐹−1

p (𝑠)
]︀

(9.33)

= 𝐹q(𝐹
−1
p (𝑠)). (9.34)

The interchange of the limit and the probability in Eq. (9.32) follows from the bounded convergence
theorem, since 𝐹𝑚

p (𝑇0)→ 𝐹p(𝑇0) almost surely, and for all 𝑚 ≥ 1, |𝐹𝑚
p (𝑇0)| ≤ 1 almost surely.

Combining Eqs. (9.30) and (9.34), for each 𝑠 ∈ (0, 1),

𝐹q(𝐹
−1
p (𝑠)) = 𝑠 =⇒ 𝐹−1

p (𝑠) = 𝐹−1
q (𝑠). (9.35)

As 0 ≤ 𝐹p(𝑥, 𝑢) ≤ 1, for each (𝑥, 𝑢) ∈ [0, 1]2, it follows that

𝐹−1
q (𝐹p(𝑥, 𝑢)) = 𝐹−1

p (𝐹p(𝑥, 𝑢)) (9.36)

= 𝐹−1
q (𝐹q(𝑥, 𝑢)) (9.37)

= (𝑥, 𝑢). (9.38)

Therefore, 𝐹p(𝑥, 𝑢) = 𝐹q(𝑥, 𝑢) for all (𝑥, 𝑢) ∈ [0, 1]2. Fixing 𝑢 = 0 gives

p̃(𝑥) = 𝐹p(𝑥, 0) = 𝐹q(𝑥, 0) = q̃(𝑥) (𝑥 ∈ [0, 1]). (9.39)

Assume towards a contradiction that p ̸= q. Let 𝑎 be any rational such that p(𝑎) ̸= q(𝑎), and
suppose without loss of generality that q(𝑎) < p(𝑎). By the Cauchy criterion in Lemma 9.11, there

191

exists some 𝑏 > 𝑎 such that
∑︁

𝑎<𝑥<𝑏

q(𝑥) < p(𝑎)− q(𝑎).

Then

q̃(𝑏) = q̃(𝑎) + q(𝑎) +
∑︁

𝑥∈Q∩(𝑎,𝑏)
q(𝑥)

= p̃(𝑎) + q(𝑎) +
∑︁

𝑥∈Q∩(𝑎,𝑏)
q(𝑥)

< p̃(𝑎) + q(𝑎) + (p(𝑎)− q(𝑎))

= p̃(𝑎) + p(𝑎)

≤ p̃(𝑏),

and so p̃ ̸= q̃, a contradiction to Eq. (9.39). �

Before proving Theorem 9.4, a supporting lemma is needed.

Lemma 9.13. Let 𝑍1, . . . , 𝑍𝑚+1 be a finitely exchangeable sequence of Bernoulli random variables. If

𝑆𝑚 ::=

𝑚∑︁

𝑖=1

𝑍𝑖 (9.40)

is not uniformly distributed on [𝑚+ 1], then

𝑆𝑚+1 ::=

𝑚+1∑︁

𝑖=1

𝑍𝑖 (9.41)

is not uniformly distributed on [𝑚+ 2]. «

Proof. By finite exchangeability, there is some 𝑟 ∈ [0, 1] such that the distribution of every 𝑍𝑖 is
Bernoulli(𝑟). There are two cases to consider.

In the first case, 𝑟 ̸= 1/2. Then for any ℓ ≥ 1,

E [𝑆ℓ] = E

[︃
ℓ∑︁

𝑖=1

𝑍𝑖

]︃
=

ℓ∑︁

𝑖=1

E [𝑍𝑖] = ℓ𝑟 ̸= 𝑟/2 = E [𝑈ℓ] , (9.42)

and so 𝑆ℓ is not uniformly distributed on [ℓ + 1]. In particular, Eq. (9.42) holds for ℓ equal to 𝑚 or
𝑚+ 1.

In the second case, 𝑟 = 1/2. The lemma is established by proving the contrapositive. Suppose that
𝑆𝑚+1 is uniformly distributed on [𝑚+1].

Assume 𝑆𝑚+1 is uniform and fix 𝑘 ∈ [𝑚+ 1]. By total probability,

Pr [𝑆𝑚 = 𝑘] = Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 0] + Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 1] . (9.43)

The two events on the right-hand side of Eq. (9.43) are analyzed separately separately.
First, the event {𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 0} in Eq. (9.43) is the union over all

(︀
𝑚
𝑘

)︀
assignments of

(𝑍1, . . . , 𝑍𝑚) that have exactly 𝑘 ones and 𝑍𝑚+1 = 0. All such assignments are disjoint events. Let

𝐴 ::= {𝑍1 = · · · = 𝑍𝑘 = 1 and 𝑍𝑘+1 = · · · = 𝑍𝑚 = 𝑍𝑚+1 = 0}. (9.44)

192

By finite exchangeability, each assignment has probability Pr [𝐴], and so

Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 0] =

(︂
𝑚

𝑘

)︂
Pr [𝐴] . (9.45)

The event {𝑆𝑚+1 = 𝑘} is the union of all
(︀
𝑚+1
𝑘

)︀
assignments of (𝑍1, . . . , 𝑍𝑚+1) that have exactly 𝑘

ones. Since all the assignments are disjoint events and each has probability Pr [𝐴],

Pr [𝑆𝑚+1 = 𝑘] =

(︂
𝑚+ 1

𝑘

)︂
Pr [𝐴] =

1

𝑚+ 2
. (9.46)

Second, {𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 1} in Eq. (9.43) is the union over all
(︀
𝑚
𝑘

)︀
assignments of (𝑍1, . . . , 𝑍𝑚)

that have exactly 𝑘 ones and also 𝑍𝑚+1 = 1. All such assignments are disjoint events. Let

𝐵 ::= {𝑍1 = · · · = 𝑍𝑘 = 𝑍𝑚+1 = 1 and 𝑍𝑘+1 = · · · = 𝑍𝑚 = 0}. (9.47)

Again by finite exchangeability, each assignment has probability Pr [𝐵], and so

Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 1] =

(︂
𝑚

𝑘

)︂
Pr [𝐵] . (9.48)

The event {𝑆𝑚+1 = 𝑘+1} is the union of all
(︀
𝑚+1
𝑘+1

)︀
assignments of (𝑍1, . . . , 𝑍𝑚+1) that have exactly

𝑘 + 1 ones. Since the assignments are disjoint events and each has probability Pr [𝐵],

Pr [𝑆𝑚+1 = 𝑘 + 1] =

(︂
𝑚+ 1

𝑘 + 1

)︂
Pr [𝐵] =

1

𝑚+ 2
. (9.49)

Take Eq. (9.43), divide by 1/(𝑚+ 2), and replace terms using Eqs. (9.45), (9.46), (9.48) and (9.49)
to obtain

Pr [𝑆𝑚 = 𝑘]

1/(𝑚+ 2)
=

Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 0]

1/(𝑚+ 2)
+

Pr [𝑆𝑚 = 𝑘 and 𝑍𝑚+1 = 1]

1/(𝑚+ 2)
(9.50)

=

(︂
𝑚

𝑘

)︂
Pr [𝐴]

(︂
𝑚+ 1

𝑘

)︂
Pr [𝐴]

+

(︂
𝑚

𝑘

)︂
Pr [𝐵]

(︂
𝑚+ 1

𝑘 + 1

)︂
Pr [𝐵]

(9.51)

=
𝑚!

𝑘!(𝑚− 𝑘)!

𝑘!(𝑚+ 1− 𝑘)!

(𝑚+ 1)!
+

𝑚!

𝑘!(𝑚− 𝑘)!

(𝑘 + 1)!(𝑚+ 1− (𝑘 + 1))!

(𝑚+ 1)!
(9.52)

=
𝑚+ 1− 𝑘

𝑚+ 1
+

𝑘 + 1

𝑚+ 1
(9.53)

=
𝑚+ 2

𝑚+ 1
(9.54)

=
1/(𝑚+ 1)

1/(𝑚+ 2)
, (9.55)

which proves that Pr [𝑆𝑚 = 𝑘] = 1/(𝑚+ 1). �

Proof of Theorem 9.4. Suppose that p ̸= q. By Corollary 9.3, there exists 𝑀 ≥ 1 such that the rank
statistic 𝑅 =

∑︀𝑀
𝑖=1 1[𝑇𝑖 ≺ 𝑇0] is nonuniform over [𝑀 + 1]. The rank statistic for 𝑚 = 𝑀 + 1 is given

by
∑︀𝑀+1

𝑖=1 1[𝑇𝑖 ≺ 𝑇0]. Now, each indicator 𝑍𝑖 ::= 1[𝑇𝑖 ≺ 𝑇0] is a Bernoulli random variable, and they
are identically distributed since (𝑇1, . . . , 𝑇𝑀+1) is an i.i.d. sequence. Furthermore the random sequence

193

(𝑍1, . . . , 𝑍𝑀+1) is finitely exchangeable since the 𝑍𝑖 are conditionally independent given 𝑇0. Then the
sequence of indicators (1[𝑇1 ≺ 𝑇0],1[𝑇2 ≺ 𝑇0], . . . ,1[𝑇𝑀+1 ≺ 𝑇0]) satisfy the hypothesis of Lemma 9.13,
and so the rank statistic for 𝑀 + 1 is nonuniform. By induction, the rank statistic is nonuniform for
all 𝑚 ≥𝑀 . �

Proof of Corollary 9.5. If Pr [(𝑋,𝑈1) C (𝑌, 𝑈0)] ̸= 1/2 then 𝑅 is nonuniform for 𝑚 = 1. To complete
the proof, apply Theorem 9.4. �

9.2.2 Proof: An Ordering Witnessing p ̸= q for 𝑚 = 1

Toward establishing Theorem 9.6, this section presents an ordering ≺ that satisfies Pr [𝑅 = 0] > 1/2
when 𝑚 = 1. Let

𝐴 ::= {𝑥 ∈ 𝒯 | q(𝑥) > p(𝑥)} (9.56)

be the set of all elements of 𝒯 that have a greater probability according to q than according to p, and let
𝐴𝑐 denote its complement. Let hp,q be the signed measure given by the difference hp,q(𝑥) ::= q(𝑥)−p(𝑥)
between q and p. For the rest of this section, hp,q is denoted h. Let ≺ be any total order on 𝒯 satisfying

h(𝑥) > h(𝑥′) =⇒ 𝑥 ≺ 𝑥′ (9.57)
h(𝑥) < h(𝑥′) =⇒ 𝑥 ≻ 𝑥 (9.58)

The linear ordering ≺ may be defined arbitrarily for all pairs 𝑥 and 𝑥′ such that h(𝑥) = h(𝑥′). As
an immediate consequence, if 𝑥 ∈ 𝐴 and 𝑥′ ∈ 𝐴𝑐 then 𝑥 ≺ 𝑥′. Intuitively, the ordering is designed to
ensure that elements 𝑥 ∈ 𝐴 are “small”, and are ordered by decreasing value of q(𝑥) − p(𝑥) (with ties
broken arbitrarily); elements 𝑥 ∈ 𝐴𝑐 are “large” and are ordered by increasing value of p(𝑥) − q(𝑥),
with ties again broken arbitrarily. The smallest element in 𝒯 maximizes q(𝑥) − p(𝑥) and the largest
element in 𝒯 maximizes p(𝑥)− q(𝑥).

Supporting lemmas are first established.

Lemma 9.14. 𝐴 = ∅ if and only if p = q. «

Proof. Immediate. �

Lemma 9.15. ∑︁

𝑥∈𝐴
[q(𝑥)− p(𝑥)] =

∑︁

𝑥∈𝐴𝑐

[p(𝑥)− q(𝑥)]. (9.59)

«

Proof. ∑︁

𝑥∈𝐴
[q(𝑥)− p(𝑥)]−

∑︁

𝑥∈𝐴𝑐

[p(𝑥)− q(𝑥)] =
∑︁

𝑥∈𝒯
q(𝑥)−

∑︁

𝑥∈𝒯
p(𝑥) = 0, (9.60)

�

Given a probability distribution r, define its cumulative distribution function r̃ by r̃(𝑥) ::=
∑︀

𝑦≺𝑥 r(𝑦).

Lemma 9.16. The inequality q̃(𝑥) > p̃(𝑥) holds for all 𝑥 ∈ 𝒯 . «

Proof. Let 𝒯𝑥 ::= {𝑦 ∈ 𝒯 | 𝑦 ≺ 𝑥}. If 𝑥 ∈ 𝐴 then 𝒯𝑥 ⊆ 𝐴, and so

q̃(𝑥)− p̃(𝑥) =
∑︁

𝑦∈𝒯𝑥
[q(𝑦)− p(𝑦)] > 0,

194

since all terms in the sum are positive. Otherwise, 𝑦 ∈ 𝐴 for all 𝑦 ≺ 𝑥, and so 𝐴 ⊆ 𝒯𝑥. Let 𝐴𝑐
𝑥 ::= {𝑦 ∈

𝐴𝑐 | 𝑦 ≺ 𝑥}. Then

q̃(𝑥)− p̃(𝑥) =
∑︁

𝑦≺𝑥

[q(𝑦)− p(𝑦)] (9.61)

=
∑︁

𝑦∈𝐴
[q(𝑦)− p(𝑦)] +

∑︁

𝑦∈𝐴𝑐
𝑥

[q(𝑦)− p(𝑦)] (9.62)

=
∑︁

𝑦∈𝐴𝑥

[q(𝑦)− p(𝑦)]−
∑︁

𝑦∈𝐴𝑐
𝑥

[p(𝑦)− q(𝑦)] (9.63)

>
∑︁

𝑦∈𝐴𝑥

[q(𝑦)− p(𝑦)]−
∑︁

𝑦∈𝐴𝑐

[p(𝑦)− q(𝑦)] (9.64)

= 0, (9.65)

establishing the lemma. �

The probability Pr [𝑅 = 0] is now analyzed for the case that 𝑚 = 1. In this case, 𝑌 is written in
place of 𝑋1, so that Eqs. (9.4)–(9.7) reduces to

𝑋p ∼ p (9.66)
𝑌q ∼ q (9.67)

𝑅p,q | 𝑋p, 𝑌q ∼

⎧
⎪⎨
⎪⎩

0 if 𝑋p ≻ 𝑌q,

1 if 𝑋p ≺ 𝑌q,

Bernoulli(1/2) if 𝑋p = 𝑌q.

(9.68)

The generative process (9.66)–(9.68) samples 𝑋p ∼ p and 𝑌q ∼ q independently. Given these values,
it then sets 𝑅p,q to be 0 if 𝑋p ≻ 𝑌q, to be 1 if 𝑋p ≺ 𝑌q, and the outcome of an independent fair
coin flip otherwise. These random variables will be referred to as 𝑋, 𝑌 , and 𝑅 when p and q are clear
from context. The subscripts will be reintroduced when it is necessary to emphasize different settings
of distributions p and q.

Proof of Theorem 9.6. Total probability and independence of 𝑋 and 𝑌 gives

Pr [𝑅 = 0] =
∑︁

𝑥,𝑦∈𝒯
Pr [𝑅 = 0 | 𝑋 = 𝑥, 𝑌 = 𝑦] Pr [𝑌 = 𝑦] Pr [𝑋 = 𝑥] (9.69)

=
∑︁

𝑥,𝑦∈𝒯
Pr [𝑅 = 0 | 𝑋 = 𝑥, 𝑌 = 𝑦]q(𝑦)p(𝑥) (9.70)

=
∑︁

𝑥∈𝒯
Pr [𝑅 = 0 | 𝑋 = 𝑥, 𝑌 = 𝑥]q(𝑥)p(𝑥)

+
∑︁

𝑦≺𝑥∈𝒯
Pr [𝑅 = 0 | 𝑋 = 𝑥, 𝑌 = 𝑦]q(𝑦)p(𝑥)

+
∑︁

𝑥≺𝑦∈𝒯
Pr [𝑅 = 0 | 𝑋 = 𝑥, 𝑌 = 𝑦]q(𝑦)p(𝑥)

(9.71)

=
1

2

∑︁

𝑥∈𝒯
q(𝑥)p(𝑥) + 1

∑︁

𝑦≺𝑥∈𝒯
q(𝑦)p(𝑥) + 0

∑︁

𝑥≺𝑦∈𝒯
q(𝑦)p(𝑥) (9.72)

=
1

2

∑︁

𝑥∈𝒯
p(𝑥)q(𝑥) +

∑︁

𝑥∈𝒯
q̃(𝑥)p(𝑥). (9.73)

195

An identical argument establishes that

Pr [𝑅 = 1] =
1

2

∑︁

𝑥∈𝒯
p(𝑥)q(𝑥) +

∑︁

𝑥∈𝒯
p̃(𝑥)q(𝑥). (9.74)

Since Pr [𝑅=0] + Pr [𝑅 = 1] = 1, it suffices to establish that Pr [𝑅 = 0] > Pr [𝑅 = 1]:

Pr [𝑅 = 0]− Pr [𝑅 = 1] =
∑︁

𝑥∈𝒯
q̃(𝑥)p(𝑥)−

∑︁

𝑥∈𝒯
p̃(𝑥)q(𝑥) (9.75)

>
∑︁

𝑥∈𝒯
p̃(𝑥)p(𝑥)−

∑︁

𝑥∈𝒯
p̃(𝑥)q(𝑥) (9.76)

=
∑︁

𝑥∈𝒯
p̃(𝑥)[p(𝑥)− q(𝑥)] (9.77)

=
∑︁

𝑥∈𝐴𝑐

p̃(𝑥)[p(𝑥)− q(𝑥)]−
∑︁

𝑥∈𝐴
p̃(𝑥)[q(𝑥)− p(𝑥)] (9.78)

≥
∑︁

𝑥∈𝐴𝑐

(︀
max
𝑦∈𝐴

p̃(𝑦)
)︀
[p(𝑥)− q(𝑥)]−

∑︁

𝑥∈𝐴
p̃(𝑥)[q(𝑥)− p(𝑥)] (9.79)

=
∑︁

𝑥∈𝐴

(︀
max
𝑦∈𝐴

p̃(𝑦)
)︀
[q(𝑥)− p(𝑥)]−

∑︁

𝑥∈𝐴
p̃(𝑥)[q(𝑥)− p(𝑥)] (9.80)

=
∑︁

𝑥∈𝐴

(︀
max
𝑦∈𝐴

p̃(𝑦)− p̃(𝑥)
)︀
[q(𝑥)− p(𝑥)] (9.81)

> 0. (9.82)

Eq. (9.76) follows from Lemma 9.16; Eq. (9.79) follows from monotonicity of p̃; Eq. (9.80) follows from
Lemma 9.15; and Eq. (9.82) follows from since all terms in the sum are positive. �

9.2.3 Proof: A Tighter Bound in Terms of 𝐿∞(p,q)

Section 9.2.2 exhibited an ordering such that Pr [𝑅 = 0] > 1/2 whenever p ̸= q and 𝑚 = 1. This section
proves a tighter lower bound on this probability in terms of the 𝐿∞ distance between p and q. In this
section and the following, the domain 𝒯 is assumed to be finite. The following lemma is immediate.

Lemma 9.17. Let 𝐵,𝐶 ⊆ 𝒯 . For all p,q and all 𝛿 > 0 there is an 𝜖 > 0 such that for all distributions
p′ on 𝒯 with sup𝑥∈𝒯 |p(𝑥)− p′(𝑥)| < 𝜖,

|Pr [𝑅p,q = 0 |𝑋p ∈ 𝐵, 𝑌q ∈ 𝐶]− Pr
[︀
𝑅p′,q = 0 |𝑋p′ ∈ 𝐵, 𝑌q ∈ 𝐶

]︀
| < 𝛿. (9.83)

«

Definition 9.18. The distribution p is said to be 𝜖-discrete (with respect to q) if for all 𝑎, 𝑏 ∈ 𝒯 ,
⃒⃒
hp,q(𝑎)− hp,q(𝑏)

⃒⃒
≥ 𝜖. (9.84)

«

Lemma 9.17 implies the following result

Lemma 9.19. For all p,q and all 𝛿 > 0 there is an 𝜖 > 0 and an 𝜖-discrete distribution p𝜖 on 𝒯 such
that for all 𝐵,𝐶 ⊆ 𝒯 ,

|Pr [𝑅p,q = 0 |𝑋p ∈ 𝐵, 𝑌q ∈ 𝐶] − Pr [𝑅p𝜖,q = 0 |𝑋p𝜖 ∈ 𝐵, 𝑌q ∈ 𝐶]| < 𝛿. (9.85)
«

196

The next lemma is needed to prove a lower bound on Pr [𝑅p,q = 0].

