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Abstract

Emerging mobility services (such as mobility-on-demand and micromobility) have expanded
the range of travel options available to individuals and offered ways to improve access to
various opportunities. Unlike mass transit services, emerging mobilities can be implemented
and experimented with rather rapidly. As a result, they are also likely to induce relatively
rapid changes in travel behavior and location choices. Several cities across the world are
experimenting with ‘car-lite’ policies that aim to reduce auto ownership and use (and emis-
sions) with the help of emerging mobilities, transit improvements, and/or urban design.
Therefore, it becomes important to understand the near-term effects of emerging mobilities
on neighborhoods through the lenses of vehicle ownership and residential location choice
over the first few years of change. This is especially important given the gentrification pat-
terns we have observed in neighborhoods where transit improvements or extensions have
been implemented (often referred to as ‘transit-induced gentrification’). Will we observe
similar patterns of accessibility-induced gentrification with emerging mobilities as well? If
so, how can we, as planners, seek to mitigate these undesirable but consequential side-effects
of car-lite policies?

In my dissertation, I introduced necessary methodological extensions to a state-of-the-
art land use-transport interaction (LUTI) model that can enable better modeling of the
interdependencies between various choices and tradeoffs of housing and mobility. Applying
this improved LUTI model to the city-state of Singapore, I conducted quasi-static analyses
and agent-based microsimulations of ‘what-if’ scenarios regarding how households react to
accessibility changes. In addition to looking at neighborhood-level car-lite pilot programs
that improve non-auto accessibility, I also explored vehicle restriction policies that seek to
ban private vehicles.

I found that private vehicle restrictions alone without complementary non-auto accessi-
bility improvements can reduce accessibility and social welfare, even in a transit-rich place
like Singapore. Solely imposing a blanket ban on private automobiles to accelerate the tran-
sition to a sustainable mobility future will likely do more harm than good. Evidence of
accessibility-induced gentrification, to varying degrees, was found in all of the Singaporean
neighborhoods I explored. Lower-income and less auto-dependent neighborhoods seem to be
more prone to accessibility-induced gentrification, thereby suggesting that non-accessibility
improvements alone may not guarantee equitable outcomes. I then explored two housing
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policies – upzoning and parking restrictions – as possible strategies to mitigate the gentrifi-
cation side-effects. Both policies appeared to have limited value by themselves because, at
times, they could accelerate gentrification or reduce social welfare. However, they became
much more effective policy instruments when combined with affordability constraints (such
as income restrictions and price discounts), so that the accessibility and welfare benefits of
car-lite policies could be equitably distributed across residents. I also tested the general-
izability and transferability of my findings through various sensitivity analyses, robustness
checks, and implementation in a more auto-dependent context separate from Singapore.

This dissertation is expected to contribute to our understanding of the effects of emerging
mobilities on three fronts. From a conceptual perspective, this study can demonstrate how
emerging mobilities can lead to inequitable urban development in the absence of carefully
designed market regulations. From a policy perspective, we can learn about the effectiveness
of some housing and mobility policies in mitigating these undesirable outcomes while en-
hancing targeted outcomes. From a methodological perspective, the study contributes to the
creation of a state-of-the-art integrated urban model that can be used to explore near-term
market dynamics in reaction to new transportation technologies.

Dissertation Supervisor: Professor Joseph Ferreira
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Chapter 1

Introduction

In his memoir ‘My Years with General Motors,’ long-time president and CEO of General

Motors Corporation (and MIT alumnus) Alfred P. Sloan remarked that he would provide “a

car for every purse and purpose” (Sloan, 1964). In hindsight, these words are an ominous

portent of how auto-dependent our society would become. Newman and Kenworthy (1999)

define auto-dependence as “a combination of high car use, high provision for automobiles, and

scattered low-density use.” Gorham et al. (2002) build on this definition by also emphasizing

the role of individual behavior in reproducing and sustaining existing car-oriented social

and spatial structures. Attributing auto-dependence to individual behavior can be thought

of as a micro-level explanation, while Newman and Kenworthy’s position is a macro-level

recognition of the attributes of societies as a whole (Mattioli et al., 2016).

With good justification, auto use is heavily implicated in climate change. The trans-

portation sector accounts for more than a quarter of greenhouse gas emissions in developed

countries such as the US, and private vehicle use accounts for almost two-thirds of that

(EPA, 2020). However, the mobility that autos provide is not easily replaced. Moreover, the

pattern of land use that has resulted from the widespread dependence on autos has created

a host of pressing societal problems. The need to own, maintain, and use a car can in-

duce significant financial burdens, especially on lower-income households (Blumenberg and

Pierce, 2012; Klein, 2020). This need stems from the necessity of auto ownership to access

different opportunities, employment in particular (Lucas, 2012; Blumenberg and Pierce,

2014). Living in more auto-dependent areas has been linked to higher likelihoods of obesity,

stress, poor mental health, and depression (Pohanka and Fitzgerald, 2004; Lopez-Zetina
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et al., 2006). Facilitating auto-centric lifestyles also requires significant public investment

in road and parking infrastructure, which reduces funding and land that could be used for

other, perhaps more important, public sectors. Hence, it is especially important to examine

climate-driven efforts to reduce auto ownership and use with detailed attention to the ripple

effects on land use patterns and the distributional effects of any transition on accessibility

and social welfare. This is especially true when considering emerging mobility options such

as mobility-on-demand and micromobility.

My motivation for this dissertation is centered around rethinking auto-oriented policies

and planning. To effectively reduce the contributions of the transportation sector to the

climate crisis, we will need to find ways to reduce auto-dependence. More fuel-efficient vehi-

cle technologies can help make a dent in greenhouse gas emissions, but will not address the

myriad negative consequences of auto-dependence. If current patterns of single-occupancy

vehicle travel persist even with more fuel-efficient technologies, we will fail to meaning-

fully address congestion, auto accidents and injuries, and land allocation to auto-related

infrastructure (such as highways and parking). Moreover, different societies are on different

development trajectories and undertake diverse policy pathways to ensure the growth of

their economies. Cervero (2013) cautions that the progress made by developed countries in

reducing greenhouse gas emissions and fuel consumption can be quickly eclipsed if rapidly

growing countries like India, China, and Brazil continue to mimic American-style patterns

of suburbanization, car ownership, and travel.

Therefore, I argue that the need of the hour is to focus on large-scale systematic changes

that force us to challenge the status quo. Among other actions, these involve redesigning

our communities to reduce auto-dependence and become more mixed-use and mixed-income.

‘Simply’ transitioning to electric vehicles will not address all the issues associated with

owning, using, and parking vehicles. A successful transition to a sustainable urban mobility

future will require high-quality implementation of innovative schemes, and the need to gain

public confidence and acceptability to support these measures through active involvement

and action (Banister, 2008). The benefits of increasing the use of non-auto modes extend

well beyond greenhouse emissions reduction to better public health (Frank et al., 2019),

fewer traffic-related injuries and deaths (Mohan, 2002), more life satisfaction (De Vos et al.,

2022), and more public space (freed up from roads and parking spaces) available for other

land uses such as housing (Millard-Ball, 2022). Reducing auto-dependence is, of course,
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easier said than done and will require a multi-pronged strategy of improving alternatives

to private vehicles, along with making changes to zoning and the built environment that

reduce the necessity for auto ownership and use.

Over the last decade, emerging mobilities (such as mobility-on-demand and micromobil-

ity) have expanded our comprehension of ‘non-auto’ options. No longer are the car-less (or

car-free) limited to walking, biking, and public transit. Services such as mobility-on-demand

(e.g., Uber and Lyft) and micromobility (such as bikesharing and e-scooters) have expanded

the mobility choice set and provided those without access to private cars additional options

to choose from (Brown, 2019). Unlike mass transit services, emerging mobilities do not re-

quire as much additional substantial infrastructure or public investment (beyond the already

substantial public investment in road infrastructure), which implies relatively faster imple-

mentation of mobility services and programs involving emerging mobilities. These options

are more likely to be used by car-deficit (fewer cars than workers) households (Sikder, 2019)

and have the potential to reduce auto ownership and use (Basu and Ferreira, 2021; Tirachini,

2020). However, they can also compete with public transit and are held responsible for de-

clining transit ridership (Erhardt et al., 2022). Mobility-on-demand, in particular, has been

found to be the largest contributor to growing traffic congestion, likely because most trips

are single-passenger, point-to-point trips that closely resemble private auto travel (Erhardt

et al., 2019). Emerging mobilities are also critiqued for not providing equal accessibility to

all socioeconomic groups (Brown, 2020; Caspi and Noland, 2019). Thus, emerging mobili-

ties hold promise as one way to reduce auto-dependence if leveraged appropriately (e.g., to

reduce single-occupancy vehicle travel), but leaving it up to the invisible hand of the market

has not proven successful in this endeavor thus far.

Emerging mobilities are not the only way to improve non-auto accessibility. An urban

design focus on improving sidewalks and bike paths that can enable more walking and biking

trips can also yield rich dividends (Boarnet et al., 2001; Buehler and Dill, 2016). Improving

the first- and last-mile connections to public transit can reduce the inconvenience associated

with using transit and increase transit trip-making (Basu and Ferreira, 2021). Zoning and

parking supply are also important policy levers for sustainable metropolitan development

(Suzuki et al., 2013; Shoup, 2021). At a more micro-scale, neighborhood planning strategies

such as increasing densities or encouraging diverse land uses can encourage more active

travel and reduce short auto trips (Cervero and Kockelman, 1997; Sevtsuk et al., 2021).
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While both transportation and land use management strategies exist to reduce auto-

dependence, which ones are actually implemented are dependent on local (or regional) plan-

ning agencies (who make this decision based on residents’ needs, available funding, local

culture, and political environment). For example, the city-state of Singapore is focusing on

a transit-oriented approach to improve non-auto accessibility. Several extensions are planned

for the already extensive public transport network, while sidewalks are being widened for

better access to and from transit. Minimum parking requirements are also being revised

in transit-proximate areas.1 A little closer to home, the City of Salem is experimenting

with an on-demand shared shuttle service (nicknamed the ‘Salem Skipper’) that provides

$2 rides anywhere within the city limits.2 King County Metro is offering on-demand shared

shuttle options for both trips to transit stations as well as direct point-to-point trips.3 Thus,

even though the mechanisms differ, many public entities are trying out ‘car-lite’ pilots that

provide better non-auto accessibility in the hope of reducing private auto ownership and

single-occupancy vehicle travel. The motivation behind these car-lite experiments can be

traced back to transit-oriented development (TOD) efforts, where public transit extensions

were complemented with neighborhood redesign (to create more dense, mixed-use, and com-

pact neighborhoods) such that residents were incentivized to become and remain less auto-

dependent. The ‘twist’ with more modern efforts to create car-lite neighborhoods is that

improvements in non-auto accessibility are no longer confined to public transit extensions.

That being said, the manner in which car-lite pilots are rolled out can be key to deter-

mining the success of these programs. Perceptions matter, as evidenced by the whirlwind

emergence and disappearance of dockless bikes and e-scooters in many cities. Three major

dockless bike companies began operations in Singapore in 2017, but all three exited the

market by July 2018 citing difficulties in complying with a new licensing regime4 and pro-

posed regulations pertaining to indiscriminate parking.5 Many cities in the US have reacted

strongly when dockless e-scooter companies deploy vehicles unannounced and operate with-

1https://www.lta.gov.sg/content/ltagov/en/newsroom/2018/11/2/new-parking-standards-for
-private-developments-from-february-2019.html. Last accesssed on August 24, 2022.

2https://www.salemma.gov/mobility-services/pages/salem-skipper. Last accessed on August 24,
2022.

3https://kingcounty.gov/depts/transportation/metro/travel-options/on-demand.aspx. Last ac-
cessed on August 24, 2022.

4https://www .straitstimes .com/singapore/obike -ceases -operations -in -singapore -citing
-difficulty-in-meeting-new-lta-regulations. Last accesssed on August 24, 2022.

5https://www.straitstimes.com/singapore/transport/new-rules-passed-to-curb-abuse-of-bike
-sharing. Last accessed on August 24, 2022.
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out a permit. Residents have raised concerns over improperly parked e-scooters that are

an eyesore and impede sidewalk access (Thigpen et al., 2020). Even though auto parking

violations vastly surpass those by e-scooters, the much higher frequency with which resi-

dents object to the latter highlight that the manner in which car-lite pilots are rolled out

will influence how they are perceived and their eventual outcomes (and possible expansion

beyond the pilot study areas).

1.1 Research Questions

In this dissertation, I will explore how car-lite policies aiming to reduce auto-dependence can

change neighborhoods in the near-term. I measure auto-dependence through the vehicle-free

share, i.e., the share of households who do not have access to any private vehicle (or are

vehicle-free). A high vehicle-free share indicates lower auto-dependence. As municipalities

are likely to pilot car-lite policies in select neighborhoods before considering a city-wide roll

out, I frame my dissertation using such a setting. Let us consider a city where a car-lite

policy is being piloted within a study area (such as a neighborhood). What are the expected

consequences of such a policy on the composition of the neighborhood? Will it succeed in

increasing the vehicle-free share within the study area?

I propose a conceptual framework, which forms the crux of this dissertation, to address

these questions in Figure 1-1. Pathway ‘A’ shows that improvements in non-auto accessibility

can make auto ownership and use less attractive and, thereby, induce more residents to use

non-auto modes (especially where auto ownership, maintenance, and/or use are expensive).

Pathway ‘B’ highlights the link between land use and mobility. Better non-auto accessibility

in a neighborhood can increase its attractiveness as a potential residential location, which in

turn can cause housing prices to rise as many households may be willing to pay a premium

to live in the neighborhood. Pathway ‘C’ demonstrates how rising housing prices in the

neighborhood can tend to attract higher-income households, who are more likely to own

and use cars. Thus, pathways ‘A’ and ‘C’ work in opposite directions with regard to their

influence on neighborhood-wide vehicle-free share.

It remains unclear what the net effect of these opposing forces will be. The intended

objective of the car-lite policy is to, of course, reduce auto-dependence by increasing the

vehicle-free share. However, the unintended side-effect of increased housing prices (through
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the land use-mobility link) will dampen the increase in vehicle-free share (from pathway ‘A’)

and, in doing so, could exacerbate concerns about gentrification. This dampening effect may

be large enough in some neighborhoods to completely wipe out the benefits from pathway

‘A’ and result in a net decrease in the vehicle-free share. With this conceptual framework

in mind, I ask the following research questions:

Figure 1-1: Conceptual framework for this dissertation

1. How might car-lite policies change neighborhoods?

I explore three types of car-lite policies — restricting private vehicles, non-auto accessi-

bility improvements, and a combination of the two — as pilot experiments in different

neighborhoods and examine how they change neighborhoods using both place-based and

people-based scenario evaluation measures. These ‘car-lite’ neighborhoods are motivated by

transit-oriented development (TOD) areas, except that I don’t consider the ‘T’ as the only

way to reduce auto-dependence. I track changes in the area mean income and vehicle-free

share to see if the car-lite policy is successful in reducing auto-dependence, along with the

extent to which it might induce gentrification. Pathway ‘B’ in the conceptual framework I

proposed is reminiscent of transit-induced gentrification, where extensions to existing tran-

sit lines or construction of new lines have been found to gentrify neighborhoods around the

new stations (Padeiro et al., 2019). By examining whether non-auto accessibility improve-

ments may also induce gentrification, I hope to inform a broader narrative centered around

accessibility-induced gentrification, of which transit-induced gentrification is a subset. I also

look at how car-lite policies affect accessibility and consumer welfare of study area residents.

By conducting these explorations in different neighborhoods, I try to relate neighborhood

characteristics with car-lite policy outcomes in an effort to understand what types of neigh-
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borhoods may be most susceptible to unintended negative side-effects of car-lite policies.

2. Might housing policies be effective in mitigating gentrification side-effects

while enhancing auto-dependence reductions?

If gentrification side-effects are strong enough to dampen increases in the vehicle-free share,

we need to find ways to mitigate them. I take inspiration from recent efforts in some

cities to pass regulations related to upzoning near transit and reduced parking minimum

requirements, and examine two types of housing policies based on them — (a) new housing

supply, and (b) vehicle-restricted housing supply, both without and with affordability con-

straints. I contend that non-auto accessibility improvements can benefit from coordination

with housing policies designed to address the gentrification-driven vehicle-free dampening

effect. Designing coordinated housing-mobility policies may be key to ensuring that the

benefits of car-lite policies (such as non-auto accessibility improvements) are distributed

equitably across socioeconomic groups.

3. How can integrated urban models be used to examine the near-term effects

of car-lite policies on housing-mobility choices?

Car-lite policies and coordinated housing policies, as described above, can play out in a

complex manner. Households will look to respond to these policies by adjusting their

housing-mobility choices. In the housing market, buyers and sellers will respond differ-

ently to these policies and their consequent changes in accessibility. Keeping track of these

housing market effects (and within-market interactions) requires more complex modeling

than has been possible thus far. Integrated urban models, such as land use-transport inter-

action (LUTI) models, provide an appropriate framework but most do not yet possess the

necessary capabilities to enable such policy explorations in adequate detail. In this disser-

tation, I will demonstrate the application of a state-of-the-art LUTI model to explore the

near-term effects of these policy scenarios. Unlike standalone choice models, this integrated

urban modeling framework integrates various housing-mobility choice models to simulate

disaggregate behavior with sufficient detail at different timescales.

1.2 Research Methods

Land use-transport interaction (LUTI) models are important tools that can help us explore

complex policy interactions. Integrated LUTI models link the housing and mobility compo-
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nents, and allow us to explore different scenarios of how individuals and households might

react to changes in policy and/or infrastructure. Thus far, LUTI model applications have

understandably focused on ‘long-term’ ripple effects of urban (and metropolitan) growth

strategies and transportation infrastructure investments (at the timescale of decades). How-

ever, emerging mobilities can change accessibility and travel behavior considerably faster

than a decade-long subway construction (or development) project. There is a dearth of

appropriate modeling tools to model the roll-out of car-lite pilot programs to promote less

auto-dependent communities with an eye towards not just travel behavior changes, but also

interactions with the residential housing market in adequate detail.

Although agent-based LUTI models are promising candidates and provide appropriate

frameworks, most state-of-the-art LUTI models have limited capabilities to explore car-lite

policy scenarios with regard to longer-term urban choices such as residential location and

private vehicle holdings. These limitations arise from aggregate resolution of representation

(e.g., representing space through zones or time through months or years), and/or the land

use and mobility components being ‘loosely’ integrated (e.g., through gravity-based accessi-

bility measures that do not incorporate individuals’ utilities). Nevertheless, they are more

promising than alternative urban modeling approaches (such as Computable General Equi-

librium or CGE models) when it comes to tracking the near-term dynamics of spatiotemporal

change.

In this dissertation, I demonstrate the application of a state-of-the-art LUTI model that

represents daily transactions in the housing market and is tightly integrated using activity-

based accessibility measures. I explore the near-term effects of car-lite pilot programs that

seek to reduce auto-dependence by restricting private vehicles and/or improving non-auto

accessibility. I also explore the effects of coordinating non-auto accessibility improvements

with selected housing policies, such as upzoning and restricted parking supply. These pol-

icy scenarios are explored through the lens of disaggregate housing-mobility choices that

lead to neighborhood change. Using both place-based and people-based scenario evaluation

measures, I compare these scenarios against a baseline reference that shows the natural

unperturbed development of the neighborhood in the absence of any policy.
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1.3 Contributions

As emerging mobilities become more widespread across the world, understanding their im-

pact on cities is particularly crucial for planners and policy-makers. Research on travel

behavior impacts and travel demand modeling of emerging mobilities has received far more

attention than research on housing market effects and consequent changes in urban devel-

opment and land use. Even then, strong exogenous assumptions about emerging mobility

impacts (e.g., about time or cost savings, or private vehicles being completely replaced)

limit the use of existing studies for policy-making. Although some studies help shed light

on the long-term possibilities of emerging mobilities, they say little about the market dy-

namics along the way. How might neighborhoods change in the near-term when car-lite

pilot programs use emerging mobilities to improve non-auto accessibility? This dissertation

attempts to contribute to this growing and policy-relevant literature by demonstrating how

a LUTI modeling framework can be used for policy analysis to explore the consequent rip-

ple effects in more detail than has been possible thus far. Moreover, LUTI modelers have

been critiqued for not exploring social equity concerns (such as gentrification), even though

housing and mobility — two fundamental tenets of LUTI models — policies can perpetu-

ate or alleviate inequality (Engelberg et al., 2021). This dissertation aims to demonstrate

a policy exploration application which is centered around examining and addressing some

equity concerns related to housing markets.

With an eye towards informing the design and evaluation of car-lite pilot programs, I

construct and explore various policy scenarios using a state-of-the-art LUTI model. Without

any regulation or intervention, improved non-auto accessibility can increase the attractive-

ness of these pilot neighborhoods and may induce subsequent gentrification. Therefore,

understanding which neighborhoods may be most ripe for pilot experimentation without

causing undesirable side-effects for the local residents is key to ensuring the long-term suc-

cess and positive perception of such programs. Additional understanding of housing policy

effects is necessary to inform more detailed design of car-lite policies as they are expanded

to larger areas beyond the pilot neighborhoods. These scenario analyses are expected to

enhance our understanding of how neighborhoods change as a result of non-auto accessi-

bility improvements and what housing policies may be successful in mitigating potentially

undesirable side-effects.
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In summary, this dissertation can contribute theoretically to the LUTI modeling lit-

erature by demonstrating different methodological extensions, practically towards car-lite

housing and mobility policy design by evaluating how car-lite pilot experiments and coordi-

nated housing supply can change neighborhoods, and conceptually towards how longer-term

urban decisions (such as residential relocation and vehicle holdings) may be impacted by the

availability of emerging mobilities. I also note here that the LUTI model I will be using has

been developed by a large team (including yours truly) over several years. Part of my work

has been in collaboration with my colleagues and will be described with ‘we’ henceforth,

while work that is primarily my own will be described with ‘I.’

1.4 Dissertation Outline

The remainder of this dissertation is structured as follows. In the next chapter, I provide

a summary of relevant literature surrounding pathways of neighborhood change (including

transit-induced gentrification) and the use of LUTI models for housing-mobility policy anal-

ysis. Chapter 3 describes the contextual setting of Singapore on which I focus my research

and the various data sources I used in this dissertation. I then describe the state-of-the-art

LUTI model I used for scenario analysis (SimMobility) along with my proposed method-

ological extensions in Chapter 4. I present results related to how neighborhoods change

in response to private vehicle restrictions, non-auto accessibility improvements, and coordi-

nated housing policies in Chapter 5. In Chapter 6, I discuss whether my findings are sensitive

to key simulation parameters and robust to a few core modeling assumptions, as well as the

extent to which my findings may be transferable to contexts other than Singapore. Finally,

in Chapter 7, I summarize my key findings, discuss the policy implications and limitations

of my findings, and outline a few promising avenues for future research efforts to consider.
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Chapter 2

Literature Review

In this chapter, I trace the origins of transit-oriented development (TOD) and discuss why,

where, and how it has been used as a policy instrument to create car-lite neighborhoods and

reduce auto-dependence. New transit infrastructure, which forms the backbone of TOD, can

change neighborhood composition by affecting housing prices and travel behavior, which can

induce or accelerate gentrification. I discuss the potential of two housing and land use-related

policies — upzoning reforms and parking supply regulations — to address gentrification and

sustainable mobility concerns in TOD neighborhoods. Next, I make the argument that

emerging mobilities, which can also improve non-auto accessibility similar to transit, may

induce similar patterns of neighborhood change. To understand these effects before un-

desirable consequences set in, ex-ante analysis is necessary. Although land use-transport

interaction (LUTI) models are quite suitable for such ex-ante analysis, state-of-the-art mod-

els are typically not well-equipped to explore the ripple effects of emerging mobilities. I

explore the history of land use-transportation interaction (LUTI) modeling and discuss how

these models have been used for policy analysis to guide transportation infrastructure invest-

ments and zoning reforms. Finally, I summarize by arguing that LUTI models (with better

attention to land use and mobility interactions for the modern era) can be useful for not

just car-lite policy exploration, but also for examining the near-term effects of coordinated

housing policies such as upzoning and parking supply.
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2.1 Transit-oriented development (TOD)

Peter Calthorpe is credited with coining the term “transit-oriented development” (TOD),

which he described as “a mixed-use community within an average 2,000-foot walking distance

of a transit stop and a core commercial area” (Calthorpe, 1993). He envisioned TODs to

be car-lite neighborhoods that include a mix of residential, retail, office, open space, and

public uses in a pedestrian-friendly environment that made it convenient for residents and

employees to travel by non-auto modes such as transit, biking, and walking. Although the

use of TOD as a promising tool to restrict urban sprawl and reduce auto-dependence has

gained wider support in recent years, the concept itself is not new. Knowles et al. (2020) and

Renne and Appleyard (2019) identify three distinct eras of TODs: (a) from the mid-19th

century to early 20th century, (b) Planned TOD in the mid-20th century, and (c) TOD for

urban regeneration and/or urban expansion since the late 20th century.

Ebenezer Howard’s Garden Cities concept heavily influenced the construction of Letch-

worth and Welwyn Garden Cities in the early 1900s. These two towns, about 30 minutes

north of London, contain many of the ideas for the development of a mixed-use, compact,

and walkable community centered upon a train station that modern TOD characterizes

(Howard, 1965). Additionally, streetcar corridors in several cities across America, Australia,

Canada, Europe, and the United Kingdom at the time had land uses, densities, and walk-

ability that would be the envy of modern TOD advocates. In the 1950s and 1960s, the

New Town (Planned TOD) Movement grew quite popular in Scandinavia and Japan, and

is considered as a prequel to modern TOD. Copenhagen was the pioneer of Planned TOD

with its 1947 Finger Plan of five corridors of planned urban development around stations on

electrified suburban railway lines. The 1990s marked a turning point in the vicious cycle of

freeway-driven sprawl and auto-dependence. Zoning and the building of roads at an enor-

mous scale facilitated ubiquitous, underpriced, and relatively congestion-free driving that

further undermined the utility of transit proximity.

Many cities started experimenting with TOD centered around urban rail and bus rapid

transit around this time. The goal was to use principles from transport engineering and

planning, land use planning, and urban design to make non-auto modes more convenient

and desirable, and maximizing the efficiency of mobility services by concentrating urban

development around transit stations (Ibraeva et al., 2020). However, TODs are highly
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context-dependent and can produce different outcomes in different locations. A TOD is

relatively easy to implement in a high-density neighborhood near the city center because

density and diversity are already high. Moreover, most residents may already be vehicle-free

due to good non-auto modal availability, high parking costs, and residential self-selection.

However, the picture is not as rosy in low-density suburbs. Most suburban residents are

auto-dependent, partly because of the built environment, but also because of an innate

preference for the physical characteristics of the suburbs.

Advocates argue that TOD can induce a decrease in auto-dependence as more residents

(both original residents and in-movers) start to use transit more frequently compared to

people with similar sociodemographics but living elsewhere. Research focusing on TODs in

Washington, DC and Baltimore found a significant (21-38%) decrease in driving, as measured

by vehicle miles traveled, among TOD residents (Nasri and Zhang, 2014). However, the

success of transit corridors in promoting sustainable regional growth hinges on location

decisions. Improved transit accessibility may be viewed as an amenity by both buyers and

sellers in the housing market, which can attract price premiums on transit-proximate housing

in TOD neighborhoods. However, transit proximity (or improved accessibility) alone may

not fully explain location preferences.

Most households who choose to relocate to a TOD do not cite access to transit as the

reason for their choice (Lund, 2006). A potential explanation for this is that accessibility

improvements can result in not only travel time savings, but also what Yan (2021) calls

‘destination utility gains’, i.e., the additional utility individuals derive from choosing desir-

able destinations. However, those who were motivated by transit access were found to be

more likely to use transit, indicating a strong link between location preferences and travel

behavior outcomes. The price premium commanded by station proximity can be signifi-

cantly higher when TOD neighborhoods have pedestrian-friendly environments, suggesting

greater preference for neighborhoods that encourage multimodality and pedestrian accessi-

bility (Duncan, 2011). Thus, improved transit accessibility alone may not ensure the success

of TOD. Reforming zoning and development regulations, integrating TOD with affordable

housing development, and broadening the focus of TOD beyond ‘just’ transit to other non-

auto modes are recommended to enhance the potential for success of TOD areas (Guthrie

and Fan, 2016).
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2.2 Transit infrastructure and neighborhood change

Investments in new transit infrastructure have the potential to improve non-auto accessibil-

ity and stimulate new housing development in the neighborhoods surrounding these invest-

ments. The effects of new infrastructure can transform the urban socioeconomic landscape

by inducing changes in neighborhoods. Neighborhood socioeconomic change is a result of

shifts in residential sorting of residents reacting to the introduction of a new amenity (e.g.,

a transit station) which may increase the demand for living in these neighborhoods. Local

residents, especially people of color, immigrants, frequent transit riders, and vehicle-free in-

dividuals, often perceive the accessibility improvements quite positively (Fan and Guthrie,

2012). However, this increased demand may place an upward pressure on nearby housing

values and rents, thus affecting the socioeconomic composition of those willing and able to

afford these price premiums, which can, in turn, spur or accelerate gentrification (Delmelle,

2021). Increased land values may also cause the disproportionate exit of lower-income res-

idents who are no longer able to afford the elevated rents or property taxes. The rising

real estate valuations can be partially explained by improvements in transit accessibility.

However, the amenity-based elements of TOD are also found to play a significant role in

urban land markets (Bartholomew and Ewing, 2011).

Over the last two decades, the growing popularity of TOD as a strategy to reduce

auto-dependence and stimulate sustainable urban growth has been criticized by community

activists who highlight the concern that TOD could induce gentrification and dispropor-

tionate displacement of lower-income communities. Additionally, new housing locations are

likely to increase the housing cost burdens of displaced households (Baker et al., 2021). De-

spite these concerns, the evidence supporting this ‘transit-induced gentrification’ hypothesis

is mixed.

A review of empirical studies by Rayle (2015) finds little evidence to support that transit-

induced gentrification actually causes displacement. Using eviction data, Delmelle et al.

(2021) tested the transit-induced displacement hypothesis in four American cities and found

evidence of a spike in eviction rates following the opening of a new transit line in only

one of the four cities. Despite low-income individuals being more likely to move, Delmelle

and Nilsson (2020) do not find significant evidence to suggest that they are more likely

to move out of transit neighborhoods. Gentrification seems to be more closely associated
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with existing local dynamics, built environment attributes, and accompanying policies than

transit access itself (Padeiro et al., 2019).

On the other hand, studies focusing on light rail transit (LRT) and bus rapid transit

(BRT) have consistently reported evidence of transit-induced gentrification. Using both

demographic and economic indicators, Chava and Renne (2022) find signs of gentrification

in American cities that expanded LRT systems from 1990 to 2010. They also report a positive

correlation of their gentrification index with walkability, density, and diversity variables. The

premiums for rail transit accessibility also largely depend on different development phases

and can be heavily discounted by the existence of Park-and-Ride facilities (Zhong and Li,

2016). The effect of BRT on property values seems to be more heterogeneous. Multi-family

properties nearby BRTs with dedicated lanes were found to experience the most appreciation

(Acton et al., 2022). However, BRT-lite systems without dedicated lanes were associated

with property appreciation only in relatively dense and congested metropolitan areas with

developed transit networks and high ridership.

While TODs can be more expensive places to purchase and rent housing, the lower

transportation costs may offset the increased housing costs (Renne et al., 2016). TOD

households save money on transportation costs mainly because they own fewer cars than

non-TOD households. About two-thirds of the savings can be attributed to built envi-

ronment characteristics and one-third to improved transit access, suggesting yet again the

importance of integrating improved non-auto accessibility with supportive land use planning

and neighborhood design (Dong, 2021). Promoting compact land use strategies can have a

positive effect on reducing auto use in and of itself, which can be further accentuated by

improving non-auto accessibility (Yin et al., 2020). Living in a TOD neighborhood has also

been found to increase the use of non-auto modes such as transit and walking, even after

accounting for residential self-selection (Nasri et al., 2020; Park et al., 2018).

Despite the reduction in auto-dependence observed in TOD neighborhoods, we might

wonder whether the spillover effects cause people to drive more by displacing lower-income

households from transit-rich neighborhoods. The higher-income in-movers into TOD neigh-

borhoods are more likely to remain auto-dependent and less likely to transition to vehicle-free

lifestyles. Because they do not adjust their preferences according to their surrounding land

use patterns and continue their predisposed travel behavior, Schwanen and Mokhtarian

(2004) call such individuals ‘dissonants’ and describe their behavior as ‘residential disso-
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nance.’ However, this may not be universal as some literature from California do not seem

to support this claim. Higher-income households are found to reduce vehicle miles trav-

eled (VMT) more when living in TODs compared to lower-income households, especially in

densely populated neighborhoods (Chatman et al., 2019; Boarnet et al., 2020). This sug-

gests that the likely net effect of transit-induced gentrification could be a regional reduction

in VMT as long as population and job density are increasing. However, in the absence of

densification, VMT will likely increase.

Channeling urban growth in TOD neighborhoods through new housing developments can

be an effective strategy to increase density. However, new housing may attract more affluent

households who drive more. Boarnet et al. (2020) caution against building transit-proximate

housing targeting solely higher-income households and instead advocate for mixed-income

housing developments in TODs. Chatman (2013) suggests that transit access might have

smaller effects on auto ownership and use than housing tenure and size, parking availability,

and the neighborhood and regional built environments. With this possibility in mind, let us

examine two types of policies that have been used to constrain the pattern of development

within neighborhoods.

2.2.1 Upzoning and the housing market

Zoning reforms that allow higher density (e.g., by reducing or eliminating detached single-

family housing zoning restrictions) are known as ‘upzoning’ policies. Single-family residential

zoning zoning has been criticized for exacerbating inequality by making it harder for house-

holds to access high-opportunity areas and undermining efficiency by contributing to housing

shortages in expensive regions (Manville et al., 2020). Upzoning could be a key policy instru-

ment to stimulate densification and also address the housing affordability crisis. However,

many cities fail to provide large-scale regulatory responses even during regional housing

shortages, highlighting the contentious nature of reforming single-family zoning (Gabbe,

2019b). Upzoning advocates (often referred to as ‘Yes-In-My-Backyard’ or YIMBYs) have

argued that allowing for denser development can help to lift artificial restrictions on housing

supply and lower prices in the long run. However, groups calling for added tenant protection

and affordable housing preservation have countered by claiming that upzoning is likely to

accelerate gentrification and displacement pressures.

