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Forward and inverse problems in mechanics:
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by
Saviz Mowlavi

Submitted to the Department of Mechanical Engineering
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requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

Mechanics is the branch of physics that characterizes how bodies deform in response
to forces, which can involve two categories of problems. In forward problems, one
seeks to predict the response of the system given full knowledge of its physical and
geometric properties. In inverse problems, some of the physical or geometric proper-
ties of the system are unknown and are either to be identified through experiments,
or to be designed to optimize a desired objective. Although the physical laws gov-
erning the deformation of single elastic bodies have been known for over a century,
forward problems involving thousands of interacting elastic bodies still elude simple
and accurate models, while inverse problems involving even a single elastic body lack
effective solution methods.

In this thesis, we investigate forward and inverse problems in systems ranging
from a single elastic body to thousands of interacting ones. In a first part, we derive
analytically a model for the contact force between elastically anisotropic bodies. We
then implement this contact model into a computational framework for the forward
dynamics of systems composed of hundreds of interacting bodies, which we leverage
to showcase examples where the elastic anisotropy of each body affects the macro-
scopic behavior of the system. In a second part, we derive a homogenized continuum
model to predict the forward dynamics of granular materials consisting of millions
of interacting elastic particles, such as sand, with a particular focus on the accurate
description of the onset and arrest of flow in response to external loading variations.
Besides its predictive abilities, this model also sheds light on the physical mechanisms
responsible for various unique features of avalanches and landslides such as their large
initial acceleration. In a last part, we propose a topology optimization framework for
the inverse problem of identifying hidden voids or rigid inclusions in an elastic body
using measurements of the surface deformation in response to a prescribed surface
loading. This framework combines recent advances in machine learning with level-set
methods and the equations governing the deformation of single elastic bodies. We
demonstrate the effectiveness of our method in identifying the number, locations, and
shapes of hidden voids and rigid inclusions in elastic and hyperelastic materials.

Thesis Supervisor: Ken Kamrin
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

Mechanics is the branch of physics that characterizes how bodies deform in response
to forces. In this thesis, we focus on elastic bodies, which are characterized by the
property that they do not dissipate energy when deforming under load [73]. Intu-
itively, an elastic body returns to its original size and shape once the load is removed.
The physical laws governing the deformation of single elastic bodies are well-known;
they consist of mass and momentum conservation laws together with a constitutive
law specifying the relationship between the stress and the strain at every point in the
body [111]. Denoting by u(x, 𝑡) the displacement field that characterizes the motion
at time 𝑡 of every initial point x in a single body, these physical laws can be expressed
as a governing equation of the form

f(u;𝜃) = 0, (1.1)

where 𝜃 comprises all the physical and geometric parameters that describe the prob-
lem: the elastic constants defining the constitutive law (which depend on the material
that the body is made of), the geometry of the object, the applied loading, etc. When
𝜃 is fully specified, solving (1.1) for u yields the displacement field that describes the
deformation of the body. This is known as a forward problem, where one seeks to
predict the response of the system given full knowledge of its physical and geometric
properties.

Consider now a general situation involving 𝑁 interacting elastic bodies, whose
motion will be described by the combined displacement fields U = {u1, . . . ,u𝑁}
within each body. In this case, one can use the governing equation (1.1) for the
deformation of each body to obtain a general governing equation for the entire system,
which we denote

F(U;Θ) = 0, (1.2)

where Θ now denotes the physical and geometric parameters describing the entire
problem consisting of all 𝑁 bodies: the elastic constants and geometry of each body,
and the loading applied to the whole system. As in the single-body case, one can
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use (1.2) to solve the forward problem of finding the combined displacement fields U
given full knowledge of Θ.

Since the forward solution of (1.1) or (1.2) is generally intractable analytically
except in very simple cases, one resorts to computational methods such as the finite-
element method in which the continuous field u(x, 𝑡) within each body is replaced
by discrete values u𝑗

𝑖 defined at discrete times 𝑡𝑗 and initial locations x𝑖 on a mesh.
The governing equations (1.1) or (1.2) are then discretized in space and time, yielding
a numerical solution for all discrete values u𝑗

𝑖 . Although this procedure is generally
tractable for problems involving a single body, its computational cost rapidly becomes
prohibitive as the number of objects involved increases. This calls for the development
of reduced models that can replace (1.2) to describe the dynamics of the system in a
computationally more efficient fashion while retaining enough accuracy.

