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Abstract 

Despite the widespread applications of machine learning models in materials science, in many 

cases the performance of machine learning models is not sufficiently accurate enough to meet 

the needs of materials design. In this thesis, we propose and apply a series of strategies to exam 

and improve upon the performance of machine learning models for specific materials problems. 

First, we exam whether current deep representation learning models for atomistic systems can 

capture human knowledge of crystal structures, and find that current graph neural networks can 

capture knowledge of local atomic environments but cannot capture periodicity of crystal 

structures. As an initial solution, we propose to hybridize human knowledge with deep 

representation learning models, and find that the hybridization can lead to large improvement 

for predicting vibrational properties of materials. Then, for situations where the datasets of 

target materials properties are small while there are large relevant materials datasets, we 

propose to use transfer learning and multi-fidelity learning to transfer information between the 

large and small datasets to facilitate the learning of target properties. We use experimentally 

measured formation enthalpy and lattice thermal conductivity as case studies to exam the 

usefulness of information transfer and understand where and why information transfer helps. 

For situations where expansion of datasets is necessary, we propose to use active 

learning/Bayesian Optimization to sample the materials space efficiently and mitigate bias, and 

as a case study, we apply Bayesian Optimization to find the optimal laser processing parameters 

for poly(acrylonitrile) sheet as porous carbon electrode. Finally, if generation of data is time-

consuming, we propose to use machine learning to accelerate materials experiments and 

simulations. For this goal, we develop a framework to use graph neural networks to predict 

charge density distribution of materials. The machine learning models developed in this thesis 

not only deepen human understanding of where and how machine learning can be used to 

facilitate materials development, but also lead to the discovery of new materials systems, new 

processes, and new insights, such as new candidate thermoelectric materials, new processes for 

lasering poly(acrylonitrile), and new insights into the evaluation of the stability of materials.   
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Chapter 1 

1. Introduction 

 

1.1. Motivations for materials science 

    The development of materials plays a critical role in the human’s civilizations. Historians 

define the periods of civilizations by the predominantly used material, such as Stone Age, 

Bronze Age, Iron Age, Steel Age, and Silicon Age[1]. Nowadays, it is urgent to accelerate 

materials development for various environmental and commercial purposes of human beings. 

For example, controlling the global warming demands the development of materials used in 

solar cells for more efficient generation of clean and renewable energy[2], and promoting 

electric vehicles requires the development of battery materials for larger energy storage, faster 

charging rate and higher safety[3].   

In general, the development of novel materials is a notoriously difficult and slow process. 

An extreme example is the pitch drop experiment[4], where it takes 7 to 13 years to form a 

single drop. In Figure 1-1, we show the four paradigms of materials development over 

history[5]. Due to the lack of understanding of the structure-property relationships, in the first 

paradigm materials development was driven by trial-and-errors, and in the second paradigm, 

materials scientists started to gather empirical knowledge from the numerous experimental 

results, such as the law of thermodynamics. With the development of quantum mechanics, solid 

state physics and computation powers in the 20th century, in the third paradigm, computational 

materials science started to compute materials properties based on the first principles, which 

motivates the creation of large computational materials datasets that explore the vast space of 

materials and provide open data for materials design, such as the Materials Project (MP)[6], 

Open Quantum Materials Database (OQMD)[7], the Automatic Flow of Materials Discovery 
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Library (AFLOW)[8], and the Joint Automated Repository for Various Integrated Simulations 

(JARVIS)[9]. More materials databases are summarized in Ref.[10-14]. With the access of 

tremendous amount of materials data, in the fourth paradigm, machine learning and data-driven 

approaches provide new opportunity for accelerating materials development. Ideally, machine 

learning models can extract the structure-property relations from the big materials datasets, and 

then apply the found relations to guide the design of materials, such as prediction of properties, 

and optimization of experimental conditions[15-18]. The main advantage of machine learning 

models over experiments and materials simulation is that, the decision process of machine 

learning models is usually much faster (seconds) for a given material than that of simulation 

(hours to days) and experiments (days to months), and the main advantage of machine learning 

over human summarization of physical rules is that, machine learning models can deal with 

very large datasets and extract very complex and non-linear relations between multiple inputs 

and outputs. In Chapter 1.2.2, we will overview the applications of machine learning in 

materials science.  

 

 

Figure 1-1. The four paradigms of materials science: empirical, theoretical, computational, and 

data-driven[5]. 
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1.2. Motivations for machine learning 

1.2.1. Overview of machine learning 

“Machine learning” refers to the development of models that learn from experiences and 

make decisions based on experiences without explicitly being programmed for a given dataset, 

such as playing chess and social network recommendation, etc. Some of commonly used 

machine learning technologies are, linear regression, decision tree, random forest, and neural 

network.  

Linear regression is one of the simplest machine learning models. The basic formulation of 

linear regression can be written as below: 

𝑦pred = 𝑤𝑇𝑥 + 𝑏 ...... (1-1), 

where 𝑥 ∈ R𝑚 is the given input,  𝑦pred ∈ R𝑛 is the predicted output, and 𝑤 ∈ R𝑚⨯𝑛 and b ∈

R𝑛 are learned weights.  

Decision tree is a flowchart-like model, where each node is a test on input, each branch is 

one of the outcomes of the test, and each leaf node represents one of the decisions (predicted 

values). The paths from the root to the leaf are the decision rules for the given dataset. 

Compared with linear regression, decision tree can learn highly nonlinear relation between 

input and output. More details about decision tree are provided in Ref.[19]. Random forest is 

an ensemble of decision trees, where multiple decision trees are used to learn the input-output 

relation for better performance[20].  

Neural network is one of the most popular and powerful machine learning architectures for 

learning input-output relationships. The simplest form of neural network, 2-layer feedforward 

neural network, can be written as below: 
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  𝑦pred = 𝑔 (𝑤(1)𝑇
𝑥 + 𝑏(1)) 𝑤(2)𝑇

+ 𝑏(2) ...... (1-2), 

where 𝑔 represents a non-linear activation function, and (𝑤(1), 𝑏(1)) and (𝑤(2), 𝑏(2)) are learned 

weights in the first and second layer, respectively. From equation (1-2), we can see that 

feedforward neural network is essentially multiple layers of linear transformations plus non-

linear activation functions. More general neural networks can differ from the simple form in 

several aspects, such as larger number of layers, more complicated transformation in each layer, 

and constraints to the weights. According to the “universal approximation theorem”[21], 

theoretically neural network can approximate any function to arbitrary accuracy, although 

practically optimization of weights of neural network (“training”) might not always be easy.  

1.2.2. Applications of machine learning in materials science 

In this chapter, we overview several purposes that researchers have applied machine learning 

models to achieve. We will focus on the formats of input and output data and impact of 

prediction of the output data on materials development, and detailed architectures of machine 

learning models to realize these purposes are discussed in Ref.[10-12, 22] and later chapters.  

In Figure 1-2, we summarize the commonly seen input and output data formats used in 

machine learning models for materials science. Atomistic structure of materials is one of the 

most frequently used input data formats, because fundamentally all materials properties are 

determined by structure. Conversion of atomistic structure into machine-readable numerical 

representation has become a central task for machine learning applications in materials science, 

and we will overview several methods for this challenge in Chapter 1.3.1.  

In cases where structural information of materials is missing, compositions can also be used 

as input data for various purposes, such as scalar property prediction[23-25], and prediction of 

possible stable structures for the given compositions[26-28]. Recently, Schmidt et al. have used 
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composition plus incomplete structural information (such as structural prototype) to predict 

scalar property[29].  

Spectrums of materials are also used as input for machine learning models. For example, 

spectrums from materials structure characterizations, such as X-ray diffraction (XRD) and X-

ray absorption (XAS), are used as input of machine learning models to predict the structural 

information with higher speed than manual analysis[10]. Another type of materials spectrums, 

density of states, can also be used to predict materials properties. For example, electronic 

density of states are used in DOSnet[30] to predict adsorption energy of adsorbates on surfaces.  

With the rapid development of computer vision, images of materials, such as those from 

optical microscopy (OM), scanning electron microscopy (SEM), scanning tunneling 

microscopy (STM), atomic force microscopy (AFM), and transmission electron microscopy 

(TEM), are also used as input to machine learning models. Machine learning models can extract 

information from images with higher speed and better consistency of measurements than 

manual analysis. For example, SEM images can be used to classify different materials 

systems[31] and locate defects inside a material[32].  

In addition to the intrinsic description of materials as mentioned above, scientific literature 

of materials can also be used as input to machine learning models to learn and make inferences 

from the text information, such as prediction of synthesis conditions[33-35] and properties[36-

38].  

Finally, synthesis conditions[16-18, 39-42] and computation settings[43-45] can be used as 

input of machine learning models to predict the materials properties from the corresponding 

experiments and simulations.  

As for the output data formats, scalar materials properties, such as band gap, formation 

energy, and bulk modulus, are frequently seen outputs of machine learning models for materials 
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science[25, 46-75]. Recently, machine learning models for predicting spectral and tensorial 

properties have been developed, such as Mat2Spec[76] and modified E3NN[77] for prediction 

of density of states, and ETGNN[78] for prediction of force, dielectric and piezoelectric tensors.  

In addition to direct prediction of materials properties, in cases where direct predictions are 

not accurate because of limitations of models and/or scarcity of data as discussed in Chapter 

1.3, machine learning models can be used to predict the intermediate physical quantities, such 

as interatomic energy and forces, and charge density distributions and wavefunctions. 

Prediction of interatomic energy and forces enables machine learning accelerated molecular 

dynamics[79-83], and prediction of charge density distributions and wavefunctions can 

accelerate density function theory calculations (DFT)[73, 84-90]. Beyond acceleration of 

routine simulations, such predictions of intermediate physical quantities pushes the boundary 

of materials simulations. For example, machine learning prediction of charge density can push 

the limit of density functional theory to thousands of atoms[86], and machine learning can 

solve the fractional electron problem in DFT[90].  

Meanwhile, atomistic structures of materials can also be predicted by machine learning 

models for three purposes, searching for the most stable structures under constraints[26-28], 

enlarging the space of stable materials structures[12, 26, 28, 91], and inverse design of 

atomistic structures with target properties[91-94]. Experimental parameters that result in the 

optimal materials properties can also be suggested by machine learning models, especially 

based on the scientific literature as the input[10, 34, 35, 95].  

Finally, although often not as the direct output, insights of materials systems can be extracted 

from machine learning models. The most commonly seen insight is how characteristics of 

materials affect materials properties revealed by the feature importance or similar metrics such 

as impact on model output[37, 60, 68, 96-99]. Other types of knowledge from machine learning 
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models include physical formulas from symbolic regression[17, 80, 100-102], physical 

concepts[103], knowledge graph[104], visualization of similarity between materials[105], and 

capturing dynamical information from trajectories of molecular dynamics simulations[106]. 

 

 

Figure 1-2. Illustration of input and output data formats used in machine learning models for 

materials science. 

 

1.3. Current limitations of machine learning for materials science 

Although machine learning models have been widely applied in materials science, in many 

cases the performance of machine learning models is still limited and not sufficiently accurate 

enough to meet the needs of materials design. Such limitations are shown in two aspects: on 

the one hand, the prediction accuracy of machine learning models is not satisfying for many 

materials properties. For example, in the study of ALIGNN[69], one of the state-of-the-art 

machine learning models taking atomistic structures as input, the authors report that ALIGNN 
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can only achieve satisfying predictive performance[25] for 6 tasks out of 29 tasks; on the other 

hand, sometimes even if the errors of machine learning models are small, the prediction results 

are still not very useful. For example, Bartel et al.[67] report that even if some machine learning 

models can learn the formation enthalpy of materials with errors similar with that of DFT 

compared with experiment, the machine learning predicted formation enthalpy cannot estimate 

the stability of compounds as correct as DFT, because errors from DFT are beneficially 

systematic whereas errors from machine learning are not. In the following, we will overview 

the current limitations of machine learning models on materials data from two aspects: 

representations of materials, and datasets of materials.     

1.3.1. Representations of materials structures 

Conversion of atomistic structures into machine-readable numerical representation, or 

designing the 𝑥 based on atomistic structures of materials for machine learning models, is one 

of the most critical tasks for applications of machine learning in materials science[11]. In 

general, there are two approaches to convert materials structures into numbers: human-

designed description and deep representation learning. In this chapter, we will overview the 

two types of representations, and discuss their limits. More detailed discussions about 

representations of materials are provided in Ref.[10, 11]. 

Human-designed descriptors. Human-designed descriptors are based on the collection of 

human understanding of compositions and structures of materials. Generally, people can easily 

understand the meaning of such descriptors. Mean electronegativity and difference of atomic 

radius of elements in materials are examples of compositional descriptors, and mean bond 

length and difference of coordination number of atoms in materials are examples of structural 

descriptors of materials. Beyond such simple descriptors, recently, researchers have proposed 

a series of descriptors for materials, such as Magpie[25] compositional descriptors, classical 
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force-field inspired descriptors (CFID)[72], Coulomb matrix[107], fragment descriptors[62], 

voxel descriptors[108], and partial radial distribution function[74]. In addition to the general 

descriptors, system-specific descriptors are also proposed, such as those for MOF[109], 

zeolite[110], and surface of materials[111].  

Although ML models based on the human-designed descriptors have achieved some 

successes in revealing the trend between human-understandable characteristics of materials and 

properties[55, 60, 70, 97, 101, 112, 113], these descriptors contain only information known to 

human-beings, and employing only descriptors to learn and predict materials properties might 

miss key structure-property relation unknown to human.  

Deep representation learning. Deep representation learning, by definition, refers to the ML 

models that learn the numerical representation of materials automatically during the training of 

machine learning. Although the learned representations are generally less understandable by 

human compared with human-designed descriptors, deep representation learning can uncover 

the pattern of structure-property relation unknown to human. Since materials can be intuitively 

represented as graphs, where atoms forming the nodes and bonds forming the edges, graph 

neural networks (GNN) have become the state-of-the-art deep representation learning method 

for materials science. SchNet[57] and CGCNN[71] are two classic GNN architectures designed 

for materials. They update the representations of each atom by neighboring atoms and bond 

length between atoms, and pool all the updated atom representations into an overall 

representation of each material. In later variants of GNN such as iCGCNN[75], MEGNet[114] 

and GATGNN[115], bond representations are also updated during the convolution. Through 

multiple layers of graph convolutions, these models can implicitly encode many-body 

interactions. To explicitly encode many-body interactions, Gasteiger et al. proposed 

DimeNet[116] and GemNet[117] for molecules, and Choudhary et al. proposed ALIGNN for 
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materials[69], where atom representations (one-body), bond representations (two-body) and 

bond angle representations (three-body) are all updated during the convolution via the 

construction of line graph (the nodes of the line graph are edges in the original graph, and the 

edges of the line graph are angles between edges in the original graph). Together with other 

studies using higher-order information for improving expressiveness of GNN[118, 119], 

ALIGNN-d[120], a recent variant of ALIGNN, updates the dihedral angle representation (four-

body) by constructing line graph of line graph. Very recently, Batatia et al. proposed a general 

formalism to encode the local atomic environments by graph neural networks and atomic 

cluster expansion with arbitrary body-order[121]. Other efforts have also been made to improve 

GNN for crystal structures, such as inclusion of state attributes in MEGNet[114], attention 

mechanism in GATGNN[115], representations equivariant to rotations in E3NN[77], use of 

structure motifs in AMDNet[63], and exploitation of correlations in spectral properties in 

Mat2Spec[76].  

Although these variants of GNN have achieved some success in learning materials’ 

properties, for capturing the atomic structure of crystalline materials, the improvements are 

mainly based on human intuition of local bonding environment, such as explicitly encoding 

bond angle (three-body) and dihedral angle (four-body) information, structure motif, and 

representations equivariant to rotations. Currently, prediction of materials properties is in 

general still challenging[69], and  there is still no systematic approach and quantitative metric 

to analyze and understand the limitations of GNNs for capturing crystal structures. Moreover, 

the two methods of converting crystal structures into numbers, human-designed descriptors 

and deep representation learning, are now developed separately, not synergically. 
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Figure 1-3. Illustration of nine graph neural networks designed for materials with their key 

innovations. CGCNN[71]: crystals converted to graphs with atoms as nodes and bonds as 

edges. iCGCNN[75]: Voronoi neighbors and Voronoi tessellation for edges. MEGNet[114]: 

inclusion of state attributes. GATGNN[115]: local and global attention mechanism. 
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ALIGNN[69]: updating bond angle representations by line graph. AMDNet[63]: extraction 

and use of structure motif information. DimeNet[116]: directional message passing. E3NN[77]: 

direct encoding of bond vector by kernels equivariant to 3D translations, rotations and 

inversion. Mat2Spec[76]: exploitation of correlations between spectral properties by 

probabilistic encoding and contrastive learning. 

 

1.3.2. Datasets of materials 

Data is at the heart of data-driven machine learning models. Currently, there are many 

materials databases containing compositions, structures, and various properties of materials, 

from both experiments and simulations. Especially, with the development of high-throughput 

screening, several large computational materials databases have been developed, such as the 

Materials Project (MP)[6], Open Quantum Materials Database (OQMD)[7], the Automatic 

Flow of Materials Discovery Library (AFLOW)[8], and the Joint Automated Repository for 

Various Integrated Simulations (JARVIS)[9]. More materials databases are provided in 

Ref.[10-14]. Despite the availability of large materials databases, standardization of materials 

datasets is still under progress for using these databases collectively[122]. Moreover, for 

machine learning applications in materials science, there are two main limitations on materials 

datasets: lack of high-quality data and biased dataset.  

Lack of high-quality data. Although there are many large computational materials datasets 

with more than 105 data points, these large datasets are mainly based on cheap computation 

methods, such as DFT with Generalized Gradient Approximation (GGA)[123], and molecular 

dynamics with classic potentials[124, 125]. Because of the low speed of manual experiments, 

and the cost-accuracy trade-off of computations, there still lacks high-quality data of materials 

properties from experiments and expensive computation methods. For example, in the 

Materials Project database, there are ~105 data points of formation enthalpies and band gaps of 

materials based on GGA, while there are only ~103 and ~3*103 data points of experimentally 

measured formation enthalpies[97] and band gaps[66] of materials. Another example is, for 
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lattice thermal conductivity, there are ~3*103 data points from a semi-empirical formula[126], 

while there are only ~100 data points from experiments[55]. In addition to experimental data, 

computational data from expensive methods is also much less than that from cheap methods. 

For example, there are only ~104 data points of formation enthalpies[127] and band gaps[128] 

from methods more accurate than GGA, and in the database of Li transport behavior in polymer 

electrolyte[125], the number of properties from long simulations (50 ns) is only ~10% of that 

from short simulations (5 ns).  

Biased datasets. In addition to the size of dataset, whether a dataset covers the materials 

space widely and evenly is also critical to the usefulness of the dataset to machine learning 

applications. For molecules, the golden standard QM9 dataset[129] is reported to 

underrepresent some types of molecules, which contributes to the presence of outliers in 

predictions[130]. Despite the lack of similar systematic study about distribution of materials in 

major materials datasets, there are four types of bias in some materials datasets. The first type 

is bias of presence of elements, such as the bias to oxides in the dataset of solid-state Li-ion 

conductors[131]. The second type is the bias of number of elements, such as the bias to binary 

and ternary compounds in the dataset of experimental formation enthalpy[97]. The third type 

is bias of structure motifs, such as the dataset of Li transport in polymer electrolyte where 

monomers with aromatic rings are excluded. The fourth type is bias of size of primitive cells, 

such as the dataset of HSE band gaps[128] where primitive cells with more than 40 atoms are 

excluded.  

 

1.4. Problem statement and thesis overview 

As discussed in Chapter 1.3, currently, machine learning models cannot provide accurate 

predictions for some problems of materials science. In this thesis, we aim to propose a series 
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of strategies to improve performance of machine learning models for materials, and apply these 

strategies to tackle machine learning tasks for realistic materials science problems. Figure 1-4 

illustrates the series of strategies in this thesis. With the initial dataset and initial machine 

learning models, if the prediction is not satisfying, then one should first consider designing 

more suitable algorithms for the specific learning tasks. On the one hand, one should consider 

whether the representations of materials capture all the necessary information to determine the 

output. On the other hand, if there are datasets relevant to the learning tasks, which is very 

common in materials science, then one should consider transfer information from the relevant 

datasets to facilitate the learning tasks. More discussions about choosing and tuning general 

machine learning architectures are provided in Ref.[10, 11, 22]. If algorithm-design alone 

cannot lead to satisfying prediction, then one might consider expanding the dataset. For better 

sampling efficiency and mitigation of bias, one might consider sampling the next materials to 

characterize by active learning or Bayesian Optimization, and for higher speed and lower cost, 

one might consider accelerating materials characterization by machine learning-accelerated 

experiments and computations.  

 

Figure 1-4. Illustration of strategies to improve performance of machine learning models for 



30 

 

materials science. 

 

In Chapter 2, we will study whether the current deep representation learning models can 

capture knowledge of crystalline materials behind human-designed descriptors, and we will 

propose a way to improve the prediction performance by hybridizing deep representation 

learning and human-designed descriptors[132]. In Chapter 3, as a case study of information 

transfer, we will study how multi-fidelity learning and transfer learning, two information 

transfer strategies, help to learn the experimentally measured formation enthalpies of 

materials[97]. In Chapter 4, also as a case study of information transfer, we will use machine 

learning to study lattice thermal conductivity of materials, and investigate how transfer learning 

helps to learn the experimentally measured lattice thermal conductivity[55]. In Chapter 5, as 

an example of choosing the next materials to characterize, we will use Bayesian Optimization 

to search for the optimal laser-processing parameters for poly(acrylonitrile)[133]. In Chapter 

6, as an example of accelerating materials characterization, we will propose a way to predict 

charge density distributions of materials by graph neural networks[73].     
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Chapter 2 

2. Examining graph neural networks for inorganic crystalline 

structures  

 

2.1. Introduction 

    Historically, materials informatics has relied on human-designed descriptors of materials 

structures. In recent years, graph neural networks (GNNs) have been proposed to learn the 

representations of crystal structures from the data end-to-end producing vectorial embeddings 

that are optimized for downstream prediction tasks. However, a systematic scheme is lacking 

to analyze and understand the limits of GNNs for capturing crystal structures. In this chapter, 

we propose to use human-designed descriptors as a bank of human knowledge to test whether 

black-box GNNs can capture knowledge of crystal structures. We find that current state-of-the-

art GNNs cannot capture periodicity of crystal structures well, and we analyze the limitations 

of the GNN models that result in the failure from three aspects: local expressive power, long-

range information, and readout function. We propose an initial solution, hybridizing descriptors 

with GNNs, to improve the prediction of GNNs for materials properties, especially phonon 

internal energy and heat capacity with 90% lower errors, and we analyze the mechanisms for 

the improved prediction. All the analysis can be easily extended to other deep representation 

learning models, human-designed descriptors, and systems such as molecules and amorphous 

materials.  
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Figure 2-1. Schematic of analyzing whether GNN can capture human knowledge behind 

human-designed descriptors, and whether hybridization of GNN and human-designed 

descriptors can improve prediction performance. 

 

    Recently, machine learning (ML) has been widely employed to high-throughputly predict 

properties of materials[25, 46-77]. Conversion of crystalline structures into machine-readable 

numerical representation is one of the most critical tasks for applications of ML in materials 

science[11]. Since materials can be intuitively represented as graphs, where atoms forming the 

nodes and bonds the edges, graph neural networks (GNN) have become the state-of-the-art 

deep representation learning method for materials science. SchNet[57] and CGCNN[71] are 

two classic GNN architectures designed for materials. They update the representations of each 

atom by neighboring atoms and bond length between atoms, and pool all the updated atom 

representations into an overall representation of each material. In later variants of GNN such 

as iCGCNN[75], MEGNet[114] and GATGNN[115], bond representations are also updated 

during the convolution. To explicitly encode many-body interactions, Gasteiger et al. proposed 

DimeNet[116] and GemNet[117] for molecules, and Choudhary et al. proposed ALIGNN for 

periodic materials[69]. Very recently, Batatia et al.[121] proposed a general formalism to 
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encode local atomic environments by GNN with arbitrary body-order. Other efforts have also 

been made to improve GNN for crystal structures, such as inclusion of state attributes in 

MEGNet[114], attention mechanism in GATGNN[115], representations equivariant to 

rotations in E3NN[77, 134], use of structure motifs in AMDNet[63], prediction of tensorial 

properties in ETGNN[78], and exploitation of correlations in spectral properties in 

Mat2Spec[76].  

Although these variants of GNNs have achieved some success in learning materials’ 

properties, there is still no systematic approach and quantitative metric to analyze and 

understand the limitations of GNNs for capturing crystal structures, especially for global 

information of crystal structures. Moreover, the two methods of converting crystal structures 

into numbers, human-designed descriptors and deep representation learning, are now 

developed separately, not synergically. 

In this chapter, we propose a systematic approach to analyze and quantify the limitations of 

GNNs for crystal structures, and propose a way to improve the GNNs models for predicting 

materials properties. As illustrated in Figure 2-1, we use the human-designed descriptors as a 

bank of human knowledge to test whether the current GNN models can capture certain 

knowledge about crystal structures. We test the GNNs by employing them to learn and predict 

the human-designed descriptors, and use the prediction accuracy as a quantitative metric for 

evaluation. The underlying assumption is that, if the model can accurately predict the descriptor, 

then the model can capture the knowledge behind the descriptor, otherwise the model may not 

be able to capture certain pieces of information about crystal structures. We find that the GNNs 

do not capture the periodicity of crystal structures well, and we analyze the reasons for this 

failure in some detail. We further hybridize the deep learning models with the human-designed 

descriptors, and test the descriptors-hybridized models on a range of important materials 
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properties. We find that hybridization of GNNs and descriptors can result in up to 90% decrease 

of errors for predictions of phonon-related properties compared with original GNNs. 

    In this chapter, we choose CGCNN and ALIGNN as two examples of GNNs to investigate 

their ability to capture human-designed descriptors, and as examples for improving prediction 

ability by hybridization with descriptors. CGCNN is one of the classic and most frequently 

used GNNs for materials, while ALIGNN is one of the state-of-the-art models for prediction 

of materials properties with the best performance on its in-house test set[69] and the open 

Matbench test set[113]. Both CGCNN and ALIGNN are specifically designed for predicting 

materials properties and have well-documented open-source codes to use and adapt. CGCNN 

explicitly encodes two-body interactions, and ALIGNN explicitly encodes three-body 

interactions. Although there are already GNN models that explicitly encode n-body interactions 

(n ≥ 4)[118-120], they are not specifically designed for prediction of properties of periodic 

crystal structures and lack a comprehensive benchmark yet, and are thus not examined in this 

chapter. 

The architecture of CGCNN (https://github.com/txie-93/cgcnn) is summarized in equations 

(2-1) to (2-3). 