Lemma 9.20. Let p0 and p1 be probability measures on 𝒯 , and let C be a total order on 𝒯 such that if
hp0,q(𝑥) > hp0,q(𝑥

′) then 𝑥 C 𝑥′ and if hp0,q(𝑥) < hp0,q(𝑥
′) then 𝑥 B 𝑥′. Suppose that if hp0,p1(𝑥) > 0

and hp0,p1(𝑦) ≤ 0, then 𝑥 C 𝑦. Then Pr [𝑅p0,q = 0] ≥ Pr [𝑅p1,q = 0]. «

Proof. Note that

Pr [𝑅p1,q = 0 |𝑌q = 𝑦] =
∑︁

𝑥B𝑦

p1(𝑥) +
1

2
p1(𝑦) (9.86)

=
∑︁

𝑥B𝑦

p0(𝑥) + hp0,p1(𝑥) +
1

2
[p0(𝑦) + hp0,p1(𝑦)] (9.87)

= Pr [𝑅p0,q = 0 |𝑌q = 𝑦] +
∑︁

𝑥B𝑦

hp0,p1(𝑥) +
1

2
hp0,p1(𝑦) (9.88)

= Pr [𝑅p0,q = 0 |𝑌q = 𝑦]−
∑︁

𝑥C𝑦

hp0,p1(𝑥)−
1

2
hp0,p1(𝑦), (9.89)

where the last equality holds because
∑︀

𝑥∈𝒯 hp0,p1(𝑥) = 0. However, from the assumption, the term∑︀
𝑥C𝑦 hp0,p1(𝑥) +

1
2hp0,p1(𝑦) is non-negative and so Pr [𝑅p1,q = 0 |𝑌q = 𝑦] ≤ Pr [𝑅p0,q = 0 |𝑌q = 𝑦],

from which the conclusion follows. �

The next result gives a lower bound on Pr [𝑅p,q = 0]. Its proof is beyond the scope of this thesis
and can be found in Saad et al. [2019b, Appendix A.3].

Proposition 9.21. For 𝑅p,q in Eq. (9.68), the following lower bound holds:

Pr [𝑅p,q = 0] ≥ 1

2
+

1

2
max
𝑥∈𝒯

hp,q(𝑥)
2. (9.90)

«

Proposition 9.21 implies the following theorem, which is needed for the proof of Theorem 9.7.

Theorem 9.22. Given probability measure p,q on 𝒯 there is a linear ordering @ of 𝒯 such that if 𝑋p

and 𝑌q are sampled independently from p and q respectively then

Pr [𝑋q @ 𝑌p] ≥
1

2
+

1

2
𝐿∞(p,q)2. (9.91)

«

Proof. First,
𝐿∞(p,q) = max{max

𝑥∈𝒯
hp,q(𝑥), max

𝑥∈𝒯
hq,p(𝑥)}. (9.92)

If 𝐿∞(p,q) = max𝑥∈𝒯 hp,q(𝑥), then the theorem follows from Proposition 9.21 using the ordering 𝑥 @ 𝑦
if and only if hp,q(𝑥) > hp,q(𝑦). If, however, 𝐿∞(p,q) = max𝑥∈𝒯 hq,p(𝑥), then the conclusion follows
from Proposition 9.21 by interchanging p and q, that is, using the ordering @ defined by the rule 𝑥 @ 𝑦
if and only if hq,p(𝑥) > hq,p(𝑦). �

9.2.4 Proof: Sample Complexity of SRS Test

The result in Theorem 9.22 can be amplified using repeated trials to obtain a bound on the sample
complexity of the main algorithm for determining whether p = q. In particular, the following proof of
Theorem 9.7 uses the linear ordering @ defined in Theorem 9.22.

197

Proof of Theorem 9.7. Assume without loss of generality that the order @ from Theorem 9.22 is such
that 𝐿∞ = max𝑠∈𝒯 (q(𝑥) − p(𝑥)). Let (𝑌1, . . . , 𝑌𝑛) ∼iid q be the 𝑛 samples from q. With 𝑚 = 1,
the testing procedure generates 𝑛 samples (𝑋1, . . . , 𝑋𝑛) ∼iid p, and 2𝑛 uniform random variables
(𝑈𝑌

1 , . . . , 𝑈𝑌
𝑛 , 𝑈𝑋

1 , . . . , 𝑈𝑋
𝑛) ∼iid Uniform(0, 1) to break ties. Let C denote the lexicographic order on

𝒯 × [0, 1] induced by (𝒯 ,C) and ([0, 1], <). Define 𝑊𝑖 ::= 1
[︀
(𝑌𝑖, 𝑈

𝑌
𝑖) C (𝑋𝑖, 𝑈

𝑋
𝑖)
]︀
, for 1 ≤ 𝑖 ≤ 𝑛, to be

the rank of the 𝑖th observation from q.
Under the null hypothesis H0, each rank 𝑊𝑖 has distribution Bernoulli(1/2) by Lemma 9.9. Testing

whether the ranks have a uniform distribution on {0, 1} is equivalent to testing whether a coin is
unbiased given the i.i.d. flips {𝑊1, . . . ,𝑊𝑛}. Let �̂� ::=

∑︀𝑛
𝑖=1(1−𝑊𝑖)/𝑛 denote the empirical proportion

of zeros. By the central limit theorem, for sufficiently large 𝑛, �̂� is approximately normally distributed
with mean 1/2 and standard deviation 1/(2

√
𝑛). For the given significance level 𝛼 = 2Φ(−𝑐), the

two-sided reject region 𝐹 = (−∞, 𝛾) ∪ (𝛾,∞) is such that critical value 𝛾 satisfies

𝑐 =
𝛾 − 1/2

1/(2
√
𝑛)

= 2
√
𝑛(𝛾 − 1/2). (9.93)

Replacing 𝑛 in Eq. (9.8) gives

𝛾 = 1/2 + 𝑐/(2
√
𝑛) (9.94)

= 1/2 + 𝑐/(2(2𝑐/𝐿∞(p,q)2)) (9.95)

= 1/2 + 𝐿∞(p,q)2/4. (9.96)

This construction ensures that Pr [reject | H0] = 𝛼.
It remains to be shown that the test with this rejection region has power 𝛽 ≥ Pr [reject | H1] = 1−

Φ(−𝑐). Under the alternative hypothesis H1, each 𝑊𝑖 has (in the worst case) distribution Bernoulli(1/2+
𝐿∞(p,q)2/2) by Theorem 9.22. Hence, the empirical proportion �̂� is approximately normally dis-
tributed with mean at least 1/2 + 𝐿∞(p,q)2/2 and standard deviation at most 1/(2

√
𝑛). Under the

alternative distribution of �̂�, the standard score 𝑐′ of the critical value 𝛾 is

𝑐′ =
𝛾 − (1/2 + 𝐿∞(p,q)2/2)

1/(2
√
𝑛)

(9.97)

= 2
√
𝑛((1/2 + 𝐿∞(p,q)2/4)− (1/2 + 𝐿∞(p,q)2/2)) (9.98)

= −2√𝑛(𝐿∞(p,q)2/4) (9.99)

= −√𝑛𝐿∞(p,q)2/2 (9.100)
= −𝑐, (9.101)

where the second equality follows from Eq. (9.96). The not reject region 𝐸 = [−𝛾, 𝛾] ⊂ (−∞, 𝛾], and so
the probability �̂� ∈ 𝑒 is at most the probability that �̂� < 𝛾, which by Eq. (9.101) is equal to Φ(−𝑐). It
follows that 𝛽 ≥ 1− Φ(−𝑐). �

Corollary 9.23. As the significance level 𝛼 varies, the test with ordering @ and 𝑚 = 1 achieves an
overall error

𝛼+ (1− 𝛽)

2
≤ 3Φ(−𝑐)

2
(9.102)

using 𝑛 = 4𝑐2/𝐿∞(p,q)4 samples. «

198

9.2.5 Proof: Distribution of SRS under Alternative Hypothesis

This section derives the distribution of 𝑅 under the alternative hypothesis p ̸= q. As before, the
cumulative distribution of p is denoted p̃(𝑥) ::=

∑︀
𝑥′<𝑥 p(𝑥).

Proof of Theorem 9.8. Define the following random variables:

𝐿 ::=
𝑚∑︁

𝑖=1

I [𝑋𝑖 ≺ 𝑋0] , (9.103)

𝐸 ::=
𝑚∑︁

𝑖=1

I [𝑋𝑖 = 𝑋0] , (9.104)

𝐺 ::=
𝑚∑︁

𝑖=1

I [𝑋𝑖 ≻ 𝑋0] . (9.105)

The variables 𝐿, 𝐸, and 𝐺 are referred to as “bins”, where 𝐿 is the “less than” bin, 𝐸 is the “equal to”
bin, and 𝐺 is the “greater than” bin (all with respect to 𝑋0). Total probability gives

Pr [𝑅 = 𝑟] =
∑︁

𝑥∈𝒯
Pr [𝑅 = 𝑟,𝑋0 = 𝑥] =

∑︁

𝑥∈𝒯
q(𝑥)>0

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥]q(𝑥). (9.106)

Fix 𝑥 ∈ 𝒯 such that q(𝑥) > 0. Consider Pr [𝑅 = 𝑟 |𝑋0 = 𝑠]. The counts in bins 𝐿, 𝐸, and 𝐺 are
binomial random variables with 𝑚 trials, where the bin 𝐿 has success probability p̃(𝑥), the bin 𝐸 has
success probability p(𝑥), and the bin 𝐺 has success probability 1− (p̃(𝑥) + p(𝑥)).

There are three cases to consider.

Case 1. p(𝑥) = 0. The event {𝐸 = 0} occurs with probability one since each 𝑋𝑖, for 1 ≤ 𝑖 ≤ 𝑚,
cannot possibly be equal to 𝑥. Therefore, conditioned on {𝑋0 = 𝑥}, the event {𝑅 = 𝑟}
occurs if and only if {𝐿 = 𝑟}. Since 𝐿 is binomially distributed,

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥] = Pr [𝐿 = 𝑟 |𝑋0 = 𝑥] =

(︂
𝑚

𝑟

)︂
[p̃(𝑥)]𝑟 [1− p̃(𝑥)]𝑚−𝑟 . (9.107)

Case 2. p(𝑥) = 1. Then the event {𝐸 = 𝑚} occurs with probability one since each 𝑋𝑖, for 1 ≤ 𝑖 ≤ 𝑚,
can only equal 𝑠. The uniform numbers 𝑈0, . . . , 𝑈𝑚 used to break the ties will determine
the rank 𝑅 of 𝑋0. Let 𝐵 be the rank of 𝑈0 among the 𝑚 other uniform random variables
𝑈1, . . . , 𝑈𝑚. The event {𝑅 = 𝑟} occurs if and only if {𝐵 = 𝑟}. Since the 𝑈𝑖 are i.i.d., 𝐵 is
uniformly distributed over {0, 1, 2, . . . ,𝑚} by Lemma 9.9. Therefore,

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥] = Pr [𝐵 = 𝑟 |𝑋0 = 𝑥] =
1

𝑚+ 1
. (9.108)

Case 3. 0 < p(𝑥) < 1. By total probability,

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥] =
𝑚∑︁

𝑒=0

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒] Pr [𝐸 = 𝑒 |𝑋0 = 𝑥] . (9.109)

Since 𝐸 is binomially distributed,

Pr [𝐸 = 𝑒 |𝑋0 = 𝑥] =

(︂
𝑚

𝑒

)︂
[p(𝑥)]𝑒 [1− p(𝑥)]𝑚−𝑒 . (9.110)

199

The event {𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒} is analyzed next. The uniform numbers 𝑈0, . . . , 𝑈𝑚

used to break the ties will determine the rank 𝑅 of 𝑋0. Define 𝐵 to be the rank of 𝑈0

among the 𝑒 other uniform random variables assigned to bin 𝐸, i.e., those 𝑈𝑖 for 1 ≤ 𝑖 ≤ 𝑚
such that 𝑋𝑖 = 𝑠. The random variable 𝐵 is independent of all the 𝑋𝑖, but is dependent
on 𝐸. Given {𝐸 = 𝑒}, 𝐵 is uniformly distributed on {0, 1, . . . , 𝑒}. By total probability,

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒] =
𝑒∑︁

𝑏=0

[Pr [𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒,𝐵 = 𝑏] Pr [𝐵 = 𝑏 |𝐸 = 𝑒]]

(9.111)

=
𝑒∑︁

𝑏=0

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒,𝐵 = 𝑏]
1

𝑒+ 1
. (9.112)

Conditioned on {𝐸 = 𝑒} and {𝐵 = 0}, the event {𝑅 = 𝑟} occurs if and only if {𝐿 = 𝑟},
since exactly 0 random variables in bin 𝐸 “are less” than 𝑋0, so exactly 𝑟 random variables
in bin 𝐿 are needed to ensure that the rank of 𝑋0 is 𝑟. By the same reasoning, conditioning
on {𝐸 = 𝑒,𝐵 = 𝑏} gives {𝑅 = 𝑟} if and only if {𝐿 = 𝑟 − 𝑏} (for 0 ≤ 𝑏 ≤ 𝑒). Now,
conditioned on {𝐸 = 𝑒}, there are 𝑚 − 𝑒 remaining assignments to be split among bins 𝐿
and 𝐺. Let 𝑖 be such that 𝑋𝑖 ̸= 𝑥. Then the relative probability that 𝑋𝑖 is assigned to bin
𝐿 is p̃(𝑥) and to bin 𝐺 is 1− (p̃(𝑥)+p(𝑥)). By renormalizing these probabilities, it is seen
that 𝐿 is conditionally (given {𝐸 = 𝑒}) a binomial random variable with 𝑚 − 𝑒 trials and
success probability

p̃(𝑥)

p̃(𝑥) + (1− (p̃(𝑥) + p(𝑥)))
=

p̃(𝑥)

1− p(𝑥)
. (9.113)

Therefore,

Pr [𝑅 = 𝑟 |𝑋0 = 𝑥,𝐸 = 𝑒,𝐵 = 𝑏] (9.114)
= Pr [𝐿 = 𝑟 − 𝑏 |𝑋0 = 𝑥,𝐸 = 𝑒] (9.115)

=

(︂
𝑚− 𝑒

𝑟 − 𝑗

)︂[︂
p̃(𝑥)

1−p(𝑥)

]︂𝑟−𝑗 [︂
1− p̃(𝑥)

1−p(𝑥)

]︂(𝑚−𝑒)−(𝑟−𝑗)

, (9.116)

which completes the proof. �

Remark 9.24. The sum in Eq. (9.9) of Theorem 9.8 converges since 𝐻(𝑥,𝑚, 𝑟) ≤ 1. «

Remark 9.25. Theorem 9.8 shows that it is not the case that p = q whenever there exists some 𝑚
for which the rank 𝑅 is uniform on [𝑚+ 1]. For example, let 𝑚 = 1, 𝒯 ::= {0, 1, 2, 3}, ≺ be the usual
order < on the integers. Put

p ::=
1

2
𝛿0 +

1

2
𝛿3 (9.117)

q ::=
1

2
𝛿1 +

1

2
𝛿2 (9.118)

Let 𝑋 ∼ p and 𝑌 ∼ q. Then Pr [𝑅 = 0] = Pr [𝑋 > 𝑌] = 1/2 = Pr [𝑌 < 𝑋] = Pr [𝑅 = 1]. Rather,
Theorem 9.1 merely states if 𝑅 is not uniform on {0, . . . ,𝑚} for some 𝑚, then p ̸= q. For the
distributions in Eqs. (9.117) and (9.118), the setting 𝑚 = 2 provides such a witness, as does any 𝑚 > 2
by Theorem 9.4. «

200

0 100 200 300 400 500

Sample Size n from Dist. q

0.0

0.2

0.4

0.6

0.8

1.0

Test Power vs. Sample Size

Anderson-Darling
SRS (m=1)

Kolmogorov-Smirnov
SRS (m=2)

Kernel MMD
SRS (m=3)

Mann-Whitney U
SRS (m=30)

−40 −20 0 20 40

Null Distribution p

−40 −20 0 20 40

Alternative Distribution q

Figure 9.2: The left panel shows a pair (p,q) of reflected, bimodal Poisson distributions with slight
location shift. The right plot compares the power of testing p = q using the SRS for various 𝑚 and
several baseline methods.

9.3 Simulation Studies

This section applies the proposed goodness-of-fit in Algorithm 9.1 to data from a countably infinite
domain and two finite high-dimensional domains, illustrating a power comparison and how distributional
differences can be detected when the number of observations is much smaller than the domain size. The
Pearson chi-square test is used to assess uniformity of the SRS in line 12 of Algorithm 9.1; refer to
Steele and Chaseling [2006] for a comparison of alternative techniques to test for a discrete uniform.

9.3.1 Bimodal Symmetric Poisson

For 𝑥 ∈ Z, define the discrete distribution

f(𝑥;𝜆1, 𝜆2) ::=
1

2

(︂
1

2
Poisson(|𝑥|;𝜆1) +

1

2
Poisson(|𝑥|;𝜆2)

)︂
, (9.119)

which specifies a mixture of Poisson distributions with rates 𝜆1 and 𝜆2, reflected symmetrically about
𝑥 = 0. Setting p(𝑥) ::= f(𝑥; 10, 20) and q(𝑥) ::= f(𝑥; 10, 25) produces an alternative distribution q that
is location-shifted from p in two of the four modes, as shown in the left panel of Figure 9.2.

The right plot of Figure 9.2 compares the power of tests for p = q for various sample sizes 𝑛 from q
using the SRS test (𝑚 =, 1, 2, 3, 30, shown in increasing shades of gray) and several baselines (shown in
color). The baselines are used to assess goodness-of-fit by performing a two-sample test on 𝑛 samples
from q with samples drawn i.i.d. from p. The power at level 𝛼 = 0.05 is estimated as the fraction
of correct answers over 1024 independent trials. The Mann–Whitney U, which is also based on rank
statistics with a correction for ties, has no power for all 𝑛 as it can only detect median shift, as does
the SRS with 𝑚 = 1 (Corollary 9.5). The SRS becomes nonuniform for 𝑚 = 2 although this choice
results in low power. The SRS with 𝑚 = 3 has comparable power to the Anderson-Darling (AD) test
and Maximum Mean Discrepancy (MMD) kernel test. The SRS with 𝑚 = 30 is the most powerful,
although it requires more computational effort and samples from p, as Algorithm 9.1 scales as 𝑂(𝑚𝑛).

201

bit strings
0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

≺ lex
pind
ptie

bit strings

≺ parity-lex
pind
ptie

bit strings

≺ ones-lex
pind
ptie

bit strings

≺ cooler
pind
ptie

bit strings

≺ debruijn
pind
ptie

0.0 0.2 0.4 0.6 0.8 1.0

Mixture Weight w

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
‖p

R
−
p U
‖

Non-Uniformity of Rank Sampling Distribution

≺ lex
≺ parity-lex
≺ ones-lex
≺ cooler
≺ debruijn

(a) Experiment p ::= pind q ::= 𝑤ptie + (1− 𝑤)pind

bit strings
0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

≺ lex
pind
podd

bit strings

≺ parity-lex
pind
podd

bit strings

≺ ones-lex
pind
podd

bit strings

≺ cooler
pind
podd

bit strings

≺ debruijn
pind
podd

0.0 0.2 0.4 0.6 0.8 1.0

Mixture Weight w

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

‖p
R
−
p U
‖

Non-Uniformity of Rank Sampling Distribution

≺ lex
≺ parity-lex
≺ ones-lex
≺ cooler
≺ debruijn

(b) Experiment p ::= pind q ::= 𝑤podd + (1− 𝑤)pind

Figure 9.3: In each of the panels (a) and (b) above, the first plot compares the cumulative distribution
function of the uniform distribution p ::= pind on {0, 1}16 (diagonal gray line) with an alternative
distribution (colored)—(a) ptie and (b) podd—for six different orderings on the binary strings. The
bottom plot shows the sup-norm distance between the sampling distribution of the stochastic rank
statistic and discrete uniform distribution over {1, . . . , 6} for alternative distributions of the form q ::=
𝑤palt + (1 − 𝑤)pind, 𝑤 ∈ [0, 1]. Orderings that induce a greater distance between the cumulative
distribution functions of the null and alternative result in more power to detect the alternative.