In many practical applications, such as when the number of bodies involved is
very large, one is not concerned with the deformation field within each body. This
motivates a first class of reduced models to replace (1.2), called the discrete-element
method (DEM) [201]. In the DEM, the deformation of every body is lumped into
the motion of its center of mass, which can be computed efficiently using Newton’s
equations of motion. This method requires a contact force law that specifies the force
generated between two contacting particles as a function of their overlap distance.
As such, the accuracy of any model based on the DEM is tied to the accuracy of the
contact force law being used. So far, an exact contact force law only exists for the
case of elastically isotropic smooth particles, which implies that systems consisting of
any other type of particle (rough, elastically anisotropic, plastic, etc) will incur errors
when modeled with the DEM.

For granular materials such as sand which contain thousands to billions of parti-
cles, methods based on the DEM are still too computationally expensive. In that case,
since one is not usually concerned with the individual motion of every particle, an
other alternative to replace (1.2) is a second class of reduced models based on homog-
enization and continuum mechanics [3]. The idea is to average out, or homogenize,
the motion and the forces of every constituent particle so that the discrete system of
many bodies can be described by an equivalent, ‘effective’ continuum material. This
effective continuum material is described by the same mass and momentum conserva-
tion laws contained in the governing equation (1.1) for the deformation within a single
elastic body. However, since the stress and strain within this effective continuum ma-
terial correspond to averages over discrete particles, the constitutive relationship that
relates them will be very different from the case of a single elastic material. In fact,
the right form for this constitutive relationship – that yields identical behavior be-
tween the effective continuum material and the discrete system – has proven elusive
over decades and is still an active subject of research today. Challenges stem from
the complex behavior of granular materials, including their ability to behave like a
solid, a fluid, and a gas, their stochasticity, and their nonlocality.

Besides forward problems, another class of problems relevant to engineering ap-
plications is that of inverse problems. In inverse problems, some of the physical or
geometric properties contained in 𝜃 or Θ are unknown; they are instead to be found
so that the corresponding solution u of (1.1), or U of (1.2), minimizes a user-defined
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objective 𝐽(u) or 𝐽(U). This can correspond either to identifying unobserved prop-
erties of an actual system given measurement data (in which case 𝐽 measures the
discrepancy between predictions and measurements), or to designing properties so
that a hypothetical system achieves a target functionality (in which case 𝐽 is a design
objective that is minimum when the functionality is achieved). Inverse problems are
solved using iterative methods, where a starting guess for the unknown properties is
iteratively refined until the corresponding state u or U minimizes 𝐽 . Even for the case
of a single elastic body, inverse problems are notoriously difficult to solve when the
number of properties to be found is large, since searching through a high-dimensional
space requires many solutions of (1.1) and adjoint-based methods to guide the search
direction. An additional difficulty concerns the case where geometric properties are
to be found; in that case it is desirable to avoid restricting the topology of the solu-
tion, which calls for a solution methodology that can handle merging and splitting of
shapes.

1.2 Outline of the thesis

In this thesis, we address several forward and inverse problems in systems ranging
from a single elastic body to thousands of interacting ones, related to the themes
presented above.

In Chapter 2, we develop an elastically anisotropic DEM model for the accurate
modeling of systems consisting of hundreds to thousands of elastically-anisotropic
particles, whose constitutive relationship depends on the orientation of the crystalline
atomic structure within each particle. Using the governing equation (1.1) for the
elastic deformation within each particle, we derive analytically an exact model for
the force generated between two contacting elastically anisotropic bodies. We then
implement a simplified yet accurate version of this contact model into a custom-
developed DEM code, which we leverage to showcase examples where the elastic
anisotropy of each body affects the macroscopic behavior of the system.

In Chapter 3, we extend an existing homogenized continuum model to predict the
forward dynamics of granular materials consisting of millions of interacting elastic
particles, such as sand, with a particular focus on the accurate description of the onset
and arrest of flow in response to external loading variations. Through simulations
of the model in an idealized geometry, we shed light on the physical mechanisms
responsible for various unique features of avalanches and landslides such as their large
initial acceleration or their spontaneous arrest. Further, we evaluate the predictive
abilities of the model by comparing its predictions with DEM simulations in a couple
of different geometries.