𝑎𝑖
(𝑛+1)

= 𝑎𝑖
(𝑛)

+ ∑ 𝜎(𝑚(𝑖,𝑗)𝑘

(𝑛)
𝑾𝑔𝑎𝑡𝑒

(𝑛)
) ⊙ 𝑔(𝑚(𝑖,𝑗)𝑘

(𝑛)
𝑾𝑚𝑒𝑠𝑠𝑎𝑔𝑒

(𝑛)
)𝑗,𝑘  ...... (2-1) 

𝑚(𝑖,𝑗)𝑘

(𝑛)
= 𝑎𝑖

(𝑛)
⊕ 𝑎𝑗

(𝑛)
⊕ 𝑏(𝑖,𝑗)𝑘

 ...... (2-2) 

Output = AGG(𝑎1
(𝑛∗)

, 𝑎2
(𝑛∗)

, … , 𝑎𝑁
(𝑛∗)

) ...... (2-3) 

Here, 𝑎𝑖
(𝑛)

 denotes the representation of atom i at layer n, 𝑏(𝑖,𝑗)𝑘
 representation of the kth bond 

between atom i and j at layer n, 𝑛∗ the final convolution layer, 𝑾𝑔𝑎𝑡𝑒
(𝑛)

 the gate matrix at layer 

n, 𝑾𝑚𝑒𝑠𝑠𝑎𝑔𝑒
(𝑛)

 the message matrix at layer n, 𝑚(𝑖,𝑗)𝑘

(𝑛)
 the message from atom j to atom i via the 
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kth bond, ⊙  element-wise multiplication, ⊕  concatenation, 𝜎  the sigmoid function, 𝑔  non-

linear activation function, AGG the aggregation function. In CGCNN, the default aggregation 

function can be written as:  

Output = FCN(
1

𝑁𝑎
∑ 𝑎𝑖

𝑛∗𝑁𝑎
𝑖=1 ) ...... (2-4), 

where the output is calculated by first taking the average of all atom representations, then 

feeding the averaged representations to a fully connected network. Briefly, CGCNN uses 

neighboring atoms and bond length as messages to each atom, and update each atom 

representation by feeding the messages into a gate layer and a message processing layer. After 

convolutions, CGCNN pools all atom representations by taking the average and input the 

pooled materials representation into a fully connected network to compute the property. 

The architecture of ALIGNN (https://github.com/usnistgov/alignn) is summarized in 

equations (2-5) to (2-10), with equations (2-5) to (2-7) describing the atomistic graph, and 

equations (2-8) to (2-10) the line graph. 

𝑎𝑖
(𝑛+1)

= 𝑎𝑖
(𝑛)

+ 𝑔(𝑎𝑖
(𝑛)

𝑾𝑠𝑒𝑙𝑓
(𝑛)

 +  ∑ 𝑔′(𝑏(𝑖,𝑗)𝑘

(𝑛)
)𝑾𝑚𝑒𝑠𝑠𝑎𝑔𝑒

(𝑛)
𝑗,𝑘 𝑎𝑗

(𝑛)
) ...... (2-5) 

𝑏(𝑖,𝑗)𝑘

(𝑛+1)
=  𝑏(𝑖,𝑗)𝑘

(𝑛)
+ 𝑔(𝑚(𝑖,𝑗)𝑘

(𝑛)
𝑾𝑔𝑎𝑡𝑒

(𝑛)
) ...... (2-6) 

𝑚(𝑖,𝑗)𝑘

(𝑛)
= 𝑎𝑖

(𝑛)
⊕ 𝑎𝑗

(𝑛)
⊕ 𝑏(𝑖,𝑗)𝑘

(𝑛)
 ...... (2-7) 

𝑏𝑖
(𝑛+1)

= 𝑏𝑖
(𝑛)

+ 𝑔(𝑏𝑖
(𝑛)

𝑾𝑠𝑒𝑙𝑓
′(𝑛)

 +  ∑ 𝑔′(𝑡(𝑖,𝑗)𝑘

(𝑛)
)𝑾𝑚𝑒𝑠𝑠𝑎𝑔𝑒

′(𝑛)
𝑗,𝑘 𝑏𝑗

(𝑛)
)  ...... (2-8) 

𝑡(𝑖,𝑗)𝑘

(𝑛+1)
=  𝑡(𝑖,𝑗)𝑘

(𝑛)
+ 𝑔(𝑚(𝑖,𝑗)𝑘

′(𝑛)
𝑾𝑔𝑎𝑡𝑒

′(𝑛)
) ...... (2-9) 

𝑚(𝑖,𝑗)𝑘

′(𝑛)
= 𝑏𝑖

(𝑛)
⊕ 𝑏𝑗

(𝑛)
⊕ 𝑡(𝑖,𝑗)𝑘

(𝑛)
 ...... (2-10) 

Here, 𝑡 denotes the representation of bond angle, and other symbols share similar meaning to 
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that of CGCNN. In summary, in each convolution layer, ALIGNN updates atom 

representations by neighboring atoms and bonds, updates bond representations twice: by 

connected atoms, and by neighboring bonds and bond angles, and update bond angle 

representations by connected bonds. After the convolutions, similar to equation (2-4), 

ALIGNN uses average pooling as the default setting to collect atom representations as the 

material representation, and calculate property by a feed-forward network.  

For building periodic crystal graphs, in their default settings, both CGCNN and ALIGNN 

use a cut-off radius of 8 Å for 12 nearest neighbors, and both of them use radial basis functions 

to expand the interatomic distances for initialization of bond representations. ALIGNN also 

uses radial basis functions to expand cosines of bond angles for initialization of bond angle 

representations. CGCNN updates atom features by 3 graph convolution layers, and ALIGNN 

updates atom features by 4 line graph convolution layers (equations (5) to (10)) and 4 normal 

graph convolution layers (equations (5) to (7)). In Chapter 2.2, we use CGCNN and ALIGNN 

with the default setting unless otherwise specified. 

 

2.2. Learning and predicting human-designed descriptors 

    In this chapter, we employ CGCNN and ALIGNN to learn and predict structural descriptors 

of a subset of crystal structures in the Materials Project database[6] (“MP dataset” as below; 

details in Chapter 2.5) to examine the ability of the GNNs to capture certain knowledge behind 

the descriptors. As a baseline, we also use ROOST[23], one of the most powerful composition-

only deep learning models, to learn and predict the structural descriptors.   

    In Figure 2-2a, we show the accuracies of predictions of some of the most basic local 

structural descriptors calculated by matminer[135] from CGCNN, ALIGNN, and ROOST in 
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terms of R2 scores (R2 = 1 −
∑(𝑦𝑖−𝑦𝑖,𝑡𝑟𝑢𝑒)2

∑(𝑦𝑖,𝑡𝑟𝑢𝑒−𝑦̅)2 , 𝑦𝑖 predicted value, 𝑦𝑖,𝑡𝑟𝑢𝑒 true value, 𝑦̅ mean of true 

values). We can see that, for most local structural descriptors, both CGCNN and ALIGNN can 

properly predict them with R2 scores close to or higher than 0.8, and both of the two structure-

based models outperform the composition-only model (ROOST). Because local descriptors in 

this chapter are essentially statistics of local environments around each atom, the explicit 

encoding of bond angles (three-body interaction) in ALIGNN might explain why ALIGNN 

outperforms CGCNN for learning local structural descriptors as in Figure 2-2a. The cases with 

lower R2 scores in Figure 2-2a, such as max_rela_bond_len (maximum relative bond length) 

and std_avg_bond_ang (standard deviation of average bond angles), can be attributed to the 

fact that, average pooling (equation (4)) is used by both CGCNN and ALIGNN to obtain the 

mean statistics of atom representations, while the two descriptors here describe the maximum 

and standard deviation of a collection of atomic environments.  

    In addition to basic local descriptors, we also test the ability of CGCNN and ALIGNN to 

capture knowledge behind more global structural descriptors. In Figure 2-2b, we show the 

accuracies of predictions of some of the most basic global structural descriptors calculated by 

matminer[135] and pymatgen[136] from CGCNN, ALIGNN, and ROOST. Both CGCNN and 

ALIGNN can predict density, vpa (volume per atom), packing fraction, and natoms (number 

of atoms in the primitive cell; in this chapter, the “primitive cell” is defined as the Niggli 

reduced cell[137, 138]) with R2 scores close to or higher than 0.8. However, they cannot predict 

struct_comp_cell (structural complexity per cell[139]) and lattice constants (𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾; in 

this chapter, 𝑎 denotes the length of the longest lattice vector, 𝑐 the shortest, and 𝛼 denotes the 

largest lattice angle, 𝛾 the smallest) well. Both structure-based models outperform the 

composition-only model, and ALIGNN outperforms CGCNN, except for 𝛼 and 𝛾.  
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Figure 2-2. Learning and predicting human-designed descriptors to examine whether the 

GNNs can capture certain human knowledge. a and b R2 scores of predictions of human-

designed structural descriptors from CGCNN, ALIGNN and ROOST for local and global 

structural descriptors, respectively. The full names of the descriptors are listed in Table 1.  

 

 

2.3. Limitations of GNN for capturing periodicity 

    Although previous works have suggested that lattice constants of crystal structures are 

learnable based on only compositions[140, 141], the results in this chapter show that even with 
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structures as input, CGCNN and ALIGNN cannot capture lattice constants well. In this chapter, 

we analyze the possible reasons for such failure and obtain insights for improving GNNs for 

crystal structures.  

    Lattice constants describe the periodicity of atomic structures. If 𝐴(𝑟) describes the type of 

atom at position 𝑟 (“none” if there is no atom at that position), and if 𝑅 is a linear combination 

of lattice vectors, then periodicity requires that: 

𝐴(𝑟) = 𝐴(𝑟 + 𝑅)......(2-11). 

In 3-dimensional (3D) space, we need 3 linearly independent lattice vectors to describe the 

periodicity of atomic structures. Lattice constants describe the periodicity by the lengths of 

lattice vectors (𝑎, 𝑏, 𝑐) and angles between lattice vectors (𝛼, 𝛽, 𝛾). To simplify the analysis, 

in addition to 3D crystal structures in the MP dataset, we also consider the toy cases of quasi-

1D atomic chains as in Figure 2-3a, where periodicity is imposed only along the x direction 

and no constraint is imposed along the other two directions. In this quasi-1D space, we only 

need the length of the lattice vector (𝑎) to describe the periodicity: 𝐴(𝑟) = 𝐴(𝑟 + 𝑎). 

    For GNNs with average pooling in equation (4), since they use the average local atomic 

environments to represent the atomic structures, they capture periodicity by learning how 

equation (2-11) affects the local atomic environments within the receptive fields of atoms in 

the GNNs. The receptive field of each atom describes the range of the space where information 

can be propagated to the atom through the GNNs, and it depends on the number of neighbors 

each atom can connect to and the number of convolution layers in the GNNs: 

range of receptive field ∝ number of neighbors ∗ number of convolutions......(12). 

If the length of the periodicity (length of lattice vector) is smaller than the lengths of the 

receptive fields of atoms in the GNNs, then the GNNs might be able to capture the short 
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periodicity; however, if the length of the periodicity is larger than the lengths of the receptive 

fields of atoms, then in principle the GNNs cannot capture the long periodicity. For example, 

as in Figure 2-3a, if the periodicity is short, such as the top red arrow which requires that atom 

1 and atom 3 (atom n and atom n+2) have the same type and coordinates in the y and z directions, 

then the local atomic environment input to atom i is constrained by such periodicity, and the 

GNNs might be able to capture the constraint and periodicity. However, if the periodicity is 

long, such as the bottom red arrow describing that the periodicity is imposed between atom 1 

and atom N+1 (one atom beyond the receptive field), then there is no constraint inside the 

receptive field of atom i, and the GNNs cannot capture the long constraint and periodicity. 

    To analyze the behaviors of GNNs on capturing periodicity, in this section, we introduce toy 

datasets of quasi-1D carbon chains as illustrated in Figure 2-3b (“1D dataset” as below; details 

in Chapter 2.5), and we create two versions of the 1D datasets: a short dataset where the 

periodicity of each chain is shorter than the receptive fields of atoms (1D, short), and a long 

dataset where the periodicity is longer than the receptive fields (1D, long). We use the default 

CGCNN to learn and predict the length of lattice vector (𝑎) of the two datasets, and in Figure 

2-3e and 2-3f, we show the predicted 𝑎 versus true 𝑎 of the two datasets. We can see that, for 

the short chains, CGCNN can predict 𝑎 well with the R2 score larger than 0.8, while for the 

long chains, CGCNN cannot predict 𝑎 well. The prediction results of 𝑎 of the quasi-1D carbon 

chains support our analysis above that GNNs might be able to capture short periodicity while 

hard to capture long periodicity. 

    Although the periodicity of most short chains in this chapter can be properly learned as in 

Figure 2-3e, theoretically, GNNs with limited local expressive power are not able to fully 

determine the periodicity. Since Chen et al.[142] have proved the equivalence between the 

ability of GNNs to distinguish graphs and approximate graph functions, if a GNN cannot 
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distinguish two atomic graphs with different periodicity, then the GNN cannot fully determine 

the graph function describing the periodicity. In Figure 2-3c, we show two cases of 1D chains: 

a 1D zigzag chain and a 1D armchair chain, which represent structure prototypes of some real 

crystal structures such as organic crystals[143] and metal chalcogenides[144]. If a GNN uses 

only diatomic distances to encode local atomic environments (such as CGCNN), and if the 

GNN only connect to the nearest neighbors (1 to 2), then the GNN cannot distinguish different 

zigzag and armchair 1D chains with the same bond length but different bond angles and cannot 

capture the angle dependence of 𝑎. If the GNN can connect to the second nearest neighbors (1 

to 3), then the GNN is able to distinguish zigzag and armchair 1D chains with different bond 

angles; however, it is still not able to distinguish between zigzag and armchair chains with the 

same bond length and bond angle. The analysis suggests that, to improve the ability of GNNs 

to capture short periodicity, it might be helpful to increase the local expressive power of GNNs 

to distinguish structures with different periodicity. 

    In Figure 2-3g, we show the effects of number of convolution layers and number of 

neighbors of CGCNN on capturing periodicity of 1D chains and 3D crystal structures. As in 

equation (2-12), both increasing number of convolution layers and increasing number of 

neighbors extend the receptive fields of atoms in CGCNN, and as the discussion of zigzag and 

armchair chains above, increasing number of neighbors can lead to higher local expressive 

power to distinguish graphs. From Figure 2-3g, we can see that for short chains, increasing the 

number of neighbors leads to better prediction of 𝑎, which supports our suggestion above that 

improving the local expressive power can help to capture short periodicity, while increasing 

number of convolution layers results in worse prediction of 𝑎, which might be because deeper 

GNNs are harder to train[145, 146]. For long chains, both increasing number of neighbors and 

number of convolution layers result in better prediction of 𝑎, indicating that extending the 

receptive fields of atoms in CGCNN can help to capture long periodicity. As for lengths of 
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lattice vectors of real 3D structures in the MP dataset (mixed with short and long structures), 

we can see that both increasing number of neighbors and number of convolution layers lead to 

better prediction of 𝑎, 𝑏, 𝑐. However, we find that increasing number of convolution layers by 

133% and number of neighbors by 50% just lead to moderate improvement of prediction of 𝑎, 

𝑏, 𝑐. Since the cost of graph convolution operations is proportional to number of convolution 

layers and neighbors, we suggest that simply increasing number of convolution layers and 

neighbors might not be an ideal way to improve the ability of GNNs to capture periodicity. 

    The analysis above is based on average pooling in equation (2-4). If we use sum pooling in 

equation (2-13) with size extensibility: 

Output = ∑ FCN(𝑎𝑖
𝑛∗𝑁𝑎

𝑖=1 ) ...... (2-13), 

then the GNNs capture periodicity by summing contributions of each atom to the lattice vectors. 

In Figure 2-3h, we show the R2 scores of predictions of 𝑎 of the 1D chains and natoms, 𝑎, 𝑏, 

𝑐 of the MP dataset from CGCNN with average pooling and sum pooling, respectively. For 1D 

short chains, sum pooling can lead to better prediction of 𝑎 than average pooling, which might 

be explained by the fact that sum pooling is more expressive than average pooling[147]. For 

1D long chains, sum pooling can result in significantly better prediction of 𝑎 than average 

pooling, because average pooling requires that each atom encodes information from one end 

of the long primitive cell to the other end to capture the structural constraint imposed by the 

periodicity, while sum pooling needs only local contributions of each atom to the lattice vectors. 

Consistent with the results of 𝑎 of the 1D chains, for natoms, 𝑎, 𝑏, 𝑐 of the MP dataset, sum 

pooling can also result in better prediction than average pooling. The stronger ability of sum 

pooling to capture periodicity might lead to better prediction of extensive materials properties, 

and in Ref.[132], we show that sum pooling can provide better prediction than average pooling 

for phonon internal energy (U), phonon heat capacity (Cv) and magnetization (M).  
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    Despite the improvement, we suggest that sum pooling is not an ideal solution to the 

challenge of capturing periodicity. Periodicity and lattice constants of the primitive cells do not 

scale with supercell size and are intensive characteristics of crystal structures. In principle, sum 

pooling cannot be employed in machine learning of materials’ intensive properties due to the 

requirement of (supercell) size invariance[71]. The improvement of sum pooling over average 

pooling in Figure 2-3h is based on the fact that primitive cells of crystals are used as input to 

the GNNs in this chapter. Even if only primitive cells are input to the GNNs, sum pooling 

might also fail to capture periodicity in some cases, as periodicity does not always scale with 

the number of atoms in the primitive cells. For example, in Figure 2-3d we show the case of 

1D double chains. Compared with 1D single chains in Figure 2-3b and 2-3c, 1D double chains 

can have similar periodicity but twice number of atoms. In Ref.[132], we show that, compared 

with the datasets with only 1D single chains, sum pooling is less powerful to capture the 

periodicity of the datasets mixed with 1D single and double chains. 

    From Figure 2-2b, we can see that ALIGNN outperforms CGCNN in the prediction of 

natoms, 𝑎, 𝑏, 𝑐 of the MP dataset. This improved predictive ability could result from two 

factors: on the one hand, ALIGNN has stronger local expressive power than CGCNN as it 

explicitly encodes bond angles, and on the other hand, ALIGNN has a larger receptive field 

than CGCNN, as in each convolution layer in CGCNN, a node receives messages only from 

the first shell of bonds and neighbors in equation (2-2), while in each convolution layer in 

ALIGNN, a node also receives messages from the second shell of bonds in equation (2-10). 

Although with the default settings ALIGNN has 8 convolution layers while CGCNN has only 

3 convolution layers, from Figure 2-3g we can see that increasing the number of convolution 

layers of CGCNN to 8 leads to only moderate improvement and cannot make the predictions 

of 𝑎, 𝑏, 𝑐 from CGCNN as accurate as that of ALIGNN, which shows that different number of 

convolution layers in CGCNN and ALIGNN with the default settings is not a critical factor on 
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their relative ability to capture periodicity of the MP dataset.  

    In Figure 2-2b, we show that both CGCNN and ALIGNN cannot learn the lattice angles of 

the primitive cell well, and sum pooling, more convolutions, and more neighbors do not 

improve the prediction. Here we partially attribute these results to the artificial choice of lattice 

angles. More discussions regarding the determination of the primitive cell are provided in 

Ref.[132]. In this chapter, we choose the set of six parameters (𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾) as a widely 

used rotationally invariant representation of lattice vectors, which might add artificial difficulty 

to the learning of periodicity. For example, in addition to the problems associated with learning 

and prediction of 𝑎 in the 1D cases as above, for learning and prediction of the length of the 

longest lattice vector of 3D structures the GNNs need to first identify which dimension is 

associated with the largest length, then determine the largest lattice length. For fairer evaluation, 

it is necessary to develop representations of periodicity that are equivariant to rotations to avoid 

this additional difficulty.  

    According to MLatticeABC[140] and CRYSPNet[141], lattice constants of high-symmetry 

materials are reported to be learnable based on only compositions of materials, while here we 

show that lattice constants are not learnable by the GNNs even with structures as input. In the 

previous works, materials with different symmetry are learned separately, and lattice constants 

of high-symmetry materials are reported to be more learnable than that of low-symmetry 

materials, while in this chapter the MP dataset is mixed with different symmetries and is biased 

to materials with low symmetry. More details about the MP dataset are provided in the Chapter 

2.5.  

    In this chapter, we discuss the limitations of the GNNs on capturing periodicity mainly in 

three aspects: limited local expressive power, difficulty of capturing long-range information 

beyond receptive fields of atoms, and average pooling as the readout function. For local 
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expressive power, advancements of GNNs to capture more structural characteristics, such as 

ALIGNN-d for dihedral angles[148] and equivariant representations for orientation of bond 

vectors[134, 149], might be helpful to better capture periodicity of structures with lattice 

vectors shorter than the receptive fields. For long-range information, on the one hand efforts to 

train very deep GNNs effectively and efficiently, such as DeeperGATGNN[150], are helpful 

to extend the receptive fields of atoms. On the other hand, the idea of topological message 

passing[151, 152] might be useful to capture long-range information by connecting nodes in 

the same cell complex that are far from each other, and the idea of Implicit Graph Neural 

Networks (IGNN)[153] might also be useful to bypass the problems associated with training 

very deep graph neural networks by obtaining implicitly defined state vectors from a fixed-

point equilibrium equation. It is also necessary to further develop readout functions to collect 

the long-range information with size invariance, and the whole-graph self-attention based 

readout function used in GraphTrans[154] might be a good starting point to collect global 

information of crystals. 
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Figure 2-3. Limitations of GNNs for capturing periodicity. a Illustration of the receptive field 

of an atom in a GNN and periodicity of a 1-dimensional (1D) structure. Here, atom i receives 

information from atoms 1 to N, and two cases of periodicity are plotted: the short periodicity 

from atom 1 to 3 and the long periodicity from atom 1 to N+1. b Illustration of 1D single carbon 

chains as toy structures. The chains are along the x direction with periodicity, with random 

displacement of each atom in the y and z directions. c Illustration of 1D chains with zigzag and 

armchair configuration, respectively. d Illustration of 1D double chain. e and f 𝑎true versus 

𝑎pred of the datasets of 1D short chains and 1D long chains from default CGCNN, respectively. 

g R2 scores of predictions of 𝑎 of 1D short chains and 1D long chains, and 𝑎, 𝑏, 𝑐 of the MP 

dataset, from default CGCNN, CGCNN with 8 convolution layers, and CGCNN connecting 18 

nearest neighbors within 12 Å, respectively. h R2 scores of prediction of 𝑎 of 1D short chains 

and 1D long chains, and natoms, 𝑎, 𝑏, 𝑐 of the MP dataset from CGCNN with average pooling 

and CGCNN with sum pooling, respectively. 

 

2.4. Descriptors-hybridized deep representation learning 

    From the results of learning human-designed descriptors, we know that GNNs might not 

capture all knowledge behind human-designed descriptors. One way to overcome the issue is 

to design better GNN architectures for specific information, such as long-range information. 

Another way to overcome the issue is to input the missing knowledge into the deep 

representation learning models. Although this idea is straightforward and used in previous 

works[46, 155], such as the incorporation of lattice vectors in GeoCGNN[46], the previous 

works did not explain the role of the additional information with quantitative evidence. In this 

chapter we show the mechanisms of how inputting certain knowledge to GNNs improves 

prediction of materials properties, and we find that the hybridization with descriptors can lead 

to a large improvement for prediction of some materials properties, especially vibrational 

properties that largely depend on periodicity.  

We construct the descriptors-hybridized graph neural networks as below: 

Output = FCN(
1

𝑁𝑎
∑ 𝑎𝑖

𝑛∗𝑁𝑎
𝑖=1 ⊕ descriptors) ...... (2-14). 

In other words, we concatenate the vector of descriptors to the vector of learned representation, 

and input the hybridized representation vector to the fully-connected network.  
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    In Figure 2-4a, we show the prediction results of descriptors-hybridized CGCNN and 

ALIGNN (de-CGCNN and de-ALIGNN) on 13 materials properties, with the full names of the 

abbreviations of properties in Table 2-1, and detailed errors in Ref.[132]. The set of properties 

includes final energy (Efin.), band gap (Eg), bulk and shear modulus (K and G), lattice thermal 

conductivity (κ), phonon internal energy and heat capacity at 300K (U and Cv), Poisson ratio 

(v), modulus of the piezoelectric tensor (||e||∞), electronic and total dielectric constant (εe. and 

εt.), refractive index (n) and total magnetization (M). The errors of the machine learning models 

are presented using the metric MAE/MAD =
∑ |𝑦𝑖−𝑦𝑖,𝑡𝑟𝑢𝑒|

∑ |𝑦𝑖,𝑡𝑟𝑢𝑒−𝑦̅|
, which is invariant to scaling and used 

in the ALIGNN paper[69]. Typically, a model with MAE/MAD smaller than 0.2 is considered 

a good predictive model[25, 69]. We can see that de-CGCNN has improved prediction 

performance for most properties compared with the original CGCNN, and de-ALIGNN has 

close-to or larger than 10% improvement for four properties (κ, U, Cv, and M) and similar 

performance for other properties compared with the original ALIGNN. Both de-CGCNN and 

de-ALIGNN outperform the descriptors-only model for all properties, regardless of whether 

CGCNN and ALIGNN outperform the descriptors-only model.  



50 

 

 

Figure 2-4. Prediction performance of descriptors-hybridized GNNs. a MAE/MAD ratio of 

prediction of 13 materials properties from machine learning models based only on descriptors, 

CGCNN, ALIGNN and their descriptors-hybridized version (de-CGCNN and de-ALIGNN). 

b, c and d Relative feature importance of representations from de-CGCNN for Cv, κ, and M, 

respectively. e Ratio of feature importance of input human-designed descriptors to the total 

feature importance from de-CGCNN for the 13 materials properties. 

  

    In Figure 2-4a, we observe that both de-CGCNN and de-ALIGNN have large 

improvement for the prediction of U and Cv, with around 90% lower errors compared with 

CGCNN and ALIGNN, respectively. To understand the improvement, we show the feature 

importance spectrum of de-CGCNN for prediction of Cv in Figure 2-4b. We can see that, the 

human-designed descriptors play important roles in learning Cv, with a  being the most 

important feature, while the learned features are much less important. Therefore, the poor 
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prediction ability of CGCNN and ALIGNN for U and Cv can be partially explained by the fact 

that a is important to the two properties but CGCNN and ALIGNN cannot learn a well. The 

distribution of feature importance agrees well with the phenomenon in Figure 2-4a that, using 

machine learning model based only on human-designed descriptors can have much lower errors 

for prediction of U and Cv compared with GNNs. The improved performance for U and Cv also 

explains why sum pooling outperform average pooling in Figure 3b, as sum pooling can learn 

a better as in Figure 2-2e. 