202

9.3.2 Binary Strings

Let 𝒯 ::= {0, 1}𝑘 be the set of all length 𝑘 binary strings. Define the following distributions to be
uniform over all strings 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘 which satisfy the given predicates:

pind : uniform on all strings (9.120)

podd :
∑︀𝑘

𝑖=1 𝑥𝑖 ≡ 1 (mod 2) (9.121)
ptie : 𝑥1 = 𝑥2 = · · · = 𝑥𝑘/2. (9.122)

Each of these distributions assigns marginal probability 1/2 to each bit 𝑥𝑖 (for 1 ≤ 𝑖 ≤ 𝑘), so all
deviations from the uniform distribution pind are captured by higher-order relationships. The five
orderings used for comparing binary strings are

≺lex : Lexicographic (dictionary) ordering (9.123)
≺par : Parity of ones, ties broken using ≺lex (9.124)
≺one : Number of ones, ties broken using ≺lex (9.125)
≺coo : Cooler ordering (randomly generated) [Stevens and Williams, 2012] (9.126)
≺dbj : De Bruijn sequence ordering. (9.127)

The null distributions and alternative distributions

p ::= pind (9.128)
q ::= 𝑤pc + (1− 𝑤)pind, (9.129)

for 𝑤 ∈ [0, 1] 𝑐 ∈ {odd, tie}. That is, the alternative distributions are probabilistic mixtures of pind

with the other two distributions. The bit string length 𝑘 = 16 with 𝑛 = 256 observations are used.
Therefore, |𝒯 | = 65, 536 and the 𝑛 observations comprise only 0.4% of the domain size.

Figure 9.3 shows how the nonuniformity of the SRS with 𝑚 = 6 varies for each of the two alternatives
and five orderings. Each ordering induces a different CDF over {0, 1}𝑘 for the alternative distribution,
shown in the right panel of Figure 9.3 for 𝑤 = 1. Orderings with a greater maximum vertical distance
between the null and alternative CDF attain greater rank nonuniformity. No single ordering is more
powerful than all others in both test cases. However, in each case, some ordering detects the difference
even at low weights 𝑤, despite the sparse observation set.

The alternative q = podd in Figure 9.3b is especially challenging since in any string 𝑥 ∈ {0, 1}𝑘, all
substrings (not necessarily contiguous) of a given length 1 ≤ 𝑗 < 𝑘 are equally likely. Even though the
SRS is nonuniform for all orderings, the powers vary significantly. For example, using the lexicographic
ordering ≺lex does not effectively distinguish between pind and podd, as strings with an odd number
of ones are lexicographically evenly interspersed within the set of all strings. The parity ordering
≺par, which is optimal for this alternative, and the randomly generated cooler ordering ≺coo both have
increasing power with 𝑤.

9.3.3 Partition Testing

The final example applies the SRS to test distributions on the space of partitions of the set {1, 2, . . . , 𝑁}.
Let Π𝑁 denote the set of all such partitions. The two-parameter Chinese Restaurant Process (CRP)
[Buntine and Hutter, 2010, Section 5.1] can be used to define a distribution on Π𝑁 . Letting (𝑥|𝑦)𝑁 ::=
(𝑥)(𝑥+𝑦) · · · (𝑥+(𝑁−1)𝑦) denote the rising factorial, the probability of a partition 𝜋 ::= {𝜋1, . . . , 𝜋𝑘} ∈

203

7.2 7.4 7.6 7.8

Number of Tables (Avg)

Sampling Dist t1(X1:m) ∼ p

3.1 3.2 3.3 3.4 3.5

Number of Tables (Std)

Sampling Dist t2(X1:m) ∼ p

3.4 3.6 3.8 4.0

Size of Tables (Avg)

Sampling Dist t3(X1:m) ∼ p

2.4 2.7 3.0 3.3 3.6

Size of Tables (Std)

Sampling Dist t4(X1:m) ∼ p

7.2 7.4 7.6 7.8

Number of Tables (Avg)

Sampling Dist t1(Y1:m) ∼ q

3.1 3.2 3.3 3.4 3.5

Number of Tables (Std)

Sampling Dist t2(Y1:m) ∼ q

3.4 3.6 3.8 4.0

Size of Tables (Avg)

Sampling Dist t3(Y1:m) ∼ q

2.4 2.7 3.0 3.3 3.6

Size of Tables (Std)

Sampling Dist t4(Y1:m) ∼ q

(a) Sampling distribution of four different probe statistics {𝑡1, 𝑡2, 𝑡3, 𝑡4} that each map a collection of partitions
to a real number, where partitions are sampled from p (Eq. (9.131); blue) and from q (Eq. (9.132); green). The
vertical red lines indicate 2.5% and 97.5% quantiles. Even though p ̸= q, the distributions of these statistics are
such that each statistic 𝑡𝑗(𝑌1:𝑚) ∼ q is unlikely to appear as an extreme value in the sampling distribution of
the statistic 𝑡𝑗(𝑋1:𝑚) ∼ p under the null hypothesis, which leads to under-powered goodness-of-fit tests.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rank

Sampling Dist r(X ∼ p, X1:m ∼ p)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rank

Sampling Dist r(Y ∼ q, X1:m ∼ p)

(b) Monte Carlo simulation of the sampling distribution of the SRS illustrates that it has a uniform distribution
under the null hypothesis p = q and a non-uniform distribution under the alternative hypothesis p ̸= q, leading
to a more powerful goodness-of-fit test.

Figure 9.4: Comparison of bootstrap and SRS goodness-of-fit tests for detecting distributional dif-
ferences between two Chinese restaurant processes q and q on 𝑁 = 20 customers. Panel (a) shows
the sampling distribution of various bootstrapped probe statistics and panel (b) shows the sampling
distribution the stochastic rank statistic.

204

Algorithm 9.2 Total order ≺ on the set Π𝑁 of partitions over {1, . . . , 𝑁}.

Require:
{︂

Partition 𝜋 ::= {𝜋1, 𝜋2, . . . , 𝜋𝑘} ∈ Π𝑁 with 𝑘 blocks.
Partition 𝜈 ::= {𝜈1, 𝜈2, . . . , 𝜈𝑙} ∈ Π𝑁 with 𝑙 blocks.

Ensure: LT if 𝜋 ≺ 𝜈; GT if 𝜋 ≻ 𝜈; EQ if 𝜋 = 𝜈.
1: if 𝑘 < 𝑙 then
2: return LT ◁ 𝜈 has more blocks
3: if 𝑘 > 𝑙 then
4: return GT ◁ 𝜋 has more blocks
5: �̃� ← blocks of 𝜋 sorted by value of least element in the block
6: 𝜈 ← blocks of 𝜈 sorted by value of least element in the block
7: for 𝑏 = 1, 2, . . . , 𝑙 do
8: if |�̃�𝑏| < |𝜈𝑏| then
9: return LT ◁ 𝜈𝑏 has more elements

10: if |�̃�𝑏| > |𝜈𝑏| then
11: return GT ◁ �̃�𝑏 has more elements
12: 𝜋′

𝑏 ← values in �̃�𝑏 sorted in ascending order
13: 𝜈 ′𝑏 ← values in 𝜈𝑏 sorted in ascending order
14: for 𝑖 = 1, 2, . . . , |𝜋′

𝑏| do
15: if 𝜋′

𝑏,𝑖 < 𝜈 ′𝑏,𝑖 then
16: return LT ◁ 𝜋′

𝑏 has smallest element
17: if 𝜋′

𝑏,𝑖 > 𝜈 ′𝑏,𝑖 then
18: return GT ◁ 𝜈 ′𝑏 has smallest element
19: return EQ

Π𝑁 with 𝑘 blocks (also referred to as tables) is

CRP(𝜋; 𝑎, 𝑏) ::=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(𝑏|𝑎)𝑘
(𝑏|1)𝑁

𝑘∏︁

𝑖=1

(1− 𝑎)𝑐𝑘−1 (if 𝑎 > 0)

𝑏𝑘

(𝑏|1)𝑁

𝑘∏︁

𝑖=1

(𝑐𝑘 − 1)! (if 𝑎 = 0),

(9.130)

where 𝑐𝑖 is the number of integers (customers) assigned to block (table) 𝜋𝑖 (𝑖 = 1, . . . , 𝑘). Simulating a
CRP proceeds by sequentially assigning customers to tables [Buntine and Hutter, 2010, Definition 7].

Even though the probability of any partition can be directly computed, the cardinality of Π𝑁 grows
exponentially in 𝑁 ; for example, |Π20| ≈ 5.17× 1013. The expected frequency of any partition is
essentially zero for sample size 𝑛 ≪ |Π𝑁 |, so Pearson chi-square or likelihood-ratio tests on the raw
data are inappropriate. Algorithm 9.2 defines a procedure that induces a linear order on Π𝑁 based on
traversing the partitions and using various statistics to determine precedence.

Consider The following pair of distributions:

p ::= CRP(0.26, 0.76)/2 + CRP(0.19, 5.1)/2 (9.131)
q ::= CRP(0.52, 0.52). (9.132)

These distributions are designed to ensure that partitions from p and q have similar distributions on
the number and sizes of tables. Figure 9.4 compares the quality of goodness-of-fit tests using bootstrap
resampling [Good, 2004] of various probe statistics and the SRS test with the ordering in Algorithm 9.2.

In Figure 9.4a, each probe statistic takes a size 𝑚 dataset (𝑋1, . . . , 𝑋𝑚), where each 𝑋𝑖 is itself a

205

Figure 9.5: The uniformity of the SRS (bottom row) captures convergence behavior of MCMC sampling
algorithms for Dirichlet process mixture models that are not captured by common diagnostics such as
the logscore (top row), which is the joint probability density of latent variables and observed data..

partition over [𝑁], and produces a numerical summary such as the average of the number of tables in
each sample. Bootstrap resampling with these probe statistics will report with high probability that
an observed statistic 𝑡(𝑌1, . . . , 𝑌𝑚) ∼ q drawn from the alternative distribution is a non-extreme value
in the null distribution 𝑡(𝑋1, . . . , 𝑋𝑚) ∼ p, which is indicated by alignment of the quantiles (red lines)
in Figure 9.4a. These resampling tests will therefore have insufficient evidence to reject p = q. In
contrast, Figure 9.4b shows that when ranked using the linear ordering from Algorithm 9.2, which is
based on a multivariate combination of the univariate probe statistics in Figure 9.4a, a partition 𝑌 ∼ q
is more likely to lie in the center of a dataset (𝑋1, . . . , 𝑋𝑚) ∼iid p. The gray band in Figure 9.4b shows
99% variation for a uniform histogram, confirming that the rank distribution under the alternative
hypothesis is statistically nonuniform.

9.4 Applications to Convergence Analysis of Approximate Samplers

A key application of the SRS is assessing the sample quality of random data structures produced by
approximate sampling algorithms over combinatorially large domains with intractable probabilities.
Sections 9.4.1 and 9.4.2 use the SRS to diagnose the convergence of approximate sampling algorithms
for Dirichlet process mixture models and Ising models, respectively. A third example can be found in
Lin [2022, Section 5.1.2], who combine the SRS and simulation-based calibration as in Section 9.4.1 to
assess the sample quality of structured expressions in the Gaussian process DSL (Chapter 2) obtained
via sequential Monte Carlo learning (Section 3.3.2). The example in [Lin, 2022] is enabled by defining a
linear ordering on the underlying space of primitive and composite Gaussian process covariance kernels
in the DSL from Listing 2.1, analogously to the procedurally-specified ordering on integer partitions
from Algorithm 9.2.

206

9.4.1 Dirichlet Process Mixture Models

Talts et al. [2018] describe simulation-based calibration (SBC), a procedure for validating samples from
algorithms that generate posterior samples in Bayesian models. More specifically, for a prior 𝜋(𝑧) over
latent variables 𝑧 and likelihood function 𝜋(𝑥 | 𝑧) over data 𝑥, integrating the posterior over the joint
distribution returns the prior distribution:

𝜋(𝑧) =

∫︁
𝜋(𝑧, 𝑥′)d𝑥′ =

∫︁
𝜋(𝑧|𝑥′)𝜋(𝑥′)d𝑥′ =

∫︁ [︂∫︁
𝜋(𝑧|𝑥′)𝜋(𝑥′|𝑧′)d𝑥′

]︂
𝜋(𝑧′)d𝑧′, (9.133)

where the final equality uses the fact that 𝜋(𝑥′) =
∫︀
𝜋(𝑥′|𝑧′)𝜋(𝑧′) d𝑧′. Eq. (9.133) indicates for 𝑛 i.i.d.

datasets 𝑥1, . . . , 𝑥𝑛 ∼ 𝜋(𝑥′), the i.i.d. samples 𝑧𝑖 ∼ 𝜋(𝑧|𝑥𝑖) for 𝑖 = 1, . . . , 𝑛 are equivalent to samples
from the prior 𝜋(𝑧). An approximate sampler can be thus be diagnosed by performing a goodness-of-fit
test to check whether 𝑧1, . . . , 𝑧𝑛 are distributed according to 𝜋(𝑧). Talts et al. [2018] apply this idea
to test the goodness-of-fit of one-dimensional marginals of a continuous parameter vector 𝑧 ∈ R𝑑. The
SRS is used to extend SBC for testing discrete latent variables 𝑧 that take values in a large domain.

A sample size of 𝑛 = 1000 independent datasets 𝑥1, . . . , 𝑥𝑛 were simulated from a Dirichlet process
mixture model (Section 5.1.1). Each dataset 𝑥𝑖 has 𝑘 = 100 observations and each observation 𝑥𝑖 ∈ R𝑘×5

is five-dimensional with a Gaussian likelihood, so that the latent state 𝑧 ∈ Π𝑘 with |Π𝑘| ≈ 10115, From
Eq. (9.133), the samples 𝑧1, . . . , 𝑧𝑛 of the mixture assignment vector should be distributed according
to the CRP prior 𝜋(𝑧). The top row of Figure 9.5 shows trace plots of the logscore (unnormalized
posterior) of approximate samples from Rao–Blackwellized Gibbs, Auxiliary Variable Gibbs, and No-
Gaps Gibbs samplers, which correspond to Algorithms 3, 8, and 4 from Neal [2000], respectively. Each
line corresponds to an independent run of MCMC inference. The bottom row shows the evolution of
the uniformity of the SRS using 𝑚 = 64 and the linear ordering on partitions from Algorithm 9.2.

The logscores stabilize after 100 MCMC steps, which is one epoch through all observations in a
dataset, and suggest little difference across the three samplers. In contrast, the SRS shows that Rao-
Blackwellized Gibbs is slightly more efficient than Auxiliary Variable Gibbs and that the sample quality
from No-Gaps Gibbs is inferior to those from the other two algorithms, up until roughly 5, 000 steps.
These results are consistent with the observation from Neal [2000] that No-Gaps has inefficient mixing,
as it excessively rejects proposals on singleton clusters.

9.4.2 Ising Models

Generating simulations of Ising models is a fundamental problem in statistical mechanics [Hughes, 1999].
For a ferromagnetic 𝑘 × 𝑘 lattice with temperature 𝑇 , the probability of a spin configuration 𝑥 is

𝑃 (𝑥) ∝ exp
(︁
−1/𝑇∑︀𝑖,𝑗 𝑥𝑖𝑥𝑗

)︁
(𝑥 ∈ {−1,+1}𝑘×𝑘). (9.134)

While the normalizing constant of Eq. (9.134) is intractable to compute for any 𝑥, coupling-from-the-
past [Propp and Wilson, 1996] is a popular MCMC technique which can tractably obtain exact samples
from the Ising model. For a 64× 64 Ising model (whose domain size is 264×64), 650 exact samples were
obtained via coupling-from-the-past and used as the “ground-truth” samples to assess the goodness-of-
fit of approximate samples obtained via Gibbs sampling and Metropolis-Hastings (MH) sampling. The
proposal for MH is based on the method described in MacKay [2003, Section 31.1].

For each temperature 𝑇 ∈ {3, 8}, a total of 7,800 approximate samples were simulated from Gibbs
and MH. The first two rows of Figure 9.6 each show the evolution of one particular sample (top: Gibbs;
bottom: MH). Two exact samples are shown in the final column of each panel. All approximate and
exact samples are independent of one another and were obtained by running parallel Markov chains
(Figure 3.2). The SRS of the exact samples with respect to the approximate samples was taken at

207

G
ib

bs
S

am
pl

e
ra

nk
fre

q

step=0 step=2500 step=5000 step=7500 step=10000 step=15000 exact sample

ra
nk

fre
q

step=0 step=2500 step=5000 step=7500 step=10000 step=15000 exact sample

M
H

S
am

pl
e

0 2500 5000 7500 10000 12500 15000 17500 20000

Number of MCMC Steps

0.0

0.2

0.4

0.6

0.8

1.0

‖p
R
−
p
U
‖ Gibbs Sampling

MH Sampling (Custom Spin Proposal)

(a) Temperature 𝑇 = 8

G
ib

bs
S

am
pl

e
ra

nk
fre

q

step=0 step=15000 step=20000 step=30000 step=55000 step=80000 exact sample

ra
nk

fre
q

step=0 step=15000 step=20000 step=30000 step=55000 step=80000 exact sample

M
H

S
am

pl
e

0 10000 20000 30000 40000 50000 60000 70000 80000

Number of MCMC Steps

0.0

0.2

0.4

0.6

0.8

1.0

‖p
R
−
p
U
‖ Gibbs Sampling

MH Sampling (Custom Spin Proposal)

(b) Temperature 𝑇 = 3

Figure 9.6: Using the SRS to assess the goodness-of-fit of approximate samples of a 64×64 Ising model
using Gibbs sampling and Metropolis–Hastings sampling.

208

checkpoints of 100 MCMC steps, using 𝑚 = 12 and a linear ordering based on the Hamiltonian energy,
spin magnetization, and connected components. The SRS histograms and 99% variation bands evolving
at various steps of inference are shown above the Ising model renderings.

The SRS is nonuniform, including in regimes where the difference between approximate and exact
samples is too fine-grained to be detected visually, at early steps and more uniform at higher steps. The
plots show that MH is a more efficient sampler than Gibbs at moderate temperatures, as its sample
quality improves more rapidly. This property was conjectured by MacKay [2003], who noted that the
MH sampler “has roughly double the probability of accepting energetically unfavourable moves, so may
be a more efficient sampler [than Gibbs]”. In addition, the plots suggest that the samples become close
to exact—with respect to the joint energy, magnetization, and connected components properties used
to define the linear ordering—after 20,000 steps for 𝑇 = 8 and 100,000 steps for 𝑇 = 3. Exact sampling
via coupling-from-the-past requires 500,000—1,000,000 MCMC steps for both temperatures.

9.5 Implementation as a Probabilistic Meta-Program in Gen

The SRS can be used to perform goodness-of-fit tests for arbitrary generative processes specified as
probabilistic programs. Listing 9.1 shows an implementation of the SRS goodness-of-fit test (Algo-
rithm 9.1) as a meta-program in the Gen probabilistic programming system [Cusumano-Towner et al.,
2019]. The function simulate_stochastic_rank_statistic takes as input an arbitrary probabilistic
program called model, whose type is a GenerativeFunction. The targets input is a selection of the
trace addresses in the model probabilistic program whose marginal distribution is being tested. The
observations input is a list of ChoiceMap objects, where each element is a map from trace addresses
to observed values. The addresses in each observation are required to exactly match the selected ad-
dresses in targets. The less_than input is a function that defines the user-specified linear ordering
on the ChoiceMap domain, which returns true if and only if the first argument is less than the second
argument. The return value in line 32 is the list of realizations of the SRS. These ranks can then be
assessed for uniformity in many ways [Steele and Chaseling, 2006]. One such approach is shown in
line 35 which returns the 𝑝-value of the rank histogram under the Pearson chi-square test.

209

1 import Gen
2 import HypothesisTests
3
4 function simulate_stochastic_rank_statistic(
5 model::Gen.GenerativeFunction,
6 model_args::Tuple,
7 targets::Gen.Selection,
8 observations::Vector{T},
9 m::Integer,

10 less_than::Function,
11)
12 where T <: Gen.ChoiceMap
13 ranks = Vector{Integer}(undef, length(observations))
14 for (i, observation) in enumerate(observations)
15 U = rand(Gen.Distributions.Uniform(0,1))
16 r = 0
17 for j=1:m
18 trace_p = Gen.simulate(model, model_args)
19 choices = Gen.get_choices(trace_p)
20 simulation = Gen.get_selected(choices, targets)
21 if simulation == observation
22 V = rand(Gen.Distributions.Uniform(0,1))
23 if V < U
24 r += 1
25 end
26 elseif less_than(observation, simulation)
27 r += 1
28 end
29 ranks[i] = r
30 end
31 end
32 return ranks
33 end
34
35 function test_stochastic_rank_statistic_uniformity(m::Integer, ranks::Vector{Integer})
36 histogram = [sum(ranks .== i) for i=0:m]
37 return HypothesisTests.ChisqTest(histogram)
38 end

Listing 9.1: Gen implementation of SRS goodness-of-fit test (Algorithm 9.1) for probabilistic programs.

210

Part IV

Conclusion

211

THIS PAGE INTENTIONALLY LEFT BLANK

212

Chapter 10

Future Directions

We began this thesis with two motivating questions:

How can we build systems that automatically discover probabilistic models of noisy empirical data?
How can we build systems that return principled answers to queries about probabilistic models?