Empirical evidence confirms that these concerns are legitimate. Upzoning activity in
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New York City is found to be positively and significantly associated with accelerating gen-

trification in the short-term (Davis, 2021). In response to the Minneapolis city council ap-

proving the city-wide elimination of single-family zoning restrictions, affected housing units

experienced an increase in price, which can be attributed to the new development option it

offered property owners (Kuhlmann, 2021). The price increases were found to be higher in

lower-income neighborhoods and for smaller properties. In a study of recent Chicago upzon-

ings that increased allowed densities and reduced parking requirements, Freemark (2020)

found that the short-term, local-level impacts of upzoning are higher property prices but no

additional new housing construction.

Blanket changes in zoning, without other supportive policies, are unlikely to improve af-

fordability for lower-income households and may increase gentrification within metropolitan

areas (Rodríguez-Pose and Storper, 2020). We need better alignment of zoning, taxes, and

subsidies. Supportive policies can include improved non-auto accessibility, reduced parking

requirements, and incentives for affordable housing, especially near transit (Gabbe, 2019a).

Relaxing zoning restrictions in (both existing and future) transit-proximate neighborhoods

increases the probability of parcel-level densification, and the resultant density increase can

induce further zoning or plan changes in nearby areas (Kim and Li, 2021). Affordability

restrictions targeted to new housing in TODs can be effective tools for promoting housing

affordability and improving low-income households’ access to transit while simultaneously

reducing the extent of transit-induced gentrification (Dawkins and Moeckel, 2016). Although

developers may be concerned that placing affordable housing close to transit can increase

development costs, the literature does not find any effect of rail proximity on development

costs (Palm and Niemeier, 2018). While upzoning in TOD areas may not be a likely so-

lution to addressing the concerns around transit-induced gentrification by itself, upzoning

combined with targeted affordability restrictions is a useful housing policy to explore further.

2.2.2 Parking supply and travel behavior

Parking supply remains one of the most neglected land use policies in nudging travel be-

havior, despite significant evidence linking parking with auto ownership and use. Parking

supply can significantly determine household auto ownership decisions, even after controlling

for the endogeneity between the two (Christiansen et al., 2017; Guo, 2013a). Its influence is

found to outperform household income and demographic characteristics, the often-assumed
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dominant determinants of auto ownership (Guo, 2013b). The availability of parking and

bundled parking regulation increases auto use, even in dense cities (Shoup, 2021). Acces-

sory residential off-street parking (e.g., in a garage or driveway) is found to have a stronger

effect on auto commuting than parking in commercial centralized lots (Weinberger et al.,

2009). Parking costs are usually much higher in the city center compared to the suburbs.

Ostermeijer et al. (2019) estimates that this disparity in parking costs explains around 30

percent of the difference in average auto ownership rates between these areas.

Limiting access to parking at home and at work can be surprisingly effective in reducing

auto use. Shoup (1995) estimates how the option to cash out employer-paid parking can

reduce commuter parking demand, and recommends a corresponding reduction in minimum

parking requirements. Currans et al. (2022) find that constrained on-site residential parking

can account for a decrease of 10-23 percentage points in VMT. Using the case of affordable

housing lotteries in San Francisco as a natural experiment, Millard-Ball et al. (2022) find

that auto ownership and use are significantly affected by essentially random variation in

on-site parking availability. The policy that lies at the heart of this issue is known as

‘minimum parking requirements.’ Parking requirements are the largest predictor of actual

parking production (Gabbe et al., 2020). By and large, developers tend to build only the bare

minimum of parking required by zoning, suggesting that the minimum parking requirements

are binding for developers, as argued by critics, and that developers do not simply build

parking out of perceived marked need (McDonnell et al., 2011; Cutter and Franco, 2012).

Moreover, residential minimum parking requirements are associated with lower housing and

population densities and higher vehicle densities (Manville et al., 2013), thus providing a

deterrent to the densification that is needed for TOD success. However, TOD advocates can

take heart from the observation that proximity to high quality public transport is associated

with lower demand for car parking (De Gruyter et al., 2020).

While reducing (or even eliminating) parking minimums seems like an effective policy

instrument to reduce auto-dependence, Antonson et al. (2017) argue that the effects within a

single neighborhood may be paradoxically small because of access to parking in neighboring

areas. Paid curbside parking to deter non-resident auto trips can instead increase resident

auto ownership, especially when resident parking permits are free or inexpensive (Albalate

and Gragera, 2020). Therefore, a holistic approach to parking policy is necessary. Intro-

ducing more restrictive parking requirements for new developments in parallel with other
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measures such as raising parking charges and reducing the number of public parking spaces

will be key for nudging residents to switch to vehicle-free lifestyles.

2.3 Emerging mobilities and neighborhood change

One of the central arguments in this dissertation is that emerging mobilities (such as

mobility-on-demand and micromobility) can also improve non-auto accessibility, similar to

public transit. Therefore, it might be possible to observe patterns of neighborhood change

similar to transit-oriented development when emerging mobilities are used to provide acces-

sibility benefits (see Figure 1-1). Although emerging mobilities have attracted the attention

of researchers and policy-makers alike, the lion’s share of attention has been given to the

effect of emerging mobilities on short-term activity-travel patterns (e.g., see Basu et al.

(2018); Zhu et al. (2018); Hyland and Mahmassani (2020); Hörl et al. (2020)). Relatively

few studies have focused on changes in land use and longer-term urban choice behavior,

such as choices of residential and job locations (Soteropoulos et al., 2019). Knowles et al.

(2020) find in their systematic review that the volume of TOD research is immense but the

exploration of TOD with emerging mobilities is still nascent.

The effects of station-based bikesharing on travel behavior and the housing market have

received some attention, as bikeshare stations also create a spatially varying accessibility gra-

dient similar to transit stations. Using surveys of bikeshare riders, researchers have reported

varying degrees of auto-substitution and associated bikeshare programs with reductions in

auto use (Fishman et al., 2014; Shaheen et al., 2013). Living in closer proximity to bikeshare

stations predicted increases in biking over time for respondents living in cities with newly

implemented bikeshare programs (Hosford et al., 2019). The introduction of new bikeshare

programs was also found to increase total active travel time, despite the possibility of some

walking trips being substituted by bikeshare trips (Fishman et al., 2015).

In contrast to these fairly straightforward effects, bikeshare has a complex relationship

with public transit that can be both complementary and competitive. Urban core residents

are more likely to exhibit substitution behavior, while urban periphery residents were found

to use bike-share more often as a first-/last-mile connection to mass transit (Martin and

Shaheen, 2014). More recent research using longitudinal data and causal inference have

confirmed that new bikeshare stations reduce auto ownership, use, and emissions in their
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vicinity (Basu and Ferreira, 2021). These effects are found to grow stronger in locations

where bikeshare can be used to connect to rail transit.

Several studies have empirically confirmed the positive effect of bikesharing on real estate

prices. BIXI, the bikeshare system in Montreal, has been found to increase the property

value of multi-family housing units (El-Geneidy et al., 2016). Evidence from Pittsburgh,

Pennsylvania suggests that housing prices for rental units can also increase, in addition to

sale prices (Pelechrinis et al., 2017). Apart from these first-order effects, bikeshare systems

can also impact the relationship between real estate prices and distance to transit. However,

these results are not always uniform, as illustrated in the case of Nice Ride in Minneapolis,

Minnesota. Certain neighborhoods have been shown to witness a decrease in home values

after the introduction of a bikeshare station, which may be due to lower-valued homes seeing

greater increases in price or a greater share of the value being added to residences of higher-

income households (Martin, 2017). There seems to be strong evidence that bikesharing

provides a potential opportunity for value capture, which requires a deeper understanding

of who benefits most from these infrastructure investments.

Automated mobility has also received immense attention because of its purported capa-

bility to improve accessibility. Meyer et al. (2017) goes so far as to call this a quantum leap in

accessibility. Researchers have attempted to understand the effect of automated mobility on

auto ownership using agent-based models and activity-based models. The general approach

is to vary the fleet size of automated vehicles (AVs) while trying to match total travel de-

mand and trip generation rates. Evaluation metrics of system performance include VMT as

a proxy for emissions, and total travel time as a proxy for congestion. Some studies find that

auto ownership would not be attractive in a future dominated by 24/7 mobility-on-demand,

as current travel patterns could be maintained with a significant reduction in the number

of private vehicles (Hörl et al., 2016; Zhang et al., 2018). These results seem to suggest

that the paradigm of auto ownership is under threat. However, a critical caveat common

to these studies might be the key assumption of total replacement of private vehicles by

AVs. A recent review of similar empirical studies reported that there is a general consensus

among academics and practitioners that exogenous assumptions (about time or cost savings

in particular) and the complete replacement assumption (which is rather unrealistic) limit

the use of such studies for policy-making (Soteropoulos et al., 2019).

Research on the impacts of automated mobility on location choices has been relatively
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limited. Studies have suggested that automated mobility would result in an increase in

accessibility, along with an increase in population in well-connected outer suburbs and rural

regions (Soteropoulos et al., 2019). However, it is worth bearing in mind that these findings of

urban sprawl are associated with strong assumptions that automated mobility would reduce

travel times, increase roadway capacity, and reduce the travel time penalty (since the rider

could engage in other activities besides driving). Assuming a reduction in value of time by

50% for private AVs, Thakur et al. (2016) modeled travel behavior and residential location

choices for Melbourne in 2046. Their findings indicate slightly positive out-migration from

the inner city to the suburbs. However, their results are inconclusive due to mixed effects

when shared AVs are considered. Zhang and Guhathakurta (2018) used an agent-based

simulation approach to model changes in residential location choice in a scenario where

shared AVs are considered a popular travel mode in the Atlanta Metropolitan Area. Older

people were found to move closer to the inner-city core while younger people moved out

to the suburbs. In contrast to these results related to private AVs, shared AVs have been

posited to have the potential to curb urban sprawl (Meyer et al., 2017).

The vast majority of these studies have been carried out in a standalone manner, by

focusing on only one dimension such as activity-travel patterns or housing market effects.

Rarely have studies considered the interactions between land use and mobility, and how

they might also be affected by emerging mobilities. Doing so will require more complex

modeling than what we have seen thus far. Land use-transport interaction (LUTI) models

offer a framework to conduct such modeling efforts but most state-of-the-art models lack the

capabilities to explore how car-lite policies can affect housing-mobility choices and change

neighborhoods in adequate detail. In the next section, I will provide a brief overview of

LUTI modeling and discuss a few key elements of interest within LUTI models that are

vital for car-lite policy exploration.

2.4 A brief overview of LUTI modeling

Transportation networks and land use patterns are known to mutually influence each other,

and drive spatial socio-economic processes (such as development and migration) in cities.

Accessibility, which is the outcome of interactions between transportation and land use,

is a crucial element in shaping development patterns and residential relocation (Hansen,
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1959; Geurs and Van Wee, 2004; Handy, 2020). Land use-transport interaction (LUTI)

models have been developed for many decades to help understand the implications of these

interactions.

As automobile use rose drastically in the 1910s in the US, accommodating traffic became

the primary goal of administrators and engineers of the time. Rather than disincentivize

auto ownership and use by changing the built environment, policy-makers favored widening

lanes and adding parking. In 1956, the US Federal Highway Act provided a major im-

petus towards further auto-oriented infrastructure and planning. Following this, the dice

was cast for communities to get stuck in a spiral of auto-dependence. The Highway Trust

Fund reinvested gasoline taxes back into car-based infrastructure, which led to a vicious

cycle of congestion and road expansion. Understanding auto congestion motivated the de-

velopment of travel demand models for better highway planning, leading to the use of the

four-step travel demand model in Detroit and Chicago in the 1950s. This was one of the

first travel demand models that sought to link land use and behavior to inform transport

planning. However, its simplistic structure prevented the inclusion of any feedback from the

transportation system to land use.

The convenience and low cost of auto travel also contributed to suburbanization, as

households began to evaluate the tradeoff between commute time and housing costs in favor

of living far from work in more affordable and spacious housing in the suburbs. That led to

issues such as urban sprawl, depletion of green spaces, and congestion in the downtown of

urban cores. The pressing issue(s) of the day, combined with the computational capabilities

and costs of the time, have impacted the approach and scope of LUTI modeling. Since

the largely mechanistic operationalization of four-step travel demand forecasting models,

technological and theoretical advances have aided significant improvements in LUTI mod-

els. In general, there has been a movement towards more disaggregate approaches, higher

resolution data, and greater technical sophistication. In the remainder of this section, I will

highlight the key elements of LUTI models that are relevant to my approach to examine

near-term dynamics of accessibility changes and housing market interactions.

Based on Hansen’s seminal work, the first generation of land use-transport interaction

(LUTI) models came about in the late 1960s, with an aim to better inform transport mod-

els that were designed for exploring ways to reduce congestion. The primary focus was

to understand the impact of suburbanization on commuting patterns and city congestion.
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Gravity-based measures were used to quantify the trade-off between proximity to work and

more affordable and spacious housing in the suburbs. Examples of first-generation LUTI

models include the Metropolis model (Lowry, 1964), and ITLUP (Putman, 1974). Unfortu-

nately, these models left a lot to be desired, with their mechanicalness, theoretical shortcom-

ings, data-hungriness, and complexity (among other limitations) being harshly criticized in

a review of large-scale models by Lee (1973).

The emergence of new theoretical frameworks in the fields of econometrics and behav-

ioral economics (such as the random utility theory) in the mid-1970s enabled modeling

disaggregate behavior by focusing on the prediction of choices among multiple discrete al-

ternatives. Applications such as the choice of travel mode (Lerman, 1976) and residential

location (McFadden, 1978) provided the impetus for the second generation of LUTI models.

The field branched out into two different directions at this time, based on the method in

which spatial processes were represented. The first approach was to use regional economic

models that focused on a framework to represent trade flows between different economic sec-

tors along with input/output accounting and economic equilibrium arguments about stable

spatial patterns of land use, land price, density, transport costs, and wage differentials that

could co-exist within an economically interdependent region. Examples include TRANUS

(de la Barra, 1989), MEPLAN (Echenique et al., 1990), and PECAS (Hunt and Abraham,

2005). Contrastingly, the other approach sought to improve the spatial detail and method

of representing housing transactions and land markets, as can be seen in MUSSA (Martinez,

1996) and DELTA (Simmonds, 1999).

The third generation of LUTI models was driven by transformative technological ad-

vances with significantly greater computational resources and power coupled with more effi-

cient data storage. The improved computational power was put to use for higher-resolution

representation of space, time, and agents (i.e., individuals, households, and firms). The

improvement in spatial detail was operationalized through either grid-based subdivision or

entity-based subdivision (where blocks/buildings/people were the unit of analysis instead of

regular grids of land). Cellular automata models (where spatial units themselves are agents)

of temporal urban change and spatial evolution, such as SLEUTH (Clarke et al., 1997), came

into prominence at this point. At the same time but in a different camp, modelers started

representing urban regions at a disaggregate level, wherein individuals, households, firms,

and developers were represented as agents instead of land grids.
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The early 2000s witnessed the development of four such models — UrbanSim (Waddell

et al., 2003), IRPUD (Wegener, 2004), ILUTE (Salvini and Miller, 2005), and ILUMASS

(Strauch et al., 2005) — that successfully implemented the agent-based microsimulation

approach. Subsequent agent-based microsimulation efforts — SimMobility (Adnan et al.,

2016) and SILO (Moeckel, 2017) — improved on the spatiotemporal granularity of repre-

senting the land use and mobility systems and the resolution with which agents were being

characterized. Many of these models remain active in pursuing improvements to modeling

structure and agent representation to the present day. Interested readers may refer to Iacono

et al. (2008) and Engelberg et al. (2021) for a more detailed comparative review of these

LUTI models. While cellular automata models have also continued to evolve for exploring

changes in weather, desertification/deforestation, and urbanization, their focus on regular

grids is problematic within metro areas where the decision-making agents (such as individ-

uals, households, developers, and firms) are focused on buildings, infrastructure, and land

use that does not match well with regular grids.

Based on the model’s level of complexity, different types of accessibility measures have

been used in LUTI modeling to connect the land use and transport components. The initial

spatial interaction models used simple gravity-based measures to translate transportation

into land use outcomes. Lowry’s Metropolis model, which was among the first comprehensive

models of regional land use change, was never actually integrated with a travel demand model

and used Euclidian distances between zones to measure the inconvenience of travel (or travel

impedance). Other models in the first generation used estimated network travel times, but

still calculated gravity measures, which remained the dominant approach for linking land

use simulations with transport models throughout the 1970s and 1980s (Wilson, 1998). The

next generation of models, such as MEPLAN and IRPUD, started to include travel time,

cost, and parking into their calculations of travel impedance. These impedance measures

were used to inversely weight travel forecasts, such that destinations with greater impedance

would attract fewer trips. Given that the pressing issue of the time was auto congestion,

most of these models focused on auto travel times, and, more specifically, auto commute

times. Transit was gradually incorporated into these models with auto and transit commute

times being used as impedances to compute their mode shares.

Around the 1990s, LUTI models had started to become comparatively more disaggregate,

market-based, and integrated. Although MUSSA (a market-based model) did not integrate
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fully with the transportation component, both TRANUS and MEPLAN are market-based

integrated models. None of these models, however, engaged in microsimulation and mod-

eled space at the higher resolution of zones. IRPUD introduced a stochastic microsimulation

for the housing market and used an income group-specific, utility-based measure from the

mode choice model. UrbanSim, which is also a microsimulation of the housing market, can

be integrated with external transportation models and thus accepts exogenous measures

of accessibility. By this time, many modelers had moved from the four-step travel demand

model to trip-based travel demand modeling. Aided by econometric modeling advancements

in the late 1970s, it was possible to model travel demand at the trip level. Each trip taken

by an individual with a particular mode to a specific destination could be included in these

frameworks, which could then provide a measure of the utility gained by the individual

from conducting the trip(s). With further advancements in the econometric integration of

location and travel choices, some modelers have begun to transition from trip-based utili-

ties to activity-based utilities, which are accessibility measures provided by activity-based

travel demand models. These models build on their trip-based precursors by considering

the activity as the unit of analysis, rather than the trip, which allows for the consideration

of trip-chaining and multi-modal travel. SimMobility is a fully integrated LUTI model that

uses utilities obtained from the activity-based travel demand framework to model longer-

term choices such as residential location, job location, and vehicle availability.

As cities have expanded over time, the focus has shifted from urban development to

metropolitan development. Suburban expansion and tradeoffs between commute distance

and housing costs still remain important, but polycentricity has brought additional layers

of complexity to how we model land use and transport interactions. Additionally, mobility

choices have expanded significantly over the last decade. Instead of just ‘planes, trains, and

automobiles’ (and biking and walking), multi-modal personalized options are available at

affordable cost with modern information and communication technologies enabling efficient

transfers and on-demand service. These details of transport modeling as well as the com-

plexity of tradeoffs necessitate LUTI modelers to respond in a timely manner, if the models

are to be used for relevant policy analysis. For example, the availability of emerging mobili-

ties make it important for LUTI modelers to address their near-term effects at disaggregate

scales.

Microsimulation and activity-based modeling offer promising opportunities for tighter
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linkages between LUTI model components. By using activity-based travel demand models,

we can calculate tour-based accessibilities, which account for the possibility of trip-chaining

and represent daily activity schedules of individuals. Moreover, buyer and seller behavior

in housing markets can be modeled in detail with microsimulation. Incorporating these

disaggregate behaviors is necessary if we want to understand how housing markets react to

car-lite policies and/or emerging mobilities. Such richness in resolution, as operationalized

in SimMobility, can enable us to simulate policy scenarios, often targeted to specific groups

or neighborhoods, and carry out detailed policy analyses within the housing and mobility

markets. An overview of the state-of-the-art LUTI models discussed above is provided in

Table 2.1.

While agent-based microsimulation models allow for tracking the dynamics of spatiotem-

poral change, many of the critiques put forth by Lee (1973) still hold to this day despite the

improved computational efficiency and significantly larger datasets. These challenges have

posed as barriers to the widespread dissemination of agent-based microsimulation models

for land use-transport analysis. In contrast, computable general equilibrium (CGE) models

have witnessed widespread popularity as a feasible and easily operationalizable alternative

(Burfisher, 2021; Dixon and Jorgenson, 2012; Shahraki and Bachmann, 2018). Using mi-

croeconomic first principles, such models specify the relationships among key factors (e.g.,

wages, firm productivity, housing and transportation expenditures, and land prices) that

must hold for the land use-transport systems to be in equilibrium. These models have been

heavily used in transport appraisal applications, among others related to urban, regional,

and environmental economics (Bröcker, 2004; Robson et al., 2018). Despite the numerous

benefits offered by CGE models, they are inadequate for tracking the near-term dynamics

of spatiotemporal change since they are focused on examining relationships that must exist

for each alternative scenario under long-term equilibrium conditions (Tavasszy et al., 2011).

2.5 LUTI models for policy analysis

Despite the existence of a large number of LUTI modeling platforms, the academic litera-

ture on the application of LUTI models for policy analysis is sparse. The literature seems

to be comparatively richer with papers on methodological advancements of LUTI models.

Engelberg et al. (2021) opine that interest in pushing the state-of-the-art has resulted in the
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state-of-the-practice being ignored. They report failing to find a comprehensive review of

LUTI models currently in use by transportation and planning agencies. In a recent Trans-

port Reviews paper, Thomas et al. (2018) reported that they could find only 21 applied

scientific papers, all of which were published after their search period threshold of 1990.

This threshold closely corresponds to the ISGLUTI report by Webster and Dasgupta (1991)

that compared the LUTI models of the time with an eye towards spatial transferability and

replicability.

This is not to say that LUTI models are rarely used for policy analysis. On the contrary,

a number of LUTI models have been used to support consulting reports of policy analyses,

but these rarely appear in the academic literature. In general, the land use components of

LUTI models have not received as much attention as formal planning tools, nor have they

been as institutionalized as travel demand models (Engelberg et al., 2021). Additionally, the

policy analyses that most LUTI modelers tend to focus on have emphasized long horizons

(e.g., 10-30 years) as planning periods, which seems questionable for emerging mobilities

that can be quite disruptive within a few years. Very few LUTI models have successfully

migrated from development to application. Although few and far between, I will briefly

summarize the published applications of three state-of-the-art agent-based LUTI models —

UrbanSim, ILUTE, and ILUMASS.

UrbanSim, which was developed in the early 2000s primarily by Paul Waddell while at

the University of Washington, has been relatively widely used for a variety of applications

across multiple contexts due to the software being available open-source. However, it cannot

be viewed as a ‘true’ LUTI model as it includes only a microsimulation of the housing market.

It enjoys widespread use, especially within the US, because it was the first disaggregate land

use model with econometric behavioral components that was open-source. Initial UrbanSim

applications typically used gravity-based potential accessibility calculated from the transport

model. More recent applications have migrated to using utility-based measures. While the

flexibility to couple with any existing travel demand model is alluring, it often results in

UrbanSim utilizing sparsely informative accessibility measures.

A case study in Austin, Texas evaluated the impact of scenarios such as urban growth

and increased transportation cost sensitivity on changes in land use, travel, and energy over

a 20-year planning period (Kakaraparthi and Kockelman, 2011). UrbanSim has also been

used to evaluate the potential impacts of major transportation infrastructure projects, such
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as the Light Rail Transit system in Phoenix, Arizona (Joshi et al., 2006) and the BeltLine

in Atlanta, Georgia (Wang and Yuan, 2018). A case study of residential location choices

in Suwon, Korea by Jin and Lee (2018) stands as an example of the use of UrbanSim even

outside the United States. While Kakaraparthi and Kockelman (2011) and Wang and Yuan

(2018) used gravity-based accessibility measures using network travel times, Joshi et al.

(2006) and Jin and Lee (2018) used utility-based measures derived from travel mode choice

models considering auto and public transit as options. These applications highlight that we

have yet to embrace the use of disaggregate, activity-based accessibility measures despite

widespread recognition of their necessity and value in modeling the complexity of land use

and mobility interactions, especially when it comes to incorporating emerging mobilities.

On the other hand, ILUTE, which was developed in the late 2000s by Eric Miller at

the University of Toronto in Canada, does not seem to have published case studies of policy

applications. Perhaps some of the reasons behind this, as reported from a survey of planners

and policy-makers in Canada by Miller himself, are (a) a general disbelief in the usefulness

of models for decision-making, and (b) lack of resources for large-scale modelling exercises

(Hatzopoulou and Miller, 2009). It is worth mentioning, however, that there are several

published papers on methodological advancements of component models within the ILUTE

framework, which I do not list here. Although not a direct policy application, a policy-

relevant study by Fatmi and Habib (2015) did test the spatial transferability of the residential

mobility model in ILUTE from the Greater Toronto and Hamilton Area to Halifax, Nova

Scotia. They reported that directly transferring micromodels from one spatial context to

another is problematic due to different choice behaviors across contexts.

Developed in the early 2000s in Germany, ILUMASS arguably has the most well-developed

models of firm and job location choices. It is still under active development under the

purview of Rolf Moeckel at TU Munich. Again, I observe that there are more papers on

methodological advancements and model components than on policy applications. A recent

policy application of ILUMASS looked at the impact of zoning, transport, and tax-related

policies on reducing the urban sprawl of employment in Dortmund, Germany (Moeckel,

2009). Moeckel and his team have also been recently involved in developing SILO, which,

like UrbanSim, only models the land use component. They combined SILO with MATSim,

a popular open-source activity-based transport modeling framework, to understand the im-

pact of simulation-based traffic noise on rent prices by introducing a feedback loop between
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transport-related noise emissions and land use (Kuehnel et al., 2021). Similar to some of the

UrbanSim applications discussed earlier, they too used coarse accessibility measures derived

from a four-step travel demand model.

In summary, I find limited peer-reviewed and published evidence of LUTI models being

used for policy analysis, although they have been used as planning support systems for

consulting projects with local governments and planning agencies. Despite moving to more

theoretically complex frameworks, the use of LUTI models in practice is limited to simpler

frameworks. UrbanSim, in particular, is widely being used by many metropolitan planning

agencies in the US because of the flexibility with which it can be coupled with existing

transport models. However, in addition to a general dearth of case studies, there is also

the issue of using appropriate accessibility measures. While accessibility measures that

represent individual activity patterns and preferences better represent behavioral realism,

LUTI models using simpler accessibility measures (such as gravity-based ones) have seen

wider application in practice for policy analysis. Additionally, none of the policy applications

of LUTI models have looked at the impacts of emerging mobilities, which I discuss later in

this chapter.

2.6 Exploring emerging mobility effects using LUTI models

Survey research and longitudinal data are suitable for exploring the ex-post effects of emerg-

ing mobility on travel behavior. However, if we are to detect undesired side-effects and test

the effectiveness of potential mitigation measures, then ex-ante analysis will be required.

This is where agent-based models can be valuable tools. However, the studies examining

automated mobility effects using standalone agent-based models suffer from limitations such

as exogenous and often implausible assumptions. Moreover, these standalone models fail to

appropriately account for the link between land use and mobility. Thus, LUTI models may

be the most pertinent approach to examining how emerging mobilities can change neighbor-

hoods in an ex-ante manner.

However, most state-of-the-art LUTI models have not been designed for the shared mo-

bility era. In their recent review of LUTI models with an eye towards their suitability for an

automated future, Hawkins and Nurul Habib (2019) argue that operational LUTI models

were largely developed during a period of relative uniformity in mobility choice sets, and
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are unenthusiastic about the usefulness of such models in the shared mobility era. More

general concerns have also been raised about the inability of LUTI frameworks to predict

phenomena such as the ‘peak car’ hypothesis (which claims that car ownership and use

have plateaued in some industrial economies) or appropriately model the impact of informa-

tion and communication technologies (ICTs) on activity-travel patterns (Van Wee, 2015).

Two major challenges that plague LUTI models are the integration of activity-based travel

demand models and appropriate measures of accessibility (Acheampong and Silva, 2015).

Additionally, a recent review by Lopes et al. (2019) highlights how currently operational

LUTI models do not adequately recognize all mutual interactions between activities, land

use, and transport.

A combined team from MIT and the Singapore-MIT Alliance for Research and Tech-

nology (SMART) has been pursuing the development of a state-of-the-art agent-based mi-

crosimulation LUTI model (SimMobility - Simulation of Future Urban Mobility) built on

underlying activity-based discrete choice models of travel behavior. Considering land-use,

transportation and communication interactions, SimMobility can be used for a variety of

applications, including implementation of intelligent transportation systems, estimating ve-

hicular emissions, evaluation of alternative future scenarios, and generation of innovative

policy and investment strategies. This project was initiated in 2010, and is still under active

development, which gave the team the opportunity to address some of the aforementioned

concerns from the LUTI modeling community.

To the best of our knowledge, SimMobility is the only state-of-the-art agent-based LUTI

microsimulation model that has been used to examine the effects of automated-mobility-on-

demand (AMoD) on travel behavior and residential relocation. Since AMoD is yet to be

fully realized, the only alternative to making assumptions about changes in travel behavior

is to conduct a stated preference (SP) survey. Oh et al. (2020) is the only study that used

‘real-world’ SP data to modify travel behavior within a LUTI model framework. They report

that the short- and medium-term effects of unregulated AMoD will likely be an increase in

network congestion and VMT. Zhou et al. (2021) supplement these findings by suggesting

that AMoD can enhance overall accessibility as long as they are introduced as an additional

option. If private autos are prohibited to make way for AMoD, then accessibility inequity

may be alleviated due to the benefits provided by AMoD being spread non-uniformly across

socioeconomic groups.

47



2.7 Summary

Planning practitioners have turned to transit-oriented development (TOD) in recent times

as a car-lite strategy to curb the rise in auto-dependence and urban sprawl. However, com-

munity groups have opposed TOD efforts by raising legitimate concerns related to transit-

induced gentrification. Not only does transit-induced gentrification deny accessibility ben-

efits to lower-income and transit-dependent groups, higher-income in-movers (who are also

more likely to own and use autos) may increase neighborhood-wide auto-dependence. An

increase in densification through upzoning regulations has been suggested as a mitigation

measure. However, upzoning itself can raise property values without stimulating new hous-

ing construction.

Another policy instrument to enhance TOD areas could be the regulation of parking

supply. As parking availability is closely tied with auto ownership and use, keeping parking

supply in check could be key for reducing auto-dependence. There is consensus in the litera-

ture that upzoning and parking restrictions may have limited value on their own. In tandem

with supportive policies that seek to improve non-auto accessibility and incentivize the pro-

vision of affordable housing, these two policies may be much more effective in mitigating the

gentrification side-effects of TOD.

But does TOD need the T? I contend that there are alternative mechanisms to improve

accessibility considerably faster than a decade-long subway construction (or development)

project, such as emerging mobilities, for example. The exploration of how emerging mo-

bilities can change neighborhoods has been limited by retrospective survey data and often

implausible assumptions of behavioral changes. I consider emerging mobilities as one partic-

ular mechanism of improving non-auto accessibility and instead of focusing only on emerging

mobilities, I ask how neighborhoods might change in response to broader non-auto acces-

sibility improvements. Drawing on the transit-induced gentrification literature, I explore

whether we observe accessibility-induced gentrification when (more broadly defined) non-

auto accessibility improvements are operationalized.

To address these questions with rich, disaggregate spatiotemporal resolution, I use a

state-of-the-art land use-transport interaction (LUTI) model. LUTI models have been used

by both researchers and planning practitioners to understand how changes in mobility in-

frastructure and land use can affect urban (and metropolitan) growth. LUTI models are
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well-suited for policy explorations using scenario analysis to examine both long-term and

near-term effects. However, thus far, LUTI models have only focused on traditional trans-

portation modes such as private autos, public transit, and (to a comparatively limited extent)

active modes.

Recognizing the limitations of state-of-the-art LUTI models for such explorations, I

propose a few methodological improvements to one such model (SimMobility) before using

the augmented LUTI model for scenario explorations of neighborhood change. In addition

to examining car-lite policies that impose private vehicle restrictions and/or improve non-

auto accessibility, I also explore two coordinated housing policies (i.e., upzoning and parking

supply restrictions) to see the extent to which they can mitigate gentrification side-effects

and enhance the benefits of non-auto accessibility improvements.
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Chapter 3

Context & Data

This chapter describes the contextual setting of the research exploration undertaken in this

dissertation. First, I outline the social and spatial contexts of the city-state of Singapore

along with discussing relevant policy efforts undertaken by the Singaporean government to

design liveable and sustainable communities, provide affordable public housing, and limit

private vehicle ownership and use. I then provide an overview of the primary data sources

used in this dissertation.

3.1 Contextual setting

The research in this dissertation is contextually and empirically set in Singapore, an is-

land city-state located in South-east Asia that gained independence relatively recently in

1965. Home to over 5.5 million people, the Singaporean economy has continued to grow

in strength with an estimated GDP of almost 400 billion USD and the second-highest per

capita GDP at purchasing power parity in the world (as of 2021).1 In this dissertation,

I will be using data sources from 2012 to construct a baseline snapshot of Singapore for

scenario exploration. Key sociodemographic indicators for the city of Singapore (as of 2012)

are summarized in Table 3.1.2 Singapore’s population is made up of two distinct groups —

residents and non-residents. The resident population comprises Singapore citizens and per-

1https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=SG. Last accessed on August
24, 2022.

2Data are sourced from the annual ‘Population Trends’ documents released by the Singaporean De-
partment of Statistics, also known as Singstat. These documents are archived by the National Library of
Singapore, and the 2012 version is available at https://eresources.nlb.gov.sg/printheritage/detail/
2b6dddfe-bdd8-4118-a16c-606e03b12388.aspx. Last accessed on August 24, 2022.
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manent residents (PRs). Permanent residents enjoy most of the same rights and privileges

as citizens, but cannot vote or hold public office, and have limited public benefits (such as

medical and housing benefits) and lower public school placement priority. Starting in 2010,

Singapore set an annual cap on the number of individuals being granted Permanent Resi-

dence at approximately 30,000. There is a relatively stable population of just over 500,000

Permanent Residents in Singapore. ‘Resident’ households are defined as households whose

representative or head is a Singapore resident, i.e., a Citizen or Permanent Resident. Most

government agencies (such as Singstat) publish detailed data only on resident individuals

and households.

In 2012, 1.16 million resident households and 3.818 million residents lived in Singapore.