The importance of primitive cell-level information to U and Cv can be justified physically 

as below. Approximately, if we only consider the acoustic phonons (collective vibrations for 

all atoms in the primitive cell), according to the Debye model of density of states, the phonon 

internal energy (U) and heat capacity (Cv) of a specimen can be written as[156]: 

𝑈 ≈  9𝑁𝑘𝐵𝑇(
𝑇

𝛳
)3 ∫ 𝑑𝑥

𝑥3

𝑒𝑥−1

𝑥𝐷

0
......(2-15), 

𝐶v =  (
𝜕𝑈

𝜕𝑇
)v ≈ 9𝑁𝑘𝐵 (

𝑇

𝛳
)

3

∫ 𝑑𝑥
𝑥4𝑒𝑥

(𝑒𝑥−1)2

𝑥𝐷

0
......(2-16), 

𝑥𝐷 ≡
𝛳

𝑇
......(2-17), 

𝛳 =
ħ𝑣

𝑘𝐵
(

6𝜋2𝑁

𝑉
)

1

3
......(2-18), 

where 𝛳 is the debye temperature, 𝑁 is the number of primitive cells in the specimen, 𝑉 is the 

volume of the specimen, and 𝑣 is the velocity of sound, which can be approximated by the 

first-order Hooke’s law: 

𝑣 ≈ √
𝐶

𝑚
𝑑......(2-19), 

where 𝐶 is the effective spring constant, 𝑚 is the mass of atoms in the primitive cell, and 𝑑 
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is the effective distance between atomic planes along the direction of vibration. Therefore, with 

the information of 
𝑁

𝑉
, 𝐶, 𝑚, and 𝑑, we can estimate acoustic U and Cv per primitive cell at given 

𝑇 within the Debye model. Since the set of descriptors in this chapter includes density and 

lattice constants, the information of 
𝑁

𝑉
, 𝑚, and 𝑑 can be directly obtained by machine learning 

models from the input descriptors. For 𝐶, because it is related to the bonding strength, it can 

be estimated by the bond length-related descriptors. Consequently, machine learning models 

based on the set of descriptors in this chapter can approximate 𝑈 and 𝐶v well within the Debye 

model, which explains why machine learning model only based on descriptors outperforms 

CGCNN and ALIGNN in Figure 2-4a, as CGCNN and ALIGNN cannot estimate lattice 

constants well as in Figure 2-2b.   

κ and M are another two properties with around 10% improvement for both de-CGCNN and 

de-ALIGNN. It is known that κ depends significantly on primitive cell-level information[157], 

and as shown in Figure 2-4c, some input descriptors, including b , are important to the 

prediction of κ. As for M, as shown in Figure 2-4d, some descriptors like structural complexity 

and lattice constants contribute to the prediction of M, which might explain why input of 

descriptors leads to improved prediction accuracy for M. In Figure 2-4e, we show the ratio of 

feature importance from the human-designed descriptors to the total feature importance from 

de-CGCNN. We can see that most properties without significant improvement in Figure 2-4a 

have low contributions from input human-designed descriptors, with the exception of v and 

||e||∞ where all the models perform poorly. The phenomenon that hybridization with descriptors 

has larger improvement for CGCNN than ALIGNN might be explained by the fact that, 

CGCNN learns these descriptors worse than ALIGNN as in Figure 2-2a, therefore 

hybridization with descriptors provides more missing information to CGCNN than ALIGNN. 

In addition to providing missing information, hybridization with descriptors might also have 
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other impacts on the GNNs. In Ref.[132], we show that hybridization of descriptors can bias 

the learned representations less correlated with the input descriptors, although how such bias 

affects prediction performance is not clear yet. Other questions worth further investigation 

include, how the improvement scales with dataset size, and how to choose the set of input 

descriptors for optimal performance. It will also be important to understand if the two 

mentioned behaviors (scaling and selection of descriptors) are similar with or different from 

that of the descriptors-only models and pure deep representation learning models. 

 

2.5. Details of methods  

    Datasets. In Chapter 2, we choose 25 (in Figure 2-2) human-designed descriptors to test 

their learnability to CGCNN and ALIGNN, and hybridize 29 descriptors (all descriptors in 

Table 2-1) with the two models to test the prediction performance. The list of descriptors is 

provided in Table 2-1, with descriptors after gamma included in the second task but not in the 

first task. The criterion for choosing the 25 descriptors in the first task is that they are easy to 

understand and easy to obtain from crystal structures, and the reason for not testing 

coordination number (CN) in the first task is that we know CN can be learned well given the 

definition of GNN, and the reason for not testing symmetry in the first task is that we know 

symmetry cannot be learned as lattice constants cannot be captured. Number of atoms and 

lattice constants of the primitive cell are determined by the Niggli reduction[137] implemented 

in the Structure class in pymatgen[136], and other descriptors are calculated by Matminer[135]. 

For the descriptor “standard deviation average bond length” (and similar descriptors), the 

calculation procedure is first calculating average bond length for each atom, then calculating 

the standard deviation for the average bond length of all atoms.  

    In Chapter 2, most crystal structures and materials properties are downloaded from the 
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Materials Project database (V2021.03.22)[6], and those for κ are from the TEDesignLab 

database[126]. U and Cv are calculated by the PhononDos class in pymatgen[136] based on the 

phonon density of states from the Materials Project database[6]. For machine learning of 

materials properties in Figure 2-3 and Figure 2-4, we split the datasets into 60%, 20% and 20% 

as the training, validation and test set. 

    For the dataset used for testing whether CGCNN and ALIGNN can capture human-designed 

descriptors of crystal structures, since we know that lattice constants of high-symmetry 

materials are reported to be more learnable than that of low-symmetry materials[140, 141] 

based on compositions, we create a subset of the Materials Project database by removing some 

structures randomly based on their space group number: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(removed) =  
Space group number

Space group number+15
 , 

where 15 is the space group number of the C2/c group, the last space group in the class of 

monoclinic Bravais lattice. Consequently, we have a dataset with 47,862 crystal structures 

biased to materials with low symmetry to test whether CGCNN and ALIGNN can learn human-

designed descriptors of crystal structures. To facilitate the analysis about failure of CGCNN to 

capture lattice constants, we create a dataset of random 1-dimensional carbon chains (“1D 

dataset”). The random 1D chains are created by the following pseudo-codes in python:  

pos = []; for j in range(n): # number of atoms in the chain 

if j == 0: pos.append([3*random for 3 dimensions]) # 3 = 2*1.5 Å (approx. C-C bond length). 

# random: random number between (0, 1) 

elif j%2 == 0: pos.append([pos[j-1] + 3*random for 3 dimensions])) 

else: pos.append([pos[j-1][0] + 3*random, pos[j-1][1] - 3*random, pos[j-1][2] - 3*random]) 

a = pos[-1][0]; b = 100; c = 100 # add vacuum for b and c 
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lattice = Lattice.from_parameters(a,  b , c, 90, 90, 90) 

structure = pymatgen.core.structure.Structure(lattice, ["C" for _ in range(n)], pos, coords_are_cartesian=True) 

For the dataset of (1D, short), the number of atoms is set to be between [2, 9), and for the 

dataset of (1D, long), the number of atoms is set to be between [37, 51). In total, both datasets 

have 1,400 data points.For machine learning of human-designed descriptors in Figure 2-2, we 

split the dataset into 80%, 10% and 10% as the training, validation and test set. 

Table 2-1. List of abbreviations of descriptors and properties in Chapter 2. 

Abbreviations of 

descriptors 
Full name of descriptors 

Abbreviations of 

properties 
Full name of descriptors 

MAD_in_rela_bond_len 
mean absolute deviation in 

relative bond length 
log(κ) 

log10 lattice thermal 

conductivity 

max_rela_bond_len maximum relative bond length Efin. 
final (total) energy per 

atom 

min_rela_bond_len minimum relative bond length U 
phonon internal energy at 

300 K  

max_neighb_dist_var 
maximum neighbor distance 

variation 
Cv 

constant volume phonon 

heat capacity at 300 K 

min_neighb_dist_var 
minimum neighbor distance 

variation 
K bulk modulus 

range_neighb_dist_var 
range neighbor distance 

variation 
G shear modulus 

mean_neighb_dist_var 
mean neighbor distance 

variation 
v poisson ratio 

dev_neighb_dist_var 
standard deviation neighbor 

distance variation 
Eg band gap 

mean_avg_bond_len mean average bond length ||e||∞ 
modulus of piezoelectric 

tensor 

std_avg_bond_len 
standard deviation  average 

bond length 
εe. 

electronic dielectric 

constant 

MAD_in_rela_atom_vol 
mean absolute deviation in 

atomic volume 
εt. total dielectric constant 

mean_avg_bond_ang mean average bond angle n refractive index 

std_avg_bond_ang 
standard deviation average 

bond angle 
M 

total magnetization per 

formula 

density density   

vpa volume per atom   
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    Models. In Chapter 2, we use the default architecture of CGCNN[115] and ALIGNN[69] 

for learning human-designed descriptors in Figure 2-2. The reason for using the default 

architectures is that, as in Figure 3g and 3h, although intentionally revising their architectures 

can improve learning performance for some descriptors, in this chapter we try to show the 

representational power and limit of CGCNN and ALIGNN in a setting close to those in real 

applications. For learning materials properties in Figure 4, hyper-parameter search based on 

the search spaces in Ref.[132] is conducted. All the neural networks are trained for 300 

epochs[69] on a Quadro RTX 6000 GPU. For feature importance in Figure 2-4, since the 

permutation feature importance of deep neural networks is very expensive to calculate, we 

estimate feature importance by extracting the representations in equation (2-14), then feed the 

packing_frac packing fraction   

struct_comp_atom structural complexity per atom   

struct_comp_cell 
structural complexity per 

primitive cell 
  

natoms 
number of atoms per primitive 

cell 
  

a 
the largest lattice length of the 

primitive cell 
  

b 
the second largest lattice 

length of the primitive cell 
  

c 
the smallest lattice length of 

the primitive cell 
  

alpha 
the largest lattice angle of the 

primitive cell 
  

beta 
the second largest lattice angle 

of the primitive cell 
  

gamma 
the smallest lattice angle of the 

primitive cell 
  

space_group_num space group number   

crys_sys crystal system   

mean_CN mean coordination number   

std_CN 
standard deviation 

coordination number 
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representations into a random forest model to calculate the feature importance. 

 

2.6. Chapter summary and outlook 

In summary, in Chapter 2, we propose a systematic approach to analyze the representation 

power of GNNs for crystal structures. We use human-designed descriptors as a bank of 

knowledge to test whether CGCNN and ALIGNN can capture knowledge of crystal structures 

behind descriptors. We find that both GNNs can capture basic local structural descriptors well, 

but cannot capture the periodicity of crystal structures. We analyze the limitations of the GNNs 

on capturing periodicity from three perspectives: local expressive power, long-range 

information and pooling function. We also test the idea of hybridization with descriptors to 

improve the performance of GNN, and show that descriptors-hybridized CGCNN and 

ALIGNN have better prediction performance for some materials properties than the original 

CGCNN and ALIGNN, especially phonon internal energy and phone heat capacity with 90% 

lower errors.  

The analysis performed in this chapter can be easily extended to other deep representation 

learning models, human-designed descriptors, and systems beyond crystals such as molecules 

and amorphous materials. This chapter shows that the fields of human-designed descriptors 

and deep representation learning can be developed synergically. For new deep representation 

learning models, their ability in representation of crystal structures can be tested by learning 

existing human-designed descriptors, and for new descriptors, they can be used to reveal how 

well the existing deep representation learning models capture the knowledge behind these 

descriptors, which can also be hybridized with deep representation learning models for 

improved prediction performance. We hope this chapter may inspire further development of 

deep representation learning, human-designed descriptors and hybridized machine learning 



58 

 

models for crystal structures and materials science. 
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Chapter 3 

3. Calibrating DFT formation enthalpy calculations by multi-

fidelity learning 

 

3.1. Introduction 

    In Chapter 3, we present a case study of formation enthalpy of materials to illustrate how to 

learn small experimental dataset in materials science, with the help of large materials datasets 

from simulations, and how machine learning can help evaluate the stability of materials.  

    Machine learning materials properties measured by experiments is valuable yet difficult due 

to the limited amount of experimental data. In this chapter, we use transfer learning and multi-

fidelity machine learning to learn the experimental formation enthalpy of materials. The best 

machine learning model for this task is a multi-fidelity random forest model with prediction 

accuracy higher than PBE functional with linear correction and meta-GGA functionals (PBEsol, 

SCAN and r2SCAN), and it also outperforms the hotly studied deep neural-network based 

representation learning and transfer learning. We then use the model to calibrate the DFT 

formation enthalpy in the Materials Project database, and discover materials with 

underestimated stability. The multi-fidelity model is also used as a data-mining approach to 

find how DFT deviates from experiments by explaining the model output.  

As discussed in Chapter 1, in order to accelerate the design of new materials, accurate 

computational methods such as Density Functional Theory (DFT)[158] have been employed 

to generate large datasets that contain more than 105 entries of materials properties. While the 

availability of such databases has boosted the exploration of novel materials[14, 48, 159-166], 

it is important to note that most of the data is generated with computationally “cheap” DFT 

functionals such as PBE[123], that can in turn lead to non-negligible errors when compared 
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with experimental measurements.  

As an example, the formation enthalpy (ΔHf) is a fundamental property that determines the 

thermodynamic stability of materials. The mean absolute error (MAE) between the computed 

ΔHf in these large DFT databases and experimental measurements are reported to be ~0.1 

eV/atom[7, 167]. Due to the sensitivity of phase stability to energy, such a difference (~0.1 

eV/atom) might be the difference between a material that is readily synthesizable and one that 

is almost impossible to realize[67, 168, 169]. In addition, because of the limited amount of 

available experimental data, currently most machine learning (ML) models applied to materials 

are trained on DFT datasets[23, 25, 48, 49, 57, 62, 64, 65, 71, 73, 86, 105, 170-173], making 

any error in the DFT calculations critical to the usefulness of such ML models[14, 24, 25, 174].  

To improve the accuracy of formation enthalpy calculations, a number of density functionals 

have been developed, such as PBEsol[175], SCAN[176], r2SCAN[177] and HSE[178], which 

have shown significant improvement in accuracy of formation enthalpy calculation[127, 179, 

180]. On the other hand, these more accurate functionals are also computationally more 

expensive, limiting their utility for generation of large databases[180, 181]. Empirical 

corrections represent another, faster approach to improve the accuracy of prediction of ΔHf. 

For example, in the MP dataset, ΔHf of certain materials (including oxides, phosphates, borates 

and silicates) is empirically corrected by fitted element corrections[182], and in OQMD ΔHf is 

corrected by a chemical-potential fitting[7]. Very recently, Wang et al.[183] proposed a linear 

correction scheme with error of 0.051 eV/atom compared with experimental values on a dataset 

with 222 materials containing certain anions and transition metals. Yet, despite this recent 

success in lowering the error for some chemical systems[184], such corrections are based on 

human understanding of specific chemistries and relatively simple assumptions, and are thus 

difficult to be transferrable across different chemistries[182, 184]. It would be beneficial to 
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design prediction schemes that can automatically extract chemistry-property relationship 

across different chemistries without human intervention, and data-driven ML methods[23, 57, 

64, 65, 67, 71, 181] are promising candidates to learn the complex mapping between chemistry 

and ΔHf.  

One of the biggest challenges in machine learning materials properties is the lack of 

experimental data[185]. Efforts have been made to improve the performance of learning on 

small experimental datasets by extracting and transferring information from large DFT datasets. 

Currently, there are mainly two strategies to achieve the transfer between DFT and 

experimental datasets, transfer learning[49, 55, 64, 186-188] and multi-fidelity machine 

learning[52, 53, 66, 181]. The idea of transfer learning (see Figure 3-1a) is first learning large 

DFT datasets (source) using a large neural network, and then transferring the weights of the 

network to the machine learning task of small experimental datasets (target). Although transfer 

learning has achieved success in problems where the source and target datasets are highly 

correlated[49, 64, 186, 187], the approach is mostly applied to neural network architectures, 

and if the correlation is not strong enough, transfer learning will not improve and may even 

deteriorate the learning performance[55]. Different from transfer learning where information 

is passed by transferring network parameters, in multi-fidelity machine learning (see Figure 3-

1b) information of cheap and low-fidelity data is directly passed to the learning task of 

expensive and high-fidelity data, either in the feature (input) level[66] or in the label (output) 

level[52, 53, 181, 189]. In other words, the low-fidelity data can be used as feature in the 

machine learning task of high-fidelity data, or the task of machine learning the high-fidelity 

data can be converted to the task of machine learning the difference between high-fidelity data 

and low-fidelity data, which is also known as Δ‑Machine Learning[189]. From the handful of 

previous studies, multi-fidelity machine learning has shown higher predictive power than the 

single-fidelity ones (directly learning the high-fidelity data) on materials properties like band 
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gaps and energies from different density functionals[52, 53, 181, 189]. However, there is no 

previous work that adapt multi-fidelity machine learning in both feature and label level at the 

same time. 

In this chapter, we present a comprehensive machine learning study about ΔHf
exp using 

transfer learning and multi-fidelity machine learning. For the machine learning architectures, 

we compare four different models, random forests (RF), multi-layer perceptron (MLP), 

Representation Learning from Stoichiometry (ROOST)[23] and Crystal Graph Convolutional 

Neural Network (CGCNN)[71]. We find that multi-fidelity RF in both the feature and label 

level has the best prediction performance for ΔHf
exp with almost a half reduction in MAE 

compared with DFT results from MP, and improved performance compared to recent linear 

correction schemes[183] as well as more sophisticated density functionals like PBEsol[175], 

SCAN[176] and r2SCAN[177]. We also analyze the effects of machine learning architectures, 

featurization methods and information transfer strategy on learning ΔHf
exp and ΔHf

diff. Further, 

the more accurate ΔHf are applied to re-evaluate the thermodynamic stability of materials, and 

cases with underestimated stability in the MP database are discovered. We also use the machine 

learning model to find where current DFT deviates from experiments by explaining the model 

output.  
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Figure 3-1 Illustrations of the machine learning frameworks and datasets used in Chapter 3. a 

and b Schematics of transfer learning and multi-fidelity machine learning in Chapter 3, 

respectively. In a, first the ΔHf
DFT is used as label to train a ML model, then the weights of the 

first ML model are transferred to initialize a second ML model, and the ΔHf
exp is used as label 

to train the second model, finally the second model is used to predict ΔHf
exp of all materials in 

the large DFT dataset. In b, first the dataset of the difference between ΔHf
exp and ΔHf

DFT is 

constructed (ΔHf
diff), then ΔHf

diff is used as label to train a ML model with the ΔHf
DFT as an 

input feature, and finally the trained model is used to calibrate the different between ΔHf
DFT 

and ΔHf
exp for all materials in the large DFT dataset. c ΔHf

DFT versus ΔHf
exp. d ΔHf

diff versus 

ΔHf
DFT. 

 

3.2. Machine learning frameworks and datasets 

In Chapter 3, we use two different strategies to learn ΔHf
exp with the assistance of 

information from the MP dataset, transfer learning and multi-fidelity machine learning (in the 

following, “ΔHf
DFT” denotes the empirically-corrected PBE ΔHf by Jain et al.[182] from the 

MP database, V2021.03.22). As shown in Figure 3-1a, in transfer learning a neural network is 

first trained on the large MP dataset with more than 105 data points of ΔHf
DFT, then weights of 

the neural network are transferred to initialize a second neural network, and finally part of the 

weights of the second network are optimized by the small ΔHf
exp dataset. Once trained, the 
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second neural network can serve to predict ΔHf
exp of materials in the large MP dataset. In multi-

fidelity machine learning, as shown in Figure 3-1b, first the dataset of ΔHf
diff (ΔHf

exp - ΔHf
DFT) 

is built, then machine learning models are trained on ΔHf
diff dataset, and in the training process, 

ΔHf
DFT can serve as an input feature of each material. Once trained, the machine learning model 

can serve to calibrate the ΔHf
DFT by adding ΔHf

diff to ΔHf
DFT to get the ΔHf

exp. The key 

difference between transfer learning and multi-fidelity machine learning is that in the former 

two networks are trained and information transfer is achieved by transferring network weights, 

while in the later only one model is trained and information transfer is achieved by learning the 

difference between two datasets and adding the ΔHf
DFT as one of the input features. In addition 

to the two basic strategies as shown in Figure 3-1a and b, variants are also tested in this chapter, 

including combination of transfer learning and multi-fidelity machine learning (initializing a 

network from one trained on ΔHf
DFT and optimizing the newly initialized network by ΔHf

diff), 

and multi-fidelity machine learning by only learning ΔHf
diff or only adding ΔHf

DFT as input 

feature. 

    As described above, we choose four different machine learning architectures to realize 

transfer learning and/or multi-fidelity machine learning, which are RF, MLP, ROOST and 

CGCNN. The choice aims to increase the variety of machine learning architectures to fairly 

evaluate the effect of transfer learning and multi-fidelity learning, and to enlarge the hypothesis 

space to search for the best machine learning models for predicting ΔHf
exp. These ML 

architectures also provide varieties in terms of basic algorithms, input information and 

featurization: MLP, ROOST and CGCNN are based on neural networks while RF is not; 

ROOST only needs compositions as input while CGCNN takes both compositions and 3D 

structures as input, and RF and MLP can be trained either with or without structural information; 

RF and MLP need human-engineered featurization while ROOST and CGCNN learn 

fingerprints of materials in the training process.  
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      In Chapter 3, we choose the Materials Project database (MP, V2021.03.22) as the source 

of ΔHf
DFT, because MP is a widely used large DFT database, and the difference of ΔHf between 

MP and other large DFT databases is not large. For example, the difference between ΔHf of 

563 materials from MP and OQMD is reported to be 0.028 eV/atom[7]. As for the 

experimentally measured ΔHf, we combine the IIT dataset[167] and SSUB dataset[190] and 

remove the duplicates, leading to 1143 data points with available ΔHf
exp, ΔHf

DFT, and DFT 

optimized 3D atomic structures from MP. In addition to the value of ΔHf
exp, there are also 

uncertainty estimations in the IIT dataset[167], from which one can see that the mean 

uncertainty of ΔHf
exp based on 499 materials is around 0.023 eV/atom. More details about the 

data collection procedure are provided in Chapter 3.6. ΔHf
DFT and ΔHf

exp are compared in 

Figure 3-1c, from which one can see that ΔHf
DFT are already quite close to ΔHf

exp in value, and 

there is no clear systematic shift between ΔHf
DFT and ΔHf

exp. As shown in Figure 3-1d, the 

distribution of ΔHf
diff is centered around zero, and there is no obvious correlation between 

ΔHf
diff and ΔHf

DFT. From Figure 3-1c and 3-1d, one can see that ΔHf
diff has a narrower 

distribution than ΔHf
exp with the standard deviation of 0.1718 eV/atom and 0.8000 eV/atom for 

the ΔHf
diff dataset and ΔHf

exp dataset, respectively. 
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Figure 3-2. Comparison of machine learning models. a Mean average errors (MAE) between 

predictions of ΔHf from machine learning models and experimental measurements. Each type 

of machine learning model is trained 10 times to estimate the uncertainty levels. RF denotes 

random forest, MLP denotes multilayer perceptron, and ROOST[23] and CGCNN[71] are two 

deep-learning models that automatically extract materials’ fingerprints from compositions and 

structures, respectively. Here, “struct.” means the model is trained with structural and 

compositional features, “no struct.” the model is trained with only compositional features, “dft.” 

the model is trained with ΔHf
DFT as an input, “trans.” the model is trained in a transfer learning 
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manner, “diff.” the model is trained on ΔHf
diff, “exp.” the model is directly trained on ΔHf

exp. 

The dashed horizontal line corresponds to the MAE of ΔHf
DFT. b ΔHf

exp versus ΔHf
ML from the 

best RF model (the sixth from the left in a) and ΔHf
DFT. c MAE of predictions of ΔHf

exp with 

noise from RF and ROOST. Under each noise level, gaussian noises with standard deviation 

of noise level*0.8 eV/atom (0.8 eV/atom is the standard deviation of the ΔHf
exp dataset) are 

added to both training set and test set. d and e Learning curves of different models. The MAE 

is for the test set. In e, all the curves are based on random forest, and “struct.” means the model 

is trained with structural and compositional features, “no struct.” the model is trained with only 

compositional features. 

 

 

3.3. Predicting ΔHf
exp by machine learning 

For the RF and MLP, compositional and structural features are provided from matminer[135] 

as input features (a list of features is provided in Chapter 3.6), for ROOST only the 

compositions are provided as input and it automatically learns the fingerprints of materials, and 

for CGCNN the compositions and 3D atomic structures are provided as input and the 

fingerprints are learned in the training. In order to test the prediction performance, 20% of the 

1143 materials are randomly chosen as the test set. Details about the training procedure are 

provided in the Chapter 3.6. As a baseline, for the test set, we find that the MAE between 

ΔHf
DFT and ΔHf

exp is 0.0955 eV/atom. The test results for all machine learning models are 

shown in Figure 3-2a, and here we analyze the results from the following aspects: 

    (1). The best performance is achieved with the RF model that is trained on ΔHf
diff and has 

compositional features and ΔHf
DFT as input features (Figure 3-2a). The error for this best case, 

0.0617 eV/atom, is roughly 30% lower than that of ΔHf
DFT. The parity plot of ΔHf

DFT and 

ΔHf
ML from the best RF model versus ΔHf

exp of the test set is shown in Figure 3-2b, from which 

one can observe that ΔHf from the best RF model aligns closer to the ΔHf
exp than ΔHf

DFT within 

the range from -5 eV/atom to 1 eV/atom. Predictions from the best RF model also have a higher 

R2 score (0.99) than that from the DFT calculations in the MP database (0.97).  

       Recently, Kingsbury et al.[127] performed high-throughput calculations for 6,000 
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materials by PBEsol[175], SCAN[176] and r2SCAN functional[177]. In Table 3-1, MAEs 

between experimental ΔHf and ΔHf from different density functionals with different empirical 

corrections are listed. Note that, different from Figure 3-2, the reported MAEs in Table 3-1 are 

based on a dataset with 122 materials that have all the values of ΔHf from different sources 

(these materials are in the test set mentioned above). One can observe that, MAE of the best 

RF model is almost half of that of SCAN[176], PBEsol[175], and also almost half of that of 

the corrections from Jain et al.[182] and Wang et al.[183]. The superiority of the best RF model 

over the meta-GGA functionals (SCAN and r2SCAN) is encouraging, because i) the best RF 

model provides lower error compared with more sophisticated density functionals, ii) it is much 

faster than the self-consistent DFT simulations, especially with meta-GGA functionals, 

enabling one to screen ΔHf of materials accurately in a high-throughput fashion. For example, 

for the 105 materials in large DFT databases such as MP, more accurate predictions of ΔHf can 

be calculated by the RF models within minutes, while that from meta-GGA functionals may 

take months of calculations. Note that for new materials without low-fidelity ΔHf predictions 

yet (such as corrected-PBE), computational cost for the low-fidelity ΔHf should be added to 

the total cost of the best RF model.  

