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Abstract

This paper considers the problem of real-time control and learning in dynamic systems
subjected to parametric uncertainties. A combination of Adaptive Control (AC) in
the inner loop and a Reinforcement Learning (RL) based policy in the outer loop
is proposed such that in real-time the inner-loop model reference adaptive controller
contracts the closed-loop dynamics towards a reference system, while the RL in the
outerloop directs the overall system towards approximately optimal performance.
This AC-RL approach is developed for a class of control affine nonlinear dynamical
systems, and employs extensions to systems with multiple equilibrium points, systems
with input magnitude constraints, and systems in which a high-order tuner is required
for adequate performance. In addition to establishing a stability guarantee with real-
time control, the AC-RL controller is also shown to lead to parameter learning with
persistent excitation. Numerical validations of all algorithms are carried out using
a quadrotor landing task on a moving platform. These results point out the clear
advantage of the proposed integrative AC-RL approach.
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3



4



Acknowledgments

I would first like to thank Dr. Anuradha Annaswamy for her unwavering support

throughout the master’s program. The work in this thesis would not have been

possible without her guidance, mentorship, keen insight, and creative ideation. I

would also like to express my thanks for her willingness to explore novel and exciting

ideas, as well as her openness in accommodating my research interests. Adaptive

control is truly a fascinating topic, and I’ve been lucky to learn it from one of the

best in the field. I would also like to thank the members of the Active Adaptive

Control Laboratory, both old and new. Specifically, I have been lucky enough to

work with Yingnan Cui, Sunbochen Tang, José Moreu, and Joey Gaudio, and thank

them for the help and input.

I would also like to acknowledge the support of the Boeing Strategic University

Initiative, which has made my research and graduate career possible.

Lastly, I very warmly thank my fiancée Rianna Shah, to whom I am eternally

grateful and appreciative of, and my parents, who first taught me to love the processes

of learning and discovery.

5



6



Contents

1 Introduction 13

2 Background 19

2.1 Reinforcement and Machine Learning . . . . . . . . . . . . . . . . . . 19

2.1.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Approximate Dynamic Programming . . . . . . . . . . . . . . 22

2.1.3 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Model-Based Reinforcement Learning . . . . . . . . . . . . . . 24

2.2 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 An adapt-learn-optimize approach . . . . . . . . . . . . . . . . 27

2.2.2 Model Reference Adaptive Control . . . . . . . . . . . . . . . 29

2.2.3 Linear Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Methods 35

3.1 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Trust Region & Proximal Policy Optimization . . . . . . . . . 36

3.2 Domain Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 High-Order Tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Adaptive Control and Reinforcement Learning Algorithm (AC-RL) 43

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Underlying Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7



4.2.1 An Offline Approach Based on Reinforcement Learning . . . . 44

4.2.2 The Classical Online Approach Based on Adaptive Methods . 45

4.2.3 Persistent Excitation and Parameter Learning . . . . . . . . . 46

4.3 AC-RL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Model Reference Adaptive Control . . . . . . . . . . . . . . . 49

4.3.2 The AC-RL controller . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Validity of the AC-RL controller . . . . . . . . . . . . . . . . . 53

4.3.4 AC-RL with Magnitude Saturation . . . . . . . . . . . . . . . 55

4.3.5 Extension to multiple equilibrium points . . . . . . . . . . . . 56

4.3.6 Extensions to a class of nonaffine systems . . . . . . . . . . . 57

4.3.7 Learning in AC-RL controllers with persistent excitation . . . 59

5 Numerical Validation 63

5.1 Quadrotor Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Quadrotor Landing Task . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Reinforcement Learning Outer Loop . . . . . . . . . . . . . . . . . . . 66

5.4 Results (no noise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Results (with noise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and Future Work 71

A Proofs 73

A.0.1 Proof of Theorem 3: . . . . . . . . . . . . . . . . . . . . . . . 73

A.0.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . 74

A.0.3 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.0.4 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.0.5 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.0.6 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . 77

8



List of Figures

4-1 RL vs. AC-RL. (a) represents a standard application of a trained

policy, in which the trained policy is inserted directly into the target

system: 𝑢 = 𝜋(𝑥). (b) shows how AC-RL is used. The policy is

inserted into the reference system, producing 𝑢𝑟 = 𝜋(𝑥𝑟). The MRAC

update laws are then used to calculate 𝑢. . . . . . . . . . . . . . . . . 48

5-1 AC-RL (green) and pure RL (orange) trajectory rollouts when a single

propeller loses effectiveness. The baseline "ideal" trajectory (blue) is

shown, when there is no loss of effectiveness. Note that the AC-RL

trajectory more closely tracks this baseline than the RL rollout. . . . 70

9



10



List of Tables

5.1 ±25% parametric uncertainty results . . . . . . . . . . . . . . . . . . 67

5.2 Results from the simulated quadrotor experiments. The LOE column

represents the degree of propeller thrust lost (with 0% being no loss).

For a 75% LOE there is no data on the RL or ME-RL success time

because there were no successful tests. No measurement noise was

introduced in these experiments. See [1] for results with noise. . . . . 68

5.3 Success rates for LOE with position measurement noise. Measurement

of the Cartesian positions 𝑥, 𝑦, 𝑧 contain additive aleatoric uncertainty

given by random variables drawn from 𝒩 (0, 0.05) . . . . . . . . . . . 69

5.4 Success rates for LOE with position and orientation measurement noise.

Measurement of the Cartesian positions 𝑥, 𝑦, 𝑧 contain additive aleatoric

uncertainty given by random variables drawn from 𝒩 (0, 0.05) and

𝜑, 𝜃, 𝜓 are perturbed by random variables drawn from 𝒩 (0, 5 𝜋
365

). . . 69

11



12



Chapter 1

Introduction

This paper presents a hybrid adaptive control (AC) and reinforcement learning (RL)

solution to the problem of real-time control in a dynamic system subject to parametric

uncertainties. A number of methods for realizing these goals abound in the controls

community, examples of which include adaptive control [55, 31, 72, 79, 40, 3, 27],

robust control [97], model-predictive control [29, 68], and sliding-mode control [89].

More recently, reinforcement learning, a subfield of machine learning (ML), has been

proposed for the development of control policies for complex systems and environ-

ments [69, 10, 83, 90, 91].

The field of adaptive control (AC) has always included as a central element in

its design a parametric learning component. With the goal of controlling a dynamic

system with parametric uncertainties, an adaptive control solution determines a con-

trol input that explicitly includes a parameter estimate. This estimate is recursively

adjusted using all available data in real-time so as to converge to its true value. The

overall goals of the adaptive system are to guarantee that the control input results

in the closed-loop adaptive system having globally bounded solutions and to learn

the true parameters. With adaptation to parametric uncertainties as the mechanism

of the controller, robustness to nonparametric uncertainties such as disturbances and

unmodeled dynamics have been ensured through the use of regularization and persis-

tent excitation[54, 30]. The field of model-free RL, on the other hand, has as its goal

the determination of a sequence of inputs that drives a dynamical system to minimize
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a suitable objective with minimal knowledge of the system model. The central struc-

ture of the RL solution revolves around a policy that is learned so as to maximize a

desired reward [69, 90, 10, 91].

Both AC and RL-based control methods have addressed the problem of control

in the presence of uncertainty, with the component of learning addressed explicitly

in both. The two however have deployed entirely different approaches for accom-

plishing this objective. AC methods have been proven to be effective in a zero-shot”

enforcement of objectives for specific classes of problems, such as control, learning and

tracking, in real-time[69, 56, 5, 31]. These adaptive techniques are able to accom-

modate, in real-time, parametric uncertainties and constraints on the control input

magnitude [33, 41] and rate [22]. Despite these abilities to accommodate the presence

of modeling errors over short time-scales and meet tracking objectives, AC methods

are unable to directly guarantee the realization of long-term optimality-based objec-

tives. RL-trained policies, on the other hand, can handle a broad range of objectives

[84], where the control policies are often learned in simulation. Training in simula-

tion is a powerful technique, allowing for a near infinite number of agent-environment

interactions to allow the policy to become near-optimal. In practice, however, offline

policies trained in simulation often exhibit degenerate performance when used for

real-time control due to modeling errors that can occur online [36, 86]. It may be

difficult to reliably predict the behavior of a learned policy when it is applied to an

environment different from the one seen during training [19, 71, 66]. The contribu-

tion of the paper is an integration of the AC and RL approaches so as to bridge this

“sim-to-real” gap by realizing a combined set of advantages of both approaches.

Several RL approaches have been suggested to deal with the sim-to-real gap. In

particular, the methods of domain randomization (DR-RL) [88, 63, 12, 62, 46], and

meta-learning based RL (ME-RL) [2] should be noted. In domain randomization,

the simulated training environment is perturbed throughout training. This leads to

an RL-trained policy that is robust to perturbations that lie within the training dis-

tribution [88]. DR has seen broad success in applications to RL tasks [63], and can

be used in conjunction with other methods - such as iteration-based system identi-
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fication. One issue with DR is that the test environment is expected to fall within

the test environment distribution. To relax this requirement, in [12], the distribution

of training environments is tweaked and improved whenever real world data is col-

lected. Robust RL has also been utilized to accommodate adversarial perturbations

and disturbances [62, 46]. In ME-RL [2, 96], a meta-learning based adaptive algo-

rithm allows for a refinement of the policy to occur online. This adaptation algorithm

is often based on a neural-network, and thus raises more issues of stability [43] and

generalizability [61]. In contrast, the approach we propose in this paper combines AC

and RL and allows for provable guarantees on adaptation quality, rates, and bounds,

at the cost of being applied to a more constrained class of environments.

The AC-RL approach that we propose in this paper consists of AC-based compo-

nents in the inner-loop and RL-based components in the outer-loop. The role of RL

is to train through simulation the optimal control needed to minimize a desired objec-

tive, where the simulation is assumed to have access to a reference system that is the

best plant-model available. The role of AC is to accommodate the effect of parametric

uncertainties through a suitably designed control input with nonlinear adaptive laws

for adjusting its parameters in real-time. The proposed approach is a combination of

these two methods such that in real-time the inner-loop AC contracts the closed-loop

dynamics towards the reference system, and as the contraction takes hold, the RL in

the outerloop directs the overall system towards optimal performance. These prop-

erties are guaranteed formally in the paper, and form one of two main contributions

of the paper.

We consider a class of control-affine nonlinear dynamic systems are considered,

both of which are control-affine. An AC-RL controller is proposed, and the resulting

closed-loop system is proved to be stable when certain parametric uncertainties are

present. In all cases, the states of the dynamic system are assumed to be accessible

for measurement. The performance of AC-RL is guaranteed through closed-loop sta-

bility and a constant regret [67, 11], defined as the difference in an integral control

performance between the controller employing a given algorithm and the best con-

troller given full knowledge of the plant. Validations are carried out using a numerical
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experiment in which a quadrotor that is required to land on a moving platform, with

medium-fidelity models that include realistic mechanisms of nonlinear kinematics,

actuator nonlinearities, and measurement noise. The demonstration of real-time con-

trol of the AC-RL approach for these classes of dynamic systems through closed-loop

stability and constant regret is the first contribution of this paper. Extension to a

class of non-affine dynamic systems is also presented.

The central component of the AC algorithm is built on a high-order tuner which

was first proposed by [52] in an effort to develop stable low-order adaptive controllers.

Rather than utilizing a gradient-descent algorithm to directly generate a first-order

tuner for determining the parameter estimates, the idea here is to use a higher-order

tuner so as to allow the controller to implicitly generate a reference model that is

strictly positive real. This idea was subsequently explored further in [60] for general

adaptive control designs and in [16] to allow adaptive control of time-delay systems

in a stable manner. Independently, higher-order tuners have also been sought after in

the ML community, in an effort to obtain accelerated convergence of an underlying

cost function and the associated accelerated learning of the minimizer of this function

(see for example, [57, 58, 80, 93, 95]). The idea here is to include momentum-based

updates so as to get a faster convergence of the performance error and have seen

widespread applications in machine learning [37, 82]. Elements of the HT algorithms

in [52] were utilized to develop several types of HTs in continuous-time [21] leading

to stability, and in discrete-time [24] leading to stability with time-varying regressors

and accelerated convergence with constant regressors as in [57]. We leverage these

stability and accelerated convergence properties in the AC-RL control design in this

paper by fully integrating the properties of RL into the controller.

Efforts to combine AC and RL approaches have been highlighted in several re-

cent works, which include [25, 47, 92, 81]. Algorithms that combine AC and RL in

continuous-time systems can be found in [28, 70, 13, 17]. [70] proposes the use of

adaptive control for nonlinear systems in a data-driven manner, but requires offline

trajectories from a target system and does not address accelerated learning or magni-

tude saturation. References [13, 17] study the linear-quadratic-regulator problem and
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its adaptive control variants from an optimization and machine learning perspective.

In [92] a reinforcement learning approach is used to determine an adaptive controller

for an unknown system, while in [81] principles from adaptive control and Lyapunov

analysis are used to adjust and train a deep neural network. This thesis addresses

a comprehensive treatment of an integrated AC-RL approach, including extensions

with a high-order tuner, magnitude saturation, and nonlinear systems that may be

linearized around multiple equilibrium points.
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Chapter 2

Background

2.1 Reinforcement and Machine Learning

Reinforcement Learning (RL) methods are used to generate reward-maximizing poli-

cies over Markov Decision Processes (MDPs) [83]. Formally, an MDP is character-

ized by a tuple (𝒮,𝒜, 𝑃, 𝑟, 𝛾). 𝒮 and 𝒜 are the state and action spaces, respectively,

and may be either continuous or discrete (or hybrid) spaces. In this thesis we will

largely consider continuous state/action spaces. 𝑃 is a probabilistic transition func-

tion, where 𝑃 (𝑠′|𝑠, 𝑎) = P(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the probability of transitioning

into state 𝑠𝑡+1 ∈ 𝒮 in timestep 𝑡 + 1 after taking action 𝑎𝑡 ∈ 𝒜 in state 𝑠𝑡 ∈ 𝒮

at timestep 𝑡. 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is the reward function, which quantifies the immediate

"goodness" of taking action 𝑎𝑡 in state 𝑠𝑡 resulting in state 𝑠𝑡+1. Often, the reward

function may have a simpler form and is only a function of 𝑠𝑡, 𝑎𝑡. In the following we

will assume that 𝑟 = 𝑟(𝑠𝑡, 𝑎𝑡). 𝛾 ∈ [0, 1) is the discount factor, which quantifies the

degree to which immediate rewards are sought over distant rewards. The concepts of

"goodness" and discounted rewards are formalized via the introduction of the value

function.

Before defining the value function, we introduce the concept of a policy 𝜋(𝑎|𝑠)

which is a (often stochastic) function that maps a given state to a choice of (or

distribution over) actions. The value function associated with a policy 𝜋, then, is a
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scalar function that maps 𝒮 → R:

𝑉 𝜋(𝑠) = E

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠

]︃
(2.1)

The infinite sequence of state-action pairs (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . ) are subject to and

generated by the probabilistic functions 𝜋 and 𝑃 . Note that the above deals with

an infinite horizon MDP problem - throughout the thesis it will be assumed that all

decision-making problems are infinite in horizon unless otherwise specified.

Dissecting (2.1), it can be seen that the value function provides a measure of the

expected cumulative discounted reward achieved in the MDP when following a policy

𝜋. The goal of RL is to find an optimal policy 𝜋* that solves the following:

𝜋* ∈ argmax
𝜋∈Π

𝑉 𝜋(𝑠), ∀𝑠 ∈ 𝒮 (2.2)

in which Π is the set of all admissible policies. For example, if 𝜋 is to be parametrized

by a deep neural network, Π represents the set of all functions that can be produced

by the given neural network architecture [18].

The 𝑄-function, closely related to the value function, is another "value-like" map-

ping that is crucial in the construction of a number of reinforcement learning algo-

rithms:

𝑄𝜋(𝑠, 𝑎) = E

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝑎𝑡 = 𝜋(𝑠𝑡) ∀𝑡 > 0

]︃
(2.3)

Alternatively, the 𝑄-function may be defined in terms of the value function:

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[𝑉
𝜋(𝑠′)] (2.4)

That is, 𝑄𝜋(𝑠, 𝑎) represents the expected discounted cumulative reward of taking ac-

tion 𝑎 in the current state 𝑠 and proceeding to follow policy 𝜋 for the remaining

trajectory. Note also that 𝑉 𝜋(𝑠) = 𝑄𝜋(𝑠, 𝜋(𝑎)). We additionally define the opti-

mal value function as 𝑉 * = max𝜋∈Π 𝑉
𝜋(𝑠), ∀𝑠 ∈ 𝒮, and the optimal 𝑄-function
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as 𝑄*(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑃 (·|𝑠,𝑎)[𝑉
*(𝑠′)], noting the convenient relation 𝑉 *(𝑠) =

max𝑎∈𝒜𝑄
*(𝑠, 𝑎).