The average resident household size was 3.5, with 1.8 workers within the household. The

average monthly household income was SGD 6,886. Close to 1.5 million non-residents also

lived in Singapore at the time. These non-residents comprised Work Permit holders (46%),

dependants of Singaporean residents (15%), foreign domestic workers (13%), Employment

Pass holders (12%), S Pass holders (9%), and international students (6%). Among residents,

about a quarter (23.9%) were below 20 years of age, while over one in ten (11.1%) were 65

years or older. As Singapore is a multi-racial and multi-ethnic society, its people have been

broadly organised under the CMIO (Chinese–Malay–Indian–Other) system of categorisation

since 1965 (Tan, 2004). The ethnicity of the household head (or representative) is assigned to

the entire household by government agencies for calculating household ethnic distributions.

Ethnic Chinese (74.2%) form the largest group. Ethnic Malays, who are recognized as

the indigenous community, are the next-largest group (13.3%), followed by ethnic Indians

(9.1%). Other ethnic groups are combined together in government reports and form the

smallest category (3.3%), which has been historically dominated by Eurasians.

Mixed-race Singaporeans often take up the race of their father in official documents.

However, since 2011, they have the option to provide a double-barrelled race categorisation

on their National Registration Identity Cards (NRIC) to signify both ethnicities of their

parents.3 Based on these four ethnic groups, Singapore has four official languages — English

(main working language), Malay, Mandarin, and Tamil. Race informs government policies

on a variety of issues such as political participation, public housing, and education. The

3https://www.ica.gov.sg/news-and-publications/newsroom/media-release/423. Last accessed on
August 24, 2022.
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Ethnic Integration Policy implemented by the Housing and Development Board (HDB) sets

a quota on who can reside in a public housing flat in a particular block or neighbourhood.

The policy was first introduced in 1989 to prevent the formation of ethnic enclaves and

encourage a balanced racial mix in HDB estates.4

Singapore is governed as a unitary state without provinces or states. However, for the

purposes of administration and urban planning, it has been subdivided in various ways by the

Urban Redevelopment Authority (URA). There are five Planning Regions (see Figure 3-1a),

with two central and western water-catchment areas. The West Region is the largest in terms

of area, while the Central Region is the most populous. These five Planning Regions are

further sub-divided into 55 Planning Areas, also known as Development Guide Plan (DGP)

areas or DGP zones (see Figure 3-1b). The URA draws up a Development Guide Plan for

each planning area, thus providing detailed planning guidelines for every individual plot of

land throughout the city-state. Each planning area covers about 14.6 square kilometers (or

5.6 square miles) on average. 43 of the 55 planning areas were populated (with at least

1,000 resident households), as of 2012. There were 26 planning areas with at least 15,000

resident households that were home to 96.6% of the population, while covering only 45.9%

of the land-area. Unlike most countries, postcodes in Singapore usually represent individual

buildings, except in undeveloped areas where postcodes can refer to a parcel, or low-density

areas (i.e., single-family detached housing settings) where several buildings may have the

same postcode. There were 116,626 postcodes in Singapore in 2012 (see Figure 3-1c). The

transportation planning agency in Singapore (i.e., the Land and Transport Authority, or

LTA) uses Traffic Analysis Zones (TAZs) as the unit of geography for transport and traffic

planning. There were 1,169 TAZs in Singapore with an average area of 0.73 square kilometers

(or 0.3 square miles), as of 2012 (see Figure 3-1d).

Key indicators of housing and mobility in Singapore (as of 2012) are presented in Table

3.2.5 Almost nine in ten (89.9%) resident households owned a home. Non-residents make up

the majority of renters, while migrant workers are housed in independent workers’ dormito-

ries by employers. Public housing in Singapore is provided by the Housing and Development

Board (HDB) at cost (estimated based on cost-to-government, including land value) with

4https://www.gov.sg/article/hdbs-ethnic-integration-policy-why-it-still-matters. Last ac-
cessed on August 24, 2022.

5Data are sourced from the ‘Population Trends’ documents released by the Department of Statistics, as
well as various datasets released by the Land Transport Authority on the Singapore Open Data Portal —
https://data.gov.sg/. Last accessed on August 24, 2022.
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Table 3.1: Sociodemographic summary of Singapore (as of 2012)

City-level sociodemographic indicators

Total population (millions) 5.312

Resident population (millions) 3.818

Citizens (millions) 3.285

Permanent Residents (millions) 0.533

Non-Resident population (millions) 1.494

Resident households (millions) 1.160

Density (Population per sq.km. of land-area) 7,399

Sex ratio (Males per 1,000 females) 970

Median age (Years) 38.4

Average worker income (SGD/month) $4,001

Average household size (pax) 3.5

Average workers in household (pax/hh) 1.8

Average household income (SGD/month) $6,886

Residents’ age

Below 20 years 23.9%

20 to 64 years 65.0%

65 years or above 11.1%

Household ethnicity

Chinese 74.2%

Malay 13.3%

Indian 9.1%

Other 3.3%

Administrative divisions

Planning Regions 5

Planning Areas 55

Traffic Analysis Zones (TAZs) 1,169

Postcodes 116,626
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(a) Planning Regions (b) Planning Areas

(c) Postcodes (d) Traffic Analysis Zones (TAZs)

Figure 3-1: Administrative divisions in Singapore (as of 2012)

some discounts available to specific groups, e.g., young married couples buying their first

HDB unit.6 Unlike most countries, the overwhelming majority (81.6%) of households in

Singapore live in public housing. Various types of flats with different sizes and floor plans

are offered by the HDB (see Section 3.1.2 for more details). Close to six in ten (58.1%)

resident households lived in the larger 4-room and 5-room HDB flats. Less than a fifth

(18.4%) of residents lived in private housing. Among those that do, most (12.4%) lived

in condominimums and apartments, while only 6% live in landed properties.7 With rising

6https://www.hdb.gov.sg/residential/buying-a-flat/flat-and-grant-eligibility/couples-and
-families/enhanced-cpf-housing-grant-families. Last accessed on August 24, 2022.

7Landed properties refer to housing built on land that is also owned by the building owner. These are
in contrast to ‘non-landed’ properties that are built on land owned by the government and then leased
to the building owner, usually for 99 years. Landed properties can be largely categorised into detached,
semi-detached, and non-detached housing. Detached housing are standalone houses such as a bungalow.
Semi-detached housing are usually conjoined buildings with a common wall in-between. Terraced housing
are usually a row of houses, of at least three units, with two corners and are characterised by shared common
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incomes in recent years, more and more households are opting out of HDB flats and moving

to private housing. As of 2020, 78.7% of Singapore residents lived in public housing, which

is still impressive (compared to other countries) but down from a high of 88.0% in 2000.8

Public transit is the backbone of Singapore’s transportation system. As of 2012, there

were 120 rail stations spread over 177.7 kilometers of rail network. Rail transport in Sin-

gapore comprises a heavy-rail rapid transit system (known as the Mass Rapid Transit, or

MRT) and several Light Rail Transit (LRT) rubber-tyred automated guideway transit lines.

The MRT network in 2012 consisted of four main lines — North South Line, East West

Line, North East Line, and Circle Line (see Figure 3-2d). Since then, the rail network has

been expanded with the opening of the Thomson-East Coast Line and the Downtown Line

to now span 216 kilometers and 127 stations. Two more lines, the Jurong Region Line and

the Cross Island Line, are slated to open in 2027 and 2030 respectively. Buses also form

a significant part of public transport in Singapore. There were around 350 scheduled bus

services operating along almost 4,800 bus stops in 2012.

In addition to creating a well-connected public transit system, there are several measures

in place to reduce private vehicle ownership and use in Singapore (see Section 3.1.3 for more

details). These measures make private cars a luxury good in Singapore, with most car

models pinching the pocket just as much as a smaller-sized HDB flat. Thus, only 42.1% of

Singaporean households owned a car in 2012, with a per-capita car ownership rate of 12 cars

per 100 people (which is significantly low compared to roughly 80% in the US and 50% in

Europe). This has been reported to drop to 35.3% in 2017 by the LTA. As a result of private

vehicles being expensive to own and a well-developed public transit system, only about a

third (32.7%) of daily journeys in 2012 were made with private vehicles. Over half (52.4%)

of daily journeys in Singapore were completed using public transit and active modes (such

as biking and walking). The mode share of public transit was 57% in 2012, and increased to

62% in 2016, keeping the LTA on track to meet their goal of 75% public transit peak mode

share by 2030.9

walls between houses. These properties have different title deeds and usually different owners.
8Data are sourced from the 2021 version of the ‘Population Trends’ document released annually by the

Department of Statistics, which is available at https://www.singstat.gov.sg/publications/population/
population-trends. Last accessed on August 24, 2022.

9Data are sourced from the ‘Public Consultation on the Land Transport Master Plan 2040 ’ document
available at https://www.lta.gov.sg/content/ltagov/en/newsroom/2018/8/2/public-consultations
-commence-for-the-next-land-transport-master-plan.html. The LTA combines bus, MRT / LRT, and
taxi for reporting public transit mode shares. I do not consider taxi to be a public transit option, which is
why my estimates are slightly lower than theirs. Last accessed on August 24, 2022.
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Table 3.2: Housing and mobility summary of Singapore (as of 2012)

City-level housing and mobility indicators

Home ownership 89.9%

Household car ownership 42.1%

Rail (MRT + LRT) network length (kms) 177.7

Rail (MRT + LRT) stations 120

Bus stops 4,793

Housing type (%)

Public housing (HDB) 81.6%

1- and 2-room flats (HDB12) 4.7%

3-room flats (HDB3) 18.6%

4-room flats (HDB4) 32.6%

5-room flats (HDB5) 25.5%

Private housing 18.4%

Condos & Apartments 12.4%

Landed properties 6.0%

Daily journeys (millions, %)

Private vehicles 4.8 (32.7%)

Taxi 0.8 (5.4%)

Bus 3.2 (21.8%)

MRT / LRT 2.3 (15.6%)

Active Mobility 2.2 (15.0%)

Goods vehicles 1.4 (9.5%)

Peak period mode share (%)

Private vehicles 37%

Taxi 6%

Bus 30%

MRT / LRT 27%
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3.1.1 Land use policies

Urban planning in Singapore is carried out through a three-tiered planning framework: (a)

a Concept Plan that serves as a macro-level blueprint envisioning Singapore’s development

over a long-term planning horizon, (b) a Master Plan for the medium-term, which translates

the vision of the Concept Plan into detailed guidelines, and (c) short-term plans. The

Concept Plan and the Master Plan are under the purview of the Urban Redevelopment

Authority (URA), while short-term plans are prepared by multiple agencies.

Urban planning began in Singapore in the 1820s when the Raffles Town Plan (also

known as the Jackson Plan) was implemented (Dale, 1999). Singapore was divided into

multiple ethnic areas along with the establishment of a commercial and administrative center

(now known as Raffles Place). However, Singapore’s growth was haphazard and largely

unregulated for most of the 19th century and the first half of the 20th century (Khublall

and Yuen, 1991). The British established the Singapore Improvement Trust (SIT) in 1927

in response to congestion and squatter settlements. SIT was charged with responsibilities

such as carrying out improvement works, condemning unsanitary buildings, and rehousing

people rendered homeless by improvement works. However, it was provided limited powers

and, hence, had limited initial impact. Detailed urban planning for Singapore eventually

started in the 1950s, with the goal of providing Singapore a meatier economic role in the

Federation of Malaya. As a result, the 1958 Master Plan was produced, heavily influenced

by British planning practices and assumptions. This plan regulated the type and intensity

of development by specifying the land use zoning and the maximum density or plot ratio

for each site. It also reserved land for infrastructural uses, community facilities, and open

spaces.

Following Singapore’s independence in 1965, the State and City Planning Project (SCP)

was initiated to produce a long-range plan to guide the country’s physical development for

the next 20 years, which led to the 1971 Concept Plan. Land use planning at the time

had to address the two priorities of a newly independent Singapore — (a) the provision

of adequate housing, and (b) the generation of employment opportunities for the people.

Unlike the Master Plan, which provided detailed zoning and density parameters, the Concept

Plan showed only the broad direction of the government’s land allocation and transportation

policies. This plan laid out the basic infrastructure for Singapore’s development and brought
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about the integrated planning process used ever since. The Concept Plan envisioned the

development of high- and low-density residential estates, industrial areas, and commercial

centres in a ring formation around the central water catchment area, as well as a network

of expressways and a mass rapid transit (MRT) system to provide island-wide connectivity.

Additionally, the Concept Plan set aside land for the Singapore Changi Airport.

The Land Acquisition Act was passed in 1966 to address the pressing need for an adequate

supply of land to carry out developmental projects at the time, especially resettlement and

industrialization. This act enabled the compulsory acquisition of private land for public

purposes, such as the building of transportation infrastructure and public housing. Between

1959 and 1984, the government acquired a total of 177 square kilometers (about one-third

of the total land-area of Singapore then), with the majority occurring after 1967 (Wong

and Yeh, 1985). The government became the largest landowner by 1985, owning 76.2% of

the land compared to 31% in 1949. This has since increased to almost 90% (Haila, 2015).

This act was instrumental in keeping the costs of building housing and industrial premises

affordable, as well as facilitating urban renewal efforts in the central area of Singapore.

Planning in Singapore began to incorporate additional priorities from the 1980s, such as

quality of life and conservation, while the 1991 revision of the Concept Plan introduced the

concept of regional centres to promote decentralisation. Instead of the ring layout adopted

in the 1971 plan, the updated plan divided Singapore into five regions (central, north,

northeast, east, and west) and proposed the development of four regional centres outside

the central region to reduce congestion in the city center. To improve the implementation

of the Concept Plan’s strategies, Singapore was divided into multiple planning areas in the

1990s, and comprehensive plans for each area’s development were produced and compiled

into a new plan (Yuen, 1998). These tasks were undertaken by the Urban Redevelopment

Authority (URA), which has been designated as the national planning and conservation

agency since 1989. The population and job densities for the 55 Planning Areas (as of 2012)

are shown in Figures 3-2a and 3-2b respectively.

In the 2001 and 2011 Concept Plans, Singapore’s urban planners began to incorporate

public feedback and opinions into the planning process, shifting towards liveability and sus-

tainability, while prioritising economic development as the powerhouse of each plan’s success.

The 2011 Concept Plan also featured a distinct focus on sustainability and conservation.10

10https://www.ura.gov.sg/Corporate/Media-Room/Media-Releases/pr10-55. Last accessed on August
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(a) Population Density (b) Job Density

(c) Bus stops (d) Mass Rapid Transit (MRT) stations

Figure 3-2: Spatial distributions of people, jobs, and transit infrastructure in Singapore (as
of 2012)

The 2014 Master Plan was aimed at creating an inclusive, highly liveable, economically

vibrant and green environment for all Singaporeans, focusing on six areas — housing, trans-

port, economy, recreation, identity, and public spaces.11 The most recent plan is the 2019

Master Plan, which details Singapore’s increasing consideration towards sustainability, cul-

tural preservation, building communities, and closing resource loops.12 This recent focus on

liveability and sustainability over the last decade has emphasized ‘car-lite’ strategies such

as improved sidewalks and bike paths connecting to public transit, and extending the tran-

sit network such that public housing residents can access at least one bus stop and/or one

24, 2022.
11https://www.ura.gov.sg/maps/?service=mp&year=2014. Last accessed on August 24, 2022.
12https://www.ura.gov.sg/Corporate/Planning/Master-Plan/Introduction. Last accessed on August

24, 2022.
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MRT station within 400 meters. Singapore has also invested heavily in research collabora-

tions such as the Future Urban Mobility (FM) program with MIT and the Future Cities

Laboratory (FCL) with ETH Zurich to explore how disruptive mobility technologies (such

as automated vehicles, mobility-on-demand, and micromobility) can be harnessed to create

a more sustainable mobility future for Singapore.

3.1.2 Housing policies

The national public housing agency of Singapore is the Housing and Development Board

(HDB), which was formed shortly after attaining full self-governance in 1960. Although its

goal at the time was to alleviate the severe housing shortage, the emphasis of its housing

programs has shifted from quantity of housing to quality of life (Wong and Yeh, 1985). Since

1985, over 80 percent of Singapore’s resident population have been living in HDB flats (Tan

and Phang, 1992). HDB plans have largely tracked top-down government policies on urban

growth and social policy. For example, new HDB estates, with large subsidies for young

families, have been used in recent times to promote urban growth in the periphery.

HDB was conceptualized as a successor to the SIT with the primary task of building

and managing housing units for lower-income residents. Although the SIT had started

building flats from the 1930s onward, the housing problem had worsened significantly by

the time HDB replaced the SIT in 1960. SIT’s housing programs had fallen far short of

what was required to keep pace with the fast-growing population (Field and Ofori, 1989).

By 1965, HDB had completed its first Five-Year Building Program with a total of 54,430

units built (Phang, 2001). By the end of 1970, 36 percent of the total population was living

in HDB flats (Ching and Tyabji, 1991). Over the next two decades, sustained efforts by

the HDB ensured that HDB flats housed more than 80 percent of Singaporean residents.

However, racial divisions within HDB estates became increasingly pronounced, which led to

the introduction of the Ethnic Integration Policy in 1989 with the aim of capping the racial

proportions of residents in HDB estates (Sim et al., 2003).

Since its inception, HDB has focused on designing comprehensive housing programs

that include the provision of not only residential units but also supportive facilities (such

as kindergartens, community halls, homes for the elderly, and recreational spaces) in the

housing estates (Dale, 1999). While the initial focus was on the mass production of afford-

able, standardized housing for lower-income residents, it has constantly evolved to adapt
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to the changing housing needs of the population. In recent times, HDB has introduced

new schemes for not only nuclear households, but also single individuals, the elderly, and

multi-generational households.

The initial flats HDB built were available only as rentals. In 1964, HDB began selling

flats under a home ownership scheme. The government implemented another scheme in

1968 that allowed residents to use their mandatory retirement fund — Central Provident

Fund (CPF) — accounts to finance their purchase of HDB flats instead of relying solely on

after-tax income. These two schemes have been largely responsible for the steady rise in

HDB home ownership rates, which was estimated to stand at 92 percent as of 2015 (Phang

and Helble, 2016). Housing grants have also been provided to married couples since 1994 to

subsidize the purchase of their first HDB flat from the resale market (Phang, 2007).

HDB has also been relaxing its eligibility criteria to give more residents a chance at

home ownership (Hui et al., 2009). The citizenship requirement was relaxed in 1989 to allow

permanent residents in Singapore to own HDB flats. Starting from 1991, single citizens

who were at least 35 years old could finally purchase HDB flats on their own, although their

options were limited to only three-room or smaller flats outside the central area. Subsequent

revisions to this scheme in 2001 and 2004 ensured that eligible singles can now purchase HDB

flats of any type in any location. Additional subsidies are also provided for young individuals

if they choose to live near their parents so elder care is easier.13

In 2001, HDB launched the Build-To-Order (BTO) system of selling new flats in non-

mature estates as an alternative to the Registration for Flats System (RFS) which had

resulted in a large stock of unsold flats. Under the BTO system, applications are invited for

the flats to be built on the proposed sites and construction begins only if the majority of

units are booked. This allows HDB to adjust its supply of flats according to demand. RFS

was permanently suspended in 2002 and the BTO system is now the main mechanism for

sale of new flats (Phang et al., 2014). The Design, Build, and Sell Scheme (DBSS) was also

introduced in 2005 to enhance the variety of public housing. Under DBSS, designated sites

are sold to private developers, who are then responsible for designing, building, and selling

the flats (Deng et al., 2013).

During its first decade of operation, HDB built only one- to four-room flats. Five-room

13https://www.hdb.gov.sg/residential/buying-a-flat/flat-and-grant-eligibility/couples-and
-families/proximity-housing-grant-families. Last accessed on August 24, 2022.
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flats were then introduced in the 1970s, followed by executive apartments in the 1980s in

response to the demand for bigger flats. Over time, HDB has also made improvements to

each flat type in terms of design and size. In response to the needs of Singapore’s ageing

population, HDB released a special range of flats known as studio apartments in 1997.

Smaller than three-room flats, these homes are partially furnished and fitted with elderly-

friendly features such as emergency pull cords linked to an alert system for summoning

help. Executive condominiums (i.e., an intermediate unit type bridging the gap between

HDB flats and private condominiums) were introduced in 1995. Even though they are built

and sold by private developers, these units offer the standard of private condominium living

but are not as expensive.

Various types of subsidies are offered by HDB to help couples and families purchase their

first HDB flat. For example, there were five BTO projects released in 2012 in Choa Chu

Kang — Sunshine Gardens,14 Keat Hong Pride,15 Keat Hong Axis,16 Keat Hong Quad,17

and Keat Hong Mirage.18 Across these BTO projects, 3-room HDB units were offered at

$138,000 - $165,000, HDB4 units at $223,000 - $265,000, and HDB5 units at $284,000 -

$345,000. Eligible households could apply for Additional CPF Housing Grants of around

$30,000 (HDB3), $15,000 (HDB4), or $10,000 (HDB5) in 2012. An additional subsidy of

$5,000 could also be availed for HDB3 units through the Special CPF Housing Grant. These

reflect the maximum subsidy amounts; the actual grant amounts provided to households vary

based on income and choice of flat. In 2012, the median resale prices of HDB units in Choa

Chu Kang were around $329,000 (HDB3), $420,000 (HDB4), and $486,000 (HDB5).19 As

of 2022, couples or families who are first-time applicants buying a new or resale HDB flat

could qualify for an Enhanced CPF Housing Grant of up to $80,000.20 CPF Housing Grants

of up to $50,000 are also available to first-timer couples or families looking to purchase an

14https://singpromos.com/housing/hdb-launches-jan-2012-bto-with-five-projects-11-17-jan
-2012-23714/. Last accessed on August 24, 2022.

15https://singpromos.com/housing/hdb-launches-six-bto-projects-30-may-5-jun-2012-33527/
Last accessed on August 24, 2022.

16https://singpromos.com/housing/hdb-launches-seven-bto-projects-31-jul-6-aug-2012-38789/
Last accessed on August 24, 2022.

17https://singpromos.com/housing/hdb-launches-sep-2012-sobf-exercise-seven-bto-projects-27
-sep-3-oct-2012-43672/ Last accessed on August 24, 2022.

18https://singpromos.com/housing/hdb-launches-seven-nov-2012-bto-projects-21-27-nov-2012
-49548/ Last accessed on August 24, 2022.

19Calculated by the author using detailed HDB resale transaction data (see Section 3.2.2)
20https://www.hdb.gov.sg/residential/buying-a-flat/flat-and-grant-eligibility/couples-and

-families/enhanced-cpf-housing-grant-families. Last accessed on August 24, 2022.
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HDB resale flat.21 Second-time applicants are eligible for the Step-Up Housing Grant of

$15,000 for both new and resale flat purchases.22

HDB estates are located in ‘new towns’ — communities that are intended to be self-

contained with services and amenities located close to the housing blocks. New towns

built from the late 1970s adopted a ‘checkerboard model’, alternating residential and non-

residential areas throughout the town (Hee and Ooi, 2003). However, since the 1990s, newly

built new towns contain densely built developments integrating both public housing and

amenities. Since the 1990s, HDB has adopted the Estate Renewal Strategy, which aims to

improve the living environment of HDB estate residents through various upgrading programs

(Tu, 1999). The Main Upgrading Program was launched by the HDB in 1990 to carry out

improvements within the flat and at the block and precinct levels. The Selective En-bloc

Redevelopment Scheme was launched five years later, where entire blocks were demolished

for redevelopment. Smaller-scale upgrading programs (such as the Home Improvement Pro-

gram) have also been developed since then to benefit more residents. This shift towards

redevelopment has been primarily driven by the recognition that the oldest HDB estates

are two generations old and need improvements to reflect changing incomes and housing

preferences.

Most public housing in Singapore is owner-occupied (estimated to be 92% in 2015, as

mentioned earlier). Owner-occupied public housing is sold on a 99-year leasehold to residents

who meet certain income, citizenship, and property ownership requirements. These units

can also be sold on the private resale market subject to some restrictions. Rental public

housing consists of smaller-sized units (such as one- and two-room flats) and is targeted

towards lower-income households who are also eligible for housing grants for flat purchases.

These units have lower income requirements than owner-occupied public housing and are

distinct from for-own units being purchased and offered for short-term rentals on the rental

market (Phang, 2007). Flats with shorter leases and lease monetisation schemes are also

available as options for elderly homeowners.

21https://www.hdb.gov.sg/residential/buying-a-flat/flat-and-grant-eligibility/couples-and
-families/cpf-housing-grants-for-resale-flats-families. Last accessed on August 24, 2022.

22https://www.hdb.gov.sg/residential/buying-a-flat/flat-and-grant-eligibility/couples-and
-families/step-up-cpf-housing-grant-families. Last accessed on August 24, 2022.
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3.1.3 Mobility policies

Transport planning in Singapore consists of the Land Transport Master Plan, which is

revised every five years, and development plans for the rail and bus system. Built upon a

spoke-hub distribution paradigm, Singapore’s transport planning focuses on the objectives

of increased connectivity, improved public transport provision, and increasing the proportion

of commuters using public transport (Soon Looi et al., 2018). Responding to population

changes in the 2000s, the Land Transport Authority (LTA) called for a significant expansion

of the rail network and the integration of the bus and rail systems in a hub-and-spoke

network in the 2008 Land Transport Master Plan.23 The 2013 follow-up called for more

sheltered walkways and cycling path networks within new towns to improve pedestrian and

cycling access.24

Proactive efforts in providing affordable and accessible transportation to residents has

resulted in Singapore’s public transport system being ranked as one of the best and the

most affordable in a study by McKinsey comparing public transit systems in 24 cities using

more than 80 indicators over five main dimensions — availability, affordability, efficiency,

convenience and sustainability.25 Using buses, Mass Rapid Transit (MRT), and Light Rail

Transit (LRT) systems, the public transport network in Singapore is quite extensive and,

accounts for over 50% of daily trips (including active mobility). Almost all HDB estates have

at least one bus stop within a walking distance of 400 meters, with the goal being to have

eight in ten households living within 10 minutes’ walk of a train station by 2030, as outlined

in the 2013 Land Transport Master Plan. Significant investment towards betterment and

extension of public transport infrastructure is a key characteristic of government policy, as

Singapore aims to reach a public transport peak mode share of 75% by 2030. The bus and

MRT networks are shown in Figures 3-2c and 3-2d respectively. The MRT network has

undergone significant expansion since 2012, with the Downtown Line and Thomson-East

Coast Line being new additions in 2013 and 2020 respectively. In addition to planning for

better public transport, Singapore is also well-known for its restrictive policies that seek to

limit private vehicle ownership and use, which I will describe briefly below.

23https://www.lta.gov.sg/content/dam/ltagov/who_we_are/statistics_and_publications/master
-plans/pdf/LTMP-Report.pdf. Last accessed on August 24, 2022.

24https://www.lta.gov.sg/content/dam/ltagov/who_we_are/statistics_and_publications/master
-plans/pdf/LTMP2013Report.pdf. Last accessed on August 24, 2022.

25https://www .mckinsey .com/business -functions/sustainability/our -insights/elements -of
-success-urban-transportation-systems-of-24-global-cities. Last accessed on August 24, 2022.
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Private vehicle ownership policies

The Singaporean government seeks to restrict private vehicle ownership through two major

policies: (a) the Additional Registration Fee (ARF), and (b) the Vehicle Quota System

(VQS). While the former increases the cost of vehicle ownership, the latter scheme controls

the total number of active vehicles on an annual basis.

The Additional Registration Fee (ARF) was instituted as a share of the Open Market

Value (OMV) of the vehicle in 1972. The ARF grew from 15% in 1972 to 150% in 1980 and

175% in 1983. The current tax structure is even more steep.26 Cars registered on or after

September 1, 1998 are subject to a registration fee of 220 SGD. The ARF is imposed on top

of this registration fee using the following tiered scheme:

• First 20,000 SGD of OMV: 100% ARF rate

• Next 30,000 SGD of OMV: 140% ARF rate

• Above 50,000 SGD of OMV: 180% ARF rate

As an example, the ARF payable for a car with an OMV of 75,000 SGD stands at
[︀
(100% *

20, 000) + (140% * 30, 000) + (180% * 25, 000) =
]︀

107,000 SGD. Thus, we can see how the

ARF can easily exceed the OMV for most vehicle models. Road taxes are also levied based

on engine and fuel types, while rebates are offered for older cars and differential amounts

of vehicular CO2 emissions. In a recent push to increase the adoption of electric vehicles,

residents are being offered a rebate of up to 45% off the ARF, capped at 20,000 SGD,

through the Electric Vehicle Early Adoption Incentive Program.

While the ARF influences vehicle ownership levels through the registration fee, the

government more directly controls the overall private vehicle fleet size through an auction

scheme. Registration of every new vehicle must be preceded by the acquisition of a Certifi-

cate of Entitlement (COE), which represents the right to own and use a vehicle for 10 years.

At the end of the 10-year period, vehicle owners can de-register their vehicle or choose to

renew their COE for another 5- or 10-year period by paying the Prevailing Quota Premium.

If the vehicle is de-registered before the expiration of its COE, a rebate is prorated to the

number of days remaining on the COE. Users can apply for five categories of COE — small

26https://onemotoring.lta.gov.sg/content/onemotoring/home/buying/upfront-vehicle-costs/tax
-structure.html. Last accessed on August 24, 2022.
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cars, large cars, goods vehicles and buses, motorcycles, and an open category.27 COEs are

allocated through an open bidding process, which is conducted twice a month. The number

of available COEs is dependent on the limits set by the Vehicle Quota System. As the

supply of COEs is highly regulated, prices are extremely volatile depending on the current

levels of demand. COE prices have varied between 25,000 - 100,000 SGD for cars and 2,000

- 10,000 SGD for motorcycles over the past decade, as shown in Figure 3-3. COEs are

also transferable along with the vehicle in the case of private vehicle transactions between

individuals.

Figure 3-3: Certificate of Entitlement (COE) prices and quotas

Introduced in May 1990, the Vehicle Quota System regulates the rate of growth of

vehicles on Singaporean roads, at a rate that can be sustained by developments in the land

transport infrastructure. Calculation of the vehicle quota is carried out every three months,

and is determined by the number of vehicles de-registered, an allowable growth rate in vehicle

population (set by the government), and certain adjustments to account for changes in taxi

population, replacements, and expired or cancelled temporary COEs. The allowable growth

rate is set to be very restrictive. Starting out at 3% per annum in 1990, it was gradually

trimmed until it hit a meager 0.25% per annum in 2015. A landmark announcement in

27https://onemotoring.lta.gov.sg/content/onemotoring/home/buying/upfront-vehicle-costs/
certificate-of-entitlement--coe-.html. Last accessed on August 24, 2022.
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2018 set the annual growth rate to 0%, essentially freezing the number of private cars and

motorcycles in Singapore.28

Policies under the Vehicle Quota System have been effective in controlling the overall

number of vehicles added to the national fleet. Moreover, high taxes and financial regulations

have transformed car ownership into a luxury good in Singapore. Apart from the COE and

the ARF, users also have to pay a registration fee, a 20% excise duty on the OMV, and a 7%

Goods & Services Tax in addition to operating costs. For example, a new Toyota Corolla

Altis, whose OMV is currently 137,888 SGD (inclusive of a COE price of 78,889 SGD) as

of July 2022, is estimated to cost 206,991 SGD over a 10-year period.29 Annual operating

costs would include an average of 1,500 SGD on car insurance, 1,000 SGD for servicing and

maintenance costs, 742 SGD in road tax, and 3,480 SGD in parking, tolls, and petrol costs.30

It is estimated that gross monthly household income has to be north of 8,850 SGD (while

the mean income is 6,886 SGD) to be able to afford a regular sedan.31

Private vehicle use policies

The LTA aims to reduce on-road congestion by harnessing technological advances and adopt-

ing a ‘pay-as-you-use’ principle on road usage. The Area Licensing Scheme (ALS) was in-

troduced in 1975 as a mechanism to charge drivers entering the Central Business District

(CBD). However, the initial success of this policy could not be sustained over time as em-

ployment opportunities expanded beyond the CBD. The ALS was then extended to major

expressways outside the CBD in 1995 through the Road Pricing Scheme (RPS). Finally, the

Electronic Road Pricing (ERP) scheme, which integrated the ALS and RPS strategies in an

automated manner, was introduced in 1998. Motorists are charged when they use certain

roads during peak hours according to the ERP scheme. ERP rates vary according to the

location of the road and time period, and are dependent on local traffic conditions. These

rates are determined by a quarterly review of traffic speeds of priced roads, and during the

June and December school holidays. These calculations are based on an optimal speed range

of 20-30 kmph on arterial roads and 45-65 kmph on expressways.32

28https://www .straitstimes .com/singapore/transport/government -adopts -zero -growth -stance
-for-car-motorcycle-populations. Last accessed on August 24, 2022.

29https://dollarsandsense.sg/cost-owning-car-singapore/. Last accessed on August 24, 2022.
30https://www.valuechampion.sg/costs-car-ownership-singapore. Last accessed on August 24, 2022.
31https://blog.seedly.sg/buy-car-how-much-should-be-earning/. Last accessed on August 24, 2022.
32https://onemotoring.lta.gov.sg/content/onemotoring/home/driving/ERP/ERP.html. Last ac-

cessed on August 24, 2022.
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The Off-Peak Car (OPC) scheme was introduced in 1994 by the LTA to curb rush hour

traffic by allowing the purchase of a car that can only be used during weekday off-peak hours

(7PM - 7AM) at a reduced price. The use of the OPC is unrestricted during weekends and

public holidays. Additional incentives are provided in the form of reduced toll costs and

road taxes, and lower COE charges. While the original scheme is no longer available for

registration or conversion, car owners can register for or convert to the Revised Off-Peak

Car (ROPC) scheme that was implemented in 2009. New cars registered under the ROPC

scheme can enjoy up to a 17,000 SGD rebate on the Quota Premium for a COE and the

ARF. Moreover, there is a flat discount of up to 500 SGD on annual road tax, and off-peak

cars tend to have lower insurance premiums as well.33 There were around 34,000 OPCs in

Singapore (as of July 2015), which accounted for only 5.8% of all private cars.34 One of the

reasons behind the low uptake may be the temporal restriction that prohibits drivers from

using it as a commute mode for day-shifts. Workers with night-shift jobs (such as blue-

collar workers in certain professions) and households that use this car as a second vehicle

for recreational weekend trips may be more likely to avail of this scheme.

