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Abstract 

Sea level rise is an indisputably mounting predicament that has exacerbated consequences in 

Southeast Florida. In this thesis, we explore the impacts of sea level rise risk in commercial 

office markets in Miami-Dade County. We examine 560 commercial office properties with sale 

price records from 2000 to 2020, and 497 commercial office rental properties from 1988 quarter 

one through 2020 quarter four. For both sales and rental properties, we analyze each sample 

comprehensively, then we isolate the respective samples first by historic flood amount and then 

by flood risk metrics. We conclude by segregating properties in high-risk areas by historic flood 

amount to eradicate property location as a confounding variable.  

 

Our results suggest that properties that have historic exposure to flooding from either or both 

major recent hurricanes, Katrina in 2005 and Irma in 2017, have lower sales prices and rental 

values when compared to properties that have not experienced historic hurricane flooding in 

comparable flood risk zones. Our results also indicate that generally, commercial office 

properties that are more concentrated near waterfront areas have experienced greater historic 

flooding and have larger predicted flood risk than properties farther inland.  
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1 Introduction 

Is a rising sea influencing commercial real estate valuations in coastal Florida? In Miami, amidst 

a growing population and mounting corporate relocations, the evolving predicament of sea level 

rise, causing worsening flooding, storm surges, and radical weather events, bodes ominously. 

This contrast of commercial proliferation with an escalating climate crisis piqued the question of 

whether commercial office properties’ sales prices and rent values account for this current and 

future heightened risk surrounding sea level rise.  

 

In this paper, we examine the relationship between flood exposure and risk related to sea level 

rise and changes in commercial office properties’ sales and rent data from 2000 to 2020. We 

focus on the Miami-Dade County market, where the Southeast Florida Regional Climate Change 

Compact predicts an increase in sea level (from the mean sea level [MSL] in 2000) of between 

21 and 54 inches by 2070. Our analysis compares properties more affected by historic floods, 

including current and future flood risk correlated with an increasing sea level, with similar 

properties with less exposure. Leveraging data on historic flood levels from major 2005 and 

2017 hurricanes, a predicted measure of flood risk, and historic repeat rent and sales information 

on commercial properties, we study how the intensifying prominence of sea level rise exposure 

over this time period may have impacted commercial real estate markets.  
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2 Background 

In this section, we explore the causes and impacts of a rising sea level and consider how 

predicted sea levels until 2120 may alter the Miami-Dade County landscape. We also delve into 

the correlation between an increasing sea level and worsening storm impacts. We then consider 

the shifting landscape of increased commercial activity in Miami and note previous research on 

the relationship between sea level rise and residential real estate to underscore the need to assess 

if the commercial real estate market has begun to register the impact of flooding caused by sea 

level rise. 

2.1 Sea Level Rise in Southeast Florida 

Amid a changing climate, the sea level is rising rapidly due to the thermal expansion of the 

warming ocean, excess water from melting ice sheets, and the constant deceleration of the Gulf 

Stream1. Since 1950, the sea level surrounding Florida has increased eight inches2. Southeast 

Florida’s geographical factors of porous limestone geology and low elevation exacerbate the 

impacts of sea level rise in the region3.  

 

The Southeast Florida Regional Climate Change Compact materialized across Broward, Miami-

Dade, Monroe, and Palm Beach counties to generate regionally unified sea level rise projections. 

The Compact’s most recent document, published in 2019, outlines anticipated sea level rise in 

Southeast Florida from 2000 to 2120 in terms of MSL and North America vertical datum as 

depicted in Figure 14. The 2019 projections are centered upon estimates developed by the 

Intergovernmental Panel on Climate Change (IPCC) and the National Oceanic and Atmospheric 

Administration (NOAA). The report adjusts global projections to account for regional 

differences in Southeast Florida’s rate of sea level rise by considering elements including ice 

melt, ocean dynamics, land movement, and thermal expansion from warming of the Florida 

Current.  

 
1 Lindsey, “Climate Change: Global Sea Level.” 
2 NOAA, “Tides and Currents Virginia Key, Biscayne Bay, FL.” 
3 SeaLevelRise.org, “Florida.” 
4 Southeast Florida Climate Change Regional Compact, “2019 Compact Unified Sea Level Rise 

Projection.” 
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Figure 1: Sea Level Rise Projection, 2020 – 2120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IPCC MED NOAA 2017 NOAA 2017

50% INT-HIGH HIGH

2000 0.00 0.00 0.00

2010 0.19 0.30 0.33

2020 0.39 0.56 0.69

2030 0.63 0.98 1.18

2040 0.84 1.38 1.74

2050 1.13 1.94 2.46

2060 1.40 2.56 3.38

2070 1.72 3.31 4.49

2080 2.03 4.17 5.74

2090 2.40 5.12 7.09

2100 2.72 6.14 8.56

2120 3.29 7.64 11.32

IPCC MED NOAA 2017 NOAA 2017

50% INT-HIGH HIGH

2000 -0.08 -0.78 -0.78

2010 -0.61 -0.49 -0.45

2020 -0.42 -0.22 -0.09

2030 -0.17 0.30 0.40

2040 0.04 0.60 0.96

2050 0.33 1.15 1.68

2060 0.60 1.78 2.60

2070 0.91 2.53 3.71

2080 1.23 3.38 4.96

2090 1.59 4.34 6.30

2100 1.92 5.35 7.78

2120 2.49 6.86 10.54

DATUM: FEET 2000 MSL

Year

DATUM: FEET NAVD

Year
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In Figure 2 below, the predictions are illustrated as curves adapted for regional relevance. The 

median of the IPCC curve represents the lowest boundary, the NOAA intermediate high curve is 

the upper boundary for short-term use until 2070, and the NOAA high curve is the upper 

boundary for medium and long-term use until 21205. The NOAA extreme curve exemplifies the 

upper limit of sea level rise in response to an accelerated ice melt scenario6. The NOAA extreme 

scenario cautions that significantly greater sea level rise is possible without a substantial 

reduction in greenhouse gas emissions.  

 

Figure 2: Sea Level Rise Relative to Mean Sea Level in 2000 

 

 

 

 

 

 
5 Southeast Florida Climate Change Regional Compact (n 4) 
6 NOAA, “2022 Sea level Rise Technical Report.” 
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The sea level rose approximately 3.9 inches from 2000 to 2017, grounded on the five-year 

average of MSL at Key West. By 2040, the sea level is projected to rise 10 to 21 inches, and by 

2070, the sea level is anticipated to rise 21 to 54 inches above the 2000 MSL in Key West, 

Florida. Long-term, sea level rise is forecasted to be between 40 and 136 inches by 2120. 

Notably, due to ambiguity surrounding future greenhouse gas emissions and reduction, projected 

sea level rise beyond 2070 has a significant range of uncertainty7.  

 

The Florida International University GIS Sea level Rise Toolbox provides an interactive sea 

level rise mapping tool that reflects LiDAR elevation data from Florida’s Division of Emergency 

Management. Figure 3 (A–D) illustrates the impact of a two-foot, four-foot, and six-foot increase 

in sea level to the Miami and Miami Beach regions8. Markedly, in coordination with Southeast 

Florida Regional Climate Change Compact’s predictions, Southeast Florida will face between a 

1.75-foot and 4.5-foot rise in sea level by 2070.  

 

Sea level rise in Southeast Florida causes coastal inundation and erosion, reduced soil infiltration 

capacity, saltwater intrusion, and socio-economic impacts, including displacement and increased 

insurance costs. The state of Florida is dedicating $4 billion to mitigate the consequences of sea 

level rise, including sewage system protection, road elevation, stormwater system improvements, 

and seawall construction efforts9. Miami Beach has devoted $400 million to seawalls, pumps, 

and raising roads; the city of Fort Lauderdale has developed a $1 billion flood management plan; 

and Broward County has allocated $250 million toward sewage system protection10,11,12. 