      As for the superiority of the best RF model over the recent linear correction scheme from 

Wang et al.[183] as shown in Table 3-1, there are four possible explanations: i) the RF model 

takes non-linear effects into account, ii) the compositional descriptors used here capture more 

information than simple stoichiometry used in Wang et al.[183], iii) the learned correction in 

Wang et al.[183] is only from materials with certain anions and transition metals while in the 

present work there is no such constraint, and iv) the calibration scheme used here is built on 

empirically corrected PBE results as opposed to uncorrected PBE data in Wang et al.[183].  
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Table 3-1. Comparison of MAEs between ΔHf
exp and ΔHf from different density functionals 

with different corrections. Different from Figure 3-2, the reported MAEs here are based on a 

dataset with 122 materials in the test set that have all the values of ΔHf from different sources. 

The two corrections in the cell of “PBE (Jain et al.[182], the best RF)” show that the PBE ΔHf 

is first corrected by Jain et al.[182] then corrected by the best RF model in this chapter. “(no)” 

in the right three cells at the upper row means that no correction is applied to the ΔHf from the 

density functional. “PBE (Jain et al.[182])” is the one used in the MP database before May 

2021 (V2021.03.22) and is the one used as the low fidelity data in this chapter (“ΔHf
DFT”). 

“PBE (Wang et al.[183])” is the one used in the MP database after May 2021 (V2021.05.13). 

MAE is in the unit of eV/atom. 

 

 

    (2). Training the machine learning models on ΔHf
diff helps to reduce error compared with 

training models on ΔHf
exp directly, as under the same condition (architecture and featurization), 

the models trained on ΔHf
diff always have lower MAE than that trained on ΔHf

exp. Here, we 

attribute the lower absolute error of learning ΔHf
diff to the fact that ΔHf

diff has a narrower 

distribution than ΔHf
exp with 5 times smaller standard deviation (0.17 eV/atom versus 0.80 

eV/atom). One can imagine that, if ΔHf
diff and ΔHf

exp have the same distribution except a 

scaling factor of 1/5, then ideally the MAEs of ML models (with proper normalization) trained 

on ΔHf
diff should also be 1/5 of that trained on ΔHf

exp. However, the MAEs of models trained 

on ΔHf
diff are all larger than 1/5 of that trained on ΔHf

exp, suggesting that ΔHf
diff is easier to 

learn absolutely but harder to learn relatively than ΔHf
exp. 

      In order to further illustrate the above explanation, we use R2 score, a unitless metric 

invariant to scaling, to show the relative difficulty of predicting ΔHf
diff and ΔHf

exp. The R2 of 

predictions of ΔHf
diff by the best RF model is 0.54 (here R2 of 0.54 is based on predicted ΔHf

diff 

versus true ΔHf
diff, while the R2 of 0.99 in Figure 3-2b is based on predicted ΔHf

exp versus true 

ΔHf
exp), while the R2 of predictions of ΔHf

exp by the same RF model is 0.94, suggesting that 

Functional 

(Correction) 

PBE 

( Jain et 

al.[182],  

the best RF) 

PBE 

(Jain et 

al.[182]) 

PBE 

(Wang et 

al.[183]) 

PBEsol 

(no)[127] 

SCAN 

(no)[127] 

r2SCAN 

(no)[127] 

MAE 0.0542 0.0935 0.0927 0.0973 0.1024 0.0825 
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ΔHf
exp is easier to learn relatively than ΔHf

diff.  

    (3). Feeding ΔHf
DFT as one of the input features helps to lower the error. As with the same 

machine learning architecture (RF or MLP), label, and other features, models with ΔHf
DFT as 

one of the input features always have lower error than that without ΔHf
DFT. This effect is more 

significant when the models are trained on ΔHf
exp, because as shown in Figure 3-1c ΔHf

DFT has 

a strong correlation with ΔHf
exp, while as shown in Figure 3-1d the correlation between ΔHf

DFT 

and ΔHf
diff is not obvious. 

      Combining analysis (2) and (3), one can observe that, adapting the strategy of multi-fidelity 

machine learning might help to significantly lower prediction error, if the difference between 

the different fidelity datasets has a narrower distribution than the high-fidelity dataset, and/or 

if there is a strong correlation between the different fidelity datasets. Machine learning models 

with both the modifications of changing label and adding extra input features might outperform 

that with either single modification.  

(4). Similar to (3), transfer learning helps more when transferring from ΔHf
DFT to ΔHf

exp than 

from ΔHf
DFT to ΔHf

diff because of the stronger correlation between ΔHf
DFT and ΔHf

exp. 

    (5) RF with human-engineered features performs better than ROOST and CGCNN, two deep 

representation learning models, when trained on ΔHf
diff, while RF performs similar to or worse 

than neural-network based models when trained on ΔHf
exp. Although it is not surprising that 

neural-network based deep learning algorithms don’t show superior performance over RF due 

to the limited dataset size[55, 191], the effect of learning targets (ΔHf
diff and ΔHf

exp) on 

prediction performance of different machine learning models is interesting and worth of being 

discussed.  

      The different uncertainty level between ΔHf
diff and ΔHf

exp might help to explain why RF 

performs better than neural network-based models when trained on ΔHf
diff while there is no 
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such superiority of RF when trained on ΔHf
exp. As discussed above, ΔHf

diff has a narrower 

distribution than ΔHf
exp. Because ΔHf

diff = ΔHf
exp - ΔHf

DFT, if we consider ΔHf
exp and ΔHf

DFT 

as two independent random variables, then ΔHf
diff should have larger uncertainty than ΔHf

exp. 

Therefore, the robustness of RF against uncertainty[191, 192] might explain the superiority of 

RF when trained on ΔHf
diff. The larger uncertainty level of ΔHf

diff might also help to explain 

why ΔHf
diff is harder to learn relatively than ΔHf

exp as in (2).  

      In order to further investigate the effect of uncertainty on performance of machine learning 

models, RF and ROOST are employed to learn ΔHf
exp with random noises, a source of 

uncertainty. In Figure 3-2a, one can see that RF performs worse than ROOST when trained on 

ΔHf
exp. In Figure 3-2c, the MAEs of RF and ROOST and the corresponding noise levels are 

shown. One can see that, under low noise levels the errors of RF are still higher than that of 

ROOST, while under high noise levels the errors of RF become lower than that of ROOST. 

The different relative performance of RF and ROOST under different noise levels agrees with 

the superiority of RF against uncertainty[191, 192], and supports our hypothesis that the 

different uncertainty levels of the ΔHf
diff dataset and the ΔHf

exp dataset might explain why RF 

is better on the ΔHf
diff dataset while ROOST is better on the ΔHf

exp dataset.  

    In Figure 3-2e, we plot the learning curves of RF and ROOST on learning ΔHf
diff and ΔHf

exp, 

respectively. For learning ΔHf
exp, we observe that with few data points, RF has smaller errors 

than ROOST, while with more than 400 data points, ROOST outperforms RF, which agrees 

with previous observations[23, 113] that deep learning is powerful for large datasets while 

classic machine learning is more suitable for small datasets. However, for learning ΔHf
diff, we 

observe that RF performs better than ROOST consistently for all dataset sizes. As for the rate 

of improvement with respect to dataset size (slope of learning curve), we observe that for RF, 

the slope on learning ΔHf
diff is slightly smaller than that on ΔHf

exp, while for ROOST, the slope 
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on learning ΔHf
diff is significantly smaller than that on ΔHf

exp, which shows that the slopes of 

learning curves of machine learning models are affected by the quality of data: higher 

uncertainty of data, smaller slope of learning curves, and different machine learning models 

are affected differently: slope of RF is less affected while slope of ROOST is more affected. 

Further empirical and theoretical studies are necessary to investigate the relation between data 

quality and slope of learning curve for different machine learning models. From the learning 

curves, we also expect that, with more ΔHf
exp data points in the future, learning ΔHf

exp directly 

by ROOST might be more powerful than learning ΔHf
diff by random forest.  

      Based on the fact that when trained on ΔHf
diff, random forest with human-engineered 

featurization outperforms neural networks-based models, especially deep representation 

learning models, we suggest that for machine learning applications in the field of materials 

science, with limited dataset size and without proof of a low uncertainty level of the dataset, 

deep neural network-based representation learning algorithms[23, 57, 71, 75] should not be the 

only type of models employed, and other feature engineering methods and machine learning 

architectures beyond neural networks should also be tested. 

      While there are some previous works show that information of local bonding environment 

can be used to correct formation enthalpies of certain materials like sulfides[193], fluorides[194] 

and oxides[184, 194], in this chapter, the machine learning models with only compositions as 

input outperform those with both compositions and structures as input. One of the possible 

causes of the phenomenon is that there still lacks the data points of polymorphs with the same 

composition but different ΔHf
exp in the current dataset, which suggests the urgency of building 

a comprehensive ΔHf
exp dataset with sufficient entries of polymorphs to comprehensively 

understand the role of structures in determining ΔHf
exp. In Figure 3-2e, we plot the learning 

curves for random forest (RF) with and without structural features for learning ΔHf
diff and 
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ΔHf
exp. We can observe that, for learning ΔHf

diff and ΔHf
exp, RF without structural features 

outperforms RF with structural features, while the slopes of learning curves of the RF models 

with structural features are larger than that of the RF models without structural features. A 

possible explanation is that models with structural features have more available information, 

more degree of freedom and therefore easier to overfit small datasets, while those additional 

information makes models with structural information more powerful and consequently with 

steeper learning curves. Based on the learning curves, we expect that with more data in the 

future, models with structural information might outperform models with only compositional 

information. 

For the models only based on compositional information, such as random forest with only 

compositional features and ROOST, the corrections are the same to the polymorphs. Since the 

best model in this chapter is only based on compositional information, in the following sections, 

analysis is purely based on compositions. However, there are also models based on structural 

information trained and tested in this chapter, such as random forest with compositional and 

structural features and CGCNN. Corrections from models with structural information are in 

principle different for polymorphs. In Ref.[97], we show the corrections from random forest 

(RF) with both compositional and structural features to three pairs of polymorphs with recorded 

ΔHf
exp values and not in the training set. We find that, for all materials except CaSiO3 wol., 

ΔHf
RF is closer to ΔHf

exp than ΔHf
DFT, showing the ability of the RF model to correct DFT 

prediction of ΔHf. As for relative phase stability, ΔHf
DFT contradicts with ΔHf

exp for SiO2 and 

TiO2. Unfortunately, for the two systems, corrections from RF cannot reverse the wrong phase 

stability estimation from DFT. A possible explanation is that, the RF model mainly employs 

compositional information to learn and predict, as we find that compositional features 

contribute 80% feature importance, while structural features only contribute 20% feature 

importance. Therefore, the RF model predicts similar corrections to different structures with 
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the same composition. More data points of ΔHf
exp, especially that of polymorphs, are necessary 

to develop machine learning models that rely more on structural information and are capable 

to reverse the wrong phase stability estimation of polymorphs from DFT.   

We summarize the potential drawbacks of using one model versus the others for predicting 

ΔHf as below: i) for RF and MLP, they rely on off-the-shelf featurization, which means that 

they cannot capture information unknown to human beings. Therefore, they are typically less 

powerful than deep representation learning models such as ROOST and CGCNN for large 

datasets[23, 113]. For predicting ΔHf, although RF is the best model in this chapter, with more 

data points in the future, it is likely that RF will be less powerful than ROOST as shown by the 

learning curves in Figure 3-2d. ii) for ROOST and CGCNN, they are deep representation 

learning models that learn the features of materials automatically in the training process. 

Therefore, they are thought to be more powerful than models with off-the-shelf featurization, 

but their prediction performance might be worse with small datasets[23, 113], such as this 

chapter. iii) for MLP, ROOST and CGCNN, they are neural network-based models. Compared 

with random forest, which is a decision tree-based ensemble model with hundreds of individual 

models, ensembles of neural networks are typically only composed of around 10 individual 

models because of the higher computational cost of neural networks[23]. Therefore, they might 

be less powerful than RF in cases where number of models in ensembles is important[195], 

such as the ΔHf
diff with high uncertainty in this chapter[195].   

 

3.4. Discovery of materials with underestimated stability 

With the best RF model that can significantly lower the error of ΔHf from the MP database, 

we can calibrate ΔHf of all materials in the MP database. As an application, here we use the 

calibrated ΔHf to re-evaluate the thermodynamic stability of all materials in the MP database 
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by constructing the energy above hull (Ehull, the energy difference between the candidate 

compound and the ground-state phase(s) in a compositional space[196].) However, as Bartel 

et al.[67] pointed out, although sometimes DFT has large errors for prediction of ΔHf, ΔHf
DFT 

of similar materials contain similar systematic errors, and when evaluating phase stability, the 

cancellation of systematic errors makes DFT more useful for evaluating relative stability 

between compounds than some machine learning models with similar or even better accuracy 

with respect to ΔHf
exp.  

 

Figure 3-3. Stability evaluation from energy above hull. a Difference of ΔHf between pairs of 

compounds in the same chemical system from experiments versus that from MP and machine 

learning. b Distribution of energy above hull (Ehull, in eV/atom) of all materials in the Materials 

Project[6] database calculated by the corrected-PBE ΔHf in MP (Ehull
MP) versus that calculated 

by the machine learning ΔHf in this chapter (Ehull
ML). Here, Ehull is constructed from all 

materials in the Materials Project database. The color scheme is used to show the (log10 of) 

number of materials within a range of certain Ehull
ML

 and Ehull
MP, and the red rectangle shows 

the area with Ehull
MP > 0.16 eV/atom and Ehull

ML < 0.06 eV/atom. c Appearance frequencies of 

number of elements of each material in the datasets. Here, “exp. dataset” is the ΔHf
exp used in 

this chapter, “MP database” is the set of all materials in the Materials Project database, “MP 

unstable, ML stable” is the set of materials with Ehull
MP > 0.16 eV/atom and Ehull

ML < 0.06 

eV/atom and “MP stable, ML unstable” is the set of materials with Ehull
MP < 0.06 eV/atom and 

Ehull
ML > 0.16 eV/atom. 

 

Therefore, before screening Ehull for the full MP dataset, we first evaluate the performance 

of ΔHf
DFT and ΔHf

ML for evaluating relative stability between compounds. Since there are only 

229 materials in the test set, which are not enough for constructing phase diagrams and Ehull, 

we use the difference between ΔHf of pairs of compounds in the same chemical system to 

evaluate relative stability between compounds. We list all 20 pairs of compounds in the same 
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chemical system in the test set in Table 3-2, and we also plot the difference from experiments 

versus that from MP and machine learning (ML) in Figure 3-3a. One can see that ML 

outperforms MP in terms of difference of ΔHf between compounds in the same chemical 

system, which shows that the ML model outperforms DFT for relative stability evaluation. 

Table 3-2. Difference of ΔHf between pairs of compounds in the same chemical system from 

different sources. Difference of ΔHf is the unit of eV/atom. 

Pair of Compounds Experiment Materials Project Machine Learning in This chapter 

TiFe2 - TiFe 0.0487 -0.1324 -0.1316 

BiI3 - BiI 0.1075 0.1868 0.1193 

LuIr2 - LuIr -0.1502 -0.1664 -0.1826 

LaSi - La5Si3 0.143 0.1335 0.1229 

BMo2 - BMo -0.1858 -0.1856 -0.1972 

Na2O  -NaO2 0.5435 0.5428 0.3328 

BW2 - B5W2 -0.0591 0.5108 0.2408 

Co3O4  -CoO 0.1229 -0.0302 -0.0553 

ZrCo2 - Zr2Co 0.0974 0.0574 0.0553 

TmAg - TmAg2 0.1835 0.0088 0.1187 

PrNi5 - PrNi -0.0259 -0.0281 -0.0116 

TiAu2 - TiAu 0.0179 -0.0026 -0.0243 

NdRh - NdRh2 0.0446 0.0202 0.0064 

CaO2 - CaO -1.0353 -1.1070 -1.075 

Zr5Si3 - Zr5Si4 -0.2094 -0.0855 -0.0964 

Zr5Si3 - ZrSi2 0.1181 0.1654 0.1397 

Zr5Si4 - ZrSi2 0.3275 0.2509 0.2361 
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We next re-evaluate materials stability using ML calibrated ΔHf to construct Ehull
ML for all 

materials in the MP database using all compositions in MP. In chemical intuition, materials 

with smaller Ehull tend to be more thermodynamically synthesizable and stable[168, 169, 197], 

although Ehull = 0 is not a hard threshold for successful synthesis and room-temperature and 

pressure stability of materials because of other factors such as kinetics[198], and in practice 

empirical heuristics of several room temperature kBT are used as stability thresholds[168, 169, 

197]. In Figure 3-3b the distributions of Ehull of all materials in the MP database constructed 

from ΔHf
DFT and ΔHf

ML of all compositions in the MP database are shown, from which one can 

see that most materials have similar Ehull
MP and Ehull

ML, and majority of materials have close-to-

zero Ehull
MP and Ehull

ML. More importantly, there are materials with large Ehull
MP and small Ehull

ML. 

These materials might have underestimated stabilities in MP. For example, there are 800 

materials in the blue rectangle in the upper-left corner in Figure 3-3b that have Ehull
MP > 0.16 

eV/atom and Ehull
ML < 0.06 eV/atom, among which there are around 100 already synthesized 

materials. (The thresholds are set to be relaxed from 6 times and 2 times of room Temperature 

kBT[168, 169]). As examples, we list some interesting materials in Table 3-3 with novel 

physical properties and/or potential applications with Ehull
MP > 0.16 eV/atom and Ehull

ML < 0.06 

eV/atom, where there are both synthesized materials and hypothetical materials. One can see 

that there are a number of materials with various applications ranging from battery 

electrodes[199], catalysts[200-202] to optical[203-205], electronic[206, 207], magnetic[208-

212] devices and superconductors[213, 214], for which Ehull
ML succeeds in explaining their 

synthesizability while Ehull
MP

 does not. One extreme example is MnSnIr[215], a stable Half-

Mn2Sb - MnSb -0.0824 0.3453 0.1428 

CrSi - CrSi2 0.0090 -0.0783 -0.0280 

Mn11Si19 - Mn3Si 0.0596 0.1276 0.0809 
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Heusler compound synthesized from a peritectic reaction[216], of which Ehull
MP is considerably 

high (0.5117 eV/atom) while Ehull
ML is 0. The large gap between Ehull

MP and Ehull
ML is mainly 

because of the large deviation between ΔHf
DFT (0.2945 eV/atom) and ΔHf

ML (-0.2363 eV/atom) 

of MnSnIr itself. As a comparison, the ΔHf
exp of MnSnIr is -0.3047 eV/atom[167], which shows 

that, for this compound, DFT deviates significantly from the experiment, while our machine 

learning model can calibrate such large difference. A possible reason for the large error of 

ΔHf
DFT of MnSnIr is that, in Materials Project (V2021.03.22), DFT + U correction is only 

applied to Mn-F, Mn-O and Mn-S systems and not applied to the compound of MnSnIr[182]. 

Large deviations between ΔHf
DFT and ΔHf

exp are also observed for other compounds containing 

Mn and Sn, such as MnSnAu (ΔHf
DFT: -0.0488 eV/atom; ΔHf

exp: -0.5016 eV/atom), MnSn2 

(ΔHf
DFT: 0.1363 eV/atom; ΔHf

exp: -0.0954 eV/atom), and Mn2SnRu (ΔHf
DFT: 0.0789 eV/atom; 

ΔHf
exp: -0.1803 eV/atom), which agrees with the observation in Figure 4b shown later that DFT 

tends to overestimate ΔHf (more positive) of compounds with Mn and Sn. As a result, in the 

phase diagram of Mn-Sn, there is no stable intermetallic compounds according to ΔHf
DFT, 

which disagrees with the experimental phase diagram where there are several stable 

intermetallics including Mn3Sn, Mn3Sn2, MnSn2[217]. 

In addition to the already synthesized materials, those unrealized hypothetical materials 

provide potential opportunities for energy and environmental materials[99, 218, 219], 

structural materials[220] and electronic devices[221, 222], and as shown in Table 3-3 and 

Figure 3-3b, many of these materials that are estimated stable by Ehull
ML might have 

underestimated stability in the MP database. Therefore, in the future, if experimentalists intend 

to realize those materials, large Ehull
MP alone should not be sufficient for excluding the trial of 

synthesis if those materials have small Ehull
ML.     

Note that there are also 1,000 materials in the lower-right corner in Figure 3-3b that have 

Ehull
MP < 0.06 eV/atom and Ehull

ML > 0.16 eV/atom. Details of those materials can be obtained 
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in the shared online dataset. An extreme example is LiNbGeO5,[223] a synthesized compound 

with Ehull
MP of 0 and Ehull

ML of 0.4334 eV/atom. 

    In order to further investigate how MP and ML disagree with each other, the appearance 

frequencies of number of elements in each material in four datasets are plotted in Figure 3-3c. 

One can see that in the exp. dataset used as the training set in this chapter, around 90% materials 

are binary compounds and 10% materials are ternary, while in the MP database there are about 

40% materials that contain more than 3 elements. Since the training set doesn’t cover materials 

space with more than 3 elements, the ML predictions for materials with more than 3 elements 

are extrapolations and in general less reliable than that for binary and ternary compounds. For 

the set of materials unstable by MP and stable by ML, the distribution of number of elements 

is similar to that of the exp. dataset where the majority of materials are binary or ternary, while 

in the set of materials stable by MP and unstable by ML, most materials have 4 or 5 elements. 

Here the lack of materials with more than 3 elements in the current ΔHf
exp dataset suggests that 

the ML predictions for materials with more than 3 elements should be carefully checked if ML 

and MP disagree with each other, and it also suggests the urgency of building a comprehensive 

ΔHf
exp dataset with sufficient entries of materials with more than 3 elements.  

Table 3-3. Examples of materials that have novel physical properties and/or potential 

applications with Ehull
MP > 0.16 eV/atom and Ehull

ML < 0.06 eV/atom. The materials with 

experiment as one of the characterization methods are synthesized materials, and others are 

currently only hypothetical. Ehull is in the unit of eV/atom. 

Materials MP ID Ehull
MP  Ehull

ML  Characterization 

method(s) 

Comment/ 

novel physical property/ 

potential application   

MnSnIr mp-11480 0.5117 0 Experiment 
Largest difference between 

Ehull
MP and Ehull

ML. 

Ta3Pb mp-1187214 0.3386 0 Experiment Superconductor[214] 

AgRh mp-1183233 0.2633 0.0359 Experiment Electrocatalyst[200] 

FeCoSn mp-1025124 0.1836 0.0384 Experiment 
Tuning phase transitions for 

isostructural alloying[224] 
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3.5. Data mining of where DFT fails 

    In addition to predicting more accurate ΔHf and examining stability of materials, the random 

forest model trained on ΔHf
diff (ΔHf

exp – ΔHf
DFT) with human-engineered features can also serve 

SmCo4Ag mp-1219086 0.1797 0.0493 Experiment 

Positively correlated 

magnetization with 

temperature[208] 

Li3(FeS2)2 mp-753818 0.1697 0.0180 Experiment Li-FeS2 battery electrode[199] 

PdRu mp-1186459 0.2277 0.0032 Experiment Catalyst[201] 

Ni3Ag mp-1100764 0.2332 0 Experiment Dual-frequency absorption[203] 

Rb2NaTaF6 mp-1114459 0.2038 0 Experiment 

Large anisotropic shift from both 

covalent and polarization spin 

transfer mechanisms[209] 

Nb3Tl mp-569366 0.2083 0 Experiment Superconductor[213] 

UPb3 mp-1184128 0.1621 0 Experiment 
Sharp metamagnetic 

transitions[210] 

Cu3N mp-1933 0.1865 0.0464 Experiment Light recording media[204] 

FeNi2 mp-1072076 0.1858 0.0292 Experiment 
Size-dependent catalytic 

activity[202] 

HfCo7 mp-1105489 0.2098 0.0500 Experiment 
Rare-earth-free permanent 

magnets[211] 

MnBi mp-1185989 0.2078 0 Experiment/DFT 
Half-metallic 

ferromagnetism[207] 

Be2Si mp-1009829 0.2352 0.0272 Experiment/DFT 
Hybrid nodal-line 

semimetal[206] 

Mn2Hg5 mp-30720 0.2362 0 Experiment/DFT 
π-based covalent 

magnetism[212] 

Ta3Bi mp-1187199 0.3442 0 DFT 
Topological Dirac 

semimetal[221] 

MnCrSb mp-1221652 0.2564 0 DFT Half-metallicity[222] 

LiB11 mp-1180507 0.2084 0.0234 DFT Pseudo-plasticity[220] 

NiAg3 mp-976762 0.1850 0 DFT Acetylene adsorbent[219] 

Li2VN2 mp-1246112 0.1615 0.0279 DFT Li-ion battery electrode[218] 

LiGdO3 mp-1185401 0.3476 0.0575 Machine learning 
Perovskite with high tolerance 

factor[99]  

LiPmO3 mp-1185388 0.2815 0 Machine learning 
Perovskite with high tolerance 

factor[99]  
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as a data-mining approach to reveal where and how ΔHf
DFT deviates from ΔHf

exp (as above, 

“ΔHf
DFT” refers to the empirically corrected PBE ΔHf by Jain et al.[182] in the Materials 

Project database), which provides clearer trends than machine learning models trained on 

ΔHf
DFT only. Here, we analyze the relationship between human-understandable features and 

ΔHf
diff by explaining the model, or for each material, calculating the impact of each feature on 

the model output (known as the SHAP value[96]). Previously, the error of ΔHf
DFT is mostly 

discussed in the context of certain anions[7, 178, 182], cations[7] and transition metals[7, 178, 

179]. In Figure 3-4a, the impacts of the top 10 compositional features from matminer[135] with 

the highest sum of absolute SHAP values are shown. One can see that, in addition to anion 

properties (“max GSbandgap”, the detailed explanations of the descriptors are available in the 

matminer paper[135]) and cation properties (“max GSvolume”, “max NdValence”, “min 

CovalentRadius”, “min Electronegativity”), mean field of elemental properties (“band center”, 

“mode CovalentRadius”) and standard deviation of elemental properties (“std NpUnifilled”, 

“std NdValence”) are also among the most impactful properties with respect to ΔHf
diff. For 

example, with smaller “band center” (geometric mean of electronegativity[135]), ΔHf
diff tends 

to be larger and ΔHf
DFT tends to be smaller than ΔHf

exp, which means that DFT tends to 

underestimate ΔHf of systems with smaller mean electronegativity. A possible explanation for 

this trend is that, smaller geometric mean of electronegativity, the ability of atoms to bind the 

electrons near the atomic nuclei is weaker, and electrons tend to be delocalized. Since the GGA 

approximation tends to overestimate the electron delocalization[225], ΔHf
DFT tends to be more 

negative for the systems with delocalized bonds (stronger bonding). Another example is, with 

larger standard deviation of number of p valence electrons, ΔHf
diff tends to be smaller and 

ΔHf
DFT tends to be larger than ΔHf

exp, suggesting that DFT tends to overestimate ΔHf of systems 

with more dissimilar p valence electron configurations. This trend might be explained by the 

hypothesis that, with more different p electron configuration, in general the compound is more 
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ionic, and because of the fact that GGA approximation tends to underestimate the electron 

localization[225], DFT (PBE) ΔHf tends to be more positive for the systems with localized 

bonds (weaker bonding). 