3.1.4 Housing and mobility policy effects

The Singapore model shows how a range of well-coordinated mobility policies to control

both private vehicle ownership and use, and, at the same time, increase the availability and

ridership of public transit can contribute to a sustainable mobility future. The three pillars

of Singapore’s approach to sustainable mobility are reducing auto-dependence, promoting

public transport, and integrated land use and transport planning. In a recent policy review

paper, Diao (2019) reports that government policies have been successful in constraining

auto-dependence, promoting public transit use, mitigating road congestion, and maintaining

affordable transit fares.

The tightening of vehicle quota control and improved rail transit accessibility over the

last couple of decades have been found to reduce households’ desire to purchase cars in

the long-term (Song et al., 2021). By constraining vehicle ownership, the vehicle quota

control has a significant influence on vehicle use as well. However, this mitigation effect

33https://www .lta .gov .sg/content/ltaweb/en/roads -and -motoring/transport -options -for
-motorists/revised-off-peak-car-and-opc-and-weekend-car.html. Last accessed on August 24, 2022.

34https://www.straitstimes.com/singapore/transport/more-drawn-to-off-peak-cars. Last ac-
cessed on August 24, 2022.
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can be partially offset by higher car use among car owners who want to make more out

of their investment in private cars, which Song et al. (2020) characterize as a ‘sunk cost’

effect. Although expressway network expansion does not affect vehicle ownership, it has been

found to increase vehicle use (Song et al., 2020). In addition to reducing vehicle ownership,

the expansion of the rail transit network reduced vehicle use as well despite the sunk cost

effect. Using the opening of the Circle Line as a case study, Dai et al. (2020) explored

how travel mode choices can change in response to improved rail transit accessibility using

difference-in-differences models. They found an increase in rail transit mode share and a

reduction in private car mode share, but bus mode share and trip generation remained

unchanged. These results from Singapore highlight how an integrated approach combining

pricing measures to discourage vehicle ownership and use, and public transport investment

to provide alternatives to driving can be effective in accelerating our journey towards a

sustainable mobility future.

The key pillars of the Singaporean housing policy approach have been land acquisition,

the HDB-CPF system of government-provided housing that can be purchased using retire-

ment funds, housing market interventions, and the Ethnic Integration Policy. In particular,

the Ethnic Integration Policy has facilitated the creation of divergent resale housing markets

for different ethnic groups, while reducing the intensity of ethnic enclaves and increasing so-

cial integration (Sim et al., 2003). The national housing program aims for universal provision

of 99-year leasehold homeownership for all Singaporean residents. The motivation behind

public housing provision was to serve development strategies and nation-building processes,

rather than creating entitlement to social rights (Heo, 2014). People who purchased public

housing recognized the benefits from housing policies as available assets and readily mobi-

lized them over time. However, this almost universal provision system generated a set of

perennial competing demands. Homeowners need to be enabled to monetized their public

housing property to finance their post-retirement period. In order to facilitate this funding,

public housing units need to be allowed to increase in asset value, to keep up with inflation

and rising costs of living. At the same time, new public housing units have to be kept

affordable for new entrants into the housing market. Chua (2014) argues for monitoring and

intervention by the State for the management of these competing demands.

The unusually high levels of State intervention in the public housing market and mobility

sector make Singapore quite unique. This is quite evident when we see a home ownership
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rate of close to 90% (with almost 80% residents living in public housing) and a per-capita

car ownership rate of 12%. Singapore bridges the quality of life usually observed in the

global North with cultural ideals and aspirations that closely resemble what we find in

other Asian countries (especially Southeast Asia, South Asia, and East Asia). Despite these

apparent challenges to generalizability, some land use-transport phenomena play out in an

expected manner. Using the opening of the Circle Line as a case study, Diao et al. (2017)

find evidence of increasing values of non-landed private housing units proximate to the new

stations, even after controlling for heterogeneities in housing attributes and local amenities.

‘Anticipation’ effects are detected as early as one year prior to the opening of the new transit

line, but they diminish closer to the actual opening date. More generally, private developers,

who act mainly in response to the market, are found to intentionally place housing units

in developments close to MRT stations (Zhu and Diao, 2016). As a result, more higher-

income households who can afford private housing are accommodated in areas with greater

accessibility to MRT.

These trends of transit-induced gentrification and inequitable access to high-accessibility

neighborhoods are not unlike what we observe in other countries, as I discussed earlier in

Chapter 2. Should we expect similar trends of accessibility-induced gentrification when

non-auto accessibility is increased in a more general manner (compared with a specific

mechanism, such as the opening of a new transit line)? Will higher-income households out-

bid their lower-income counterparts for neighborhoods with better accessibility even in the

public housing market? To address these questions, I conduct scenario explorations of how

neighborhoods change in response to accessibility improvements and coordinated housing

policies in Singapore. My findings from this dissertation can inform integrated land use and

transport planning not just in Singapore, but can also provide valuable insights for other

cities (or municipalities) aiming to reduce auto-dependence through similar mechanisms.

3.2 Data sources

I used four major data sources in this dissertation, which are described below. The Land

Transport Authority (LTA) provided household travel survey data as well as travel skims

that describe travel times between zones by different modes. I obtained detailed time-series

data on housing transactions from the Urban Redevelopment Authority (URA) and the
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Housing and Development Board (HDB). The URA also provided land use and geospatial

data that I used to construct various descriptive measures related to the built environment.

3.2.1 Household Information Travel Survey (HITS)

The Household Information Travel Survey (HITS) is a pen-and-paper personal interview

(PAPI) retrospective travel survey (as of 2012) that is carried out once every four years

and is used to collect data about households, individuals and their travel patterns for one

observed working day.35 The survey contains three sections –– household particulars, indi-

vidual particulars, and trip particulars. Only resident households (i.e., households whose

representative or head is a Singapore citizen or Permanent Resident) are targeted and a

random one percent of resident households are selected for surveying (with some stratifica-

tion to ensure adequate representation). For HITS 2012, sociodemographic characteristics

of about 10,000 resident households and almost 36,000 individuals were recorded in the first

two sections. However, individual data were not recorded for children of ages six or be-

low. The final section contains data about each stage of a trip that each individual (aged

above six years) undertook on the day of observation with trip details such as point of

origin/destination, travel time, mode, purpose, etc. Data on active (non-motorized) trips

and short trips (below 15 minutes) are comparatively limited because of the nature of these

questions. The HITS questionnaire is summarized in Table 3.3. The LTA also provided

sampling weights at three levels — household, individual, and trip — along with the HITS

data, although the procedure they used to compute these weights is unknown to us.

Key sociodemographics of resident households sampled in HITS 2012 are summarized

in Table 3.4.36 The average household size is 3.7, with one child. Each household has

almost two workers, while four in ten households have a senior member (aged 60 years or

above). Almost one in five (18.1%) households have access to a bike, while over four in ten

(41.1%) households have access to a private car. Access to taxis, motorcycles, and off-peak

cars are much more limited with fewer than 6% of households reporting affirmatively for

each. Around four in five (77.5%) households reported living in public housing, with the

majority (53.2%) living in 4-room and 5-room HDB flats. Consistent with other government

agencies, the LTA also assigns the ethnicity of the household head to the entire household,
35The LTA experimented with a combination of PAPI and computer assisted web interviewing (CAWI)

for recording week-long travel diaries in 2016, before transitioning completely to CAWI in 2021.
36Reported values are weighted by household sampling weights.
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Table 3.3: Description of HITS questionnaire

Section Variable
Original

Encoding
Examples

Household

Dwelling type Categorical HDB 1-room, private flat, etc.

Dwelling location Categorical Postcode, if available

Ethnicity Categorical Chinese, Malay, Indian, etc.

Household size Continuous 1, 2, etc.

Available vehicles Categorical Normal car, Taxi, Bike, etc.

Vehicle properties Categorical Registered, Rental, etc.

Sampling weight Continuous 50, 100, etc. (can be fractional)

Individual

Age Categorical 6-9 years, 10-14 years, etc.

Resident status Categorical Citizen, Permanent resident, etc.

Gender Categorical Male, Female

Driving license Categorical Car, Motorcycle, etc.

Employment status Categorical Employed full-time, Student, etc.

Occupation Categorical Professional, Service and sales, etc.

Industry Categorical Manufacturing, Construction, etc.

Job location Categorical Postcode, if available

Monthly income Categorical No income, $1-$1000, Refused, etc.

Sampling weight Continuous 50, 100, etc. (can be fractional)

Trip

Origin Categorical Postcode, if available

Destination Categorical Postcode, if available

Start time Continuous 0001-2400

End time Continuous 0001-2400

Mode Categorical Car, Bus, MRT, etc.

Purpose Continuous Work, Pick-up/drop-off, etc.

Sampling weight Continuous 50, 100, etc. (can be fractional)

thereby recording ethnicity as a household-level variables in HITS. Over two in three (67.9%)

households reported being ethnic Chinese, while ethnic Malays and Indians accounted for

15.6% and 8.7% of the sampled resident households. All of the household sociodemographic
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indicators obtained from HITS 2012 are largely consistent with those reported by Singstat.

Table 3.4: Summary of HITS household data

Household sociodemographics

Average household size 3.7

Average number of children (<19 years old) 1.0

Average number of seniors (>60 years old) 0.4

Average number of workers 1.7

Average household income (SGD / month) $6,759

Private mobility holdings

Households with bikes (%) 18.1%

Households with taxis (%) 1.5%

Households with motorcycles (%) 5.6%

Households with off-peak cars (%) 2.1%

Households with ‘normal’ cars (%) 41.1%

Unit type

Public housing (HDB) 77.5%

1-room and 2-room flats (HDB12) 5.5%

3-room flats (HDB3) 18.8%

4-room flats (HDB4) 29.2%

5-room flats (HDB5) 24.0%

Private housing 22.3%

Condos & Apartments 15.8%

Landed properties 6.5%

Ethnicity

Chinese 67.9%

Malay 15.6%

Indian 8.7%

Other 7.8%

Key sociodemographics of the individual members of resident households sampled in
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HITS 2012 are summarized in Table 3.5.37 One in four (25.1%) of individuals recorded in

HITS are below 20 years old. The gender spilt is almost equal, with a slight skew in favor of

males. Six in ten (60.9%) individuals are employed, while two in ten (20.9%) are full-time

students. A third of recorded individuals have completed at most primary school, while

almost a quarter (22.2%) have obtained a degree from some college or university. All of the

individual sociodemographic indicators obtained from HITS 2012 are largely consistent with

those reported by Singstat.

I used data from the HITS 2012 sample to estimate several long-term urban choice

models, such as the screening model, willingness-to-pay model, and vehicle availability model

(see Section 4.3 for further details). Having used the 2012 dataset in previous research (Basu,

2019), I did not have to redo a couple of important data processing steps — imputing missing

or unknown incomes and generating continuous income values, and adjusting taxi counts.

A significant share (19.3%) of individuals (aged six years or above) in the HITS 2012

sample had missing incomes, which could be because they refused to report their income

or the respondent for the household did not know the income of that particular individual.

Moreover, individual income was reported as a categorical variable. Therefore, I had to

impute the missing incomes and then convert all the categorical values to continuous val-

ues. First, I predicted income categories for the missing income cases using a supervised

classification (random forest) model calibrated on individual and household characteristics.

Then, I created a log-normal distribution for income and randomly sampled from this distri-

bution to obtain a continuous income value for each individual. I constrained the sampling

procedure to ensure that the randomly picked value corresponded to the income category

reported in HITS. Finally, I summed the individual incomes across households to obtain

continuous income estimates for each household. Average household and individual incomes

for the HITS 2012 sample are reported in Tables 3.4 and 3.5 respectively.

Taxi counts were underestimated in the HITS 2012 sample, and required adjustment as

households with a taxi are unlikely to own an additional private car. The total taxi count in

the weighted HITS sample was around 18,500, while the actual taxi count in Singapore in

2012 was close to 28,000.38 Therefore, I identified households that would be most likely to

37Reported values are weighted by individual sampling weights. Except for age, other indicators are
computed only for individuals aged six years or above, as detailed data on children below six years of age
are not recorded.

38https://data.gov.sg/dataset/annual-motor-vehicle-population-by-vehicle-type. Last accessed
on August 24, 2022.
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Table 3.5: Summary of HITS individual data

Individual sociodemographics

Average worker income (SGD / month) $3,929

Age

Below 20 years 25.1%

20 to 64 years 67.0%

65 years or above 8.0%

Gender

Male 50.6%

Female 49.4%

Employment status

Employed 60.9%

Unemployed 0.8%

Full-time student 20.9%

Homemaker 6.1%

Retired 6.7%

Domestic worker 4.7%

Highest educational qualification

Less than primary school 3.7%

Primary school 33.1%

Secondary school 41.0%

Some college 15.9%

University 6.3%

own a taxi based on individual characteristics such as employment status, occupation type,

and industry sector. I then used an imputation method to randomly assign taxis to a subset

of these selected households through a weighted iterative proportional fitting procedure such

that the total taxi count reached close to 28,000. Following this adjustment, 2.3% of sampled

households had access to a taxi, instead of the reported 1.5%.

76



3.2.2 Housing transactions

The URA provides detailed data on private housing transactions since 1995 through their

Real Estate Information System (REALIS) platform. Data are sourced from ‘caveats’ lodged

with the Singapore Land Authority (SLA). A caveat is a legal document usually lodged by

the buyer with the SLA to protect their legal interest soon after an option to purchase a

property is exercised or a sale and purchase agreement is signed. The reported price is the

agreed purchase price of the property between the buyer and the seller as entered in the

contract. This dataset contains both new sale and resale transactions. Available data fields

include the address (which can be geolocated since the postcode is part of the address), unit

type (i.e., apartment, condominium, landed property, etc.), unit size, construction date,

transaction date, sale price, and type of sale (i.e., new sale or resale).

As mentioned earlier, the HDB has been building new public housing projects through

the BTO program for several years now. These BTOs are sold at fixed and published

prices before applying household-specific subsidies. My scenario analyses exclude BTOs

because I consider the city as a closed system in my simulations (see Section 5.2.1), so I

need detailed data only for HDB flats that were resold on the open market. HDB has an

interactive platform where one may search for the resale price of any HDB unit by specifying

the address and unit type. My colleagues have scraped this website to create a time-series

dataset of HDB resale transactions. Available data fields include the address (which has to

be geocoded since the postcode is absent), unit type (depending on the number of rooms in

the unit), unit size, construction date, transaction date, and sale price.

As I chose 2012 as my reference year due to the availability of the HITS sample data,

I extracted data on HDB resale transactions and all private housing transactions from the

aforementioned datasets between January 1, 2011 and December 31, 2014. I included buffer

years around 2012 to guard against the possibility of the sale prices being influenced by

particular macroeconomic phenomena that I may not be able to control for. Including

data from a multi-year period also provides a comparatively better understanding of stable

housing market trends such as the relationship of market value and proximity to amenities.

I adjusted the sale prices for inflation and used these data to estimate housing models such

as the hedonic price model and the willingness-to-pay model (described in Section 4.3).

I summarize the housing transaction data for the different unit types in the two housing
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markets (public and private) in Table 3.6. Data for HDB3, HDB4, HDB5, and condominiums

and apartments are quite voluminous, with at least 20,000 transactions recorded over the

four-year period (i.e., 2011 to 2014). Average sale prices of HDB units increase with the

number of rooms in the unit, but 1-room and 2-room HDB flats are the most expensive

after the sale prices are adjusted for flat area. Condominiums and apartments cost more

than twice the price of a 5-room HDB flat on average, while the area-adjusted sale price is

almost thrice as high. Landed properties cost close to 4.5 million SGD on average, although

the area-adjusted sale price is similar to that of a condo or apartment.

Table 3.6: Summary of housing transaction data

Housing market Sale type Unit type
Number of transactions

(2011-14)

Average sale price

(2012-SGD)

Avg. sale price per unit area

(2012-SGD / sq.ft.)

Public Resales only

HDB12 844 $ 265,713 $ 559 / sq.ft.

HDB3 21,949 $ 347,130 $ 475 / sq.ft.

HDB4 28,962 $ 452,871 $ 441 / sq.ft.

HDB5 23,996 $ 563,131 $ 420 / sq.ft.

Private
Both new sales

and resales

Condos & Apts. 90,926 $ 1,346,933 $ 1,199 / sq.ft.

Landed properties 4,685 $ 4,402,903 $ 1,131 / sq.ft.

3.2.3 Built environment and land use

Since the residential location of each household and job location of each worker (in HITS)

and the location of each housing unit (in REALIS) are recorded as postcodes, it is possible

to geolocate each individual, household, and housing unit at the building level. We used this

fine-grained detail to construct various geospatial measures related to the built environment

and land use. First, we incorporated built environment data by calculating Euclidian dis-

tances to various amenities like bus stops, MRT stations, primary schools, shopping malls,

and expressway (on/off access) ramps from each postcode. Second, I constructed land use

descriptors of the area around each postcode using the 2008 Master Plan provided by the

URA. I computed densities of housing and jobs in a 500 meter (Euclidian distance) circular

buffer around each postcode. I also constructed similar buffers of 1000 meter radii around

each postcode and computed the shares of area covered by seven different land use categories

(i.e., residential, commercial, industrial, office, institutional, infrastructural, and undevel-
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oped). Additionally, I combined these land use area shares to construct a Generalized Land

Use Diversity Index (GLUDI) using the following formula:

𝐺𝐿𝑈𝐷𝐼 = 1−

[︃∑︀𝑁
𝑗=1

⃒⃒𝐴𝑗

𝑇 − 1
𝑁

⃒⃒
2
(︀
1− 1

𝑁

)︀ ]︃
(3.1)

where there are 𝑁(= 7) different types of land uses, 𝐴𝑗 represents the area occupied

by the 𝑗th land use type in the 1000 meter buffer around the postcode, and 𝑇 =
∑︀𝑁

𝑗=1𝐴𝑗

represents the total land area in the buffer. This index captures the mix of land uses relative

to a perfectly equal distribution of uses. When the land in the buffer has a single use, the

index achieves a value of zero. On the other hand, a value of one indicates perfectly equal

mixing among the 𝑁(= 7) different land uses. These postcode-level geospatial variables are

summarized in Table 3.7.

3.2.4 Travel skims

The LTA also provided travel skims that include estimates of travel time and cost for every

possible origin-destination (OD) pair at the Traffic Analysis Zone (TAZ) level differentiated

by direction (i.e., TAZ 𝑖 → TAZ 𝑗 is recorded separately from TAZ 𝑗 → TAZ 𝑖), mode

(i.e., car and public transit), and peak period (i.e., AM peak, off-peak, and PM peak).

While the travel time using car was directly reported for each OD, I calculated total public

transit travel time by adding up the in-vehicle travel time, walking time, and waiting time

estimates provided in the skims. I used the public transit commute times and commute time

differences (between transit and car) as explanatory variables in the long-term behavioral

models described in Section 4.3. Although I used the commute time for the household head

to explain residential location and private vehicle holding choices, I summarize the weighted

average travel times to all jobs using car and public transit for each postcode in Table 3.7.

There is a difference of over 30 minutes between public transit and car travel times to all

jobs on average.

3.3 Summary

In this chapter, I provided an overview of the contextual setting of this dissertation — the

city-state of Singapore. I discussed how the Singaporean government has pursued a top-down

approach towards land use planning, public housing provision, and private vehicle ownership
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Table 3.7: Summary of postcode-level spatial data

Mean Std. Dev.

Distances to amenities (kms)

Distance to bus stop 0.21 0.34

Distance to MRT station 1.16 0.90

Distance to primary school 1.74 1.56

Distance to shopping mall 1.15 1.10

Distance to expressway ramp 1.26 0.95

Land Use indicators

Housing density in 500-m buffer (units / sq.km.) 4,971 3,499

Job density in 500-m buffer (jobs / sq.km.) 11,103 33,631

Residential area in 1-km buffer (%) 43.0% 18.3%

Commercial area in 1-km buffer (%) 3.4% 5.7%

Industrial area in 1-km buffer (%) 6.2% 13.4%

Office area in 1-km buffer (%) 3.0% 5.3%

Institutional area in 1-km buffer (%) 8.2% 5.6%

Infrastructural area in 1-km buffer (%) 18.9% 5.0%

Undeveloped area in 1-km buffer (%) 15.3% 13.7%

Generalized Land Use Diversity Index 0.46 0.11

Commute time indicators

Travel time to jobs using car (mins) 25.2 7.6

Travel time to jobs using public transit (mins) 57.1 11.3

and use regulation. The public agencies overlooking these objectives (URA, HDB, and LTA)

were our partners on the Future Urban Mobility (FM) research program and assisted us by

providing us with relevant data sources and invaluable contextual information. I also briefly

described the various data sources I used for this dissertation, namely a household travel

survey, housing transactions for both public and private housing, built environment and land

use, and travel skims. The next chapter discusses the LUTI model we have been developing

in-house at FM (SimMobility). I will also present estimation results for various long-term

behavioral models using the data sources mentioned above.
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Chapter 4

SimMobility: A LUTI model for the

emerging mobility era

SimMobility is a multi-scale agent-based integrated microsimulation platform that incorpo-

rates time-scale dependent behavioral modeling through an activity-based travel demand

framework (Adnan et al., 2016). It has been developed by the Future Urban Mobility (FM)

research group under the Singapore-MIT Alliance for Research and Technology (SMART)

program. Through the consideration of interactions between transportation and land use,

SimMobility can be used for a variety of applications ranging from implementation of in-

telligent transportation systems (such as mobility-on-demand and automated vehicles) to

evaluation of alternative future scenarios of land use, infrastructure, and behavioral change.

Our recent efforts demonstrate how SimMobility can be used to understand the impact

of automated mobility on housing-mobility choices (Basu and Ferreira, 2020a; Zhou et al.,

2021), private vehicle holdings (Basu and Ferreira, 2020b), and the future of mass transit

(Basu et al., 2018), in addition to highlighting the potential for sustainable mobility futures

(Oke et al., 2019). SimMobility encompasses three major components:

• Long-Term (LT): This detailed land use-transport simulator is used to simulate

changes in location (e.g., residential, job, and school) and private vehicle holdings

using a synthetic population of households (Zhu and Ferreira Jr, 2014), firms and

establishments (Le et al., 2016), and built environment with sufficient spatial and

demographic detail to enable estimation and calibration of various choice models such

as household-level residential location and vehicle availability choices, and individual-
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level job and school location choices. The temporal scale of this component ranges

from days to years.

• Medium-Term (MT): This component contains a mesoscopic supply simulator cou-

pled with a microscopic demand (daily activity) simulator (Lu et al., 2015; Basu et al.,

2018). Daily travel decisions like mode choice, route choice, activity-travel patterns,

and incident-sensitive (re)scheduling are considered at the temporal scale of minutes

to hours, up to a single day.

• Short-Term (ST): This microscopic traffic simulator involves lane-changing, gap

acceptance, route choice, and acceleration-braking behavior at the temporal scale of

seconds to minutes (Azevedo et al., 2017).

Across different timescales, SimMobility follows an event-driven, activity-based paradigm,

simulating both demand and supply at each level and the interactions between different lev-

els. As shown in Figure 4-1, LT provides (household and firm) population characteristics

(including locations) and land-use configurations to MT, which transmits trip chains to

ST. In the other direction, ST provides traffic performance measures to MT, which feeds

activity-based accessibility measures back to LT.

Figure 4-1: SimMobility framework
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4.1 Activity-based accessibility (ABA)

The LT and MT components are connected through activity-based accessibility (ABA) mea-

sures that represent the expected maximum utility (or ‘logsum’) values of individuals’ daily

activity patterns (i.e., combinations of activities, destinations, and modes), as shown in Fig-

ure 4-2. In addition to reflecting individual preferences based on actual choices made, ABA

measures are also directly linked to traditional measures of consumer surplus (Small and

Rosen, 1981).

Figure 4-2: Integration between SimMobility Long-Term and Medium-Term

In the disaggregate discrete choice modeling framework, the utility of an alternative is

defined as:

𝑈𝑗𝑛 = 𝑉 (𝑋𝑗𝑛, 𝑍𝑛, 𝛽) + 𝜖𝑗𝑛 (4.1)

where 𝑉 represents a systematic utility function, 𝑋𝑗𝑛 is a vector of attributes of the

alternatives 𝑗 for decision-maker 𝑛, 𝑍𝑛 is a vector of sociodemographic characteristics of the

decision-maker, 𝛽 is a vector of unknown parameters that need to be estimated, and 𝜖𝑗𝑛

represents the random, unobservable, unknown component (or the error term) of utility. In

logit choice models, the error term is assumed to follow an independent and identical (i.i.d.)

Gumbel distribution with a scale parameter 𝜇. The choice probability of each alternative

can be written as:
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𝑃𝑛(𝑖) =
exp(𝜇𝑉𝑖𝑛)∑︀𝐽
𝑗=1 exp(𝜇𝑉𝑗𝑛)

(4.2)

The denominator of this probability expression constitutes the expected maximum utility

(or ‘logsum’) from the set of relevant alternatives. This logsum value represents the value

of the decision-maker’s entire choice set.

𝐸
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where 𝑉𝑖𝑛 is the systematic component of utility 𝑈𝑖𝑛 for decision-maker 𝑛 choosing one

alternative from the choice set 𝐶𝑛. This ‘logsum’ term serves as a summary measure of

the utility of the entire choice set, and has been characterized as a reasonable measure of

accessibility by Ben-Akiva and Lerman (1985). In the case of the more general nested logit

model, the logsums pass up the choice chain, whereby the logsums from the lower-level

choices (e.g., mode choice) are included in the systematic utility component of higher levels

(e.g., destination choice) up to the highest level (e.g., activity pattern choice). The logsum

calculated for the highest level represents the expected value of the full choice set (e.g., of

activity-travel patterns) to the decision-maker.

Ben-Akiva and Bowman (1998) build on this framework to demonstrate how activity-

based travel demand models can be integrated with residential location choices. In their

case study, activity-based accessibility (ABA) represents an individual’s maximum utility

from their available activity schedules (i.e., combinations of activities, destinations, and

modes), given a residential location. This approach allows for individuals to have different

accessibilities at different residential locations. In addition to reflecting individual differences

in preferences for activity schedules (including destinations and modes), the ABA measure

also incorporates the possibilities for activity substitution, trip chaining, and other behaviors

that might be influenced by variations in location choices (Ben-Akiva and Bowman, 1998).

Thus, the ABA is a disaggregate, behaviorally rooted way of representing the interactions

between an individual’s long-term choices (such as residential location) and their preferred

activity schedules.

In SimMobility Medium-Term (MT), we have extended this approach to other long-term

choices such as job location and private vehicle holdings as well. The activity-based travel

demand modeling framework used in MT is presented in Figure 4-3. It has been applied by
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my colleagues to model travel demand in both Singapore and Greater Boston (Siyu, 2015;

Viegas de Lima et al., 2018). The framework uses a sequence of discrete choice models,

which are functions of different personal characteristics and transport system attributes,

divided into three sections — (a) the Day Pattern Level, (b) the Tour Level, and (c) the

Intermediate Stop Level. Each of these levels is conditional on the one(s) above and are

linked via logsum values.

Figure 4-3: Activity-based travel demand modeling framework in SimMobility Medium-
Term

First, the Day Pattern Level determines whether the individual will choose to travel on

the given day, and if they do, what activity purposes their tours may have, and what types

of intermediate stops those tours may contain. It also determines how many tours of each

chosen tour purpose the individual will chose to participate in. Then, the Tour Level is
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executed for each chosen tour. It determines the mode, destination, and start and end times

for each activity. For work tours, work-based sub-tours (i.e., originating and ending at work

during the duration of the work activity) may also be included. The mode, destination, and

time-of-day for these sub-tours are modeled as well. Finally, the Intermediate Stop Level

generates stops for trips to and from the primary activity. Purpose, mode, destination, and

time-of-day are all modeled for each intermediate stop. To represent the nested nature of

the decision-making process, expected utilities (or logsums) from the lower-level models are

included in the higher-level models. Additional details on each of these models can be found

in Viegas de Lima et al. (2018).

Using this framework, we can compute different individual-level ABAs conditional on

different long-term choices (such as residential location, job location, and private vehicle

holdings) using MT. For example, let us consider an individual living in the 𝑖th Traffic

Analysis Zone (TAZ) and working in the 𝑗th TAZ. We can obtain different ABAs for each

individual pertaining to cases such as (a) fixed home - variable work - fixed vehicle holdings,

where the individual can choose from all possible TAZs for their work location while keeping

the residential location (TAZ 𝑖) and private vehicle holdings fixed, (b) variable home - fixed

work - fixed vehicle holdings, where the work location (TAZ 𝑗) and private vehicle holdings

are fixed but the residential location is allowed to vary, and (c) fixed home - fixed work -

varying vehicle holdings, where the individual considers different private vehicle options while

keeping their home and work locations fixed. For every possible combination of home TAZ,

work TAZ, and vehicle holding option, we can use MT to generate a distinct logsum value

representing the activity-based accessibility of each individual in the synthetic population.

These ABAs are used as explanatory independent variables in LT behavioral choice mod-

els such as residential location choice, job location choice, and vehicle availability choice.

Since both residential location choice and vehicle availability choice are household-level de-

cisions, we need a household-level accessibility measure that can be provided as input to

these two models. However, a ‘true’ household-level ABA would require the incorporation

of intra-household interactions as well as scaling the logsum to ‘real’ units (e.g., dollars or

minutes). Unfortunately, intra-household interactions (e.g., how members share the use of

one car, or how members of a multi-worker household jointly decide on a residential location)

are not provided in the data sources I am using (nor in standard household travel surveys

used across the world). Moreover, we have not yet developed satisfactory time- or cost-based
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scaling factors for the logsum accessibility measures (see Dong et al. (2006)). Therefore, we

approximate a household’s accessibility by using that of its highest income worker (or, if the

household has no worker, the ABA of the oldest member).

I estimated two of the LT sub-models (willigness-to-pay and private vehicle availability)

using household-level ABAs as accessibility measures (see Sections 4.3.4 and 4.3.5). To test

whether a ‘simpler’ accessibility measure would provide similar scenario analysis results,

I also estimated these two models separately using public transit commute times for the

household head (or average transit times from the home location to all jobs, if the household

head was not a worker), instead of the more behaviorally rooted and disaggregate ABA

(see Tables A.5 and A.7), and used them to conduct a scenario analysis robustness check

(see Section 6.2.3). In related research, my colleagues have found disaggregate, utility-

based accessibility measures to better represent vehicle ownership decisions and property

valuations compared with more aggregate, potential-based measures such as gravity-based

accessibility (He et al., 2019).

4.2 SimMobility Long-Term (LT) framework

The SimMobility Long-Term (LT) component is designed to simulate how the interrelation-

ships between the transportation and land-use systems manifest themselves in the housing

and commercial real estate markets, household and firm location choices, school and work-

place choices, and private vehicle availability choices. In this section, I will describe the

demand dynamics of the residential housing market implementation as this is the main fo-

cus of the dissertation. The following section will provide further details on the specification

and estimation results of different LT sub-models. The reader is invited to refer to Zhu et al.

(2018) for additional details on the LT framework (such as real estate supply dynamics).

Using external data sources, a ‘day-0’ synthetic population of individuals, households,

housing units, firms, establishments, and commercial spaces is created in a manner that

richly represents their characteristics and spatial locations (Zhu and Ferreira Jr, 2014; Zhou

et al., 2022). The 2012 Singapore synthetic population includes around 5.2 million individ-

uals1, 1.15 million households, 1.4 million housing units, and 170,000 establishments. Most
1Although MT simulates activity-travel patterns for all 5.2 million individuals, we exclude 1.16 million

construction workers, work permit holders, and other foreigners from the housing market simulation in LT
because only resident households with at least one citizen or permanent resident have access to the housing
market in Singapore.
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LUTI models assign individuals to home and, if applicable, work TAZs, but we go beyond

that by assigning each household to a particular housing unit in a specific building. Unoc-

cupied units available for sale constitute the majority of the housing market supply, where

both resales and new sales (including units available for advance purchase) are modeled.

Sellers set asking prices slightly higher than the perceived market prices that are deter-

mined through the hedonic price model. Instead of modeling sales and price adjustments as

quarterly or annual events (as in UrbanSim and ILUTE), the LT framework models housing

market transactions as a daily bidding process among those buyers and sellers estimated to

be actively engaged in searching for housing and negotiating sales (see Figure 4-4).

Figure 4-4: Bidding process in SimMobility Long-Term

Potential buyers are drawn from the entire pool of households in the synthetic popula-

tion based on an explicit probabilistic awakening model. The total number of households

awakened each day is a modeler-defined parameter (which we estimate based on annual sales

and rough estimates of search time and bidding success rates). The awakening likelihoods

are multiplied by the overall daily awakening rate to determine the probability that a dor-

mant household will be awakened on any particular day. When a household is awakened,

we determine probabilistically whether it will switch tenure type (own or rent). After deter-

mining a desired tenure type, a household will continue searching until it bids successfully

on a housing unit, or gives up after a number of unsuccessful attempts. Certain house-

holds are prevented from being awakened, e.g., all successful bids take at least 30 days to

close and advance purchase of unfinished units might delay occupancy by up to four years.

Households with such pending sales cannot be (re)awakened. Similarly, unsuccessful bidders
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have a ‘cooling off’ period and successful bidders have a ‘settling in’ period before they are

allowed to return to the pool of potentially awakened households.

The screening model determines how awakened households shortlist potential units for

consideration based on their preferences for unit type and neighborhood. On any given day,

a household’s choice set is formed by drawing 30+ units probabilistically from all available-

for-occupancy housing units of the same tenure status as the household’s desired tenure type.

The likelihood that a housing unit is included in the choice set of an awakened household is

proportional to the screening probabilities that estimate the odds of that household choosing

to live in the planning region and unit type that match the candidate housing unit. This

approach attempts to mimic the typical search process whereby households tend to narrow

their search to particular zones (or neighborhoods) and housing types. We also include

‘affordability’ and ‘eligibility’ constraints that help in the construction of plausible choice

sets for all active households by guarding against the inclusion of unlikely candidates in the

choice sets and allowing for consideration of government subsidies that are available only to

eligible households. The maximum price the household can afford to pay is based on their

monthly income, number and age of workers, and the market or rental value of their current

residential unit.