 

 

 

 

 
7 Southeast Florida Climate Change Regional Compact (n 4) 
8 Florida International University GIS Center, “Sea Level Rise Toolbox.”  
9 SeaLevelRise.org (n 3) 
10 Flechas, Joey. “Miami Beach to Begin New $100 Million Flood Prevention.” 
11 Southeast Florida Climate Change Regional Compact, “Regional Impacts of Climate Change and Issues 

for Stormwater Management.” 
12 Gordon, “South Florida faces a variety of environmental issues and is working towards finding 

solutions for the future.” 
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Figure 3: Geographic Impact of Sea level Rise, Miami FL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Two-Foot Sea level Rise 

C. Four-Foot Sea level Rise D. Six-Foot Sea level Rise 

A. Current Map 
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2.2 Storm Impacts from Sea level Rise 

Sea level rise contributes to more frequent flooding and more intense impacts of tropical storms 

and hurricanes. High-tide flooding, ascribable to high astronomical tides and typical and episodic 

storms, is occurring at accelerated rates as a result of sea level rise. The national average 

frequency of high-tide flooding has doubled in the past 30 years, and tidal flooding in Florida has 

increased by 352% since 200013.  

 

Sea level rise amplifies the power of hurricanes by increasing the baseline elevations for waves 

and storm surges. Sea level rise has a non-linear positive impact on storm surges and increases in 

sea level result in a 23% relative increase in storm surges14. In 55 United States coastal regions, 

100-year storm surges are predicted to become 10-year or even more frequent events by 205015. 

In 2012, sea level rise extended Hurricane Sandy’s reach 27 square miles and generated over $2 

billion in storm damage in New Jersey and New York; in 2005, Hurricane Katrina would have 

flooded a 60% smaller area in New Orleans if the storm occurred at 1990 sea levels16,17. In 2017, 

Hurricane Irma made landfall as a Category 4 hurricane in Monroe County in the Florida Keys 

and ultimately caused over $50 billion of extensive flooding and damage in Florida18.  

 

An analysis by the First Street Foundation examined the effects of Hurricane Irma at various sea 

levels to delineate the influence of sea level rise. Hurricane Irma’s eight-foot storm surge 

impacted over 133,000 homes across Florida. If the storm had occurred at sea levels observed in 

1970, 57,000 of those properties would not have been affected by the storm19. Conversely, if 

Hurricane Irma had impacted Florida at the sea level projected by the Army Corps of Engineers 

(USACE) for 2050 (15 inches above the current sea level), the storm surge would have affected 

an additional 200,000 homes, reflecting a 150% increase in damage.  

 

 
13 NOAA, “2017 State of U.S. High Tide Flooding with a 2018 Outlook.” 
14 Bilskie, et. al., “Dynamics of sea level rise and coastal flooding on a changing landscape.” 
15 Tebaldi et. al., “Modelling sea level rise impacts on storm surges along US coasts.” 
16 Miller et. al., “A geological perspective on sea level rise and its impacts along the U.S. mid-Atlantic.” 
17 Irish et. al., “Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900.” 
18 NOAA, “September 2017 National Climate Report.”  
19 Porter et. al., “Hurricane Irma: Sea Level Rise, Storm Surge and Damage.”  
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2.3 Commercial Growth in Miami-Dade County 

Despite palpable sea level rise considerations and flood risks, Miami-Dade County has seen swift 

commercial growth over the past four years. Throughout the pandemic, businesses relocated to 

Miami-Dade County from elsewhere at unprecedented rates. The U.S. Census Bureau reported 

that Miami-Dade County received 107,093 new business applications during 2020, over a 24% 

increase from those filed in 201920. From 2015 to 2021, Miami experienced 5.67% growth in 

population, as exhibited in Figure 421.  

 

Figure 4: Miami Metro Population, 2005 - 2021 

 

 

 

 

 

 

 

 

 

 

 

 

Miami is an emerging technology hub and home to 10 startups valued at $1 billion or more22. On 

the financial side, companies that have relocated to Miami within the past year and a half 

represent about $2 trillion in assets under management23. Several large law firms, real estate 

companies, and startups have also relocated to the Miami area from the Northeast, Midwest, and 

West Coast in the past two years. These companies include Starwood Capital Group, Citadel, 

Blockchain.com, Millennium Management, and Sidley Austin.  

 
20 United States Census Bureau, “Business Formation Statistics.” 
21 MacroTrends, “Miami Population.” 
22 Kunthara, “Why Miami Is the Next Hot Tech Hub: ‘This Is Not a Retirement Decision.” 
23 Acosta, “Miami’s Gold Rush: Finance Firms and Crypto Move In, Bringing Strains.” 
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2.4 Sea Level Rise and Residential Real Estate 

While much research has been done on the impact of sea level rise on residential real estate, the 

relationship between an increasing sea level and commercial real estate valuations remains 

uncharted. Collectively, this opacity of information with the recent influx of firms relocating to 

the Miami area drives us to examine the correlation between flood zones and historic flooding on 

both commercial office sales and rents in Miami-Dade County.  

 

One study by the First Street Foundation explored the cost, in market value dollars, lost due to 

recurrent tidal flooding from sea level rise in Miami. The analysis concluded that residential 

properties projected to undergo tidal flooding by 2032 have lost $3.08 of value per square foot 

per year since 2005, and properties near roads that are projected to be inundated with tidal 

flooding by 2032 have lost $3.71 of value per square foot per year since 2005. Ultimately, the 

total lost market value from sea level rise impacts between 2005 and 2016 for homes in Miami-

Dade County exceeds $465 million24.  

 

Benjamin Keys and Philip Mulder investigated changes in the capitalization of sea level rise risk 

in residential housing and mortgage markets in the paper “Neglected No More: Housing 

Markets, Mortgage Lending, and Sea Level Rise.” They observed that while sales volumes in 

high sea level risk areas declined 16–20% compared to those in lower risk areas between 2013–

2018, relative prices in at-risk markets only began to decline 5% from their apex between 2018–

202025. This “lead-lag” relationship between residential sales volumes and prices reflected 

mounting buyer apprehension regarding sea level rise that was not mirrored by seller concern. 

Further, the analysis found that mortgage lenders did not demonstrate sensitivity to sea level rise 

risk, as they did not enhance credit standards for high-risk areas, and all-cash and mortgage-

financed purchases have contracted similarly.  

 

 
24 McAlpine and Porter, “Estimating Recent Local Impacts of Sea Level Rise on Current Real-Estate 

Losses: A Housing Market Case Study in Miami-Dade, Florida.” 
25 Keys and Mulder, “Neglected No More: Housing Markets, Mortgage Lending, and Sea Level Rise.” 
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3 Data  

The analysis relies on three main data sources: office sales prices and characteristics from Real 

Capital Analytics (RCA), office rent data from CBRE, and data from the First Street Foundation 

on flood zone information and risk to measure sea level rise. This section describes how these 

data are used to construct the sample and variables used to conduct the commercial office sales 

and rent regressions.  

3.1 Real Capital Analytics Data 

RCA assembles data and analytics for commercial real estate investing and transactions; it has 

recorded over $40 trillion of commercial property transaction sales associated with over 200,000 

investor and lender profiles26. The RCA data outline several geographical, transactional, and 

physical characteristics for each deal identification. Geographical information includes address, 

longitude and latitude, and submarket variables, while the physical building characteristics 

comprise square footage, year built, year renovated, total land area, walk and transit scores, 

tenancy type, number of floors, and number of parking spaces. The transaction variables consist 

of transaction type, property sale date, buyer objective and profile, total price and price per 

square foot, capitalization rate, quality score, and investment type (core/stabilized or value-add).  

 

The RCA data contain 9,792 entries of commercial office sale records from 2000 through 2020 

in Florida27, of which 1,864 are sales within the area of focus for this research: Miami-Dade 

County. To further narrow the scope of records to 1,268 unique deals, we only consider 

conventional sales and disregard construction, debtor or trustee sales, publicization, privatization, 

public merger, and refinance transaction types. To achieve an accurate representation of 

commercial office buildings, we eliminate all remaining records of properties under 20,000 

square feet for a remainder of 881 observations.  