Most RL algorithms are concerned with learning one or more of the optimal func-

tions 𝑉 *, 𝑄*, 𝜋*. In the following, the dynamic programming (DP) principle will be

briefly introduced. It will then be shown how DP paves the way for approximate dy-

namic programming and reinforcement learning when assumptions about the MDP

are relaxed.

2.1.1 Dynamic Programming

Bellman’s principle of optimality states that the optimal value function and policy

satisfy the following [6]:

𝑉 *(𝑠) = max
𝑎∈𝒜

𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑃 (·|𝑠,𝑎)[𝑉
*(𝑠′)] ∀𝑠 ∈ 𝒮 (2.5)

𝜋*(𝑠) = argmax
𝑎∈𝒜

[︀
𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑃 (·|𝑠,𝑎)[𝑉

*(𝑠′)]
]︀
∀𝑠 ∈ 𝒮 (2.6)

Equation (2.5) is a non-linear system of equations and cannot be easily (in the

general case) solved in close form. Instead, the Bellman operator 𝑇 is introduced.

Give an arbitrary initial function 𝑊 : 𝒮 → R, we define 𝑇 as:

𝑇𝑊 (𝑠) = max
𝑎∈𝒜

𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑃 (·|𝑠,𝑎)[𝑊 (𝑠′)] ∀𝑠 ∈ 𝒮 (2.7)

This operator 𝑇 can be used to define the value iteration algorithm, in which a

sequence of value functions (indexed by 𝑖) are constructed via application of the

Bellman operator: 𝑉𝑖+1(𝑠) = 𝑇𝑉𝑖(𝑠) ∀𝑠 ∈ 𝒮. It can be shown that the value iteration

algorithm produces a sequence of value functions 𝑉𝑖 that asymptotically approaches

the optimal value function: lim𝑖→∞ 𝑉𝑖 = 𝑉 * ∀𝑠 ∈ 𝒮.

Value iteration is one algorithm for solving an MDP; other methods such as policy

iteration employ similar dynamic programming principles and have relative merits

and weaknesses when compared to value iteration [10, 9]. These methods have two

weaknesses in common, however: 1) direct access to the model, 𝑃 , is assumed (this
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dependency can be seen in the expectation in (2.7), which is taken with respect

to the transition dynamics) and 2) the explicit evaluation of terms depending on

states/actions scales poorly with high-dimensional or continuous state-action spaces.

This can be seen in the Bellman operation (2.7) which scales as 𝒪(|𝒮|2|𝒜|).

2.1.2 Approximate Dynamic Programming

Relaxing the requirement that the transition function 𝑃 is known is an attractive

proposition. Many control systems of interest operate in environments where good

analytic models may be difficult/impossible to obtain, such as an aircraft subject to

turbulent flows and wind.

One approach is to construct Monte-Carlo estimates of the expectation in (2.7).

In the following we utilize finite time-horizon notation for ease of exposition, how-

ever the developments are easily generalized to the infinite time-horizon case. Con-

sider a set 𝒟 of 𝑛 trajectories, each of length 𝑇 , generated by following a policy 𝜋:

𝒟 = [(𝑠𝑖0, 𝑎
𝑖
0), (𝑠

𝑖
1, 𝑎

𝑖
1), . . . , (𝑠

𝑖
𝑇−1, 𝑎

𝑖
𝑇−1)]

𝑖=1:𝑛 The cumulative discount return for each

trajectory 𝑖 is denoted as:

�̂�𝑖(𝑠0) =
𝑇∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑖𝑡, 𝑎
𝑖
𝑡) (2.8)

Each �̂�𝑖(𝑠0) can be considered an unbiased of 𝑉 𝜋(𝑠0). Therefore, the value function

may be approximated by the following unbiased estimator:

𝑉 𝜋(𝑠0) =
1

𝑛

𝑛∑︁
𝑖=1

�̂�𝑖(𝑠0) (2.9)

Such a Monte-Carlo approach can be used to generalize the value iteration and policy

iteration algorithms to the approximate dynamic programming (ADP) case [8].

Another model-free iterative method that relaxes the need for direct dynamics

access is 𝑄-learning. While 𝑄-learning is a powerful technique that does not employ

Monte-Carlo rollouts, it is only applicable to MDPs with finite state-action spaces.

Moreover, it exhibits an unfavorable scaling with respect to |𝒮|, |𝒜|, which limits

its applicability to high-dimensional problems. In 𝑄-learning iterates of the optimal
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𝑄-function estimate, �̂�𝑖, are updated using collected trajectories as:

�̂�𝑖+1(𝑠𝑡, 𝑎𝑡) = �̂�𝑖(𝑠𝑡, 𝑎𝑡) + 𝜂𝑡

[︂
𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾max

𝑎′∈𝒜
[�̂�𝑖(𝑠𝑡+1, 𝑎

′)− �̂�𝑖(𝑠𝑡, 𝑎𝑡)]

]︂
(2.10)

where 𝜂𝑡 is a sequence of learning rates. If 𝜂𝑡 satisfy the Robbins-Monro conditions:

∞∑︁
𝑖=0

𝜂𝑖 =∞
∞∑︁
𝑖=0

𝜂2𝑖 <∞ (2.11)

and all state-action pairs are tried infinitely often, then asymptotic convergence of �̂�𝑖

to 𝑄* is achieved [91].

The above methods, and many others, rely on iterating through state and/or ac-

tion spaces. Therefore such methods are unusuable for MDPs with large or continuous

state-action spaces.

2.1.3 Policy Gradient Methods

The methods in Section 2.1.2 may be considered iterative approaches to constructing

optimal policies and value functions. An alternative approach is to instead search

within a space of policies [85]. Let the policy 𝜋 be parametrized by a 𝑑-dimensional

vector 𝜃 so that it is given by 𝜋𝜃. A policy optimization problem may then be defined:

max
𝜃
𝑉 (𝜋𝜃) (2.12)

Therefore, if ∇𝜃𝑉 (𝜋𝜃) can be computed, stochastic gradient ascent methods may

be used to optimize (2.12). The policy gradient theorem states:

∇𝜃𝑉 (𝜋𝜃) = E𝜏∼ℎ(·|𝜋𝜃,𝑀𝐷𝑃 )

[︃
𝑅(𝜏)

𝑇−1∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑠𝑡, 𝑎𝑡)

]︃
(2.13)

Here, 𝜏 = [(𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , (𝑠𝑇−1, 𝑎𝑇−1)] is a finite length trajectory emerging

from application of policy 𝜋𝜃 to the MDP. As the transitions and 𝜋𝜃 may be stochastic,

𝜏 is treated as a random variable and therefore an expectation is performed with
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respect to 𝜏 and it’s generating distribution. 𝑅(𝜏) is defined as the discounted sum

of returns from the trajectory 𝜏 , analogous to (2.8). Note that the policy gradient

theorem requires the differentiability of 𝜋𝜃 w.r.t it’s parameters.

As the expression in (2.13) depends on an expectation taken with respect to

MDP dynamics, it cannot be used as is in a model-free algorithm. However, Monte-

Carlo approximation techniques similar to those used in Section 2.1.2 can be used, in

conjunction with collected rollouts, to produced unbiased estimates of the required

terms. Such an approach leads to Williams’ well known REINFORCE algorithm [94].

While a Monte-Carlo approximate is indeed unbiased, the estimate is often plagued

with a high variance [26]. This variance can cause vanilla policy gradient algorithms to

exhibit slow convergence/high sample complexity. Since the original REINFORCE

algorithm was introduced, many more modern RL algorithms have been proposed

to reduce the variance of policy and value gradient estimates. A number of these

methods will be explored in Section 3.1. Such methods often make sure of an actor-

critic architecture, in which a parametric value function (or 𝑄-function) estimate is

introduced. This estimator, referred to as the "critic", is used, alongside a policy

gradient based update, to update the parameters of the policy (the "actor"). A basic

actor-critic algorithm is given by the following updates [35]:

𝜓𝑖+1 = 𝜓𝑖 + 𝜈[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜓𝑖
(𝑠𝑡+1, 𝑎𝑡+1)−𝑄𝜓𝑖

(𝑠𝑡, 𝑎𝑡)]∇𝜓𝑖
𝑄𝜓𝑖

(𝑠𝑡, 𝑎𝑡) (2.14)

𝜃𝑖+1 = 𝜃𝑖 + 𝜂∇𝜃𝑖 log 𝜋𝜃𝑖(𝑎𝑡|𝑠𝑡)𝑄𝜓𝑖
(𝑠𝑡, 𝑎𝑡) (2.15)

Where 𝜂, 𝜈 are learning rates and 𝜓, 𝜃 are the parameters of the 𝑄-function and policy

estimates, respectively.

2.1.4 Model-Based Reinforcement Learning

The development of model-free RL/ADP methods from the model-based DP algo-

rithms in motivated by 1) situations in which there exists no a priori specified transi-

tion or dynamics model, and 2) MDPs in which the state-action spaces are very large

or continuous. While these model-free algorithms relax the analytic model condition,
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they come with a data requirement: all the model-free approaches surveyed in the pre-

vious sections rely on access to collected state-action pairs from application of actions

and policies to the MDP. Furthermore, as many of the techniques rely on Monte-Carlo

estimation, the sample requirement may be high for expansive or complex environ-

ments. The collection of these state-action pairs suggests another approach to solving

the MDP - the data may be used to train a model of the environment dynamics, which

can then be used to optimally determine actions (e.g, to generate a policy). Given a

learned model, it may be possible to apply the aforementioned dynamic programming

techniques of value or policy iteration. These approaches, however, will still face is-

sues related to computational complexity [64]. In this section we will instead briefly

survey methods that aim to use techniques and tools from optimization.

Model-based reinforcement learning begins conceptually with dynamics modeling

[49]. Dynamics models can come in a number of forms, including inverse models

(learning an 𝑎𝑡 that causes the transition 𝑠𝑡 → 𝑠𝑡+1) and reverse models (learning

which state-action pairs (𝑠𝑡−1, 𝑎𝑡−1) may precede a state 𝑠𝑡. Here we consider forward

models, which attempt to learn the mapping from a given state-action pair (𝑠𝑡, 𝑎𝑡) to

the next state 𝑠𝑡+1.

The following routine provides a rudimentary but straightforward model-based

RL algorithm: Assume a given a dataset 𝒟 of 𝑁 state-action-state tuples:

𝒟 = [(𝑠0, 𝑎0, 𝑠
′
0), (𝑠1, 𝑎1, 𝑠

′
1), . . . , (𝑠𝑁 , 𝑎𝑁 , 𝑠

′
𝑁)]

where 𝑠′𝑖 denotes the observed state after action 𝑎𝑖 was applied in state 𝑠𝑖. A deter-

ministic forward dynamics model, parametrized by 𝜃, may be learned by solving:

min
𝜃∈Θ

1

𝑁

𝑁∑︁
𝑖=0

||𝑠′𝑖 − 𝑓𝜃(𝑠𝑖, 𝑎𝑖)||2 (2.16)

If 𝑓𝜃 is represented as a neural network, solving this problem amounts to a standard

supervised nonlinear regression neural network problem. Supposing an adequate for-

ward dynamics model 𝑓𝜃 is learned, one may then apply this estimator to the problem
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of action generation. Given a reward function 𝑟(𝑠, 𝑎) and the current state 𝑠𝑡 the fol-

lowing model-predictive control (MPC) optimization problem is solved [20]:

max
𝑎𝑡:𝑡+𝑇ℎ

𝑡+𝑇ℎ∑︁
𝜏=𝑡

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

s.t 𝑠𝜏+1 = 𝑓𝜃(𝑠𝜏 , 𝑎𝜏 ) 𝜏 = 𝑡, . . . , 𝑡+ 𝑇ℎ

𝑠𝜏 ∈ 𝒮, 𝜏 = 𝑡, . . . , 𝑡+ 𝑇ℎ

𝑎𝜏 ∈ 𝒜, 𝜏 = 𝑡, . . . , 𝑡+ 𝑇ℎ

(2.17)

𝑇ℎ denotes the length of the optimization horizon. In typical MPC fashion, the

calculated control is obtained by accessing the value of the first decision variable,

𝑎𝑡, from the solution of the optimization problem. In the general case, (2.17) may

be very difficult to solve exactly - owing to the potentially complex forms of the

reward function 𝑟 and the learned forward dynamics 𝑓𝜃. As a result, a number of

methods based on convex/quadratic approximations have been developed. Moreover,

if the state-action constraints, learned dynamics and reward function have specific

forms (such as convexity), efficient computational techniques may be used to arrive

at globally optimal solutions.

2.2 Adaptive Control

A fundamental goal in adaptive control (AC) is to design an exogenous input 𝑢(𝑡) ∈

R𝑚for a dynamical system given by

�̇� = 𝑓(𝑥, 𝜃, 𝑢, 𝑡) (2.18)

where 𝑥(𝑡) ∈ R𝑛 represents the system state, 𝜃 ∈ Rℓ represents system parameters

that may be unknown, and 𝑓(·) denotes (potentially nonlinear) system dynamics that

capture the underlying physics of the system. The function 𝑓(·) may vary with 𝑡, as

disturbances and stochastic noise may affect the states and output. The goal is to

choose 𝑢(𝑡) so that 𝑥(𝑡) tracks a desired command signal 𝑥𝑐(𝑡) at all 𝑡, and so that an
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underlying cost 𝐽((𝑥 − 𝑥𝑐), 𝑥, 𝑢) is minimized. The challenge is to find this solution

in real-time in the presence of uncertainties that are predominantly present in 𝜃. In

what follows, we will refer to the system that is being controlled as a plant.

As the description of the system as in (2.18) is based on a plant model, and as

the goal is to determine the control input in real time, all control approaches make

assumptions regarding what is known and unknown. The function 𝑓 is often not

fully known, as the plant is subject to various perturbations and modeling errors due

to environmental changes, complexities in the underlying mechanisms, aging, and

anomalies. The field of adaptive control takes a parametric approach to distinguish

the known parts from the unknown. In particular, it is assumed that 𝑓 is a known

function, while the parameter 𝜃 is unknown. A real-time control input is then de-

signed so as to ensure that the tracking goals are achieved by including an adaptive

component that attempts to estimate the parameters online.

In the following subsections, we further breakdown the approach taken to address

these problems, especially in the context of learning and optimization. While the

description below is in the context of deterministic continuous-time systems, similar

efforts have been carried out in stochastic and discrete-time dynamic systems as well.

2.2.1 An adapt-learn-optimize approach

The goal of the adaptive controller is to ensure that

lim
𝑡→∞

𝑒(𝑡) = 0 (2.19)

where 𝑒(𝑡) = ||𝑥(𝑡)− 𝑥𝑐(𝑡)||. As these decisions are required to be made in real time,

the focus of the adaptive control approach is to lead to a closed-loop dynamic system

that has bounded solutions at all time 𝑡 and a desired asymptotic behavior as in

(2.19) The central question is if this can be ensured even when there are parametric

uncertainties in 𝜃 and several other non-parametric uncertainties that may due to un-

modeled dynamics, disturbances, or other unknown effects. Once this is guaranteed,

the question of learning, in the form of parameter convergence, is addressed. As a re-
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sult, control for learning is a central question that is pursued in the class of problems

addressed in adaptive control rather than learning for control [38]. Once the control

and learning objectives are realized, one can then proceed to the optimization of a

suitable cost 𝐽 . This sequence of adapt-learn-optimize is an underpinning of much of

adaptive control.

The above sequence can be reconciled with the well known certainty equivalence

principle (CEP) which proceeds in the following manner: first, optimize under perfect

foresight, then substitute optimal estimates for unknown values. This philosophy

underlies all adaptive control solutions by first determining a controller structure

that leads to an optimal solution when the parameters are known and then replace

the parameters in the controller with their estimates. The difficulty in adopting this

philosophy to its fullest stems from the dual nature of the adaptive controller, as

it attempts to accomplish two tasks simultaneously, estimation and control. This

simultaneous action introduces a strong nonlinearity into the picture and therefore

renders a true deployment of the certainty equivalence principle intractable. Instead,

an adapt-learn-optimize sequence is adopted, with the first step corresponding to an

adaptive controller that leads to a stable solution. This is then followed by estimation

of the unknown parameters, and optimization addressed at the final step.