In Chapter 4, we propose a topology optimization framework for solving the inverse
problem of identifying hidden voids or rigid inclusions in a single elastic body, using
measurements of the surface deformation in response to a prescribed surface load-
ing. This framework combines recent advances in machine learning with the known
equations governing the deformation of single elastic bodies, and hinges on the intro-
duction of a novel eikonal regularization of the material density field parametrizing

15



the geometry. Using examples involving a variety of geometries, we demonstrate the
effectiveness of our proposed method to identify the topology, location and shapes of
hidden structures in both linear elastic and nonlinear hyperelastic materials.

1.3 Contributions
All three main chapters of this thesis constitute original work jointly carried out by
myself and my advisor, Ken Kamrin. Chapters 2 and 3 were published in the following
two articles, while Chapter 4 forms the basis of a manuscript in preparation.

• S. Mowlavi and K. Kamrin. Contact model for elastically anisotropic bodies and
efficient implementation into the discrete element method. Granular Matter,
23(2):1-29, 2021.

• S. Mowlavi and K. Kamrin. Interplay between hysteresis and nonlocality during
onset and arrest of flow in granular materials. Soft Matter, 17(31):7359-7375,
2021.
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Chapter 2

Contact model for elastically
anisotropic bodies and efficient
implementation into the discrete
element method

2.1 Introduction

Beginning with the seminal paper of Cundall and Strack [41], the Discrete Element
Method (DEM) has rapidly established itself as a method of choice for simulating the
behavior of granular materials in a wide range of situations [201, 123, 72]. In this
approach, Newton’s equations of motion are integrated individually for every particle
in the system, taking into account body forces as well as surface forces that arise from
the interactions of contacting particles. Contact force laws dictate the magnitude of
these surface forces as a function of the overlap between adjacent particles. As such,
they are an essential ingredient of any DEM simulation, and a multitude of contact
laws of various complexities have been formulated to account for effects as varied as
friction [41, 189, 180], damping [25], torsion [52], cohesion [171, 116, 126], plasticity
[181], and so forth.

Contact force models may be divided into two broad classes [200]. The first
concerns models that are formulated based on an exact or approximate solution of
the physics governing the contact problem at the scale of the individual grains. The
most prominent example is Hertz’ contact law [83], which gives an expression for the
normal force generated by the elastic deformation of two contacting spheres. Hertz’
contact law, which is based on the exact solution of the continuum elasticity equations
for this problem, takes a remarkably simple form wherein the force is dependent on
the three halves power of the overlap distance between the particles [92]. Contact
force models belonging to the second class are formulated empirically, balancing ease
of implementation and computational cost with accuracy of the results. Cundall and
Strack’s linear spring-dashpot model falls under this second category.

Although the second class of methods is particularly useful when one wants to
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incorporate physical mechanisms that elude simple analytical solutions, the first class
is preferable when one is concerned with the precise quantification of the forces in
a granular medium. For instance, numerous studies [139, 86, 35] have investigated
the distribution and properties of interparticle forces in granular materials and their
connection with the external loading characteristics. In the case of elastically isotropic
bodies, for which the contact force is independent of the direction of contact, Hertz’
contact law will return the exact forces as long as the deformation of the bodies is
small and contact points on the same particle are not too close. Most materials in
nature, however, are elastically anisotropic. Whenever the size of individual particles
becomes small enough, crystalline grains become apparent relative to the particle size
[56], and the contact force between particles will be direction-dependent as a result
of elastic anisotropy. Myriad engineering processes such as additive manufacturing
[130] or ceramic packings [76, 40] involve powders of fine particles, and the accurate
quantification of interparticle forces in these cases calls for a contact force law that can
take elastic anisotropy into account. Clearly, one expects van der Waals forces to play
an important role at these small scales, but the relative strength of such attractive
forces decreases with increasing load and their modeling has already been treated
previously [93, 10]. Furthermore, monocrystalline granular particles of a larger size
do exist, both naturally [104] and artificially [49]. Such particles notably play a key
role in novel experimental methods for inferring particle-wise strain tensors in opaque
packings by exploiting X-ray diffraction [75, 87].