 

Figure 3-4. Impact of each feature on model output. a and b Distributions of the impacts 

(SHAP values[96]) of compositional features and elemental fractions on the model output 

(ΔHf
diff), respectively. The color represents the feature value (red high, blue low), and here only 

the top 10 features and elemental fractions with the highest sum of absolute SHAP values are 

shown. The inserted figure in b illustrates the trends of DFT to underestimate or overestimate 

ΔHf of materials with certain non-metal elements. Here, the blue shaded elements are those for 

which DFT tends to underestimate ΔHf, the red shaded elements are those for which DFT tends 

to overestimate ΔHf, and Boron shows a mixed trend. 

 

    As for the impacts of certain cations and anions, or impacts of certain elements, we build a 

decision tree model that takes stoichiometry as input, and the SHAP values of fraction of each 

element are plotted in Figure 3-4b. One can see that, with higher atomic fraction of S, O and 

N, DFT tends to underestimate ΔHf, while for higher atomic fraction of Sn, Mn, P, I, Te, Ba, 

Al, DFT tends to overestimate ΔHf. There are more non-metal elements (6) in the top 10 most 

impactful elements than metals (2) and metalloids (2). Particularly, there is an interesting 

pattern of how DFT treats different non-metal elements: as shown in Figure 3-4b, for strong 

oxidizing non-metal elements in the upper-right corner of the periodic table, including F, O, N, 

S, Cl, DFT tends to underestimate ΔHf, while for those non-metal elements with weaker 
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oxidizing ability, DFT tends to overestimate ΔHf. However, the degree of overestimation or 

underestimation doesn’t simply correlate with the oxidizing ability. For example, F has 

stronger oxidizing ability than O and S, but the degree of underestimation of ΔHf
DFT for 

fluorides is less than that of oxides and sulfides. There are two possible sources of errors that 

would result in the observed trend: on the one hand, the underestimation or overestimation of 

ΔHf of materials with certain elements might come from the element type-based empirical 

corrections[7, 182], and on the other hand, the intrinsic limit of the GGA and GGA + U 

approximation might cause the different deviation patterns. For example, Seo et al.[226] 

proposed that the GGA + U method used for transition metal oxides in the MP database[182] 

overestimates the degree of hybridization between the d orbitals of transition metals and p 

orbitals of oxygen, thus makes the calculated ΔHf more negative.  

    The trend in Figure 3-4a also agrees with that in Figure 3-4b. For example, for “max 

GSbandgap” and “max GSvolume”, they are calculated in the following procedure: first the 

ground state band gaps and ground state volumes of all the elements in the compound are listed, 

then the maximum values of band gaps and volumes are picked up. Therefore, “max 

GSbandgap” and “max GSvolume” actually relate to the existence of certain elements in the 

compound. Specifically, “max GSbandgap” describes the presence of specific anion in the 

compound while “max GSvolume” describes that of cation. Larger “max GSvolume”, ΔHf
DFT 

tends to be larger (more positive) than ΔHf
exp. An explanation for this trend is that with larger 

“max GSvolume”, the cation element tends to have larger ground state volume (closer to the 

bottom-left of the periodic table with the maximum value at Cs). If the cation is closer to the 

bottom-left of the table, the compound in general will be more ionic. Therefore, ΔHf
DFT tends 

to be more positive for the systems with more ionic bonds as mentioned above. On the other 

hand, larger “max GSbandgap”, ΔHf
DFT tends to be smaller (more negative) than ΔHf

exp. This 

phenomenon might be explained by the fact that, with larger “max GSbandgap”, the anionic 
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element is closer to the upper-right corner of the periodic table the maximum value at N, and 

according to Figure 3-4b the compound tends to have more negative ΔHf
DFT.  

Note that in Wang et al.[183] all anionic corrections are negative, which is because their 

correction is applied to the original PBE results and PBE tends to overestimate the energy of 

diatomic gas molecules[227], while the trend shown here is based on the empirically corrected 

PBE energies from MP that already take the effect of overestimated energy of diatomic gas 

molecules into account. 

 

3.6. Details of methods  

    Data collection. In Chapter 3, we construct the ΔHf
exp dataset by combining two datasets 

from IIT[167] and SSUB[190], and we use the Materials Project[6] database (V2021.03.22) to 

construct the ΔHf
DFT dataset. For the ΔHf

diff dataset, since the ΔHf
DFT values are provided for 

some materials in the IIT dataset, ΔHf
diff values for those materials are obtained by subtracting 

the provided ΔHf
DFT from the provided ΔHf

exp, and for materials from the SSUB dataset, since 

chemical formula is the only identifier, we take the lowest ΔHf
exp for each formula, and for the 

ΔHf
DFT of these materials, we assign the lowest ΔHf

DFT to each formula. For overlaps between 

the IIT dataset and SSUB dataset, we take the ΔHf
exp from the IIT database as the IIT database 

is a more recent one[167]. Note that the mean absolute difference of ΔHf
exp between our dataset 

and the recent dataset from Wang et al.[183] is only 0.007 eV/atom.  

    Machine learning models training procedure. In Chapter 3, the dataset of the 1143 ΔHf
exp 

is used for three purposes: 1) hyper-parameters tuning for each machine learning model, 2) 

model evaluation, and 3) production, or prediction of ΔHf of all materials in the Materials 

Project database (MP). For purpose 1) and purpose 2), we first randomly reserve 20% data as 

the test set for model selection (these 20% data are also excluded in the larger MP dataset for 
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transfer learning). Then, to determine the best set of hyper-parameters for each model, with the 

remaining 80% data, we randomly reserve 20% of the remaining data (20%*80% = 16% of 

total data) as the validation set to evaluate each specific set of hyper-parameters, and use 80% 

of the remaining data (80%*80% = 64% of total data) to train the machine learning model with 

the given set of hyper-parameters. We screen hyper-parameters by grid search, and tables of 

search space of hyper-parameters are provided in Ref.[97]. Finally, with the found best hyper-

parameters for each model, we use the 80% of the data (training set + validation set in the 

hyper-parameter search step) to train machine learning models 10 times with different 

initialization, and evaluate model performance and uncertainty using the 20% data held out at 

the very beginning (test set). For purpose 3), production, for best prediction performance, all 

available 1143 data points are used to train the found best model with the found best hyper-

parameter.  

    We use four different machine learning architectures to realize transfer learning and/or 

multi-fidelity machine learning, random forest (RF), multi-layer perceptron (MLP), 

Representation Learning from Stoichiometry (ROOST)[23] and Crystal Graph Convolutional 

Neural Network (CGCNN)[71]. For ROOST, we feed the compositions of materials as input, 

and it learns the representations of materials, and for CGCNN, we feed the 3D atomic structures 

of materials as input, and it also learns the representations. RF and MLP are realized by scikit-

learn[19], and we use the descriptors from matminer[135] to feed RF and MLP as features of 

materials. Modules used to generate compositional features are Element Property, Electron  

Affinity, Band Center, Cohesive Energy, Miedema, TMetal Fraction, Valence Orbital, Yang 

Solid  Solution, and modules used to generate structural features are Global Symmetry Features, 

Structural  Complexity, Chemical Ordering, Maximum Packing Efficiency, Minimum Relative 

Distances, Structural Heterogeneity, Average Bond Length, Average Bond Angle, Bond 

Orientational Parameter, Coordination Number, and Density Features.        
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Energy above hull. In the Materials Project (MP), the energy above hull (Ehull) is defined 

as the energy of decomposition of a material into the set of most stable materials at this 

chemical composition[6]. The decomposition is tested against all potential chemical 

combinations that result in the material's composition. A positive Ehull indicates that this 

material is unstable with respect to decomposition, and a zero Ehull indicates that this compound 

is stable with respect to decomposition. In this chapter, the energy above hull is defined in the 

same way as MP. Phase Diagram module in Pymatgen[136] is used to calculate the Ehull. The 

inputs required by the Phase Diagram module are the compositions and formation enthalpies, 

and the corresponding output is the energies vs. compositions diagram, from which the 

decomposition energies and Ehull can be calculated. 

 

3.7. Chapter summary and outlook 

    In Chapter 3, we conduct a comprehensive machine learning study to learn and predict 

experimental formation enthalpy of materials. We use two different strategies to transfer 

information from larger DFT dataset to the smaller experimental dataset, transfer learning and 

multi-fidelity machine learning, and we use four machine learning architectures to realize the 

two strategies. We find that the random forest model trained on the difference between 

experimental and DFT formation enthalpy with DFT formation enthalpy as one of the input 

features can achieve the lowest error, which is almost half of that of DFT (empirically corrected 

PBE), and it also outperforms other more accurate but more computationally expansive density 

functionals, such as meta-GGA functionals. Beyond identifying the best model, we suggest 

that the deep neural network-based representation learning algorithms and transfer learning 

should not be the only machine learning architecture and information-transfer strategy 

considered. Other feature engineering methods such as human-engineered features, machine 

learning architectures beyond neural networks such as random forest and information-transfer 
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strategy such as multi-fidelity machine learning should also be tested in machine learning 

applications for materials science.  

    As an application, we employ the found best random forest model to calibrate the formation 

enthalpy of all materials in the Materials Project database, which are then used to construct 

energy above hull and discover potential important materials that have underestimated stability 

in the MP database. Further, we use the machine learning model as a data-mining approach to 

identify patterns in the performance of DFT, for example in its tendency to underestimate the 

formation enthalpy of materials with elements in the upper-right corner of the periodic table. 

    Note that Chapter 3 is based on the Materials Project database queried in March, 2021 

(V2021.03.22). The methodology of this chapter can also be applied to updated Materials 

Project database (such as V2021.05.13) and other large DFT databases. It is expected that, with 

more accurate low fidelity data (DFT formation enthalpy), such as the recent dataset with 6,000 

materials calculated by meta-GGA functionals[127], the method in this chapter can be used to 

provide more accurate calibration (exp. formation enthalpy).   

    One potential limitation of the multi-fidelity model used in this chapter is that it requires the 

availability of low-fidelity data for the whole materials space of interest, as in this chapter DFT 

formation enthalpy is required for learning the difference of formation enthalpy from 

experiment and DFT. In cases where low-fidelity data is not available to all the materials, 

transfer learning might be more appropriate to transfer information between different datasets. 

Another scenario not considered in the current multi-fidelity machine learning scheme is that, 

for some properties there might be datasets with multiple levels of fidelity available. In such 

cases, in addition to incorporating different fidelity data into the input, the learning of 

differences might be conducted multiple times to enlarge the availability of high-fidelity data 

gradually.  
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    More broadly, for machine learning applications with small datasets, choosing proper 

models and strategies is critical to the usefulness of the machine learning models. On the one 

hand, with small datasets, one should carefully compare the performance of deep representation 

learning and classic machine learning models based on off-the-shelf featurization, and make 

the choice for production. Typically, with more than 10,000 data points, deep representation 

learning might be more powerful; with less than 500 data points, classic machine learning 

models might be more suitable; and with more than 500 but less than 10,000 data points, careful 

comparison is necessary for employing a suitable model for production. On the other hand, if 

larger low-fidelity datasets are available, then information transfer might be useful to improve 

the learning and prediction of the high-fidelity data. There are two strategies, transfer learning 

and multi-fidelity learning, for the information transfer. Although there still lacks theoretical 

guarantee or quantitative metric to estimate whether information transfer would help or not, 

empirically, the two strategies worth a try if the high- and low-fidelity datasets are “strongly” 

correlated. 
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Chapter 4 

4. Charting lattice thermal conductivity for inorganic crystals by 

machine learning 

 

4.1. Introduction 

In Chapter 4, we present a case study of lattice thermal conductivity of materials to show 

how machine learning can be used to promote the development of functional materials, as well 

as how transfer learning can help to learn small experimental dataset. Different from Chapter 

3, where multi-fidelity machine learning is also employed together with transfer learning to 

transfer information from larger datasets, here we only employ transfer learning, because as 

mentioned below, the larger dataset in this case covers only a small portion of the whole 

materials space. Therefore, multi-fidelity learning is less useful than transfer learning as multi-

fidelity learning cannot predict properties of materials without low-fidelity data. 

Thermoelectricity produced from usually negative-valued heat is a green and promising 

candidate on the future energy landscape. The most effective thermoelectric materials exhibit 

low thermal conductivity κ. However, less than 5% out of about 105 synthesized inorganic 

materials are documented with their κ values, while for the remaining 95% κ values are missing 

and challenging to predict. In this chapter, by combining graph neural networks, transfer 

learning, and random forest approaches, we predict the thermal conductivity of all known 

inorganic materials in the Inorganic Crystal Structure Database, and chart the structural 

chemistry of κ into extended van-Arkel triangles. Together with the newly developed κ map 

and our theoretical tool, we identify rare-earth chalcogenides as promising candidates, of which 

we measured zT exceeding 1.0 as the highest record thus far. Still, we note that the κ chart can 

be further explored, and our computational and analytical tools are applicable generally for 
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materials informatics. 

The discovery of Seebeck and Peltier effects has enabled driving charge flows by heat and 

vice versa[228, 229], which powers the Explorer in the deep space and cools 

medicine/specimen on pharmaceutical sites[149, 230]. Such thermoelectric mechanisms 

attracted waves of research during the past with the development of condensed matter physics, 

and the current decade has seen another recurring tide of interest as alternative green energy 

source for better environment. However, the barrier for the large-scale technical translation of 

thermoelectrics is its efficiency (e.g., <5% for most thermoelectric materials on the market[228, 

231]. On top of the electrical properties, the controlling factor is unstoppable heat flow, which 

gives rises to irreversibility and is governed by thermal conductivity, higher efficiency entailing 

lower thermal conductivity. 

In fact, solids with both low and high extreme thermal conductivity have been pursued 

fundamentally and practically for decades. Currently the records are held by diamond (~2000 

W/mK)[232] in the upper limit and aerogels (~0.01 W/mK) on the lower end[233], although it 

remains unclear whether these are hard limits. Regardless, the search for alternative materials 

that lie at or beyond these extremes is also of practical importance, particularly when multiple 

constraints are imposed, such as specific mechanical properties for thermal coatings[234] and 

(opto-) electronic properties for applications in energy conversion[228, 235]. More than 

thermoelectrics, the diverse applications range from thermal management in electronics and 

avionics[236], to high-temperature coatings in turbines[234] and human healthcare[237], to 

name only a few examples. 

However, knowledge of the governing physics of (lattice) thermal conductivity (κ) remains 

incomplete at the atomic scale[238, 239]. Current understanding derives largely from kinetic 

theory and relates to unit cell properties (e.g., (average) atomic (mass, density), 
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symmetry)[240]. This understanding has been historically encapsulated into analytical models, 

such as the Debye-Callaway (D-C) model[241] and its variants[238]. Similarly, analytical 

models for κ of solid-solution alloys, such as the Klemens model[242], are based on unit cell 

properties and scattering parameters. These models are explicit, but have parameters either 

numerically fitted or computed from first principles. For instance, Miller et al. developed a 

modified D-C model with speed of sound and Gruneisen parameter, which are derived from 

bulk modulus and average coordination number[243]. 

An emerging approach has been driven by learning from the existing data of κ, benefited 

from the developments in high-throughput screening and machine learning methods[229, 244-

247]. Through high-throughput calculations, databases are growing in size via approaches for 

computing κ based on Green-Kubo formalism[248, 249] and Boltzmann theory[240, 250]. 

However, relying on dynamical and/or large-scale first-principles calculations, these methods 

are often computationally expensive, and most high-throughput studies are limited within 

certain material families[246]. Alternatively, the above semi-empirical models have also been 

successfully implemented for high-throughput predictions[126]. Experimental data is even less 

available. To date, only some hundreds of the total ~105 synthesized materials documented in 

the Inorganic Crystal Structure Database (ICSD) have κ values measured[251]. Thus, while 

machine learning techniques have shown initial success[54, 239, 252], both more data and 

novel approaches are needed in order to explore the vast materials space. 

Towards this end, general guidelines for navigating and sampling the materials space for κ 

will be valuable. Existing works for predicting/understanding κ exhibit a catch-22 situation. 

On the one hand, descriptor-based methods assume a priori knowledge of the physics of κ, so 

that appropriate features could be populated for materials[252]. However, since structural 

chemistry of κ is largely unknown, the choice of atomic features is currently arbitrary. On the 
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other hand, techniques based on graph neural networks assume little pre-knowledge of κ, and 

can predict material properties directly from structure[71]. However, these methods are “black-

boxes”, and the challenge of interpreting structure- κ relation remains.  

In this chapter, we predict κ of all ordered and stoichiometric materials in ICSD (92,919 

entries), and then reveal the structural chemistry of κ. Two complementary approaches, neural 

networks and random forest, are thus combined. While the former predicts κ directly from 

structures with little need for featurization, the latter extracts the hidden chemistry in the dataset. 

With resolved important atomic and structural features that govern κ, we are able to chart the 

structural chemistry of κ using our generalized van-Arkel triangles. Aiming at learning and 

predicting κ measured by experiments, we build an experimental dataset κexp collected from 

the literature, and extend our earlier graph neural networks model[71] with transfer learning 

(TL-CGCNN). Based on the charts, we identify a set of rare-earth chalcogenides, as a new 

class of promising thermoelectric materials, of which the figure of merit shows 1.1 at 800 K. 

 

4.2. Machine learning study of lattice thermal conductivity 

We start by learning from our recently prepared high-throughput κC dataset[126], before 

moving to the broader ICSD and the underlying structural chemistry. The κC dataset contains 

computed κC of 2,668 ordered and stoichiometric inorganic structures from the ICSD. The 

predicted κ is fairly accurate, with an average factor difference of 1.5 from experimentally 

measured values, over a range of κ values that span 4 orders of magnitude[243]. In Chapter 4.2, 

we will show both the transferability and limitation of this dataset, and in Chapter 4.3 we will 

show its implicit physics. Note that these two purposes suit two separate but complementary 

machine learning models: crystal graph convolutional neural network (CGCNN)[71], and 

interpretable random forest.  These models are illustrated in Figure 4-1(a), with further details 
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available in Chapter 4.6. For our high-throughput dataset, we randomly reserve 20% entries as 

the test set, as plotted in Figure 4-1(b). Both CGCNN and random forest models could predict 

logκC
’ with MAE<0.15 and R2>0.85.  

 

Figure 4-1. a Schematic of two complementary models: CGCNN and random forest. b 

Predicted logκC
’ from these two models. The dashed band denotes a factor of 2. c High-

throughput logκC
’ for all ordered ICSD structures. The contour denotes the distribution of ICSD 

materials in the feature space reduced to 2D via PCA/t-SNE, along with the training set denoted 

by the dots. The histograms are the distribution of predicted logκC
’ and logκexp

’. See text for the 

prediction of logκexp
’. 

 

Moreover, different from CGCNN, random forest requires featurization for crystal structures 

before running through decision trees, which is largely physics-based and in many cases ad 

hoc. Guided by lattice dynamical theory, we choose configurational features from elemental to 

atomic packing and bonding nature, which are constructed through Matminer[135], 

Magpie[25], and in-house codes. Since κ is sensitive to both absolute values and variations of 

atomic properties, our feature engineering leads to a 154-dimensional descriptor, including the 

statistics (mean -, standard deviation σ, range[245] and mode) of atomic number, covalent 

radius ra, atomic mass m, periodic table group and row number, Mendeleev number, volume 
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per atom from ground state VGS, Pauling electronegativity χa, melting point Tm, number of filled 

NV and unfilled NU valence electrons in the s, p, d, and f shells of constituting elements, as well 

as structural features at the cell scale (space group, volume per atom Va, packing fraction φ, 

density ρ, bond length LB,  bond angle θB, and coordination number CN).  

To visualize the feature space, we project it onto two dimensions, as shown in Figure 4-1(c). 

Materials from our high-throughput dataset and the ICSD dataset are considered together, 

denoted by the scattered points and contour respectively. Note that the x and y axes are abstract 

linear combination of all structural features. On this projected materials-feature space, the 

contour lines show the distribution of all inorganic materials. Deeper color indicates more 

materials existing in ICSD (we have removed the contour levels though to stress that the 

magnitude is relative). The contour shows that most materials are populated in the central area, 

and the distribution varies smoothly, thus friendly for machine learning algorithms. Our high-

throughput entries (scattered points) with the highest and lowest κ values highlighted, samples 

the reduced feature space quite satisfactorily in terms of uniformity. This suggests the potential 

transferability of our high-throughput dataset to ICSD. We did so using both CGCNN and 

random forest models. From the histogram in Figure 4-1(c), the distribution of predicted κC
’ 

follows approximately a normal distribution, with mean logκ ≈ 0.8 and standard deviation  of 

logκ ≈ 0.5. 

To further validate our machine-learning predictions, we compare them to experimental 

measurements, and/or to first-principles calculations (see details of experimental and 

computational methods in Chapter 4.6). More than measurements in the literature, we also 

chose 12 materials from different structures/compositions/families, and measured their κ. The 

comparisons are presented in Table 4-1 for several low- and high-κ materials. Overall, our 

machine learning models can unanimously screen the lowest from the highest, which might be 
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already sufficient for many materials selection/design scenarios, such as for thermoelectrics 

and thermal management, where either the lowest or the highest κ values are sought. For 

instance, in Table 4-1, we have identified rare-earth chalcogenides (REX) as promising 

thermoelectric materials, which are interesting for future exploration (See below). The other 

reason that we test our machine-learning models with these extremes is to show their reliability 

for extrapolation (transferability), which is often more challenging numerically than 

interpolation. 

Table 4-1. The predicted candidates in the lower and upper limits. Note that κexp
’ is from a 

random forest model for the low regime of κ, and TL-CGCNN for high values. The entries 

without references are measured/calculated in Chapter 4. 

 logκexp logκDFT logκC
’ logκexp

’ 

Cu2HfTe3 -0.016  0.016 0.022 

Cu3VTe4 0.19  0.26 0.28 

TaCoTe2 -0.21  -0.32 0.052 

AgAlTe2 -0.21  -0.36 0.042 

FeIn2S4 0.16  0.58 0.46 

NbTe4 0.28  0.30 0.36 

TiFeCoGa 0.69  0.86 1.09 

Er2Se3 0.15  0.21 0.071 

Er2Te3 0.19  0.18 0.32 

Tb2Te3 -0.027  0.15 0.21 

Dy2Te3 0.0056  0.18 0.22 

Ho2Te3 0.16  0.20 0.32 

Cs2BiAgCl6  -1.2 -0.1 -0.3 

CsTlF3  -1.0 0.2 -0.1 

CsTlI3  -1.3 -0.1 -0.3 

CsPbI3 -0.4[47][253] -1.0[20][235] -0.2 -0.2 

Tl3VSe4 -0.5[9][254] -0.8[9a][254] -0.2 -0.3 

Be2C  2.06 2.9 2.6 
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More quantitatively, the error of our machine learning models is comparable to first-

principles calculations based on DFT (logκDFT). For instance, in the case of diamond, the 

extrapolated values, logκ, 3.1 and 3.4, are close to the experimental value 3.36, comparing to 

3.54 from DFT calculations. Such level of error applies to all examined entries, except several 

outlying cases, such as BAs, for which the accuracy is less satisfactory. 

Other possible outliers are also observed when experimental values are missing and a 

substantial difference can be seen between DFT and machine learning, such as CsTlF3 in Table 

4-1. However, such possible outliers should be further examined (experimentally preferred) 

due to the possible underestimation from DFT calculations. In some cases, a difference of 50 - 

100% between DFT and experimental values can arise from the relaxation-time approximation 

up to 3-phonon interactions, which might be resolved by more sophisticated calculations, such 

as four-phonon and temperature-dependent dispersion[254, 257]. In many other cases, our 

machine learning prediction can be even more accurate than DFT, such as the iodide perovskite 

CsPbI3 and the recently studied Tl3VSe4 (see Table 4-1). Moreover, note that our above error 

analyses is based on extrapolation. Even for the highest and lowest values, the machine learning 

models show satisfactory stability and prediction accuracy. 

Nevertheless, our machine learning model is still limited by the quality and finiteness of our 

dataset. Since the training set used is the largest reliable dataset available, this limitation will 

be translated to guidelines for future high-throughput calculations. This is discussed further as 

we extend CGCNN with transfer learning (TL-CGCNN) to predicting experimental values 

logκexp
’ (see Chapter 4.4). The top 50 lowest-κ and highest-κ values are uniformly scattered, 

C3N4  2.4 2.5 2.6 

BP 2.6[48][255] 2.82[15][240] 2.4 2.6 

BAs 3.08[12-14][256] 3.50[15][240] 2.0 2.2 

Diamond 3.36[17][232] 3.54[15][240] 3.1 3.4 
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suggesting little knowledge content. However, as we present in Figure 4-2(a), these top 100 

points are clustered when we plot without ICSD. This is another indication of the limited 

transferability to ICSD, but also demonstrates the knowledge content in our known dataset. 

 

4.3. Data mining of lattice thermal conductivity 

Such knowledge content can be extracted in the form of ranked features (details in Chapter 

4.6). In Fig. Figure 4-2(b), the top 20 features are ranked in decreasing order. These features 

include the elemental type (VGS, NV, NU, m) and structural type. The latter consists of bonding 

properties (LB, θB, CN), and packing properties (Va, Dim, φ, SG, ρ). The learning of important 

features is different from a simple correlation relation. Figure 4-2(c) shows the MAE as a 

function of increasing number of features, picking from the most important features, from PCA 

and random forest respectively. As the number of features increases, MAE reduces quickly and 

reaches our CGCNN accuracy with less than 10 features, and both are lower than PCA. The 

latter is usually chosen when little pre-knowledge is assumed, and our case shows that such 

purely data-driven techniques (e.g. PCA for dimensional reduction) could be excelled over by 

physics-informed approaches. Another interesting application of these important features is to 

physically categorize/cluster all the training materials. An example is shown in Figure 4-2(d), 

where high- κ and low- κ values could be separated by the dashed line. 
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Figure 4-2. a Clustering of the high-throughput database using PCA and tSNE, low-κ and high-

κ entries are highlighted. b Top 20 important features and their F scores. c Dimension reduction 

by random-forest-ranked feature selection lead to even lower than PCA, and MAE approaches 

to CGCNN around 10 atomic features. Low-κ and high-κ materials can be divided by important 

features, d is an example of using φ-Va. e-f Chemical space illustrated by van-Arkel triangles, 

examples of elemental (VGS) and bonding (χa) information. 

 

    Further, phonon transport is sensitive to chemical variations, more than corresponding mean 

fields. Examples are mass and bond strength: the mean values define mean-field harmonic 

properties (e.g., group velocity), while the differences determine both harmonic (e.g., phononic 

bandgap) and anharmonic properties (e.g., higher-order force constants). This is also suggested 

in Figure 4-2(d), where both mean values and variances are ranked most important, such as LB, 

θB, CN, and NV. Note that our machine learning models start from different feature list from 

that of our D-C model. For instance, none of the crucial variances enter the D-C model. This 

is also true for the past predictions of harmonic properties, such as Debye temperature and 

vibrational entropy[251, 258]. Despite the partial overlap between our important feature list 
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and those for harmonic-property predictions, which is expected because κ is determined by 

both harmonic and more challenging anharmonic properties, the newly revealed variance and 

how the mean-variance information together impacts κ is unknown. More importantly, other 

than widely-applied correlograms, an analytical tool to study this is still missing. 