 

 

 
26 MSCI, “Why Real Capital Analytics?” 
27 RCA Commercial Office Sales Data, 2000-2020 
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3.2 CBRE Data 

CBRE provides capital market research, including historic rent data across real estate asset 

classes28. The CBRE data outlines identification information on observation identifier, latitude, 

and longitude. For each record, the data delineates market, time period (year and quarter), gross 

rent, and net rent. The CBRE data contains 295,423 records in Florida, tracking properties from 

the 1988 quarter one through 2020 quarter four29. As with the RCA data in Section 3.1, we only 

consider observations in Miami for this analysis, resulting in 89,364 potential rent observations 

associated with 677 tracked properties from 1988–2020. Because the rent for each property is 

tracked over time, the influence of building quality is not a factor in our analysis. 

3.3 First Street Foundation Data 

The First Street Foundation is a non-profit research and technology organization that quantifies 

climate risk. The First Street data outlines flood risk elements including flood factor, if the 

observed property underwent historic events one (Hurricane Katrina, 2005) and two (Hurricane 

Irma, 2017), and the maximum flood depth associated with each historic event. The data also 

includes the Federal Emergency Management Agency (FEMA) zone as a dummy variable with 

the input of one if the observation is within the 100-year flood zone and zero otherwise. The First 

Street data includes 340,677 observations in the Miami-Dade area30.  

 

The flood factor calculation provides a comprehensive assessment of a particular property’s 30-

year risk and incorporates historical flooding events to quantify risk. The model integrates all 

major flood types, including rainfall (pluvial), riverine flooding (fluvial), and coastal surge 

flooding, and interprets future environmental factors by integrating global climate model 

projections to forecast flood risk31. The predominant national standard for flood risk, FEMA 

Special Flood Hazard Areas (SFHA), calculates risk by understanding exposure to a 1-in-100 or 

1-in-500-year flood event. Because the First Street Flood Factor quantifies property-specific 

flood risk and takes future anticipated risk into consideration, we elect to use the metric, rather 

 
28 CBRE, “Insights & Research.” 
29 CBRE Commercial Office Rent Data, 1988.1-2020.4 
30 First Street Foundation, Miami-Dade County Flood Factor and Historic Flood Data, 2022 
31 First Street Foundation, “Flood Methodology Addendum.”  
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than FEMA zones, for this analysis to gain a more nuanced view of flood risk in Miami-Dade 

County. Compared to the same-probability FEMA SFHA zones, the First Street Flood Model 1-

in-100 hazard layer captures about triple the flood risk32. Figure 5 exemplifies the extended 

prediction of flooding by the First Street Foundation Model when compared to the FEMA 100-

year Flood Zone in a southwest Chicago suburb33.  

 

The First Street model forecasts costal flood risk by referencing NOAA’s tide gauge to analyze 

storm surge, tidal variation, and long-term sea level rise. The model processes synthetic aperture 

radar (SAR) data from costal events to recreate historic storm flooding and constructs total water 

levels based on MSL over time surge frequencies34. Notably, hurricanes impact flood records 

disproportionately and produce acute effects on surge distributions. The model statistically 

quantifies anticipated flood risks and depths after the completion and validation of the hazard 

layers. The model inputs all historic flood depths available and utilizes a linear interpolation for 

unmodeled scenarios at various flood return periods in the current year and in 30 years to limit 

residual errors.  

 

First Street then interprets these statistics to generate a streamlined flood risk score from 1–10, as 

illustrated in Figure 6, which reflects the probability and severity of predicted flooding for a 

particular property. This score is derived from the aggregation of annualized expectations of 

flooding from the current year to 30 years from now. The scores are then dispersed across the 

distribution of all properties nationally and clustered relative to values of the same risk metric35.  

 

 

 

 

 

 

 
32 First Street Foundation, “Why A Property’s FEMA Zone Does NOT Impact It’s Flood Factor.” 
33 First Street Foundation, “First Street Foundation Flood Model (FSF-FM) Technical Documentation.” 
34 Ibid. 
35 First Street Foundation (n 30) 
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Figure 5: First Street Foundation (FSF) and FEMA 100-year Flood 

 

 

 

 

 

 

 

 

 

 

 

Red: Overprediction in FSF Model - Fluvial, Blue: Overprediction in FSF Model – Pluvial, 

Green: Underprediction in FSF Model, Yellow: Both Models Show Flooding 

 

Figure 6: First Street Flood Factor Scale 
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4 Methodology: Commercial Office Sales  

To investigate the connection among sea level rise and commercial office sales, we analyze the 

relationship between flood zones and historic flooding impact with commercial office pricing 

over the past twenty years, taking into consideration two major flood events during this period.  

4.1 Real Capital Analytics and First Street Foundation Data  

To establish a complete set of observations to prepare for the regression analysis, we merge the 

RCA and First Street databases for Miami-Dade County. We first identify the First Street data 

which represent the centroid of an individual property’s longitude and latitude and compute a 

polygon circle with 100-foot radius (diameter=200’) buffer around each point. We then map the 

centroid of the RCA properties’ longitude and latitude to determine if the property falls within 

the 100-foot buffer. Each record has a unique deal identification and can represent either single 

sale or repeat sales. Of the 881 RCA observations, 562 contained at least one First Street record 

and overall, 329 properties contained at least one First Street record. Figure 7 illustrates the 

amalgamation process utilizing ARCGIS PRO to extract the RCA property observations. To 

evaluate the relationship between price and other variables including flood risk we consider all 

unique deal identifications including properties with singular and repeat sales.   

 

Figure 7: RCA and First Street Foundation Merged Data Map  
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4.2 Variable Analysis  

Prior to running the regressions, we analyze the commercial office sales database to examine 

missing inputs, extreme outliers, and or impractical values.  

 

As mentioned in Section 3.3, The First Street Foundation data includes variables surrounding 

flood risk, historic flood level, and flood zone for each property. To consolidate the First Street 

data, we calculate the Maximum Flood Depth (Max_Flood_Depth) occurring in either Historic 

Event one (Hist_1) or Historic Event two (Hist_2) as a singular variable. We also consider the 

variable Maximum Flood Factor (Max_Flood_Factor), or the indicator of a property’s thirty-year 

risk of flooding ranging from 1 to 10. For this analysis, we disregard variables of Historic Event 

one and two (Hist_1, Hist_2), Number of Historic Events (Events_Total), and FEMA Zone 

(FEMA_Zone).  

 

The RCA data includes variables surrounding individual property locations, physical 

characteristics, and transaction information. To distill the data for the regression analyses, we 

begin by eliminating two erroneous observations with total Square Feet (SF_Building) of zero 

for a remaining total of 560 commercial office sales observations. Next, we calculate the 

dependent variable of the natural logarithm of Price per Square Foot (Ln_Price_PSF) of each 

observation by dividing variables Price (Price_Amt) by Square Feet. We employ the natural 

logarithm to transform the data to be more normally distributed and to ensure a linear 

relationship between the independent and dependent variables. To calculate Age (Age_Building), 

we first replace six Year Built (Year_Built) observations formerly ‘NA’ with the average Year 

Built of 1978, and subsequently subtract the variable Year Built from the current year, 2022. 

Regarding variable Number of Floors (Floors_Building), we replace 74 unfeasible entries of 

either zero or one floors with the value of two floors. We utilize 21 dummy variables to consider 

the Year Sold (Year_Sold_Dummy) values of years 2000 through 2020, employing one if the 

variable matches the observation year sold and zero if not. We also consider RCA variables of 

Square Feet and Walk Score (Score_Walk) in the regression analysis, and disregard the 

remaining variables outlined in Section 3.1  
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Figure 8 identifies key variables we examine in this study, consisting of the natural logarithm of 

Sales Price per Square Foot, Building Age (Age_Building), Year Sold dummy variables 2000-

2020 (Year_Sold_Dummy), Square Feet (SF_Building), Walk Score (Score_Walk), Number of 

Floors (Floors_Building), Maximum Flood Factor (Max_Flood_Factor), and Maximum Flood 

Depth (Max_Flood_Depth).  