A typical solution of the adaptive controller takes the form

𝑢 = 𝐶1(𝜃𝑐(𝑡), 𝜑(𝑡), 𝑡) (2.20)

𝜃𝑐 = 𝐶2(𝜃𝑐, 𝜑, 𝑡) (2.21)

where 𝜃𝑐(𝑡) is an estimate of a control parameter that is intentionally varied as a

function of time, 𝜑(𝑡) represents all available data at time 𝑡. The nonautonomous

nature of 𝐶1 and 𝐶2 is due to the presence of exogenous signals such as set points and

command signals. A stabilization task would render these functions autonomous. The

functions 𝐶1(·) and 𝐶2(·) are deterministic constructions, and make the overall closed-

loop system nonlinear and nonautonomous. The challenge is to suitably construct

functions 𝐶1(𝑡) and 𝐶2(𝑡) so as to have 𝜃𝑐(𝑡) approach it’s true value 𝜃*𝑐 , and ensure
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that stability and asymptotic stability properties of the overall adaptive systems are

ensured. These constructions have been delineated for deterministic systems in [55, 4,

31, 72, 39, 87] and other textbooks. The solutions in these books and several papers

in premier control journals have laid the foundation for the construction of 𝐶1 and

𝐶2 for a large class of dynamic systems in (2.18)

2.2.2 Model Reference Adaptive Control

A tractable procedure for determining the structure of the functions 𝐶1 and 𝐶2,

denoted as Model Reference Adaptive Control (MRAC), uses the notion of a reference

model, and a two-step design consisting of an algebraic part for determining 𝐶1 and

an analytic part for finding 𝐶2. A reference model provides a structure to the class of

command signals 𝑦𝑐(𝑡) that the plant output 𝑥 can follow. For a controller to exist for a

given plant-model using which the closed-loop system can guarantee output following,

the signal 𝑥𝑐 needs to be constrained in some sense. A reference model is introduced

to provide such a constraint. In particular, a model ℳ and a reference input 𝑟 is

designed in such a way that the output 𝑦𝑚(𝑡) ofℳ for an input 𝑟(𝑡) approximates the

class of signals 𝑥𝑐(𝑡) that is desired to be followed. With a reference model inℳ, the

algebraic part of the MRAC corresponds to the choice of 𝐶1 with a fixed parameter

𝜃*𝑐 such that if 𝜃𝑐(𝑡) ≡ 𝜃*𝑐 in (2.20), then lim𝑡→∞ ||𝑥𝑝(𝑡) − 𝑥𝑚(𝑡)|| = 0. The existence

of such a 𝜃* is referred to as a matching condition. With such a 𝐶1 determined,

noting that 𝜃*𝑐 could be unknown due to the parameteric uncertainty in the plant, the

analytic part focuses on finding 𝐶2 such that output following takes place with the

closed-loop system remaining bounded. An alternative to the above direct approach

of identifying the control parameters is an indirect one where the plant parameters

are first estimated using which the control parameter 𝜃𝑐(𝑡) is determined at each 𝑡.

In what follows, we describe the details of the MRAC approach for various classes

of dynamic systems, ranging from simple and algebraic cases to nonlinear dynamic

ones.
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2.2.3 Linear Plants

Algebraic systems

Many problems in adaptive estimation and control may be expressed as

𝑦(𝑡) = 𝜃*𝑇𝜑(𝑡), (2.22)

where 𝜃*, 𝜑(𝑡) ∈ R𝑁 represent an unknown parameter and measurable regressor,

respectively, and 𝑦(𝑡) ∈ R represents an output that can be determined at each 𝑡.

Given that 𝜃* is unknown, we formulate an estimator 𝑦(𝑡) = 𝜃𝑇 (𝑡)𝜑(𝑡), where 𝑦(𝑡) ∈ R

is the estimated output and the unknown parameter is estimated as 𝜃(𝑡) ∈ R𝑁 . This

in turn results two types of errors, a performance error 𝑒𝑦(𝑡) and a learning error ̃︀𝜃(𝑡)1
𝑒𝑦 = 𝑦 − 𝑦, ̃︀𝜃 = 𝜃 − 𝜃* (2.23)

where the former can be measured but the latter is unknown though adjustable. From

(2.22) and the estimator, it is easy to see that 𝑒𝑦 and ̃︀𝜃 are related using a simple

regression relation

𝑒𝑦(𝑡) = ̃︀𝜃𝑇𝜑(𝑡). (2.24)

A common approach for adjusting the estimate 𝜃(𝑡) at each time 𝑡 is to use a gradient

rule and a suitable loss function. One example is a choice

𝐿1(𝜃) =
1

2
𝑒2𝑦 (2.25)

leading to the gradient rule

𝜃(𝑡) = −𝛾∇𝜃𝐿1(𝜃(𝑡)), 𝛾 > 0 (2.26)

That this leads to a stable estimation scheme can be shown using a Lyapunov function

𝑉 = ̃︀𝜃𝑇 ̃︀𝜃 as its time-derivative �̇� = −𝑒2𝑦.

1In what follows, we suppress the argument (𝑡) unless needed for emphasis.
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Dynamic Systems with States Accessible

The next class of problems that has been addressed in adaptive control corresponds

to plants with all states accessible. We present the solution for the simple case for a

scalar input:

�̇� = 𝐴𝑝𝑥+ 𝑏𝑝𝑢 (2.27)

where 𝐴𝑝 and 𝑏𝑝 are unknown, 𝑢 is the control input and is a scalar, and 𝑥 is the

state and is accessible for measurement. As mentioned in Section 2.2.1, the first step

is find a reference modelℳ, which takes the form

�̇�𝑚 = 𝐴ℎ𝑥𝑚 + 𝑏𝑟 (2.28)

and is such that the state 𝑥𝑚(𝑡) encapsulates the desired solution expected from the

controlled plant. This can be accomplished by choosing a reference input 𝑟, 𝐴ℎ to be

a Hurwitz matrix, (𝐴ℎ, 𝑏) is controllable so that together they produce an 𝑥𝑚(𝑡) that

approximates the signal that the plant is required to track.

With the reference model chosen as above, the next step pertains to Matching

Condition [55], stated as follows:

Assumption 1 A vector 𝜃* and a scalar 𝑘* exist that satisfy

𝐴𝑝 + 𝑏𝑝𝜃
*𝑇 = 𝐴ℎ (2.29)

𝑏𝑝𝑘
* = 𝑏 (2.30)

This implies that a fixed control exists of the form

𝑢(𝑡) = 𝜃*𝑇𝑥(𝑡) + 𝑘*𝑟(𝑡) (2.31)

that matches the closed-loop system to the reference model. This corresponds to the

Algebraic Part of the problem described in Section 2.2.1.

The final step is the analytic part, the rule for estimating the unknown parameters

𝜃* and 𝑘* and the corresponding adaptive control input that replaces the input choice
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in (2.31). These solutions are given by

𝑢 = 𝜃𝑇 (𝑡)𝑥+ 𝑘(𝑡)𝑟 (2.32)

𝜃 = −𝑠𝑖𝑔𝑛(𝑘*)Γ𝜃(𝑒𝑇𝑃𝑏𝑚)𝑥 (2.33)

�̇� = −𝑠𝑖𝑔𝑛(𝑘*)𝛾𝑘(𝑒𝑇𝑃𝑏𝑚)𝑟 (2.34)

where Γ𝜃 > 0 is a positive definite matrix, 𝛾𝑘 > 0 is a positive constant, 𝑒 = 𝑥− 𝑥𝑚,

and 𝑃 = 𝑃 𝑇 ∈ R𝑛×𝑛 is a positive definite matrix that solves the Lyapunov equation

𝐴𝑇𝑚𝑃 + 𝑃𝐴𝑚 = −𝑄 (2.35)

with a positive definite matrix 𝑄 = 𝑄𝑇 ∈ R𝑛×𝑛. It can be shown that

𝑉 = 𝑒𝑇𝑃𝑒+ |𝑘*|
[︀
(𝜃 − 𝜃*)𝑇Γ−1(𝜃 − 𝜃*) + (1/𝛾𝑘)(𝑘 − 𝑘*)2

]︀
(2.36)

is a Lyapunov function with �̇� = −𝑒𝑇𝑄𝑒 and that lim𝑡→∞ 𝑒(𝑡) = 0. The reader is

referred to Chapter 3 in [55] for further details. In summary, the adaptive controller

that is proposed here can be viewed as an action-response-correct sequence where the

action is the control input given by (2.32), the response is the resulting state error 𝑒,

and the correction is the parameter adaptive laws in (2.33)-(2.34)

It should be noted that the adaptation rules in (2.33)-(2.34) can also be expressed

as the gradient of a loss function [24]

𝐿2(𝜃) =
𝑑

𝑑𝑡

{︂
𝑒𝑇𝑃𝑒

2

}︂
+
𝑒𝑇𝑄𝑒

2
, (2.37)

where 𝜃 = [𝜃𝑇 , 𝑘]𝑇 , and it is assumed that 𝑘* > 0 for ease of exposition. It is

noted that this loss function 𝐿2 differs from that in (2.25), and includes an additional

component that reflects the dynamics in the system. It is easy to see that

˙̄𝜃(𝑡) = −Γ∇𝜃𝐿2(𝜃(𝑡)), Γ > 0, (2.38)
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and is implementable as ∇𝜃𝐿2(𝜃) = 𝜑𝑒𝑇𝑃𝑏𝑚, can be computed at each time 𝑡, where

𝜑 = [𝑥𝑇𝑝 , 𝑟]
𝑇 . This implies that a real-time control solution that is stable depends

critically on choosing an appropriate loss function.

The matching condition (2.30) is akin to the controllability condition, albeit some-

what stronger, as it requires the existence of a 𝜃* for a known Hurwitz matrix 𝐴𝑚

[42, 55]. The other requirement is that the sign of 𝑘* needs to be known, which is

required to ensure that 𝑉 is a Lyapunov function.
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Chapter 3

Methods

3.1 Deep Reinforcement Learning

As highlighted in Section 2.1.3, parametric representations of 𝑄-functions, value func-

tions and/or policies can be useful in the development of model-free reinforcement

learning algorithms. Although RL is a principled mathematical approach to solv-

ing decision-making problems, applications to high-dimensional systems and complex

problems were historically stymied by issues of computational complexity, sample ef-

ficiency and memory limits. The advent of deep learning techniques, however, has

led to an explosion of successful reinforcement learning algorithms and applications,

many of which leverage the power of deep neural networks [78, 48, 59, 44, 34]. As men-

tioned in Section 2.1.3, neural networks may be utilized as the workhorse function ap-

proximators underlying the parametric estimates in model-free ADP/RL algorithms.

Although deep neural networks prove to be powerful technical tools, the core RL

issues of variance-reduction, sample complexity, and non-local optimization remain

at play. Furthermore, the inclusion of neural networks raises additional questions

of robustness and generalization. In the following, two popular and effective deep

reinforcement learning algorithms are presented in brief. One of these algorithms,

Proximal Policy Optimization (PPO) [75] is used as an outer-loop RL candidate for

the proposed AC-RL approach.
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3.1.1 Trust Region & Proximal Policy Optimization

In order to introduce the Trust Region Policy Optimization (TRPO) and Proximal

Policy Optimization (PPO) algorithms, we first define a few required quantitites.

First, the advantage function 𝐴 is a value-like function defined in terms of the

value and 𝑄-functions:

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎)− 𝑉 𝜋(𝑠) (3.1)

The scalar value 𝐴𝜋(𝑠, 𝑎) can be thought of as relative change in accumulated value

when action 𝑎 is taken rather than the action dictated by policy 𝜋. A positive

advantage value indicates that the action 𝑎 is superior to the action (or distribution

over actions) dictated by the policy 𝜋.

We additionally define the Kullback-Leibler (KL) divergence𝐷𝐾𝐿, which measures

the difference between two probabilitiy distributions 𝑃,𝑄. For discrete probability

distributions 𝑃,𝑄 defined over the same probability space 𝒳 :

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)
(3.2)

Trust Region Policy Optimization

TRPO is an actor-critic method which constructs a parametric model of a policy 𝜋𝜃 as

well as a parametric model of a value function 𝑉𝜓 [73]. In deep reinforcement learning

applications, both 𝜃 and 𝜓 represent the parameters of different neural networks. In

order to determine the policy parameters 𝜃, TRPO formulates and solves the following

constrained optimization:

𝜃𝑖+1 = argmax
𝜃𝑖+1

E𝑠∼𝜌𝜋𝜃𝑖 ,𝑎∼𝜋𝜃𝑖

[︂
𝜋𝜃𝑖+1

(𝑎|𝑠)
𝜋𝜃𝑖(𝑎|𝑠)

𝐴𝜓(𝑠, 𝑎)

]︂
s.t E𝑠∼𝜌𝜋𝜃𝑖 [𝐷𝐾𝐿(𝜋𝜃𝑖(·|𝑠)||𝜋𝜃𝑖+1

(·|𝑠))] ≤ 𝛿

(3.3)

Here, 𝛿 is a hyperparameter specifying the maximimum desired change in KL-divergence

between the old policy and new policy, at each timestep. 𝜌𝜋(𝑠) = 𝑃 (𝑠0 = 𝑠)+𝛾𝑃 (𝑠1 =

𝑠) + 𝛾2𝑃 (𝑠2 = 𝑠) is the discounted visitation frequency when following policy 𝜋. The
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optimization objective can be neatly understood - actions associated with a posi-

tive advantage will be made more likely under the new probability distribution 𝜋𝜃𝑖+1
.

The constraint prevents the policy from changing too rapidly at each iteration of the

algorithm, which can help stabilize training. The value/advantage function param-

eters 𝜓 may be updated using a standard method based on temporal differencing.

Furthermore, Monte-Carlo sampling techniques are used, as previously discussed, to

approximate the expectations as required. As (3.3) represents a constrained opti-

mization problem, the policy neural network paramters 𝜃 cannot be simply updated

via stochastic gradient descent. Instead the conjugate gradient method is used, which

incurs computational complexity and overhead.

Proximal Policy Optimization

PPO builds off the TRPO algorithm. The main difference is that in PPO the con-

strained optimization in TRPO is turned into an unconstrained maximization. The

objective in PPO is instead [75]:

𝜃𝑖+1 = argmax
𝜃𝑖+1

E𝑠∼𝜌𝜋𝜃𝑖 ,𝑎∼𝜋𝜃𝑖

[︂
𝜋𝜃𝑖+1

(𝑎|𝑠)
𝜋𝜃𝑖(𝑎|𝑠)

𝐴𝜓(𝑠, 𝑎)

]︂
− 𝛽𝑖E𝑠∼𝜌𝜋𝜃𝑖 [𝐷𝐾𝐿(𝜋𝜃𝑖(·|𝑠)||𝜋𝜃𝑖+1

(·|𝑠))]

(3.4)

Where the hard KL-divergence constraint in TRPO has been replaced soft penalty

in the objective function. The scalar 𝛽𝑖 represents a hyperparameter weighting this

penalty. A number of variants of PPO exist, in which heuristic approaches are used

to more effectively incorporate the KL constraint into the maximization objective.

However, all PPO algorithms are similar in that they utilize an unconstrained ap-

proximation to the TRPO objective. This enables the application of straightforward

deep neural network training techniques, such as stochastic gradient descent and it’s

ilk.
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3.2 Domain Randomization

Consider first the discrete-time dynamics of a system are given by

𝑠𝑡+1 ∼ ℎ(𝑠′|𝑠𝑡, 𝑎𝑡, �̄�) (3.5)

where �̄� represents some fixed parameter vector that influences the dynamical system.