Part I precisely cast the problem of model discovery given noisy data as a hierarchical Bayesian
inference over structured expressions in domain-specific data modeling languages; presented sequential
Monte Carlo algorithms for online Bayesian structure learning; and applied the approach to automat-
ically discover models in four domains: univariate time series, multivariate time series, cross-sectional
data tables, and relational systems. Parts II and III showed how to solve challenging queries about
probabilistic models by representing them as probabilistic programs and using symbolic analyses for
exact Bayesian inference and dynamic analyses for statistical estimation and testing. We identified six
scalability principles in Section 1.1 for engineering software systems that achieve these capabilities, and
through a large collection of quantitative evaluations showed they deliver solutions that match or out-
perform widely used techniques across a spectrum of real-world data science problems. We close with
a discussion of some limitations, open questions, and opportunities for future work that this research
program invites.

10.1 Human-In-The-Loop Model Discovery

In many data modeling problems, practitioners have good intuitions about how to model parts of the
data and might wish to apply automated model discovery to learn structure in the unknown parts.
Examples include the presence of a holiday effect or changepoint in a certain time window (for the time
series DSL in Chapter 2); constraints about which variables must be modeled as dependent (for the
cross-sectional data DSL in Chapter 4); or known functional relationships that dictate direct causal
dependencies between observations (for the relational data DSL in Chapter 6). The formalism of
“Bayesian Synthesis” described in Chapter 3 does not easily enable such knowledge to be integrated, as
it requires the user to manually redesign the DSL syntax, prior semantics, or likelihood semantics. New
structure learning algorithms and high-level “meta-modeling” languages are needed to let practitioners
more naturally specify constraints on the class of DSL expressions under consideration for a given
problem. A related capability is building user interfaces that let practitioners inspect and refine the
synthesized models, since the raw probabilistic programs in the learned ensemble, while individually
interpretable, are often too low-level and numerous to be edited by hand. These capabilities could
then be incorporated in a feedback system that informs practitioners whether their assumptions are
supported by or highly implausible given the observed data; for example, by comparing the predictive
quality of customized models to default models on functional metrics of interest, or comparing marginal
likelihood estimates obtained as a byproduct of sequential Monte Carlo structure learning.

213

10.2 Extracting Causal Structure from Phenomenological Models

A fundamental challenge in using observational data to discover exact causal relationships between
variables is that different causal systems may give rise to identical statistical associations [Pearl, 2009].
Despite this challenge, it is still possible to use automatically discovered probabilistic models to rule in or
rule out certain causal relationships. For example, the three DSLs in Chapters 4–6 each include inductive
biases to discover completely independent subsystems of variables that have neither statistical nor causal
interactions (variables in the same subsystem, on the other hand, may be marginally independent while
having a causal path such as a common effect that renders them conditionally dependent). If a pair
of variables is inferred to be structurally independent across many DSL expressions in the synthesized
ensemble (e.g., 95%), it is reasonable to conclude that there is unlikely to be a strong causal path
between them. Solving conditional mutual information queries via dynamic analysis of probabilistic
programs (Chapter 8) can also be used to test for more refined local causal structures, such as common
causes, Markov chains, or common effects. One advantage of testing for causal relationships using
mutual information queries about models from Bayesian synthesis is that they correspond to coherent
posterior inferences with respect to a joint generative model over structure, parameters, observed data,
and future data. There is thus no need to perform a large number of multiple testing or false discovery
rate corrections as in frequentist estimation, although systematic power studies and coverage analyses
will be needed to establish efficacy of these methods on challenging real-world datasets.

10.3 Is Sampling Superior to Optimization?

A central theme in our approach to probabilistic structure learning is jointly sampling from the poste-
rior distribution over model structures and parameters to characterize uncertainty about all unknown
quantities. This approach differs from greedy methods that aim to find a single structure or param-
eter setting by optimizing a posterior density or loss function. Is it really necessary to sample rather
than optimize, and what are the practical advantages of doing so? Figure 2.6 shows an example where
sampling structures and parameters handily outperforms optimization: the latter approach converges
to poor solutions even when the correct structure has been specified. There are compelling theoretical
results in the literature that substantiate the scaling benefits of sampling. Ma et al. [2019] disprove the
folk wisdom that sampling is necessarily slower than optimization by showing that, for a class of non-
convex objective functions that arise in mixture modeling and multistable systems, the computational
complexity of sampling algorithms scales linearly with the model dimension whereas that of optimiza-
tion algorithms scales exponentially. Mou et al. [2019] show that MCMC with polynomial-time mixing
is possible in a restricted class of Bayesian Gaussian mixture models. Is it possible to obtain positive re-
sults for sampling complexity and convergence that go beyond inferring parameters in fixed-dimensional
Euclidean spaces to structure learning in discrete spaces of probabilistic model structures?

10.4 Metalinguistic Abstractions for Building DSLs

As mentioned in Section 1.3, the DSLs presented in Part I are all manually designed. Given our present
belief that it remains computationally infeasible to learn entire DSLs, especially for the type of online
structure learning and real-time inference problems considered in this thesis, there is a pressing need for
new abstractions that simplify the process of designing DSLs. A positive result from Chapter 3 is that,
when the DSL is generated by a probabilistic context-free grammar (PCFG), sound Bayesian synthesis
can be automated using default MCMC and SMC learning algorithms. That said, even though PCFGs
are a relatively expressive metalanguage, they cannot express context-sensitive DSLs such as those in
Chapters 4–6, which require custom synthesis approaches. This limitation motivates us to consider

214

richer metalanguages such as macro grammars [Fischer, 1968] and attribute grammars [Knuth, 1968]
for specifying DSLs using similar formal constructions to those for PCFGs in Section 3.4. System-
atically developing DSLs using these metalanguages will improve our ability to verify properties such
as prior normalization and design default synthesis algorithms, type checkers, and optimizations that
exploit incremental computation. We take both inspiration and caution from deterministic program
synthesis, where researchers have developed frameworks such as syntax-guided synthesis [Alur et al.,
2013] and semantics-guided synthesis [Kim et al., 2021] for defining synthesis problems in an implemen-
tation agnostic way. While these unifying abstractions are theoretically appealing, extending them to
probabilistic programs must aid, and not hinder, scalability of the systems implementation.

10.5 Probabilistic Programming Abstractions for Structure Learning

Implementing correct and scalable algorithms for Bayesian structure learning is challenging. It involves
carefully deriving forward and reverse proposal probabilities, computing Jacobian corrections, or imple-
menting resample-move SMC with hand-designed rejuvenation kernels. These challenges have impeded
wider research progress in Bayesian structure learning. While probabilistic programming has been suc-
cessfully used for Bayesian structure learning in a few settings, which include Gen implementations
of the univariate time series DSL from Chapter 2 and the 3D scene perception system of Gothoskar
et al. [2021], more mature tooling is needed for these systems to be as easily applicable as automatic
differentiation frameworks, for example, which have enabled great advances for differentiable machine
learning models. One promising direction is to build on the probabilistic programming-based meth-
ods described in Cusumano-Towner [2020], who introduce a family of “involutive MCMC” techniques
that integrate structure learning and differentiable programming. Even though involutive MCMC is
extremely flexible, the implementation complexity remains somewhat too high, even for advanced prac-
titioners. Developing new abstractions that further specialize involutive MCMC to probabilistic DSLs
as opposed to probabilistic programs in a general-purpose language will help researchers explore new
applications of Bayesian structure learning in problem areas where the software tooling does not yet
exist. Such frameworks might also enable new research in learning effective inference algorithms for
probabilistic structure learning, toward the broader goal of synthesizing not only probabilistic model
programs for a given dataset but also probabilistic inference programs for a given model program.

10.6 Theorem Proving and Verification for Probabilistic Programs

Probabilistic programs invite several opportunities to leverage formal methods for establishing the
reliability, security, and safety of complex probabilistic modeling and inference workflows. For example,
is it possible to mechanize the SPPL correctness proofs from Chapter 7 by expressing the formal syntax
and semantics in a proof assistant such as Coq? Addressing this problem is likely to require novel
extensions of interactive proof assistants that integrate real analysis and measure theoretic techniques
for probabilistic reasoning. Further examples grounded in this thesis include:

1. Automating static analyses for the proofs of Proposition 3.53 to ensure that a PCFG defining
a probabilistic DSL specifies a normalized prior semantics and that the associated likelihood
semantics are bounded and nonnegative.

2. Designing type systems to ensure that the model and proposal probabilistic programs used in
the EEVI estimators from Section 8.6 are not “undisciplined” and satisfy the absolute continuity
requirements with respect to one another.

3. Using dynamic checks of irreflexivity, transitivity, and connectedness to ensure that the ordering
in the SRS test from Section 9.5 is total on the observations and simulated data.

215

Extending probabilistic programming systems with built-in verification and testing will help practi-
tioners more rapidly surface issues with the model or inference algorithms and help them iterate on
solutions, toward developing the type of robust Bayesian workflows advocated by Gelman et al. [2020].

10.7 Broader Applications to the Social and Natural Sciences

For all the sophistication of modeling and inference at the frontiers of academic research, domain
specialists within a field continue to leverage relatively simple data modeling techniques, for example:

• Gaussian graphical models in psychometrics [Borsboom et al., 2021];
• power laws in behavioral economics [Tversky and Kahneman, 1992];
• multiple regression in comparative social policy [Mabbett and Bolderson, 1999];
• multilevel regression in sociology [DiPrete and Forristal, 1994];
• hidden Markov models in bioinformatics [Yoon, 2009];
• logistic regression in clinical medicine [Bagley et al., 2001];
• GARCH models in computational finance [Francq and Zakoïan, 2019].

These approaches are widely used because they have interpretable semantics, perform reasonably well
across many datasets, and have accessible and efficient software implementations. However, as data
becomes more abundant and complex, traditional approaches that make rigid structural assumptions
will inhibit our ability to discover novel scientific theories from data, which has been discussed at length
by many influential researchers in the aforesaid fields [Fried and Cramer, 2017, Peterson et al., 2021,
Shalev, 2007, Gelman, 2006, Bagley et al., 2001, Francq et al., 2011].

The systems for model discovery and probabilistic programming listed in Section 1.4 and described
throughout this thesis are now mature enough to be used in close collaboration with domain specialists
to help address limitations of conventional approaches. A representative example in the life sciences can
be found in Bolton et al. [2019]. How can we enable hundreds or thousands of domain experts to more
independently leverage these systems across more research areas? Achieving this vision will at minimum
require the same level of usability and transparency that draws practitioners to their current modeling
methods of choice. We also need to make strategic investments in release engineering, documentation,
and teaching material to establish the credibility needed for sensitive applications in public policy or
clinical medicine that have substantial implications for society’s well-being.

We remain a long way from fully automating the process of building interpretable and accurate
models given noisy empirical data, which humans perform by leveraging expert knowledge acquired
over many years of individual experience and centuries of collective experience. Even further from our
grasp are universal reasoning engines that can efficiently and soundly solve queries about arbitrarily
rich probabilistic models. The techniques in this thesis constitute a design proposal for how to carefully
scope these problems to ensure they are relatively tractable and automatable, along with systems
implementations that deliver highly effective solutions in a range of structured data domains. Building
on these ideas will continue to improve the quality of predictions and discoveries that machines can
help us draw about complex phenomena we observe in the world around us.

216

Bibliography

Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for properties of
distributions. In Proceedings of the 29th Conference on Neural Information Processing Systems,
volume 28 of Advances in Neural Information Processing Systems 28, pages 3591–3599. Curran As-
sociates, Inc., 2015. (Cited on page 185)

Ryan P. Adams, Hanna Wallach, and Zoubin Ghahramani. Learning the structure of deep sparse
graphical models. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning Research, pages 1–8. PMLR, 2010. (Cited
on page 67)

Amr Ahmed and Eric Xing. Dynamic non-parametric mixture models and the recurrent Chinese restau-
rant process: With applications to evolutionary clustering. In Proceedings of the 2008 SIAM Inter-
national Conference on Data Mining, pages 219–230. SIAM, 2008. doi:10.1137/1.9781611972788.20.
(Cited on page 97)

Mohammad Ahsanullah, Valery B. Nevzorov, and Mohammad Shakil. An Introduction to Order
Statistics. Number 3 in Atlantis Studies in Probability and Statistics. Atlantis Press, Paris, 2013.
doi:10.2991/978-94-91216-83-1. (Cited on page 187)

Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat, George K. Karagiannidis, and Kamal Taha.
Efficient machine learning for big data: A review. Big Data Research, 2(3):87–93, 2015.
doi:10.1016/j.bdr.2015.04.001. (Cited on page 16)

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. FairSquare: Probabilistic
verification of program fairness. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
80.1–80.30, 2017. doi:10.1145/3133904. (Cited on pages 119, 120, 136, 137, 138, and 142)

David J. Aldous. Exchangeability and related topics. In P. L. Hennequin, editor, École d’Été de
Probabilités de Saint-Flour XIII, volume 1117 of Lecture Notes in Mathematics, pages 1–198. Springer,
1985. doi:10.1007/BFb0099421. (Cited on pages 82 and 101)

Alexander A. Alemi and Ian Fischer. GILBO: One metric to measure them all. In Proceedings of
the 32nd Conference on Neural Information Processing Systems, volume 31 of Advances in Neural
Information Processing Systems, pages 7037–7046. Curran Associates, Inc., 2018. (Cited on page 177)

Rajeev Alur, Rastislav Alur, Garvit Juniwal, Milo M. K. Juniwal, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Proceedings of the 13th International Conference on Formal Methods in Computer-
Aided Design, pages 1–8. IEEE Press, 2013. doi:10.1109/FMCAD.2013.6679385. (Cited on pages 67
and 215)

Mauricio Alvarez and Neil D. Lawrence. Sparse convolved Gaussian processes for multi-output regres-
sion. In Proceedings of the 22nd Conference on Neural Information Processing Systems, volume 21

217

https://doi.org/10.1137/1.9781611972788.20
https://doi.org/10.2991/978-94-91216-83-1
https://doi.org/10.1016/j.bdr.2015.04.001
https://doi.org/10.1145/3133904
https://doi.org/10.1007/BFb0099421
https://doi.org/10.1109/FMCAD.2013.6679385

of Advances in Neural Information Processing Systems. Curran Associates, Inc., 2008. (Cited on
page 96)

Erling B. Andersen. A goodness of fit test for the Rasch model. Psychometrika, 38(1):123–140, 1973.
doi:10.1007/BF02291180. (Cited on page 183)

Steen Andreassen, Roman Hovorka, Jonathan Benn, Kristian G. Olesen, and Ewart R. Carson. A
model-based approach to insulin adjustment. In Proceedings of the 3rd Conference on Artificial
Intelligence in Medicine, volume 44 of Lecture Notes in Informatics, pages 239–248. Springer, 1991.
doi:10.1007/978-3-642-48650-0_19. (Cited on pages 174 and 176)

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient Monte Carlo
computations. The Annals of Statistics, 37(2):697–725, 2009. doi:10.1214/07-AOS574. (Cited on
pages 161 and 177)

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342,
2010. doi:10.1111/j.1467-9868.2009.00736.x. (Cited on page 169)

Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987. doi:10.1137/0608024.
(Cited on page 135)

Taylor B. Arnold and John W. Emerson. Nonparametric goodness-of-fit tests for discrete null distribu-
tions. The R Journal, 3(2):34–39, 2011. doi:10.32614/RJ-2011-016. (Cited on page 185)

Steven C. Bagley, Halbart White, and Beatrice A. Golomb. Logistic regression in the medical literature:
Standards for use and reporting, with particular attention to one medical domain. Journal of Clinical
Epidemiology, 54(10):979–985, 2001. doi:10.1016/S0895-4356(01)00372-9. (Cited on page 216)

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deep-
coder: Learning to write programs. arXiv, 1611.01989, 2017. doi:10.48550/arXiv.1611.01989. (Cited
on page 67)

David Barber. Expectation correction for smoothed inference in switching linear dynamical systems.
Journal of Machine Learning Research, 7(89):2515–2540, 2006. (Cited on page 83)

David Barber and Felix Agakov. The IM algorithm: A variational approach to information maximiza-
tion. In Proceedings of the 17th Conference on Neural Information Processing Systems, volume 16
of Advances in Neural Information Processing Systems, pages 201–208. MIT Press, 2003. (Cited on
page 177)

Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness properties
via concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):118.1–118.27,
2019. doi:10.1145/3360544. (Cited on pages 119, 120, 137, and 138)

Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing that
distributions are close. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, pages 259–269. IEEE Press, 2000. doi:10.1109/SFCS.2000.892113. (Cited on page 185)

Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, An-
dreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao,
Philip Torr, Victor Lee, Kyle Cranmer, Prabhat, and Frank Wood. Etalumis: Bringing probabilistic
programming to scientific simulators at scale. In Proceedings of the International Conference for

218

https://doi.org/10.1007/BF02291180
https://doi.org/10.1007/978-3-642-48650-0_19
https://doi.org/10.1214/07-AOS574
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1137/0608024
https://doi.org/10.32614/RJ-2011-016
https://doi.org/10.1016/S0895-4356(01)00372-9
https://doi.org/10.48550/arXiv.1611.01989
https://doi.org/10.1145/3360544
https://doi.org/10.1109/SFCS.2000.892113

High Performance Computing, Networking, Storage and Analysis, pages 29.1–29.24. Association for
Computing Machinery, 2019. doi:10.1145/3295500.3356180. (Cited on page 18)

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 531–540. PMLR, 2018. (Cited on page 177)

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by
weighted model integration. In Proceedings of the 24th International Joint Conference on Artificial
Intelligence, pages 2770–2776. International Joint Conferences on Artificial Intelligence, 2015. (Cited
on page 143)

José M. Bernardo and Adrian F. M. Smith. Bayesian Theory. Wiley Series in Probability & Statistics.
John Wiley & Sons, New York, 1994. doi:10.1002/9780470316870. (Cited on page 84)

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach to numerical
computing. SIAM Review, 59(1):65–98, 2017. doi:10.1137/141000671. (Cited on page 42)

Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio Russo. Deriving probability density
functions from probabilistic functional programs. In Proceedings of the 19th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, volume 7795 of Lecture Notes
in Computer Science, pages 508–522. Springer, 2013. doi:10.1007/978-3-642-36742-7_35. (Cited on
pages 117 and 142)

Patrick Billingsley. Probability and Measure. Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, New York, 3rd edition, 1995. (Cited on pages 55 and 128)

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Obermeyer Fritz, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research, 20(28):1–6, 2019. (Cited on
page 20)

David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pages 113–120. Association for Computing Machinery, 2006.
doi:10.1145/1143844.1143859. (Cited on page 97)

David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The nested Chinese restaurant process
and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):7.1–7.30, 2010.
doi:10.1145/1667053.1667056. (Cited on page 115)

Anrew D. Bolton, Martin Haesemeyer, Josua Jordi, Ulrich Schaechtle, Feras A. Saad, Vikash K. Mans-
inghka, Joshua B. Tenenbaum, and Florian Engert. Elements of a stochastic 3D prediction engine in
larval zebrafish prey capture. eLife, 8:e51975, 2019. doi:10.7554/eLife.51975. (Cited on page 216)

Taylor L. Booth and Richard A. Thompson. Applying probability measures to abstract languages.
IEEE Transactions on Computers, C-22(5):442–450, 1973. doi:10.1109/T-C.1973.223746. (Cited on
page 56)

Marta Borowska. Entropy-based algorithms in the analysis of biomedical signals. Studies in Logic,
Grammar and Rhetoric, 43(1):21–32, 2016. doi:10.1515/slgr-2015-0039. (Cited on page 161)

Denny Borsboom et al. Network analysis of multivariate data in psychological science. Nature Reviews
Methods Primers, 1(58):1–18, 2021. doi:10.1038/s43586-021-00055-w. (Cited on page 216)

219

https://doi.org/10.1145/3295500.3356180
https://doi.org/10.1002/9780470316870
https://doi.org/10.1137/141000671
https://doi.org/10.1007/978-3-642-36742-7_35
https://doi.org/10.1145/1143844.1143859
https://doi.org/10.1145/1667053.1667056
https://doi.org/10.7554/eLife.51975
https://doi.org/10.1109/T-C.1973.223746
https://doi.org/10.1515/slgr-2015-0039
https://doi.org/10.1038/s43586-021-00055-w

Creagh Briercliffe. Poisson process infinite relational model: A Bayesian nonparametric model for
transactional data. Master’s thesis, University of British Columbia, 2016. (Cited on page 114)

Tamara A. Broderick. Clusters and Features from Combinatorial Stochastic Processes. PhD thesis,
University of California, Berkeley, 2014. (Cited on page 16)