 

Figure 8: Index for Commercial Office Sales Regression Variables 

 

4.3 Regression Approach  

We perform seven hedonic regression analyses on the commercial office sales data containing 

560 unique Deal Identifications36. In all regressions the natural logarithm of Sales Price per 

Square Foot (Ln_Price_PSF) is the dependent variable, and Building Age (Age_Building), Year 

Sold (variables 2000 – 2020), Square Feet (SF_Building), Walk Score (Score_Walk), Number of 

Floors (Floors_Building), Maximum Flood Factor (Max_Flood_Factor), and Maximum Flood 

 
36 Sopranzetti, “Hedonic Regression Models.” 

Label Description Unit Definition 

Ln_Price_PSF Natural Log of Sales 

Price per Square Foot 

# The natural logarithm of the sales price per 

square foot per unique deal identification 

Age_Building Building Age # The current building age, as of 2022 

Floors_Building Number of Floors # The number of floors per property 

Year_Sold_Dummy Year Sold Dummy 

(2000 - 2020) 

1 = Year  

0 = Not Year 

Dummy variable indicating the year the 

conventional transaction sale occurred from 

years 2000 through 2020 

SF_Building Square Feet SF The total square footage of the building 

Score_Walk Walk Score # The metric rating level of convenience on a 

scale of 0-100 

Max_Flood_Depth Maximum Flood 

Depth 

Centimeters The maximum flood depth among the First 

Street observations 

Max_Flood_Factor Maximum Flood 

Factor 

# The maximum flood factor when more than 

one First Street observation is within the 100-

foot RCA buffer on a scale of 1-10 
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Depth (Max_Flood_Depth) are the independent variables. To perform the analyses, we exclude 

an exhaustive set of dummy variables: Year Sold 2020 to override a standard error message.  

 

Commercial office sales Regression I considers all data for a total of 560 observations. This full 

sample model tests whether on average across 20 years if sales price levels are impacted by flood 

risk and history. To examine if trends within the sample are different, we segregate the total sales 

data by the First Street Foundation indicated Maximum Flood Depth (Max_Flood_Depth) and 

Maximum Flood Factor (Max_Flood_Factor).  

 

Commercial office sales Regression II evaluates observations with a Maximum Flood Depth 

(Max_Flood_Depth) of zero centimeters, comprising 493 observations. Regression III 

contemplates only the unique office sales with the highest identified Maximum Flood Depth 

(Max_Flood_Depth) of over zero centimeters. Of these 67 observations, 63 properties 

experienced a major flood event in 2005, four in 2017, and three in both 2005 and 2017 that 

triggered structural flood impact of an average of 29.75 centimeters. Regression III omits Year 

Sold 2009 as no properties with a Maximum Flood Depth (Max_Flood_Depth) over zero 

centimeters were sold during this year.  

 

We also analyze a pair of regressions split by the Maximum Flood Factor (Max_Flood_Factor) 

scale from 1 (lowest flood risk factor) to 10 (greatest flood risk factor). Regressions IV and V 

evaluate Maximum Flood Factors of 1-5 and 6-10 comprising 274 and 286 observations 

respectively. Neither regression pairs II and III nor IV and V include coefficients Maximum 

Flood Depth (Max_Flood_Depth) and Maximum Flood Factor (Max_Flood_Factor) in the 

regression results.  

 

Lastly, Regressions VI and VII consider only high risk (Max_Flood_Factor 6-10) properties and 

partitions this sample of 286 observations by properties that have experienced historic flooding 

(Max_Flood_Depth greater than zero) comprising 67 properties, or not, totaling 219 properties. 

As in Regression III, we omit Year Sold 2009. This allows us to directly evaluate the impact of 

actual past flooding on properties in high-risk zones, and effectually analyze if either future risk 

or past exposure has an influence on pricing trends.  
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5 Commercial Office Sales Results 

We first evaluate the hedonic regression results of the full sample in Regression I. Then, we 

compare Regressions II and III to regard the influence of historic flood amount, Regressions IV 

and V to analyze the impact of flood risk, and Regressions VI and VII to once again consider the 

impact of historic flood amount on pricing trends for high-risk properties only.  

 

To calculate the graphs of predicted rents in Sections 5.2, 5.3, and 5.4, we take the product of the 

average of variables Age_Building (44.1), Floors_Building (6.49), Max_Flood_Depth (7.28), 

Max_Flood_Factor (4.85), Score_Walk (74.44), and SF_Building (95,624.19) by the coefficients 

for each variable per regression. For each year, we then sum this amount, which is consistent for 

all years, with the year variable (Time_Period_Dummy) coefficient, and constant per regression 

before exponentiating this output to produce an average predicted rent value per year.  

Notably, all sales regression trends reveal a peak in prices in 2006 followed by a sharp decline 

due to the financial crisis. A second peak is perceptible in 2017, this time with Regressions II, 

IV, and VI stabilizing following the apex. However, price trends for Regressions III, V, and VII 

representing the high-risk, flood history properties ultimately wane. Thus, is plausible that 

increasing climate change awareness is altering valuations for high-risk properties.   

5.1 Full Sample Regression Analysis 

We evaluate the full commercial office sales sample in Regression I, which includes 560 

properties in Miami-Dade County. The regression results, displayed in Figure 9, reveal that both 

Maximum Flood Depth (Max_Flood_Depth), coefficient 0.001593, and Maximum Flood Factor 

(Max_Flood_Factor), coefficient 0.01679, have a positive influence on sales price per square 

foot (Ln_Price_PSF). The walk score (Score_Walk) with coefficient 0.008 also has a positive 

influence on price while building age (Age_Building) with coefficient -0.005 has a negative 

influence. Collectively, these findings reveal that location is correlated to price, and properties in 

premium locations, often closer to bodies of water, along areas that are expected to be heavily 

impacted by sea level rise experience more flooding. 
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Figure 9: Commercial Office Sales Regression I: Full Sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression I

Dependent Variable: Ln_Price_PSF

Regression Statistics: Regression I for Ln_Price_PSF    (26 variables, n=560)

R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var.

0.324 0.291 0.560 0.666

Coefficient Estimates: Ln_Price_PSF    (26 variables, n=560)

Variable Coefficient Std.Err. t-Statistic P-value

 Constant 4.957 0.170 29.242 0.000

_2000 -1.032 0.221 -4.660 0.000

_2001 -0.995 0.199 -4.988 0.000

_2002 -0.748 0.199 -3.754 0.000

_2003 -0.837 0.188 -4.455 0.000

_2004 -0.643 0.179 -3.589 0.000

_2005 -0.402 0.175 -2.292 0.022

_2006 -0.171 0.178 -0.962 0.337

_2007 -0.134 0.184 -0.732 0.464

_2008 -0.203 0.210 -0.968 0.333

_2009 -0.555 0.213 -2.602 0.010

_2010 -0.629 0.210 -2.998 0.003

_2011 -0.582 0.204 -2.854 0.004

_2012 -0.674 0.184 -3.658 0.000

_2013 -0.482 0.182 -2.642 0.008

_2014 -0.223 0.174 -1.283 0.200

_2015 -0.150 0.172 -0.874 0.383

_2016 0.078 0.184 0.427 0.670

_2017 0.092 0.179 0.514 0.607

_2018 0.016 0.190 0.086 0.931

_2019 -0.054 0.181 -0.302 0.763

Age_Building -0.005 0.001 -3.669 0.000

Floors_Building -0.003240 0.005410 -0.599 0.549

Max_Flood_Depth 0.001503 0.001095 1.373 0.170

Max_Flood_Factor 0.016794 0.008400 1.999 0.046

Score_Walk 0.008 0.001260 5.966 0.000

SF_Building 3.940E-07 3.313E-07 1.189 0.235

Source Deg. Freedom Sum Squares Mean Square F-Statistic

Regression 26.000 80.232 3.086 9.826

Residual 533.000 167.390 0.314

Total 559.000 247.622
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5.2 Regression Analysis by Historic Flooding 

We bifurcate commercial office sales Regressions II and III by historic flood amount. Regression 

II analyzes 493 properties that did not experience flooding during the 2005 and or 2017 

hurricanes, and Regression III analyzes the 67 properties of the data that did experience flooding 

greater than zero centimeters during either or both events.  

 

Figure 10 below outlines these regression results. Variability in the dependent variable is better 

explained by Regression III than Regression II, with R-Squared values of 0.598 and 0.298 

respectively. In both regressions, building age (Age_Building) has a negative impact on price. 