For example, in a cart-pole system �̄� may represent the mass and inertia of the con-

stituent rigid bodies. In a practical application of reinforcement learning to a physical

system, it is often the case that a simulator exists for the physical environment. As

many reinforcement learning algorithms are sample inefficient it can be desirable to

train the policy using simulation. However, the "true" parameter vector �̄� associated

with the physical system may be unknown or uncertain. In this case, domain ran-

domization is often used to train the policy in simulation. Domain randomization is

a straightforward technique in which each instantiation of the simulated environment

utilizes a random parameter vector 𝜔 drawn from some underlying distribution [88]:

𝑠𝑡+1 ∼ ℎ(𝑠′|𝑠𝑡, 𝑎𝑡, 𝜔), 𝜔 ∼ 𝒫 (3.6)

This process, however, simply induces a new dynamic system:

𝑠𝑡+1 ∼ ℎ′(𝑠′|𝑠𝑡, 𝑎𝑡) (3.7)

In which the stochastic effect of sampling a random parameter vector has been sub-

sumed into a new transition probability function, ℎ′. Therefore, standard model-free

reinforcement learning algorithms can be cleanly applied to the domain randomized

simulation. As a result, the RL algorithm does not need to be altered; only the

underlying simulation needs to be augmented.
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3.3 Meta-Learning

A general meta-learning RL (ME-RL) policy can be split into two sub-policies: a base

learner and an adaptive learner [2, 96, 53]. The base learner constructs a policy 𝜋𝜃

that generalizes robustly over the distribution of environments. A separate adaptive

learner, parametrized as 𝜋𝜑 is then trained to update the outputs of 𝜋𝜃 in an online

fashion. Colloquially, the adaptive meta-learner is “learning to adapt”. The base

learner may first be trained to find 𝜃*:

𝜃* = argmax
𝜃

E

[︃
𝑇∑︁
𝑡=0

𝑟(𝑠𝑡, 𝑎𝑘)

]︃
s.t 𝑠𝑡+1 ∼ ℎ(𝑠𝑡, 𝑎𝑡, �̄�), 𝑎𝑡 = 𝜋𝜃(𝑠𝑡)

A typical adaptive meta learner is then trained to use state-action histories to deter-

mine an adaptive policy:

𝜑* = argmax
𝜑

E

[︃
𝑇∑︁
𝑡=0

𝑟(𝑠𝑡, 𝑎𝑡)

]︃
s.t 𝑠𝑡+1 ∼ ℎ(𝑠𝑡, 𝑎𝑡, 𝜔), 𝜔 ∼ 𝒫

�̂�𝑡 = 𝜋𝜃*(𝑠𝑡)

𝑎𝑡 = 𝜋𝜑(�̂�𝑡, 𝑠𝑡, 𝑠𝑡−1, 𝑎𝑡−1, . . . , 𝑠0, 𝑎0)

Such a method is similar to classical adaptive control techniques, with the main

distinction that that a deep network parameterizes the adaptive law.

It should be noted that though RL has led to compelling successes, analytical

guarantees of convergence to optimal policies have been shown only in simple settings

[91, 14, 7, 45]. No analytical guarantees are provided when general deep networks are

used, except for papers such as [43] which use additional correction terms to prove

stability.
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3.4 High-Order Tuners

The core of the adaptive components proposed in this paper is based on high-order

tuners (HT) [52, 60, 16]. The idea of HT is to use a high-order filter in order to

generate the parameter estimate rather than the first-order gradient method employed

in the classical adaptive controller. The motivation for its use in adaptive control has

come from the need to develop robust adaptive controllers that are low-order and can

accommodate large lags in the system dynamics. These controllers require parameter

estimates that are differentiable to an arbitrary order. The contribution in [52] lies in

the development of such a HT that guarantees that the closed-loop adaptive system

is globally stable. A completely independent direction of research that has also led

to HT is due to a particular body of work in ML which has focused on accelerated

convergence of an underlying cost function [57, 58, 80, 93, 95]. The idea behind HT

is summarized below.

Parameter identification in a linear regression problem of the form 𝑦*(𝑡) = 𝜃*𝑇𝜑(𝑡)

where 𝜃* ∈ R𝑛 represents an unknown parameter, and 𝜑(𝑡) ∈ R𝑛 is an underlying

regressor that can be measured at each 𝑡 can be formulated as a minimization problem

𝐿𝑡(𝜃) = 𝑒2(𝑡) where 𝑒 = 𝑦 − 𝑦* and 𝑦(𝑡) = 𝜃𝑇𝜑(𝑡). A first-order tuner that can be

used to solve the minimization problem is of the form 𝜃 = −𝛾∇𝜃𝐿𝑡(𝜃). In [21] [24], a

HT of the form

𝜃 + 𝛽𝜃 = −𝛾𝛽
𝒩𝑡
∇𝜃𝐿𝑡(𝜃) (3.8)

was proposed and shown to correspond to the Lagrangian

ℒ(𝜃, 𝜃, 𝑡) = 𝑒𝛽(𝑡−𝑡0)
(︂
1

2
‖𝜃‖2 − 𝛾𝛽

𝒩𝑡
𝐿𝑡(𝜃)

)︂
. (3.9)

The benefits of the HT in (3.8) are that (a) it can be guaranteed to be stable even

with time-varying regressors for a dynamic error model with a scalar control input

[21], and (b) a particular discretization was shown in [24] to lead to an accelerated

algorithm which reaches an 𝜖 sub-optimal point in �̃�(1/
√
𝜖) iterations for a linear

regression-type convex loss function with constant regressors, as compared to the
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𝒪(1/𝜖) guaranteed rate for the standard gradient descent algorithm. As our goal

here is to achieve fast real-time control, we employ elements of HT proposed in [21]

in the AC part of the control design.
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Chapter 4

Adaptive Control and Reinforcement

Learning Algorithm (AC-RL)

4.1 Problem Statement

Consider a continuous-time, deterministic nonlinear system described by the following

dynamics 1:

�̇�(𝑡) = 𝐹 (𝑋(𝑡), 𝑈(𝑡)) (4.1)

where 𝑋(𝑡) ∈ R𝑛, and 𝑈(𝑡) ∈ R𝑚. We define 𝑥 = 𝑋 − 𝑋0 and 𝑢 = 𝑈 − 𝑈0, where

(𝑋0, 𝑈0) is an equilibrium point2, i.e., 𝐹 (𝑋0, 𝑈0) = 0.Using a Taylor series expansion

on (4.1) yields

�̇� = 𝐴𝑥+𝐵𝑢+ 𝑓(𝑥, 𝑢) (4.2)

where 𝑓 : R𝑛 × R𝑚 → R𝑛, and (𝐴,𝐵) is controllable. It should be noted that (4.1)

can always be written in the form of (4.2) for any analytic function 𝐹 . The following

assumption is made about 𝑓 :

Assumption 2 The higher order effects represented by the nonlinearity 𝑓(𝑥, 𝑢) in

1In previous sections detailing reinforcement learning methods, states and actions were denoted
as 𝑠 and 𝑎 respectively. In order to keep with classical control conventions, the following notation
will be used in the subsequent sections: 𝑥 will refer to the state of a dynamical system and 𝑢 will
refer to the control input (analagous to an action in RL).

2In most of what follows, we suppress the argument 𝑡 for ease of exposition.
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(4.2) (a) lies in the span of 𝐵 and (b) are solely a function of the state 𝑥, i.e. the

system in (4.2) is control affine and 𝑔(𝑥) exists such that 𝐵𝑔(𝑥) = 𝑓(𝑥, 𝑢):

�̇� = 𝐴𝑥+𝐵[𝑢+ 𝑔(𝑥)] (4.3)

The goal then is the determination of the control input 𝑢(𝑡) in real-time, when

parametric uncertainties are present in the system dynamics in (4.3), so as to minimize

the cost function

min
𝑢(𝑡)∈𝒰, ∀𝑡∈[0,𝑇 ]

∫︁ 𝑇

0

𝑐(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 (4.4)

subject to the dynamics in (4.3), where 𝒰 represents the action space and 𝑐 is a

bounded cost function [91].

4.2 Underlying Tools

4.2.1 An Offline Approach Based on Reinforcement Learning

Control policies are determined using RL through offline training in simulation, which

implies that the system in (4.2) needs to be fully known and accessible by the simulator

during the offline training. We rewrite (4.2) as

�̇�𝑟 = 𝐴𝑥𝑟 +𝐵𝑢𝑟 + 𝑓𝑟(𝑥𝑟, 𝑢𝑟) (4.5)

where the subscript 𝑟 is used to denote signals and parameters belonging to the ref-

erence system. We briefly describe the offline training procedure: First, it is assumed

that the continuous-time dynamics in (4.5) are sampled with sufficient accuracy, re-

sulting in the discrete time dynamics:

𝑥𝑟,𝑘+1 = ℎ(𝑥𝑟,𝑘, 𝑢𝑟,𝑘) (4.6)

An appropriate numerical integration scheme ensures that this discrete-time formula-

tion closely approximates the dynamics. When training in simulation the RL process

begins with the construction of a simulation environment defined by (4.6). The ref-

44



erence system in (4.6) is used to collect data with which RL learns a feedback policy

𝑢𝑟,𝑘 = 𝜋(𝑥𝑟,𝑘) with repeated training of 𝜋(·) so as to achieve the control objective of

(4.4) [32] as follows.

At each timestep, an observation 𝑥𝑟,𝑘 is received, a control 𝑢𝑟,𝑘 is chosen, and the

resulting cost 𝑐𝑘 = 𝑐(𝑥𝑟,𝑘, 𝑢𝑟,𝑘) is received. Repeating this process, a set of input-

state-cost tuples 𝒟 = [(𝑥𝑟,1, 𝑢𝑟,1, 𝑐1), . . . , (𝑥𝑟,𝑁 , 𝑢𝑟,𝑁 , 𝑐𝑁)] is formed. This data is used

to train and update the policy 𝜋 [32]. In many RL algorithms the policy is parametric,

often using neural networks, so that 𝑢𝑘 = 𝜋𝜃(𝑥𝑘). The learning algorithm then seeks

to adjust 𝜃 so that the expected accumulated cost is minimized [74, 90], i.e

min
𝜃

𝐽(𝜃) = E𝜋𝜃

[︃
𝑇∑︁
𝑘=0

𝑐𝑘

]︃
(4.7)

In this work, we use the Proximal Policy Optimization (PPO) and Deep Deterministic

Policy Gradient RL algorithms [75] to train the policy 𝜋 which constitutes the RL

portion of the proposed AC-RL controller.

4.2.2 The Classical Online Approach Based on Adaptive Meth-

ods

We start with an error model description of the form

�̇�(𝑡) = 𝐴𝑚𝑒(𝑡) +𝐵Λ
[︁̃︀Θ(𝑡)Φ(𝑡)

]︁
(4.8)

where 𝑒(𝑡) ∈ R𝑛 is a performance error that is required to be brought to zero. Tracking

error, identification error, or state estimation error are a few examples. ̃︀Θ(𝑡) ∈

R𝑚×𝑙 is a matrix of parameter errors that quantify the learning error. If the true

parameter in the system dynamics is Θ* ∈ R𝑚×𝑙, and it is estimated as ̂︀Θ(𝑡) at time

𝑡, then ̃︀Θ = ̂︀Θ − Θ*. 𝐴𝑚 is a Hurwitz matrix, 𝐴𝑚 and 𝐵 are known with (𝐴𝑚, 𝐵)

controllable, and Λ ∈ R𝑚×𝑚 is an unknown parameter matrix that is positive definite.

Finally Φ(𝑡) ∈ R𝑙 is a vector of regressors that correspond to all real-time information

measured or computed from the system dynamics and controllers at time 𝑡. Such an
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error model is ubiquitous in adaptive control of a large class of nonlinear dynamic

systems with parametric uncertainties [56] including that in (4.3). The following

theorem summarizes the standard adaptive control result in the literature:

Theorem 1 Let Γ ∈ R𝑚×𝑚 and 𝑄 be symmetric positive-definite matrices with 𝑃

corresponding to the solution of the Lyapunov equation

𝐴𝑇𝑚𝑃 + 𝑃𝐴𝑚 = −𝑄. (4.9)

An adaptive law that adjusts the parameter error as

̃̇︀Θ = −Γ𝐵𝑇𝑃𝑒Φ𝑇 (4.10)

guarantees that 𝑒(𝑡) and ̃︀Θ(𝑡) are bounded for any initial conditions 𝑒(0) and ̃︀Θ(0).

If in addition Φ(𝑡) is bounded for all 𝑡, then lim𝑡→∞ 𝑒(𝑡) = 0.

In addition to closed-loop stability and tracking performance, we also use Regret

to quantify the performance of the proposed controllers, defined as in [25], as

ℛ =

∫︁ 𝑇

0

𝑒𝑇 (𝜏)𝑄𝑒(𝜏)𝑑𝜏 (4.11)

where 𝑄 is a positive definite matrix. It is clear that for the classical AC approach,

ℛ = 𝑂(1), i.e., independent of 𝑇 . Decaying exponential signals can also be included

in (4.11) [25].

4.2.3 Persistent Excitation and Parameter Learning

Definition 1 (Persistent Excitation) [56] A bounded function Φ : [𝑡0,∞) → R𝑁

is persistently exciting (PE) if there exists 𝑇 > 0 and 𝛼> 0 such that

∫︁ 𝑡+𝑇

𝑡

Φ(𝜏)Φ𝑇 (𝜏)𝑑𝜏 ≥ 𝛼𝐼, ∀𝑡 ≥ 𝑡0. (4.12)
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The definition of PE in (4.12) is equivalent to the following:

1

𝑇

∫︁ 𝑡+𝑇

𝑡

⃒⃒
Φ(𝜏)𝑇𝑤

⃒⃒
𝑑𝜏 ≥ 𝜖0,∀ unit vectors 𝑤 ∈ R𝑁 ,∀𝑡 ≥ 𝑡0 (4.13)

for some 𝜖0 > 0. In what follows, we will utilize an alternate definition, which is

equivalent to (4.12) and (4.13) if ‖Φ̇(𝑡)‖ is bounded for all 𝑡 [50]:

Definition 2 Φ is PE if there exists an 𝜖 > 0 a 𝑡2 and a sub-interval [𝑡2, 𝑡2 + 𝛿0] ⊂

[𝑡, 𝑡+ 𝑇 ] with

1

𝑇

⃒⃒⃒⃒∫︁ 𝑡2+𝛿0

𝑡2

Φ(𝜏)𝑇𝑤𝑑𝜏

⃒⃒⃒⃒
≥ 𝜖0,∀ unit vectors 𝑤 ∈ R𝑁 , ∀𝑡 ≥ 𝑡0. (4.14)

The goal of this paper is to find solutions not only for real-time control but also

for learning the unknown parameters. Adaptive control systems enable parameter

learning by imposing properties of persistent excitation defined in Section 4.2.3. We

briefly summarize the classical result related to this topic, which was first established

for continuous-time systems in 1977 in [50, 51]. The starting point is the same error

model as in (4.10), which contains two errors, 𝑒(𝑡) ∈ R𝑛 is a performance error that

can be measured, and ̃︀𝜃𝑇 (𝑡) = ̃︀Θ(𝑡) ∈ R1×𝑙 is a parameter learning error. As before

we assume that 𝐴𝑚 is known and Hurwitz, and 𝐵 is known. The following theorem

summarizes this result:

Theorem 2 ([51]) The solutions of the error dynamics in (4.8) together with the

adaptive law in (4.10) lead to lim𝑡→∞ ̃︀𝜃(𝑡) = 0 if the regressor Φ satisfies the PE

condition in Definition 2.

It should be noted that the PE condition in Definition 2 is stronger than that

required in Definition 1 which is for error models that have an algebraic relation

between the performance error and the parameter error, and is equivalent if the

regressor Φ(𝑡) is smooth.
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Figure 4-1: RL vs. AC-RL. (a) represents a standard application of a trained policy,
in which the trained policy is inserted directly into the target system: 𝑢 = 𝜋(𝑥). (b)
shows how AC-RL is used. The policy is inserted into the reference system, producing
𝑢𝑟 = 𝜋(𝑥𝑟). The MRAC update laws are then used to calculate 𝑢.
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4.3 AC-RL Algorithm

4.3.1 Model Reference Adaptive Control

As the problem we will address in this paper considers the effect of parametric un-

certainties in (4.3), we shall denote (4.3) when there are no parametric uncertainties

as the reference system, and express it as

�̇�𝑟 = 𝐴𝑥𝑟 +𝐵[𝑢𝑟 + 𝑔(𝑥𝑟)] (4.15)

We assume that 𝑢𝑟 is designed using RL:

𝑢𝑟 = 𝜋(𝑥𝑟, 𝑡) (4.16)

so that for all bounded exogenous inputs, 𝑢𝑟 ensures that 𝑥𝑟 is bounded, and is such

that (4.4) is accomplished. It should be noted that the dependence of the policy 𝜋

on 𝑡 represents the effect of all exogenous inputs needed to accomplish the control

objective (e.g, a reference trajectory). It should also be noted that 𝜋(𝑥𝑟, 𝑡) in (4.16)

does not necessarily cancel 𝑔(𝑥𝑟), but accommodates it so that the closed-loop system

behaves in a satisfactory manner for the requisite control task. This is quantified in

Assumption 3, a desirable property of RL controllers.