Active buyers then evaluate each housing unit in their choice set by determining their

willingness-to-pay for the unit and the optimal bid that would maximize the expected utility

of the unit (including the likelihood that the offer is accepted by the seller). This approach

follows Rocco (2014) who builds upon Lerman and Kern (1983). Households are heteroge-

neous in their valuation of housing bundle characteristics, and the market prices represent

some amalgamation of the preferences of those types of households that tend to win the

bidding for particular types of locations and housing units. Among units in the choice set,

a household bids for the unit that maximizes the expected consumer surplus, provided it is

higher than the surplus for their current housing unit. If no unit in the choice set provides

positive surplus or the currently occupied unit provides the maximum surplus, the household

does not bid that day. Simply placing a bid does not guarantee success. If the seller rejects

the buyer’s bid (e.g., for being lower than another bidder or their target price), the buyer

will consider forgoing some utility surplus if re-bidding for the same unit on a subsequent

day with an improved offer remains promising. The number of days buyers remain actively

searching for housing is capped at a few months out of every year and households may forgo
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surplus or choose to stop searching if, even after several weeks of searching, they remain

unsuccessful in bidding for suitable housing.

After successful buyers move into their new housing units, they reassess the job and

school assignments of their household members, and reconsider private vehicle availability.

This reconsideration is based on the location characteristics (such as transport infrastruc-

ture and supply, commute distance, and distances to amenities) of the new housing unit. As

private vehicle availability is reconsidered after the household has moved into their new unit,

this housing-mobility choice framework can be termed as ‘sequential.’ I also describe a si-

multaneous choice framework in Section 4.4.3 as a methodological extension which considers

both residential location and private vehicle availability together in the bidding process.

4.3 Long-Term (LT) sub-models

In this section, I will provide details on the specification and estimation of the five major

sub-models within the Long-Term (LT) framework — (a) the awakening model, (b) the

screening model, (c) the hedonic price model, (d) the willingness-to-pay model, and (e) the

private vehicle availability model. The LT framework also includes job and school location

choice models but I do not describe them here as they are not used in this dissertation.

4.3.1 Awakening model

The awakening model is an external probabilistic model that was calibrated using Singapore

census data in addition to a ‘recent mover’ survey of 6,000 households (including 1,000 who

had moved at least once in the prior three years) conducted in 2017 (Shaw, 2018). I report

the awakening probabilities (or moving rates) and tenure transition probabilities used for

the awakening model in Table 4.1. These probabilities are based on the age of the household

head (which is a proxy for where the household is in their life course) and their current

tenure status (own or rent). Each day, a weighted Monte Carlo coin flip is used to select

households to be awakened from the pool of households that are not ‘off market’ (because

of a recent failed or successful search). Once a household is awakened, the tenure transition

rate is used to determine whether their search is to purchase a housing unit or find a rental.

This second weighted Monte Carlo coin flip determines, for the duration of their search

period, whether they attempt to buy a housing unit or get a rental.
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Regardless of the age of household head, renters are twice as likely to move than owners

reflecting a greater degree of churn in the rental market. The probability of moving also

reduces with an increase in the age of the household head. For example, younger households

headed by an individual aged less than 35 years have a 20% annual likelihood of moving if

they currently own their unit. However, the same likelihood for older households headed by

an individual aged more than 65 years drops to only 4%.

Table 4.1: Estimated awakening and tenure transition probabilities for households

Age of household head Current tenure Future tenure Awakening probability Transition probability

Less than 35 years

Own Own 0.20 0.94

Own Rent 0.20 0.06

Rent Own 0.40 0.20

Rent Rent 0.40 0.80

35 to 49 years

Own Own 0.10 0.95

Own Rent 0.10 0.05

Rent Own 0.20 0.07

Rent Rent 0.20 0.93

50 to 64 years

Own Own 0.05 0.93

Own Rent 0.05 0.07

Rent Own 0.10 0.13

Rent Rent 0.10 0.87

More than 65 years

Own Own 0.04 0.89

Own Rent 0.04 0.11

Rent Own 0.08 0.29

Rent Rent 0.08 0.71

After a household has been awakened, they are always much more likely to retain their

tenure status than switch. Younger owners have a 94% likelihood to remain owners, while

older owners have a 89% likelihood to do the same. The rent-to-own transition probabilities

are comparatively larger for the youngest age group (20%) and the oldest age group (29%),

reflecting rising household incomes (and an aspiration for home ownership) and wealth accu-

mulation respectively. The own-to-rent transition is most likely (11%) for older homeowners,

whose decision may be influenced by a loss of income (stemming from retirement or inability

to work) or a reduction in household size (e.g., through becoming empty nesters or losing a

partner). For implementation in SimMobility LT, we assume tenure transition probabilities

to be independent of the decision to move (i.e., awakening probabilities).
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4.3.2 Screening model

The screening model is estimated from the 2012 HITS sample data which reported the

location (at the postcode level) and housing unit type of each household along with their

sociodemographics. I constructed a choice set for each household where every combination

of zone (at the planning region level) and housing unit type was included as an alternative

to the planning region-unit type combination they reported as having actually chosen. I

then estimated a multinomial logit choice model of household preferences for location and

housing type jointly. The data are summarized in Table A.1 and the estimation results are

reported in Table 4.2.

Three groups of variables were used to explain household preferences for location and

housing type. The first group describes the characteristics of the zone (planning region).

All else equal, zones that are located far from amenities such as MRT stations and primary

schools or require long transit commute times on average are less likely to be chosen as

desirable residential locations. Households display an inclination for zones that have diverse

land use with an affinity for residential and undeveloped land uses (the latter may reflect

proximity to green spaces and water bodies) and a relative aversion for living in areas

dominated by commercial land use.

The second group of variables relates to the behavior proposed by Schelling’s segre-

gation model where people have in-group preference towards their own group (Schelling,

1971). Based on this assumption, I interacted household characteristics with zonal sociode-

mographics. Households are found to choose zone-unit type categories that reflect similar

income levels and household sizes. I also detect ethnic biases in zonal preferences among

house-hunters, which are especially strong for minority non-Chinese groups such as Indians

and Malays. Additionally, I find that households with children, teenagers, or seniors prefer

zones where similar types of households have an established presence. This may reflect the

mediating influence of urban design oriented towards special groups such as children and

seniors (e.g., parks, playgrounds, community centers, wider sidewalks, etc.), or desired social

networks.

Finally, the third group of variables I constructed tries to capture household preferences

for certain types of housing units. For example, bigger households (with more than 3 mem-

bers) prefer neighborhoods with a higher share of comparatively larger-sized public housing
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Table 4.2: Estimation results for household-level screening model

𝛽 S.E.

Average distance to MRT station (weighted average of postcodes in zone) -0.158 0.121

Average distance to top-30 primary school (weighted average of postcodes in zone) -0.171*** 0.0337

Average transit travel time to all jobs (weighted average of postcodes in zone) -0.392 0.295

Land Use Diversity (weighted average of postcodes in zone) 5.94*** 0.835

Share of total housing units in zone-unit type category (%) 2.91*** 0.0639

% of residential area (weighted average of postcodes in zone) 3.78*** 0.554

% of commercial area (weighted average of postcodes in zone) -8.01*** 0.779

% of undeveloped area (weighted average of postcodes in zone) 3.2*** 0.707

Income difference of household and zone-unit type category average -1.23*** 0.0338

Size difference of household and zone-unit type category average -0.337*** 0.0248

% of Chinese households in zone * Household is Chinese 1.57*** 0.168

% of Indian households in zone * Household is Indian 5.9*** 0.482

% of Malay households in zone * Household is Malay 8.53*** 0.537

% of households with children in zone * Household has a child 1.79*** 0.29

% of households with teenagers in zone * Household has a teenager 1.51*** 0.292

% of households with seniors in zone * Household has a senior 1.84*** 0.224

% of HDB4 and HDB5 units in zone * Household size > 3 1.3*** 0.358

% of apartments and condos in zone * Household per-capita income > $3,500 3.57*** 0.219

% of landed properties in zone * Household per-capita income > $3,500 3.88*** 0.333

% of detached and semi-detached private units in zone * Household per-capita income > $3,500 1.04 0.746

Note: The model was estimated on 9,569 observations and achieved an adjusted McFadden’s rho-squared
value of 0.158. Coefficient estimates (𝛽) and robust standard errors (S.E.) are reported with *** denoting
𝑝 < 0.001, ** denoting 𝑝 < 0.01, and * denoting 𝑝 < 0.1.

units. Additionally, I observe higher-income households to exhibit a preference for zones

with larger shares of private housing units such as apartments, condominiums, and landed

properties.

4.3.3 Hedonic price model

The hedonic price model describes how the market value of housing units can be explained

by unit and location characteristics. It is specified as a linear-in-parameters ordinary least
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squares (OLS) regression where the dependent variable is the natural logarithm of the area-

adjusted sale price (SGD per sq.ft.). I estimated hedonic price models separately for the

public housing (HDB) and private housing sub-markets using housing transaction data from

HDB and URA respectively (see Section 3.2.2). Within each housing sub-market, I estimated

separate models based on the unit type as the sizes of the effects are expected to differ by

unit type. I used the Chow Test to confirm that the estimated effect sizes were indeed

distinct for the different unit types (Chow, 1960).

I report the data summary and the estimation results for the public housing sub-market

in Tables A.2 and 4.3 respectively. Unit types include 1- and 2-room HDB units (HDB12),

3-room HDB units (HDB3), 4-room HDB units (HDB4), 5-room HDB units (HDB5), and

executive HDB units. As most HDB12 units are offered as rentals, the number of reported

HDB12 resales is relatively low compared to other HDB unit types but the model fit still

remains reasonable. I detect a premium on older units located at higher storeys in the

buildings, but there are diminishing returns as evidenced by the negative effect sizes of the

squared variables. HDB defines planning areas as ‘mature’ estates (more than 20 years

old) or ‘non-mature’ estates (less than 20 years old). Typically, mature estates are more

developed and equipped with better amenities and public transport infrastructure, which

can place a premium on HDB units located there. I confirm this through positive effect

sizes for ‘mature’ and ‘other-mature’ HDB estates relative to the reference category of ‘non-

mature.’ HDB units located close to MRT stations can also attract a premium, although

not for HDB12. Being located in primarily residential neighborhoods can also drive up the

market value of HDB units. We also see the negative influence of poor connectivity (as

measured through long transit commute times) on housing prices of HDB units.

I report the data summary and the estimation results for the private housing sub-market

in Tables A.3 and 4.4 respectively. Unit types include condominiums, apartments, executive

condominiums, terraced houses, and detached and semi-detached houses. I further sub-

divided condominium and apartment sales based on unit area as I expected effect sizes to

differ. The area thresholds used to define the categories (e.g., 60 sq.m. and 100 sq.m.

for condos) were based on the distribution of unit sizes in the sample. Market values for

landed properties (such as detached and semi-detached houses) were comparatively harder

to explain using the set of variables available. Better data on unit characteristics (e.g., the

number of bedrooms, bathrooms, garages, and other amenities such as backyards) could
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help improve this particular sub-model.

As I included both new sales and resales for the private housing sub-market, I confirmed

that new sales were indeed comparatively more expensive (all else equal) except for small

apartments. Although older condos and apartments are perceived to be more valuable with

diminishing returns, very old units (where the age of the building is unknown) are deemed

to be much less attractive. While apartments located on higher storeys attract a premium,

condo units located on lower storeys seem preferable. Smaller condos are the only private

unit type where proximity to the MRT adds market value. Rather than an indication of

market preference, the relative location of private housing projects far from public transit

is a more likely explanation. Apartments located in areas characterized by diverse land use

are preferable, but the opposite is true for all other private housing units. Finally, similar to

the public housing sub-market, poor connectivity has a negative influence on housing prices.

I find it interesting that private housing residents also value good connectivity to jobs but

not necessarily through transit.

4.3.4 Willingness-to-pay (WTP) model

The willingness-to-pay (WTP) model describes the maximum perceived value of a housing

unit to a household, or the maximum value a household is willing to pay for a housing unit.

The WTP depends on both housing and housing unit characteristics (including location).

Without conducting a separate survey specifically focused on extracting WTP, it can be

challenging to estimate using secondary data sources such as household travel surveys and

housing transactions. Households recorded in HITS report the (aggregated) housing type

and location of their currently occupied housing unit, but information regarding purchase

price or rent is not available. This necessitates the use of a ‘matching’ procedure where I

expanded the HITS sample using household sampling weights and matched each household

to a randomly drawn unit of the same unit type in the same neighborhood (planning area)

that was successfully sold. Although this still does not address the fact that the dependent

variable is observed transaction price instead of WTP, we can capture the variation in

transaction prices (even after holding location and housing type fixed) and introduce that

as an error term in the model.

I used an economic method called Stochastic Frontier Analysis (SFA) to estimate the

WTP model (Aigner et al., 1977; Meeusen and van Den Broeck, 1977). The stochastic
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production frontier model can be written as:

𝑦𝑖 = 𝑓(𝑥𝑖;𝛽) . 𝑇𝐸𝑖 . 𝑒𝑥𝑝(𝑣𝑖) (4.4)

where 𝑦𝑖 is the observed transaction price of household 𝑖, 𝑥𝑖 is a vector of explanatory

variables such as household and housing unit characteristics, 𝛽 is a vector of parameters to be

estimated, 𝑇𝐸𝑖 is the technical efficiency (i.e., the ratio of observed price to the maximum

feasible price or willingness-to-pay), and 𝑒𝑥𝑝(𝑣𝑖) is a stochastic component describing a

random shock. Although each household is facing a different shock, I assumed the shocks

are random and can be described by a common distribution. Since 𝑇𝐸𝑖 ≤ 1, we can also

write it as an exponential 𝑇𝐸𝑖 = 𝑒𝑥𝑝(−𝑢𝑖) where 𝑢𝑖 ≥ 0. This leads to:

𝑦𝑖 = 𝑓(𝑥𝑖;𝛽) . exp(−𝑢𝑖) . exp(𝑣𝑖) (4.5)

I assumed that 𝑓(𝑥𝑖;𝛽) takes the log-linear Cobb-Douglas form, following which the

model decomposes to:

𝑙𝑛(𝑦𝑖) = 𝛽0 +
∑︁
𝑛

𝛽𝑛.𝑙𝑛(𝑥𝑛𝑖) + 𝑣𝑖 − 𝑢𝑖 (4.6)

where 𝑣𝑖 is the ‘noise’ component and 𝑢𝑖 is the non-negative technical inefficiency com-

ponent. We can consider (𝑣𝑖 − 𝑢𝑖) to constitute a compound error term with a specific

distribution. I assumed this variable to be two-sided normally distributed with a mean

value of zero and standard deviation determined from observed transaction data summa-

rized by location and housing type. Since the HITS sample only provides aggregate housing

types, we cannot use more detailed unit categories such as those used in the hedonic price

model. Therefore, I estimated WTP using a stochastic frontier model on the ‘matched’

data of HITS households (expanded by sampling weights) and housing transactions. Based

on the aggregate unit types (i.e., HDB12, HDB3, HDB4, HDB5, apartments and condos,

and landed properties), I estimated different sub-models as preferences and WTP values are

expected to differ across unit types.

Along with household and housing unit characteristics, I also included an accessibility

measure. I report WTP estimation results using household-specific activity-based accessi-

bility (ABA) measures in Table 4.5 below (with the data summarized in Table A.4). These
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ABAs are calculated using the variable home - fixed work - fixed vehicle holdings approach

I described earlier in Section 4.1. The simulation computes the relevant ABA measures for

each of the 30+ housing units in that day’s choice set for each awakened household using

the activity-based framework in MT and plugged them into the WTP model specification.

Estimation results using the same specification but switching out ABA for transit commute

time of the household head (or transit travel time from the home location to all jobs, if the

household head is not employed) are reported in Table A.5 in Appendix A.

I find that zero-worker households (comprising retired seniors) have a higher willingness-

to-pay for HDB studios and larger HDB units located in areas that provide them with better

accessibility, as well as private housing units but in less accessible locations. For households

with at least one worker, moderately sized HDB units and private units both attract higher

WTP as long as they are located in areas providing better accessibility. Poor connectivity

to job locations (as measured by average transit travel time) reduces WTP across the board.

Housing unit characteristics (such as the size and age of the unit, and the storey on which

it is located) also influence WTP. All else equal, larger-sized units command higher WTP.

Households are found to have higher WTP for older (with diminishing returns) HDB4

and HDB5 units, along with apartments and condominiums. However, the reverse is true for

HDB12 and HDB3 units, and landed properties. Households seem to prefer newer units when

it comes to smaller public housing and landed private housing. Units located in ‘mature’

or ‘other-mature’ HDB estates command higher WTP compared to ‘non-mature’ estates.

Higher-income households have a preference for landed properties, while larger households

prefer paying more for apartments and condos. Households with children and seniors prefer

to pay more for small- and medium-sized HDB units. Households with a higher share of

workers (and presumably higher combined income) have higher WTP for apartments and

condos, while households with a higher share of young professional workers (employed in

white-collar jobs) are willing to pay more for landed properties.

4.3.5 Private vehicle availability model

The private vehicle availability model describes what types of private vehicles are available

to each household through ownership, rental, and company-provided access pathways. I

created six categories of private vehicle holdings — (a) not having access to any private

vehicles (or being ‘vehicle-free’), (b) one motorcycle available, (c) one off-peak car (see
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Section 3.1.3) available, (d) one ‘normal’ car available, (e) one ‘normal’ car coupled with a

motorcycle, and (f) multiple ‘normal’ cars. I estimated household private vehicle availability

using a multinomial logit choice model on HITS sample data.

In addition to household sociodemographics and location characteristics, I also used

an accessibility measure as an explanatory variable. I report private vehicle availability

estimation results using household-specific activity-based accessibility (ABA) measures in

Table 4.6 below (with the data summarized in Table A.6). These ABAs are calculated using

the fixed home - fixed work - variable vehicle holdings approach I described earlier in Section

4.1. The simulation computes different ABA measures for each of the six private vehicle

holding options in a household’s choice set using the activity-based framework in MT, which

are then used in the vehicle availability model estimation. Estimation results using the same

specification but switching out ABA for transit commute time of the household head (or

transit travel time from the home location to all jobs, if the household head is not employed)

are reported in Table A.7 in Appendix A.

I find that household-specific vehicle holdings-specific ABA always has a positive influ-

ence on vehicle availability choice. An essentially constant (and close to one) ABA coefficient

across options means that vehicle availability preferences do indeed depend directly on the

ABA (logsum) differences across options. Therefore, we can confirm that the odds of picking

various vehicle holding options depend directly on ABA differences, in addition to adjust-

ments for sociodemographic factors and location attributes. As expected, taxi ownership

reduces the likelihood of having access to a ‘normal’ car. I also detect a relationship between

ethnicity and vehicle availability choices. Chinese households are much more likely to choose

a ‘normal’ car, while minority non-Chinese households (especially Malays) are more likely to

choose a motorcycle. This could be due to systemic class differences not captured in other

parts of the model, or due to cultural differences, although I suspect the former is more

likely. As household size increases, the likelihood of choosing multiple private vehicles also

increases. Given the high cost of vehicle ownership in Singapore, it comes as no surprise

that income has a strong and significant effect of car availability, even for the off-peak car

option. The income effect grows stronger as vehicle holdings increase.

Households with children are more likely to own one off-peak car or one normal car, but

not multiple normal cars. This is in contrast to the U.S. where such households are observed

to own multiple cars. Households with seniors prefer to have access to a normal car and
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a motorcycle, presumably for varied mobility needs of the younger and older household

members in multi-generational households. Male-dominated households have an increased

preference for access to motorcycles, all else equal. Households with a larger share of workers

do not seem to prefer normal cars, suggesting that multi-worker households are in a more

precarious financial situation. Households with a larger share of blue-collar workers are

much more likely to choose motorcycles, while households with more white-collar workers

gravitate towards one or multiple normal cars.

Looking at location characteristics, I start to detect possible wealth effects through the

mediating influence of housing unit type. There could be other omitted variables (such

as parking availability and pricing) at play here as well. Households living in larger HDB

units or private housing are much more likely to prefer one or multiple normal cars. The

wealth effect is especially pronounced for households living on landed properties. Proximity

to public transit (both bus stops and MRT stations) reduce the likelihood of any form of

private vehicle holding, incentivizing households to choose to become vehicle-free. A ‘better’

ABA measure (with more informative parking and convenience measures for actual trips)

might be able to capture all of this, so that no additional location effects show up in the

estimation. I also find that households living in denser and more diverse neighborhoods are

less likely to choose normal cars, implying that those who do so live in less dense and less

diverse neighborhoods which are located in suburban areas with comparatively poor transit

connectivity. While this would usually imply car ownership to be a necessity rather than a

pure choice (e.g., in the U.S. context), the high cost of car ownership in Singapore implies

that the vehicle holding decision may be less driven by necessity and is likely coupled with

purchasing power, attitudinal desire, and residential location choice.

4.4 Methodological extensions

As part of this dissertation, I developed three key methodological extensions to SimMobility

Long-Term that have been operationalized in the current version of the open-source code.

These extensions allow for more granular modeling of housing-mobility choices in the daily

housing market by incorporating transitions and interactions between agents. First, sep-

arate housing market dynamics for owners and renters were created, while allowing both

households and housing units to transition between the two sub-markets. Second, various
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types of market feedback effects that reflect realistic interactions of buyers and sellers were

included. Finally, I implemented a ‘simultaneous’ housing-mobility choice framework where

households consider both housing units and private vehicle holdings at the same time in

the bidding process. I will describe these three extensions in further detail in the following

sub-sections.

4.4.1 Separate markets for owners and renters

Although both households and housing units created during the synthetic population gen-

eration process had assigned tenure status values (own or rent), a realistic rental housing

market model had not yet been implemented (Zhu et al., 2018). If the desired search during

the daily bidding process was for a rental unit, households were randomly assigned to an

available rental unit, following which they would stop searching and be taken off the market.

Moreover, while households can transition between owning and renting as part of the awak-

ening model, housing units could not. I addressed these limitations in my effort to extend

our housing market model to cover renters and rentals as well.

I used the following equation to calculate plausible monthly rents for housing units:

𝑅𝑖 = 𝑂𝑖 * 𝑟𝑖 / (12 * (1 − 𝑡𝑖 − 𝑢𝑖)) (4.7)

where 𝑅𝑖 is the monthly rental price (or WTP) for housing unit 𝑖, 𝑂𝑖 is the for-own

price (or WTP) for housing unit 𝑖, 𝑟𝑖 is the rental return rate, 𝑡𝑖 is the tax rate, and 𝑢𝑖

is the utility rate. Using REALIS data on median rents by location (planning area) and

(aggregated) housing types, I estimated rental return rates (𝑟𝑖) that varied by planning area

and unit type. I also assumed the tax rate (𝑡𝑖) and utility rate (𝑢𝑖) to be a constant 2% and

1% respectively for all unit types. Using this equation, we can amortize the hedonic price

and WTP values for all rental units and renter households accordingly.

I also allowed for sellers to change the tenure status of their housing units based on

market conditions. If a for-own unit has not received any bids for several weeks despite

asking price adjustments, it could imply that the housing unit is not desirable to owners.

Sellers may then opt to transfer the unit to the rental market, amortize the asking price with

an additional discount (to reflect the unit not being desirable at the current asking price),

and offer it for rent. On the other hand, some sellers may choose to take advantage of ‘hot’
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neighborhoods where demand for owner-occupied housing is growing. These neighborhoods

(and unit types) can be identified based on the number of bids they receive from potential

buyers. If this number crosses a modeler-specified threshold, some sellers probabilistically

choose to transfer their units to the owner market, reverse-amortize the current rents to

asking prices, include an additional mark-up to reflect the increased demand in the ‘hot’

market, and then offer the units for sale. These tenure status transitions are shown in Figure

4-5. The bold lines indicate that most tenure status transitions are within the same category

(i.e., most owners choose to remain owners when searching for new housing); cross-tenure

transitions are comparatively less likely.

Figure 4-5: Tenure status transitions of households and housing units

4.4.2 Market feedback effects

The daily bidding process in the housing market involves bids made by potential buyers that

are dependent on their WTP and asking prices of units set by sellers. Both the asking prices

and bid values can be adjusted based on market feedback effects, as I outline in Figure 4-6.

For example, if a seller does not receive any bid on their offered unit for several weeks and

the unit remains unsold, the seller will revise the asking price and offer the unit at a slightly

reduced asking price. On the other hand, sellers can take advantage of high buyer interest

by raising asking prices, which can spark off a bidding war. If a unit receives multiple bids

where the bid count crosses a modeler-defined threshold on a given day, the seller can refuse

all of that day’s bids, increase the asking price, and offer the unit at a more expensive rate

the next day.

Bidders and sellers can also negotiate between themselves in certain circumstances. If a

unit receives only one bid but the bid value is lower than the target price (i.e., the minimum
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Figure 4-6: Examples of market feedback effects

price the seller is willing to accept for this unit), the seller will reject the bid but also

invite the buyer to submit an improved offer the next day. When a unit receives multiple

bids (that do not exceed the bid count threshold for increasing the asking price), the seller

will capitalize on this high demand by rejecting all bids with an invitation to bidders to

submit improved offers the next day. In such circumstances, buyers will evaluate whether

submitting a better offer on this unit the next day still provides them with the maximum

expected consumer surplus within their next-day’s choice set (that is newly re-constructed

but retains the current housing unit and any rejected bids accompanied by bid-too-low

messages). If it does, they will re-bid with a higher bid value; if it does not, they will not

bid on this unit again that day. They could bid on it during some future day if it were still

available, perhaps at a reduced price.

4.4.3 Simultaneous housing-mobility choice with vehicle costs

As an extension to the sequential consideration of residential location and private vehicle

holdings, I designed a simultaneous choice framework through which households consider

both residential location and private vehicle holdings at the same time during the bidding

process (see Figure 4-7). This framework also allows for the inclusion of mobility costs in

the bidding process as the WTP for housing in a particular location can decrease if the

location also requires owning a car, as household expenses for housing and mobility are

subject to budget constraints. Not only does my motivation to develop this framework stem

from the high cost of vehicle ownership in Singapore, but also a need to better reflect rising

auto expenses that invariably influence residential location choices. However, my approach

differs from the estimation of joint choices of residential location and auto ownership used
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(comparatively sparingly) in the literature (see, e.g., Lerman (1976) and Salon (2009)).

Figure 4-7: Housing-mobility choice frameworks

Under the simultaneous choice framework, households shortlist the top ‘𝑙’ (set to 3)

housing units ranked by expected consumer surplus and evaluate their vehicle holding prob-

abilities if they were to live in those units. The top ‘𝑣’ (set to 2) vehicle availability categories

ranked by probability (among the six outlined in Section 4.3.5) for each of the ‘𝑙’ housing

units are selected, leading to a new housing-mobility choice set of (𝑙 * 𝑣) alternatives. The

vehicle costs associated with each alternative are subtracted from the WTP for housing,

and expected consumer surplus is recomputed using these revised WTP values. Finally, the

household chooses to bid on the housing-mobility option that provides them with the max-

imum expected consumer surplus, provided it is higher than their current choice of housing

unit and vehicle holdings. This framework is more complex and requires the computation

of (𝑙 * 6) logsum values to reflect the accessibility of households if they were to live in one

of the ‘𝑙’ units and choose one of the six vehicle availability categories, in addition to the

30+ consumer surplus computations done in the first stage evaluation of that day’s choice

set. In contrast, the sequential choice framework requires the evaluation of only 6 logsum

values for the single unit which was chosen to bid on (and the same 30+ consumer surplus

computations). As the evaluation of 12 additional logsums per potential buyer is time-

consuming, this slows down the simulation considerably to the point that the simultaneous

choice framework takes almost twice as long as the sequential choice framework.

Vehicle costs for each household are generated based on a survey of households who
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changed vehicle holdings in the prior three years conducted in 2019. Using a supervised

classification (random forest) model, I related (categorical) total vehicle costs (including

COE prices) to household sociodemographics for three private vehicle categories (i.e., mo-

torcycle, off-peak car, and ‘normal’ car). I then used this model to predict total vehicle costs

for the six vehicle holdings categories in the vehicle availability model for every household

in the synthetic population. After obtaining predicted cost categories, I imputed continu-

ous values by drawing from a log-normal distribution that was constrained around the cost

category thresholds, similar to my approach for imputing continuous values from income

categories. Although I had data available on the age, make, and model of the vehicle, I did

not include them in my model as my objective was to obtain total vehicle cost estimates

that were reflective of household sociodemographics. The median total vehicle costs are

around SGD 30,000 for a motorcycle, SGD 50,000 for an off-peak car, and SGD 100,000 for

a normal car. More sophisticated vehicle cost modeling can be pursued in future efforts.

4.5 Calibration

The SimMobility LT framework includes several housing market parameters that require

calibration. For example, the simulation length and daily awakening rates influence overall

bidding activity and, consequently, total successful transactions. I shortlisted parameters to

which simulation results were more sensitive and selected a set of plausible values for each

parameter (see Table 4.7). I carried out both single-perturbation (where one parameter is

varied holding others constant) and multi-perturbation (where a few representative param-

eter combinations are selected from the multi-dimensional parameter space using Latent

Hypercube Sampling) explorations, and compared simulation results to observed housing

transaction data from 2011 to 2014. My final choices of parameter values were based on

both objectivity (i.e., which settings tended to most closely approximate ground truth) as

well as subjectivity (i.e., expert knowledge on interactions between multiple parameters that

cannot be captured in a purely objective calibration exercise).

As I am interested in observing near-term neighborhood changes, I chose a simulation

length of 720 days which roughly corresponds to three calendar years based on our obser-

vation that the real estate market is less active on holidays, Sundays, and the like. After

tuning other parameters, a two-year simulation generated three years of transactions, sug-
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Table 4.7: Calibration of housing market parameters

Parameters Set of plausible values Selected value

Simulation length in days < 182 ; 365 ; 548 ; 730 > 730

Households awakened daily < 250 ; 400 ; 500 ; 750 ; 1,000 > 400

Ratio of asking price to hedonic price < 100% ; 105% ; 110% ; 115% > 110%

Standard deviation of WTP error distribution < $20,000 ; $40,000 ; $60,000 ; $80,000 > $60,000

Days without bids after which sellers reduce asking prices < 7 ; 14 ; 21 ; 28 > 21

Reduced asking price % after zero-bid period < 91% ; 93% ; 95% ; 97% > 97%

Bid count threshold after which sellers increase asking prices < 5 ; 7 ; 10 ; 15 > 15

Increased asking price % after bid count crosses threshold <101% ; 102% ; 105% ; 110% > 110%

Increased bid % after seller request to improve offer < 101% ; 102% ; 105% ; 110% > 110%

gesting a plausible average bidding intensity of four bidding evaluations every six days. 400

households are awakened and enter the housing market daily. The asking price of housing

units is set to 10% above the hedonic price (calculated by the hedonic price model) by sellers.

The standard deviation of the WTP (normal) error distribution is set to $60,000 (recall that

the mean is zero). Sellers reduce their asking price by 3% if they do not receive a single bid

for three weeks. If sellers receive more than 15 bids in a single day, then they increase the

asking price by 10%. Bidders who are invited to improve their offer remain on the market

the next day and evaluate that day’s choice set, including this unit, after increasing their

bid value for this particular unit by 10%.

We have an additional parameter known as the ‘WTP offset ’ that is used to adjust WTP

values such that the median WTP value is roughly 10% above the median hedonic price for

each unit type. This ensures that WTP and asking price values are of the same magnitude,

with differences being attributable to variation in preferences. We compute the ‘actual’

WTP using the following equation:

𝑊𝑇𝑃 = (𝑊𝑇𝑃𝑚 * ( 1 + 𝑤𝑡𝑝𝑜)) + 𝑤𝑡𝑝𝑒 (4.8)

where 𝑊𝑇𝑃 is the ‘actual’ WTP, 𝑊𝑇𝑃𝑚 is the estimate provided by the WTP model,

𝑤𝑡𝑝𝑜 is the WTP offset, and 𝑤𝑡𝑝𝑒 is the error randomly drawn from a normal distribution

characterized by zero mean and standard deviation of $60,000. We make an initial simulation

run using the selected parameter settings without using any WTP offset (i.e., setting 𝑤𝑡𝑝𝑜 =

0). The simulated bids are analyzed to estimate WTP offset values for each housing unit

type. These offset values (see Table A.8 in Appendix A) are then used in subsequent
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simulation runs.

Finally, as is common in Monte-Carlo Markov Chain (MCMC) simulations, it is necessary

to conduct a ‘burn-in’ (or warm-up) to shake off the initial effects of the simulation, which

may not be reliable. If conducted for a large enough period, the system reaches a quasi-

equilibrium that is more reliable as a starting point. Recall that our base year is 2012, as our

synthetic population was calibrated with data from travel surveys and Census-related sources

in 2012. I tested different values of burn-in duration, and found that one simulation year

was more than adequate for achieving quasi-equilibrium in the housing market. Therefore,

I started off with the calibrated synthetic population in 2012 and simulated 365 days with

no changes in the total number of households and housing units. Essentially, the metro area

is treated as a closed system where the ‘burn-in’ can assign households to different housing

units but there is no change in the total demand and supply. For example, housing units

that were pre-sold and had move-ins scheduled during 2012 are excluded from the burn-in

simulation. I used information related to residential relocation and reevaluation of vehicle

holdings from the burn-in simulation outputs to reconstruct a modified synthetic population.

This modified population was consequently used as a ‘reconstructed’ starting point for 2012

for all simulation runs made henceforth.

I conducted two separate burn-ins, one excluding vehicle costs (i.e., with the sequential

choice framework) and one including vehicle costs (i.e., the simultaneous choice framework),

so that we have distinct starting points based on how households make housing-mobility

choices. I report summary statistics of the burn-in results in Table 4.8. As I conducted

closed-system simulation runs, the vacancy rate and mean household income are not ex-

pected to change during the burn-in, which I confirm. However, the inclusion of vehicle

costs in the bidding process induces most movers to choose locations that do not require

owning a private vehicle, which in turns significantly increases the aggregate vehicle-free

share by four percentage points.

Data limitations prevented us from including vehicle holding costs directly in the private

vehicle availability model. Therefore, the initial synthetic population assignments of house-

holds to housing units used the vehicle availability model without vehicle costs to prob-

abilistically select vehicle holding options that, overall, averaged 51.8% across Singapore.

However, when awakened households considered vehicle costs while evaluating relocation

options, they tended to move to places that are relatively more attractive without a car.
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Table 4.8: Effect of burn-in on the full synthetic population

2012

(calibrated)

2012

(after 1-year burn-in)

w/o vehicle costs w/ vehicle costs

Vacancy rate (%) 5.8% 5.8% 5.8%

Mean household income (SGD) $6,886 $6,886 $6,886

Vehicle-free rate (%) 51.9% 51.8% 55.8%

Hence, the overall vehicle-free share increased by 4% points. If appropriate data were avail-

able, a vehicle availability model including costs directly would allow the original assignment

to match the observed vehicle-free share of 51.8% in Singapore in a way that would remain

unchanged during the burn-in. However, this is beyond the scope of this dissertation and

my approach is still appropriate for comparing the effects of car-lite policy scenarios against

a reference baseline.