Inspired by various forms of van-Arkel-type triangles, we use mean and standard deviation 

to construct extended triangles and generalize extensively to other atomic features (see Chapter 

4.6). Invented originally for binary inorganic compounds, van-Arkel-type triangles were 

historically constructed to characterize the bonding nature, using the average and difference of 

the two elements' electronegativity χa. In our case, we have multi-component compounds and 

more dominant quantities than χa. Therefore, we extend the original van-Arkel triangle to 

include more components with mean and standard deviation, and to more physical descriptors 

important for κ. For instance, the VGS and χa triangles shown in Figure 4-2(e-f) characterize 

packing and bonding information, respectively. Although the extension is straightforward, it 

helps to chart the structural chemistry of κ. For instance, each of these triangles illustrates a 

projected materials space, within which all materials should be confined. While the coverage 

is essential for validating our dataset, it is also interesting to note that many of the chosen 

features are effective divisors. In other words, given the mean and deviation of any of these 

features for a unit cell, the relative magnitude of κ can already be estimated. 

Note that our work confirms and also enhances our existing understanding of trends in κ.  

For instance, it is commonly established that low-κ materials often have i) high average atomic 

mass, and ii) weak interatomic bonding, so that group velocity can be low, and iii) high 

anharmonicity in order to have short relaxation time (e.g. more scattering channels resulting 

from complex crystal structures). However, bonding strength and anharmonicity are 

computationally expensive quantities. Meanwhile, predicting κ directly from atomic structures 
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was at best qualitative in the literature. With our analysis based on Figure 4-2, we now have 

proxies for bond strength and even κ. Moreover, our identified structural features have only 

partial overlap with the past works on learning vibrational properties[251, 258]. In particular, 

comparing to the learning of harmonic properties, these mean-variance pairs which inspired 

our extension of van-Arkel triangles also suggest the importance of structural variance and 

complexity in anharmonicity. 

 

4.4. Transfer learning of experimentally measured thermal conductivity 

Because κC still deviates from κexp by an order of 1.5[157], learning κC might inherit the error 

of κC. Therefore, directly learning κexp might avoid learning the error of κC. In order to exploit 

knowledge learned from the larger calculated dataset and promote the learning of the small 

experimentally measured one, we develop a transfer learning scheme (see Figure 4-3(a)), which 

is based on the idea that correlated datasets share similar domain knowledge. Here, multi-

fidelity learning is less useful than transfer learning, as the larger κC dataset only has less 3,000 

data points, and multi-fidelity learning cannot predict properties of materials without low-

fidelity data.  

To take advantage of the knowledge learned from our larger high-throughput dataset, we 

develop a transfer learning framework demonstrated in Figure 4-3(a). This transfer learning 

scheme we used to predict experimental conductivity is a two-step modified CGCNN model: 

i) training a CGCNN model on our high-throughput κC dataset to extract knowledge, which has 

been done in the main text. ii) transferring the parameters of all layers from step i) to initialize 

a second CGCNN to transfer knowledge, and add one extra layer before the output layer to 

account for the difference between the two datasets. For the second step, we use the smaller 

κexp dataset (132 entries, see Ref.[55]) collected from experimental measurements in the 
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literature. Since the experimental dataset is very small, in step ii), all the layers other than the 

last one are frozen to keep the pre-learned knowledge and reduce the degrees of freedom to 

suppress overfitting. 

With this transfer learning scheme, we predict directly experimental values here using 

CGCNN, but with high MAEs (see Figure 4-3(b)), due to small size of the experimental dataset, 

<103 entries. The overall performance is compared with random forest and CGCNN in Figure 

4-3(b), using different training datasets, and as can be seen our TL-CGCNN leads to the lowest 

MAE. Figure 4-3(c) plots the improvement for each data in the test set, defined by the absolute 

error difference between CGCNN and TL-CGCNN. It can be seen that the accuracy on the 

high-κ end (logκ > 1) is improved, but the accuracy is deteriorated on the low-κ end, even 

though the overall performance is enhanced. Some example predictions in the high-κ limit from 

step ii), can be found in Table 4-1. In the logκ < 1 region, we recommend κexp
’ from random 

forest. 

To understand the different performance in the high- and low-κ regions of the transfer 

learning model, we look into the space of crystal features in the neural networks. In Figure 4-

3(a), the network before the last hidden layer learns the feature vectors of materials Vf, and the 

last operation from Vf to output is simply a regression with softmax activation. Since in TL-

CGCNN we freeze Vf and all layers before the extra layer due to the limited amount of data, 

we essentially use a one-layer neural network to fine tune κexp
’ learnt from κC

’. We plot Vf from 

the high-throughput and experimental datasets in Figure 4-3(d). Interestingly, we observe a 

similar distribution between κexp and κC in the Vf space, showing a strong correlation between 

the two datasets. However, in the high-κ region, κexp distributes more smoothly along the V-

shape than in the low-κ region, which explains why TL-CGCNN performs better in the high-

κ. Such issues in the low-κ region can be tackled from two aspects: i) more experimental data 
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with low κ should be generated to better understand the κexp distribution, and ii) future high-

throughput calculations should be refined to shrink the difference between κC and κexp, 

especially the outliers, in order to better sample the experimental Vf space. The observation of 

data bias indicates the need to expand the current database. Instead of calculating hundreds of 

candidates in a certain material family each time, feature-space-based sampling techniques may 

be more computationally efficient to cover the material space. 

 

Figure 4-3. a This model learns high-throughput dataset κC and transfer the knowledge to 

learning κexp. b Comparison between different machine learning models, including random 

forest, CGCNN, and TL-CGCNN, trained on κC or κexp. TL-CGCNN exhibits the lowest MAE. 

c A closer look at the improvement of TL-CGCNN compared with CGCNN (κC) in prediction 

on the test set. The region of logκ > 1 is systematically enhanced, while the logκ < 1 region can 

be better or worse. d The distribution of the feature space Vf projected onto two dimensions. 

The distribution and ranking of κC is generally smoother than κexp, and for κexp the upper end is 

smoother than the lower end. 
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4.5. Discovery of rare earth chalcogenides for thermoelectrics 

The structural chemistry of κ can be used to extend the predictions from machine learning. 

For instance, in the upper limit, machine learning predicts the κ values for BN and diamond to 

be 764 W/mK and 2225 W/mK, which are close to experimental values. As shown in Figure 

4-4(a), from the van-Arkel triangle of χa, we notice two candidate materials between BN and 

diamond: C3N4 and B4C3. The κexp
’ of C3N4 ranked in the top 1% in our machine learning 

predictions over ICSD. In contrast, B4C3 is absent from ICSD, and is obtained by reading the 

van-Arkel triangle. One can also use this approach to search for low-κ materials. Guided by the 

triangles, we adapt the corner of thalium, and iodine, considering their atomic weight and 

electronegativity. As shown in Figure 4-4(b), binary and ternary compounds (e.g. TlI, CsTlF3, 

CsPbI3) are predicted from machine learning. Based on these, we could hypothesize that CsTlF3 

would have a low κ, which is also absent from the ICSD and confirmed by our DFT calculations 

(Table 4-1). 

Another group of the least thermally conducting materials are the REX family. As mentioned 

above, the REX materials rank the lowest 5% in the κ chart. To further confirm their transport 

properties, we show in Figure 4-4(c) the temperature-dependent thermal conductivity of six 

compounds (Er2Se3, Er2Te3, Tb2Te3, Dy2Te3, Ho2Te3, and Y2Te3) that belongs to the REX 

family. Note that the electronic contribution to the thermal conductivity is negligible since 

these materials are insulators. We obtain fairly low κ of these compounds with minimum values 

of 0.5 to 0.6 Wm-1K-1 at 973 K for several compounds such as Er2Te3, Tb2Te3, and Dy2Te3. 

The κ values of REX are comparable with Zintl phase Yb14MnSb11[259], and lower than SiGe 

bulk alloy[260] and half-Heusler ZrNiSn[261]. The low κ suggests the potential of these 

materials for thermoelectric applications. Advanced thermoelectric materials demand decent 

electronic transport performance, which can be enabled by aliovalent doping to modify the 
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Fermi level. 

 

Figure 4-4. Proposed searching directions of a high- and b low-κ materials. While C3N4 exists 

in ICSD and is recommended by TL-CGCNN, van-Arkel analysis suggests B4C3 (absent in 

ICSD) to have high κ as well.  b is part of periodic table that m and χa are both large, based on 

which binary/ternary compounds are recommended (TlI, CsTlF3, CsPbI3) and hypothesized 

(CsTlF3). c The proposed REX system, and the temperature-dependent thermal conductivity of 

6 chosen REX materials. The materials marked empty are chosen for further thermoelectric 

measurements. d Temperature-dependent thermal conductivity, electrical resistivity, and 

Seebeck coefficient of compound series Er2Te3-xBix and Y2Te3-yBiy with x= 0, 0.1, 0.2, 0.3, 0.4, 

0.5 and 0.6, and y =0, 0.2, 0.3 and 0.4. (e) Temperature-dependent zT of REX, compared to 

Yb14MnSb11 (Zintl phase[259]), ZrNiSn (Half-Heusler[261]), SiGe alloy (bulk alloy[260]), and 

La3Te4 (REX). 

 

Among the REX compounds with charted thermal conductivity, we select Er2Te3, and Y2Te3 

for case study to investigate their full-thermoelectric properties through partial substitution of 

Bi at the Te sites. Figure 4-4d shows the temperature-dependent thermal conductivity, which 

increases with the content of Bi, especially at elevated temperature. Such a thermal-

conductivity increase has an electronic origin due to reduced electrical resistivity, which is also 

shown in Figure 4-4d for compound series Er2Te3-xBix and Y2Te3-yBiy with x =0.2, 0.3, 0.4, 0.5 

and 0.6, and y =0.3 and 0.4, whereas the resistivities of the compounds with x =0, 0.1, and y=0, 

0.2 are not shown since they are too high to measure. Generally, the substitution of Bi yields 
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reduced electrical resistivity for both series, which is accompanied by the reduced Seebeck 

coefficient (S). The combination of S2ρ, termed as the power factor, exhibits a maximum of 

1.15 mWm-1K-2 for compounds with x =0.3 at 973 K, which is comparable to some advanced 

TE materials such as Cu2Se[262] and SnSe[263]. The combination of power factor and thermal 

conductivity yields the thermoelectric figure-of-merit, zT, which shows a peak exceeding 1.0 

at 973 K for Er2Te2.7Bi0.3 with an increasing trend, thus suggesting even higher zT is possible 

at higher temperature. The obtained zT for Er2Te2.7Bi0.3 is comparable to some advanced TE 

materials, such as Zintl phase Yb14MnSb11[259], Half-Heusler (ZrNiSn[261]), bulk alloy 

(SiGe[260]), and another REX (La3Te4). Our reported zT has higher value at either high 

temperature or the whole temperature range. Er2Te3, and Y2Te3 are two examples of the REX 

system, which merits further exploration for high-temperature thermoelectrics. 

 

4.6. Details of methods  

    Random forest, feature ranking, and dimension reduction. Random forest is an ensemble 

method that combines multiple decision trees. This model has been used as both classifier and 

regressor for materials informatics. In contrast to neural networks, random forest models are 

interpretable by providing an intrinsic metric to evaluate the importance of individual 

descriptors. We use this advantage of random forest in the main text to extract the important 

structural features that dominate κ. We use random forest implemented in scikit-learn[19]. The 

number of trees are set to 50 for all calculations, but the random states are randomly selected 

when studying the uncertainty in predictions. Dimension reduction has been performed through 

two approaches: i) principal component analysis (PCA) combined with t-distributed stochastic 

neighbor embedding (t-SNE). PCA is a linear reduction approach using singular value 

decomposition, and t-SNE converts similarities between data points to joint probabilities then 
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minimizes the Kullback-Leibler divergence between the joint probabilities of the low-

dimensional embedding and the high-dimensional data. We reduce the 154-dimensional feature 

space into 20 dimensions using PCA, then visualize the feature space in two dimensions by t-

SNE analysis. In essence, this reduces our feature space into 2 dimensions, and enables direct 

visualization. PCA and t-SNE are both implemented in scikit-learn[19]. ii) Another approach 

is based on feature selection from random forest. Random forest ranks the importance of 

features, with which we could reduce the feature space till the performance (e.g., MAE) 

converges. This process could be more physics-based than the purely data-driven approach in 

i). 

    Hyperparameter optimization. In this chapter, we tune the following hyper-paramters by 

grid-search: number of convolutional layers, length of atom feature vectors, length of hidden 

layer vectors, learning rate and type of optimizer, and for the last layer of the transfer learning 

scheme, the length of the layer and regularization term are considered. Descriptions of the 

hyperparameters for CGCNN are provided in Ref.[71]. For training the larger theoretical 

dataset, cross-validation is done by randomly selecting 20% of the data as the validation set, 

and for the small experimental dataset, a 5-fold cross-validation is used. In order to account for 

the random effect in training neural networks, for each parameter setting the training is repeated 

20 times. We used both a Bayesian random search and deterministic grid search to optimize 

the hyperparameters, and the optimal hyperparameters used in this chapter are listed in Ref.[55]. 

First-principles validation and other details. The κDFT values in Table 4-1 are calculated 

using a supercell perturbation method and the Botlzmann theory implemented in 

Phono3py[264]. Unit cell sizes are set to be greater than 10 Å, and the magnitude of atomic 

perturbation to be 0.005 Å. The force constants are extracted from density functional theory 

with plane-wave basis set through VASP[265]. We employ the generalized gradient 
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approximation of Perdew, Burke, and Ernzerhof[266], and uniform k-meshes with kpoint 

density greater than 700 k-points Å-3. The plane wave energy cutoff is set to be 1.3 times the 

maximal ENMAX of elements in the unit cell. The convergence criteria for energy and ionic 

forces are set to 10-6 eV and 0.01 eV/ Å, respectively. Details of experimental measurements 

are provided in Ref.[55]. Van-Arkel triangles have been used to characterize the bonding nature 

of binary compounds, in terms of the average and difference of element electronegativity (χa).  

 

4.7. Chapter summary and outlook 

In summary, we studied the structural chemistry of lattice thermal conductivity κ for 

inorganic crystals, and predicted κ for a large set of inorganic compounds, directly from their 

atomic structures. We extended our graph neural network model to include transfer learning, 

and using as input our recently prepared database of κ. Combining the neural networks model 

and interpretable random forest, we extract atomic features that dominate the physics of κ, 

including elemental (VGS, χa, ra) and packing (LB, Va). Other features, such as CN, are shown 

to be also important but more complicated than conventionally assumed. With these identified 

features, we extended van-Arkel triangles as two-dimensional projected materials space. This 

analytical tool allows the projection and visualization of materials spaces for κ, and could be 

applied to other materials informatics studies. We also identified rare-earth chalcogenides 

(REX), which exhibit a zT exceeding 1.0 and are a new promising material system for 

thermoelectrics. A limitation of the current models is not to fully predict the six tensor 

components of κ (our current values are polar average of these tensor components), thus the 

possible anisotropy. However, this will be technically possible with increasing database for 

anisotropic κ and development of machine learning models to predict tensor properties[78]. 

As for transfer learning, we show the mechanism of where and how transfer learning 
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improve the learning performance of the small dataset with help of the large data. Although 

transfer learning has been increasingly used to predict materials properties with small 

datasets[49, 61, 64], how to choose the proper larger dataset is still empirical and based on 

human intuition. It is still not clear fundamentally why and how transfer learning improve 

learning performance. Practically, it is important to know before the training process whether 

transfer learning between a pair of datasets would help the learning of the smaller dataset. For 

this purpose, our analysis in Figure 4-3 might be good start point, although more quantitative 

metrics are still necessary, such as the Log Expected Empirical Prediction[267] and Log 

Maximum Evidence[268].For this purpose, our analysis in Figure 4-3 might be good start point, 

although more quantitative metrics are still necessary, such as the Log Expected Empirical 

Prediction[267] and Log Maximum Evidence[268]. 
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Chapter 5 

5. Optimizing laser-processing by Bayesian Optimization 

 

5.1. Introduction 

When the dataset is too small or too biased, algorithm design alone might not be sufficient 

to significantly improve the prediction performance of machine learning models, and 

expansion of dataset is necessary. For efficient and effective expansion, one should add data 

points that are not in the same domain as the existing data points, otherwise the added data 

points cannot provide more information about the whole materials space. For optimizing 

certain materials properties, one should add data points that are likely to result in the desired 

properties. Active learning is an approach to add the most uncertain data points to the current 

machine learning models to the training set, because these uncertain data points are highly 

unlikely to come from the same domain covered by the current training set. Based on active 

learning, Bayesian Optimization also add data points that are likely to have the optimal 

properties to the dataset. In this chapter, we show an example of using Bayesian Optimization 

to search for the optimal laser-processing parameters, as well as how machine learning enables 

design and processing of functional materials. 

Laser-reduction of polymers has recently been explored to rapidly and inexpensively 

synthesize high-quality graphitic and carbonaceous materials from commercial polymers. Such 

easily synthesizable carbonaceous structures hold promise in being utilized for a broad range 

of electrochemical applications, including in energy storage. However, in previous works, 

laser-induced graphene has been restricted to semi-aromatic polymers and graphene oxide – in 

particular, poly(acrylonitrile) (PAN) is claimed to be a polymer that cannot be laser-reduced 

successfully to form electrochemically-active material. In this chapter, three strategies to 
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surmount this barrier are employed: (1) thermal stabilization of PAN (resulting in thermally 

stabilized PAN (TS-PAN)) to increase its sp2 content for improved laser processability, (2) pre-

laser treatment microstructuring to reduce the effects of thermal stresses, and (3) Bayesian 

Optimization to search the parameter space of laser processing to improve performance and 

discover new morphologies. Based on these approaches, we demonstrate the lowest reported 

sheet resistance (6.5 Ω/sq) derived from laser-reduction of any polymer, in addition to 

demonstrating successful laser reduction of PAN for the first time. The resulting materials are 

tested electrochemically for activity, and their application as membrane electrodes for 

vanadium redox-flow batteries is demonstrated. Electrode performances are lower than 

conventional electrodes, but our approach realizes membrane electrodes that are processed in 

air, below 300 °C, which are cycled stably over 2 weeks at 40 mA cm-2, motivating further 

development of laser-reduction of porous polymers for membrane electrode applications such 

as RFBs. 

Graphitic and carbonaceous materials are promising for a variety of energy applications, 

including electrochemical applications[269, 270], and water treatment[271],. However, these 

avenues have usually required either extensively processed graphite or mixtures of carbon, or 

energy-intensive processing such as chemical vapor deposition. Moreover, there is a vast body 

of literature on the optimization of materials properties for specific applications. However, 

given the vast number of parameters and approaches involved with optimizing carbonaceous 

materials, it is evident that such optimization frameworks are challenging to establish and test. 

In this chapter, we focus on the specific case of porous carbonaceous electrodes, which are 

typically derived from poly(acrylonitrile) (PAN) that has been manufactured and carbonized / 

graphitized into micrometric fibers arranged into a free-standing fibrous mat[272]; however, 

alternative materials sets derived from Rayon and biomass have also been demonstrated[273-

275].  
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    To achieve a functional porous carbon electrode, careful design of its microstructure, in 

addition to carbonization methods involving thermal processing, are required. Recent work 

demonstrated that the bottom-up synthesis of PAN-derived, non-fibrous electrode 

microstructures using non-solvent induced phase separation (NIPS) provide multimodal porous 

structure consisting of interconnected large pores with interspersed small pores, which can 

outperform conventional fibrous electrodes[276]. In the case of PAN, the polymer scaffold 

undergoes a multi-step heat-treatment, whereby the material is thermally treated in air at lower 

temperatures (typically a maximum of 300 °C) and then pyrolyzed at higher temperatures to 

increase graphitization content. The thermal stabilization is essential for crosslinking the PAN 

and improving the ensuing mechanical properties of the electrode after carbonization[272, 277].  

The overall process is also crucial to preserve the structure and hence electrochemical 

performance of the carbon electrode[278]. However, conventional means to pyrolyze PAN-

based materials through thermal processing is cumbersome, costly, and time-consuming – 

especially in the case of thermal processing which becomes increasingly challenging above 

1000°C, which is the temperature range needed for effective carbonization, but also a 

temperature which approaches the melting points of many common metals, which then requires 

specialized, custom-built graphite ovens. These hardware limitations motivate versatile, low 

temperature, and high-throughput manufacturing routes.   

    Over the past several years, laser-annealing has been shown to be a promising means to 

rapidly generate high-quality carbonaceous and graphitic material from polymer precursors 

with lower energy requirements and higher throughput than standard thermal processing[279, 

280]. Laser-annealing leverages the strong optical absorption of polymers in specific 

wavelength ranges (for example, at 10.6 µm), which causes them to experience temperatures 

of over 2500°C under very short timescales[280]. With conventional means, accessing 

temperatures above 2000°C poses both significant challenges and opportunities in materials 
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processing. Previous works have aimed to identify criteria for “laseability” of materials[281]; 

unfortunately, PAN has repeatedly been identified as a polymer that cannot be laser-annealed 

effectively[279, 280]. Recent work has shown that even reportedly laseable polymers may need 

pre-treatments to surmount phase transitions that might cause melting or ablation[282]. In this 

chapter, we demonstrate that for PAN, the aforementioned thermal stabilization step is essential 

to prevent melting or ablation from the rapid material changes induced by laser processing.  

    However, with a completely new materials system which was previously thought to be 

unlaseable, the process of optimizing numerous variables that govern the laser-annealing 

process is daunting. It is time-consuming to explore the full search space to discover new 

morphologies, or even better optima, which are not biased by the initial search criteria. Thus, 

we leverage Bayesian Optimization (BO): a promising tool to optimize the laser-annealing 

conditions for PAN. Optimization of chemical reactions is usually challenging because there 

are often too many possible conditions for an experiment, which makes it impossible to 

exhaustively measure outcomes of all possible conditions.  

    BO is an uncertainty-guided optimization method for complex black-box objective 

function[283]. It consists of two basic steps: exploitation and exploration. In exploitation, BO 

suggests that the candidate point that has the optimal value predicted by BO should be priorly 

tested, while in exploration it suggests that the candidate point that are uncertain to the BO 

should be priorly tested. The balance between exploitation and exploration is controlled by the 

choice of acquisition function. Turner et al.[283] have shown that BO is superior to random 

search for black-box optimization problems such as machine learning hyperparameter tuning, 

and Shields et al. has even shown that BO outperforms human decision-making for 

optimization of some chemical reactions[18]. Consequently, BO has been increasingly used to 

tune the experimental conditions in the field of chemistry and materials science[18, 41, 284-
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287]. Given the massive amount of possible laser conditions, BO seems to be useful to find 

appropriate laser conditions with reasonable times of trials, and Wahab et al.[40] have 

employed BO to guide the lasering of graphene.  

    However, lasing PAN might be a different or even a more challenging problem for BO than 

most previous studies. In previous studies, BO seldom yields a counter-intuitive result (with 

the exception Dave et al.[41]). Here, the task of lasing PAN to make it conductive is itself 

counter-intuitive, as previous works note the unlaseability of PAN[279, 280].  In this sense, 

BO is employed to discover new paradigms than to accelerate a well-known physical and 

chemical process. More specifically, to tune laser parameters for PAN by BO, human 

intervention might be necessary in the operation of BO. Recently, BO has been increasingly 

combined in the autonomous platform of experiments where BO is conducted in a human-

defined search space without human-intervention during the optimization[18, 41, 285]. The 

search of lasering conditions for graphene is also conducted in this autonomous way[40]. Pre-

defining the search space is important for such autonomous optimization, because there is a 

trade-off between efficiency and effectiveness: if the search space is too large, then the steps 

to reach the optimum might be larger; otherwise, the optimum might not be included. Unlike 

polymers such as polyimide and poly(ether sulfone) which are known to be laseable[40, 279, 

280], there is limited information about lasing PAN, so it is possible that the pre-defined search 

space might be too large or too small and adjustment of search space might be necessary during 

the operation of BO – where the initial search parameters in this study are chosen on the basis 

of an optimum derived from numerous experiments on a completely different material system 

(graphene oxide)[288]. Second, different PAN lasing conditions are shown to result in different 

carbon properties (as a spectrum between graphitic and carbonized), and consequently the 

impact of different lasing conditions on the morphology and property of PAN might be highly 

nonlinear and non-smooth, which is challenging for the standard BO based on Gaussian 
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Process (GP). Third, in most cases, BO focuses on a single aspect of the materials system, 

while in our case, during the optimization, other aspects of materials might also change and 

impact the merits of the materials. Fourth, unlike lasing conventional monolithic polymers, 

where resulting structures are physically more predictable and can thus be investigated easily 

through Raman spectroscopy – we use the linear resistance (R) to rapidly probe the overall 

progression of the lasing process to approach a conductivity regime where electrochemical 

properties can be further investigated.  

    Since the initial materials system and resulting morphology/properties are not as well known, 

we are not able to use automation approaches as described in previous works. Our approach 

thus employs BO driven to optimize R – an easily measured parameter – to arrive at suitable 

candidates for electrochemical performance. We arrive at two parameter configurations with 

low R which yield either highly graphitic membranes, or highly disordered/carbonized 

membranes. We show that an intermediate between these two properties yields the best results 

in terms of electrochemical performance and stability. Thus, the BO discovers two vastly 

different parameter sets to yield different chemical and physical properties, of which one was 

found to represent a good set of properties for electrochemical applications. 

    In summary, this chapter employs an array of strategies, namely: (a) microstructuring of 

PAN, (b) thermal stabilization of PAN, and (c) a BO-driven optimization of laser annealing 

parameters, to demonstrate successful laser-annealing of PAN for the first time. Our study 

paves the way for future work to use BO as a means of accessing new material morphologies, 

rather than simply accelerating, or optimizing known processes, and demonstrates the ability 

for laser-annealing to create PAN-derived membrane electrodes without an energy-intensive 

high temperature carbonization step, which yields the lowest sheet resistance demonstration 

(6.5 Ω/sq) for a laser-reduced polymer. 
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5.2. A priori knowledge and insights needed to start Bayesian Optimization 

    To start approaching the problem of laser-processing PAN, we begin by verifying the current 

knowledge. After testing lasing parameters on as-prepared PAN membranes (as described in 

Chapter 5.6), we verify that the polymer is either unaffected when below a certain power 

threshold, or completely melts or burns above the threshold, which does not result in a 

conductive structure as previously described. Therefore, we identify a need to further process 

PAN from its native state.  

    PAN is often thermally stabilized to transition it into a morphology that can be effectively 

carbonized and graphitized, and this property has been well-explored especially through 

carbon-fiber synthesis (Figure 5-1a). However, a purely sp2-character precursor is not ideal for 

the process to occur – in fact, a balance of sp2 and sp3 nature in a material has been shown to 

promote graphitization. Therefore, the stabilization process in air is shown to promote this 

morphology[281]. 