Assumption 3 RL is used to train a feedback policy 𝜋 : 𝑥→ 𝑢 such that for a given

positive constant 𝑅2, a positive constant 𝑅1 exists such that ||𝑥𝑟(0)|| ≤ 𝑅1 implies

||𝑥𝑟(𝑡)|| ≤ 𝑅2 ∀𝑡.

Parametric uncertainties

We now introduce the following assumption to address parametric uncertainties.

Assumption 4 The higher order term in (4.3) is parameterized linearly, i.e., 𝑔(𝑥) =

Θ𝑛,𝑟Φ𝑛(𝑥) where Θ𝑛,𝑟 ∈ R𝑚×𝑙 and Φ𝑛(𝑥) ∈ R𝑙.

Assumption 4 implies that the nonlinearities in (4.3) can be approximated using 𝑙

basis functions. In what follows, we consider two dominant sources of uncertainties,
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one in the form of control effectiveness, i.e., 𝑢 gets perturbed as Λ𝑢, and the second

as a perturbation in 𝑔(𝑥) from Θ𝑛,𝑟Φ𝑛(𝑥) to Θ
′
𝑛Φ𝑛(𝑥). The plant equation in (4.3)

then becomes

�̇� = 𝐴𝑥+𝐵Λ
[︁
𝑢+ Λ−1Θ

′

𝑛Φ𝑛(𝑥)
]︁

(4.17)

where 𝐵 ∈ R𝑛×𝑚,Λ ∈ R𝑚×𝑚, and Θ′
𝑛 ∈ R𝑚×𝑙. Loss of control effectiveness is ubiqui-

tous in practical problems, due to unforeseen anomalies that may occur in real-time,

such as accidents or aging in system components, especially in actuators. Parametric

uncertainties in the nonlinearity 𝑔(𝑥) may be due to modeling errors. We note that

the problem is the control of (4.17) where 𝐴, 𝐵, and Φ𝑛(𝑥) are known, but Λ and Θ′
𝑛

are unknown parameters.

4.3.2 The AC-RL controller

Suppose that an AC-RL control input is designed as

𝑢 = 𝑢𝑟 + 𝑢𝑎𝑑 (4.18)

whose goal is to ensure that in the presence of the aforementioned perturbations in Λ

and Θ′
𝑛 the true system state 𝑥 converges to the reference system state 𝑥𝑟. Subtracting

(4.15) from (4.17), we obtain the error dynamics:

�̇� = 𝐴𝐻𝑒+𝐵Λ[𝑢𝑎𝑑 + (𝐼 − Λ−1)𝑢𝑟 + Λ−1Θ
′

𝑛Φ𝑛(𝑥)

− Λ−1(𝑔(𝑥𝑟) + Θ𝑙,𝑟𝑒)] (4.19)

where 𝑒 := 𝑥 − 𝑥𝑟 and Θ𝑙,𝑟 is such that 𝐴𝐻 := 𝐴 + 𝐵Θ𝑙,𝑟 is Hurwitz. The bracketed

terms in (4.19) can be rearranged into:

𝑢𝑎𝑑 + 𝑢𝑟 − Λ−1 (𝑢𝑟 + 𝑔(𝑥𝑟) + Θ𝑙,𝑟𝑒) + Λ−1Θ
′

𝑛Φ𝑛(𝑥)
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leading to the compact error dynamics

�̇� = 𝐴𝐻𝑒+𝐵Λ[𝑢−ΘΦ] (4.20)

where

Θ :=
[︀
Λ−1, −Λ−1Θ′

𝑛

]︀
Φ :=

⎡⎣Φ𝑟(𝑢𝑟, 𝑥𝑟, 𝑥)

Φ𝑛(𝑥)

⎤⎦ (4.21)

and

Φ𝑟(𝑢𝑟, 𝑥𝑟, 𝑥) = 𝑢𝑟 + 𝑔(𝑥𝑟) + Θ𝑙,𝑟𝑒 (4.22)

In (4.21), Θ ∈ R𝑚×(𝑚+𝑙) corresponds to an unknown parameter matrix and Φ(𝑡) ∈

R𝑚+𝑙 is the regressor vector used for adaptation. The error equation (4.20) is central

to the development of the AC-RL algorithms derived in the following subsections.

The AC-RL approach is exemplified by several key features:

(i) Two different regressors are employed in the adaptive control input: Φ𝑟 in (4.22)

and Φ𝑛, which are utilized to address the two different sources of parametric

uncertainties Λ and Θ𝑛. The first regressor component, Φ𝑟, comes predomi-

nantly from the closed RL system: 𝑢𝑟 and 𝑔(𝑥𝑟) come from the RL policy and

reference environment, respectively. 𝐵[𝑢𝑟 + 𝑔(𝑥𝑟)] in (4.15) can be viewed as

a variable determined by an oracle; this could potentially be accomplished by

monitoring the entire vector field �̇�𝑟 and subtracting the linear part 𝐴𝑥. The

second regressor accommodates the uncertainty Θ′
𝑛 in the nonlinear component

𝑔(𝑥) (and employs assumption 4).

(ii) The additional feedback from 𝑒 in (4.22) is essential in guaranteeing global

stability.

(iii) In contrast to the standard AC formulation, the AC-RL controller allows the

use of a nonlinear reference model as in (4.15) and a nonlinear controller based

on RL as in (4.16).
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We now propose the AC-RL controller.

𝑢 = ̂︀Θ(𝑡)Φ(𝑡) (4.23)

Ξ̇ = −𝛾𝐵𝑇𝑃𝑒Φ𝑇 (4.24)̂̇︀Θ = −𝛽(̂︀Θ− Ξ)𝒩𝑡, (4.25)

where

𝒩𝑡 = 1 + 𝜇Φ𝑇Φ (4.26)

𝜇 ≥ 2𝛾

𝛽
‖𝑃𝐵‖2𝐹 (4.27)

‖ · ‖𝐹 in (4.27) denotes the Frobenius matrix norm, and 𝑃 = 𝑃 𝑇 ∈ R𝑛×𝑛 is a positive

definite matrix that solves the equation 𝐴𝑇𝐻𝑃 + 𝑃𝐴𝐻 = −𝑄, where 𝑄 is a positive-

definite matrix and 𝑄 ≥ 2𝐼. It should be noted that (4.24) - (4.25) is a second-order

tuner, and an extension of earlier results in [21] to the multivariable case. We also

note that our choice of RL in the outer-loop is due to its abilities to be agnostic

to the model structure, incorporation of general optimization costs, and superior

computational efficiency, in contrast to methods such as MPC. In comparison to a

purely AC approach the AC-RL controller can be viewed as one where the RL plays

the role of a reference model that is nonlinear with a controller that is nonlinear as

well and trained so as to elicit desirable properties from the reference system. The

following theorem presents the stability property of the AC-RL, which requires the

following additional assumption:

Assumption 5 Λ is symmetric and positive definite, with ‖Λ‖ ≤ 1.

Theorem 3 Under Assumptions 2-5, the closed-loop adaptive system specified by the

plant in (4.17), the reference system in (4.15), and the adaptive controller in (4.23)-

(4.25) leads to globally bounded solutions with lim𝑡→∞ 𝑒(𝑡) = 0 with ℛ = 𝑂(1).

It is clear from (4.23) - (4.25) that if there are no parametric uncertainties, and

if the initial conditions of (4.17) are identical to those of (4.15), then the choices of
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̂︀Θ(0) = [𝐼,Θ𝑇
𝑛,𝑟]

𝑇 and Ξ(0) = 0 ensures that the AC-RL control 𝑢(𝑡) coincides with

the RL-input, thereby accomplishing (4.4). When there are parametric uncertainties,

the control input needs to be modified from (4.16) as in (4.23). Theorem 1 guarantees

that with this input, the closed-loop system state 𝑥 converges to 𝑥𝑟 satisfying (4.4)

in the limit. Additional smoothness conditions on Φ have to be imposed to show that̂︀Θ goes to a constant. Denoting this constant as Θ𝑠𝑠, it follows that the parametric

uncertainties are accommodated by the online AC-RL policy by replacing the offline

policy 𝑢𝑟, which may be in the form of Θ𝑛,𝑟Φ(𝑥), by 𝑢𝑟 + 𝑢𝑎𝑑 as in (4.23), which is of

the form Θ𝑠𝑠Φ(𝑥).

4.3.3 Validity of the AC-RL controller

The RL and AC components of the AC-RL controller imposed distinctly different

requirements on the system (4.1). The AC controller in (4.23)-(4.25) required that

the system be expanded as in (4.2), and imposed Assumptions 1 and 4 to bring (4.2)

into the form (4.17). The RL controller in (4.16) required none of these assumptions,

but that the reference system be amenable to a simulation experiment offline, with 𝑢𝑟

determined through training, as quantified in Assumption 3. We explore the benefits

of combining these two methods by evaluating the implications of these assumptions

and requirements on the original system (4.2).

We note that the effect of the approximations due to Assumptions 1 and 4 can be

expressed by considering (4.2) in the presence of uncertainties Λ and Θ′
𝑛 given by

�̇� = 𝐴𝑥+𝐵Λ𝑢+ 𝑓 ′(𝑥, 𝑢) (4.28)

and expressing the nonlinearity 𝑓 ′(𝑥, 𝑢) as:

𝑓 ′(𝑥, 𝑢) = 𝐵Θ′
𝑛Φ(𝑥) + 𝜖(𝑥) (4.29)

where 𝜖(𝑥) represents the approximation error due to assumptions 1 and 2.

We assume that for a given non-negative bound 𝑀 , basis functions Φ(𝑥) can be
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chosen such that

||𝜖(𝑥)|| ≤𝑀 ∀𝑥 ∈ 𝑆(𝑀) (4.30)

where 𝑆(𝑀) is a compact set in R𝑛. It can be shown that a compact set 𝑆0 exists

such that the closed-loop system with the AC-RL controller guarantees that for all

𝑥(0) ∈ 𝑆0, 𝑥(𝑡) ∈ 𝑆(𝑀). This is established via the following: Let

||𝑒(0)|| ≤ 𝑋0 +𝑅1 (4.31)

where 𝑋0 = max𝑥∈𝑆0 ||𝑥|| with 𝑅1, 𝑅2 given by Assumption 3. From the Lyapunov

function, we have

||𝑒(𝑡)|| ≤ (𝑘0 +𝑋0 +𝑅1)
𝜎𝑚𝑎𝑥(𝑃 )

𝜎𝑚𝑖𝑛(𝑃 )
(4.32)

where 𝑘0 is the maximum bound on the parameter estimates. Finally, denoting 𝐸0 =

(𝑘0 +𝑋0 +𝑅1)
𝜎𝑚𝑎𝑥(𝑃 )
𝜎𝑚𝑖𝑛(𝑃 )

, we have

||𝑥(𝑡)|| ≤ 𝐸0 +𝑅2 ∀𝑡 ≥ 𝑡0 (4.33)

The bound 𝑘0 can be shown to exist with a projection operator added to the HT

laws using tools in [23, 24]. Let 𝑅𝑀 = max𝑥∈𝑆(𝑀) ||𝑥||. If 𝐸0 + 𝑅2 ≤ 𝑅𝑀 , there

exists a compact set 𝑆0 such that the closed-loop AC-RL system solutions 𝑥(𝑡) for

the original system in (4.2) are guaranteed to lie inside 𝑆(𝑀). Although Assumption

3 guarantees that ||𝑥𝑟(𝑡)|| ≤ 𝑅2 it provides no such statement about the states 𝑥(𝑡)

in (4.29). Therefore, if RL is applied without AC one cannot make any claim on the

boundedness of 𝑥(𝑡). In comparison, AC-RL guarantees that ||𝑥(𝑡)|| ≤ 𝐸0 +𝑅2.

We note that the condition that 𝐸0 + 𝑅2 ≤ 𝑅𝑀 trivially holds when there is no

approximation error, i.e ||𝜖(𝑥)|| = 0 which in turn implies that 𝑅𝑀 = ∞. Therefore

AC-RL guarantees the boundedness of 𝑥(𝑡) ∀𝑡 ≥ 𝑡0. In comparison, direct application

of the RL policy 𝜋 to the target system cannot provide any such guarantee.

In summary, the actual solutions of the closed-loop system with the AC-RL can

have a bound that is as large as 𝐸0 +𝑅2, whereas the RL-based controller leads to a

solution that is less than 𝑅2. Therefore it is clear that the addition of the AC in the
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inner-loop allows an online policy that accommodates a larger compact set.

4.3.4 AC-RL with Magnitude Saturation

As control inputs are often subject to magnitude saturation, we propose another AC-

RL controller: Magnitude Saturation AC-RL (MSAC-RL), which builds on the ideas

introduced in [33]. The saturated control input into the true plant is calculated as:

𝑢𝑖(𝑡) = 𝑢𝑖,maxsat

(︂
𝑢𝑖,𝑐(𝑡)

𝑢𝑖,max

)︂
(4.34)

where 𝑢𝑐(𝑡) denotes the output of the controller and 𝑢𝑖,max is the allowable magnitude

limit on 𝑢𝑖. This induces a saturation-triggered disturbance ∆𝑢 vector defined by

∆𝑢(𝑡) = 𝑢𝑐(𝑡)− 𝑢(𝑡) (4.35)

It is easy to see that ∆𝑢(𝑡) = 0 when the desired control 𝑢𝑐(𝑡) does not saturate. The

output of the controller, 𝑢𝑐, is given by:

𝑢𝑐 = ̂︀Θ(𝑡)Φ(𝑡) (4.36)

The presence of the disturbance ∆𝑢 causes the error equation to vary from (4.20) to

�̇� = 𝐴𝐻𝑒+𝐵Λ[𝑢𝑐 −∆𝑢−ΘΦ] (4.37)

We introduce a new performance error 𝑒𝑎 in order to accommodate the disturbance

∆𝑢 as follows:

�̇�𝑎 = 𝐴𝐻𝑒𝑎 +𝐵𝐾𝑎(𝑡)∆𝑢 (4.38)

which leads to a new augmented error 𝑒𝑢 = 𝑒− 𝑒𝑎:

�̇�𝑢 = 𝐴𝐻𝑒𝑢 +𝐵Λ̃︀Θ(𝑡)Φ(𝑡) +𝐵(Λ−𝐾𝑇
𝑎 )∆𝑢 (4.39)
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This suggests a different set of adaptive laws,

Ξ̇ = −𝛾𝐵𝑇𝑃𝑒𝑢Φ
𝑇 (4.40)

Θ̇ = −𝛽(Θ− Ξ)𝒩𝑡, (4.41)

where Θ = [̂︀Θ𝑇 ,−𝐾𝑇
𝑎 ]
𝑇 and Φ = [Φ𝑇 ,∆𝑢𝑇 ]𝑇 , 𝛾 and 𝛽 are positive constants, and 𝒩𝑡

defined as in (4.26) with Φ replaced by Φ and 𝜇 as in (4.27). The following theorem

provides the analytical guarantees for this MSAC-RL controller.

Theorem 4 Under Assumptions 2-5, the closed-loop adaptive system specified by the

plant in (4.17), the reference system in (4.15), the magnitude constraint in (4.34) and

the MSAC-RL controller given by (4.36), (4.40) and (4.41) leads to

(i) globally bounded solutions, with lim𝑡→∞ ‖𝑒𝑢(𝑡)‖ = 0 if the target system in (4.17)

is open-loop stable.

(ii) bounded solutions for all initial conditions 𝑥(0), Ξ(0), ̂︀Θ(0) and 𝐾𝑎(0) in a

bounded domain, with ‖𝑒(𝑡)‖ = 𝑂[
∫︀ 𝑡
0
‖∆𝑢(𝜏)‖𝑑𝜏 ] if the target system in (4.15)

is not open-loop stable.

It is clear that the performance guarantees of the closed-loop system in Theorems

3-4 approximate the online control goal stated in (4.4) for the case when the cost

function does not depend on the control input, as 𝑥(𝑡) approaches 𝑥𝑟(𝑡) and the

choice of 𝑢𝑟(𝑡) optimizes the behavior of the reference system. Any dependence on

the control input is implicitly addressed in MSAC-RL by accommodating magnitude

saturation. More remains to be done in bridging this optimization gap, a topic for

future research.