4.6 Simulation

The simulation is coded in C++ because of the computational benefit and power of C com-

pared with, for example, Java and Python, in addition to the ease with which we can im-

plement object-oriented programming (OOP). OOP is particularly effective for agent-based

simulations owing to the modular nature with which components can be written (that can

communicate with each other), and how code can be easily reused through inheritance. We

store data on the synthetic population and sub-model coefficients in PostgreSQL databases

and pass simulation parameters (such as those discussed above) to the simulation through

Extensible Markup Language (XML) files. When the executable is run, the code initializes

parameters based on XML inputs and communicates with the PostgreSQL database to read

in necessary tables. The methodological extensions I discussed earlier in this chapter were

implemented in the C++ code and also required the addition of some configuration tables

in the PostgreSQL database. We have developed SimMobility using a modular architecture

that enables us to switch out model estimates and configuration values as needed. However,

any changes to model specifications or agent behavior will require changes to the C++ code.
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4.7 Summary

In this chapter, I provided an overview of the agent-based land use-transport interaction

(LUTI) microsimulation model we have developed in-house — SimMobility — and how

we compute and use activity-based accessibility (ABA) measures in SimMobility. As I

am interested in exploring near-term neighborhood changes in response to changes in non-

auto accessibility, I focused on the Long-Term (LT) component of SimMobility which can

be used to simulate longer-term urban behavior such as residential location choice and

private vehicle availability choice. Despite the detailed nature in which SimMobility LT

models the housing market (compared to other state-of-the-art LUTI models), it needs a few

methodological extensions to be better equipped for scenario explorations of neighborhood

change, which I presented as well. After calibrating the necessary simulation parameters,

the LT framework is ready to be used for scenario explorations. In the next chapter, I will

demonstrate both city-wide and neighborhood-level effects of accessibility changes such as

private vehicle restrictions and non-auto accessibility improvements. Additionally, I will

discuss the extent to which coordinated housing policies may be effective in mitigating

undesirable side-effects such as gentrification.
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Chapter 5

Car-lite policies and neighborhood

change

In this chapter, I use SimMobility Long-Term (LT) to explore in detail how neighborhoods

might change in response to car-lite policies that seek to restrict private vehicles and/or

improve non-auto accessibility, as well as coordinated housing policies. First, I conduct

quasi-static analyses of city-wide private vehicle restrictions and non-auto accessibility im-

provements (i.e., accessibility provided by mobility options other than privately owned auto-

mobiles) to understand their effects on residents’ accessibility and welfare. Then, I construct

various scenarios using these car-lite policy mechanisms and present simulation results of

housing and mobility responses to these policies in multiple Singaporean neighborhoods.

Subsequently, I propose two types of coordinated housing policies (i.e., new housing supply

and vehicle-restricted housing supply) that can enhance the benefits of non-auto accessibility

improvements while mitigating unintended negative consequences and explore their impacts

on neighborhood change.

5.1 Quasi-static analyses of city-wide car-lite policies

Non-auto accessibility improvements can be operationalized through better urban design

(e.g., for pedestrians and cyclists), extensions of public transit lines, better first- and last-

mile connections to transit, or emerging mobility services such as mobility-on-demand or

micromobility. All of these mechanisms require time and public investment. Therefore,

if we want to accelerate our path to a sustainable mobility future, could we ‘simply’ en-
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force restrictions on private vehicles? Would banning private vehicles serve as an adequate

substitute for comparatively more expensive non-auto accessibility improvements?

Answering this question would ideally involve running what is known as a ‘full-loop’

simulation of SimMobility. We would remove private vehicles from the choice sets in the

private vehicle holdings and mode choice sub-models in LT and MT respectively. In the

absence of private vehicles, individuals are expected to adjust their daily activity-travel

patterns, which would affect their accessibility, and that, in turn, would affect their location

choices. Thus, banning private vehicles is likely to affect both long-term and medium-

term choices made by individuals and create a new equilibrium that wouldn’t settle down

until the supply and pricing of residential and commercial facilities had fully responded to

the substantial shock to the system. However, going through the process of doing ‘full-

loop’ simulations for the entire city-state of Singapore can be both cumbersome and time-

consuming. Moreover, as a recent effort by Zhou et al. (2021) highlights, in the absence

of real data on how individuals respond to a ban on private vehicles, we will have to make

multiple assumptions related to how the choice models might need to be adjusted to reflect

changes in behavioral preferences.

As I am particularly interested in observing the near-term effects of car-lite policies, it

may not be necessary to obtain the new ‘actual’ accessibilities stemming from changes in

activity-travel patterns. To obtain estimates of boundary effects of car-lite policies (i.e.,

the maximum possible effects which are likely to be reduced in magnitude when individuals

have had the chance to adjust their activity-travel patterns in response to the new policies),

it is sufficient to assume a certain magnitude of change in accessibility. For example, if a

car-lite policy that improved non-auto accessibility were to be piloted in a neighborhood, we

could assume that the vehicle-free accessibility of current and future neighborhood residents

would increase by a certain amount.

The baseline ABA measures are ‘equilibrium’ ABA values from MT for the transporta-

tion network performance and daily activity patterns that result at the start of the simu-

lation. One might like to rerun MT after a year or two of shifting locations to generate

new activity patterns and ABA values, but that was not done for this dissertation because

my focus is on first understanding near-term effects before enough households changed their

activity patterns so that the network performance became substantially different. Using

equilibrium ABA values (obtained from MT) in the baseline and appropriate adjustments

114



to model the effects of car-lite policies, I conducted several scenario explorations of changes

in housing-mobility choices through the LT framework as part of this dissertation. I discuss

these in further detail in subsequent sections. But before getting into extensive development

and simulation regarding the relatively longer-term effects of these big shocks, in this section,

let us examine some quasi-static analyses (without simulation) of the very near-term changes

in accessibility and consumer surplus that would result from city-wide car-lite policies.

I operationalized the city-wide private vehicle restriction policy through two adjustments

to all households in the ‘day-0’ synthetic population:

• Activity-based accessibility: Since all vehicles are restricted island-wide, the ac-

cessibility of every household now becomes equal to their ‘vehicle-free’ ABA value

obtained through the fixed home - fixed work - variable vehicle holdings approach

described earlier.

• Public transit travel time: As all individuals are now forced to use public transit,

the immediate effect would be an increase in transit travel times due to longer waiting

times and overcrowding (unless headways are reduced and supply is increased). To

reflect this new reality, I increased public transit travel times by 25% (which is the

weighted ratio of mean AM peak travel time to mean off-peak travel time for all

workers).

These adjustments are indicative of the quasi-static (or very near-term) effects of a city-

wide vehicle restriction policy. Of course, other adjustments will emerge over time (such as

households moving to places with better transit accessibility), but this quasi-static analysis

is valuable in providing a sense of the direction of changes in accessibility and welfare due

to this policy. Now, what if we were to combine this city-wide vehicle ban with non-auto

accessibility improvements? Could these city-wide improvements make up for the likely

negative effects of the vehicle ban? I operationalized non-auto accessibility improvements

through two adjustments. These adjustments are purposely designed to improve non-auto

accessibility by a significant (and likely implausible) amount because I am interested in

exploring whether removing the need to own a car purely from an accessibility perspective

is enough to offset the detrimental effects of a city-wide private vehicle ban.

• Activity-based accessibility: I added the mean difference between the ABA with

one normal car and the vehicle-free ABA (across all households) to the vehicle-free
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ABA of every household, such that not having access to a private vehicle provides

equal accessibility to having one normal car available (on average).

• Public transit travel time: I decreased public transit travel time by the weighted

mean difference between transit and car travel times (30 minutes), with a floor of 5

minutes, such that revised transit travel times are equal to car travel times on average.

I conducted quasi-static analyses of these accessibility adjustments (without any simu-

lations) to examine changes in residents’ accessibility and welfare. I tracked accessibility

change using each household’s ABA before (i.e., on day-0) and after the two car-lite poli-

cies are implemented. Similarly, I tracked welfare change using each household’s consumer

surplus before and after policy implementation. As I did not conduct any simulations here,

households’ residential locations did not change but the market prices of housing units and

willingness-to-pay for housing did change as both are dependent on accessibility. I plugged

the adjusted accessibility values for the two policies into the hedonic price and WTP sub-

models to obtain revised estimates of market price and WTP for the same housing unit

each household lived in on day-0. The difference between WTP and market price provides

consumer surplus in the housing market, which I used as a measure of welfare. Thus, I

recorded changes in accessibility and consumer surplus for each household stemming from

the two car-lite policies (i.e., a city-wide private vehicle ban, and the vehicle ban combined

with non-auto accessibility improvements) using quasi-static analyses.

I report these changes separately for vehicle-owning households and zero-vehicle (or

vehicle-free) households in Figure 5-1 (where the red diamonds and labels correspond to the

mean values). I find that banning private vehicles will decrease accessibility (ABA) by 6.6%

for vehicle-owning households. Consumer surplus in the housing market will decrease by an

average of SGD 98,000 per household in the city, with vehicle-owning households losing out

on an additional SGD 27,000, as both market prices and WTP decrease for locations with

comparatively poorer vehicle-free accessibility. As vehicle-owning households predominantly

reside in such locations, it is expected that they will experience a greater loss of consumer

surplus.

The effects of the vehicle restriction policy combined with non-auto accessibility improve-

ments are shown in Figure 5-1 as well. I find that vehicle-free households receive an almost

10% boost in their accessibility. While vehicle-owning households also experience an increase
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(a) Change in accessibility from day-0

(b) Change in consumer surplus from day-0

Figure 5-1: Quasi-static effects of city-wide car-lite policies

in accessibility, it is not enough to completely offset the negative effects of the vehicle ban.

Vehicle-owning households remain below their day-0 accessibility levels (on average) despite

the non-auto accessibility improvements. However, consumer surplus for these households

increases by SGD 76,000 on average, which is SGD 30,000 higher than the average increase

for vehicle-free households. Thus, we see that our very significant improvement in non-auto
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accessibility may not be enough to offset the detriment in accessibility of vehicle-owning

households caused by a city-wide vehicle ban, although they can attract housing premiums

large enough to improve consumer surplus in the housing market.

I also examined the distributional effects of these policies across different income groups

of households with access to private vehicles on day-0 (see Figure 5-2). I find evidence of

non-uniform effects, whereby lower-income vehicle-owning households experience the largest

decrease in accessibility due to the vehicle ban policy and consequently the largest increase in

accessibility when the ban is combined with non-auto accessibility improvements. However,

this trend is reversed when we examine the effects on consumer surplus. As higher-income

vehicle-owning households live in locations with comparatively poorer vehicle-free accessi-

bility, banning vehicles reduces their consumer surplus the most and introducing non-auto

accessibility improvements improves their consumer surplus to the largest extent.

Through these quasi-static analyses, I conclude that introducing city-wide vehicle restric-

tions in the hope of sharp reductions in vehicular emissions can end up hurting residents

unless supplementary policies that improve non-auto accessibility are also put in place. Res-

idents’ accessibility and welfare are likely to suffer, which they may try to offset by changing

activity patterns and residential locations that, in turn, may drive up housing prices in

transit-accessible neighborhoods. I also find evidence of non-uniform effects of these policies

across income groups, with lower-income households likely to experience the greatest loss

in accessibility. While acknowledging that this is by no means a fully fleshed out analysis,

these preliminary results suggest that banning private vehicles outright can have detrimental

effects on residents, especially those from lower-income households, even in comparatively

less auto-dependent contexts like Singapore.

5.2 Simulation design of neighborhood-wide car-lite policies

Having established that private vehicle restrictions cannot readily substitute for non-auto

accessibility improvements, it is thus important to understand the near-term effects of these

car-lite policies on neighborhoods. How will they influence housing-mobility choices and

thereby change neighborhoods? To examine this question in complete detail, we would

have to resort to doing a ‘full-loop’ simulation of both housing-mobility and activity-travel

choices. However, it is both possible and plausible to examine only housing and mobility
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(a) Change in accessibility among vehicle-owning households

(b) Change in consumer surplus among vehicle-owning households

Figure 5-2: Quasi-static effects of city-wide car-lite policies on vehicle-owning households by
household income

choices under certain assumptions, especially if we are interested in understanding near-term

neighborhood-level changes. As mentioned earlier, municipalities are likely to implement car-

lite policies (such as a ban on private vehicles and/or non-auto accessibility improvements)

at a neighborhood level first before rolling them out city- or metro-wide. Therefore, I can
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isolate one planning area (interchangeably referred to as a neighborhood henceforth) as a

candidate study area for this car-lite policy pilot (see Figure 5-3), implement the necessary

accessibility adjustments due to the policy, and simulate the entire city-state of Singapore

using only the LT framework plus the MT activity-based travel demand framework that

allows us to compute day-0 activity-based accessibilities for each household if they were to

relocate or change their private vehicle availability. Simulation results can then be compared

across different policy scenarios (and against a reference case) using a mix of place-based

and people-based scenario evaluation measures (such as accessibility and welfare, as shown

earlier).

Figure 5-3: An example planning area (Clementi) that could be selected for piloting a car-
lite policy

5.2.1 Design of car-lite policy scenarios

In keeping with the city-wide car-lite policies I explored using quasi-static analyses, I de-

signed the following five scenarios which I simulated over two simulation years (roughly

equivalent to three calendar years, as discussed in Section 4.5) to examine near-term changes

in neighborhoods. As mentioned earlier, the key difference between these policy scenarios

and the previous quasi-static analyses is that these car-lite policies are implemented in a

particular neighborhood (and the entire city is simulated), while the quasi-static analyses
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looked at policies that were implemented city-wide (without any household relocation or

change in vehicle availability, other than the ban on private vehicles).

• Baseline: This describes the baseline (or ‘business-as-usual’) development of the

study area where the car-lite pilot was never trialed and accessibility changes were

never implemented.

• Neighborhood-wide private vehicle ban: This scenario is similar to the baseline

except that households currently living or considering living in the study area are

restricted from owning private vehicles. Unlike the quasi-static analysis reported in

Section 5.1, this is a simulated scenario but using only the LT framework. I include

this scenario to explore whether my findings from the quasi-static analysis hold true

even with simulated outcomes where households can respond to the policy by changing

their housing-mobility choices (but not their activity-travel patterns).

• Neighborhood-wide accessibility improvement (without housing market re-

sponse): This scenario is again similar to the baseline except that non-auto accessi-

bility improvements are now implemented within the study area and households are

aware of the accessibility improvements. However, the housing market response is

largely absent except for buyers being aware of the pilot and more willing to include

study area units in their choice sets (without any change in the likelihood to bid on

them). Operationally, this means that the improved accessibility is only considered in

the private vehicle availability and screening models, but disregarded in the hedonic

price and WTP models.

• Neighborhood-wide accessibility improvement (with housing market re-

sponse): This scenario builds on the previous scenario by including both the demand-

side and supply-side response to non-auto accessibility improvements. Buyers become

more likely to choose units from the study area for inclusion in their choice sets as well

as pay higher prices to live within the study area, which can be replicated by plugging

the improved accessibilities into the WTP model when computing WTP for units in

the study area. At the same time, sellers will raise asking prices in an effort to cap-

italize on the increased demand for housing within the study area, which is reflected

by plugging the improved accessibilities into the hedonic price model when computing
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market prices for units in the study area. This and the previous scenario are sepa-

rated specifically to demonstrate the significant effect of housing market response to

accessibility improvements on neighborhood change.

• Neighborhood-wide private vehicle ban combined with accessibility im-

provement: This scenario combines two of the earlier scenarios by restricting pri-

vate vehicle ownership and improving non-auto accessibility within the study area at

the same time. Both buyers and sellers are allowed to respond to these accessibility

changes through changes in the WTP and market prices in the housing market. The

motivation here is to explore the extent to which (and where) accessibility improve-

ments can offset the detrimental effects of the neighborhood-wide vehicle ban.

Using the ‘baseline’ scenario as the reference and every other policy scenario as a coun-

terfactual, we can attribute the simulated changes between a non-baseline policy scenario

and the baseline scenario directly to the particular car-lite policy being implemented (ex-

cluding stochastic variation, of course). I operationalized accessibility changes stemming

from the different car-lite policies in a similar manner to my approach in Section 5.1, which

is summarized in Table 5.1. Using these assumed accessibility adjustments only within the

study area where the car-lite policy is being piloted, I simulated Singapore-wide changes as

a closed system (i.e., by keeping the total counts of households and housing units constant)

over two simulation years (three calendar years).

Table 5.1: Assumed accessibility changes for different car-lite policies

Car-lite policy Activity-based accessibility Public transit travel time

Private vehicle ban ABA becomes vehicle-free ABA Increased by 25%

Non-auto accessibility improvement
Vehicle-free ABA increased by mean difference

between vehicle-free and one-car ABAs
Decreased by 30 minutes

Both ban and improvement
ABA becomes vehicle-free ABA,

which is then increased by mean difference

Increased by 25%,

then decreased by 30 minutes
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5.2.2 Scenario evaluation measures

I used a mix of place-based and people-based measures to evaluate the simulation results of

these policy scenarios. Place-based measures track how the study area evolves in response

to the car-lite policy intervention, while people-based measures track temporal changes in

households’ experiences and/or behavior.

• Place-based measures:

– Vacancy rate: This measure provides a sense of how popular the study area

is by tracking the extent to which housing units in the study area are occupied

(i.e., being owned or rented).

– Area mean income: By tracking changes in area mean income, we can un-

derstand which income groups are moving into the study area and which income

groups are being displaced. Observing changes in area mean income between

in-movers and out-movers can provide insights into the extent of gentrification of

the study area.

– Vehicle-free share: This measure records what share of households within

the study area are vehicle-free, i.e., do not have access to any private vehicles.

Increasing the neighborhood vehicle-free share is the key objective of a car-lite

policy pilot.

• People-based measures:

– Accessibility: Using this measure, we can understand how different car-lite poli-

cies (such as vehicle restrictions and/or accessibility improvements) and coordi-

nated housing policies can affect the overall accessibility of study area residents.

This is useful for comparing activity-based accessibility changes (from day-0) for

all households that end up living in the study area, especially in-movers.

– Consumer surplus: As our simulation sub-models can track both the market

prices of housing and each household’s WTP for any unit, we can estimate the

net welfare gain or loss that results after the housing relocation, price changes,

and vehicle availability changes have affected household welfare during the initial
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three years of the car-lite pilot. I use consumer surplus as a measure of welfare,

and as mentioned earlier, consumer surplus in the housing market is the difference

between the willingness-to-pay of a household for a housing unit and the market

price of that unit.

5.3 How might car-lite policies change neighborhoods?

In this section, I first discuss how I expect households to react to the different car-lite policy

scenarios I described earlier. The implications of changes in long-term urban choices for

neighborhood-level changes are presented. Then, I select 26 planning areas (with at least

15,000 housing units) in Singapore and simulate the car-lite policy scenarios in order to

extract the housing market effects on area mean income and vehicle-free share. Observing

the variation in these effects, I select four planning areas for detailed analysis. I then track

changes in the five scenario evaluation measures proposed earlier for the different car-lite

policy scenarios within these four planning areas over two simulation years (three calendar

years). I also explore the extent to which these neighborhood-level changes translate to

changes at the city scale. Finally, I discuss how neighborhood characteristics affect the

manner in which housing market effects play out with an eye towards identifying what

types of neighborhoods may be more susceptible to negative side-effects of accessibility

improvements such as gentrification.

5.3.1 Hypothesized effects

Before presenting simulation results, I would like to discuss my hypotheses on how car-lite

policy scenarios (such as vehicle restrictions and/or accessibility improvements) can change

neighborhoods through the four non-baseline policy scenarios I outlined earlier (see Figure

5-4). When the neighborhood-wide vehicle ban is instituted, I do not expect any change in

the composition of the study area compared to the baseline except for the vehicle-free share

to shoot up to 100%. When non-auto accessibility improvements are provided within the

study area, in the absence of housing effects, I expect a slight decrease in vacancy rate as

buyers are now more willing to choose study area units within their choice sets. At the same

time, area mean income is likely to remain the same while vehicle-free share is expected

to increase (compared to the baseline) as some households will forgo private vehicles in
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the presence of improved non-auto accessibility. When the housing market response to

accessibility improvement is considered, the increased demand is expected to drive down the

vacancy rate even further. However, increased WTP and asking prices are expected to result

in higher-income movers, which will raise the area mean income and reduce the vehicle-free

share (compared to the same policy scenario but without housing market response).

Figure 5-4: Hypothesized effects of neighborhood-wide car-lite policies

When the private vehicle ban is combined with accessibility improvements, I do not

expect any significant change in the vacancy rate and area mean income compared with

the accessibility improvement only scenario (with housing market response). However, as

a result of the vehicle ban, the vehicle-free share in the neighborhood will go up to 100%.

Housing market effects on these three place-based measures of neighborhood change can

be extracted by comparing the accessibility improvement only scenario without housing

market response against the scenario where both buyers and sellers react to accessibility

improvements. Neighborhood characteristics will, of course, influence the magnitudes of

neighborhood changes and housing market effects.

5.3.2 Simulated effects

Having set up the five scenarios (i.e., baseline and four car-lite policies), I selected 26 different

planning areas (each having at least 15,000 housing units) as candidate neighborhoods for

the car-lite pilot, as shown in Figure 5-5a. These 26 planning areas are home to 96.6%
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of the population, while covering only 45.9% of the land-area. I then conducted city-wide

simulations with the five scenarios for each of these 26 study areas, where only one planning

area experiences the car-lite policy. I present the simulated housing market effects on area

mean income and vehicle-free share for these 26 planning areas in Figure 5-5b. As mentioned

earlier, these housing market effects are extracted by comparing simulated outcomes of the

accessibility improvement only scenario with housing market response against the previous

scenario (i.e., accessibility improvement only but without housing market response).

I find that the housing market effects on area mean income are always positive, implying

that buyer and seller responses to accessibility improvements always drive up the area mean

income by attracting higher-income in-mover households. This suggests that accessibility-

induced gentrification is likely to occur in all of the selected Singaporean neighborhoods,

but to different extents. I also find that the housing market effects on vehicle-free share

are always negative, implying that the neighborhood becomes less vehicle-free despite the

accessibility improvements as a result of higher-income households (who are also less likely

to be vehicle-free) moving in. Thus, accessibility-induced gentrification is likely to lead to

the dampening of the increase in vehicle-free share that would otherwise have occurred in

the absence of housing market effects.

I then placed the planning areas into four quadrants based on how the housing market

effects on area mean income and vehicle-free share compared with the national averages.

This helped me look at four distinct cases — (a) small income increase and small vehicle-

free decrease (e.g., Punggol), (b) small income increase and large vehicle-free decrease (e.g.,

Choa Chu Kang), (c) large income increase and small vehicle-free decrease (e.g., Kallang),

and (d) large income increase and large vehicle-free decrease (e.g., Yishun). I selected the

four outliers (i.e., Punggol, Choa Chu Kang, Kallang, and Yishun) from these four quadrants

for a more detailed examination of neighborhood changes. The spatial locations of these

four selected planning areas are presented in Figure 5-6. We can see that Kallang is located

close to the CBD, Punggol is to the north-east, Yishun is in the north, and Choa Chu Kang

is a north-western suburb. Thus, the four planning areas selected for detailed analysis are

well distributed across Singapore.
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(a) Selecting 26 different planning areas as candidate neighborhoods for piloting car-lite policies

(b) Change in income and vehicle-free share due to housing market effects

Figure 5-5: Simulated housing market effects on neighborhood outcomes in Singapore

Detailed analysis of selected neighborhoods

I first present the vacancy effect of accessibility changes in the four selected planning areas

in Figure 5-7. The simulated trends closely resemble my hypothesized effects, even if the
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Figure 5-6: Selecting four planning areas (quadrant outliers) for detailed analysis

magnitudes vary across the planning areas. The neighborhood-wide vehicle ban does not

affect vacancy rate compared to the baseline. I observe that accessibility improvements, even

without housing market effects, make the study area a more attractive residential location

by increasing the number of resident households and driving down the vacancy rate. The

attractiveness of the area is further accentuated when the housing market response is taken

into consideration. There is no further difference between this scenario and the final policy

scenario where the vehicle ban is combined with the accessibility improvements. The only

difference is seen for Punggol, where vacancy rate increases slightly with the additional

imposition of the vehicle ban. This is likely because Pungool is comparatively more auto-

dependent (with a vehicle-free share of only 39.5%, compared with the national average of

51.8% — see Table 5.3). In such neighborhoods, the imposition of a vehicle ban, even when

combined with accessibility improvements, can reduce the attractiveness of housing location

and disincentive potential in-movers.

Figure 5-8 first presents changes in area mean income for the four selected planning areas,

followed by a more detailed comparison of mean incomes of in-movers and out-movers. I

find confirmation of my hypothesized trends from Figure 5-8a. When accessibility changes

are implemented without the inclusion of housing market effects, area mean income does

not seem to differ from the baseline value. As expected, the area mean income rises with
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Figure 5-7: Vacancy effect of car-lite policies in selected Singaporean neighborhoods

increased demand for housing and higher asking prices for units in the study area. The

positive effect of housing market responses on area mean income suggests that in-movers are

higher-income compared to original neighborhood residents, when accessibility is improved

and the housing market is allowed to subsequently respond.

From Figure 5-8b, I confirm that the average income of in-movers always increases when

housing market effects are considered. In neighborhoods like Choa Chu Kang and Yishun

(where the housing market effect on vehicle-free share reduction is larger), we see evidence

implying accessibility-induced gentrification. In-movers were lower-income compared to out-

movers in the absence of housing market response, but higher-income in-movers start dis-

placing lower-income out-movers with the inclusion of housing market response. Although

the housing market effects are noticeable for Kallang and Punggol as well, their trajectories

are different. Kallang was gentrifying even in the baseline, the extent of which is accelerated

by housing market effects. Punggol, on the other hand, does not gentrify in any of the five

scenarios.

I then examine changes in the neighborhood-wide vehicle-free share and compare the

vehicle-free shares of in-movers against non-movers in Figure 5-9. When the car-lite pol-

icy includes a neighborhood-wide vehicle ban (on its own or combined with accessibility

improvements), the neighborhood vehicle-free share is always 100%. In Figure 5-9a, vehicle-
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(a) Change in average neighborhood income

(b) Change in average income of movers

Figure 5-8: Income effect of car-lite policies in selected Singaporean neighborhoods

free share is found to increase by 3-5% points when accessibility is improved in the absence

of housing market effects (compared to the baseline). However, as buyers and sellers start

responding, the unintended gentrification side-effect of the car-lite policy dampens the in-

crease in vehicle-free share. While the dampening effect is more pronounced for Choa Chu

Kang and Yishun, the dampened vehicle-free share still remains higher than the baseline

130



value.

(a) Change in neighborhood-wide vehicle-free share

(b) Change in vehicle-free share of movers

Figure 5-9: Vehicle-free effect of car-lite policies in selected Singaporean neighborhoods

Examining in-movers more closely in Figure 5-9b confirms the consequences of the gen-

trification side-effect. While in-movers are just as vehicle-free as non-movers (if not more) in

the baseline and housing effect-absent accessibility improvement scenarios, they become less
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vehicle-free in comparison when the housing market response is considered. In Choa Chu

Kang, in-movers were more vehicle-free than non-movers in the baseline, but that difference

disappears over scenarios. In-movers in Yishun become less vehicle-free than non-movers,

driving down the overall vehicle-free share. Despite experiencing these shifts in vehicle-free

share, in-movers in Kallang are always less vehicle-free and in-movers in Punggol are always

more vehicle-free than non-movers.

Finally, I present changes in people-based scenario evaluation measures in Figure 5-10.

As expected, a neighborhood-wide vehicle ban is found to reduce accessibility of study area

residents by 2-4% on average. When accessibility improvements are introduced, then study

area residents experience a 2.5-6.5% increase in average accessibility. In addition to reducing

accessibility, the vehicle ban policy also reduces consumer surplus by SGD 80,000 - 100,000

per household. When the housing market response is considered, consumer surplus (in the

housing market) increases to about SGD 80,000 - 120,000 over baseline values with Kallang

being an outlier. When accessibility improvements are combined with the vehicle ban, these

significant welfare gains largely disappear. For three of the four planning areas, the resulting

surplus becomes slightly lower than the baseline values. The surplus of residents in Kallang

remains positive but significantly lower than what they experienced without the vehicle

ban. These trends suggest that a vehicle ban will negatively affect both the accessibility and

welfare of residents, but non-auto accessibility improvements can provide better accessibility

and welfare even after accounting for accessibility-induced gentrification caused by housing

market effects. Instead of implementing a neighborhood-wide vehicle ban, it may be more

prudent to impose the ban partially, e.g., on new housing developments.

From neighborhood outcomes to city-wide outcomes

As we have been looking only at changes within the neighborhood where the car-lite policy

is piloted thus far, one might wonder about the extent to which changes in a single neighbor-

hood affect the wider city or metro area. One question of particular concern might be to see

if lower-income (and more vehicle-free) out-movers are being displaced to other neighbor-

hoods where they become less vehicle-free (by choice or by being forced to purchase a car).

Therefore, I looked at changes in the Singapore-wide vehicle-free share when accessibility is

improved in the four selected neighborhoods. I report these results in Table 5.2, where the

post-simulation city-wide vehicle-free share is found to be at least that observed on day-0.
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(a) Change in neighborhood-wide activity-based accessibility

(b) Change in neighborhood-wide consumer surplus

Figure 5-10: Accessibility and welfare effects of car-lite policies in selected Singaporean
neighborhoods

In most cases, neighborhood-level vehicle-free share increases translate to a minor city-wide

increase. This is a promising observation which suggests that expanding accessibility im-

provements to cover multiple neighborhoods has the potential to increase vehicle-free share

not only within the study area but throughout the city or metro area as a whole. For the
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scenarios where the car-lite policy includes a vehicle ban, the vehicle-free share in the study

area goes up to 100%, which will obviously translate into a larger increase in the city-wide

vehicle-free share but at the cost of reducing accessibility and welfare.

Table 5.2: Change in Singapore-wide vehicle-free share due to neighborhood changes

Study Area
Scenario

(Accessibility improvement)
Singapore-wide vehicle-free share (%)

Simulation start

(day-0)
Simulation end

Change

(% points)

- Baseline

51.8%

51.7% -0.1

Choa Chu Kang

w/o housing market response 51.9% +0.1

w/ housing market response 51.9% +0.1

Kallang

w/o housing market response 51.9% +0.1

w/ housing market response 51.9% +0.1

Punggol

w/o housing market response 51.8% 0.0

w/ housing market response 51.8% 0.0

Yishun

w/o housing market response 51.9% +0.1

w/ housing market response 52.0% +0.2

Although I do not report it here, city-wide consumer surplus is also likely to increase

when the car-lite policy includes accessibility improvements but not a private vehicle ban.

We found earlier that consumer surplus in the study area increases as a result of accessibil-

ity improvements, even after accounting for housing market effects. As non-movers outside

the study area do not experience any welfare changes and out-movers choose locations that

provide better surplus than their current locations (as do all movers in our bidding pro-

cess), surplus increases within the study area are likely to translate to city-wide welfare

improvements, although the magnitudes may be more muted.

5.3.3 The role of neighborhood characteristics

In an effort to better understand which neighborhoods are more susceptible to accessibility-

induced gentrification, I examined how neighborhood characteristics relate to housing mar-

ket effects (i.e., changes due to accessibility improvements with and without housing market

response). I describe the four selected planning areas and their simulated housing market
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effects in Table 5.3. Kallang and Punggol, which are significantly lower-income compared to

not just the national average but the other two neighborhoods as well, experienced higher in-

creases in area mean income. They were also less vacant (implying a ‘tight’ housing market)

and significantly more vehicle-free. This suggests that non-auto accessibility improvements

made in lower-income neighborhoods can produce unintended consequences such as gentrifi-

cation, which can make these initially more vehicle-free neighborhoods more auto-dependent.

This outcome goes against the very intention of the car-lite policy, thus highlighting the need

to guard against unintended consequences through supportive coordinated policies.

Table 5.3: Characterizing selected Singaporean neighborhoods by housing market effects

Singapore Punggol Choa Chu Kang Kallang Yishun

Quadrant in Fig. 5-5b - Top left Bottom left Top right Bottom right

Increase in area mean income - Small Small Large Large

Decrease in vehicle-free share - Small Large Small Large

Units 1,219,394 21,050 51,244 36,977 53,373

Vacancy rate (%) 5.8% 11.0% 6.1% 4.7% 4.6%

Mean household income (SGD) $6,886 $8,327 $7,060 $5,534 $4,994

Vehicle-free share (%) 51.8% 39.5% 49.0% 63.0% 63.7%

One may wonder whether my observations are influenced by my choice of the outlier in

each quadrant (see Figure 5-5b). To address this concern, I also compared neighborhood

characteristics across quadrants instead of selecting just the four outlier neighborhoods. I

did not find evidence of any quadrant-based spatial clustering that would suggest a spatial

effect, and my observations about lower-income and more vehicle-free neighborhoods being

more susceptible to accessibility-induced gentrification holds true at the quadrant level as

well (see Figure A-1 and Table A.9 in Appendix A).

5.4 Coordinated housing policies to support accessibility im-

provements

I made the case in the previous section that improving non-auto accessibility alone may

not be enough to achieve the intended outcomes of car-lite policies in some neighborhoods

because of unintended side-effects such as accessibility-induced gentrification. Moreover, a
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neighborhood-wide vehicle ban is likely to reduce both accessibility and welfare of residents,

to an extent that even significant accessibility improvements may be unable to offset. Thus,

neither a blanket ban on private vehicles nor accessibility improvements alone are effective

car-lite policies when considering outcomes beyond just the vehicle-free share.

In this section, I propose two types of housing policies that, in coordination with acces-

sibility improvements, can enhance the potential benefits of car-lite policies by mitigating

some of the negative side-effects such as gentrification. First, I examine how increasing

housing supply with accessibility improvements can change neighborhoods. This policy is

motivated by upzoning efforts in TOD areas. In addition to direct upzoning by adding new

housing supply, I also explore whether affordability constraints (based on income thresh-

olds for eligibility and discounts on asking prices) can improve neighborhood outcomes and

distribute the accessibility benefits across socioeconomic groups more equitably.