Properties with historic flooding have a greater average price than those without flood exposure, 

evidenced in Figure 11. As revealed in Figure 12, the overall sample of properties in Regression 

III are clustered near the water, perhaps in areas which demand a price premium when compared 

to the Regression II sample. This premise is bolstered by the walk score (Score_Walk); 

Regression III and Regression II reveal coefficients of 0.018 and 0.006 respectively.   

 

Figure 10: Commercial Office Sales Regressions II and III: Historic Flood Amount 

 

 

 

 

 

 

 

 

 

Regression II Regression III

Dependent Variable: Ln_Price_PSF Dependent Variable: Ln_Price_PSF

Regression Statistics: Regression II for Ln_Price_PSF    (24 variables, n=493) Regression Statistics: Regression III for Ln_Price_PSF    (23 variables, n=67)

R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var. R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var.

0.298 0.262 0.555 0.647 0.598 0.383 0.570 0.726

Coefficient Estimates: Ln_Price_PSF    (24 variables, n=493) Coefficient Estimates: Ln_Price_PSF    (23 variables, n=67)

Variable Coefficient Std.Err. t-Statistic P-value Variable Coefficient Std.Err. t-Statistic P-value

 Constant 5.042 0.182 27.709 0.000  Constant 4.244 0.795 5.335 0.000

_2000 -1.077 0.244 -4.405 0.000 _2000 -0.572 0.608 -0.941 0.352

_2001 -0.942 0.216 -4.354 0.000 _2001 -1.102 0.584 -1.887 0.066

_2002 -0.806 0.219 -3.672 0.000 _2002 0.077 0.566 0.135 0.893

_2003 -0.823 0.205 -4.016 0.000 _2003 -0.281 0.673 -0.418 0.678

_2004 -0.632 0.198 -3.188 0.002 _2004 -0.354 0.482 -0.735 0.466

_2005 -0.425 0.194 -2.194 0.029 _2005 0.022 0.470 0.048 0.962

_2006 -0.155 0.196 -0.792 0.429 _2006 0.085 0.482 0.177 0.860

_2007 -0.143 0.205 -0.700 0.485 _2007 0.238 0.457 0.520 0.606

_2008 -0.188 0.225 -0.837 0.403 _2008 0.031 0.665 0.047 0.963

_2009 -0.563 0.226 -2.492 0.013 _2009 0.000 0.000 0.000 0.000

_2010 -0.534 0.225 -2.375 0.018 _2010 -1.942 0.694 -2.799 0.008

_2011 -0.611 0.219 -2.790 0.005 _2011 0.238 0.694 0.343 0.733

_2012 -0.625 0.204 -3.061 0.002 _2012 -0.542 0.541 -1.002 0.322

_2013 -0.599 0.202 -2.969 0.003 _2013 0.519 0.475 1.091 0.281

_2014 -0.201 0.192 -1.045 0.297 _2014 -0.107 0.436 -0.246 0.807

_2015 -0.163 0.189 -0.865 0.387 _2015 0.538 0.613 0.878 0.385

_2016 0.002 0.203 0.010 0.992 _2016 0.724 0.498 1.453 0.154

_2017 0.093 0.198 0.469 0.639 _2017 0.315 0.449 0.702 0.486

_2018 0.005 0.207 0.022 0.983 _2018 0.807 0.603 1.339 0.188

_2019 -0.004 0.199 -0.023 0.982 _2019 -0.022 0.477 -0.046 0.963

Age_Building -0.005 0.001 -3.401 0.001 Age_Building -0.007 0.006 -1.128 0.266

Floors_Building 0.004481 0.006721 0.667 0.505 Floors_Building -0.024115 0.012346 -1.953 0.057

Score_Walk 0.006996 0.001311 5.336 0.000 Score_Walk 0.018351 0.007644 2.401 0.021

SF_Building 0.000000 0.000000 0.195 0.845 SF_Building 0.000001 0.000001 0.922 0.362

Source Deg. Freedom Sum Squares Mean Square F-Statistic Source Deg. Freedom Sum Squares Mean Square F-Statistic

Regression 24.000 61.364 2.557 8.287 Regression 23.000 20.786 0.904 2.780

Residual 468.000 144.392 0.309 Residual 43.000 13.976 0.325

Total 492.000 205.756 Total 66.000 34.762
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Figure 11: Commercial Office Sales Regressions II and III Comparison 

 

 

 

 

 

 

 

 

 

 

Figure 12: Commercial Office Sales Regressions II and III Map 

 

 

 

 

 

 

 

 



26 

 

5.3 Regression Analysis by Flood Risk 

In Regressions IV and V, we consider future flood risk and divide the full sample by 

observations with Flood Factors between 1-5, totaling 274 properties, and Flood Factors between 

610, comprising 286 properties. 

Figure 13 displays the regression results, and Figure 14 graphically compares the results of these 

regressions. Overall, the results reveal similar findings to the regressions in Section 5.2. Using 

the calculation method outlined in Section 5, the sample with the lower flood risk, Regression 

IV, has a lower average predicted sales price per square foot of 142.03 than Regression V with 

an average price per square foot of 172.39. The R-Squared values for both regressions are very 

similar; Regression V has a R-Squared value of 0.355 and Regression IV has a R-Squared value 

of 0.344. As in Section 5.2, the properties in Regression V have a higher walk score 

(Score_Walk) than those in Regression IV, with walk scores of 0.010 and 0.005 respectively, and 

the samples are segregated in Figure 15, alluding that premium locations demand higher prices. 

Figure 13: Commercial Office Sales Regressions IV and V: Flood Risk 

 

 

 

 

 

 

 

 

 

 

Regression IV Regression V

Dependent Variable: Ln_Price_PSF Dependent Variable: Ln_Price_PSF

Regression Statistics: Regression IV for Ln_Price_PSF    (24 variables, n=274) Regression Statistics: Regression V for Ln_Price_PSF    (24 variables, n=286)

R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var. R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var.

0.334 0.270 0.508 0.595 0.355 0.296 0.599 0.714

Coefficient Estimates: Ln_Price_PSF    (24 variables, n=274) Coefficient Estimates: Ln_Price_PSF    (24 variables, n=286)

Variable Coefficient Std.Err. t-Statistic P-value Variable Coefficient Std.Err. t-Statistic P-value

 Constant 5.071 0.212 23.971 0.000  Constant 4.940 0.265 18.635 0.000

_2000 -1.124 0.275 -4.090 0.000 _2000 -0.807 0.356 -2.265 0.024

_2001 -0.827 0.244 -3.394 0.001 _2001 -1.202 0.325 -3.698 0.000

_2002 -0.666 0.255 -2.608 0.010 _2002 -0.778 0.308 -2.527 0.012

_2003 -0.687 0.249 -2.760 0.006 _2003 -0.945 0.280 -3.376 0.001

_2004 -0.579 0.236 -2.460 0.015 _2004 -0.719 0.267 -2.691 0.008

_2005 -0.257 0.223 -1.152 0.251 _2005 -0.483 0.272 -1.778 0.077

_2006 -0.084 0.237 -0.356 0.723 _2006 -0.274 0.262 -1.044 0.297

_2007 -0.078 0.238 -0.326 0.744 _2007 -0.134 0.278 -0.482 0.630

_2008 -0.454 0.367 -1.235 0.218 _2008 -0.185 0.286 -0.647 0.518

_2009 -0.417 0.268 -1.554 0.122 _2009 -0.674 0.335 -2.011 0.045

_2010 -0.292 0.274 -1.067 0.287 _2010 -0.935 0.315 -2.971 0.003

_2011 -0.626 0.274 -2.281 0.023 _2011 -0.560 0.298 -1.881 0.061

_2012 -0.333 0.241 -1.377 0.170 _2012 -0.953 0.277 -3.441 0.001

_2013 -0.593 0.237 -2.500 0.013 _2013 -0.378 0.275 -1.375 0.170

_2014 0.051 0.224 0.226 0.821 _2014 -0.471 0.264 -1.788 0.075

_2015 -0.010 0.221 -0.045 0.964 _2015 -0.286 0.262 -1.091 0.276

_2016 0.049 0.235 0.209 0.835 _2016 0.149 0.282 0.528 0.598

_2017 0.122 0.231 0.530 0.597 _2017 0.085 0.270 0.316 0.752

_2018 0.124 0.243 0.511 0.610 _2018 -0.035 0.292 -0.120 0.905

_2019 -0.007 0.231 -0.028 0.977 _2019 -0.126 0.274 -0.459 0.646

Age_Building -0.005 0.002 -2.949 0.003 Age_Building -0.004 0.002 -2.174 0.031

Floors_Building -0.012856 0.010961 -1.173 0.242 Floors_Building -0.002791 0.007154 -0.390 0.697