4.3.5 Extension to multiple equilibrium points

Suppose the system in (4.1) has 𝑝 equilibrum points (𝑋1, 𝑈1), . . . , (𝑋𝑝, 𝑈𝑝), so that

𝐹 (𝑋𝑖, 𝑈𝑖) = 0 for 𝑖 = 1, . . . , 𝑝. Define 𝑥𝑖 = 𝑥−𝑋𝑖, 𝑢𝑖 = 𝑢−𝑈𝑖. Denoting the state and
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action spaces as X and U, respectively, partition the composite domain D = X × U

into 𝑝 disjoint subsets 𝑆1, . . . , 𝑆𝑝, such that:

D = 𝑆1 ∪ 𝑆2 ∪ . . . 𝑆𝑝

𝑆𝑖 ∩ 𝑆𝑗 = ∅, 𝑖 ̸= 𝑗

One can then express (4.1) in the presence of parametric uncertainties as

�̇� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴1𝑥1 +𝐵1[Λ𝑢1 + 𝑔(𝑥1)], 𝑥1, 𝑢1 ∈ 𝑆1

...

𝐴𝑝𝑥𝑝 +𝐵𝑝[Λ𝑢𝑝 + 𝑔(𝑥𝑝)], 𝑥𝑝, 𝑢𝑝 ∈ 𝑆𝑝.

(4.42)

If we now consider the effect of parametric uncertainties in 𝑢𝑖 and 𝑔(𝑥𝑖) as in Section

III-A, it is easy to have a switching set of controllers as in (4.23)-(4.25) that are

invoked when the trajectories enter the set 𝑆𝑖. A corresponding stability result to

Theorem 4 can be derived, provided the command signal is such that the dwell time

in each set 𝑆𝑖 exceeds a certain threshold, which is not discussed here. We summarize

the overall AC-RL controller in Algorithm 1, which specifies the discrete time im-

plementation of the overall AC-RL Controller. ∆𝑡 denotes the integration timestep

and the AdaptiveControl function corresponds to the adaptive control input; in the

single equilibrium case, this function corresponds to equations (4.23)-(4.27). 𝐹 and

𝐹𝑟 represent the velocity vector fields of the target and reference dynamical systems,

respectively. That is, 𝐹 and 𝐹𝑟 are the right hand sides of equations (4.2) and (4.5),

respectively.

4.3.6 Extensions to a class of nonaffine systems

We once again start with (4.1), expand the dynamics around (𝑋0, 𝑈0), which together

with Assumption 1 leads to a class of nonlinear systems

�̇� = 𝐴𝑥+𝐵[𝑢+ ℎ(𝑥, 𝑢)] (4.43)
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Algorithm 1 Multiple Equilibrum AC-RL
Require: 𝐹, 𝐹𝑟, 𝜋, 𝑥𝑟, 𝑥

while running do
𝑢𝑟 = 𝜋(𝑥𝑟)
𝑥𝑖 ← 𝑥−𝑋𝑖

𝑢𝑖 ← 𝑢− 𝑈𝑖
𝑒← 𝑥𝑖 − (𝑥𝑟 −𝑋𝑖)
Φ← [𝑥𝑖, 𝑢𝑖]
𝑢←AdaptiveControl(Φ, 𝑒, Θ̂𝑖, 𝑃𝑖, 𝐵𝑖) + 𝑈𝑖
𝑥𝑟 ← 𝑥𝑟 + 𝐹𝑟(𝑥𝑟, 𝑢𝑟)∆𝑡
𝑥← 𝑥+ 𝐹 (𝑥, 𝑢)∆𝑡
𝑖← 𝑗 : 𝑥, 𝑢 ∈ 𝑆𝑗

end while

Noting that 𝑢 is required to minimize the cost functional subject to the constraints

specified in (4.4), we assume that 𝑢 can be expressed as an analytic function of the

state 𝑥, which in turn leads to the assumption that

ℎ(𝑥, 𝑢) = 𝑔(𝑥, 𝑡) (4.44)

The nonautonomous nature in (4.44) is due to the cost functional dependent on time

which in turn may be due to an objective that may vary with 𝑡. The goal is to

determine 𝑢 in real time when parametric uncertainties are present in (4.43)-(4.44)

so that (4.4) is accomplished for initial condition 𝑥0. Denoting the case when there

are no parametric uncertainties as the reference system, we obtain its dynamics to be

�̇�𝑟 = 𝐴𝑥𝑟 +𝐵[𝑢𝑟 + 𝑔(𝑥𝑟, 𝑡)] (4.45)

We proceed to make a similar assumption as in Section 4.3.1 regarding the higher

order term:

Assumption 6 𝑔(𝑥, 𝑡) is parameterized linearly, i.e., 𝑔(𝑥, 𝑡) = Θ𝑛𝑙,𝑟Φ𝑛𝑙(𝑥, 𝑡) where

Φ𝑛𝑙(𝑥, 𝑡) ∈ R𝑙.

Similar to Assumption 4, Assumption 6 implies that the nonlinearities of the affine

nonlinear system (4.3) are confined to the first 𝑙 higher-order terms, with additional

nonautonomous components due to the nonaffine nature of the dynamics.
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As in Section 4.3.1, we assume that the plant dynamics in (4.43)-(4.44) are

subject to two parametric uncertainties, with 𝑢 perturbed as Λ𝑢, and 𝑔(𝑥, 𝑡) from

Θ𝑛𝑙,𝑟Φ𝑛𝑙(𝑥, 𝑡) to Θ
′

𝑛𝑙Φ𝑛𝑙(𝑥, 𝑡), which causes the plant equation to become

�̇� = 𝐴𝑥+𝐵Λ[𝑢+ Λ−1Θ
′

𝑛𝑙Φ𝑛𝑙(𝑥)] (4.46)

As the structure of the plant dynamics in (4.46) is almost identical to that in (4.17),

the development of the AC-RL controller and its control solution is identical to the

descriptions above and are summarized in the following subsection.

4.3.7 Learning in AC-RL controllers with persistent excitation

Sections IV-A through IV-E focused on the control solution, i.e. the solution to the

problem in (4.4). The AC-RL controller in (4.23)-(4.25) guaranteed that the resulting

solution 𝑥(𝑡) of the closed loop system converged to the nominal reference solution

𝑥𝑟(𝑡) with the AC-RL policy 𝑢(𝑡) converging to the RL policy 𝑢𝑟(𝑡). In this section,

we return to the learning problem, i.e. the conditions under which the parameter

estimate ̂︀Θ converges to the true parameter Θ with the AC-RL algorithm. We limit

our discussion to the case when 𝑢(𝑡) is a scalar. A few remarks follow regarding its

extension to the multi-input case, which falls outside the scope of this paper.

The starting point is the error equation in (4.20) and the AC-RL control input

in (4.23). We note that with a scalar input, 𝑚 = 1, which leads to Λ ∈ R+ (using

Assumption 5), Θ ∈ R1×(𝑙+1), Φ𝑟(𝑡) ∈ R, and Φ𝑛(𝑡) ∈ R𝑙 in (4.21). Similar to

Assumption 5, we assume that 0 < Λ < 1. This in turn leads to the error equation

�̇� = 𝐴𝐻𝑒+𝐵Λ[(̂︀Θ−Θ)Φ] (4.47)

and the adaptive laws (4.24)-(4.25). The following theorem establishes the conditions

under which lim𝑡→∞ ̃︀Θ(𝑡) = 0.

Defining 𝜃 = (̂︀Θ − Θ)𝑇 , 𝜗 = (Ξ − Θ)𝑇 and 𝐵0 = 𝐵Λ, we rewrite (4.47), (4.24),
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and (4.25) as

�̇� = 𝐴𝐻𝑒+𝐵0𝜃
𝑇Φ (4.48)

and

˙̃𝜗 = −𝛾Φ𝑒𝑇𝑃𝐵 (4.49)
˙̃𝜃 = −𝛽(𝜃 − 𝜗)𝒩𝑡 (4.50)

where𝒩𝑡 = 1+𝜇Φ𝑇Φ, 𝜇 ≥ 2𝛾‖𝑃𝐵‖2/𝛽. As before, the matrix 𝑃 solves𝐴𝑇𝐻𝑃+𝑃𝐴𝐻 =

−𝑄 and 𝑄 ≥ 2𝐼 is a symmetric, positive-definite matrix. The constants 𝛾 and 𝛽 are

positive. Let 𝑥1(𝑡) = [𝑒(𝑡)𝑇 , (𝜃(𝑡)− 𝜗(𝑡))𝑇 ]𝑇 and 𝑧(𝑡) = [𝑥1(𝑡)
𝑇 , 𝜗(𝑡)𝑇 ]𝑇 .

We note that the stability result related to the AC-RL controller stated in Theorem

4 guarantees that 𝑧(𝑡) is uniformly bounded, which follows from a Lyapunov function

of the form

𝑉 =
Λ

𝛾
𝜗𝑇𝜗+

Λ

𝛾

[︁
(𝜗− 𝜃)𝑇 (𝜗− 𝜃)

]︁
+ 𝑒𝑇𝑃𝑒 (4.51)

whose derivative is bounded by

�̇� ≤ −2𝛽Λ

𝛾
‖𝜃 − 𝜗‖2 − Λ‖𝑒‖2 (4.52)

Noting that our goal is to show that lim𝑡→∞ 𝜃(𝑡) = 0, it suffices to show that 𝑉 (𝑡)→ 0

as 𝑡 → ∞. As the time-derivative �̇� in (4.52) is negative-definite only in 𝑥1, the

goal cannot be accomplished in a straight forward manner. We show below that

this is indeed possible under conditions of persistent excitation, and corresponds to

the second contribution of this paper, which is parameter learning using the AC-RL

controller.

The following lemmas are useful in proving the main result, which is stated in

Theorem 5. We note that Theorem 4 guarantees that 𝑧(𝑡) and Φ(𝑥, 𝑒, 𝑢𝑟) is bounded,

making the properties of persistent excitation applicable for what follows.

Lemma 1 Let 𝜖1 > 𝜖2 > 0, then there is an 𝑛 = 𝑛(𝜖1, 𝜖2) such that if 𝑧(𝑡) =
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[︁
𝑥1(𝑡)

𝑇 , 𝜗(𝑡)𝑇
]︁𝑇

is a solution with ‖𝑧(𝑡1)‖ ≤ 𝜖1 and 𝑆 = {𝑡 ∈ [𝑡1,∞)|‖𝑥1(𝑡)‖ > 𝜖2},

then 𝜇(𝑆) ≤ 𝑛 where 𝜇 denotes Lebesgue measure.

Lemma 2 Let 𝛿 > 0 and 𝜖1 > 0 be given. Then there exist positive numbers 𝜖 and 𝑇

such that if 𝑧(𝑡) is a solution with ‖𝑧(𝑡1)‖ ≤ 𝜖1 and if
⃦⃦⃦
𝜗(𝑡)

⃦⃦⃦
≥ 𝛿 for 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇 ],

then there exists a 𝑡2 ∈ [𝑡1, 𝑡1 + 𝑇 ] such that ‖𝑥1(𝑡2)‖ ≥ 𝜖.

Lemma 3 Let 𝜖1 and 𝛿 be given positive numbers. Then there is a 𝑇 = 𝑇 (𝜖1, 𝛿) such

that if 𝑧(𝑡) is a solution and ‖𝑧(𝑡1)‖ ≤ 𝜖1, then there exist some 𝑡2 ∈ [𝑡1, 𝑡1 + 𝑇 ] such

that
⃦⃦⃦
𝜗(𝑡2)

⃦⃦⃦
≤ 𝛿.

Theorem 5 If Φ(𝑡) satisfies the persistent excitation property in (4.14), then the

origin (𝑒 = 0, 𝜗 = 0, 𝜃 = 0) in (4.48)-(4.50) is uniformly asymptotically stable.

The proof of Theorem 5 stems from the three lemmas listed above, which represent

the three main steps. Lemmas 1 and 2 establish that 𝑥1(𝑡) cannot remain small over

the entire period of persistent excitation. Lemma 3 then leverages this fact to show

that this leads to the parameter error 𝜗(𝑡) to decrease. Together this allows the

conclusion of u.a.s. of the origin (4.48)-(4.50) and therefore that lim𝑡→∞ 𝜃(𝑡) = 0. As

is apparent from the details of the proof provided in the Appendix, first principles

based arguments had to be employed in order to derive this result. No standard

observability properties or time-scale transformations as in [60] have been employed;

these are inadequate as the error model structure in (4.48) includes system dynamics

and no filtering techniques are used to convert the error model to a static linear

regression model.
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Chapter 5

Numerical Validation

We validate the AC-RL controller with the MSAC-RL algorithm using a simulated

task. The task requires a quadrotor moving in 3-D to land on a moving platform,

assuming full-state feedback. A sparse reward function is chosen in which positive

reward (negative cost) is attained only when the quadrotor enters a relatively small

compact set in the state-space. Negative reward (positive cost) is attained if the

quadrotor altitude falls below the platform altitude, or if a termination time of 15

seconds is reached.

5.1 Quadrotor Dynamics

We first describe the quadrotor dynamical model. The squared angular velocities of

each propeller are used as input, that is: 𝑢 = [𝜔2
1, 𝜔

2
2, 𝜔

2
3, 𝜔

2
4]
𝑇 . The thrust produced

by each propeller is calculated by multiplying the squared angular speed by a propeller

specific constant 𝜅. Letting 𝐾 = 𝑑𝑖𝑎𝑔(𝜅1, 𝜅2, 𝜅3, 𝜅4), the vector of thrusts produced

by each propeller is then given by 𝐾𝑢. Finally, denoting the (body-frame) vertical

force, roll moment, pitch moment, and yaw moment by 𝑓𝑧, 𝜏𝜑, 𝜏𝜃, 𝜏𝜓 respectively, we

have:

63



⎡⎢⎢⎢⎢⎢⎢⎣
𝑓𝑧

𝜏𝜑

𝜏𝜃

𝜏𝜓

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1

𝐿 0 −𝐿 0

0 𝐿 0 −𝐿

𝜇 −𝜇 𝜇 −𝜇

⎤⎥⎥⎥⎥⎥⎥⎦𝐾𝑢 (5.1)

where 𝐿 is the distance from each propeller to the quadrotor center of mass, and 𝜇

is a rotational drag constant. Assuming low-speeds, we may then construct a simple

rigid-body model for the quadrotor dynamics:

�̈� = (cos𝜑 cos 𝜃 cos𝜓 + sin𝜑 sin𝜓)
𝑓𝑧
𝑚

𝑦 = (cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓)
𝑓𝑧
𝑚

𝑧 = cos𝜑 cos 𝜃
𝑓𝑧
𝑚
− 𝑔

𝜑 = 𝜃�̇�(
𝐼𝑦 − 𝐼𝑧
𝐼𝑥

) +
𝐿

𝐼𝑥
𝜏𝜑

𝜃 = �̇��̇�(
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

) +
𝐿

𝐼𝑦
𝜏𝜃

𝜓 = �̇�𝜃(
𝐼𝑥 − 𝐼𝑦
𝐼𝑧

) +
1

𝐼𝑧
𝜏𝜓

(5.2)

where 𝑥, 𝑦, 𝑧 represent the center of mass position in an inertial frame and 𝜑, 𝜃, 𝜓

are the roll, pitch, and yaw angles of the quadrotor body frame, respectively, in the

inertial frame [15]. 𝑚 is the mass of the quadrotor; 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 are the moments of

inertia. A linearized model of (5.2) around the hover equilibrium point is given by:

�̈� = 𝑔𝜃 𝜃 =
𝐿

𝐼𝑦
𝜏𝜃

𝑦 = −𝑔𝜑 𝜑 =
𝐿

𝐼𝑥
𝜏𝜑

𝑧 =
∆𝑓𝑧
𝑚

𝜓 =
1

𝐼𝑧
𝜏𝜓

(5.3)

where ∆𝑓𝑧 = 𝑓𝑧 − 𝑚𝑔. We utilize (5.3) as the design model for the AC-RL, and

(5.2) as the underlying simulation model for the numerical experiment. (5.3) and

(5.1) form a linear & controllable system. Therefore, the adaptive control algorithms
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developed in the previous sections may be applied (when the linearized system is used

as the design model).

The model in (5.2) is implemented using an RK4 integration scheme with a step

of 1 millisecond. The following parameters are used to construct the reference envi-

ronment: 𝐼𝑥 = 𝐼𝑦 = .22𝑘𝑔 ·𝑚2, 𝐼𝑧 = .44𝑘𝑔 ·𝑚2, 𝑚 = 1.2𝑘𝑔, 𝐿 = .30𝑚. The control

input is updated every 50 milliseconds to emulate latencies arising from measurement,

communication, actuation and computation.