Building on this, the second housing policy I examine is providing new housing but

with restrictions on private vehicle holdings (i.e., a private vehicle ban) for residents of

these new units. This is motivated by my previous discussion of reduced minimum parking

requirements. Since we are aware of the strong link between parking availability and auto

ownership, this policy is conceptualized as upzoning with parking constraints for the new

units. Thus, households choosing to reside in these new units are, in a way, restricted

from holding private vehicles. My objective here is not to find the optimal coordinated

housing policy but to understand how different housing policy instruments (e.g., upzoning,

affordability constraints, parking restrictions) can be effective in addressing concerns around

accessibility-induced gentrification.

5.4.1 New housing supply

Table 5.4 presents the distribution of housing units by unit type within the four selected

neighborhoods. 81-92% of the units in these neighborhoods are public housing (HDB) units.

The HDB units in Kallang and Yishun are predominantly smaller units with at most 3

rooms, while about 90% of HDB units in Choa Chu Kang and Punggol are larger with 4

or 5 rooms. Punggol does not have any HDB units with 3 rooms, while only 6% of HDB

units in Yishun with at most 3 rooms are small studios or 2-room units. I describe this

distribution here because I operationalized the new housing supply policy by doubling the

number of HDB units in each of these four neighborhoods. Doubling the entire public
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housing stock in a neighborhood might seem like overkill but, as mentioned earlier, I am

interested in boundary effects. ‘Actual’ policies will likely be implemented at a smaller scale,

which is why this exploration is useful for us to understand the potential maximum benefits

of particular policies. The reason for choosing public housing to operationalize this policy

is simple. Housing supply in Singapore is primarily driven by the HDB, and four in five

households live in HDB units. Therefore, new housing supply policies in Singapore must be

designed keeping these nuances in mind.

Table 5.4: Distribution of housing units by unit type in selected Singaporean neighborhoods

Study Area Total units HDB units HDB123 units HDB12 units

Count % of total Count % of HDB Count % of HDB123

Choa Chu Kang 51,244 47,167 92% 2,592 11% 1,106 43%

Kallang 36,977 29,887 81% 16,660 77% 5,896 35%

Punggol 21,050 18,567 88% 1,146 9% 1,146 100%

Yishun 53,373 49,231 92% 14,420 58% 805 6%

I considered two distinct cases — (a) doubling the entire public housing stock (‘All

HDBs’), and (b) doubling only the smaller public housing stock (‘Only HDB123s’). I sep-

arated out these two cases because households living in HDB4 and HDB5 units tend to be

higher-income and are comparatively less likely to be vehicle-free. Since the objective of

the car-lite policy is to make the neighborhood more vehicle-free, perhaps targeting the new

housing supply towards households who are more likely to become and/or remain vehicle-free

can be more fruitful. In addition to ‘simply’ doubling the public housing stock to provide

new housing supply, I created additional scenarios where the new housing units are subject

to affordability constraints. These include income restrictions (i.e., only households with

incomes below a certain threshold are eligible to bid or rent) and/or discounts (i.e., the

asking price is discounted by a certain amount). I selected a subset of HDB units for these

affordability constraints based on the unit type. When the new housing supply includes

all HDB units, only HDB12 and HDB3 units can be income-restricted and/or discounted.

Similarly, when HDB12 and HDB3 units are offered as new housing, only HDB12 units can

be income-restricted and/or discounted. I tried out two values for the income-restriction

threshold — SGD 2,500 (the 25th percentile of household incomes in the synthetic popula-

tion) and SGD 3,500 (the 35th percentile). Concurrently, I tried out 10% and 20% as two
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possible discount values for the asking price. I provided these discounts only for those units

which were income-restricted in an effort to make the new housing supply more affordable

for lower-income households.

The effects of these new housing supply scenarios on neighborhood outcomes are pre-

sented in Figure 5-11. I retain the scenario where both buyers and sellers react to accessibility

improvements without any coordinated housing policy as a reference, and then show the re-

sults of the additional scenarios with new housing supply (first, without any affordability

constraints, and then with varying values of income-restriction thresholds and asking price

discounts). Doubling the entire public housing stock is found to increase the vacancy rate

in neighborhoods like Kallang and Yishun, which had experienced stronger gentrification

effects without this coordinated housing policy. This is because these neighborhoods have a

larger share of HDB123 units (56% in Kallang and 29% in Yishun).

When new HDBs are offered with the same unit type distribution, in-movers rush in

to occupy the larger HDB4 and HDB5 units but most of the smaller HDB units remain

unattractive at current asking prices. We find confirmatory evidence of this explanation

by observing the significant rise in the area mean income. Having seen earlier that higher-

income households are less likely to become vehicle-free despite the non-auto accessibility

improvements, it comes as no surprise that the neighborhood-wide vehicle-free share drops

sharply with this flood of in-movers. What is surprising is that this decrease is so large

that the vehicle-free share drops to lower than the baseline value. This implies that, in

neighborhoods like Kallang and Yishun, providing new housing supply (of all HDB units)

can be worse than not coordinating the accessibility improvements with any upzoning policy.

These concerning trends can, however, be tempered with the help of affordability con-

straints on the new housing supply that make these units seem more attractive to lower-

income households. These additional policy instruments help reduce the vacancy rate by

attracting lower-income and more vehicle-free households who reduce the area mean in-

come and increase the aggregate vehicle-free share. For the other two neighborhoods (Choa

Chu Kang and Punggol), the effects of upzoning are comparatively muted without signif-

icant change in the vacancy rate or area mean income. I find that the vehicle-free shares

do increase, but not by much, despite additional affordability constraints to improve the

attractiveness of the new housing supply.

Examining the case where I implemented upzoning by doubling only the smaller HDB
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(a) Change in vacancy rate

(b) Change in area mean income

(c) Change in vehicle-free share

Figure 5-11: Neighborhood outcomes of coordinated new housing supply in selected Singa-
porean neighborhoods
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units, I observe different trends. Kallang is the only planning area which experiences an

increase in vacancy rate due to the upzoning policy. This is because 35% of the HDB123 units

in Kallang are smaller HDB12 units, which are not attractive to most households. Despite

the various affordability constraints used to offer a better deal on these units, the vacancy

rate does not decrease. Both Kallang and Yishun experience about 10% increase in area

mean income across the various new housing policy scenarios. However, unlike the previous

policy case (with all HDBs), I find that the vehicle-free share increases for all neighborhoods

with the supply of new smaller public housing units, which is the intended outcome of the

car-lite policy. These results seem to suggest that coordinated housing policies will benefit

from being tailored to the neighborhood; one housing policy does not fit all neighborhoods.

Next, I compare the incomes of in-movers and out-movers, and separate out the resi-

dents of new housing units based on whether they moved into new affordable (i.e., income-

restricted and/or discounted) units or new market-rate units (see Figure 5-12). When all

HDBs are doubled, in-movers are always higher-income than out-movers (except for Pung-

gol) but coordinated upzoning policies can reduce the income difference. My observation

for the case where only smaller HDBs are doubled is similar but only Choa Chu Kang and

Punggol have relative success in reducing the income difference. Out-movers are much more

lower-income in Kallang, which is why, despite the reduction in income of in-movers with

the help of income-restrictions and discounts, they remain higher-income than out-movers.

Separating out the in-movers into these new units based on the unit type (affordable or

market-rate) yields further insights. As expected, in-movers occupying new affordable units

have significantly lower incomes, implying the success of the affordability constraints (i.e.,

income restrictions and discounts) in increasing the attractiveness of new housing supply in

the study area. The extent of gentrification, thus, seems to be driven purely by households

who move into the new market-rate units. Lower-income neighborhoods such as Kallang and

Yishun remain at risk of further gentrification because the in-movers into new market-rate

units are higher-income than not just other in-movers but also the out-movers they displace.

Similar to the detailed income exploration, I examined the vehicle-free shares of movers

in greater detail as well (see Figure 5-13). In-movers appear to be less vehicle-free than out-

movers in lower-income neighborhoods like Kallang and Yishun when all HDBs are upzoned.

However, the additional affordability constraints on part of these new housing units increase

the vehicle-share of in-movers to some extent. When only smaller HDB units are provided
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(a) Change in average income of all movers

(b) Change in average income of movers into new housing units

Figure 5-12: Income effect of coordinated new housing supply in selected Singaporean neigh-
borhoods

as part of the new housing supply, there is an increase in the vehicle-free share of in-movers

in all four neighborhoods. However, no further benefits are observed despite the addition

of supplementary affordability constraints. As expected, in-movers in new affordable units
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are mostly vehicle-free with vehicle-free shares close to 90%. Therefore, the vehicle-free

transitions of households moving into new market-rate units seem to guide the eventual

change in neighborhood-wide vehicle-free share. If they are less vehicle-free as in Kallang

and Punggol with the doubling of all HDBs, the neighborhoods will not be able to experience

the maximum potential benefits of the car-lite policy.

Finally, I present changes in people-based scenario evaluation measures in Figure 5-

14. Accessibility appears to decrease marginally with the introduction of upzoning (see

Figure 5-14a). This may be explained by the in-migration of higher-income households who

experienced greater accessibility in their former residential locations (with private vehicle

holdings) than they do now in the study area, despite improvements in non-auto accessibility.

However, in neighborhoods like Kallang and Yishun, affordability constraints can be effective

in reducing the extent of this accessibility decrease. Overall, accessibility with upzoning

remains quite close to accessibility without upzoning and much larger than initial day-0

levels. Consumer surplus with upzoning is found to be better than that without upzoning

in all neighborhoods, although the magnitudes obviously differ (see Figure 5-14b). Similar

trends are observed across neighborhoods, but the scale of the x-axis in the figure masks close

observation of the trends in neighborhoods other than Kallang. The increase in consumer

surplus due to upzoning can be further accentuated by income restrictions and discounts,

suggesting that upzoning with affordability constraints can be an effective mechanism to

equitably distribute improvements in accessibility and welfare across socioeconomic groups.

5.4.2 Vehicle-restricted housing supply

My findings from providing new housing supply suggested more attention towards incen-

tivizing households who move into new market-rate units to become more vehicle-free. Such

a transition could be influenced by incentives such as discounts on the asking prices of hous-

ing units or disincentives such as more expensive parking or parking restrictions (or even

elimination). As different municipalities are likely to pursue different mechanisms, I oper-

ationalized this policy in a manner that is agnostic to the particular mechanism through

which the vehicle-free transition is influenced. Same as earlier, I provided new housing

supply by doubling the public housing units in the neighborhood (both with all HDBs and

only HDB123s) with the key difference being that all new housing units are now vehicle-

restricted. This policy restricts households who move into these new units from any private
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(a) Change in vehicle-free share of all movers

(b) Change in vehicle-free share of movers into new housing units

Figure 5-13: Vehicle-free effect of coordinated new housing supply in selected Singaporean
neighborhoods

vehicle holdings and forces them to become vehicle-free.

I ran several simulations of this vehicle-restricted upzoning policy, first without any

affordability constraints, and then with varying values of income restrictions (set at SGD
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(a) Change in neighborhood-wide activity-based accessibility

(b) Change in neighborhood-wide consumer surplus

Figure 5-14: Accessibility and consumer surplus effects of coordinated new housing supply
in selected Singaporean neighborhoods

2,500 or SGD 3,500) and discounts (set at 10% or 20%). The only difference between these

scenarios and those in the previous sub-section is that, except for one, every scenario with

vehicle-restricted housing supply includes a discount on the asking price. I did not include

any scenario with only income restrictions, unlike with new housing supply, because I am
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interested in examining whether lower asking prices can make up for the inconvenience

caused by the restriction on vehicle holdings even though non-accessibility improvements

are provided.

Figure 5-15 reports changes in neighborhood outcomes. Lower-income neighborhoods

that are more susceptible to accessibility-induced gentrification (such as Kallang and Yishun)

experience more changes due to the coordinated vehicle-restricted upzoning policy. When

all HDB units are doubled but with restrictions on vehicle holdings, the lack of affordability

constraints make neighborhoods like Kallang and Yishun less attractive as evidenced by

the increase in vacancy rate. At the same time, area mean income increases drastically,

suggesting that fewer households move into the study area (compared to when coordinated

housing policies were absent) and those that do are significantly higher-income. However,

as a result of the vehicle-restricted clause associated with new housing supply, these higher-

income households are forced to become vehicle-free and the neighborhood-wide vehicle-free

rate increases by at least 15% points. Introducing income-restrictions and discounts seems

successful in making these new vehicle-restricted housing units more attractive to lower-

income households as area mean income reduces. Despite mitigating the gentrification side-

effect, no additional vehicle-free benefits are realized. Similar trends are observed when only

HDB123s are offered as new vehicle-restricted housing, although the increases in vehicle-free

share are comparatively more modest and do not exceed 10% points.

Examining the incomes of in-movers in further detail in Figure 5-16 confirms these find-

ings and yields some new insights. When income restrictions are put in place on the new

vehicle-restricted housing units, the average income of households who move into the new

market-rate units increase, especially in Kallang and Yishun. As the income restrictions

reduce the pool of new housing units for which middle-income households are eligible, the

reduced supply sparks off a bidding war. Many middle-income households who were moving

into these new vehicle-restricted units are now ineligible for the affordable units and cannot

afford the market-rate units as higher-income households bid up the asking prices. This in-

creases the neighborhood vacancy rate as well. However, the vehicle-free share is not affected

because all households, regardless of income or preference, have to become vehicle-free after

moving into the new housing units offered through the vehicle-restricted upzoning policy.

Finally, I present changes in people-based scenario evaluation measures in Figure 5-17.

Accessibility appears to decrease by 1-2% points with the introduction of vehicle-restricted
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(a) Change in vacancy rate

(b) Change in area mean income

(c) Change in vehicle-free share

Figure 5-15: Neighborhood outcomes of coordinated vehicle-restricted housing supply in
selected Singaporean neighborhoods
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(a) Change in average income of all movers

(b) Change in average income of movers into new housing units

Figure 5-16: Income effect of coordinated vehicle-restricted housing supply in selected Sin-
gaporean neighborhoods

upzoning (see Figure 5-17a). This decrease is larger than what I observed for upzoning

without parking constraints. However, the trends are largely the same, where affordability

constraints can be effective in reducing the extent of this accessibility decrease in some neigh-
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borhoods. Regardless of this decrease, accessibility with vehicle-restricted upzoning remains

much larger than initial day-0 levels. Contrary to the previous policy (i.e., upzoning without

parking constraints), I find that introducing vehicle restrictions on new housing supply re-

duces welfare, which is in agreement with the car-lite policy explorations I presented earlier.

A decrease in consumer surplus is observed for all scenarios across the four neighborhoods

(see Figure 5-17b). Although upzoning by itself had increased consumer surplus relative to

the scenario without any coordinated housing policy, parking constraints push welfare in the

opposite direction. While affordability constraints work to a certain extent in mitigating this

decrease in welfare, they are much more effective when only smaller public housing units are

offered as vehicle-restricted new housing supply. Thus, tailoring private vehicle restrictions

to particular types of new housing developments is going to be key if we want to increase

the neighborhood vehicle-free share without compromising on residents’ welfare.

5.5 Summary

This chapter explored how neighborhoods might change in response to car-lite policies that

include private vehicle restrictions and/or non-auto accessibility improvements. I designed

four scenarios of potential car-lite policies that can be piloted at the neighborhood-level, in

addition to a baseline scenario that I used as a reference. Neighborhood changes in response

to these four policies, as measured through five evaluation measures, are summarized in Ta-

ble 5.5. I found that a neighborhood-wide private vehicle ban does help in creating a fully

vehicle-free neighborhood, but at the cost of significantly reducing accessibility and wel-

fare. I also found evidence of accessibility-induced gentrification across several Singaporean

neighborhoods, which, in turn, dampened the potential vehicle-free share increase.

Recognizing that accessibility improvements alone are always at the risk of inducing

gentrification which may in turn dampen the increase in vehicle-free shares, I tested two types

of housing policies — upzoning and parking restrictions. These policies, in conjunction with

affordability constraints, can address accessibility-induced gentrification when coordinated

with accessibility improvements. I summarize how neighborhoods change in response to

these policies in Table 5.6. I found that coordinated housing policies show promise in

being able to address gentrification concerns while enhancing the benefits of accessibility

improvements. They become much more effective when they are combined with affordability
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(a) Change in neighborhood-wide activity-based accessibility

(b) Change in neighborhood-wide consumer surplus

Figure 5-17: Accessibility and consumer surplus effects of coordinated vehicle-restricted
housing supply in selected Singaporean neighborhoods

constraints that help distribute accessibility and welfare benefits more equitably.

In the next chapter, I analyze the extent to which my findings are sensitive to certain

parameters, followed by whether they are robust to changes in a few key assumptions. I also
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Table 5.5: Summary of accessibility-induced neighborhood changes

Vacancy Area mean income Vehicle-free share Accessibility Consumer surplus

Baseline Reference

Private vehicle ban ∼ ∼ 100% -- --

Accessibility improvements

(w/o housing market response)
- ∼ ++ ++ ∼

Accessibility improvements

(w/ housing market response)
-- + + ++ ++

Private vehicle ban &

Accessibility improvements
-- + 100% + - / +

Table 5.6: Summary of coordinated housing policy-induced neighborhood changes

Vacancy Area mean income Vehicle-free share Accessibility Consumer surplus

No coordinated housing supply Reference — Accessibility improvements (w/ housing market response)

New housing supply

w/o affordability constraints ++ ++ - / + - +

w/ affordability constraints + - / + + - ++

Vehicle-restricted housing supply

w/o affordability constraints + ++ ++ - --

w/ affordability constraints + / ++ - / + ++ - - / ∼

explore whether and how my findings can be generalized to contexts beyond Singapore by

using the example of a virtual city.
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Chapter 6

Generalizability & Transferability

This chapter discusses the generalizability of my findings by testing their sensitivity and

robustness to key parameters of interest and core modeling assumptions. First, I examine

the extent to which my scenario evaluation measures are affected by stochastic variation in

the simulation. Then, I explore how assuming different magnitudes of accessibility improve-

ment would affect neighborhood outcomes. In the previous chapter, I had assumed that

households respond to accessibility improvements in a uniform manner. Here, I introduce

non-uniformity in the responses by household income and examine the subsequent change in

neighborhood outcomes. Moving on to robustness checks, I test whether choosing a different

housing-mobility choice framework (simultaneous instead of sequential — see Section 4.4.3),

introducing the cost of private vehicle holdings into the choice framework, or using a differ-

ent accessibility measure (commute time instead of ABA) might change my observations.

Finally, I assess the transferability of my findings related to how neighborhoods change in

response to car-lite policies by testing the same policy scenarios but in a different, more

auto-dependent setting.

6.1 Sensitivity analysis

As in any simulation study, it is important to explore how the results I have presented thus

far are sensitive to certain parameters of interest. Therefore, in this section, I first examine

the extent of stochastic variation in my simulation results, which might affect my compari-

son of neighborhood outcomes. Then, I change the magnitude of accessibility improvements

and measure changes in neighborhood outcomes relative to different extents of enhanced
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non-auto accessibility. Finally, instead of assuming uniform improvements across socioeco-

nomic groups, I vary the extent to which different income groups receive or perceive these

improvements and track how this changes neighborhoods. This can help us in understanding

which groups to target when implementing these policies.

6.1.1 Stochastic variation across repeat simulations

How does the stochastic variation across repeat simulations compare against the scenario-

based changes in neighborhood outcomes? To address this question, I repeated each sim-

ulation five times with the same parameter settings. As I selected four neighborhoods for

detailed analysis and created four car-lite policy scenarios (in addition to the baseline),

I needed to run (4 * 5 =) 20 simulations with different parameter settings. For this

sub-section, I repeated each of these 20 simulations five times without altering the param-

eters across the five iterations. This allowed me to examine standard deviations across the

repeat simulations and report neighborhood outcomes as means with confidence bands, in-

stead of ‘just’ point estimates. I show these confidence bands in Figure 6-1, where I find

that the simulations are quite stable with regard to these neighborhood outcomes. While

there is indeed variation in which specific households are awakened and their corresponding

housing-mobility choices, aggregate neighborhood-level outcomes remain stable. The thin-

ness of the confidence bands, implying low stochastic variation across repeat simulations,

suggest that we can be ‘confident’ (statistically speaking) in the differences we observe

across scenarios. When confidence bands overlap, we cannot make claims about distinct

effect sizes, or differences across interventions or scenarios. However, that is not the case at

the neighborhood-level, as illustrated in Figure 6-1.

6.1.2 Magnitude of accessibility improvements

While operationalizing non-auto accessibility improvements in neighborhoods thus far, I as-

sumed a significant magnitude of increase in accessibility such that being vehicle-free is just

as ‘good’ as having access to a car (on average). In other words, I improved non-auto acces-

sibility by the mean difference between ‘one car’ accessibility and ‘zero vehicle’ accessibility

(which I represent as ∆ 𝐴𝐵𝐴𝑐𝑎𝑟). Augmenting non-auto accessibility by a full ∆ 𝐴𝐵𝐴𝑐𝑎𝑟

can indeed come across as bold, which is why I explored variations of ∆ 𝐴𝐵𝐴𝑐𝑎𝑟 ranging

from (0.5 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟) to (1.5 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟). When the magnitude of accessibility improve-
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(a) Variation in vacancy rate

(b) Variation in area mean income

(c) Variation in vehicle-free share

Figure 6-1: Stochastic variation in neighborhood outcomes in selected Singaporean neigh-
borhoods
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ment is less than ∆ 𝐴𝐵𝐴𝑐𝑎𝑟 (such as (0.5 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟) and (0.75 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟)), it implies

that non-auto accessibility has been improved but still remains lower than accessibility with

a car (on average). On the other hand, improving accessibility by more than ∆ 𝐴𝐵𝐴𝑐𝑎𝑟

(such as (1.25 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟) and (1.5 * ∆ 𝐴𝐵𝐴𝑐𝑎𝑟)) signifies a perhaps utopian scenario

where non-auto modes provide better average accessibility than a private car.

Figure 6-2 illustrates how changes in the magnitude of accessibility improvement af-

fect changes in neighborhood outcomes such as area mean income and vehicle-free share.

I explore only the two accessibility improvement scenarios (i.e., without and with hous-

ing market response), and use bolder shades to represent larger magnitudes of accessibility

improvement. I find that we run the risk of magnifying the gentrification side-effect (as evi-

denced by greater increases in area mean income) when we improve non-auto accessibility to

a larger extent compared to that with a car. This translates to a stronger dampening effect

of the vehicle-free share, where the initial increases in vehicle-free share (when housing mar-

ket response is absent) are reduced to a greater extent when the accessibility improvement is

larger. Through this analysis, I underscore the risk of inducing unintended side-effects with

non-auto accessibility improvements that may end up affecting lower-income communities

to a greater extent. Providing even better accessibility by increasing the magnitude of im-

provement does not seem to nudge car-lite policy outcomes in the desired direction. Rather,

coordinating housing policies with accessibility improvements can be much more effective in

equitably distributing the benefits of such improvements.

6.1.3 Sociodemographic variation in accessibility improvements

Throughout Chapter 5, I assumed that accessibility improvements are distributed uniformly

across socioeconomic groups. In other words, every household experiences the same amount

of accessibility improvement. But what if accessibility improvements are distributed non-

uniformly, where some groups experience more improvement than others? This could be a

programmatic decision by policy-makers to target accessibility improvements towards cer-

tain groups. Another reason could be variation in behavioral response, where perceived

accessibility differs across groups even though the actually implemented improvements are

uniform. While further exploration into the causes of such non-uniform distribution is be-

yond the scope of this dissertation, I explore the consequences of such distributions in this

sub-section.
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(a) Change in area mean income

(b) Change in vehicle-free share

Figure 6-2: Sensitivity of neighborhood outcomes to magnitude of accessibility improvements
in selected Singaporean neighborhoods

I created three income groups based on the distribution of household income across

the synthetic population — (a) Low-Income (LINC) with monthly household incomes below

SGD 2,500 (i.e., less than 25th percentile), (b) Middle-Income (MINC) with incomes between

SGD 2,500 and 10,000 (i.e., 25th to 75th percentile), and (c) High-Income (HINC) with
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incomes greater than SGD 10,000 (i.e., above 75th percentile). I then introduced a ‘response

factor ’ that can be defined separately for these three income groups to create a non-uniform

distribution of accessibility improvements. For example, if the response factor for low-

income households is equal to 2 but it is 1 for the other two income groups (i.e., LINC

x 2, MINC x 1, HINC x 1), then low-income households experience twice the magnitude

of accessibility improvement as other households. To simulate a uniform distribution of

accessibility improvements (as I’ve been doing thus far), I can simply set the response factor

to 1 for all three income groups.

In addition to the uniform distribution case (where the response factor is 1 for all three

income groups), I explored various combinations of response factors. These simulations

were conducted for the scenario where both buyers and sellers react to accessibility improve-

ments, in order to understand the effect of non-uniform accessibility improvement across

income groups on neighborhood change. I present the results of this exploration in Figure

6-3. Improving the accessibility of lower-income households comparatively more is found

to enhance the intended consequences of the car-lite policy. In such situations, area mean

income decreases (to below baseline levels at times), signifying that the gentrification side-

effect can be significantly tempered by making the study area (with improved accessibility)

relatively more attractive for lower-income households. This, in turn, increases the vehicle-

free share, achieving the objective of the car-lite policy. Decreasing the relative accessibility

improvement for higher-income households accentuates these trends.

When we improve accessibility to a greater extent for middle-income households as well

as lower-income households, area mean income increases slightly but still remains less than

the uniform distribution value (and within 5% of the baseline value). The vehicle-free

share increases even further despite the slight increase in area mean income and goes up

to 5-8% points above the baseline value. Finally, if higher-income households experience

better accessibility at the expense of lower-income households, the consequences can be

concerning. Area mean income shoots up to 12-27% higher than the baseline value, while

the vehicle-free share drops to lower than that with uniform distribution (and can even be

worse than the baseline in some neighborhoods). This analysis highlights the importance of

considering non-uniform distribution of accessibility improvements, not just to guard against

the magnification of unintended negative consequences, but also as a policy instrument to

accentuate desired neighborhood outcomes.

156



(a) Change in area mean income

(b) Change in vehicle-free share

Figure 6-3: Sensitivity of neighborhood outcomes to sociodemographic variation in accessi-
bility improvements in selected Singaporean neighborhoods

6.2 Robustness checks

I conducted three analyses to explore whether my findings about how neighborhoods change

in response to accessibility improvements are robust to a few key modeling assumptions.

First, I examined whether using the simultaneous housing-mobility choice framework (with-
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out including vehicle costs) will result in different outcomes compared to the sequential

framework. I then introduced vehicle costs into the simultaneous choice framework and

compared that to a no-cost scenario exploration with the same framework. Finally, I in-

vestigated whether choosing an accessibility measure different from the household-specific

activity-based accessibility (such as public transit commute times) will affect my findings.

6.2.1 Does the type of choice framework matter?

I had introduced the simultaneous housing-mobility choice framework as a methodological

extension to the existing sequential framework in SimMobility Long-Term in Section 4.4.3.

In the sequential choice framework, households first consider residential relocation and then

reconsider private vehicle holdings after they move into their new unit. Instead of framing

private vehicle availability choice as conditional on just the new residential location, the

simultaneous choice framework allows households to jointly consider potential units for res-

idential relocation along with appropriate private vehicle holdings that are in line with their

preferences should they choose to live in those potential units. The simultaneous framework

also allows us to account for the cost of vehicle holdings and adjust the WTP for units

accordingly. For example, if a household were to choose a location only if they also had a

car, then the cost of the housing unit should be viewed as the purchase price plus the cost

of the vehicle holding option. Hence, the housing choice that maximizes expected consumer

surplus has the largest value for 𝑊𝑇𝑃 (ℎ, 𝑣) − 𝑃𝑟𝑖𝑐𝑒(ℎ, 𝑣) among all choices of ℎ (housing

units) and 𝑣 (vehicle holdings).

Since there are two elements to consider in the simultaneous framework — the decision-

making framework itself and the cost of vehicle holdings, I examine them separately. In

this sub-section, I compare the sequential framework against the simultaneous framework

where WTP calculation is made for each possible vehicle holding option, but the cost of the

vehicle option is not subtracted from WTP when computing expected consumer surplus.

In the following sub-section, I explore the effect of including vehicle holding costs in the

bidding process by subtracting them from WTP. Figure 6-4 reports neighborhood outcomes

for both the sequential and simultaneous frameworks (where the latter does not include

vehicle holding cost). Given the surplus-maximizing manner in which units are chosen for

placing bids and the conditional manner in which vehicle holdings are determined for the unit

with the maximum consumer surplus, I do not expect the findings to differ. This hypothesis
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is confirmed as I find almost no differences between the results of the two choice frameworks.

Not only are the trends of neighborhood change very similar, the particular outcome values

exhibit only marginal differences. Therefore, I can conclude that my findings are robust

to the selection of housing-mobility choice framework (when vehicle choices are part of the

WTP evaluation, but the cost of the vehicle holdings are not explicitly considered).

6.2.2 Does the cost of vehicle holdings matter?

To understand the effect of including the cost of vehicle holdings, I used the simultaneous

choice framework to compare two cases — one without the cost of vehicle holdings against

one with vehicle costs. Figure 6-5 presents the results of this analysis. I do not find any

evidence to suggest that the patterns of neighborhood vacancy rate and area mean income

are dependent on whether vehicle costs are explicitly included in expected consumer surplus

calculations. However, vehicle-free shares are expected to differ, and I confirm this by

illustrating that there seems to be a translation of the vehicle-free shares (along the x-axis)

by 4-6% points although the trends remain the same.

Data limitations prevented us from including vehicle holding costs in the private vehicle

availability model. Therefore, the initial synthetic population assignments of households to

housing units used the vehicle availability model without vehicle costs to probabilistically

select vehicle holding options that, overall, averaged 51.8% across Singapore. However,

when awakened households considered vehicle costs while evaluating relocation options, they

tended to move to places that are relatively more attractive without a car. Hence, the overall

vehicle-free share increased by 4% points (see Table 4.8), thus illustrating that vehicle holding

costs do matter in influencing vehicle-free shares. If appropriate data were available, a vehicle

availability model including costs would allow the original assignment to match the observed

vehicle-free share of 51.8% in Singapore in a way that would remain unchanged during the

burn-in.

Nevertheless, my analysis suggests that including vehicle costs in the bidding process does

not significantly influence neighborhood composition as characteristics of movers are not

expected to change. However, the consideration of vehicle holding costs in the computation

of WTP during housing relocation (but not in the vehicle availability model) does reduce

consumer surplus for housing-mobility options that include private vehicles as the WTP

is discounted by vehicle costs. This, in turn, influences many potential movers to prefer

159



(a) Change in vacancy rate

(b) Change in area mean income

(c) Change in vehicle-free share

Figure 6-4: Neighborhood outcomes for different housing-mobility choice frameworks in
selected Singaporean neighborhoods
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(a) Change in vacancy rate

(b) Change in area mean income

(c) Change in vehicle-free share

Figure 6-5: Neighborhood outcomes with and without the cost of vehicle holdings in selected
Singaporean neighborhoods
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locations that do not necessitate the ownership of private vehicles (i.e., housing-mobility

options that are vehicle-free). It is worth noting here that data limitations prevented us

from including vehicle costs in the estimation of the private vehicle availability model, so

being overly confident about the specific predicted values of neighborhood outcomes with

vehicle costs may not be wise. Nevertheless, it is comforting to see the trends of neighborhood

changes due to accessibility improvements (with housing market response) remain the same,

both without and with vehicle holding costs.

6.2.3 Does the accessibility measure matter?

My final robustness check is with regard to the use of a measure of accessibility in the

LT sub-models. Does my choice of accessibility measure influence my findings regarding

how neighborhoods change in response to accessibility improvements? To address this ques-

tion, I estimated WTP and private vehicle availability models separately switching out the

household-specific activity-based accessibility (ABA) measure with household-specific pub-

lic transit commute times (see Tables A.5 and A.7). The hedonic price model remains the

same because, being a market model, it does not include any household-specific accessibility

measure. I then conducted the same set of scenario explorations using these models and

compared the ABA simulation results against those using public transit commute times.

From Figure 6-6, I do not observe any major differences between the two sets of simulation

results and the trends appear to be similar. Therefore, I can conclude that my findings

of neighborhood changes due to accessibility improvements (with housing market response)

are robust to my choice of accessibility measure. Nevertheless, we would prefer to have

ABA measures since they can more readily account for particular changes in daily activity

patterns that might result from the introduction of new mobility services (beyond private

automobiles).

6.3 Transferability

The Singaporean context is, in many ways, unique. Talking about housing and mobility

choices, around 80% of Singaporean households live in public housing and more than half

are vehicle-free (i.e., do not have access to any private vehicle). Readers may be wondering at

this point about the extent to which my findings are influenced by the unique Singaporean
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(a) Change in vacancy rate

(b) Change in area mean income

(c) Change in vehicle-free share

Figure 6-6: Neighborhood outcomes for different accessibility measures in selected Singa-
porean neighborhoods
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context. Would non-auto accessibility improvements made in a different and more auto-

dependent context (such as the U.S.) result in similar outcomes? This question relates

to the transferability of my findings, which has been an important critique of simulation

studies in general and LUTI models in particular. Setting up a LUTI model for a different

context can be time-consuming and expensive, so I tried out an exploration at a more limited

scale. I (and several colleagues) constructed a ‘virtual city’ that has very different zoning,

transport infrastructure, and built environment compared to Singapore, although behavioral

preferences of residents are assumed to be similar. When thinking of a different context, both

spatial configuration and residents’ behavior come to mind. In this analysis, as I assume

similar behavioral preferences, I am testing only the effect of a different spatial configuration

(which can still lead to very different choices and outcomes). Using this sandbox as a testbed,

I repeated the set of scenario explorations in different neighborhoods to examine the extent to

which my findings are transferable to another context with a different spatial configuration.

6.3.1 Constructing a virtual city

I will provide a brief overview of the virtual city construction process in this sub-section.

Readers interested in additional details of this process (as well as an assessment of the

LT-MT integration) are invited to refer to Basu et al. (2021).

Our approach allows any hypothetical transport infrastructure to be combined with

plausible land use constraints and then translated into a virtual city by distributing residents

and jobs in a manner that reflects observed patterns in an actual city. Such a virtual city

can be a useful sandbox for LUTI explorations since it enables the performance of any

arbitrary transportation infrastructure to be simulated using population and employment

distributions, and related behavioral models, that are sampled from real cities and spatially

distributed in the virtual city so that socioeconomic patterns are similar along the density

gradients of the real and virtual city.