Stephen P. Brooks and Andrew Gelman. General methods for monitoring convergence of it-
erative simulations. Journal of Computational and Graphical Statistics, 7(4):434–455, 1998.
doi:10.1080/10618600.1998.10474787. (Cited on page 117)

Wray Buntine and Marcus Hutter. A Bayesian view of the Poisson–Dirichlet process. arXiv, 1007.0296,
2010. doi:arXiv.1007.0296. (Cited on pages 203 and 205)

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv,
1509.00519, 2015. doi:10.48550/arXiv.1509.00519. (Cited on page 168)

Richard M. Burstall and John Darlington. A transformation system for developing recursive programs.
Journal of the ACM, 24(1):44–67, 1977. doi:10.1145/321992.321996. (Cited on page 67)

Jacques Carette and Chung-chieh Shan. Simplifying probabilistic programs using computer algebra.
In Proceedings of the 18th International Symposium on Practical Aspects of Declarative Languages,
volume 9585 of Lecture Notes in Computer Science, pages 135–152. Springer, 2016. doi:10.1007/978-
3-319-28228-2_9. (Cited on pages 117 and 142)

François Caron, Manuel Davy, Arnaud Doucet, Emmanuel Duflos, and Philippe Vanheeghe. Bayesian
inference for linear dynamic models with Dirichlet process mixtures. IEEE Transactions on Signal
Processing, 56(1):71–84, 2008. doi:10.1109/TSP.2007.900167. (Cited on page 97)

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming
language. Journal of Statistical Software, 76(1):1–32, 2017. doi:10.18637/jss.v076.i01. (Cited on
pages 20, 66, and 117)

Peter J. Carrington, John Scott, and Stanley Wasserman, editors. Models and Methods in Social
Network Analysis. Number 27 in Structural Analysis in the Social Sciences. Cambridge University
Press, Cambridge, UK, 2005. doi:10.1017/CBO9780511811395. (Cited on page 99)

Carlos M. Carvalho, Michael S. Johannes, Hedibert F. Lopes, and Nicholas G. Polson. Particle learning
and smoothing. Statistical Science, 25(1):88–106, 2010. doi:10.1214/10-STS325. (Cited on page 89)

Venkat Chandrasekeran, Nathan Srebro, and Prahladh Harsha. Complexity of inference in graphical
models. In Proceedings of the 24th Annual Conference on Uncertainty in Artificial Intelligence, pages
70–78. AUAI Press, 2008. doi:10.48550/arXiv.1206.3240. (Cited on page 135)

Sarah Chasins and Phitchaya M. Phothilimthana. Data-driven synthesis of full probabilistic programs.
In Proceedings of the 29th International Conference on Computer Aided Verification, volume 10426
of Lecture Notes in Computer Science, pages 279–304. Springer, 2017. doi:10.1007/978-3-319-63387-
9_14. (Cited on pages 66 and 74)

Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. An overview of business intelligence tech-
nology. Communications of the ACM, 54(8):88–98, 2011. doi:10.1145/1978542.1978562. (Cited on
page 99)

220

https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/arXiv.1007.0296
https://doi.org/10.48550/arXiv.1509.00519
https://doi.org/10.1145/321992.321996
https://doi.org/10.1007/978-3-319-28228-2_9
https://doi.org/10.1007/978-3-319-28228-2_9
https://doi.org/10.1109/TSP.2007.900167
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1017/CBO9780511811395
https://doi.org/10.1214/10-STS325
https://doi.org/10.48550/arXiv.1206.3240
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1145/1978542.1978562

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, and Yisong
Yue. Neurosymbolic programming. Foundations and Trends in Programming Languages, 7(3):158–
243, 2021. doi:10.1561/2500000049. (Cited on page 67)

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6):772–799, 2008. doi:10.1016/j.artint.2007.11.002. (Cited on page 143)

Jie Cheng, Christos Hatzis, Hisashi Hayashi, Mark-A. Krogel, Shinichi Morishita, David Page,
and Jun Sese. KDD Cup 2001 report. SIGKDD Explorations Newsletter, 3(2):47–64, 2002.
doi:10.1145/507515.507523. (Cited on pages 100 and 112)

Chao-Lin Chiu. Entropy and probability concepts in hydraulics. Journal of Hydraulic Engineering, 113
(5):583–599, 1987. doi:10.1061/(ASCE)0733-9429(1987)113:5(583). (Cited on page 161)

Nicolas Chopin. Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference. The Annals of Statistics, 32(6):2385–2411, 2004.
doi:10.1214/009053604000000698. (Cited on page 52)

Vartan Choulakian, Richard A. Lockhart, and Michael A. Stephens. Cramér–von Mises statistics for
discrete distributions. Canadian Journal of Statistics, 22(1):125–137, 1994. doi:10.2307/3315828.
(Cited on pages 185 and 186)

William J. Conover. A Kolmogorov goodness-of-fit test for discontinuous distributions. Journal of
the American Statistical Association, 67(339):591–596, 1972. doi:10.1080/01621459.1972.10481254.
(Cited on page 185)

Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42(2):393–405, 1990. doi:10.1016/0004-3702(90)90060-D. (Cited on
page 135)

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in Telecommu-
nications and Signal Processing. Wiley, Hoboken, 1991. (Cited on page 161)

Robert Cowell. Introduction to inference for bayesian networks. In Michael I. Jordan, editor, Learning
in Graphical Models, Adaptive Computation and Machine Learning Series, pages 9–26. MIT Press,
1999. (Cited on page 15)

Stephen Cranefield and Ashish Dhiman. Identifying norms from observation using MCMC sampling. In
Proceedings of the 30th International Joint Conference on Artificial Intelligence, pages 118–124. Inter-
national Joint Conferences on Artificial Intelligence Organization, 2021. doi:10.24963/ijcai.2021/17.
(Cited on page 65)

Marco Cusumano-Towner, Alexander K. Lew, and Vikash K. Mansinghka. Automating invo-
lutive MCMC using probabilistic and differentiable programming. arXiv, 2007.09871, 2020.
doi:arXiv.2007.09871. (Cited on page 20)

Marco F. Cusumano-Towner. Gen: A High-Level Programming Platform for Probabilistic Inference.
PhD thesis, Massachusetts Institute of Technology, 2020. (Cited on pages 20, 42, 177, 178, and 215)

Marco F. Cusumano-Towner and Vikash K. Mansinghka. AIDE: An algorithm for measuring the
accuracy of probabilistic inference algorithms. In Proceedings of the 31st Conference on Neural Infor-
mation Processing Systems, volume 30 of Advances in Neural Information Processing Systems, pages
3004–3014. Curran Associates, Inc., 2017. (Cited on pages 169 and 177)

221

https://doi.org/10.1561/2500000049
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1145/507515.507523
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
https://doi.org/10.1214/009053604000000698
https://doi.org/10.2307/3315828
https://doi.org/10.1080/01621459.1972.10481254
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.24963/ijcai.2021/17
https://doi.org/arXiv.2007.09871

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. Gen: A
general-purpose probabilistic programming system with programmable inference. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Design and Implementation, pages 221–236.
Association for Computing Machinery, 2019. doi:10.1145/3314221.3314642. (Cited on pages 20, 39,
42, 117, 130, 177, and 209)

Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian belief networks is
NP-hard. Artificial Intelligence, 60(1):141–153, 1993. doi:10.1016/0004-3702(93)90036-B. (Cited on
page 117)

Rönän Daly, Qiang Shen, and Stuart Aitken. Learning Bayesian networks: Approaches and issues.
The Knowledge Engineering Review, 26(2):99–157, 2011. doi:10.1017/S0269888910000251. (Cited on
pages 69 and 114)

Adnan Darwiche. Tractable Boolean and arithmetic circuits. In Pascal Hitzler and Md Kamruzzaman
Sarker, editors, Neuro-Symbolic Artificial Intelligence: The State of the Art, volume 342 of Fron-
tiers in Artificial Intelligence and Applications, chapter 6, pages 146–172. IOS Press Ebooks, 2021.
doi:10.3233/FAIA210353. (Cited on pages 69, 118, 142, and 143)

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002. doi:10.1613/jair.989. (Cited on page 143)

John Dehardt. Generalizations of the Glivenko-Cantelli theorem. The Annals of Mathematical Statistics,
42(6):2050–2055, 1971. doi:10.1214/aoms/1177693073. (Cited on page 191)

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006. doi:10.1111/j.1467-
9868.2006.00553.x. (Cited on pages 52, 167, and 169)

Pierre Del Moral, Ajay Jasra, Anthony Lee, Christopher Yau, and Xiaole Zhang. The alive particle
filter and its use in particle Markov chain Monte Carlo. Stochastic Analysis and Applications, 33(6):
943–974, 2015. doi:10.1080/07362994.2015.1060892. (Cited on page 50)

Dua Dheeru and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.ics.uci.
edu/ml. (Cited on page 74)

Persi Diaconis and Donald Ylvisaker. Conjugate priors for exponential families. Annals of Statistics, 7
(2):269–281, 1979. doi:10.1214/aos/1176344611. (Cited on page 130)

Thomas A. DiPrete and Jerry D. Forristal. Multilevel models: Methods and substance. Annual Review
of Sociology, 20(1):331–357, 1994. doi:10.1146/annurev.so.20.080194.001555. (Cited on page 216)

Arnaud Doucet and Adam M. Johansen. Tutorial on particle filtering and smoothing: Fifteen years
later. In Dan Crisan and Boris Rozovskii, editors, The Oxford Handbook of Nonlinear Filtering,
chapter 24, pages 656–704. Oxford University Press, 2011. (Cited on page 169)

David B. Dunson, Natesh Pillai, and Ju-Hyun Park. Bayesian density regression. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 69(2):163–183, 2007. doi:10.1111/j.1467-
9868.2007.00582.x. (Cited on pages 84 and 89)

David Duvenaud, James Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. Struc-
ture discovery in nonparametric regression through compositional kernel search. In Proceedings of the
30th International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 1166–1174. PMLR, 2013. (Cited on pages 67 and 68)

222

https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1017/S0269888910000251
https://doi.org/10.3233/FAIA210353
https://doi.org/10.1613/jair.989
https://doi.org/10.1214/aoms/1177693073
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1080/07362994.2015.1060892
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1214/aos/1176344611
https://doi.org/10.1146/annurev.so.20.080194.001555
https://doi.org/10.1111/j.1467-9868.2007.00582.x
https://doi.org/10.1111/j.1467-9868.2007.00582.x

David K. Duvenaud. Automatic Model Construction with Gaussian Processes. PhD thesis, University
of Cambridge, 2014. (Cited on page 29)

Sašo Džeroski and Nada Lavrač, editors. Relational Data Mining. Springer, Berlin, 2001.
doi:10.1007/978-3-662-04599-2. (Cited on page 99)

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages
214–226. Association for Computing Machinery, 2012. doi:10.1145/2090236.2090255. (Cited on
page 137)

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by program synthe-
sis. In Proceedings of the 29th Conference on Neural Information Processing Systems, volume 28 of
Advances in Neural Information Processing Systems, pages 973–981. Curran Associates, Inc., 2015.
(Cited on page 65)

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Sampling for Bayesian program learning. In
Proceedings of the 30th Conference on Neural Information Processing Systems, volume 29 of Advances
in Neural Information Processing Systems, pages 1297–1305. Curran Associates, Inc., 2016. (Cited
on pages 66 and 67)

Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures. Journal
of the American Statistical Association, 90(430):577–588, 1995. doi:10.1080/01621459.1995.10476550.
(Cited on page 72)

Mordecai Ezekiel. Methods of Correlation Analysis. John Wiley & Sons, Inc., New York, 1930. (Cited
on page 74)

Xuhui Fan, Bin Li, and Scott A. Sisson. The binary space partitioning-tree process. In Proceedings of
the 21st International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 1859–1867. PMLR, 2018. (Cited on page 99)

Xuhui Fan, Bin Li, Caoyuan Li, Scott Sisson, and Ling Chen. Scalable deep generative relational model
with high-order node dependence. In Proceedings of the 33rd Conference in Neural Information
Processing Systems, volume 32 of Advances in Neural Information Processing Systems, pages 12658–
12668. Curran Associates, Inc., 2019. (Cited on page 114)

Xuhui Fan, Bin Li, Ling Luo, and Scott A. Sisson. Bayesian nonparametric space partitions: A survey.
In Proceedings of the 30th International Joint Conference on Artificial Intelligence, pages 4408–4415,
2021. doi:10.24963/ijcai.2021/602. (Cited on page 99)

Julian J. Faraway and Nicole H. Augustin. When small data beats big data. Statistics & Probability
Letters, 136(C):142–145, 2018. doi:10.1016/j.spl.2018.02.031. (Cited on page 16)

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations from
input-output examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 229–239. Association for Computing Machinery, 2015.
doi:10.1145/2737924.2737977. (Cited on page 67)

Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and Luc De Raedt. Inference in
probabilistic logic programs using weighted CNF’s. In Proceedings of the 27th Annual Conference on
Uncertainty Artificial Intelligence, pages 211–220. AUAI Press, 2011. doi:10.48550/arXiv.1202.3719.
(Cited on page 143)

223

https://doi.org/10.1007/978-3-662-04599-2
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1080/01621459.1995.10476550
https://doi.org/10.24963/ijcai.2021/602
https://doi.org/10.1016/j.spl.2018.02.031
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.48550/arXiv.1202.3719

Michael J. Fischer. Grammars with macro-like productions. In Proceedings of the 9th Annual Sym-
posium on Switching and Automata Theory, pages 131–142. IEEE Computer Society, October 1968.
doi:10.1109/SWAT.1968.12. (Cited on page 215)

Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas Rainforth,
and Noah Goodman. Variational Bayesian optimal experimental design. In Proceedings of the 33rd
Conference in Neural Information Processing Systems, volume 32 of Advances in Neural Information
Processing Systems, pages 14059–14070. Curran Associates, Inc., 2019. (Cited on page 177)

Emily Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Nonparametric Bayesian learning
of switching linear dynamical systems. In Proceedings of the 22nd Conference on Neural Information
Processing Systems, volume 21 of Advances in Neural Information Processing Systems, pages 457–464.
Curran Associates, Inc., 2008. (Cited on page 97)

Christian Francq and Jean-Michel Zakoïan. GARCH Models: Structure, Statistical Inference and Fi-
nancial Applications. John Wiley & Sons, Hoboken, 2019. doi:10.1002/9781119313472. (Cited on
page 216)

Christian Francq, Lajos Horváth, and Jean-Michel Zakoïan. Merits and drawbacks of vari-
ance targeting in GARCH models. Journal of Financial Econometrics, 9(4):619–656, 2011.
doi:10.1093/jjfinec/nbr004. (Cited on page 216)

David H. Fremlin. Measure Theory: Volume 2, Broad Foundations. Torres Fremlin, Colchester, 2009.
(Cited on page 44)

Eiko I. Fried and Angélique O. J. Cramer. Moving forward: Challenges and directions for psychopatho-
logical network theory and methodology. Perspectives on Psychological Science, 12(6):999–1020, 2017.
doi:10.1177/1745691617705892. (Cited on page 216)

Nir Friedman and Daphne Koller. Being Bayesian about network structure. a Bayesian ap-
proach to structure discovery in Bayesian networks. Machine Learning, 50(1):95–125, 2003.
doi:10.1023/A:1020249912095. (Cited on pages 67 and 69)

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.
In Proceedings of the 16th International Joint Conference on Artificial Intelligence, pages 1300–1307.
International Joint Conferences on Artificial Intelligence Organization, 1999. (Cited on page 114)

Ben D. Fulcher and Nick S. Jones. Highly comparative feature-based time-series classifi-
cation. IEEE Transactions on Knowledge and Data Engineering, 26(12):3026–3037, 2014.
doi:10.1109/TKDE.2014.2316504. (Cited on page 81)

Gapminder Foundation. Gapminder, 2022. URL https://gapminder.org. (Cited on pages 81 and 93)

Roland Gecse and Attila Kovács. Consistency of stochastic context-free grammars. Mathematical and
Computer Modelling, 52(3):490–500, 2010. doi:10.1016/j.mcm.2010.03.046. (Cited on pages 56, 62,
and 63)

Timon Gehr, Sasa Misailovic, and Martin Vechev. PSI: Exact symbolic inference for probabilistic
programs. In Proceedings of the 28th International Conference on Computer Aided Verification,
volume 9779 of Lecture Notes in Computer Science, pages 62–83. Springer, 2016. doi:10.1007/978-3-
319-41528-4_4. (Cited on pages 117, 119, 120, 137, 138, 139, 140, 142, and 178)

224

https://doi.org/10.1109/SWAT.1968.12
https://doi.org/10.1002/9781119313472
https://doi.org/10.1093/jjfinec/nbr004
https://doi.org/10.1177/1745691617705892
https://doi.org/10.1023/A:1020249912095
https://doi.org/10.1109/TKDE.2014.2316504
https://gapminder.org
https://doi.org/10.1016/j.mcm.2010.03.046
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-319-41528-4_4

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and Martin Vechev.
Bayonet: Probabilistic inference for networks. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 586–602. Association for Computing
Machinery, 2018. doi:10.1145/3192366.3192400. (Cited on page 18)

Timon Gehr, Samuel Steffen, and Martin Vechev. 𝜆PSI: Exact inference for higher-order proba-
bilistic programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 883–897. Association for Computing Machinery, 2020.
doi:10.1145/3385412.3386006. (Cited on pages 142 and 178)

Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution. In Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis, pages 166–176.
Association for Computing Machinery, 2012. doi:10.1145/2338965.2336773. (Cited on page 142)

Andrew Gelman. Multilevel (hierarchical) modeling: What it can and cannot do. Technometrics, 48
(3):432–435, 2006. doi:10.1198/004017005000000661. (Cited on page 216)

Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assessment of model fitness via
realized discrepancies. Statistica Sinica, 6(4):733–807, 1996. (Cited on page 183)

Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC Texts in Statistical Science. CRC Press, Boca Raton, 3rd edition, 2014.
doi:10.1201/9780429258411. (Cited on page 18)

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao,
Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian workflow.
arXiv, 2011.01808, 2020. doi:10.48550/arxiv.2011.01808. (Cited on page 216)

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In Proceedings
of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 873–880. PMLR, 2013. (Cited on pages 69, 108, and 158)

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Pfeffer. Probabilistic relational models.
In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning, Adaptive
Computation and Machine Learning Series. MIT Press, 2007. (Cited on page 114)

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–
459, 2015. doi:10.1038/nature14541. (Cited on page 18)

Walter R. Gilks and Carlo Berzuini. Following a moving target–Monte Carlo inference for dynamic
Bayesian models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1):
127–146, 2001. doi:10.1111/1467-9868.00280. (Cited on pages 49 and 52)

Walter R. Gilks, Andrew Thomas, and David J. Spiegelhalter. A language and program for complex
Bayesian modelling. Journal of the Royal Statistical Society: Series D (The Statistician), 43(1):
169–177, 1994. doi:10.2307/2348941. (Cited on pages 20 and 117)

Geof H. Givens, Adrian E. Raftery, and Judith E. Zeh. A reweighting approach for sensitivity anal-
ysis within the Bayesian synthesis framework for population assessment modeling. Report of the
International Whaling Commission, 44:377–384, 1994. (Cited on page 64)

Sharad Goel, Jake M. Hofman, Sébastien Lahaie, David M. Pennock, and Duncan J. Watts. Predicting
consumer behavior with Web search. Proceedings of the National Academy of Sciences, 107(41):
17486–17490, 2010. doi:10.1073/pnas.1005962107. (Cited on page 17)

225

https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1198/004017005000000661
https://doi.org/10.1201/9780429258411
https://doi.org/10.48550/arxiv.2011.01808
https://doi.org/10.1038/nature14541
https://doi.org/10.1111/1467-9868.00280
https://doi.org/10.2307/2348941
https://doi.org/10.1073/pnas.1005962107

Ziv Goldfeld, Kristjan Greenewald, Jonathan Niles-Weed, and Yury Polyanskiy. Convergence of
smoothed empirical measures with applications to entropy estimation. IEEE Transactions on In-
formation Theory, 66(7):4368–4391, 2020. doi:10.1109/TIT.2020.2975480. (Cited on page 177)

Phillip I. Good. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer Series in
Statistics. Springer, New York, 3rd edition, 2004. doi:10.1007/b138696. (Cited on pages 186 and 205)

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B. Tenenbaum.
Church: A language for generative models. In Proceedings of the 24th Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 220–229. AUAI Press, 2008a. (Cited on pages 65 and 117)

Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman, and Thomas L. Griffiths. A
rational analysis of rule-based concept learning. Cognitive Science, 32(1):108–154, 2008b.
doi:10.1080/03640210701802071. (Cited on page 65)

Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin
Garrett, Joshua B. Tenenbaum, Dan Gutfreund, and Vikash K. Mansinghka. 3DP3: 3D scene per-
ception via probabilistic programming. In Proceedings of the 35th Conference in Neural Information
Processing Systems, volume 34 of Advances in Neural Information Processing Systems, pages 9600–
9612. Curran Associates, Inc., 2021. (Cited on pages 18 and 215)

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. arXiv, 1410.5401, 2014.
doi:10.48550/arXiv.1410.5401. (Cited on page 67)

Edwin J. Green, David W. MacFarlane, and Harry T. Valentine. Bayesian synthesis for quan-
tifying uncertainty in predictions from process models. Tree Physiology, 20(5-6):415–419, 2000.
doi:10.1093/treephys/20.5-6.415. (Cited on page 64)

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determi-
nation. Biometrika, 82(4):711–732, 1995. (Cited on page 90)

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. (Cited on
page 186)

Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum. Bayesian models of cognition. In
Ron Sun, editor, The Cambridge Handbook of Computational Psychology, Cambridge Handbooks in
Psychology, pages 59–100. Cambridge University Press, 2008. doi:10.1017/CBO9780511816772.006.
(Cited on page 18)

Roger Grosse, Ruslan Salakhutdinov, William Freeman, and Joshua B. Tenenbaum. Exploiting compo-
sitionality to explore a large space of model structures. In Proceedings of the 28th Annual Conference
on Uncertainty in Artificial Intelligence, pages 306–315. AUAI Press, 2012. (Cited on page 67)

Roger B. Grosse, Zoubin Ghahramani, and Ryan P. Adams. Sandwiching the marginal likelihood
using bidirectional Monte Carlo. arXiv, 1511.02543, 2015. doi:10.48550/arXiv.1511.02543. (Cited on
page 177)

Roger B. Grosse, Siddharth Ancha, and Daniel M. Roy. Measuring the reliability of MCMC inference
with bidirectional Monte Carlo. In Proceedings of the 30th Conference on Neural Information Pro-
cessing Systems, volume 29 of Advances in Neural Information Processing Systems, pages 2459–2467.
Curran Associates, Inc., 2016. (Cited on page 177)

226

https://doi.org/10.1109/TIT.2020.2975480
https://doi.org/10.1007/b138696
https://doi.org/10.1080/03640210701802071
https://doi.org/10.48550/arXiv.1410.5401
https://doi.org/10.1093/treephys/20.5-6.415
https://doi.org/10.1017/CBO9780511816772.006
https://doi.org/10.48550/arXiv.1511.02543

Lutz F. Gruber and Mike West. Bayesian online variable selection and scalable multivariate volatility
forecasting in simultaneous graphical dynamic linear models. Econometrics and Statistics, 3:3–22,
2017. doi:10.1016/j.ecosta.2017.03.003. (Cited on page 81)

Roger Guimerá, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A. Massucci, Manuel Miranda,
Jordi Pallarés, and Marta Sales-Pardo. A Bayesian machine scientist to aid in the solution of challeng-
ing scientific problems. Science Advances, 6(5):eaav6971, 2020. doi:10.1126/sciadv.aav6971. (Cited
on page 66)

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 317–330. Association for Computing Machinery, 2011. doi:10.1145/1926385.1926423.
(Cited on page 67)

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-
free programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 62–73. Association for Computing Machinery, 2011.
doi:10.1145/1993498.1993506. (Cited on page 67)

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and Trends
in Programming Languages, 4(1–2):1–119, 2017. doi:10.1561/2500000010. (Cited on page 15)

Te Sun Han. Nonnegative entropy measures of multivariate symmetric correlations. Information and
Control, 36(2):133–156, 1978. doi:10.1016/S0019-9958(78)90275-9. (Cited on page 164)

David J. Hand. Classifier technology and the illusion of progress. Statistical Science, 21(1):1–14, 2006.
doi:10.1214/088342306000000060. (Cited on page 17)

Lauren A. Hannah, David M. Blei, and Warren B. Powell. Dirichlet process mixtures of generalized
linear models. Journal of Machine Learning Research, 12(54):1923–1953, 2011. (Cited on page 115)

David Heckerman. A tutorial on learning with Bayesian networks. In Michael I. Jordan, editor, Learning
in Graphical Models, Adaptive Computation and Machine Learning Series, pages 301–354. MIT Press,
1999. (Cited on page 15)

David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic models for relational data.
Technical Report MSR-TR-2004-30, Microsoft Research, 2004. (Cited on page 114)

Steven S. Henley, Richard M. Golden, and T. Michael Kashner. Statistical modeling
methods: Challenges and strategies. Biostatistics & Epidemiology, 4(1):105–139, 2020.
doi:10.1080/24709360.2019.1618653. (Cited on page 20)

James G. Hershberg. The United States, Brazil, and the Cuban missile crisis, 1962 (Part 1). Journal
of Cold War Studies, 6(2):3–20, 2004. doi:10.1162/152039704773254740. (Cited on page 112)

Geoffrey E. Hinton, Peter Dayan, and Radford M. Frey, Brendan J. Neal. The “wake-sleep” algorithm
for unsupervised neural networks. Science, 268(5214):1158–1161, 1995. doi:10.1126/science.7761831.
(Cited on page 167)

Wassily Hoeffding. Asymptotically optimal tests for multinomial distributions. The Annals of Mathe-
matical Statistics, 36(2):369–401, 1965. doi:10.1214/aoms/1177700150. (Cited on page 185)

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for discrete proba-
bilistic programs. Proc. ACM Program. Lang., 4(OOPSLA):140.1–140.31, 2020. doi:10.1145/3133904.
(Cited on page 143)

227

https://doi.org/10.1016/j.ecosta.2017.03.003
https://doi.org/10.1126/sciadv.aav6971
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1561/2500000010
https://doi.org/10.1016/S0019-9958(78)90275-9
https://doi.org/10.1214/088342306000000060
https://doi.org/10.1080/24709360.2019.1618653
https://doi.org/10.1162/152039704773254740
https://doi.org/10.1126/science.7761831
https://doi.org/10.1214/aoms/1177700150
https://doi.org/10.1145/3133904

James Honaker, Gary King, and Matthew Blackwell. Amelia II: A program for missing data. Journal
of Statistical Software, 45(7):1–47, 2011. doi:10.18637/jss.v045.i07. (Cited on pages 81 and 94)

Susan Dadakis Horn. Goodness-of-fit tests for discrete data: A review and an application to a health
impairment scale. Biometrics, 33(1):237–247, 1977. doi:10.2307/2529319. (Cited on page 185)

R. I. G. Hughes. The Ising model, computer simulation, and universal physics. In Mary S. Mor-
gan and Margaret Morrison, editors, Models as Mediators: Perspectives on Natural and Social Sci-
ence, number 52 in Ideas in Context, chapter 5, pages 97–145. Cambridge University Press, 1999.
doi:10.1017/CBO9780511660108.006. (Cited on page 207)

Irvin Hwang, Andreas Stuhlmüller, and Noah D. Goodman. Inducing probabilistic programs by
Bayesian program merging. arXiv, 1110.5667, 2011. doi:10.48550/arXiv.1110.5667. (Cited on page 65)

Rob J. Hyndman and Yeasmin Khandakar. Automatic time series forecasting: The forecast package for
R. Journal of Statistical Software, 27(3):1–22, 2008. doi:10.18637/jss.v027.i03. (Cited on pages 40
and 96)

Katsuhiko Ishiguro, Naonori Ueda, and Hiroshi Sawada. Subset infinite relational models. In Proceedings
of the 15th International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings
of Machine Learning Research, pages 547–555. PMLR, 2012. (Cited on page 114)

Hemant Ishwaran and Lancelot F. James. Generalized weighted Chinese restaurant processes for species
sampling mixture models. Statistica Sinica, 13(4):1211–1235, 2003. doi:10.2307/24307169. (Cited on
page 96)

Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models as a data source for
multiview representation learning. arXiv, 2106.05258, 2021. doi:10.48550/arxiv.2106.05258. (Cited
on page 77)

Sonia Jain and Radford M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet
process mixture model. Journal of Computational and Graphical Statistics, 13(1):158–182, 2004.
doi:10.1198/1061860043001. (Cited on page 106)

Frederick Jelinek, John D. Lafferty, and Robert L. Mercer. Basic methods of probabilistic context free
grammars. In Pietro Laface and Renato De Mori, editors, Speech Recognition and Understanding,
volume 75 of NATO ASI Series, Sub-Series F: Computer and Systems Sciences, pages 345–360.
Springer-Verlag, 1992. doi:10.1007/978-3-642-76626-8_35. (Cited on page 53)

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. Adaptor grammars: A framework for
specifying compositional nonparametric Bayesian models. In Proceedings of the 20th Conference on
Neural Information Processing Systems, volume 19 of Advances in Neural Information Processing
Systems, pages 641–648. MIT Press, 2006. (Cited on page 66)

Matthew J. Johnson and Alan S. Willsky. Bayesian nonparametric hidden semi-Markov models. Journal
of Machine Learning Research, 14:673–701, 2013. (Cited on pages 40, 96, and 97)

Philip N. Johnson-Laird. Deductive reasoning. Annual Review of Psychology, 50:109–135, 1999.
doi:10.1146/annurev.psych.50.1.109. (Cited on page 15)

Eric Jonas and Konrad Kording. Automatic discovery of cell types and microcircuitry from neural
connectomics. eLife, 4:e04250, 2015. doi:10.7554/eLife.04250. (Cited on page 114)

228

https://doi.org/10.18637/jss.v045.i07
https://doi.org/10.2307/2529319
https://doi.org/10.1017/CBO9780511660108.006
https://doi.org/10.48550/arXiv.1110.5667
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.2307/24307169
https://doi.org/10.48550/arxiv.2106.05258
https://doi.org/10.1198/1061860043001
https://doi.org/10.1007/978-3-642-76626-8_35
https://doi.org/10.1146/annurev.psych.50.1.109
https://doi.org/10.7554/eLife.04250

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and Naonori Ueda. Learn-
ing systems of concepts with an infinite relational model. In Proceedings of the 21st National Confer-
ence on Artificial Intelligence, pages 381–388. AAAI Press, 2006. (Cited on pages 67, 99, 101, 102,
104, and 108)

Dae I. Kim, Prem Gopalan, David M. Blei, and Erik B. Sudderth. Efficient online inference for Bayesian
nonparametric relational models. In Proceedings of the 27th Conference on Neural Information Pro-
cessing Systems, volume 26 of Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2013. (Cited on page 99)

Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. Semantics-guided synthesis. Proceedings
of the ACM on Programming Languages, 5(POPL):30.1–30.32, 2021. doi:10.1145/3434311. (Cited on
pages 67 and 215)

Chuck Kincaid. Guidelines for selecting the covariance structure in mixed model analysis. In Proceedings
of SAS Users Group International 30, pages 198–30:1–8. SAS Institute Inc., 2005. (Cited on page 29)

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. arXiv, 1312.6114, 2013.
doi:10.48550/arXiv.1312.6114. (Cited on page 167)

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and
Trends in Machine Learning, 12(4):307–392, 2019. doi:10.1561/2200000056. (Cited on page 161)

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv, 1611.07308, 2016.
doi:10.48550/arXiv.1611.07308. (Cited on page 114)

Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145,
1968. doi:10.1007/BF01692511. (Cited on page 215)

Stanley Kok and Pedro Domingos. Learning the structure of Markov logic networks. In Proceedings of
the 22nd International Conference on Machine Learning, pages 441–448. Association for Computing
Machinery, 2005. doi:10.1145/1102351.1102407. (Cited on page 114)

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. Adaptive
Computation and Machine Learning Series. MIT Press, Cambridge, MA, 2009. (Cited on pages 135
and 141)

Daphne Koller and Avi Pfeffer. Object-oriented Bayesian networks. In Proceedings of the
13th Conference on Uncertainty in Artificial Intelligence, pages 302–313. AUAI Press, 1997.
doi:10.48550/arXiv.1302.1554. (Cited on page 114)

Gary M. Koop. Forecasting with medium and large Bayesian VARS. Journal of Applied Econometrics,
28(2):177–203, 2013. doi:10.1002/jae.1270. (Cited on page 81)

John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, 1992. (Cited on page 67)

John R. Koza, Forest H. Bennett III, Andre David, Martin A. Keane, and Frank Dunlap. Automated
synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on
Evolutionary Computation, 1(2):109–128, 1997. doi:10.1109/4235.687879. (Cited on page 67)

Lyudmyla F. Kozachenko and Nikolai N. Leonenko. A statistical estimate for the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987. (Cited on page 177)

229

https://doi.org/10.1145/3434311
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1561/2200000056
https://doi.org/10.48550/arXiv.1611.07308
https://doi.org/10.1007/BF01692511
https://doi.org/10.1145/1102351.1102407
https://doi.org/10.48550/arXiv.1302.1554
https://doi.org/10.1002/jae.1270
https://doi.org/10.1109/4235.687879

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical
Review E, 69(6):066138, 2004. doi:10.1103/PhysRevE.69.066138. (Cited on pages 172, 174, and 177)

Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash Mansinghka. Picture:
A probabilistic programming language for scene perception. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition, pages 4390–4399. IEEE Press, 2015.
doi:10.1109/CVPR.2015.7299068. (Cited on page 18)

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level con-
cept learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.
doi:10.1126/science.aab3050. (Cited on page 66)

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40(e253):1–72, 2017.
doi:10.1017/S0140525X16001837. (Cited on page 18)

Jürgen Landes. Bayesian epistemology. In Duncan Pritchard, editor, Oxford Bibliographies in Philoso-
phy. Oxford University Press, 2021. doi:10.1093/OBO/9780195396577-0417. (Cited on page 18)

Jacob Laurel and Sasa Misailovic. Continualization of probabilistic programs with correction. In
Proceedings of the 29th European Symposium on Programming, volume 12075 of Lecture Notes in
Computer Science, pages 366–393. Springer, 2020. doi:10.1007/978-3-030-44914-8_14. (Cited on
pages 119 and 139)

David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The parable of Google flu: Traps
in big data analysis. Science, 343(6176):1203–1205, 2014. doi:10.1126/science.1248506. (Cited on
page 16)

Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal probabilistic
programming. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages 1338–1348. PMLR, 2017.
(Cited on page 178)

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program syn-
thesis using learned probabilistic models. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 436–449. Association for Computing
Machinery, 2018. doi:10.1145/3296979.3192410. (Cited on page 67)

Erich L. Lehmann and Howard J. D’Abrera. Nonparametrics: Statistical Methods Based on Ranks.
Holden-Day Series in Probability and Statistics. Holden-Day, San Francisco, 1975. (Cited on page 183)

Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics.
Springer, New York, 3rd edition, 2005. doi:10.1007/0-387-27605-X. (Cited on page 183)

Emmanuel Lesaffre and Andrew B. Lawson. Bayesian Biostatistics. Statistics in Practice. John Wiley
& Sons, Ltd., Chichester, 2012. doi:10.1002/9781119942412. (Cited on page 18)

Alexander Lew, Marco Cusumano-Towner, and Vikash Mansinghka. Recursive Monte Carlo and vari-
ational inference with auxiliary variables. arXiv, 2203.02836, 2022. doi:10.48550/arXiv.2203.02836.
(Cited on page 177)

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K.
Mansinghka. Trace types and denotational semantics for sound programmable inference in proba-
bilistic languages. Proceedings of the ACM on Programming Languages, 4(POPL):19.1–19.32, 2020.
doi:10.1145/3371087. (Cited on page 117)

230

https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1109/CVPR.2015.7299068
https://doi.org/10.1126/science.aab3050
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1093/OBO/9780195396577-0417
https://doi.org/10.1007/978-3-030-44914-8_14
https://doi.org/10.1126/science.1248506
https://doi.org/10.1145/3296979.3192410
https://doi.org/10.1007/0-387-27605-X
https://doi.org/10.1002/9781119942412
https://doi.org/10.48550/arXiv.2203.02836
https://doi.org/10.1145/3371087

Cathryn M. Lewis and Jo Knight. Introduction to genetic association studies. In Ammar Al-Chalabi
and Laura Almasy, editors, Genetics of Complex Human Diseases: A Laboratory Manual. Cold Spring
Harbor Laboratory Press, 2009. doi:10.1101/pdb.top068163. (Cited on page 183)

Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical Bayesian approach.
In Proceedings of the 27th International Conference on Machine Learning, pages 639–646. Omnipress,
2010. doi:10.5555/3104322.3104404. (Cited on page 66)

Alexander Lin, Yingzhuo Zhang, Jeremy Heng, Stephen A. Allsop, Kay M. Tye, Pierre E. Jacob, and
Demba Ba. Clustering time series with nonlinear dynamics: A Bayesian non-parametric and particle-
based approach. In Proceedings of the 22nd International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learning Research, pages 2476–2484. PMLR, 2019.
(Cited on page 97)

Gloria Z. Lin. Bayesian active structure learning for Gaussian Process probabilistic programs. Master’s
thesis, Massachusetts Institute of Technology, 2022. (Cited on page 206)

Ramon C. Littell, Jane Pendergast, and Ranjini Natarajan. Modelling covariance structure in the
analysis of repeated measures data. Statistics in Medicine, 19(13):1793–1819, 2000. doi:10.1002/1097-
0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q. (Cited on page 29)

James R. Lloyd. jamesrobertlloyd/gpss-research: Kernel Structure Discovery Research Code, 2014. URL
https://github.com/jamesrobertlloyd/gpss-research/tree/master/data. (Cited on pages 39 and 66)

Albert Y. Lo. On a class of Bayesian nonparametric estimates: I. Density estimates. The Annals of
Statistics, 12(1):351–357, 1984. doi:10.1214/aos/1176346412. (Cited on pages 81, 108, and 115)

P. J. F. Lucas, R. W. Segaar, and A. R. Janssens. HEPAR: An expert system for the diagnosis of disor-
ders of the liver and biliary tract. Liver, 9(5):266–275, 1989. doi:10.1111/j.1600-0676.1989.tb00410.x.
(Cited on page 172)

Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I. Jordan. Sampling can be faster
than optimization. Proceedings of the National Academy of Sciences, 116(42):20881–20885, 2019.
doi:10.1073/pnas.1820003116. (Cited on page 214)

Deborah Mabbett and Helen Bolderson. Theories and methods in comparative social policy. In Jochen
Clasen, editor, Comparative Social Policy: Concepts, Theories, and Methods, chapter 3. Blackwell
Publishing, 1999. (Cited on page 216)

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, Cambridge, UK, 2003. (Cited on pages 18, 161, 207, and 209)

Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih,
Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. In Proceedings of the 31st
Conference on Neural Information Processing Systems, volume 30 of Advances in Neural Information
Processing Systems, pages 6576–6586. Curran Associates, Inc., 2017. (Cited on page 169)

Henry B. Mann and Donald R. Whitney. On a test of whether one of two random variables is
stochastically larger than the other. The Annals of Mathematical Statistics, 18(1):50–60, 1947.
doi:10.1214/aoms/1177730491. (Cited on page 185)

Zohar Manna and Richard Waldinger. Synthesis: Dreams to programs. IEEE Transactions on Software
Engineering, 5(4):294–328, 1979. doi:10.1109/TSE.1979.234198. (Cited on page 67)

231

https://doi.org/10.1101/pdb.top068163
https://doi.org/10.5555/3104322.3104404
https://doi.org/10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q
https://doi.org/10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q
https://github.com/jamesrobertlloyd/gpss-research/tree/master/data
https://doi.org/10.1214/aos/1176346412
https://doi.org/10.1111/j.1600-0676.1989.tb00410.x
https://doi.org/10.1073/pnas.1820003116
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/TSE.1979.234198

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM Transactions
on Programming Languages and Systems, 2(1):90–121, 1980. doi:10.1145/357084.357090. (Cited on
page 67)

Vikash Mansinghka, Charles Kemp, Thomas Griffiths, and Joshua B. Tenenbaum. Structured priors
for structure learning. In Proceedings of the 22nd Conference Annual Conference on Uncertainty in
Artificial Intelligence, pages 324–331. AUAI Press, 2006. doi:10.48550/arXiv.1206.6852. (Cited on
page 67)

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: A higher-order probabilistic programming
platform with programmable inference. arXiv, 1404.0099, 2014. doi:10.48550/arXiv.1404.0099. (Cited
on page 20)

Vikash Mansinghka, Richard Mansinghka, Jay Baxter, Shafto Pat, and Baxter Eaves. BayesDB: a
probabilistic programming system for querying the probable implications of data. arXiv, 1512.05006,
2015. doi:10.48550/arXiv.1512.05006. (Cited on page 71)

Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and Joshua B. Tenen-
baum. CrossCat: A fully Bayesian nonparametric method for analyzing heterogeneous, high dimen-
sional data. Journal of Machine Learning Research, 17(138):1–49, 2016. (Cited on pages 67, 71, 72,
97, and 115)

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin
Rinard. Probabilistic programming with programmable inference. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 603–616. Asso-
ciation for Computing Machinery, 2018. doi:10.1145/3192366.3192409. (Cited on pages 42 and 117)

Marvin Marcus and Henryk Minc. A Survey of Matrix Theory and Matrix Inequalities. Dover Books
on Mathematics. Dover Publications, New York, 1992. (Cited on page 63)

Sandra Marcus, editor. Automating Knowledge Acquisition for Expert Systems, volume 57 of The
Springer International Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston, 1988. doi:10.1007/978-1-4684-7122-9. (Cited on page 15)

Alberto Maydeu-Olivares and Carlos Garcia-Forero. Goodness-of-fit testing. In Penelope Peterson, Eva
Baker, and Barry McGaw, editors, International Encyclopedia of Education, pages 190–196. Elsevier,
3rd edition, 2010. doi:10.1016/B978-0-08-044894-7.01333-6. (Cited on page 185)

Kenichiro McAlinn and Mike West. Dynamic Bayesian predictive synthesis in time series forecast-
ing. Journal of Econometrics, 210(1):155–169, 2019. doi:10.1016/j.jeconom.2018.11.010. (Cited on
page 64)

Nikhil Mehta, Lawrence Carin, and Piyush Rai. Stochastic blockmodels meet graph neural networks.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 4466–4474. PMLR, 2019. (Cited on page 114)

David Merrell and Anthony Gitter. Inferring signaling pathways with probabilistic programming. Bioin-
formatics, 36(26):i822–i830, 2020. doi:10.1093/bioinformatics/btaa861. (Cited on page 18)

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Sontag Kolobov.
BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, pages 1352–1359. Morgan Kaufmann Publishers Inc., 2005.
(Cited on pages 66, 74, 120, 137, and 141)

232

https://doi.org/10.1145/357084.357090
https://doi.org/10.48550/arXiv.1206.6852
https://doi.org/10.48550/arXiv.1404.0099
https://doi.org/10.48550/arXiv.1512.05006
https://doi.org/10.1145/3192366.3192409
https://doi.org/10.1007/978-1-4684-7122-9
https://doi.org/10.1016/B978-0-08-044894-7.01333-6
https://doi.org/10.1016/j.jeconom.2018.11.010
https://doi.org/10.1093/bioinformatics/btaa861

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro,
Pascal Poupart, and Kristian Kersting. SPFlow: An easy and extensible library for deep probabilis-
tic learning using sum-product networks. arXiv, 1901.03704, 2020. doi:10.48550/arXiv.1901.03704.
(Cited on pages 130, 142, and 159)

Wenlong Mou, Nhat Ho, Martin J. Wainwright, Peter L. Bartlett, and Michael I. Jordan. Sam-
pling for Bayesian mixture models: MCMC with polynomial-time mixing. arXiv, 1912.05153, 2019.
doi:10.48550/arXiv.1912.05153. (Cited on page 214)

Peter Mueller and Fernando Quintana. Random partition models with regression on covariates. Journal
of Statistical Planning and Inference, 140(10):2801–2808, 2010. doi:10.1016/j.jspi.2010.03.002. (Cited
on page 96)

Peter Mueller, Fernando Quintana, and Gary L. Rosner. A product partition model with re-
gression on covariates. Journal of Computational and Graphical Statistics, 20(1):260–278, 2011.
doi:10.1198/jcgs.2011.09066. (Cited on page 96)

Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and methods. The Journal
of Logic Programming, 19–20:629–679, 1994. doi:10.1016/0743-1066(94)90035-3. (Cited on page 114)

Kevin Murphy and Mark A. Paskin. Linear-time inference in hierarchical HMMs. In Proceedings of
the 15th Conference on Neural Information Processing Systems, volume 14 of Advances in Neural
Information Processing Systems, pages 833–840. MIT Press, 2001. (Cited on page 122)

Kevin P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution. Technical report, University
of British Columbia, 2007. (Cited on page 85)

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine
Learning Series. MIT Press, Cambridge, MA, 2012. (Cited on page 18)

Masahiro Nakano, Katsuhiko Ishiguro, Akisato Kimura, Takeshi Yamada, and Naonori Ueda. Rect-
angular tiling process. In Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 361–369. PMLR, 2014. (Cited on
page 99)

Praveen Narayanan and Chung-chieh Shan. Symbolic disintegration with a variety of base
measures. ACM Transactions on Programming Languages and Systems, 42(2):9.1–9.60, 2020.
doi:10.1145/3374208. (Cited on pages 120, 142, and 178)

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. Proba-
bilistic inference by program transformation in Hakaru (system description). In Proceedings of the
13th International Symposium on Functional and Logic Programming, volume 9613 of Lecture Notes
in Computer Science, pages 62–79. Springer, 2016. doi:10.1007/978-3-319-29604-3_5. (Cited on
pages 117, 142, and 178)

Radford Neal. The harmonic mean of the likelihood: Worst Monte Carlo method
ever | Radford Neal’s Blog, 2008. URL https://radfordneal.wordpress.com/2008/08/17/
the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/. (Cited on page 167)

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9(2):249–265, 2000. doi:10.1080/10618600.2000.10474879.
(Cited on pages 72, 88, 90, 91, 105, 106, and 207)

233

https://doi.org/10.48550/arXiv.1901.03704
https://doi.org/10.48550/arXiv.1912.05153
https://doi.org/10.1016/j.jspi.2010.03.002
https://doi.org/10.1198/jcgs.2011.09066
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1145/3374208
https://doi.org/10.1007/978-3-319-29604-3_5
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
https://doi.org/10.1080/10618600.2000.10474879

Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.
doi:10.1023/A:1008923215028. (Cited on pages 167 and 169)

Joseph Near and David Darais. Differentially private synthetic data. Cybsecuirty Insights: A NIST Blog,
2021. URL https://www.nist.gov/blogs/cybersecurity-insights/differentially-private-synthetic-data.
(Cited on page 77)

Flemming Nielson, Hanne Riis Nielson, and Chris Hanking. Principles of Program Analysis. Springer,
Berlin, 1999. doi:10.1007/978-3-662-03811-6. (Cited on page 15)

Luis E. Nieto-Barajas and Alberto Contreras-Cristan. A Bayesian nonparametric approach for time
series clustering. Bayesian Analysis, 9(1):147–170, 2014. doi:10.1214/13-BA852. (Cited on page 97)

Luis E. Nieto-Barajas and Fernando A. Quintana. A Bayesian non-parametric dynamic AR
model for multiple time series analysis. Journal of Time Series Analysis, 37(5):675–689, 2016.
doi:10.1111/jtsa.12182. (Cited on page 97)

Davide Nitti, Tinne De Laet, and Luc De Raedt. Probabilistic logic programing for hybrid relational
domains. Machine Learning, 103:407–449, 2016. doi:10.1007/s10994-016-5558-8. (Cited on page 120)

Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. R2: An efficient MCMC sampler for
probabilistic programs. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pages
2476–2482. AAAI Press, 2014. (Cited on pages 119 and 136)

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. Efficient synthesis of
probabilistic programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 208–217. Association for Computing Machinery, 2015.
doi:10.1145/2737924.2737982. (Cited on pages 64 and 65)

Iku Ohama, Hiromi Iida, Takuya Kida, and Hiroki Arimura. An extension of the infinite relational
model incorporating interaction between objects. In Proceedings of the 17th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, volume 79819 of Lecture Notes in Artificial Intelligence,
pages 147–159. Springer, 2013. doi:10.1007/978-3-642-37456-2_13. (Cited on page 114)

Eduardo A. Olaberria. The Macroeconomics of Rare Events. PhD thesis, University of Maryland,
College Park, 2010. (Cited on page 36)

Agnieszka Oniśko. Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver Disorders.
PhD thesis, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, 2003.
(Cited on pages 172 and 173)

Peter Orbanz and Daniel M. Roy. Bayesian models of graphs, arrays and other exchangeable random
structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):437–461, 2015.
doi:10.1109/TPAMI.2014.2334607. (Cited on page 115)

Long Ouyang, Michael H. Tessler, Daniel Ly, and Noah D. Goodman. webppl-oed: A practical optimal
experiment design system. In Proceedings of the 40th Annual Cognitive Science Society Meeting,
pages 2192–2197. Cognitive Science Society, 2018. (Cited on page 178)

Brooks Paige and Frank Wood. Inference networks for sequential Monte Carlo in graphical models. In
Proceedings of the 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 3040–3049. PMLR, 2016. (Cited on page 178)

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191–1253,
2003. doi:10.1162/089976603321780272. (Cited on page 177)

234

https://doi.org/10.1023/A:1008923215028
https://www.nist.gov/blogs/cybersecurity-insights/differentially-private-synthetic-data
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1214/13-BA852
https://doi.org/10.1111/jtsa.12182
https://doi.org/10.1007/s10994-016-5558-8
https://doi.org/10.1145/2737924.2737982
https://doi.org/10.1007/978-3-642-37456-2_13
https://doi.org/10.1109/TPAMI.2014.2334607
https://doi.org/10.1162/089976603321780272

Ju-Hyun Park and David B. Dunson. Bayesian generalized product partition model. Statistica Sinica,
20(3):1203–1226, 2010. (Cited on page 96)

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In Proceedings of the
2016 IEEE International Conference on Data Science and Advanced Analytics, pages 399–410. IEEE
Press, 2016. doi:10.1109/DSAA.2016.49. (Cited on page 80)

J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices of the Royal
Astronomical Society, 202(3):615–627, 1983. doi:10.1093/mnras/202.3.615. (Cited on page 183)

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The
Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann, San Mateo, 1988.
(Cited on pages 18, 135, and 161)

Judea Pearl. Causality. Cambridge University Press, Cambridge, MA, 2nd edition, 2009.
doi:10.1017/CBO9780511803161. (Cited on page 214)

Karl Pearson. On the criterion that a given system of deviations from the probable in the case of
a correlated system of variables is such that it can be reasonably supposed to have arisen from
random sampling. Philosophical Magazine, 5:157–175, 1900. doi:10.1080/14786440009463897. (Cited
on page 185)

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011.
Visual guide at https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html. (Cited
on page 16)

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kris-
tian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In Proceedings of the 35th Uncertainty in Artificial Intelli-
gence Conference, volume 115 of Proceedings of Machine Learning Research, pages 334–344. PMLR,
2019. (Cited on page 108)

Fernando Pérez-Cruz. Estimation of information theoretic measures for continuous random variables. In
Proceedings of the 22nd Conference on Neural Information Processing Systems, volume 21 of Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2008. (Cited on page 177)

Yura N. Perov and Frank D. Wood. Learning probabilistic programs. arXiv, 1407.2646, 2014.
doi:10.48550/arXiv.1407.2646. (Cited on page 65)

Joshua C. Peterson, David D. Bourgin, Mayank Agrawal, Daniel Reichman, and Griffiths Thomas L.
Using large-scale experiments and machine learning to discover theories of human decision-making.
Science, 372(6547):1209–1214–, 2021. doi:10.1126/science.abe2629. (Cited on page 216)

Anthony N. Pettitt and Michael A. Stephens. The Kolmogorov–Smirnov goodness-of-fit statistic with
discrete and grouped data. Technometrics, 19(2):205–210, 1977. doi:10.1080/00401706.1977.10489529.
(Cited on page 185)

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational bounds
of mutual information. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 5171–5180. PMLR, 2019. (Cited on
page 177)

235

https://doi.org/10.1109/DSAA.2016.49
https://doi.org/10.1093/mnras/202.3.615
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1080/14786440009463897
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://doi.org/10.48550/arXiv.1407.2646
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1080/00401706.1977.10489529

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In Proceedings of
the 27th Annual Conference Uncertainty in Artificial Intelligence, pages 337–346. AUAI Press, 2011.
doi:10.48550/arXiv.1202.3732. (Cited on pages 69, 71, 118, 119, and 129)

Frederic Portoraro. Automated reasoning. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2021 edition, 2021. (Cited on
page 15)

James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and ap-
plications to statistical mechanics. Random Structures & Algorithms, 9(1–2):223–252, 1996.
doi:10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O. (Cited on page 207)

Michael A. Proschan and Brett Presnell. Expect the unexpected from conditional expectation.
The American Statistician, 52(3):248–252, 1998. doi:10.1080/00031305.1998.10480576. (Cited on
page 135)

Thierry Pun. A new method for grey-level picture thresholding using the entropy of the histogram.
Signal Processing, 2(3):223–237, 1980. doi:10.1016/0165-1684(80)90020-1. (Cited on page 161)

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph Markov neural networks. In Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5241–5250. PMLR, 2019. (Cited on page 114)

Joaquin Quiñonero-Candela and Carl E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, 2005. (Cited on page 64)

Jeff Racine and Qi Li. Nonparametric estimation of regression functions with both categorical and
continuous data. Journal of Econometrics, 119(1):99–130, 2004. doi:10.1016/S0304-4076(03)00157-
X. (Cited on page 74)

Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood. On nesting
Monte Carlo estimators. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4267–4276. PMLR, 2018. (Cited on
page 177)

Carl E. Rasmussen. The infinite Gaussian mixture model. In Proceedings of the 13th Conference on
Neural Information Processing Systems, volume 12 of Advances in Neural Information Processing
Systems, pages 554–560. MIT Press, 1999. (Cited on page 115)

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, Cambridge, MA, 2006. (Cited on page 63)

Timothy R. C. Read and Noel A. C. Cressie. Goodness-of-Fit Statistics for Discrete Multivariate Data.
Springer Series in Statistics. Springer-Verlag, New York, 1988. doi:10.1007/978-1-4612-4578-0. (Cited
on page 185)

Scott Reed and Nando de Freitas. Neural programmer-interpreters. arXiv, 1511.06279, 2016.
doi:10.48550/arXiv.1511.06279. (Cited on page 67)

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62:107–136,
2006. doi:10.1007/s10994-006-5833-1. (Cited on page 114)

Fred Rieke, David Warland, Robert De Ruyter van Steveninck, and William Bialek. Spikes: Exploring
the Neural Code. Computational Neuroscience Series. MIT Press, Cambridge, MA, 1997. (Cited on
page 161)

236

https://doi.org/10.48550/arXiv.1202.3732
https://doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
https://doi.org/10.1080/00031305.1998.10480576
https://doi.org/10.1016/0165-1684(80)90020-1
https://doi.org/10.1016/S0304-4076(03)00157-X
https://doi.org/10.1016/S0304-4076(03)00157-X
https://doi.org/10.1007/978-1-4612-4578-0
https://doi.org/10.48550/arXiv.1511.06279
https://doi.org/10.1007/s10994-006-5833-1

Fabrizio Riguzzi. Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference
and Learning. River Publishers Series in Software Engineering. River Publishers, Delft, 2018. (Cited
on page 120)

Daniel Ritchie, Paul Horsfall, and Noah D. Goodman. Deep amortized inference for probabilistic
programs. arXiv, 1610.05735, 2016. doi:10.48550/arXiv.1610.05735. (Cited on page 178)

Christian Ritter and Martin A. Tanner. Facilitating the Gibbs sampler: The Gibbs stopper and
the griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419):861–868, 1992.
doi:10.1080/01621459.1992.10475289. (Cited on page 88)

Herbert Robbins. The empirical Bayes approach to statistical decision problems. The Annals of Math-
ematical Statistics, 35(1):1–20, 1964. doi:10.1214/aoms/1177703729. (Cited on page 88)

Robert W. Robinson. Counting unlabeled acyclic digraphs. In Combinatorial Mathematics V, volume
622 of Lecture Notes in Mathematics, pages 28–43. Springer, 1977. doi:10.1007/BFb0069178. (Cited
on page 114)

Abel Rodriguez and Enrique ter Horst. Bayesian dynamic density estimation. Bayesian Analysis, 3(2):
339–365, 2008. doi:10.1214/08-BA313. (Cited on page 97)

Daniel M. Roy and Yee Whye Teh. The Mondrian process. In Proceedings of the 22nd Conference
on Neural Information Processing Systems, volume 21 of Advances in Neural Information Processing
Systems, pages 833–840. Curran Associates, Inc., 2008. (Cited on pages 99 and 115)

Jean-François Rual et al. Towards a proteome-scale map of the human protein-protein interaction
network. Nature, 437:1173–1178, 2005. doi:10.1038/nature04209. (Cited on page 99)

Walter Rudin. Principles of Mathematical Analysis. International Series in Pure and Applied Mathe-
matics. McGraw-Hill, New York, 3rd edition, 1976. (Cited on page 189)

Rudolph J. Rummel. Dimensionality of nations project: Attributes of nations and behavior of nation
dyads, 1950-1965. Technical Report ICPSR 5409, Inter-university Consortium for Political and Social
Research, 1999. (Cited on pages 100 and 108)

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, Hoboken, 4th
edition, 2021. (Cited on page 18)

Feras Saad and Vikash Mansinghka. A probabilistic programming approach to probabilistic data anal-
ysis. In Proceedings of the 30th Conference on Neural Information Processing Systems, volume 29
of Advances in Neural Information Processing Systems, pages 2011–2019. Curran Associates, Inc.,
2016a. (Cited on pages 71, 130, and 178)

Feras Saad and Vikash Mansinghka. Probabilistic data analysis with probabilistic programming. arXiv,
1608.05347, 2016b. doi:10.48550/arXiv.1608.05347. (Cited on page 71)

Feras Saad and Vikash Mansinghka. Detecting dependencies in sparse, multivariate databases us-
ing probabilistic programming and non-parametric Bayes. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 632–641. PMLR, 2017. (Cited on pages 71 and 178)

Feras Saad, L. Casarsa, and Vikash Mansinghka. Probabilistic search for structured data via probabilis-
tic programming and nonparametric Bayes. arXiv, 1704.01087, 2017. doi:10.48550/arXiv.1704.01087.
(Cited on pages 71 and 178)

237

https://doi.org/10.48550/arXiv.1610.05735
https://doi.org/10.1080/01621459.1992.10475289
https://doi.org/10.1214/aoms/1177703729
https://doi.org/10.1007/BFb0069178
https://doi.org/10.1214/08-BA313
https://doi.org/10.1038/nature04209
https://doi.org/10.48550/arXiv.1608.05347
https://doi.org/10.48550/arXiv.1704.01087

Feras A. Saad and Vikash K. Mansinghka. Temporally-reweighted Chinese restaurant process mixtures
for clustering, imputing, and forecasting multivariate time series. In Proceedings of the 21st Inter-
national Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine
Learning Research, pages 755–764. PMLR, 2018. (Cited on pages 25 and 67)

Feras A. Saad and Vikash K. Mansinghka. Hierarchical infinite relational model. In Proceedings of
the 37th Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine
Learning Research, pages 1067–1077. PMLR, 2021. (Cited on pages 25 and 67)

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K.
Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling. Proceedings
of the ACM on Programming Languages, 3(POPL):37.1–37.32, 2019a. doi:10.1145/3290350. (Cited
on pages 20, 25, and 64)

Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, and Vikash K. Mansinghka. A family
of exact goodness-of-fit tests for high-dimensional discrete distributions. In Proceedings of the 22nd
International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine
Learning Research, pages 1640–1649. PMLR, 2019b. (Cited on pages 25 and 197)

Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: Probabilistic programming with
fast exact symbolic inference. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Design and Implementation, pages 804–819. Association for Computing Machinery,
2021. doi:10.1145/3453483.3454078. (Cited on pages 25 and 178)

Feras A. Saad, Marco Cusumano-Towner, and Vikash K. Mansinghka. Estimators of entropy and
information via inference in probabilistic models. In Proceedings of the 25th International Conference
on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pages 5604–5621. PMLR, 2022. (Cited on page 25)

Ruslan Salakhutdinov, Joshua B. Tenenbaum, and Antonio Torralba. Learning with hierarchical-deep
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1958–1971, 2013.
doi:10.1109/TPAMI.2012.269. (Cited on page 115)

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational infer-
ence: Bridging the gap. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1218–1226. PMLR, 2015. (Cited on
page 167)

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static analysis for probabilistic
programs: Inferring whole program properties from finitely many paths. In Proceedings of the 34th
ACM SIGPLAN Conference Programming Language Design and Implementation, pages 447–458.
Association for Computing Machinery, 2013. doi:10.1145/2491956.2462179. (Cited on pages 117
and 142)

Leonard J. Savage. The Foundations of Statistics. John Wiley & Sons, Inc., New York, 1954.
doi:10.1002/nav.3800010316. (Cited on page 18)