5.2 Quadrotor Landing Task

Due to the strength of RL algorithms in solving "unconstrained" control problems, we

are free to define the landing task in an elegant and concise manner (instead of having

to formulate a convex/simplified objective to enable tractable solutions via LQR or

MPC). We assume that a platform of known inertial position is moving with known

inertial velocity. The goal is to utilize full state feedback to determine a control policy

that enables a quadrotor to landing on the moving platform from a wide array of initial

conditions. Let ∆𝑧 and ∆𝑥𝑦 be the inertial vertical distance and lateral distance,

respectively, from the quadrotor to the platform. Furthermore, let 𝑣𝑥𝑦 =
√︀
�̇�2 + �̇�2

be the quadrotor’s lateral velocity. We define the boolean variable box to be True if

ALL of the following simultaneously hold: |∆𝑧| ≤ 𝑧𝑚𝑎𝑥; |∆𝑥𝑦| ≤ 𝑙𝑚𝑎𝑥; |𝜑| ≤ 𝜑𝑚𝑎𝑥;

|𝜃| ≤ 𝜃𝑚𝑎𝑥; |𝑣𝑥𝑦| ≤ 𝑣𝑙,𝑚𝑎𝑥; |𝑣𝑧| ≤ 𝑣𝑧,𝑚𝑎𝑥, where 𝑧𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥, 𝜑𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥, 𝑣𝑙,𝑚𝑎𝑥, 𝑣𝑧,𝑚𝑎𝑥 are

user provided parameters that determine if the quadcopter has successfully landed.

A ternary cost function then quite naturally defines the control objective:

𝑐(�⃗�, 𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 box

1 ¬box ∧ (∆𝑧 ≤ 0 ∨ 𝑡 ≥ 𝑇𝑚𝑎𝑥)

0 else

(5.4)

where �⃗� captures the whole quadrotor state. The first case in (5.4) defines success,

the second case represents failure either due to a crash or a timeout, and the third is
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a neutral case and therefore set to zero. This cost function is a natural formulation

for the problem at hand, as the goal is to have the quadrotor land as quickly and

accurately as possible. Because the function is complex and non-quadratic, standard

optimal control methods become inadequate. RL is a good alternative as it allows

the determination of a policy with such a cost function.

5.3 Reinforcement Learning Outer Loop

PPO [76] is used to learn an appropriate feedback policy 𝜋 in order to solve the opti-

mization problem in (4.7). The actor and critic networks each have two hidden layers;

each layer contains 64 neurons and uses tanh activation functions. A learning rate

of 1e−4, a discount factor of .99, a clipping range of .2, and a generalized advantage

estimator discount of .95 are used as hyperparameters. Applying the PPO algorithm

to the reference environment with the cost function in (5.4) results in the successful

training of a feedback policy 𝜋, which accomplishes the task when no parametric

uncertainties or loss of propeller effectiveness are present.

Three popular reinforcement learning algorithms (PPO, SAC, DDPG) were used

to train control policies for this environment. However, the policies trained by PPO

consistently outperformed those generated via SAC or DDPG on the quadrotor task,

so the PPO policies were chosen for the outer loop of AC-RL. We utilize the Stable

Baselines [65] implementations of these algorithms. Stable Baselines provides a num-

ber of high quality RL algorithms, and is based on the popular OpenAI Baselines

implementations.

5.4 Results (no noise)

We test two types of parametric uncertainties: 1) the mass, length and inertia prop-

erties of the quadrotor are varied between ±25% of their nominal (reference) values

(Table 5.1) and 2) an abrupt loss of effectiveness (LOE) in the fourth propeller occurs

(Table 5.2). The LOE diminishes the total thrust producible by the quadrotor, and
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induces an additional moment on the quadrotor if the LOE is not accounted for. Such

a LOE may occur if the propeller blades are broken midflight, as demonstrated in [15].

Both types of parametric uncertainties correspond to the target-system structure as

in (4.17), with the symmetric part of Λ being positive definite. Two performance met-

rics, success rate (SR) and success time (ST), are measured. Success time is measured

as the mean time required to complete a task, averaged over all successful tests.

The PPO reinforcement learning algorithm [75] is used to train a control policy

𝜋 using (4.15). The policy is then applied to a target environment which contains

parametric uncertainties (see [1] for details). We compare four control methods: 1)

RL, which just uses the trained 𝜋 to dictate control, 2) AC-RL which utilizes both

𝜋 and the adaptive laws in 4.3.4, 3)DR-RL which trains a policy using PPO on

a domain-randomized simulation environment and 4) ME-RL which uses different

trained policies 𝜋𝜃* and 𝜋𝜑* , trained using meta-learning. For further details on

the quadrotor model and adaptive control implementation, refer to [15, 28, 1]. The

following observations follow:

Algorithm Results

SR ST

RL 48% 7.5𝑠
AC-RL 82% 3.5𝑠
DR-RL 75% 7.1𝑠
ME-RL 88% 3.4𝑠

Table 5.1: ±25% parametric uncertainty results

A. From Table 5.1, AC-RL performs favorably when compared to pure RL or DR-

RL.

B. We note that ME-RL outperforms AC-RL on both metrics. This comes with

two qualifiers: 1) the meta-learner in ME-RL is trained using the same distri-

butional shift on which it was tested (the ±25% parameter perturbations) and

2) the meta-learner is a DNN - hence the ME-RL policy does not provide the

guarantees of convergence within a compact set that are afforded by AC-RL.
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C. The relevance of point 1) becomes apparent from the ME-RL results in Table

5.2, where it can be see that ME-RL greatly underperforms AC-RL. This is

because the specific type of perturbation (asymmetric LOE) studed in Table

5.2 was not incorporated into the meta-learner’s training regimen.

AC-RL ME-RL RL LOE
SR SR SR

97% 98% 97% 0%
90% 78% 74% 10%
72% 41% 34% 25%
50% 8% 14% 50%
9% 0% 0% 75%

AC-RL ME-RL RL LOE
ST ST ST

2.6𝑠 2.8𝑠 2.6𝑠 0%
2.7𝑠 3.9𝑠 3.1𝑠 10%
2.6𝑠 5.1𝑠 4.7𝑠 25%
3.0𝑠 7.5𝑠 5.4𝑠 50%
3.1𝑠 −− −− 75%

Table 5.2: Results from the simulated quadrotor experiments. The LOE column
represents the degree of propeller thrust lost (with 0% being no loss). For a 75%
LOE there is no data on the RL or ME-RL success time because there were no
successful tests. No measurement noise was introduced in these experiments. See [1]
for results with noise.

5.5 Results (with noise)

We further studied (experimentally) the efficacy of AC-RL when noise is introduced

into the system. A set of new reference environments are constructed, in which

aleatoric measurement noise is introduced. Two reference environments are used -

one with positional measurement noise only, and one with positional and orientation

measurement noise. In each case the noise is taken to be zero mean and normally

distributed - this may correspond, for example, to posterior position/orientation es-

timates that result from a Kalman filtering algorithm. RL is used to train a policy
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for each of these environments, and the AC-RL and RL approaches are tested on

the quadrotor task with LOE and the appropriate measurement noise. The results

are reported in Tables 5.3 and 5.4, which clearly indicate the large improvement of

AC-RL over RL.

AC-RL ME-RL RL LOE
SR SR SR

93% 89% 93% 0%
68% 77% 42% 25%
31% 35% 4% 50%

Table 5.3: Success rates for LOE with position measurement noise. Measurement of
the Cartesian positions 𝑥, 𝑦, 𝑧 contain additive aleatoric uncertainty given by random
variables drawn from 𝒩 (0, 0.05)

AC-RL ME-RL RL LOE
SR SR SR

84% 79% 84% 0%
51% 33% 24% 25%
23% 12% 0% 50%

Table 5.4: Success rates for LOE with position and orientation measurement noise.
Measurement of the Cartesian positions 𝑥, 𝑦, 𝑧 contain additive aleatoric uncertainty
given by random variables drawn from𝒩 (0, 0.05) and 𝜑, 𝜃, 𝜓 are perturbed by random
variables drawn from 𝒩 (0, 5 𝜋

365
).
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Figure 5-1: AC-RL (green) and pure RL (orange) trajectory rollouts when a single
propeller loses effectiveness. The baseline "ideal" trajectory (blue) is shown, when
there is no loss of effectiveness. Note that the AC-RL trajectory more closely tracks
this baseline than the RL rollout.
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Chapter 6

Conclusions and Future Work

This thesis proposes solutions for real time control and learning in dynamic systems

using a combination of adaptive control and reinforcement learning. The AC-RL

algorithm was developed for and applied to a class of control affine nonlinear dynamic

systems. This class includes nonlinear systems which may be adequately linearized

around equilibrium points, as well as a large subset of linear dynamical systems.

The AC-RL controller is shown to produce online policies that guarantee stability,

leverage accelerated convergence and lead to parameter convergence if the appropriate

excitation conditions are satisfied. This thesis takes a step towards real-time control

using adaptive control & machine/reinforcement learning with provable guarantees.

This is accomplished by drawing upon key insights, tools, and approaches developed in

the two disparate and powerful methodologies of adaptive control and reinforcement

learning.

A realistic quadrotor control task was introduced. Using this task as a benchmark

we demonstrated that AC-RL produced improved control policies when compared

to straightforward RL, domain randomized RL and meta-learning RL. The latter

two approaches are considered to be state-of-the-art methodologies in the control of

uncertain/domain-shifted environments; this improvement is therefore a promising

indication of the efficacy of AC-RL. In order to fully cement the performant nature of

AC-RL, future work will apply the algorithm to a broader class of nonlinear dynamic

systems with more complex reward/cost functions.
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Another future line of work involves an exploration of the nonlinear regressors

used in the adaptive control algorithms. While structured systems such as rotorcraft

and pendulums admit low-dimensional representations that can be used for AC-RL, a

learning-based or data-driven approach may be required to formulate these nonlinear

regressors for higher-dimensional or more complex systems. Adequate modeling of

such regressors may enable application of AC-RL and linear control techniques to

these more complicated dynamical systems.
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Appendix A

Proofs

Key steps in the proofs of the non-trivial theorems above are given below. Further

details can be found in [1].

A.0.1 Proof of Theorem 3:

The closed-loop system dynamics with the AC-RL controller is represented by the

error equation (4.20), the adaptive control input (4.23), and the adaptive laws in

(4.24)-(4.27). A Lyapunov function candidate

𝑉 =
1

𝛾
Tr

[︀
(Ξ−Θ)𝑇Λ𝑇 (Ξ−Θ)

]︀
+

1

𝛾
Tr

[︁
(̂︀Θ− Ξ)𝑇Λ𝑇 (̂︀Θ− Ξ)

]︁
+ 𝑒𝑇𝑃𝑒 (A.1)

yields a time-derivative

�̇� = −Tr
[︀
(Ξ−Θ)𝑇 (Λ + Λ𝑇 )𝐵𝑇𝑃𝑒Φ𝑇

]︀
− 𝛽

𝛾
Tr

[︁
(̂︀Θ− Ξ)𝑇 (Λ + Λ𝑇 )(̂︀Θ− Ξ)

]︁
𝒩𝑡

+ Tr
[︁
(̂︀Θ− Ξ)𝑇 (Λ + Λ𝑇 )𝐵𝑇𝑃𝑒Φ𝑇

]︁
+ 𝑒𝑇

(︀
𝐴𝑇𝐻𝑃 + 𝑃𝐴𝐻

)︀
𝑒+ 2𝑒𝑇𝑃𝐵Λ̃︀ΘΦ

= −𝛽
𝛾
Tr

[︁
(̂︀Θ− Ξ)𝑇 (Λ + Λ𝑇 )(̂︀Θ− Ξ)

]︁
− 𝜇𝛽

𝛾
Tr

[︁
(̂︀Θ− Ξ)𝑇 (Λ + Λ𝑇 )(̂︀Θ− Ξ)

]︁
‖Φ‖2
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− 𝑒𝑇𝑄𝑒+ 4𝑒𝑇𝑃𝐵Λ(̂︀Θ− Ξ)Φ

Through algebraic manipulations, it can be shown that

�̇� ≤ −2𝛽

𝛾
Tr

[︁
(̂︀Θ− Ξ)𝑇Ω𝑇Ω(̂︀Θ− Ξ)

]︁
− 2‖𝑒‖2

− 4 ‖𝑃𝐵‖22Tr
[︁
(̂︀Θ− Ξ)𝑇Ω𝑇Ω(̂︀Θ− Ξ)

]︁
‖Φ‖2

+ 4‖𝑒‖‖𝑃𝐵Λ(̂︀Θ− Ξ)‖𝐹‖Φ‖

≤ −‖𝑒‖2 − 2𝛽

𝛾

⃦⃦⃦
(̂︀Θ− Ξ)𝑇Ω

⃦⃦⃦2

𝐹

−
[︁
‖𝑒‖ − 2‖𝑃𝐵‖2‖(̂︀Θ− Ξ)𝑇Ω‖𝐹‖Φ‖

]︁2
≤ 0

where we have expressed the positive definite matrix Λ using Ω with 2Ω𝑇Ω = Λ+Λ𝑇 ,

‖ · ‖𝐹 is the Frobenius matrix norm and ‖ · ‖2 is the matrix 2-norm. In the above

derivation we have used (4.26), (4.27), Assumption 5, and the inequality ‖𝐴𝐵‖𝐹 ≤

‖𝐴‖2‖𝐵‖𝐹 . It can be concluded that 𝑒, ̂︀Θ,Ξ ∈ ℒ∞. Using Barbalat’s lemma, as

before, we conclude that lim𝑡→∞ 𝑒(𝑡) = 0 and that ℛ = 𝑂(1).

A.0.2 Proof of Theorem 4

As in Theorem 4, we consider a candidate

𝑉 =
1

𝛾
Tr

[︀
(Ξ−Θ)𝑇Λ𝑇 (Ξ−Θ)

]︀
+

1

𝛾
Tr

[︀
(Θ− Ξ)𝑇Λ𝑇 (Θ− Ξ)

]︀
+ 𝑒𝑇𝑢𝑃𝑒𝑢 (A.2)

Using (4.39) and (4.40), we obtain that �̇� ≤ −𝑒𝑇𝑢 𝑒𝑢 since 𝑄 ≥ 2𝐼. This in turn allows

us to conclude that 𝑒𝑢,Ξ,Θ ∈ ℒ∞. For case (i), since all parameters are bounded,

together with magnitude saturation, we have that the input 𝑢 is bounded. For this

case, it implies that the state 𝑥 is bounded. Therefore 𝑒𝑢 ∈ ℒ∞. Proceeding in a

similar fashion to the proof of Theorem 1, Barbalat’s lemma is applied to find that

lim𝑡→∞ ‖𝑒𝑢(𝑡)‖ = 0. It is easy to show then that ‖𝑒(𝑡)‖ = 𝑂[
∫︀ 𝑡
0
‖∆𝑢(𝜏)‖𝑑𝜏 ].

For case (ii), as the structure of the error model in (4.39) is identical to that consid-
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ered in Theorem 1 in [77], the same arguments can be used to establish boundedness

of the state.

A.0.3 Proof of Lemma 1

Note: In the proofs of Lemma 1 - 3 and Theorem 5, we assume that ‖𝐵0Φ(𝑡)
𝑇‖ ≤ 𝑐1.

Such a 𝑐1 exists as Φ is bounded following Theorem 3.

Consider the following candidate Lyapunov function

𝑉 =
Λ

𝛾
‖𝜗‖2 + Λ

𝛾
‖𝜃 − 𝜗‖2 + 𝑒𝑇𝑃𝑒

Similar to what has been shown in the proof of Theorem 3, the time derivative of 𝑉

may be bounded by

�̇� ≤ −2𝛽Λ

𝛾
‖𝜃 − 𝜗‖2 − Λ‖𝑒‖2 − Λ

[︁
‖𝑒‖ − 2‖𝑃𝐵‖‖𝜃 − 𝜗‖‖Φ‖

]︁2
≤ −𝑐2‖𝑥1‖2

where 𝑐2 = Λmin
{︁
1, 2𝛽

𝛾

}︁
. Noting that 𝑃 is a positive definite matrix, it follows that

for any vector 𝑣 ∈ R𝑛, 𝛼, 𝜌 > 0 exist such that

𝛼𝑣𝑇𝑣 ≤ 𝑣𝑇𝑃𝑣 ≤ 𝜌𝑣𝑇𝑣 (A.3)

We prove Lemma 1 by using contradiction. Assume 𝜇(𝑆) > 𝑛 and denote 𝑆 =

{𝑡 ∈ [𝑡1,∞)}. Integrating �̇� , we have

∫︁ ∞

𝑡1

�̇� (𝜏)𝑑𝜏 =

∫︁
𝑆

�̇� (𝜏)𝑑𝜏 +

∫︁
𝑆−𝑆

�̇� (𝜏)𝑑𝜏

≤
∫︁
𝑆

−𝑐2‖𝑥1(𝜏)‖2𝑑𝜏 +
∫︁
𝑆−𝑆

�̇� (𝜏)𝑑𝜏

≤ −𝑐2𝑛𝜖22

Choose 𝑛(𝜖1, 𝜖2) = 𝑐3𝜖
2
1/(𝑐2𝜖

2
2), then we have a contradiction since ‖𝑉 (𝑡1)‖ ≤ 𝑐3𝜖

2
1,

where 𝑐3 = max
{︁

Λ
𝛾
, 𝜌
}︁

.
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A.0.4 Proof of Lemma 2

Let 𝑧(𝑡) be a solution with initial condition ‖𝑧(𝑡1)‖ ≤ 𝜖1. Suppose that
⃦⃦⃦
𝜗(𝑡)

⃦⃦⃦
≥ 𝛿

for all 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇 ], where 𝑇 = 𝑇0 + 𝛿0.