Score_Walk 0.005614 0.001624 3.456 0.001 Score_Walk 0.010337 0.002045 5.055 0.000

SF_Building 0.000000 0.000000 1.015 0.311 SF_Building 0.000000 0.000000 1.020 0.309

Source Deg. Freedom Sum Squares Mean Square F-Statistic Source Deg. Freedom Sum Squares Mean Square F-Statistic

Regression 24.000 32.245 1.344 5.202 Regression 24.000 51.625 2.151 5.995

Residual 249.000 64.310 0.258 Residual 261.000 93.652 0.359

Total 273.000 96.555 Total 285.000 145.277
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Figure 14: Commercial Office Sales Regressions IV and V Comparison 

 

 

 

 

 

 

 

 

 

 

Figure 15: Commercial Office Sales Regressions IV and V Map 
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5.4 Regression Analysis by Historic Flooding, High-Risk 

In Regressions VI and VII, we evaluate only the high-risk properties within the sample. We split 

the properties with Flood Factors of 6-10 into subgroups that have not and that have experienced 

flooding comprising 219 and 67 properties respectively. 

As revealed by the regression results in Figure 16 and comparison graph in Figure 17, 

partitioning by historic flood amount within high-risk areas displays a contrasting result to the 

regressions in Section 5.2. Here, the predicted sales prices for properties that have experienced 

greater than zero centimeters of flooding in either or both 2005 and 2017 events are lower than 

those that have not experienced flooding. The average price we calculated for Figure 17 is 

188.155 for Regression VI, but only 138.03 for Regression VII. The walk scores for both 

samples are similar with coefficients of 0.009 for Regression VI and 0.018 for Regression VII. 

This indicates that within more comparable micro-locations as shown in Figure 18, flood history 

has a significant impact on commercial office sales prices throughout the past 20 years. 

Figure 16: Commercial Office Sales Regressions VI and VII: Historic Flood Amount, High-Risk 

 

 

 

 

 

 

 

 

 

 

Regression VI Regression VII

Dependent Variable: Ln_Price_PSF Dependent Variable: Ln_Price_PSF

Regression Statistics: Regression VI for Ln_Price_PSF    (24 variables, n=219) Regression Statistics: Regression VII for Ln_Price_PSF    (23 variables, n=67)

R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var. R-Squared Adj.R-Sqr. Std.Err.Reg. Std.Dep.Var.

0.331 0.248 0.607 0.700 0.598 0.383 0.570 0.726

Coefficient Estimates: Ln_Price_PSF    (26 variables, n=493) Coefficient Estimates: Ln_Price_PSF    (23 variables, n=67)

Variable Coefficient Std.Err. t-Statistic P-value Variable Coefficient Std.Err. t-Statistic P-value

 Constant 5.070 0.327 15.521 0.000  Constant 4.244 0.795 5.335 0.000

_2000 -0.778 0.466 -1.668 0.097 _2000 -0.572 0.608 -0.941 0.352

_2001 -1.089 0.411 -2.651 0.009 _2001 -1.102 0.584 -1.887 0.066

_2002 -0.894 0.397 -2.253 0.025 _2002 0.077 0.566 0.135 0.893

_2003 -0.981 0.352 -2.790 0.006 _2003 -0.281 0.673 -0.418 0.678

_2004 -0.729 0.348 -2.097 0.037 _2004 -0.354 0.482 -0.735 0.466

_2005 -0.587 0.353 -1.665 0.097 _2005 0.022 0.470 0.048 0.962

_2006 -0.306 0.339 -0.903 0.368 _2006 0.085 0.482 0.177 0.860

_2007 -0.176 0.367 -0.480 0.631 _2007 0.238 0.457 0.520 0.606

_2008 -0.207 0.357 -0.581 0.562 _2008 0.031 0.665 0.047 0.963

_2009 -0.718 0.393 -1.828 0.069 _2009 0.000 0.000 0.000 0.000

_2010 -0.788 0.383 -2.060 0.041 _2010 -1.942 0.694 -2.799 0.008

_2011 -0.647 0.366 -1.767 0.079 _2011 0.238 0.694 0.343 0.733

_2012 -0.972 0.357 -2.720 0.007 _2012 -0.542 0.541 -1.002 0.322

_2013 -0.610 0.357 -1.709 0.089 _2013 0.519 0.475 1.091 0.281

_2014 -0.543 0.342 -1.586 0.114 _2014 -0.107 0.436 -0.246 0.807

_2015 -0.362 0.334 -1.082 0.281 _2015 0.538 0.613 0.878 0.385

_2016 0.019 0.364 0.052 0.959 _2016 0.724 0.498 1.453 0.154

_2017 0.061 0.351 0.172 0.863 _2017 0.315 0.449 0.702 0.486

_2018 -0.083 0.367 -0.226 0.821 _2018 0.807 0.603 1.339 0.188

_2019 -0.080 0.357 -0.225 0.822 _2019 -0.022 0.477 -0.046 0.963

Age_Building -0.005 0.002 -1.978 0.049 Age_Building -0.007 0.006 -1.128 0.266

Floors_Building 0.012432 0.012055 1.031 0.304 Floors_Building -0.024115 0.012346 -1.953 0.057

Score_Walk 0.008988 0.002305 3.900 0.000 Score_Walk 0.018351 0.007644 2.401 0.021

SF_Building -0.000001 0.000001 -0.684 0.495 SF_Building 0.000001 0.000001 0.922 0.362

Source Deg. Freedom Sum Squares Mean Square F-Statistic Source Deg. Freedom Sum Squares Mean Square F-Statistic

Regression 24.000 35.316 1.472 3.993 Regression 23.000 20.786 0.904 2.780

Residual 194.000 71.486 0.368 Residual 43.000 13.976 0.325

Total 218.000 106.802 Total 66.000 34.762

(24 variables, n=219) 
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Figure 17: Commercial Office Sales Regressions VI and VII Comparison 

 

 

 

 

 

 

 

 

 

 

Figure 18: Commercial Office Sales Regressions VI and VII Map 
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6 Methodology: Commercial Office Rents  

We modify the commercial office sales analysis process in Section 4 to investigate the 

relationship between flood zones and historic flooding impact with quarterly commercial office 

rent from 1988 through 2020.   

6.1 CBRE and First Street Foundation Data  

We repeat the merging process as outlined in Section 4.1, this time merging the CBRE repeat 

rent data with the First Street data utilizing ARCGIS PRO. To capture a sufficient number of 

CBRE properties, we apply a polygon circle with a 200-foot radius (diameter=400’) buffer 

around each First Street observation’s longitude and latitude, rather than the 100-foot radius used 

when merging the RCA and First Street data. We then map the centroid of the CBRE properties’ 

longitude and latitude to determine if the property falls within the 200-foot buffer. As illustrated 

below in Figure 19, of the 677 CBRE properties, 497 contained at least one First Street record. 

These 497 properties contain 65,604 potential rent observations. Of the potential rent 

observations, 25,545 records have positive gross rents when space was available and quoted.  

 

Figure 19: CBRE and First Street Foundation Merged Data Map 
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6.2 Variable Analysis  

We employ the same First Street data consolidation as outlined in Section 4.2. We consider 

variables Maximum Flood Depth (Max_Flood_Depth), Maximum Flood Factor 

(Max_Flood_Factor) in the commercial office rent regression analysis.  