Ulrich Schaechtle, Feras Saad, Alexey Radul, and Vikash Mansinghka. Time series structure discovery
via probabilistic program synthesis. arXiv, 1611.07051, 2017. doi:10.48550/arXiv.1611.07051. (Cited
on page 42)

238

https://doi.org/10.1145/3290350
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1109/TPAMI.2012.269
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1002/nav.3800010316
https://doi.org/10.48550/arXiv.1611.07051

Ulrich Schaechtle, Cameron Freer, Zane Shelby, Feras Saad, and Vikash Mansinghka. Bayesian AutoML
for databases via the InferenceQL probabilistic programming system. In Proceedings of the 1st Inter-
national Conference on Automated Machine Learning (Late-Breaking Workshop Track), 2022. (Cited
on page 71)

Mark J. Schervish. Theory of Statistics. Springer Series in Statistics. Springer-Verlag, New York, 1995.
doi:10.1007/978-1-4612-4250-5. (Cited on page 167)

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of the
18th International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 305–316. Association for Computing Machinery, 2013. doi:10.1145/2451116.2451150.
(Cited on page 66)

Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316,
1924. doi:10.1007/BF01448013. (Cited on page 66)

Patrick Shafto, Charles Kemp, Vikash Mansinghka, and Joshua B. Tenenbaum. A probabilistic model
of cross-categorization. Cognition, 120(1):1–25, 2011. doi:10.1016/j.cognition.2011.02.010. (Cited on
page 71)

Babak Shahbaba and Radford Neal. Nonlinear models using Dirichlet process mixtures. Journal of
Machine Learning Research, 10(63):1829–1850, 2009. (Cited on page 96)

Michael Shalev. Limits and alternatives to multiple regression in comparative research. In Lars Mjoset
and Tommy H. Clausen, editors, Capitalism Compared, number 24 in Comparative Social Research,
chapter 7, pages 261–308. Emerald Group Publishing, Ltd., 2007. doi:10.1016/S0195-6310(06)24006-
7. (Cited on page 216)

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x. (Cited on pages 161 and 164)

Bernard W. Silverman. Density Estimation for Statistics and Data Analysis, volume 26 of Monographs
on Statistics and Applied Probability. Chapman and Hall, London, 1986. (Cited on page 74)

Edward E. Smith. Concepts and induction. In Michael I. Posner, editor, Foundations of Cognitive
Science, pages 501–526. MIT Press, 1989. (Cited on page 15)

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combinato-
rial sketching for finite programs. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 404–415. Association for Com-
puting Machinery, 2006. doi:10.1145/1168857.1168907. (Cited on page 67)

Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. Synthetic data generation for statistical
testing. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pages 872–882. IEEE Press, 2017. doi:10.1109/ASE.2017.8115698. (Cited on page 77)

David J. Spiegelhalter, A. Philip Dawid, Steffen L. Lauritzen, and Robert G. Cowell. Bayesian analysis
in expert systems. Statistical Science, 8(3):219–247, 1993. doi:10.1214/ss/1177010888. (Cited on
page 136)

Siddharth Srivastava, Nicholas Hay, Yi Wu, and Stuart Russell. The extended semantics for probabilistic
programming languages. In Workshop on Probabilistic Programming Semantics, 2017. (Cited on
page 120)

239

https://doi.org/10.1007/978-1-4612-4250-5
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1007/BF01448013
https://doi.org/10.1016/j.cognition.2011.02.010
https://doi.org/10.1016/S0195-6310(06)24006-7
https://doi.org/10.1016/S0195-6310(06)24006-7
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1109/ASE.2017.8115698
https://doi.org/10.1214/ss/1177010888

Michael Steele and Janet Chaseling. Powers of discrete goodness-of-fit test statistics for a uniform
null against a selection of alternative distributions. Communications in Statistics—Simulation and
Computation, 35(4):1067–1075, 2006. doi:10.1080/03610910600880666. (Cited on pages 201 and 209)

Brett Stevens and Aaron Williams. The coolest order of binary strings. In Proceedings of the 6th
International Conference on Fun with Algorithms, volume 7288 of Lecture Notes in Computer Science,
pages 322–333. Springer, 2012. doi:10.1007/978-3-642-30347-0_32. (Cited on page 203)

Andreas Stuhlmüller and Noah Goodman. A dynamic programming algorithm for inference in recursive
probabilistic programs. arXiv, 1206.3555, 2012. doi:10.48550/arXiv.1206.3555. (Cited on page 143)

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in
Artificial Intelligence, 2009(421425), 2009. doi:10.1155/2009/421425. (Cited on page 99)

Ilya Sutskever, Russ R. Salakhutdinov, and Joshua B. Tenenbaum. Modelling relational data using
Bayesian clustered tensor factorization. In Proceedings of the 23rd Conference on Neural Information
Processing Systems, volume 22 of Advances in Neural Information Processing Systems, pages 1821–
1828. Curran Associates, Inc., 2009. (Cited on page 99)

Synthetic Data Vault. sdv-dev/SDV: Synthetic Data Generation for Tabular, Relational, and Time
Series Data, 2022. URL https://github.com/sdv-dev/SDV. (Cited on page 80)

Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validat-
ing Bayesian inference algorithms with simulation-based calibration. arXiv, 1804.06788, 2018.
doi:10.48550/arXiv.1804.06788. (Cited on pages 183 and 207)

Ben Taskar, Peter Abbeel, and Daphne Koller. Discriminative probabilistic models for relational data.
In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 485–492. AUAI
Press, 2002. doi:10.48550/arXiv.1301.0604. (Cited on page 114)

Sean J. Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018. doi:10.1080/00031305.2017.1380080. (Cited on pages 36, 40, and 96)

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths, and Noah D. Goodman. How
to grow a mind: Statistics, structure, and abstraction. Science, 331(6022):1279–1285, 2011.
doi:10.1126/science.1192788. (Cited on pages 18 and 67)

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. Intelligent Robotics and
Autonomous Agents Series. MIT Press, Cambridge, MA, 2005. (Cited on page 18)

Luke Tierney. Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4):
1701–1728, 1994. doi:10.1214/aos/1176325750. (Cited on pages 48 and 49)

Hu Kuo Ting. On the amount of information. Theory of Probability & Its Applications, 7(4):439–447,
1962. doi:10.1137/1107041. (Cited on page 164)

Anh Tong and Jaesik Choi. Automatic generation of probabilistic programming from time series data.
arXiv, 1607.00710, 2016. doi:10.48550/arXiv.1607.00710. (Cited on page 66)

JunYong Tong and Nick Torenvliet. Temporally-reweighted dirichlet process mixture anomaly detector.
In Proceedings of the 2020 International Conference on Data Mining Workshops, pages 267–274. IEEE
Press, 2020. doi:10.1109/ICDMW51313.2020.00045. (Cited on page 98)

240

https://doi.org/10.1080/03610910600880666
https://doi.org/10.1007/978-3-642-30347-0_32
https://doi.org/10.48550/arXiv.1206.3555
https://doi.org/10.1155/2009/421425
https://github.com/sdv-dev/SDV
https://doi.org/10.48550/arXiv.1804.06788
https://doi.org/10.48550/arXiv.1301.0604
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1126/science.1192788
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1137/1107041
https://doi.org/10.48550/arXiv.1607.00710
https://doi.org/10.1109/ICDMW51313.2020.00045

Neil Toronto, Jay McCarthy, and David Van Horn. Running probabilistic programs backwards. In Pro-
ceedings of the 24th European Symposium on Programming, volume 12075 of Lecture Notes in Com-
puter Science, pages 53–79. Springer, 2015. doi:10.1007/978-3-662-46669-8_3. (Cited on page 142)

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. In Proceedings of the 33rd Conference in Neural Information Processing
Systems, volume 32 of Advances in Neural Information Processing Systems, pages 6347–6358. Curran
Associates, Inc., 2019. (Cited on pages 69 and 158)

Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Laptev Nikolay, Christoph Bergmeir, and
Ram Rajagopal. NeuralProphet: Explainable forecasting at scale. arXiv, 2111.15397, 2021.
doi:10.48550/arXiv.2111.15397. (Cited on page 36)

Franklyn Turbak and David Gifford. Design Concepts in Programming Languages. MIT Press, Cam-
bridge, MA, 2008. (Cited on page 54)

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty, 5:297–323, 1992. doi:10.1007/BF00122574. (Cited on
page 216)

Tomer D. Ullman and Joshua B. Tenenbaum. Bayesian models of conceptual development: Learning
as building models of the world. Annual Review of Developmental Psychology, 2(1):533–558, 2020.
doi:10.1146/annurev-devpsych-121318-084833. (Cited on pages 18 and 65)

Tomer D. Ullman, Noah D. Goodman, and Joshua B. Tenenbaum. Theory learning as
stochastic search in the language of thought. Cognitive Development, 27(4):455–480, 2012.
doi:10.1016/j.cogdev.2012.07.005. (Cited on page 65)

Tomer D. Ullman, Andreas Stuhlmüller, Noah D. Goodman, and Joshua B. Tenenbaum.
Learning physical parameters from dynamic scenes. Cognitive Psychology, 104:57–82, 2018.
doi:10.1016/j.cogpsych.2017.05.006. (Cited on page 65)

Union of Concerned Scientists. UCS Satellite Database, 2016. URL https://www.ucsusa.org/resources/
satellite-database. (Cited on page 77)

U.S. Bureau of Transportation Statistics. Passengers: All Carriers - All Airports, 2022. URL https:
//transtats.bts.gov/Data_Elements.aspx. (Cited on page 27)

Gregory Valiant and Paul Valiant. Estimating the unseen: An n/log(n)-sample estimator for en-
tropy and support size, shown optimal via new CLTs. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, pages 685–694. Association for Computing Machinery, 2011.
doi:10.1145/1993636.1993727. (Cited on page 186)

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction to prob-
abilistic programming. arXiv, 1809.10756, 2021. doi:10.48550/arxiv.1809.10756. (Cited on page 18)

Antonio Vergari, Alejandro Molina, Robert Peharz, Zoubin Ghahramani, Kristian Kersting, and Isabel
Valera. Automatic bayesian density analysis. In Proceedings of the 23rd AAAI Conference on Arti-
ficial Intelligence, pages 5207–5215. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33015207. (Cited on
pages 69 and 158)

Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. Anytime
inference in probabilistic logic programs with Tp-compilation. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence, pages 1852–1858. International Joint Conferences
on Artificial Intelligence, 2015. (Cited on page 143)

241

https://doi.org/10.1007/978-3-662-46669-8_3
https://doi.org/10.48550/arXiv.2111.15397
https://doi.org/10.1007/BF00122574
https://doi.org/10.1146/annurev-devpsych-121318-084833
https://doi.org/10.1016/j.cogdev.2012.07.005
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://transtats.bts.gov/Data_Elements.aspx
https://transtats.bts.gov/Data_Elements.aspx
https://doi.org/10.1145/1993636.1993727
https://doi.org/10.48550/arxiv.1809.10756
https://doi.org/10.1609/aaai.v33i01.33015207

Satosi Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal of Research
and Development, 4(1):66–82, 1960. doi:10.1147/rd.41.0066. (Cited on page 164)

David A. Williams. Improved likelihood ratio tests for complete contingency tables. Biometrika, 63(1):
33–37, 1976. doi:10.1093/biomet/63.1.33. (Cited on page 185)

Michael Williams. How good are your fits? Unbinned multivariate goodness-of-fit tests in high en-
ergy physics. Journal of Instrumentation, 5(09):P09004, 2010. doi:10.1088/1748-0221/5/09/P09004.
(Cited on page 183)

Andrew G. Wilson and Ryan P. Adams. Gaussian process kernels for pattern discovery and extrap-
olation. In Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 1067–1075. PMLR, 2013. (Cited on page 67)

David Wingate and Theophane Weber. Automated variational inference in probabilistic programming.
arXiv, 1301.1299, 2013. doi:10.48550/arXiv.1301.1299. (Cited on page 117)

Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell. Discrete-continuous mixtures
in probabilistic programming: Generalized semantics and inference algorithms. In Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 5343–5352. PMLR, 2018. (Cited on pages 117, 119, 120, and 130)

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative analysis of
decoder-based generative models. arXiv, 1611.04273, 2016. doi:10.48550/arXiv.1611.04273. (Cited
on page 177)

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using Conditional GAN. In Proceedings of the 33rd Conference in Neural Information Processing
Systems, volume 32 of Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2019. (Cited on page 80)

Zhao Xu, Volker Tresp, Kai Yu, and Hans-Peter Kriegel. Infinite hidden relational models. In Proceedings
of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 544–551. AUAI Press, 2006.
doi:10.48550/arXiv.1206.6864. (Cited on pages 99, 101, 108, and 115)

Zhao Xu, Volker Tresp, Shipeng Yu, Kai Yu, and Hans-Peter Kriegel. Fast inference in infinite hidden
relational models. In Proceedings of the 5th International Workshop on Mining and Learning with
Graphs, 2007. (Cited on page 106)

Junyu Xuan, Jie Lu, Guangquan Zhang, Richard Y. D. Xu, and Xiangfeng Luo. Bayesian nonparametric
relational topic model through dependent gamma processes. IEEE Transactions on Knowledge and
Data Engineering, 40(7), 2017. doi:10.1109/TKDE.2016.2636182. (Cited on page 99)

Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for discrete dis-
tributions via Stein discrepancy. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 5561–5570. PMLR, 2018.
(Cited on page 186)

Byung-Jun Yoon. Hidden Markov models and their applications in biological sequence analysis. Current
Genomics, 10(6):402–415, 2009. doi:10.2174/138920209789177575. (Cited on page 216)

Jieyuan Zhang and Jingling Xue. Incremental precision-preserving symbolic inference for proba-
bilistic programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 237–252. Association for Computing Machinery, 2019.
doi:10.1145/3314221.3314623. (Cited on pages 117 and 142)

242

https://doi.org/10.1147/rd.41.0066
https://doi.org/10.1093/biomet/63.1.33
https://doi.org/10.1088/1748-0221/5/09/P09004
https://doi.org/10.48550/arXiv.1301.1299
https://doi.org/10.48550/arXiv.1611.04273
https://doi.org/10.48550/arXiv.1206.6864
https://doi.org/10.1109/TKDE.2016.2636182
https://doi.org/10.2174/138920209789177575
https://doi.org/10.1145/3314221.3314623

Lina Zhou, Shimei Pan, Jianwu Wang, and Athanasios V. Vasilakos. Machine learn-
ing on big data: Opportunities and challenges. Neurocomputing, 237(10):350–361, 2017.
doi:10.1016/j.neucom.2017.01.026. (Cited on page 16)

Rongxi Zhou, Ru Cai, and Guanqun Tong. Applications of entropy in finance: A review. Entropy, 15
(11):4909–4931, 2013. doi:10.3390/e15114909. (Cited on page 161)

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Time-sensitive Dirichlet process mixture models.
Technical Report CMU-CALD-05-104, Carnegie-Mellon University, 2005. (Cited on page 97)

Pedro Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. Exact and approximate weighted
model integration with probability density functions using knowledge compilation. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence, pages 7825–7833. AAAI Press, 2019.
doi:10.1609/aaai.v33i01.33017825. (Cited on page 143)

243

https://doi.org/10.1016/j.neucom.2017.01.026
https://doi.org/10.3390/e15114909
https://doi.org/10.1609/aaai.v33i01.33017825

	Introduction
	The Path to Scalability
	Specialization via Probabilistic Domain-Specific Languages
	Flexible Model Families via Nonparametric Bayesian Priors
	Exploiting Sparsity via Independence Discovery
	Online Structure Learning via Sequential Monte Carlo
	Exact Bayesian Inference via Compilers and Symbolic Program Analysis
	Statistical Estimation and Testing via Dynamic Program Analysis

	Outline and Contributions
	Scope
	Software
	Publications

	I Probabilistic Structure Learning via Approximate Bayesian Inference
	Synthesizing Models for Univariate Time Series
	Background: Gaussian Processes
	Gaussian Process DSL for Modeling Univariate Time Series
	Online Learning of Time Series Structure from Data
	Formulation as a Bayesian Inference Problem
	Online Structure Learning for Airline Data
	Online Adaption to Extreme Novelty

	Evaluation
	Prediction Accuracy
	Extracting Qualitative Structure
	Runtime versus Accuracy

	Synthesizing Probabilistic Programs in Domain-Specific Modeling Languages
	Probabilistic Domain-Specific Modeling Languages
	Bayesian Synthesis in Probabilistic DSLs
	Bayesian Synthesis via Sound Approximate Inference
	Querying Synthesized Probabilistic Programs

	Algorithms for Bayesian Synthesis
	Bayesian Synthesis via Markov Chain Monte Carlo
	Bayesian Synthesis via Resample-Move Sequential Monte Carlo

	Bayesian Synthesis for Context-Free Probabilistic DSLs
	Context-Free Grammars for Specifying Probabilistic DSLs
	Defining a Probabilistic DSL from a Context-Free Grammar
	A Sound Prior Semantics
	A Sound Markov Chain Transition Operator

	Formalizing the Gaussian Process DSL
	Time Complexity Analysis

	Related Work

	Synthesizing Models for Cross-Sectional Data
	MultiMixture DSL for Modeling Data Tables
	Algorithms for Posterior Inference
	Evaluation
	Detecting Dependence Relationships
	Estimating Probabilities
	Generating Synthetic Data

	Synthesizing Models for Multivariate Time Series
	Temporally-Reweighted Chinese Restaurant Mixture Model
	Background: Chinese Restaurant Process Mixtures Models
	TR-CRP Mixtures for Modeling a Single Time Series
	TR-CRP Mixtures for Modeling Multiple Dependent Time Series
	Discovering Independence Structure Between Multiple Time Series

	Algorithms for Posterior Inference
	Forecasting, Clustering, and Imputation with TR-CRP Mixtures
	Applications to Macroeconomic and Flu Data
	Clustering Macroeconomic Data
	Imputing Multivariate Flu Rates
	Forecasting Multivariate Flu Rates

	Related Work

	Synthesizing Models for Relational Data
	Background: Infinite Relational Model
	Limitations of the Infinite Relational Model
	Hierarchical Infinite Relational Model
	Algorithms for Posterior Inference
	Applications to Object-Attribute, Political, and Genomics Data
	Predictive Accuracy on Object-Attribute Benchmarks
	Political Interactions
	Genomic Properties

	Related Work

	II Exact Bayesian Inference via Symbolic Program Analysis
	Sum-Product Probabilistic Language
	Tutorial Examples
	Indian GPA Problem
	Scalable Inference in a Hierarchical HMM

	Core Calculus for Sum-Product Expressions
	Conditioning Sum-Product Expressions on Events
	Translating Probabilistic Programs to Sum-Product Expressions
	Compiler Optimizations of Memory and Runtime

	Evaluation
	Fairness Benchmarks
	Comparison to Symbolic Integration
	Comparison to Sampling-Based Estimates

	Related Work
	Representing Gaussian Process DSL Programs in SPPL
	Definitions of Auxiliary Functions
	Transforms of Random Variables
	Valuation of Transforms
	Preimage Computation

	Conditioning Sum-Product Expressions
	Algorithms for Event Preprocessing
	Conditioning Sum-Product Expressions on Positive Measure Events
	Conditioning Sum-Product Expressions on Equality Constraints

	Translating Sum-Product Expressions to SPPL

	III Statistical Estimation and Testing via Dynamic Program Analysis
	Estimators of Entropy and Information
	Overview of EEVI
	Extending Entropy Bounds to Information-Theoretic Quantities
	Sampling Bounds on Log Marginal Probabilities
	Constructing Accurate Proposals

	Applications to Optimal Data Acquisition
	HEPAR Liver Disease Network
	Dynamic Insulin Model for Diabetes

	Related Work
	Implementation as Probabilistic Meta-Programs in Gen

	Goodness-of-Fit Tests
	Background: The Goodness-of-Fit Problem
	The Stochastic Rank Statistic
	Proof: Uniformity of Rank
	Proof: An Ordering Witnessing p != q for m=1
	Proof: A Tighter Bound in Terms of L-infinity(p, q)
	Proof: Sample Complexity of SRS Test
	Proof: Distribution of SRS under Alternative Hypothesis

	Simulation Studies
	Bimodal Symmetric Poisson
	Binary Strings
	Partition Testing

	Applications to Convergence Analysis of Approximate Samplers
	Dirichlet Process Mixture Models
	Ising Models

	Implementation as a Probabilistic Meta-Program in Gen

	IV Conclusion
	Future Directions
	Human-In-The-Loop Model Discovery
	Extracting Causal Structure from Phenomenological Models
	Is Sampling Superior to Optimization?
	Metalinguistic Abstractions for Building DSLs
	Probabilistic Programming Abstractions for Structure Learning
	Theorem Proving and Verification for Probabilistic Programs
	Broader Applications to the Social and Natural Sciences