We used various geospatial techniques to create disaggregate spatial geometry such as

parcels and postcodes, with additional adjustments keeping future development and consis-

tent spatial boundaries across layers in mind. In line with literature showing how population

density follows transportation infrastructure density, we allocated households and firms that

are randomly sampled from an actual city (Singapore) through a density-matching technique.

Finally, students were matched to educational institutions and workers were matched with
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jobs to construct a calibrated synthetic population for the virtual city.

The zoning plan for the virtual city is shown in Figure 6-7. We chose to represent a

monocentric city with commercial land use in the center, residential land use to the north

and east, and industrial land use towards the south west. We also included separate zones

for open spaces, educational institutions (such as schools and universities), and an airport.

Figure 6-7: Zoning in the Virtual City

We wanted to represent a less extensive public transport network in the virtual city

(compared to Singapore), so we chose to have only two MRT lines with eight stations

(Figure 6-8d) and 86 bus stops, counting those on opposite sides of the road as distinct

(Figure 6-8c). Our choices of the transport infrastructure and zoning plan are completely

arbitrary, but plausible. Although the virtual city construction pipeline uses these data as

inputs, the framework outlined in Basu et al. (2021) is independent of the nature of these

inputs. We wanted to create a virtual city that is around 1/10th the scale of Singapore,

so we randomly sampled roughly 10% of Singaporean households, housing units, jobs and

establishments based on a density-based gradient. In contrast to 1.14 million households

and 1.22 million housing units in Singapore, the virtual city has close to 90,000 households

and 100,000 housing units. Based on the monocentric segregated land use zoning plan, only

three of the five planning areas in the virtual city are populated and one planning area is
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purely residential. The population and job densities of planning areas in the virtual city are

shown in Figures 6-8a and 6-8b.

(a) Population Density (b) Job Density

(c) Bus stops (d) Mass Rapid Transit (MRT) stations

Figure 6-8: Spatial distributions of people, jobs, and transit infrastructure in the Virtual
City

6.3.2 Simulated effects in a virtual city

I conducted scenario explorations in the virtual city in a similar manner by first choosing a

few neighborhoods for detailed analysis. Since only three of the five planning areas in the

virtual city are populated, I selected all three — PAREA_35_VC, PAREA_47_VC, and

PAREA_55_VC (see Figure 6-9). The characteristics of these planning areas are presented

in Table 6.1 along with those of the entire virtual city. We can see that the virtual city is

significantly more auto-dependent than Singapore with a vehicle-free share of only 13.2%
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compared to Singapore’s 51.8%. PAREA_35_VC is comparatively lower-income and more

vehicle-free, while PAREA_55_VC is higher-income and less vehicle-free compared to the

city-wide average.

Figure 6-9: Selecting three (populated) planning areas for detailed analysis

Table 6.1: Characteristics of populated planning areas in the Virtual City

Virtual City PAREA_35_VC PAREA_47_VC PAREA_55_VC

Units 97,590 40,650 34,024 22,916

Vacancy rate (%) 10.1% 9.5% 6.5% 16.5%

Mean household income (SGD) $7,065 $6,739 $7,103 $7,627

Vehicle-free share (%) 13.2% 17.1% 13.2% 5.8%

I operationalized non-auto accessibility improvements in these three neighborhoods in

the same manner as earlier. First, I increased the ‘vehicle-free’ ABA for every household in

the study area by the mean difference between the ‘one-car’ and ‘zero-vehicle’ ABA values.

Second, I decreased public transit travel times by the mean difference between transit and

car travel times, which is 15 minutes instead of 30 minutes owing to the smaller scale of the

virtual city. I also operationalized the private vehicle ban in the same manner as earlier by

changing the accessibility of every household in the study area to their ‘vehicle-free’ ABA

and increasing public transit travel times by 25%. I simulated the same set of five scenarios
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(i.e., the baseline and four car-lite policies) for each of the three selected neighborhoods

with some minor adjustments to the simulation parameters to reflect the smaller scale of

the virtual city (e.g., awakening only 40 households every day instead of 400).

Figure 6-10 presents how accessibility changes affect the neighborhood-wide vacancy

rate. The changes in vacancy rate with the introduction of accessibility improvements are

similar to my observations for Singaporean neighborhoods. The vacancy rate is not affected

when accessibility improvements are introduced without housing market response. When

both buyers and sellers respond to these improvements, more in-movers are attracted to the

study area, which leads to a subsequent decrease in the vacancy rate. I observe an increase

in the vacancy rate for one of the planning areas (PAREA_55_VC ). Similar to Punggol in

Singapore, this neighborhood is also comparatively more auto-dependent (with a vehicle-free

share of only 5.8%, compared with the Virtual City average of 13.2%). This reinforces my

conclusion that private vehicle restrictions in more auto-dependent contexts can reduce the

attractiveness of those locations and induce some out-migration.

Figure 6-10: Vacancy effect of car-lite policies in the Virtual City

I then examine the income effect of car-lite policies in these three planning areas. Changes

in the area mean income as well as a comparison of incomes of in-movers and out-movers

are reported in Figure 6-11. The housing market effects captured through both buyer and

seller response to improved accessibility drive up the area mean income. When comparing
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in-movers and out-movers, I find evidence to suggest that the study area attracts higher-

income in-movers who displace lower-income out-movers due to the housing market response.

Accessibility-induced gentrification is observed for two of the three planning areas. While

the third planning area (which is lower-income and more vehicle-free) was gentrifying even

in the baseline, the extent of gentrification is accentuated by housing market effects.

(a) Change in average neighborhood income

(b) Change in average income of movers

Figure 6-11: Income effect of car-lite policies in the Virtual City
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Next, I explore how the vehicle-free share changes as a result of these neighborhood-wide

accessibility changes. Figure 6-12 presents both aggregate vehicle-free shares and compar-

isons between in-movers and non-movers. The neighborhood-wide vehicle-free share in-

creases when non-auto accessibility is improved without housing market response. When

housing market effects kick in, higher-income in-movers who are comparatively less vehicle-

free than the non-mover residents dampen the neighborhood vehicle-free share. There is one

planning area (which is the highest-income and the least vehicle-free) where the dampening

effect is strong enough to wipe out the initial vehicle-free increase entirely.

Finally, I report changes in accessibility and consumer surplus in Figure 6-13. Introduc-

ing a neighborhood-wide vehicle ban is found to decrease accessibility by 6-9% and consumer

surplus by SGD 200,000 - 250,000. These effects are much more pronounced in the virtual

city than in Singapore, where the same restriction had reduced accessibility by 2-4% and

surplus by SGD 80,000 - 100,000. These observations suggest that vehicle restriction policies

without improvements in non-auto accessibility in more auto-dependent contexts can worsen

accessibility and welfare to a greater extent. When non-auto accessibility improvements are

introduced, neighborhood-wide accessibility in the virtual city increases by 1-1.5% com-

pared to 2.5-6.5% in Singapore. When both buyer and seller responses are accounted for,

consumer surplus values are around SGD 180,000 - 630,000 higher than the baseline (and

what I observed for Singapore). However, this welfare gain is wiped out when accessibility

improvements are accompanied by a vehicle ban, similar to Singapore. These observations

suggest that non-auto accessibility improvements are valued more in more auto-dependent

contexts and can attract greater premiums, thus necessitating a more mindful eye towards

the equitable distribution of the accessibility and welfare benefits of car-lite policies.

6.4 Summary

In this chapter, I conducted sensitivity analysis and robustness checks to confirm that my

findings hold up to changes in parameter settings and key modeling assumptions. I also

illustrated the case of a more auto-dependent context than Singapore, where the spatial

configuration is very different but residents’ behavioral preferences are similar. I found

that just changing the spatial configuration alone (without change in behavior) can lead to

different changes in accessibility and welfare of residents. However, the primary observation
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(a) Change in neighborhood-wide vehicle-free share

(b) Change in vehicle-free share of movers

Figure 6-12: Vehicle-free effect of car-lite policies in the Virtual City

of accessibility-induced gentrification still holds in the virtual city, albeit to a greater extent.

I also found that car-lite policies aiming to ban private vehicles can be comparatively more

detrimental in contexts that are heavily auto-dependent. In the next chapter, I will discuss

how these findings can be translated into policy recommendations and outline a few areas

that would benefit most from further research.
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(a) Change in neighborhood-wide activity-based accessibility

(b) Change in neighborhood-wide consumer surplus

Figure 6-13: Accessibility and welfare effects of car-lite policies in the Virtual City
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Chapter 7

Conclusion

The climate crisis has left us little choice but to be ambitious and urgent enough to reimag-

ine the way of life we have taken for granted thus far. An example of this with far-reaching

consequences beyond ‘just’ greenhouse gas emissions is our reliance on automobiles. As I

explained at the outset, by ‘reliance on automobiles’ I mean the deployment of housing, jobs,

and services in a manner that requires too large a fraction of trips to be made in single-

occupancy motorized vehicles. Reducing auto-dependence can have significant public health

and environmental benefits, while also freeing up land and funding that can be used for other

purposes. As cities try out car-lite pilot programs that aim to reduce auto-dependence, it

becomes necessary to understand how these programs might influence personal choices of

residential location and private vehicle holdings. This is important because how these pro-

grams are rolled out can be crucial in determining how they are perceived and the possibility

of ‘success’ that might accelerate their expansion to other neighborhoods beyond the pilot

area. How might car-lite policies change neighborhoods? Might housing policies be effective

in mitigating gentrification side-effects while enhancing auto-dependence reductions?

This dissertation addresses these policy-relevant questions using an agent-based land

use-transportation interaction (LUTI) model (SimMobility). In addition to being a state-

of-the art LUTI model that ‘tightly’ integrates the land use and mobility components using

activity-based accessibility measures, SimMobility has a unique internal structure that en-

ables simulation of daily transactions in the housing market. I proposed and implemented

several key methodological extensions that enabled richer exploration of the housing market

response to car-lite policies and various housing subsidies and regulations. Then, I designed
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and examined various policy scenarios related to private vehicle restrictions, non-auto ac-

cessibility improvements, and coordinated housing policies such as upzoning and restricted

parking supply. I also explored the sensitivity, robustness, and transferability of my findings

through various analyses. In this final chapter, I will first summarize my key findings from

this research. I will then discuss the implications of my findings for guiding policy-making

followed by the limitations in my analysis. Finally, I will outline a few promising avenues

for future research efforts.

7.1 Summary of key findings

In their bid to reduce auto-dependence, policy-makers can design car-lite policies using a

‘carrot’ (i.e., an incentive, such as improving non-auto accessibility) or a ‘stick’ approach

(i.e., a disincentive, such as restricting private vehicles). I tested the near-term response of

residents to these policies, when implemented city-wide, using quasi-static analysis before

running complex microsimulations. These analyses provide preliminary evidence of what

we might expect to see in the very near-term, before enough people change their behavior

resulting in a new equilibrium.

I found that banning vehicles would, not suprisingly, reduce accessibility and social

welfare across the board. These detrimental effects will expectedly affect households with

private vehicle holdings, especially those who are comparatively lower-income to a greater

extent. To offset these negative consequences of a vehicle ban, policy-makers could opt to

improve non-auto accessibility. While such improvements improve both accessibility and

welfare across the population, vehicle-owning households may still not perceive their ac-

cessibility to be as good as it was when they were allowed to own vehicles, despite the

accessibility improvements. I observed higher-income vehicle-owners to experience greater

welfare gains in such situations. Thus, a vehicle restriction policy on its own is likely to

negatively affect residents, even in relatively less auto-dependent contexts like Singapore.

Non-auto accessibility improvements will be necessary to offset the loss of accessibility and

welfare from banning private vehicles. Any such combination of restrictions and accessibility

improvements are likely to be tested in a pilot study area before being implemented across

a metro area. In such cases, residential moves within and beyond the study area might have

a large impact and it will be especially important to examine the impacts in some detail.
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Building on this finding, I examined the near-term effects of car-lite policies that include

private vehicle restrictions and/or non-auto accessibility improvements on neighborhoods

in Singapore using scenario analysis. I tracked neighborhood change using both place-

based and people-based measures over the length of three calendar years. All of the 26

neighborhoods studied for this analysis exhibited varying degrees of accessibility-induced

gentrification, which consequently dampened the potential vehicle-free increases that would

have otherwise resulted from accessibility improvements had housing market effects been

absent. On the other hand, a private vehicle ban within the study area significantly reduces

residents’ accessibility and welfare, even though it achieves the intended objective of creating

a more vehicle-free neighborhood. Looking at neighborhood characteristics, I found that

lower-income and more vehicle-free neighborhoods were associated with larger gentrification

effects. Such unintended consequences can affect public support for car-lite policies that

aim to improve non-auto accessibility. Moreover, piloting these policies in neighborhoods

that are more susceptible to negative outcomes can bury these programs for good and delay

sustainable mobility efforts by years.

Drawing from the literature on transit-induced gentrification, I then explored two hous-

ing policies — upzoning and restricted parking supply — as possible strategies to mitigate

accessibility-induced gentrification. Upzoning alone was found to accelerate gentrification,

especially in lower-income neighborhoods. Using affordability constraints in combination

with upzoning helped to temper some of these concerning trends. Some combinations of

income restrictions and discounts on asking prices were found to increase the vehicle-free

share of the neighborhood, while also significantly improving the welfare of residents. Up-

zoning combined with parking restrictions on new housing supply was found to increase

vehicle-free share appreciably, but at the cost of welfare. While affordability constraints

helped limit the decrease in welfare, income restrictions were found to be more effective in

mitigating gentrification compared to discounts on asking prices. My overall findings largely

support the general findings that the literature had suggested, and they illustrate how care-

fully constructed and calibrated LUTI models can be used to estimate and compare the

net effects for specific circumstances. Upzoning and parking restrictions have limited value

on their own. They become much more effective policy instruments when combined with

affordability constraints so that the accessibility and welfare benefits of car-lite policies can

be equitably distributed across residents.
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Next, I examined the extent to which my findings related to accessibility-induced gentri-

fication hold up against changes in particular simulation parameters and a few key modeling

assumptions. We are unlikely to be able to escape the gentrification trap by simply increas-

ing non-auto accessibility to an even greater extent. My results show that the more we

improve accessibility without coordinated housing policies, the greater the likelihood of in-

ducing gentrification with obvious consequences for vehicle-free shares. We also need to

accommodate variations in perception of accessibility improvements. When lower-income

and middle-income households experience comparatively larger improvements in non-auto

accessibility, the increase in vehicle-free share is larger. This could be used in a program-

matic manner to target particular socioeconomic groups when implementing accessibility

improvements. Not only can such targeting enhance intended program outcomes, but also

improve the equitable distribution of program benefits.

Finally, acknowledging the uniqueness of Singapore in various aspects, I explored how my

findings could translate to more auto-dependent contexts. A virtual city was constructed

with very different built environment and land use configuration compared to Singapore,

but with similar behavioral preferences. While more than half of Singaporean households

were vehicle-free at the start, less than 15% of similar households with the same behavioral

preferences would choose to be vehicle-free if they resided in the virtual city. When a vehicle

restriction policy is implemented in this virtual city, the losses in accessibility and welfare of

residents are more severe. The extent of accessibility-induced gentrification is higher than

in Singapore, suggesting that non-auto accessibility improvements can be perceived to have

greater value in more auto-dependent contexts. The resulting welfare values, even after

accounting for the housing market response, further confirm this.

Thus, designing a ‘successful’ car-lite policy will require attention to not just whether

it reduces the vehicle-free share, but also how it might change neighborhoods. As this

dissertation shows, understanding that in detail is not trivial, and requires the use of a

complex integrated urban modeling framework with adequate attention to how different

components interact with one another.
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7.2 Policy implications

Ex-ante analyses, such as those presented in this dissertation, are quite valuable in the

context of land use and transportation planning. We can minimize unintended and negative

consequences of phenomena such as transit-induced gentrification. Microsimulation models,

in particular, can help planners and decision-makers better understand the tradeoffs between

programmatic efficiency (e.g., the increase in vehicle-free share) and equity (e.g., welfare

losses and displacement). My dissertation presents one such application of a microsimulation

model for exploring how neighborhoods may change in the near-term when car-lite policies

(and coordinated housing policies) are piloted within them. My findings can directly inform

car-lite policy design and planning in Singapore, as well as provide lessons for places with

more widespread car ownership.

Selecting an appropriate study area for piloting car-lite policies is likely to make or break

the success of such programs in terms of being widely adopted beyond the pilot area. There-

fore, ex-ante analysis of how different neighborhoods might respond to these policies is both

necessary and valuable, especially when it comes to disruptive mobility technologies that

are yet to be widely adopted or embraced. I found that lower-income and more vehicle-free

neighborhoods are more susceptible to accessibility-induced gentrification. Similar findings

in the literature related to public transit improvements or extensions suggest that perhaps

any form of neighborhood improvement (such as better accessibility) that makes it more

attractive will induce some extent of gentrification, as long as higher-income households are

able to outbid others. This leads to a broader conundrum in urban planning efforts. Should

we not improve lower-income neighborhoods for fear of inducing gentrification? Although

addressing this question with supporting evidence is beyond the scope of this dissertation,

what I do show here helps us understand the process of neighborhood change in significant

detail, which can be helpful when designing car-lite policies (or, more generally, neighbor-

hood improvements).

Coordinated housing policies showed promising results in mitigating some of these un-

intended but negative side-effects while enhancing the benefits provided by car-lite policies.

Thus, if more susceptible (i.e., lower-income and more vehicle-free) neighborhoods are to be

chosen as pilot areas, our best intentions and efforts to improve accessibility may require

additional complementary policies. It is also worth understanding that there is no ‘one-size-
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fits-all’ housing policy. Particular policy instruments (such as upzoning, parking restrictions,

and affordability constraints) will need to be tuned based on the characteristics of neighbor-

hood residents. Targeting certain socioeconomic groups through these instruments can also

be valuable. For example, when we provide new housing supply through upzoning, we might

consider designing new housing units in a way that makes them differentially attractive to

certain groups (e.g., those who are more likely to become and stay vehicle-free if adequate

yet affordable housing is available).

At a very high level, my results suggest that there is no silver bullet to reduce auto-

dependence. The Singaporean case suggests that appropriately pricing auto ownership and

use can indeed increase the vehicle-free share, but without supplementary policies, making

autos more expensive will likely punish lower-income households disproportionately. We will

very likely need a menu of policy instruments at our disposal that we can pick and choose

from. In line with the literature, I also find that improving non-auto (or transit) accessibil-

ity alone does little to convince households to transition to vehicle-free lifestyles. Without

broader structural changes, we will continue to witness the ‘inevitability of automobility’

despite our best intentions to encourage non-auto modes (Kent, 2022). Zoning reforms, par-

ticularly housing regulations, and built environment design can be effective supplementary

strategies to accelerate our vision of a sustainable mobility future and stimulate sustainable

urban growth. There might be concerns surrounding how neighborhood-level changes can

translate to city-wide effects. However, as both I and the literature observe, households

who are displaced are not more likely to become vehicle-owners in their new residential lo-

cations. Therefore, expanding car-lite pilots beyond a single neighborhood is expected to

provide considerably stronger positive spillover effects.

Using the ‘virtual city’ allowed me to test the same household preferences and behavior

but in a different spatial configuration that encouraged (or forced) the same residents to

become more auto-dependent. While this analysis is an admittedly limited exploration of

non-Singapore settings, it did provide several valuable insights. In places like the US, much

of the built environment, cultural norms, and labor market conditions are predicated on

near-universal automobility (King et al., 2019). If we are to place restrictions on private

vehicles through, for example, high purchase prices or outright bans, the consequences can

be disastrous. Many lower-income households would effectively be shut out of the economy

as they are dependent on their cars for daily commuting. Even in Singapore, the effects of
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banning cars are more detrimental for lower-income households. Thus, we cannot expect to

solve our sustainable mobility issues by limiting car ownership of lower-income communities

in a world where other policies cause us to be ever more dependent on cars (Wachs and

Taylor, 1998). As J.H. Crawford remarks in his book ‘Carfree cities’, proposing to take

the car away from the average American overnight, without making any other provisions, is

likely to evoke an angry response (Crawford, 2000). Any restrictions should be accompanied

with other benefits, e.g., having the restrictions apply only to new occupants of particular

vehicle-restricted housing. Therefore, in such contexts, shifting the focus away from limiting

car ownership to rather limiting car use may be more appropriate. However, unless auto

use is priced appropriately by accounting for the externalities of automobile travel, auto

ownership will continue to correlate strongly with auto use. Once people end up in auto-

centric mobility lifestyles, a voluntary transition back is likely difficult to achieve.

Single-minded policies, such as accessibility improvements or vehicle restrictions, may

remain ineffective in getting us to our desired outcomes. As my results indicated, even

a substantial degree of accessibility improvement did not produce dramatic increases in

vehicle-free share. Instead of providing ‘carrots’ (incentives to become vehicle-free, such

as accessibility improvements) or ‘sticks’ (disincentives to own and use vehicles, such as

high acquisition prices or vehicle restrictions), ‘carrot-and -stick’ approaches have shown

promise in nudging people towards more vehicle-free lifestyles (Meyer, 1999; Piatkowski

et al., 2019). Creating positive reasons to favor non-auto modes as well as increasing the

‘price’ of auto travel in combination, rather than solely either of these, may work in reducing

auto ownership and use. For example, in London, charges for less fuel-efficient vehicles

and trips into the city center have been implemented in tandem with redesigning road

layouts in residential neighborhoods and offering schemes to incentivize cycling and public

transit use. Even in Singapore, increasing the cost of private vehicle ownership may not

remain as effective in the near future as household incomes have been rising significantly.

The additional efforts undertaken to improve access to public transit through the design

of better first- and last-mile connections and enhancing island-wide transit connectivity

by extending MRT lines have likely been just as effective in maintaining low preference

for auto ownership and especially auto use. Therefore, creating accessible and affordable

alternatives to private vehicles is the need of the hour, particularly in more auto-dependent

contexts where improvements in non-auto accessibility matter more.
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7.3 Limitations

Despite my best efforts, several limitations in my analysis need to be acknowledged. Major

accessibility changes such as private vehicle restrictions or non-auto accessibility improve-

ments are likely to influence both long-term (e.g., residential location and private vehicle

holdings) and medium-term (i.e., activity-travel) choices. These components are linked

through individual-specific accessibility measures in our integrated LUTI framework (Sim-

Mobility). Individuals are expected to adjust their activity-travel patterns in response to

non-auto accessibility improvements, which will change their activity-based accessibility

(ABA). As a result of changes in ABAs, their longer-term choices will also be affected. This

is what we call a ‘full loop’ simulation of SimMobility Long-Term (LT) and Medium-Term

(MT). However, a full loop simulation may not be necessary if we are interested in examin-

ing only near-term changes as, in the near term, not enough people will have changed their

activity-travel patterns to induce a new system equilibrium.

This does not imply that MT is not needed at all. We still use MT to determine

the accessibility (ABA) in effect at the start of the simulation, so that near term, quasi-

static preference and behavior changes can be realistically estimated. Therefore, instead of

simulating the MT and obtaining ‘actual’ revised ABAs, I assumed a uniform adjustment

across the study area. Households living or choosing to live in neighborhoods with non-auto

accessibility improvements would receive the same accessibility without any private vehicle

as with a car (on average). With this assumption, I went ahead to simulate long-term

urban choices and tracked near-term neighborhood changes using only the LT component.

This assumption is appropriate for examining differences in near-term neighborhood changes

across various policy scenarios. That being said, using revised ABAs from MT would be

ideal, especially as specific programs and systems are designed and developed to support

emerging mobilities or fleets of autonomous vehicles. MT could then be used to simulate,

for example, the performance of specific fleet sizes and deployment strategies to recompute

household-specific ABAs periodically.

In my scenario analyses, I assumed the city (both Singapore and the virtual city) to

be a closed system. This means that I did not allow for any changes in the total demand

or supply over the two simulation years (equivalent to three calendar years) I considered.

This assumption may not be reflective of real-world conditions, as new developments are
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often planned out ahead of time and can take several years to complete. Particularly in

Singapore, the Build To Order (BTO) program is operationalized in a manner where units

are bid upon and sold well before construction has even begun. Although assuming a closed

system makes the identification of policy effects relatively easier, disregarding the advance

sales of BTO units (which are not distributed spatially in a uniform manner) can affect the

predicted effect sizes of neighborhood outcomes.

Moreover, the construction of new housing developments, especially apartments and con-

dos, can be stimulated by accessibility improvements. Since I am interested in examining

only near-term changes and I constrain my observation period to three calendar years, ignor-

ing new private housing construction (which can take longer than three years) is acceptable.

If we had to include this consideration, we would have used a development model that sim-

ulates the construction and sale of new housing developments on vacant parcels (that is

available and calibrated). However, during the validation process, we noticed that most of

these developments in the ‘real world’ were not on vacant parcels but on rezoned parcels.

Unfortunately, we do not yet have a good way of modeling changes in zoning, which limits

the use of our development model.

Validating my findings of accessibility-induced gentrification is challenging because we

do not have data on non-auto accessibility improvements other than new MRT lines being

introduced. While this could be a plausible candidate for validation, the closed system

assumption adds complications. A few thousand HDB units (1,500 to 5,700) were scheduled

for construction through the BTO program in three of the four planning areas I selected for

detailed analysis. Ignoring the spillover effects of the advance sales of these units on other

units in the neighborhood is likely to affect the comparison of simulated outcomes against

ground truth observations. Moreover, the construction of treatment and control areas for

validation using a difference-in-differences framework is not straightforward. The spatial

distribution of BTO units may very well be spatially non-uniform, which could add a layer

of complexity to identifying appropriate control areas.

Several data limitations also constrained our modeling efforts. Although I added vehicle

holding costs through the simultaneous housing-mobility choice framework to the bidding

process, data limitations prevented them from being included in the calibration of the private

vehicle availability model. This is why the vehicle-free shares of the two burned-in synthetic

populations (calibrated without and with vehicle costs) were different. It would be ideal
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to calibrate the choice model with the vehicle costs included, so that the predicted market

shares would be reflective of the regulatory context of Singapore. Additionally, I had to

estimate WTP by matching housing transaction data with travel survey data because we

did not have any data available on ‘actual’ WTP. This constrained us to infer WTP from

transaction prices of sold units, which may mirror biases related to which units are more

likely to be sold. Finally, the logsum measure (ABA) MT generates has been found to

be overly dependent on sociodemographics and not as responsive to spatial variation in

activity-travel patterns as we would expect if we had better data on, e.g., the parking

costs and employer-provided cars and parking that are (and are not) provided to various

demographic groups. Thus, using the ABA in its current form, especially unscaled, as a

measure of accessibility is likely to reinforce well-known differences across socioeconomic

groups.

7.4 Future research

The contributions of this dissertation can be extended through further research efforts in

the future. I outline a few key areas for improvement, focusing first only on the use of

SimMobility and then expanding the scope to integrated urban modeling in general.

Improving the computation performance of SimMobility is critical for widespread use

beyond the research community. As I discussed earlier, computing additional logsums in the

simultaneous housing-mobility choice framework is computationally intensive since many

such calculations are required for each housing alternative in the daily choice set of each

household. Moreover, running a full day of activity-travel patterns using MT takes several

hours even on a multi-threaded supercomputer with large memory. Thus, ‘full-loop’ LT-MT

simulations can take weeks, especially if the new equilibrium requires several iterations until

convergence. Although my colleagues and I have made important strides in improving the

computation performance of LT, further attention is required on this critical issue. The

virtual city was a way to work around this because we were able to test new models and

code updates on a smaller scale, where the simulation ran considerably faster.

Further experimentation is necessary to improve the use of SimMobility to guide policy-

making. Not only do we need access to better data and more realistic modeling frame-

works, further analysis on the sensitivity to simulation parameters (especially those for
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which ground truth is challenging to observe) is recommended. The virtual city is a step to-

wards strengthening claims of transferability by providing a testbed where similar behavioral

preferences (as in Singapore) are merged with a different spatial configuration. The modular

design of the virtual city framework allows us to create other virtual cities that resemble the

behavior of residents elsewhere, which would allow us to compare different contexts more

completely (i.e., with different spatial configurations and behavioral preferences) in the fu-

ture. We also require more efforts towards creating synthetic populations and calibrating

choice models in different ‘real-world’ contexts to enable us to compare simulation results

across cities. Some of us have been engaged in an effort to create synthetic populations in

an automated manner for any metropolitan area in the US, but the absence of a national

zoning atlas and the fragmented nature in which geospatial data are collected and shared

can be major impediments to such efforts for most places (unlike Singapore).

At the end of this dissertation, I remain convinced that LUTI models are particularly

promising tools for examining the near-term evolution of urban and metropolitan develop-

ment in response to changes in infrastructure, policy, and human behavior. However, most

state-of-the-art LUTI models are not well-equipped to address the challenges of the day.

For example, we still have not been able to satisfactorily model telecommuting within LUTI

models, and none of the modern models have incorporated emerging mobilities to their full

extent. The data collection and modeling efforts that have been funded over the last few

decades have overly focused on automobiles, but researchers are now beginning to pay more

attention to non-auto modes, especially active mobility. LUTI modelers have yet to respond

to these shifts in focus, which could be part of a larger critique of the types of research that

tend to be favorably viewed by funding agencies. What is needed over the next couple of

decades is drastically different from what has been done thus far.

Next-generation LUTI modeling would do well to recognize and address interactions of

land use and transportation with other dimensions of urban planning. For example, the

link between the built environment and public health could be a key element in improving

our understanding of what urban design changes we need to prioritize if we want to address

longstanding health inequities. Emissions modeling could supplement this by providing

estimates of the climate consequences of vehicle restriction policies or electrification of vehicle

fleets, as measured through changes in activity-travel patterns and private vehicle holdings.

The dynamic nature of long-term decision-making is also rarely considered. For example,
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life-events (such as coupling, the birth of a child, or a reduction in household size) often

trigger longer-term decisions such as residential (re)location and private vehicle holdings

(re)evaluation. We need to consider incorporating these dynamic decision structures into

our modeling frameworks through transition models.

An additional way to engage in more realistic behavioral modeling would be to internalize

contextual nuances, such as the cost of vehicle ownership, which is prohibitively high in places

like Singapore but generally onerous for lower-income households globally. Accounting for

attitudinal differences, such as ‘car pride’ or the social status some societies associate with

car ownership, can also help. Finally, LUTI models also need to adapt to the changing

mobility landscape such that a richer set of options besides the traditional comparison of

car ownership and public transit can be examined in detail without overarching assumptions.

As an example, car-sharing presents a dilemma when it comes to modeling car ownership

and use within traditional frameworks.

In closing, I would like to iterate that we need to pay attention to both the mobility and

housing market impacts of car-lite policies if we are to anticipate and prevent unintended

side-effects such as accessibility-induced gentrification. LUTI models can be useful tools

to conduct such ex-ante analyses, but they require modifications to address many pressing

issues of the day in a credible yet timely manner. We need to showcase more such applications

of scenario explorations related to complex policy interactions so that both policy-makers

and planning practitioners become comfortable trusting these models as well as using them

in their own work beyond academic research. If we live to see the end of this century, I hope

we will have made significant strides towards reducing auto-dependence by then. Here’s to

more realistic policy-oriented modeling of sustainable urban futures before time runs out!
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Appendix A

Supplementary data

Figure A-1: Planning area typology based on housing market effects (as in Fig. 5-5b)
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Table A.1: Data summary for household-level screening model (𝑛 = 9, 569)

Mean Std. Dev.

Average distance to MRT station (weighted average of postcodes in zone, in kms) 0.90 0.21

Average distance to top-30 primary school (weighted average of postcodes in zone, in kms) 1.43 0.56

Average transit travel time to all jobs (weighted average of postcodes in zone, in mins) 56.65 6.45

Land Use Diversity (weighted average of postcodes in zone) 0.51 0.03

Share of total housing units in zone-unit type category (%) 4.74% 2.15%

% of residential area (weighted average of postcodes in zone) 43.90% 5.82%

% of commercial area (weighted average of postcodes in zone) 3.37% 2.49%

% of undeveloped area (weighted average of postcodes in zone) 16.93% 6.37%

Income difference of household and zone-unit type category average (natural log) -1.04 2.45

Size difference of household and zone-unit type category average 0.18 1.41

% of Chinese households in zone * Household is Chinese 54.24% 35.12%

% of Indian households in zone * Household is Indian 1.83% 4.79%

% of Malay households in zone * Household is Malay 1.25% 3.99%

% of households with children in zone * Household has a child 10.74% 12.69%

% of households with teenagers in zone * Household has a teenager 6.60% 13.33%

% of households with seniors in zone * Household has a senior 14.39% 19.19%

% of HDB4 and HDB5 units in zone * Household size > 3 3.70% 5.21%

% of apartments and condos in zone * Household per-capita income > $3,500 0.87% 4.97%

% of landed properties in zone * Household per-capita income > $3,500 0.35% 3.13%

% of detached and semi-detached private units in zone * Household per-capita income > $3,500 0.09% 1.49%
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Table A.8: Estimated offset values for household willingness-to-pay (WTP)

Unit type
WTP offset

w/o vehicle costs w/ vehicle costs

HDB12 0.333 0.364

HDB3 0.136 0.139

HDB4 0.088 0.093

HDB5 -0.065 -0.058

Executive HDB 0.049 0.062

Apartment (<70 sq.m.) 0.193 0.311

Apartment (70 - 130 sq.m.) 0.295 0.408

Apartment (>130 sq.m.) 0.148 0.184

Condo (<60 sq.m.) 0.353 0.386

Condo (60 - 100 sq.m.) 0.259 0.357

Condo (>100 sq.m.) 0.358 0.410

Executive Condo -0.198 -0.150

Terrace 0.451 0.488

Detached & Semi-Detached 0.563 0.583

Table A.9: Characteristics of Singaporean neighborhoods based on housing market effects
(as in Fig. 5-5b)

Singapore Top left Bottom left Top right Bottom right

Increase in area mean income - Small Small Large Large

Decrease in vehicle-free share - Small Large Small Large

Units 1,219,394 45,617 49,161 36,126 44,255

Vacancy rate (%) 5.8% 5.5% 5.5% 5.4% 6.0%

Mean household income (SGD) $6,886 $7,558 $7,534 $6,786 $5,839

Vehicle-free share (%) 51.8% 46.7% 46.8% 54.0% 59.8%
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