 

The CBRE data includes time period and rent value variables. To prepare the data for regression 

analysis, we consider only the positive gross rent observations. Of the 65,604 merged CBRE and 

First Street observations, 25,545 had positive rents when space was both vacant and quoted. 

These data comprise the rent observations (Ln_GrossRent_PSF) sufficient for an unbalanced 

panel model; for the purposes of this analysis each building need not have the same number of 

years in which there is data. We utilize 132 dummy variables to consider the Time Period 

(Time_Period_Dummy) values of periods from 1988 quarter one through 2020 quarter four, 

employing one if the variable matches the observation period and zero otherwise. On average, 

the data contained rents for only 28 of the 132 year-quarters for each property.  

 

Figure 20 identifies key variables we examine in this study, consisting of the natural logarithm of 

Rent per Square Foot (Ln_GrossRent_PSF), the Time Period dummy variables 1998.1 – 2020.4 

(Time_Period_Dummy), Maximum Flood Factor (Max_Flood_Factor), and Maximum Flood 

Depth (Max_Flood_Depth).  

 

Figure 20: Index for Commercial Office Sales Regression Variables 

Label Description Unit Definition 

Ln_GrossRent_PSF Rent per Square Foot # The rent per square foot per unique deal 

identification 

Time_Period_Dummy Time Period Dummy 

Variable (1988.1 – 

2020.4) 

1 = Period 

0 = Not Period 

Time period dummy variable associated with 

each rent observation from 1988 quarter one 

through 2020 quarter four 

Max_Flood_Depth Maximum Flood 

Depth 

Centimeters The maximum flood depth among the First 

Street observations 

Max_Flood_Factor Maximum Flood 

Factor 

# The maximum flood factor when more than 

one First Street observation is within the 200-

foot RCA buffer on a scale of 1-10 
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6.3 Regression Approach  

For the commercial office rent regressions, we perform a fixed effects regression to control for 

time-invariant unobserved individual characteristics that can be correlated with the observed 

independent variables in panel data37. The panel model produces a fixed effect for each property 

and each period. The Log panel model assumes that each rent observation (property-period) 

comes from the product of the property fixed effect and the period fixed effect.  

We perform seven fixed effect regression analyses on the merged rent data containing 25,545 

positive rent observations. In all regressions the natural logarithm of Gross Rent per Square Foot 

(Ln_GrossRent_PSF) is the dependent variable. Rent for i at period j is assumed to be the 

product of a unique base year rent for each building (vi) by a common rent inflation factor (yj). 

We then take the natural logarithm of Gross Rent (Ln_GrossRent_PSF), value vi, and time period 

yj. The gross rent for all buildings moves parallel and the difference between the buildings 

remains a constant ratio. Thus, while each buildings rent value is unique, over time rents move 

with a common trend for all buildings. When we bifurcate the sample by either Maximum Flood 

Depth (Max_Flood_Depth) or Maximum Flood Factor (Max_Flood_Factor), we assume the 

overarching trend is distinct for each subsample. 

 

In Regression I we consider all 497 properties or 25,545 observations. Rather than employing 

fixed effects, this model inputs the Maximum Flood Depth (Max_Flood_Depth) and Maximum 

Flood Factor (Max_Flood_Factor) per property. Regressions II and III evaluate observations split 

by a Maximum Flood Depth (Max_Flood_Depth) of zero centimeters, comprising 436 

properties, and a Maximum Flood Depth (Max_Flood_Depth) of over zero centimeters, 

comprising 61 properties, running separate panel models for each. As in Section 4.3, we also 

analyze the sample by flood risk. Regressions IV and V evaluate Maximum Flood Factors 

(Max_Flood_Factor) of 1-6 and 7-10 comprising 325 and 172 properties respectively. Lastly, we 

consider only high risk (Max_Flood_Factor 7-10) properties and split the sample of 172 by 

properties that have not experienced historic flooding (Max_Flood_Depth of zero) comprising 

117 properties for Regression VI, and those that have experienced historic flooding 

(Max_Flood_Depth greater than zero), totaling 55 properties for Regression VII.  

 
37 Allison, “Fixed Effects Regression Models: Quantitative Applications in the Social Sciences.” 
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7 Commercial Office Rent Results  

Commercial office rent Regression I produces coefficient results while the fixed effect model for 

Regressions II through VII outputs an average rent value per time period. We compare 

Regressions II and III to determine the influence of historic flood amount on gross rent, 

Regressions IV and V to analyze the impact of flood risk, and Regressions VI and VII to revisit 

the weight of flood history on a narrower scope of high-risk properties. To generate the outcome 

graphs in Sections 7.2, 7.3, and 7.4, we input the average predicted gross rent 

(Ln_GrossRent_PSF) across 132 periods (Time_Period_Dummy) produced in the fixed panel 

model per regression, benchmarked to 100 in 1988 quarter one.  

7.1 Full Sample Regression Analysis 

Commercial office rent Regression I evaluates the full sample comprising 25,545 observations 

and 497 properties. Figure 21 below shows that as both Maximum Flood Depth 

(Max_Flood_Depth), coefficient 0.00150917, and Maximum Flood Factor (Max_Flood_Factor), 

coefficient 0.01100252, increase, the single time path shifts upwards. This output demonstrates 

that the average Gross Rent (Ln_GrossRent_PSF) level for all years is positively related to flood 

risk in terms of both historical flood depth and future flood risk. One plausible explanation for 

this is that buildings that demand premium rents are located in higher-risk areas near the water.  

 

Figure 21: Commercial Office Rent Regression I: Full Sample 

 

 

 

 

 

 

 

 

 

Variable Coefficient Std Error T-Statistic

Max_Flood_Depth 0.00150917 6.011E-05 25.10691

Max_Flood_Factor 0.01100252 0.0008849 12.4337

Dependent Variable: Ln_GrossRent_PSF

Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04

Usable Observations 25545

Degrees of Freedom 24866

Skipped/Missing (from 608755) 583210

Centered R^2 0.0550081

R-Bar^2 0.0292418

Uncentered R^2 0.9862255

Mean of Dependent Variable 3.0710458607

Std Error of Dependent Variable 0.3735135890

Standard Error of Estimate 0.3680119574

Sum of Squared Residuals 3367.6720249

Regression F(678,24866) 2.1349

Significance Level of F 0.0000

Log Liklihood -10366.8913

Regression I: Panel Regression - Estimation by Fixed Effects
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7.2 Regression Analysis by Historic Flooding 

Regressions II and III split the sample by historic flood amounts. Regression II evaluates 21,802 

observations or 436 properties with historic flood depth of zero centimeters, while Regression III 

analyzes 3743 observations or 61 properties with historic flood depth greater than zero 

centimeters. Figure 22 outlines the results of these regressions and Figure 23 graphically 

illustrates the period fixed effects from both models.  

Bifurcating the sample by flood history reveals shows both rents running even from 1988 – 2008, 

but the properties with flood history demonstrate a decline and without recovery after 2008. This 

volatility, evidenced in the Regression III curve in Figure 23 may be explained by the smaller 

relative sample size of properties with flood history. The consistent decline over the last seven 

years from an apex of 139.85 in 2015 quarter three to 93.59 in 2020 quarter four of gross rent 

index for historically flooded properties compared to non-flooded properties is significant. 

Properties that have experienced historic flood in Regression III explain more variation of the 

dependent variable than no flood history in Regression II, with Centered R-Squared values of 

0.572 and 0.405 respectively. Figure 24 reveals that properties that have experienced flooding 

are clustered closer to waterfront areas. 