    This process causes rapid thermal expansion and contraction associated with the fast 

timescales of the lasing process, and the high temperatures experienced due to the absorption 

process and subsequent chemical changes (such as graphitization) of the polymer, which can 

lead to ablation and mechanical stresses that prevent bulk structures from being realized 

through the lasing process. We thus identify micro-structuring to mitigate complete ablation of 

the polymer, and this is shown to yield high-quality graphitized material with minimal ablation. 

    As an initial input into the system, we explore a sample space of previously probed 

parameters (such as laser scan speed, laser power, focal point height (Z) and image density 

(ID)), which are each described in the Methods section. Based on intuition from graphene-

oxide, we choose constraints on each of the variables to limit the initial exploration. The direct 
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physical effects of these parameters can be condensed into a physically meaningful expression 

known as dynamic fluence (in units of J/mm2), which is expressed as follows[289, 290], 

assuming Z/Z0 >> 1 (where Z0 = 0.02 inches) (equation 5-1): 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 =
𝐿𝑎𝑠𝑒𝑟 𝑃𝑜𝑤𝑒𝑟

𝑆𝑐𝑎𝑛 𝑠𝑝𝑒𝑒𝑑×𝐵𝑒𝑎𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
∝

𝐿𝑎𝑠𝑒𝑟 𝑝𝑜𝑤𝑒𝑟

𝑆𝑐𝑎𝑛 𝑠𝑝𝑒𝑒𝑑×𝑍
......(5-1) 

However, as evidenced by previous work[289, 290], such parameters, with the rapidly 

changing properties of the host polymer itself as it chemically reduces, ablates, or changes in 

volume, quickly increases the complexity of the problem. This lends itself to modelling the 

system as a simple set of input machine parameters and a rapidly testable output. 

    With this information in mind, we designed our procedure. We start with making small, 

square test-areas using a set of 20 input parameters, and we probe the linear resistance of the 

samples across a small square to roughly obtain the bulk resistance of the lased sample (where 

unlased, TS-PAN is non-conductive). The resulting R values are input into the BO algorithm 

(Fig 5-1b) to suggest parameters to further explore the search space, or to exploit a specific set 

of successful parameters. The process is repeated for several cycles until optimized parameters 

are found (Fig 5-1c). Then, the optimized parameters are used on both sides of the PAN 

membrane to allow for a fully-conductive slab (Fig 5-1d), which is then used for 

electrochemical testing (Fig 5-1e). 
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Figure 5-1. a Chemical structure of PAN and possible structures in TS-PAN, showing 

increased conjugation in thermally-stabilized polymer. b Illustration of the Bayesian 

Optimization process, showing the exploration and exploitation process in the Bayesian 

optimization algorithm, around the ground truth of ideal parameters. c Experimental cycle for 

initial optimization. Samples are fabricated with input parameters, then tested for linear 

resistance across a 1cm square, followed by feeding results into the Bayesian optimization 

algorithm, and this is repeated for 8 cycles. d For electrochemical tests, the optimized 

parameters are used to lase both sides of the TS-PAN. e General schematic of the redox-flow 

battery test (left) and cyclic voltammetry test (right). 

 

5.3. Searching for sheet resistance optimum 

    In this chapter, we use BO to optimize the lasering conditions for PAN. Figure 5-2a shows 

the evolution of the lowest R during the BO, and we can see that the lowest R is achieved at 

iteration #5 with R = 10 Ω, which is 40% of that with the initial human-designed parameters at 
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iteration #-1. Note that such a significant improvement is achieved with 204 tests out of 1 

million possible combinations of parameters, showing the efficiency of the optimization. 

Figure 5-2b shows the evolution of the parameters that result in the lowest R in each iteration. 

The evolutions of the best parameters show the combination of exploration (large jumps) and 

exploitation (small changes) in the optimization process. The full set of 204 points explored in 

this study is displayed in terms of power and speed in Figure 5-2c, from which one can see the 

exploration direction, from low power, medium z region to medium power, highest and lowest 

Z region. Moreover, Figure 5-2c shows that, after iteration #4, BO extensively exploits the 

region with highest Z (the region with lowest R).  

    A few phenomena and morphologies occurred during the optimization. The first 

phenomenon that emerged during the experiment was called the “burnout” regime. This was 

observed at high powers and low speeds, which were in the direction that the BO algorithm 

initially optimized for, where a high degree of ablation was observed, which removed a large 

fraction of the material, but in some cases, left a conductive sheet of material which was brittle. 

With even higher powers, this material was discontinuous, and therefore R could not be 

measured. A “burnout” sample was therefore designated as an undesirable result, since it would 

not be useful for most electrochemical applications where both high conductivity and 

electrochemical activity are necessary, rather than just conductivity at the expense of electrode 

active surface area. Starting from iteration #3, we begin to observe burnout. Since we aim to 

avoid burnout, we set the R of the burnout cases to be 106 Ω to force the BO optimize away 

from the burnout region. However, R of the burnout cases are quite low strictly from a 

resistance measurement perspective. For example, for the parameter set of (Z = 0.14, ID = 5, 

Power = 35, Speed = 10), although it results in burnout, the measured R is 9.3 Ω, which is even 

lower than the lowest R reported above.  
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    Because of the assignment of large R to the conductive burnout cases as mentioned above, 

and because of the non-linear relation between each individual parameter and R as shown 

below, the underlying function between the four parameters and R is highly non-linear. 

Therefore, the GP used in standard BO might not capture the non-smooth function very well. 

Designing GP for non-smooth functions is still in development[291-293]. Here, after iteration 

#3, we use neural networks (NN) with high expressive power for non-linear functions[21] to 

help the exploitations in the high Z regions. After each iteration, we use the updated dataset to 

train a GP by the standard BO package, and also train a NN, and we replace some of suggested 

parameters from GP by that from the NN to avoid points which are intuitively likely to result 

in burnout (i.e., replacing high power, low speed points suggested by GP with high Z points 

suggested by NN). As a result, the parameter that results in the lowest R is discovered by the 

NN. More discussions about the role of NN in this chapter are provided in Chaper 5.4. 

    At iteration #3, we expand the search space of Z from [0.03”, 0.10”] to [0.02”, 0.14”]. The 

motivation for the expansion is that, at iterations from #0 to #2, the lowest Rs are all observed 

at the boundary of Z = 0.100 inches. As a result, we observe lower Rs after the expansion, and 

the lowest R is observed at Z = 0.138 inches. As previously noted, the dynamic fluence of a 

particular set of parameters is proportional to the Power:Z ratio, which can remain fixed even 

as Z is expanded. Therefore, to maintain energy efficiency of the process, we limit further 

expansion of the Z limit. Despite the current trend of autonomous optimization of experiments, 

here we suggest that human monitoring and modification of the optimization of experiments 

might still be necessary. This is evident due to the following interventions: (1) assignment of 

large R to burnout cases, (2) the use of NN for exploitation, and (3) the expansion of search 

space during the optimization. However, the benefit of the mixed BO and NN process is the 

discovery of two parameter regimes which unlock distinct morphologies as observable by 

Raman spectroscopy. The evolution of the parameter set resulting in the lowest R in each batch 
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of 20 samples is shown in Figure 5-2d.  

    To further understand the role of each parameter in determining R, we plot the impact of 

each parameter on 1/ R (SHAP value[96]) for all the 204 data points in Figure 5-2e. Based on 

empirical observation informed by the physical insight of the dynamic fluence, we see that 

higher speed leads to higher R, and higher values of Power and ID have either a strongly 

positive or strongly negative effect on the final R. From a physical perspective, high power and 

ID samples are more likely to approach a regime of full graphitization / carbonization which is 

desirable from the conductivity perspective. However, they are also more likely to result in 

ablation with the incorrect corresponding parameters. The speed result corresponds specifically 

to the fact that slower speeds ensure a more even morphology across the sample, which 

improves the electrical connectivity between regions. 

Since the 2-point linear resistance of samples is correlated, but not necessarily equivalent, to 

the sheet resistance metric, select samples were tested with a van der Pauw (vdP) method to 

obtain the electrical properties of the network without series and contact resistance 

corresponding to the poor interface between the probes and the porous network (procedure 

described in the Methods section). The lowest demonstrated sheet resistance obtained through 

this method was 6.5 Ω/sq, which is the lowest reported sheet resistance to date for laser-reduced 

polymers. 
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Figure 5-2. a Illustration of the full Bayesian Optimization process to find the lowest resistance 

– where illustrated points show the best resistance measured over a set of 20 samples. b 

Illustration of the full 3D space of exploration, where all image densities are explored in each 

point. c Full illustration of explored power vs. Z, showing the exploration of a wide space of 

parameters to find the overall minima across the imposed boundary conditions. d 

Representative Raman spectra of select points in the optimization process, showing a 

progression towards an intermediate between highly-graphitic / carbonized electrode. e Effect 

of parameter values on the overall R outcome, where positive SHAP value represents a 

parameter expecting to reduce R, while a negative SHAP value represents an expected increase 

in R. 
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5.4. Neural networks for exploitation 

    Because of the assignment of large R to the burnout cases, and because of the non-linear 

relation between each individual parameter and R, the underlying function between the four 

parameters and R is highly non-linear. Therefore, the Gaussian Process (GP) used in standard 

BO might not capture the non-smooth function very well. We show the fitting results of the GP 

implemented in EDBO at iteration #7 in Figure 5-3, from which one can see that the GP cannot 

fit the dataset very well. Especially, the GP shows a very high false positive rate, or in other 

words, there are many points predicted to have low R which in turn do not have low R measured 

in experiments. Such high false positive rate might lower the efficiency of the exploitation step, 

as many of the predicted low R parameters would result in high R in measurements.  In Figure 

5-3c, we compare other surrogate models available in EDBO for fitting the dataset at iteration 

#7, including GP with different length-scale priors and nu parameters for the Matern kernel, 

and Bayesian Linear Model and Random Forest Model. We can see that switching from the 

automatic setting by EDBO to other models does not improve the fitting performance 

significantly.   

    In this chapter, we use neural networks (NN) to help the exploitation step. We use 3-layer 

networks with 16 neurons in each layer, and use the “relu” function as the non-linear activation. 

10 networks with different random initialization are used as an ensemble, and the predicted 

values of Rs are the mean of predictions from the ensemble. We choose the “relu” function as 

the activation function, because the dataset has step-function behavior, which partly results 

from the fact that we assign R = 106 Ω to all non-conductive samples and burnout cases. As 

shown in Figure 5-3b, the NNs have R2 scores close to 1.0 at all iterations. As a comparison, 

with the same dataset and other settings of NN, if we switch from “relu” activation to linear 

activation, the R2 scores would drop to around 0.4, and if we switch to logistic activation, the 

R2 scores would drop to less than 0.9.     
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    In Figure 5-3b, we show the fitting performance of GP and NN during the optimization. For 

GP, with the addition of new data, the fitting performance first drops quickly and then slowly 

improves, while for NN, the fitting performance is excellent over the whole process. We argue 

that, the combination of GP and NN in this chapter is critical to the optimization, because of 

the following reasons:  

    i) Both GP and NN contribute to the discovery of the parameters that result in the lowest R 

at each iteration. Specifically, NN suggests such parameters with lowest R at iterations #3, #5, 

#6, and #7, and GP suggests such parameters at iterations #0, #1, #2, #4, and #8. NN discovers 

the parameters with the lowest R during the whole optimization at iteration #5.  

    ii) Because of its strong fitting power, NN is very helpful for exploiting the high Z region, 

as shown in the argument i). However, we cannot rely solely on NN, because even if we use 

the standard deviation of NN ensembles as an estimation of uncertainty, all the parameters NN 

suggests to test are concentrated in the high Z region. Therefore, in order to continue the 

exploration for whole parameter space, GP is still necessary even after the introduction of NN.  

    iii) Although GP cannot fit the dataset well after several iterations, at the initial iterations, 

GP alone successfully lowers R from 25 to 18 Ω, and it suggests the exploration directions 

from medium Z to highest and lowest Z, which pushes us to expand the search space and 

identify the regions with low R. 
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Figure 5-3. a. Normalized measured 1/R versus predicted 1/R from GP in EDBO at #7. b. 

Evolution of R2 scores of predictions of 1/R from GP in EDBO and NN in this chapter. c. R2 

scores of different surrogate models in EDBO for fitting 1/R at #7. 

 

5.5. Properties of laser-processed poly(acrylonitrile) 

    While the material sheet resistance and electronic conductivity are indicators of electron 

transfer capabilities[294], we sought to confirm the electrochemical performance of lased 

electrodes optimized for sheet resistance. To this end, cyclic voltammetry (CV) was performed 

in aqueous iron chloride solution, as it has moderately fast kinetics and is a redox couple that 

holds promise as a low-cost, abundant electroactive material. In these experiments, the working 

electrode was one of the lased electrodes optimized for lowest sheet resistance (Low ID or 

High ID). The electrolyte composition was 50 mM Fe2+/3+ in 1 M KCl at 50%. Figure 5-4a 

shows representative voltammograms for two optimized parameters, Param A and Param B, at 

a 5 mV s–1 scan rate. Encouragingly, both samples show electrochemical activity as evinced by 

well-defined peak currents in the CVs. While the location of the prominent Fe2+ oxidation and 

Fe3+ reduction peaks (ca. 0.59 V and 0.37 V vs Ag/AgCl in 3 M NaCl, respectively) are similar 

for both samples, Param A exhibits sharper and more distinct currents at redox peaks than 

Param B, indicating higher electrochemical activity. We note that the results of the CVs are to 

be taken semi-quantitatively due to convoluting factors that complicate interpretation of 

definite electron transfer rates for non-planar and porous substrates during potentiodynamic 

measurements[295-297].  
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    To rationalize the differences in electrochemical activity, we performed ex situ Raman 

spectroscopy on Low ID and High ID samples. Comparison of the Raman signatures of the top 

and bottom of the lased electrodes in Figure 5-4b reveals that the electrodes exhibited different 

degrees of graphitized and carbonized content; in particular, Low ID had an intermediate of 

graphitic and amorphous content relative to High ID, which was highly carbonized at both 

edges. The combination of graphitic and amorphous physicochemical property in carbon-based 

materials has been shown in previous works to improve electrochemical activity[298, 299].42,43 

    Figure 5-4c shows high-resolution XPS scans of the laser-reduced electrodes, showing a 

marked difference in carbon signatures. In order of increasing binding energy, the peaks are 

attributable to carbides, C=C, C-C, C-O, and C=O bonds. The main peaks of interest are the 

C=C and C-C compared with other binding states, which clearly show a high degree of 

reduction and carbonization for high ID electrodes, while the XPS denotes a lower degree of 

overall reduction for the low ID electrodes. This observation is further justified by observed 

dendritic structures at the surface of lased portions which give rise to the low D and pronounced 

2D peaks which are observable in Raman, and also evident from the higher current density 

from the CV plot. Higher ID values tend to cause more ablation, and therefore are less likely 

to preserve highly graphitic features. 
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Figure 5-4. Exploration of the physiochemical morphology of optimized electrodes. a Current-

voltage plot of lased electrodes in 50 mM Fe2+/3+ in 1M KCl, showing the higher 

electrochemical activity corresponding to the lower-image-density electrodes. b Raman spectra 

of both electrodes, showing that lower image densities preserve graphitic features which 

improve electrochemical activity, but reduce sheet resistance. c C1s XPS scans showing the 

changes in degree of reduction in the electrodes after lasing. 

 

    As shown above, the best parameters tend to have an intermediate between low ID and high 

ID, where a continuum between the optimized parameters explored in Figure 5-4 were explored 

for Parameters 1, 2, and 3, respectively (exact Parameter values defined in Chapter 5.6). The 

cross-sectional images in Figure 5-5a highlight the stark morphological differences that result 

from modulating the different laser parameters. In each parameter, graphitic dendritic 

structures are visible at each electrode edge, indicating a possible increase in edge sites, which 
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can increase the electrochemically active surface area, as well as lower the redox overpotential 

of a certain electrochemical reactions[300]. However, the final performance in redox flow 

batteries depends on a variety of factors, which will be discussed in the following section. The 

morphologies of the electrodes as a result of using different Z, Power, and Speed parameters 

shows that there are differences in morphology and final electrode thickness which result from 

lasing the porous electrode, further complicating the final insights that could be drawn from 

the single variable used in BO. Figure 5-5b shows the similarity in overall oxidation states in 

each of the lased electrodes, and Figure 5-5c shows the progression of the 3 Parameters, from 

more carbonized to more graphitic. Due to the high degree of rapid chemical reduction 

experienced by PAN through this process, there is a marked degree of nitrogen content (as 

shown in the SI), but this effect has been investigated in previous work with other N-containing 

polymers and can be minimized with further parameter optimization[280]. 
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Figure 5-5. Scanning electron images of cross sections of a Parameter 1, b Parameter 2, and c 

Parameter 3, with high-magnification insets. Scale bars are 100 μm, and 10 μm for insets. 

Parameter values used for each are listed in the SI. X-ray photoelectron spectra for the Carbon 

binding energy range, with deconvoluted peaks are shown for d Parameter 1, e Parameter 2, 

and f Parameter 3. Each spectrum is deconvoluted to resolve contributions from specific carbon 

chemistries. g Raman spectra from the top and bottom of each electrode, showing the range of 

electrode surface morphologies achievable despite similar R values in the BO optimization step. 

 

5.6. Details of methods 

    Synthesis of phase separated membranes and electrodes The synthesis of the phase 

separated electrodes follows the methods described in previous reports[276]. Briefly, 

polyacrylonitrile (PAN, MW ~ 150,000 g mol–1, Sigma Aldrich), polyvinypyrrolidone (PVP, 

MW ~ 1,300,000 mol–1, Alfa Aesar), and N,N-dimethylformamide (DMF, for HPLC, ≥99.9%) 

were mixed together in a glass reservoir. A typical composition consisted of 6.4 g PAN, 9.6 g 
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PVP, and 80 mL of DMF, leading to 17.5 polymer weight percent, or 0.20 g polymer per mL 

of solvent[276]. To ensure uniform mixing of the reagents, the mixture was heated and stirred 

at 70 °C until a homogeneous, viscous, and clear polymer solution was obtained. Three 

aluminum molds, each machined to contain notches 10 × 5 cm wide and 0.1 cm deep, were 

arranged onto a glass plate. Polymer mixture was poured into each aluminum mold and 

dispersed evenly across the notches using a glass slide. The casted polymers were then rested 

in ambient conditions for ca. 15 min; during this step, humidity from the ambient environment 

leads to vapor induced phase separation at the non-solvent/solvent interface, preventing an 

impenetrable non-porous dense layer from forming. After resting for the prescribed time, the 

glass plate with the aluminum molds is submerged into a coagulation bath consisting of 3 L of 

deionized water to initiate the phase separation process. After phase separating overnight, the 

membranes are removed from the aluminum molds, and repeatedly soaked in fresh boiling 

water until the added water becomes completely clear; this process maximizes the likelihood 

that PVP and DMF are eliminated from the pores of the PAN membrane.  

    Following phase separation, the membranes were dried under vacuum overnight at ca. 80 °C 

to remove residual non-solvent. Then, the electrodes were thermally stabilized in a Barnstead 

Thermolyne muffle furnace. The temperature was ramped at 2 °C min–1 from room temperature 

(ca. 23 °C) to 270 °C, where it was held for 1 h, and allowed to cool back to room temperature 

without further intervention. For the furnace carbonized samples, the thermally stabilized 

materials were inserted into a Carbolite Gero GHA 12/300 and carbonized under flowing 

nitrogen with the following programming sequence: ramp 5 °C min–1 from room temperature 

to 850 °C, hold for 40 min at 850 °C, ramp from 850 °C to 1050 °C, hold for 40 min at 1050 °C, 

cool down to room temperature without further intervention.  

    Laser processing of membranes and physiochemical characterization Electrodes are 
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laser processed with a VersaLaser VLS2.30 (Universal Laser Systems) with a 10.6 um CO2 

laser. Parameters which are optimized include (1) Laser Power, which is modulated as a 

percentage of 25W; (2) Laser speed, which is a percentage of 1270 mm/s; (3) Image Density, 

which indicates the vertical line density in a given scan – where an Image Density of 6 

corresponds to 1000 DPI (the horizontal pixel density is fixed at 1000 DPI); (4) Z-height, which 

indicates the degree of defocus relative to the sample. The samples are approximately 0.02 

inches thick, which means this is where the surface of the sample is perfectly in focus, and any 

higher settings indicate a defocusing of the laser spot. The initial search space for Z was 

restricted to 0.10 inches, which was expanded to 0.14 inches in the final procedure. A constraint 

was set, since defocusing necessitates an increase in power at a specific laser point, which 

reduces the energy efficiency of the process. Once the membrane areas were patterned, the 

resistance of the samples was measured from the edges of the patterned area with a multimeter. 

The measurements are taken across opposite edges and the final R value is listed as the average 

of the two readings. This is also illustrated in the lower power requirements for a Z-height of 

0.02 inches, compared to 0.139 inches. All samples were patterned on the “Top” surface, which 

was designated as the dense layer of the PAN membrane. For double-side patterned membranes, 

both the “Top” and “Bottom” surfaces were patterned. The list of best explored parameters 

from each Experiment Series are listed below in Table 5-1: 

Table 5-1. List of all parameters explored using BO (also depicted partially in Figure 5-2). 

Experiment 

Series 
Z-height (inches) 

Image 

Density 

Power  

(% of 25W) 

Speed  

(% of 1270 mm/s) 

R 

(Ohms) 

-1 0.077 5 20 25 25 

0 0.051 6 10 10 36 

1 0.100 6 50 65 34 

1 0.100 6 16 10 18 

2 0.100 6 50 65 34 

3 0.120 6 20 10 12 
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4 0.043 4 41 20 18 

5 0.138 5 30 10 10 

6 0.139 5 31 10 11 

6 0.140 7 18 10 15 

7 0.137 7 31 30 20 

8 0.020 5 17 10 20 

 

    A set of 20 measurements is performed, and the sample with the lowest resistance was 

further characterized with Raman spectroscopy (Renishaw Invia Reflex Raman Confocal 

Microscope, 50 mW, 532nm laser, 10X objective lens). At later series, multiple samples were 

analyzed due to similar R measurements resulting from very different parameter sets. The final 

membranes were additionally characterized using Scanning Electron Microscopy (Zeiss 

Gemini 450) and high-resolution X-ray Photoelectron Spectroscopy (Thermo Fischer Nexsa) 

with a flood gun for charge correction, and Shirley background correction on obtained spectra. 

For electrochemical evaluation, the following parameters were used to prepare membranes for 

testing (Table 5-2): 

Table 5-2. List of Parameters tested electrochemically (as represented in Figures 5-3 and 5-4). 

Label 
Lased 

Side 
Z-height (inches) 

Image 

Density 
Power (% of 30W) 

Speed 

(% of 1270 mm/s) 

Low ID Top 0.139 5 31 10 

 Bottom 0.02 4 15 10 

High ID Top 0.14 7 10 15 

 Bottom 0.14 7 10 15 

Parameter 1 Top 0.139 5 29 10 

 Bottom 0.139 5 29 10 

Parameter 2 Top 0.02 5 17 10 

 Bottom 0.02 5 17 10 
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Parameter 3 Top 0.077 5 20 25 

 Bottom 0.077 5 20 25 

 

    To compare the linear resistance measurement to previously reported values, we perform a 

sheet resistance measurement through the vdP method[301]. 1 cm2 laser reduced samples were 

prepared with the following parameters ([Z, ID, Power, Speed]) –Parameter A: [0.077, 5, 20, 

25]); Parameter B: [0.138, 5, 27, 10]. Then, the sample was cut to shape and secured onto a 1” 

x 3” glass slide with double-sided tape. Then, 4 copper tape strips were pasted to the 4 corners 

(1-2mm from the edge of the lased area) and the contact was reinforced with silver paste 

(DuPont 4922N-100). This resulted in the following [Rlin, Rsh] combinations: Parameter A: [35 

Ω, 16.3 Ω/sq]; Parameter B: [15 Ω, 6.5 Ω/sq]. Thus, the linear resistance values are generally 

overestimates of the sheet resistance values in this study, but still serve as a suitable 

measurement to optimize sheet resistance. 

    Bayesian Optimization In this chapter, because of the large range of R (10 Ω to 106 Ω), we 

maximize 1/R as the optimization target. The package EDBO[18] is used to perform the 

standard Bayesian Optimization. Gaussian Process is used as the surrogate model in EDBO 

with the Matern Kernel as the covariance function. Expected Improvement is used as the 

acquisition function. The BO_express module of EDBO is used to conduct the Bayesian 

Optimization, as this module automatically featurizes the reaction space, preprocesses the data 

and selects the priors for Gaussian Process. For the neural networks used to help exploitation, 

we use Scikit-Learn[19] to construct 3-layer networks with 16 neurons in each layer, and use 

the “relu” function as the non-linear activation. 10 networks with different random initialization 

are used as an ensemble, and the predicted values of R are the mean of predictions from the 

ensemble.  For the SHAP values, we first build a decision tree model to fit the dataset, then use 

the Package SHAP[96] to derive the impact of parameters to model output. 
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    The search space for BO is defined as follows: Z ∈ [0.03, 0.10] inches, with the spacing of 

0.01 inch; ID ∈ (4,5,6,7); power ∈ [10, 50] % of 30 W, with the spacing of 1 % of 30 W; speed 

∈ [10, 60] % of 1270 mm/s, with spacing of 5% of 1270 mm/s. Therefore, the number of 

combinations of parameters is 593,844; After expansion, the Z space is expanded to [0.02, 

0.14], and the number of parameters increases to 1,012,044. 

 

5.7. Chapter summary and outlook 

    This chapter demonstrates several avenues of fundamental progress in processing PAN for 

electrochemical applications. We demonstrate that using the strategies of microstructuring, 

thermal stabilization, and BO, are crucial to arriving at a suitable set of parameters to realize 

porous carbon electrodes processed at <300°C. Our approach starts with a careful investigation 

of the initial conditions and previous knowledge of laser-reduction of polymers and graphene 

oxide, followed by a BO which explores the parameter space in ways that yield unexpected 

morphologies at parameter combinations that would have otherwise been thought to lead to 

undesirable results. However, we also show that in our specific study which only uses linear 

resistance as a rapidly-testable measurement to inform BO, we need additional intervention 

through expanding testing boundaries and introducing a NN to exploit successful parameters. 

The resulting parameters yield the lowest sheet resistance value reported to date (6.5 Ω/sq) for 

any laser-reduced polymer, using PAN: a polymer that was previously reported to be 

unlaseable in its native form. Overall, this chapter motivates future studies on BO used for 

exploration of parameter spaces to discover new morphologies, as well as continued 

optimization of porous laser-reducible polymer scaffolds for electrochemical applications. 

 

  



137 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



138 

 

Chapter 6 

6. Predicting charge density distributions by graph convolutional 

network 

 

6.1. Introduction 

    In Chapter 6, we present a method to predict charge density distributions of materials by 

graph neural network, which can be further employed to accelerate density functional theory 

calculations (DFT). As stated in the Hohenberg-Kohn theorem[302], ground state energy is 

determined by the electron charge density distributions of materials. In modern DFT 

calculations, charge density distributions are first obtained by solving the Kohn-Sham 

equation[158] self-consistently, then other properties are calculated based on the charge density. 