From the error model in (4.48), for any 𝑡 ≥ 𝑡1,

𝑒(𝑡+ 𝛿0) = 𝑒(𝑡) +

∫︁ 𝑡+𝛿0

𝑡

𝐴𝐻𝑒(𝜏) +𝐵0Φ(𝜏)
𝑇 𝜃(𝜏)𝑑𝜏 (A.4)

from which we have

‖𝑒(𝑡+ 𝛿0)‖ ≥
⃦⃦⃦⃦∫︁ 𝑡+𝛿0

𝑡

𝐵0Φ(𝜏)
𝑇 𝜃(𝜏)𝑑𝜏

⃦⃦⃦⃦
−
⃦⃦⃦⃦
𝑒(𝑡) +

∫︁ 𝑡+𝛿0

𝑡

𝐴𝐻𝑒(𝜏)𝑑𝜏

⃦⃦⃦⃦
(A.5)

Given 𝜖′ = 𝜖0𝛿/(2𝑐2𝛿0) and 𝑇 = 𝑇0 + 𝛿0, from the adaptive law in (4.50), there is

an 𝜖2 > 0 such that if 𝑧(𝜏) is a solution to (4.49)-(4.50) with ‖𝑥1(𝜏)‖ ≤ 𝜖2 for all

𝜏 ∈ [𝑡1, 𝑡1+𝑇 ], then ‖𝜃(𝜏)−𝜃(𝑡1)‖ ≤ 𝜖′. Define 𝜖 = min
{︁
𝛿𝜖0
8
, 𝛿𝜖0
8𝑐1𝛿0

, 𝜖2

}︁
. Now we show

the lemma holds for this choice of 𝑇 and 𝜖.

If ‖𝑥1(𝑡2)‖ ≥ 𝜖 for some 𝑡2 ∈ [𝑡1, 𝑡1 + 𝑇 ], then we are done. Assume ‖𝑥1(𝑡)‖ ≤ 𝜖

for all 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇 ], then⃦⃦⃦⃦
𝑒(𝑡) +

∫︁ 𝑡+𝛿0

𝑡

𝐴𝐻𝑒(𝜏)𝑑𝜏

⃦⃦⃦⃦
≤ 𝜖+ 𝑐1𝜖𝛿0 ≤

𝜖0𝛿

4

for all 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇 ]. By hypothesis, there exist a 𝑡′ ∈ [𝑡1, 𝑡1 + 𝑇0] such that⃦⃦⃦⃦
⃦
∫︁ 𝑡′+𝛿0

𝑡′
𝐵0Φ(𝜏)

𝑇𝑤𝑑𝜏

⃦⃦⃦⃦
⃦ ≥ 𝜖0

where 𝑤 = 𝜃(𝑡1)/
⃦⃦⃦
𝜃(𝑡1)

⃦⃦⃦
is a unit vector.

We have⃦⃦⃦⃦
⃦
∫︁ 𝑡′+𝛿0

𝑡′
𝐵0Φ(𝜏)

𝑇
[︁
𝑤
⃦⃦⃦
𝜃(𝑡1)

⃦⃦⃦
− 𝜃(𝜏)

]︁
𝑑𝜏

⃦⃦⃦⃦
⃦ ≤ 𝑐2

∫︁ 𝑡′+𝛿0

𝑡′

⃦⃦⃦
𝜃(𝑡1)− 𝜃(𝜏)

⃦⃦⃦
𝑑𝜏

≤ 𝑐2𝛿0𝜖
′ =

𝜖0𝛿

2
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Since ‖𝑒(𝜏)‖ ≤ ‖𝑥1(𝜏)‖ ≤ 𝜖 ≤ 𝜖2 for 𝜏 ∈ [𝑡1, 𝑡1 + 𝑇 ],

⃦⃦⃦
𝜃(𝑡1)

⃦⃦⃦ ⃦⃦⃦⃦⃦
∫︁ 𝑡′+𝛿0

𝑡′
𝐵0Φ(𝜏)

𝑇𝑤𝑑𝜏

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦
∫︁ 𝑡′+𝛿0

𝑡′
𝐵0Φ(𝜏)

𝑇 𝜃(𝜏)𝑑𝜏

⃦⃦⃦⃦
⃦ ≤ 𝜖0𝛿

2

which implies ⃦⃦⃦⃦
⃦
∫︁ 𝑡′+𝛿0

𝑡′
𝐵0Φ(𝜏)

𝑇 𝜃(𝜏)𝑑𝜏

⃦⃦⃦⃦
⃦ ≥ 𝜖0𝛿 −

𝜖0𝛿

2
=
𝜖0𝛿

2

Thus

‖𝑥1(𝑡′ + 𝛿0)‖ ≥ ‖𝑒(𝑡′ + 𝛿0)‖ ≥
𝜖0𝛿

2
− 𝜖0𝛿

4
=
𝜖0𝛿

4
> 𝜖

which is a contradiction.

A.0.5 Proof of Lemma 3

By Lemma 2, the assumption that ‖𝑧(𝑡1)‖ ≤ 𝜖1 and
⃦⃦⃦
𝜗(𝑡2)

⃦⃦⃦
≥ 𝛿 implies that there

exist an 𝜖 such that ‖𝑥1(𝑡)‖ is periodically both less than 𝜖/2 and greater than 𝜖. This

leads to a contradiction with Lemma 1 if we choose 𝜖1 = ‖𝑧(𝑡1)‖ and 𝜖2 = 𝜖/2. We

thus conclude that
⃦⃦⃦
𝜗(𝑡2)

⃦⃦⃦
≤ 𝛿.

A.0.6 Proof of Theorem 5

Consider the candidate

𝑉 =
Λ

𝛾
‖𝜗‖2 + Λ

𝛾
‖𝜃 − 𝜗‖2 + 𝑒𝑇𝑃𝑒 (A.6)

With 𝜇 ≥ 2𝛾‖𝑃𝐵‖2/𝛽 and 𝑄 ≥ 2𝐼 which solves 𝐴𝑇𝐻𝑃 + 𝑃𝐴𝐻 = −𝑄, the time

derivative of (A.6) may be bounded by

�̇� ≤ −2𝛽Λ

𝛾
‖𝜃 − 𝜗‖2 − Λ‖𝑒‖2 − Λ[‖𝑒‖ − 2‖𝑃𝐵‖‖𝜃 − 𝜗‖‖Φ‖]2 ≤ 0 (A.7)

Since 𝑃 is positive-definite, (A.3) holds for some 𝛼, 𝜌 > 0. Now we show that given

𝜖1 > 𝜖2 > 0, there is a 𝜂 with 0 < 𝜂 < 1 and ∆𝑇1 > 0 such that if 𝑧(𝑡) is a solution
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with

𝜖2 ≤ 𝑉 (𝑡) ≤ 𝜖1, for 𝑡 ∈ [𝑡1, 𝑡1 +∆𝑇1],

then there is a 𝑡2 ∈ [𝑡1, 𝑡1 + ∆𝑇1] such that 𝑉 (𝑡2) ≤ 𝜂𝑉 (𝑡1). Choose 0 < 𝜈 < 1,

𝜈 ≤ 𝜎 < 1 and ∆𝑇2 > 0 so that 𝜌
√
1− 𝜎 − ∆𝑇2

(︁
𝑐1√
𝛼
+ 2𝑐2

√
𝛾
)︁
> 0,

√︀
𝛾(1− 𝜈) −

∆𝑇2

(︁
𝛽
√
𝛾 + 𝑐2𝛾𝜌√

𝛼

)︁
> 0, 0 < ∆𝑇2

[︀
𝜌
√
1− 𝜎 − ∆𝑇2

(︁
𝑐1√
𝛼
+ 2𝑐2

√
𝛾
)︁ ]︀2

< 1 and 0 <

2𝛽Δ𝑇2
𝛾

[︀√︀
𝛾(1− 𝜈) − ∆𝑇2

(︁
𝛽
√
𝛾 + 𝑐2𝛾𝜌√

𝛼

)︁ ]︀2
< 1. From Lemma 3, we can obtain a 𝑇

when 𝜖 = 𝜖1 and 𝛿 =
√
𝜖2𝜈. Define 𝜂 = 1−min

{︂
∆𝑇2

[︁
𝜌
√
1− 𝜎−∆𝑇2

(︁
𝑐1√
𝛼
+ 2𝑐2

√
𝛾
)︁ ]︁2

,

2𝛽Δ𝑇2
𝛾

[︁√︀
𝛾(1− 𝜈)−∆𝑇2

(︁
𝛽
√
𝛾 + 𝑐2𝛾𝜌√

𝛼

)︁]︁2}︂
and ∆𝑇1 = 𝑇 +∆𝑇2. Next we show that

for this 𝜂 and ∆𝑇1 the results hold.

Let 𝑡′2 ∈ [𝑡1, 𝑡1 + 𝑇 ] be such that
⃦⃦⃦
𝜗(𝑡′2)

⃦⃦⃦
≤ 𝛿
√
𝛾. If 𝑉 (𝑡′2) ≤ 𝜖2, we are done. If

𝑉 (𝑡′2) ≥ 𝜖2, then

𝑉 (𝑡′2) =
Λ

𝛾

⃦⃦⃦
𝜗(𝑡′2)

⃦⃦⃦2

+
Λ

𝛾

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦2

+ 𝑒(𝑡′2)
𝑇𝑃𝑒(𝑡′2) (A.8)

implies

(1− 𝜈)𝑉 (𝑡′2) ≤ 𝑉 (𝑡′2)− 𝛿2 (A.9)

≤ Λ

𝛾

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦2

+ 𝑒(𝑡′2)
𝑇𝑃𝑒(𝑡′2) (A.10)

≤ Λ

𝛾

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦2

+ 𝜌𝑒(𝑡′2)
2 (A.11)

Case 1: Λ
𝛾
‖𝜃(𝑡′2)− 𝜗(𝑡′2)‖2 < (1− 𝜈)𝑉 (𝑡′2). From (A.9),

𝑒(𝑡′2)
2 ≥ 1

𝜌
(1− 𝜎)𝑉 (𝑡′2), (A.12)

where 0 < 𝜈 ≤ 𝜎 < 1. From (4.48), for any 𝑡 ≥ 𝑡′2,

‖𝑒(𝑡′2)‖ − ‖𝑒(𝑡)‖ ≤
∫︁ 𝑡

𝑡′2

⃦⃦⃦
𝐴𝐻𝑒(𝜏) +𝐵0Φ(𝜏)

𝑇 𝜃(𝜏)
⃦⃦⃦
𝑑𝜏

≤
(︂
𝑐1√
𝛼
+ 2𝑐2

√
𝛾

)︂
(𝑡− 𝑡′2)

√︀
𝑉 (𝑡′2)
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where the last inequality is due to the assumption that ‖𝐴𝐻‖ ≤ 𝑐1 and
⃦⃦
𝐵0Φ(𝜏)

𝑇
⃦⃦
≤

𝑐2 for all 𝜏 . If 𝑡2 = 𝑡′2 +∆𝑇2, we obtain

‖𝑒(𝑡)‖ ≥ ‖𝑒(𝑡′2)‖ −
(︂
𝑐1√
𝛼
+ 2𝑐2

√
𝛾

)︂
(𝑡2 − 𝑡′2)‖𝑧(𝑡′2)‖

≥ 𝜌
√
1− 𝜎

√︀
𝑉 (𝑡′2)−

(︂
𝑐1√
𝛼
+ 2𝑐2

√
𝛾

)︂
∆𝑇2

√︀
𝑉 (𝑡′2)

=

[︂
𝜌
√
1− 𝜎 −∆𝑇2

(︂
𝑐1√
𝛼
+ 2𝑐2

√
𝛾

)︂]︂√︀
𝑉 (𝑡′2)

Integrating the derivative of the Lyapunov candidate function, we have

𝑉 (𝑡′2)− 𝑉 (𝑡2) =

∫︁ 𝑡2

𝑡′2

−�̇� (𝜏)𝑑𝜏

≥
∫︁ 𝑡2

𝑡′2

(︂
‖𝑒(𝜏)‖2 + 2𝛽

𝛾

⃦⃦⃦
𝜃(𝜏)− 𝜗(𝜏)

⃦⃦⃦2
)︂
𝑑𝜏

≥ ∆𝑇2

[︂
𝜌
√
1− 𝜎 −∆𝑇2

(︂
𝑐1√
𝛼
+ 2𝑐2

√
𝛾

)︂]︂2
𝑉 (𝑡′2)

Therefore, 𝑉 (𝑡2) ≤ 𝜂𝑉 (𝑡′2) and uniform asymptotic stability holds.

Case 2: 1
𝛾

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦2

≥ (1 − 𝜈)𝑉 (𝑡′2). For any 𝑡 ≥ 𝑡′2, following the process

in case 1, we can show that

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦
−

⃦⃦⃦
𝜃(𝑡)− 𝜗(𝑡)

⃦⃦⃦
≤

⃦⃦⃦
𝜃(𝑡)− 𝜗(𝑡)− 𝜃(𝑡′2) + 𝜗(𝑡′2)

⃦⃦⃦
≤

∫︁ 𝑡

𝑡′2

⃦⃦⃦
˙̃𝜃(𝜏)− ˙̃𝜗(𝜏)

⃦⃦⃦
𝑑𝜏

=

∫︁ 𝑡

𝑡′2

⃦⃦⃦⃦
−𝛽

[︁
𝜃(𝜏)− 𝜗(𝜏)

]︁
+

𝛾

𝒩𝑡
Φ𝑒𝑇𝑃𝐵

⃦⃦⃦⃦
𝑑𝜏

≤ (𝑡− 𝑡′2)
(︂
𝛽
√
𝛾 +

𝑐2𝛾𝜌√
𝛼

)︂√︀
𝑉 (𝑡′2)

If we let 𝑡2 = 𝑡′2 +∆𝑇2, then

⃦⃦⃦
𝜃(𝑡)− 𝜗(𝑡)

⃦⃦⃦
≥

⃦⃦⃦
𝜃(𝑡′2)− 𝜗(𝑡′2)

⃦⃦⃦
− (𝑡2 − 𝑡′2)

(︂
𝛽
√
𝛾 +

𝑐2𝛾𝜌√
𝛼

)︂√︀
𝑉 (𝑡′2)

≥
√︀
𝛾(1− 𝜈)

√︀
𝑉 (𝑡′2)−∆𝑇2

(︂
𝛽
√
𝛾 +

𝑐2𝛾𝜌√
𝛼

)︂√︀
𝑉 (𝑡′2)
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≥
[︂√︀

𝛾(1− 𝜈)−∆𝑇2

(︂
𝛽
√
𝛾 +

𝑐2𝛾𝜌√
𝛼

)︂]︂√︀
𝑉 (𝑡′2)

Integrating �̇� , we have

𝑉 (𝑡′2)− 𝑉 (𝑡2) =

∫︁ 𝑡2

𝑡′2

−�̇� (𝜏)𝑑𝜏

≥
∫︁ 𝑡2

𝑡′2

(︂
‖𝑒(𝜏)‖2 + 2𝛽

𝛾

⃦⃦⃦
𝜃(𝜏)− 𝜗(𝜏)

⃦⃦⃦2
)︂
𝑑𝜏

≥ 2𝛽∆𝑇2
𝛾

[︂√︀
𝛾(1− 𝜈)−∆𝑇2

(︂
𝛽
√
𝛾 +

𝑐2𝛾𝜌√
𝛼

)︂]︂2
𝑉 (𝑡′2)

Therefore, 𝑉 (𝑡2) ≤ 𝜂𝑉 (𝑡′2) which proves the theorem.
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