 

Figure 22: Commercial Office Rent Regressions II and III: Historic Flood Amount 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: Ln_GrossRent_PSF Dependent Variable: Ln_GrossRent_PSF

Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04 Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04

Usable Observations 21802 Usable Observations 3743

Degrees of Freedom 20996 Degrees of Freedom 3031

Skipped/Missing (from 608755) 586953 Skipped/Missing (from 608755) 605012

Centered R^2 0.4048203 Centered R^2 0.5724856

R-Bar^2 0.3820008 R-Bar^2 0.472201

Uncentered R^2 0.9918632 Uncentered R^2 0.9933321

Mean of Dependent Variable 3.0399528358 Mean of Dependent Variable 3.2521546315

Std Error of Dependent Variable 0.3579051986 Std Error of Dependent Variable 0.4094133917

Standard Error of Estimate 0.2813597506 Standard Error of Estimate 0.2974379110

Sum of Squared Residuals 1662.1128416 Sum of Squared Residuals 268.15048127

Regression F(805,20996) 17.7401 Regression F(711,3031) 5.7086

Significance Level of F 0.0000 Significance Level of F 0.0000

Log Liklihood -2877.4819 Log Liklihood -377.6363

Regression II: Panel Regression - Estimation by Fixed Effects Regression III: Panel Regression - Estimation by Fixed Effects
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Figure 23: Commercial Office Rent Regressions II and III Comparison 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Commercial Office Rent Regressions II and III Map 
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7.3 Regression Analysis by Flood Risk 

Regressions IV and V partition the sample by flood risk. Regression IV evaluates 15,685 

observations or 325 properties with Flood Factors of 1-6, while Regression V analyzes 9,860 

observations or 172 properties with Flood Factors of 7-10, indicating higher risk. Figure 25 

displays risk regression results and Figure 26 exhibits the period fixed effects from the models.  

A greater number of the observed variation in Regression V can be explained by the model’s 

inputs than in Regression IV, with Centered R-Squared values of 0.513 and 0.453 respectively. 

Segmentation by risk reveals a significant increase in rents for risky properties in the late 1980s. 

Beginning in 1992, the low-risk group in Regression IV demonstrates a gradual upward trend 

while the high-risk group in Regression V remains relatively flat. The difference in mean rent is 

stark in this regression comparison; high-risk properties with Flood Factors between 7-10 that 

are more concentrated in locations more susceptible to sea level rise, as evidenced by the map in 

Figure 27, have consistently higher rents than the lower risk properties. Further, the lower risk 

properties with flood factors between 1-6 show steady recovery since 2016 while rents for high-

risk properties have declined since that time. 

 

Figure 25: Commercial Office Rent Regressions IV and V: Flood Risk 

 

 

 

 

 

 

 

 

 

 

 

Regression IV: Panel Regression - Estimation by Fixed Effects Regression V: Panel Regression - Estimation by Fixed Effects

Dependent Variable: Ln_GrossRent_PSF Dependent Variable: Ln_GrossRent_PSF

Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04 Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04

Usable Observations 15685 Usable Observations 9860

Degrees of Freedom 14892 Degrees of Freedom 9096

Skipped/Missing (from 608755) 593070 Skipped/Missing (from 608755) 598895

Centered R^2 0.4529644 Centered R^2 0.5134976

R-Bar^2 0.4238715 R-Bar^2 0.4726883

Uncentered R^2 0.9927089 Uncentered R^2 0.9922107

Mean of Dependent Variable 3.0385273878 Mean of Dependent Variable 3.1227752976

Std Error of Dependent Variable 0.3531670490 Std Error of Dependent Variable 0.3983580546

Standard Error of Estimate 0.2680648428 Standard Error of Estimate 0.2892726165

Sum of Squared Residuals 1070.1206535 Sum of Squared Residuals 761.14096992

Regression F(792,14892) 15.5696 Regression F(763,9096) 12.5829

Significance Level of F 0.000 Significance Level of F 0.0000

Log Liklihood -1199.460 Log Liklihood -1362.9192
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Figure 26: Commercial Office Rent Regressions IV and V Comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Commercial Office Rent Regressions IV and V Map 
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7.4 Regression Analysis by Historic Flooding, High Risk  

We find that high-risk is a sufficient but not necessary condition for flooding. Of the 61 

observations that have experienced historic flooding, all are high-risk, but not all high-risk 

observations have experienced historic flooding. In Regressions VI and VII, we only consider 

high-risk (Flood Factor 7-10) properties and partition this sample by 117 properties that have not 

experienced historic flooding and 55 properties that have experienced flooding.  

 

The results for Regressions VI and VII, shown in Figure 28 and graph of period fixed effects for 

these regressions, in Figure 29, are similar to results in Regressions II and III as all historically 

flooded properties are considered to be high-risk. Considering flooded properties, Centered R-

Squared value in Regression VII, 0.575445, only differs slightly from the Centered R-Squared 

value in Regression III, 0.5724856; as in Section 7.2 more variation of the dependent variable 

can be explained by the independent variables for the sample with properties that have 

experienced historic flood than the one with properties without flood history. Figure 30 

illustrates that the samples in Regressions VI and VII are clustered in more comparable 

locations, revealing impact of historic flooding on rent values, particularly over the past seven 

years.     

Figure 28: Commercial Office Rent Regressions VI and VII: Historic Flood Amount, High Risk 

 

 

 

 

 

 

 

 

 

 

Regression VI: Panel Regression - Estimation by Fixed Effects Regression VII: Panel Regression - Estimation by Fixed Effects

Dependent Variable: Ln_GrossRent_PSF Dependent Variable: Ln_GrossRent_PSF

Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04 Panel (677) of Quarterly Data From 1//1988:10 to 900//2020.04

Usable Observations 14792 Usable Observations 3654

Degrees of Freedom 13994 Degrees of Freedom 2943

Skipped/Missing (from 608755) 593963 Skipped/Missing (from 608755) 605101

Centered R^2 0.4792021 Centered R^2 0.575445

R-Bar^2 0.4495411 R-Bar^2 0.4730209

Uncentered R^2 0.9926662 Uncentered R^2 0.9932753

Mean of Dependent Variable 3.0448304928 Mean of Dependent Variable 3.2554705977

Std Error of Dependent Variable 0.3639053069 Std Error of Dependent Variable 0.4130573900

Standard Error of Estimate 0.2699919639 Standard Error of Estimate 0.2998521053

Sum of Squared Residuals 1020.1018743 Sum of Squared Residuals 264.60891189

Regression F(979,13994) 16.156 Regression F(710,2943) 5.6183

Significance Level of F 0.0000 Significance Level of F 0.0000

Log Liklihood -1210.6740 Log Liklihood -388.3300
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Figure 29: Commercial Office Rent Regressions VI and VII Comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Commercial Office Rent Regressions VI and VII Map 
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8 Conclusion  

In this paper, we provide evidence that high flood risk is a sufficient but not necessary condition 

for flooding, and that historic flood exposure from hurricanes has a tangible impact on 

commercial real estate sales prices and rental values. We regarded key measures of sea level rise 

exposure: a history of flooding in either or both 2005 and 2017 hurricanes and a measure of 

calculated flood risk on a scale of 1–10 and analyzed these variables in a series of regressions to 

determine the influence of flood exposure and risk on real estate values in Miami-Dade County. 

These regressions reveal a correlation between location and valuations as properties in superior, 

waterfront locations not only have higher sales and rental values over time, but also endure 

greater flood history and flood risk. Sales prices and rental values for high-risk or flood-exposed 

properties have declined since 2017 and 2015 respectively, while prices and values for low-risk, 

non-exposed properties have stabilized, perhaps reflecting escalating climate change awareness. 

 

We then aspired to eliminate location as a confounding variable and only considered properties 

deemed high-risk, with associated flood factors of 6 or 7 and above. We found that commercial 

office sales pricing responds more rapidly than rental values to historic flood aversion. Sales 

values are greater for properties without historic flooding than for those with historic flooding 

across the past 20 years, and rental values for properties with flood exposure have declined in the 

past 7 years compared to properties in high-risk zones without flood histories. Why might rental 

markets be slower than sales markets to respond to historic flooding? In an efficient market, 

because prices are based on anticipated future rental changes, sales prices adjust before rents to 

any shock that will eventually have some impact on rental values38.  

 

Occupants of commercial offices in Miami-Dade County are at the risk of extreme weather 

events, flooding, and the associated harms. It is worth noting that historic flood events have a 

bona fide influence on commercial real estate valuations, while flood risk does not share this 

influence. While sea level rise is correlated with increased storm impacts, particularly with 

hurricanes, our results suggest that fewer buyers and renters are willing to bear these heightened 

risks at current market prices for commercial properties that have experienced genuine damage.  

 
38 Shiller, “Stock Prices, Earnings and Expected Dividends.” 
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