However, the relatively high computational cost and high memory demands of DFT[86] limits 

its use for large systems with more than several hundred atoms. Rapid and direct prediction of 

charge density is critical to the acceleration of DFT calculations. Meanwhile, charge densities 

are increasingly used as input features of machine learning (ML) models to predict other 

materials properties[303-305]. Therefore, it is important to develop methods capable of 

accurately predicting charge density with less computational demand, to “by-pass the Kohn-

Sham equations”[84], and machine learning (ML) is a promising tool for this goal. 

In principle, an ideal ML algorithm should meet three requirements: high accuracy, high 

transferability and low computational cost. Very recently, there have been attempts [84, 87] to 

employ ML to predict the charge density of molecules by expanding the density as a sum of 

atom-basis functions. For the case of periodic systems, Schmidt et al.[306] employed basis 

functions, summing over the contributions from only neighboring atoms to achieve 

transferability between different cell sizes and lower memory demands, while Chandrasekaran 

et al.[86] encoded the position of each grid-point to neighboring atoms by well-designed 
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invariants to predict charge density. However, compositional and structural transferability 

remains a challenge, as these methods account for variations in one structure at a time (i.e., 

strained lattices or different molecular dynamics snapshots).  

In this chapter, we develop a ML-based approach that can predict charge density for 

different structures with varying compositions, structural features and defects for a given class 

of materials in a single training, which is necessary for application on systems such as 

amorphous hydrocarbons or glasses where local structures are highly complex. In previous 

works, a three-step process was followed: 1) record the distance between each grid point and 

all neighboring atoms, 2) add all distances together to form a feature vector, and 3) compute 

charge density by regression on the final feature vector. For multi-elemental systems, the first 

two steps are repeated for each element type and the feature vectors are concatenated together. 

In order to build upon this approach with increasing transferability between different structures, 

in addition to recording the distance between grid-points and atoms, we propose to both 

explicitly encode the geometry of the cluster formed by neighboring atoms, and account for all 

elements simultaneously as opposed separately. Encoding the geometry, on the one hand, 

avoids the problem of different local environments leading to a similar sum of atom 

contributions, on the other hand, enables the model to learn from the geometry of existing 

structural features and speculate new ones. Greater structural transferability should also lead to 

improved accuracy in the prediction of charge density for defect structures, as new structural 

features can form during the formation of defects. To accommodate different elements, the 

dimension of the final feature vector should be independent of composition, otherwise the 

regression process (matrix-vector multiplication) cannot be done.  

A graph representation, encoding both nodes and bonds, has a number of advantages that 

meet the requirements listed above. Graph representations have been used recently to encode 

information on both the level of atom and geometry with high accuracy and transferability 
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across composition, structure and property space[57, 69, 71, 76, 77, 105, 114], and the feature 

vectors can be of the same dimension for different compositions if properly designed. In this 

chapter, we encode environments of grid-points as graphs and employ the crystal graph 

convolution neural network (CGCNN)[71] to find a relationship between local environment 

and charge density. We train and test our scheme on two classes of crystalline materials, 

polymers and zeolites. For each case training data is from some structures and the model is 

applied to others to test transferability, and the accuracy of the predicted charge density is 

evaluated through statistics and visualization.  

 

6.2. Model architecture 

As shown in Figure 6-1, we encode three-dimensional space in the unit cell using CGCNN 

by placing an imaginary atom at each grid-point in the unit cell. The local environment is 

computed for a given grid-point by identifying atoms within a cut-off radius (Rcut) from the 

imaginary atom, as shown in Figure 6-1b. Next as shown in Figure 6-1c, atoms outside Rcut are 

removed, and the remaining structure is placed in a larger cell to avoid interactions between 

periodic images. Here Rcut is 4 Å, larger than typical bond lengths for the materials considered 

in this chapter, and the lattice parameters of the larger cell are set to be no less than 3×Rcut. 

Finally, the remaining structure together with the imaginary atom are converted into a graph 

representation as shown in Figure 6-1d by connecting neighbors. The CGCNN is then trained 

on the local-environment-based graphs with the charge density on the grid-points from DFT 

calculations as the target property (with units of e/Å3). The neural network structure is 

summarized in Figure 6-1d. Details of the DFT calculations and representation of the imaginary 

atom are given in Chapter 6.5. This process meets both of the requirements as mentioned above, 

since after convolution the atom feature vector for the imaginary atom encodes the distances 

between one grid-point and neighboring lattice atoms, while that for atoms of materials encodes 
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their position with respect to not only other atoms of materials but also the imaginary atom. 

The pooling process incorporates all the information together and make the final feature vector 

of the same dimension for materials with different compositions. 

 

 

Figure 6-1 a Crystal structure of crystalline ethylene. The blue plus symbol in the center 

denotes a grid point we are interested in. b Crystalline ethylene with the imaginary atom. 

Highlighted atoms are those within the cut-off radius. c Local environment around the 

imaginary atom. d Sketch of local-environment-based graph and CGCNN architecture. Color 

coding: green: carbon; grey: hydrogen; blue: imaginary atom; yellow: highlighted atoms within 

the cut-off radius. 

 

6.3. Prediction of charge density distribution 

In the case of crystalline polymers, we extract 30,000 graphs (grid-points) from 37 different 

structures as training data, while in the case of zeolites, 8,000 graphs are generated from 5 

different structures for training. In order to test the degree of transferability towards different 

structures, we apply our model to predict the charge density of 17 crystalline polymers and 9 

zeolites not included in the training sets, as shown in Table 6-1. In both cases, the nomex 

polymer and NPO zeolite, also have versions with explicitly created defect structures (denoted 

as nomex_defect and NPO_defect) in order to represent additional chemical complexity. These 
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materials are not subsets of the training sets in terms of structure or size. Structural features are 

represented by coordinations of skeleton atoms (C/O in the case of polymer/zeolite). For 

example, C2H2 means there are 2 C atoms and 2 H atoms coordinated with the central atom. 

For polymers, in Figure 6-2a the frequency of different coordinations for carbon atoms is 

shown for both the training and test sets, from which one can see that nearly 20 different 

coordinations appear, showing considerable bonding complexity. More importantly, there are 

three coordinations in the test set that are not included in the training set (H4, C1H1 and C4). 

For zeolites, the training set is simpler than the polymer set in terms of structure, as only two 

coordinations exist, and in the test set only the structure with a defect, NPO_defect, has the 

coordination of Si1, while all other structures have coordination Si2. From the perspective of 

size, for polymers, structures in the training set span a range from 8 to 288 atoms in the unit 

cell, while the structures in the test set span a range from 24 to 504 atoms, and for zeolites the 

size ranges are 120 to 366 atoms and 18 to 576 atoms for the training and test set, respectively.  

 

Figure 6-2 a and b Appearance frequency of coordinated atoms of carbon atoms in the training 

set for the case of crystalline polymers versus the test set as a whole and nomex and 

nomex_defect, respectively. Here ‘X’ denotes rare elements in our case (Cl, F, S, Si, Hg). c 

Appearance frequency of oxygen coordinated atoms in the training set for the case of zeolites 

versus the structure of NPO_defect. 

 

Table 6-1. Root mean square errors (RMSE) and coefficients of determination (R2) of the ML 

predicted charge density (ρ, in e/Å3). For each structure, the error metrics are computed over 

all grid-points in the unit cell. The last nine structures with 3-letter abbreviations are zeolites, 

and others are crystalline polymers. 



143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

name formula (inside the cell)  RMSE (ρ)  R2 (ρ)   

1,3-dioxolane-II C24H48O16 0.0628 0.9933 

acetaldehyde C32H64O16 0.0818 0.9848 

cis-1,4-butadiene C16H8 0.0902 0.9805 

glycolide C8H8O8 0.0681 0.9943 

gutta-percha-alpha C20H32 0.0369 0.9953 

i-4m1p C168H336 0.0666 0.9729 

i-alpha-vnaph C192H160 0.0661 0.9816 

i-ortho-mths C144H160 0.0593 0.9831 

i-propylene-alpha C36H72 0.0491 0.9881 

isobutylene C64H128 0.0910 0.9569 

nomex  C14H10O2N2 0.0626 0.9926 

nomex_defect C13H9O2N2 0.0665 0.9913 

oxymethylene C4H8O4 0.0786 0.9926 

p-xylylene C16H8 0.0580 0.9890 

s-propylene-1 C24H12 0.0523 0.9835 

tetramtht C12H12O4 0.0502 0.9960 

trans-decenamer C10H18 0.0309 0.9970 

NPO Si6O12 0.0977 0.9893 

NPO_defect Si5O12 0.1798 0.9745 

JBW Si6O12 0.0847 0.9914 

CAN Si12O24 0.0831 0.9906 

AFY Si16O32 0.0778 0.9894 

JSN Si16O32 0.0785 0.9911 

MTN Si136O272 0.0821 0.9903 

TUN Si192O384 0.0754 0.9920 

UOV Si176O352 0.0912 0.9881 
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Here, we choose two metrics, root mean square errors (RMSE) and coefficients of 

determination (R2), to quantify errors in the ML predicted charge density. These metrics, also 

used in Schmidt et al.[306], provide insights on both the magnitude of absolute errors (by 

RMSE) and relative performance of the predictions (by R2). As shown in Table 6-1, the RMSE 

of the predicted charge densities are all less than 0.2 e/Å3, which are comparable to the errors 

in Schmidt et al. [306], and the level of accuracy was demonstrated to be sufficient for most 

applications relying on the accuracy of the density representation[307]. The RMSEs of test 

structures are also close to that of the training sets (0.067 e/Å3 and 0.064 e/Å3 for crystalline 

polymers and zeolites, respectively), indicating little overfitting. More importantly, the R2 are 

larger than 0.95 for all test structures, suggesting a high prediction performance. The results 

for the case of zeolites show that for such a simple materials class, accurate prediction of the 

charge density can be achieved with a relatively small training set (less than 10,000 training 

data in this case). In addition to these general trends, we highlight the cases with different 

coordination environments (i-4m1p, isobutylene, and the nomex_defect). Although larger 

errors are observed in these cases, they are not far from other structures, suggesting good 

transferability to unseen structural features.       

In order to visualize the performance and transferability of our model, we compare the 

ML computed charge densities and difference between charge densities from ML and DFT of 

pristine nomex, nomex with a C-H vacancy, pristine NPO and NPO with a Si vacancy in Figure 

6-3. In all the cases, the building blocks of structures (e.g., the C six-ring and Si-O six-ring) 

are well presented. For defect structures, although there are more significant differences 

between ML and DFT, the magnitude of the difference is still low compared with the charge 

density itself, suggesting high transferability towards defect structures.  
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Figure 6-3. Visualization of electron charge density (ρ, in e/Å3). a, b, c and d, e, f crystal 

structure, ML predicted ρ, and difference between ML predicted ρ and DFT calculated ρ on the 

C six-ring plane of pristine nomex and nomex with a carbon and a hydrogen vacancy, 

respectively. g, h, i and j, k, l crystal structure, ML predicted ρ, and difference between ML 

predicted ρ and DFT calculated ρ on the Si-O six-ring plane of pristine NPO and NPO with a 

Si vacancy, respectively. Atom color coding: green: carbon; grey: hydrogen; red: oxygen; blue: 

nitrogen; yellow: silicon. 

 

We further compare the value of ML predicted ρ versus DFT calculated ρ as shown in 

Figure 6-4. The ML model successfully captures the charge densities in most regions for the 

four structures with well alignment. As shown in Figure 6-4b and 6-4d, our ML model is able 

to accurately capture the charge density of a vacancy even though no defect structures were 

present in the training sets. Meanwhile, we can see that most of the deviation in the ML 

approach compared with DFT is from regions with ultrahigh charge density (near atom cores 

as shown in Figure 6-3). 
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Figure 6-4. a, b, c and d ML predicted charge density (ρ, in e/Å3) versus DFT calculated ρ for 

pristine nomex, nomex_defect, pristine NPO and NPO_defect, respectively. 

 

6.4. Discussion about transferability 

    In order to probe the origin of the transferability of our model, we propose that the difficulty 

of transferability between different structures arises from both training and prediction: in 

training, the model has to distinguish between environments that seems to be ‘similar’ but have 

very different values of charge, and in prediction, the model has to find similarities between 

new and existing features. Here, the geometry of neighboring atoms contained in our graph 

representation simultaneously provides the information for the two tasks, leading to the 

improved transferability of our model. On the one hand, encoding the geometry makes the local 

environments more distinguishable; on the other hand, learning the geometry enables the model 

to speculate new structural features from existing ones, which also helps to predict the shape 

of charge density around the defects from the shape of structural features.  

In order to illustrate the impact of encoding the geometry of neighboring atoms for 
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distinguishing local environments, we sketch two local environments in Figure 6-5a. If the 

environments of grid-points are simply described by considering distances to each atom 

separately and then summing atom contributions as in the previous models, the two 

environments would appear to be very similar. However, they are actually quite different, and 

the difference can be explicitly encoded by the distance between the two atoms. For speculating 

new structural features from existing ones, we plot the geometries of central carbon atoms with 

coordinated C1H3, C2H2, C3H1 and C4 atoms in Figure 6-5b. When predicting charge density 

around C4, our model can learn from the geometries of C1H3, C2H2, C3H1 in the training set 

that the tetrahedral shape of C4 corresponds to a sp3-hybridized central carbon atom, which 

gives key information for charge distribution around the central carbon atom. As for 

transferability to defect-induced structural features, although in the nomex_defect case there is 

a structural feature (C1H1) that doesn’t exist in the training set with all pristine structures, as 

shown in Figure 6-5c, the shape of C1H1 (C-C-H, an obtuse angle) is very similar to that of C-

O-H in the training set. Therefore, the charge distributions around the two structural features 

should be both in a shape of obtuse angle. With the information of geometries, our model can 

capture such similarity and predict the obtuse-angle-like charge density around C1H1. 

 

 

Figure 6-5. a Sketch of two different local environments with similar sum of atom 

contributions. b Geometries of central carbon atoms with coordinated C1H3, C2H2, C3H1 and 

C4 atoms. c Shape of C-C-H and C-O-H and their charge density distributions (ρ, in e/Å3). 
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Atom color coding: green: carbon; grey: hydrogen; red: oxygen. 

 

We further conduct a toy-model experiment to verify the above statement regarding 

geometry-induced transferability, shown in Figure 6-6a. First, a CGCNN model is trained on 

3000 grid-points within 4Å of a linear C-C-C molecule, and then used to predict the charge 

density of an orthogonal C-C-C molecule. To examine the effect of geometry towards 

predicting new structural features, we sample a new set of 3000 grid-points equally from both 

the linear C-C-C molecule and an orthogonal C-O-C molecule and train another CGCNN 

model, and we find that after incorporating the orthogonal geometry into the training set, the 

prediction error to the orthogonal C-C-C molecule decreases and is lower than that of the two 

single-training molecule cases, which shows that encoding geometry helps to predict new 

structural features. Another insight from this experiment is that currently transferability 

between elements is still limited in the sense that it is difficult to predict the ratio of charge 

density between C-C only from that of C-O, which can be attributed to the poor design of the 

element feature vector, a subject of further investigation in future work.  

 

Figure 6-6. a Illustration of the first toy-model experiment. The top and bottom MAEs (in e/Å3) 

are from the predictions to the orthogonal C-C-C molecule by one of the two training molecules 

(linear C-C-C and orthogonal C-O-C), while the middle one is from the prediction trained on 

both of the training molecules. b Illustration of the second toy-model experiment. The top and 

bottom MAEs (in e/Å3) are from the predictions to the orthogonal C-C-C molecule by one of 

the two training molecules (linear C-C-C and linear C-O-C), while the middle one is from the 

prediction trained on both of the training molecules (linear C-C-C and linear C-O-C). Atom 



149 

 

color coding: green: carbon; red: oxygen. 

 

In Chapter 6.1, we also mention the effect of the same dimension of the features. We do 

believe that the same-dimensional features facilitates the training process, since if the 

dimension of features scales linearly with the number of elements, then the time of training 

will also largely depend on it, which is undesirable in multi-elemental systems. However, the 

same dimension of the features is not the most fundamental origin of transferability, and it is 

less important than encoding geometry, the main origin of transferability as proposed above. 

In order to further verify the dominant role of geometry in transferability, we perform another 

toy-model experiment and illustrate it in Figure 6-6b. In this experiment, we sample a set of 

3000 grid-points from both the linear C-C-C molecule and a new linear C-O-C molecule and 

train a CGCNN model with the same settings as the first experiment. Therefore, the dramatic 

increase of the prediction error to the orthogonal C-O-C molecule and the fact that it is higher 

than that of the case with the linear C-C-C molecule as the single training molecule can only 

be attributed to the geometry of training molecules, which shows that the transferability 

achieved in the first experiment is the result of only geometry, not other conditions including 

the dimension of features.  

 

6.5. Details of methods 

Details of DFT calculations. DFT calculations to obtain charge density distributions are 

implemented in the Vienna Ab initio Simulation Package (VASP)[265]. The exchange-

correlation is approximated by Perdew-Burke-Ernzerh functional (PBE)[123]. For the 

calculation of time scaling, the first Brillouin zone is sampled by a 2 × 2 × 2 k-point grid, while 

that for other calculations is of ~0.5 Å-1. In order to account for van der Waals forces, the DFT-

D2[308] dispersion-correlation is used.  
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    Discussion about how to represent the imaginary atom. In principle, any representation 

of the imaginary atom that is different from those for elements in our system is acceptable. 

Since CGCNN constructs a representation for atoms based on elemental properties, here for 

simplicity we use the representation of the He atom in CGCNN to represent the imaginary atom, 

as He doesn’t exist in our cases nor most periodic systems, and Table 6-2 shows that different 

representations of the imaginary atom would lead to similar performance. Nevertheless, when 

necessary one can always construct other representations different from all existing elements 

such as adding additional dimensions to tag the imaginary atom.  

 

Table 6-2. Mean average errors (MAEs, in e/Å3) of the training set in the zeolite case versus 

the choice of representation of imaginary atom. 

 

 

 

 

 

    Dataset construction and grid spacing. For the case of crystalline polymers, initially 52 

structures were downloaded from the database in Materials Studio, and then randomly split 

into training set and test set with the ratio of 70% and 30% (36 and 16), respectively. A defect 

structure was generated to test the transferability from pristine structures. One elemental crystal 

(graphite) was added to the training set to increase its complexity, giving a training set with 37 

structures and test set with 17 structures. 

    For the case of zeolites, 5 structures with intermediate size are randomly selected from the 

database of Structure Commission of the International Zeolite Association as the training set. 

As for the design of test sets, 5 small zeolite structures are manually included to test the 

Choice of imaginary atom He Li Ne Cs Xe 

MAE 0.030 0.041 0.037 0.035 0.036 
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transferability from large structures to small while 3 structures larger than that in the training 

set are also included with similar intention. One defect structure is also manually created to test 

the transferability from pristine structures. 

    After collecting structures, for each structure in the training sets, all the symmetrically 

inequivalent grid-points inside the unit cell with a given spacing (~0.5 Å for polymers and 

~0.75 Å for zeolites) are converted into graphs as discussed in the main text. In order to avoid 

bias towards certain structures, in the pool of graphs from all the structures, the maximum 

number of graphs from one structure is set be 2,000. Then, some graphs are randomly picked 

from the pool as the training data, on top of which CGCNN is trained. When calculating the 

error statistics of each test structure, all the grid-points in that structure are considered.  

    For training sets, the grid spacing for polymers is set to ~0.5 Å and for zeolites ~0.75 Å. For 

test sets, for crystalline polymers and the six zeolites with small unit cells, the charge density 

is predicted on a grid of ~0.5 Å while for the three large zeolites it is set to ~0.75 Å. For 

visualization, a refined grid of ~0.25 Å was used. 

 

6.6. Chapter summary and outlook 

    In summary, we have developed a machine learning model to predict electron charge density 

distribution of materials based on graph convolutional neural networks with. In the case studies 

of crystalline polymers and zeolites, local-environment-based graphs are extracted from some 

structures and features learned, and the learned models are applied to structures different from 

the training sets. The accuracy and usability of our model has been evaluated by statistical 

errors and visualization. The most important benefit of our model is high transferability 

between different structures, which can be attributed to the ability of the graph representation 

to explicitly encode the geometry of local environment.  

Future efforts will be applied to further improve the scheme presented in four aspects. 
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First, we will optimize the algorithm to achieve lower computational cost. One of the possible 

directions is switching from the sequential prediction of each grid points to parallel predictions 

of many grid points simultaneously. Second, as mentioned we will design architectures to 

efficiently generate more materials properties based on charge density, especially the total 

energy of the unit cell, for which both traditional methods (e.g. Kohn-Sham equations[158] or 

embedded-atom method[309]) and machine learning approaches[303-305] are options under 

consideration. Third, as discussed above regions near nuclei possess the highest deviations, and 

to improve the sensitivity of our model for small distances between imaginary and real atoms, 

transformations to weight small distances during the learning can be designed. Last, as 

mentioned we aim to develop new atom feature vectors that can achieve better transferability 

between different elements, with one possible approach to learn atomic features back from 

charge density distributions around each type of atom. 
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Chapter 7 

7. Conclusion and outlook 

 

7.1. Summary of the thesis 

In summary, methodologically, this thesis is centered around the question of how to improve 

the prediction performance of machine learning models for materials science. In this thesis, we 

propose and apply a series of strategies to improve performance of machine learning models 

from different perspectives: representation of materials, information transfer, and expansion of 

datasets. For expanding datasets, two strategies are proposed, machine learning-guided 

sampling and machine learning-accelerated simulations. 

First of all, we exam whether the current representation of materials can fully represent the 

materials, or in other words, capture all knowledge of materials. In Chapter 2, we exam whether 

two graph neural networks, CGCNN and ALIGNN, can capture knowledge behind human-

designed descriptors. We find that both of them can capture local atomic environments well, 

but both cannot capture periodicity of crystal structures well. As an initial solution, we 

hybridize the descriptors with the GNNs, which leads to large improvement of prediction 

accuracy for properties where uncaptured long-range information is critical. 

Then, for situations where the dataset associated with the learning task is small while there 

exist large relevant datasets, which is very common in materials, we propose the idea of 

information transfer between the large and small datasets to improve the learning performance 

of the small dataset. In Chapter 3, we study how multi-fidelity learning and transfer learning, 

two information transfer strategies, help to learn the experimentally measured formation 

enthalpies of materials, from which we obtain qualitative insights about where and why multi-

fidelity learning and transfer learning improves. In Chapter 4, we investigate how transfer 
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learning helps to learn the experimentally measured lattice thermal conductivity, where we 

visualize the origin of improvement of transfer learning.  

Finally, if algorithm-design cannot lead to satisfying prediction performance, we suggest 

researchers to expand the dataset. During the expansion, for sampling efficiency and mitigation 

of bias, we propose to use active learning or Bayesian Optimization. In Chapter 5, we use 

Bayesian Optimization to search for the optimal laser-processing parameters for 

poly(acrylonitrile). If the data collection procedure (experiment or computation) is too 

expansive, then we suggest researchers to use machine learning to accelerate the collection. In 

Chapter 6, we propose a way to predict charge density distributions of materials by machine 

learning, which can potentially accelerate DFT calculations. 

From the perspective of materials discovery, machine learning models developed in this 

thesis help to propose new materials systems, processes, and insights. In Chapter 3, we find 

hundreds of materials that might have underestimated stability from the cheap DFT functionals 

(PBE). In Chapter 4, we propose the system of rare-earth-chalcogenides (REXs) as promising 

thermoelectric materials, which is verified through experiments. In Chapter 5, we find laser-

processing parameters that can transform insulative poly(acrylonitrile) sheet into conductive 

porous carbon electrodes with desirable electrochemical properties.  

 

7.2. Future directions 

    Despite the progresses made in this thesis, there are still many challenges for machine 

learning applications in materials science that require further development and understanding 

of machine learning models. Here we summarize two most emergent and critical challenges 

about representation of materials and information transfer, followed by some challenges for 

active learning/Bayesian Optimization and machine learning accelerated DFT, as well as a 
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challenge for machine learning applications in materials science for more distant future. 

More powerful and efficient representations of materials: as suggested in Chapter 3, 

current representation of materials still cannot capture all human knowledge. Although Batatia 

et al.[121] have proposed a general formalism to encode the local atomic environments 

equivariantly to E(3) symmetry group by GNN or atomistic cluster expansion with arbitrary 

body-order, how to capture long-range information is still challenging. Although deeper GNN 

and larger receptive field are natural solutions to encode long-range information, there are still 

practical challenges for training deeper GNNs such as bottleneck[145] and over-

smoothing[146]. Even if deep GNNs can be effectively trained, there is a fundamental trade-

off between number of convolutions, number of neighbors and computational cost. For 

applications sensitive to cost, such as molecular dynamics, more efficient representations of 

materials are necessary to achieve low cost as well as to capture long-range information.  

Quantitative metric to estimate whether information transfer will help: despite the 

recent success of transfer learning and multi-fidelity learning for improving learning 

performance of small materials datasets[49, 55, 61, 64, 66, 97] such as in Chapter 3 and 4, 

information transfer is still empirical in materials science. In other words, for materials science, 

there is no quantitative metric about whether information transfer will help to improve 

prediction of target compared with training models from scratch. Currently, for materials 

datasets, the criterion for choosing the source and target dataset for information transfer is 

whether the two datasets are “strongly” correlated, and choosing the correct source datasets for 

specific target sets is still based on trial-and-error. Since training machine learning models 

based on gradient is still expensive, the lack of quantitative metric to estimate the usefulness 

of information transfer before training limits the application of information transfer. For the 

goal of quantitative estimation, further studies are necessary to develop quantitative metrics 
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that depend only on the distribution of the two datasets and do not require the pre-trained 

models to obtain. 

For active learning/Bayesian optimization, as suggested in Chapter 5, the incapability of 

gaussian process for highly nonlinear functions is still a big challenge. Although neural 

networks have stronger power to fit nonlinear functions, how to estimate uncertainty of neural 

networks is still an open question. On the other hand, the question of whether lowering 

uncertainty guarantees lowering prediction error is still not fully answered. For machine 

learning accelerated DFT, although there are already methods such as that in Chapter 6 to 

generate charge density distributions of materials, the current methods that generate and predict 

charge density are still not as transferable as physics-based simulation methods such as DFT. 

It is necessary to develop machine learning assisted-DFT methods that can be applied to very 

different systems once trained. 

Since there will be inevitably more materials data in the future, data-driven machine learning 

models will be more powerful and more widely used in materials science. With more data, the 

prediction performance of supervised learning will be inevitably improved. In the future, in 

addition to prediction of well-defined materials properties, we hope that machine learning can 

be used to learn the pattern of “ambiguously” defined materials properties, such as 

synthesizability, processability and toxicity of materials, which are critical yet lack quantitative 

metrics to evaluate.  
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