In this chapter, we derive a contact law for the normal elastic force that is gener-
ated between two elastically anisotropic bodies of arbitrary geometry, as long as the
surfaces are smooth and frictionless. Our approach begins with the formulation of
a numerical procedure for the exact analytical solution to the continuum elasticity
problem, which builds on more than fifty years of research in the contact mechanics
literature [9]. In particular, several authors have sought to extract a relationship be-
tween indentation force, depth, and contact area during the unloading branch of an
indentation test, wherein an axisymmetric rigid indentor is pressed against an elas-
tically anisotropic half space [184, 185, 178, 183, 48]. The exact solution procedure
that we present here extends the scope of these studies to the case of two contacting,
elastically anisotropic bodies with smooth and non-spherical geometry, which lacks a
detailed treatment in the previous endeavors.

We then simplify the exact solution into a readily implementable anisotropic con-
tact force law, which in the particular case of spherical contacting bodies 𝐵1 and 𝐵2

of radii 𝑅𝐵1 and 𝑅𝐵2 takes the form

𝐹 =
4

3
𝐸̃𝑐

*(𝛼
𝐵1 , 𝛽𝐵1 , 𝛼𝐵2 , 𝛽𝐵2)𝑅1/2𝛿3/2, (2.1)

where 𝐹 is the normal force and 𝛿 the overlap between the two bodies, 𝑅 = (1/𝑅𝐵1 +
1/𝑅𝐵2)−1 is the composite radius, 𝐸̃𝑐

* is a material-specific composite modulus de-
pending on two sets of Euler angles (𝛼𝐵, 𝛽𝐵) describing the orientation of the contact
normal direction with respect to the internal axes of bodies 𝐵 = 𝐵1 and 𝐵2. The
only difference between the simplified anisotropic contact law (2.1) and Hertz’ famil-
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iar contact law for isotropic bodies lies in the orientation-dependence of the composite
modulus 𝐸̃𝑐

*, which calls upon the entire set of elastic constants for the material com-
prising each body. This similarity between the isotropic and simplified anisotropic
contact laws extends to smooth particles of abritrary shape, as we show later in the
chapter.

The simplification utilizes Vlassak et al.’s [183] idea of truncating the Fourier series
expansion of the surface Green’s function to its constant term, which was shown in
[183] to result in accurate predictions of the force generated by a rigid spherical
indentor on a half space made of sapphire. We demonstrate that this accuracy is
retained in our contact law for generic smooth contacting particles over a wide range of
materials, with the simplified anisotropic contact law differing from the exact solution
by less than 1% in all considered cases. We then show how to efficiently implement
these formulas in a DEM scheme, taking advantage of the offline precomputation
of the material-specific contact modulus over all possible orientations. Finally, we
present two examples involving assemblies of single-crystal zirconia particles that
display how anisotropy at the particle level alters macroscopic behavior and can be
exploited in applications.

The chapter is organized as follows. We begin by formulating the contact prob-
lem and describe the solution methodology in Section 2.2, based on which an exact
anisotropic contact force law is then derived in Section 2.3. Through successive sim-
plifications of the exact solution, we then propose in Section 2.4 two simplified contact
force laws, which we compare with the exact solution in Section 2.5 after validating
the latter against finite-element simulations. An implementation of the first simpli-
fied contact law into a DEM code is then presented in Section 2.6, along with two
example applications featuring elastically anisotropic particles. Conclusions close the
chapter in Section 2.7. Finally, we invite the reader interested in the implementation
details to consult the appendices.

2.2 Problem statement and solution methodology

2.2.1 Definition of the contact problem

We consider two elastically anisotropic bodies 𝐵1 and 𝐵2, comprised of materials
having elasticity tensors C𝐵1 and C𝐵2 . Throughout the chapter, quantities with a
superscript 𝐵1 and 𝐵2 will refer to body 𝐵1 and body 𝐵2, respectively, and quanti-
ties with a superscript 𝐵 will refer to either body interchangeably. In the reference
unstressed configuration, the two bodies are contacting at a single point and are sep-
arated by a common tangent contact plane, as pictured in Figure 4-1(a). Let the
contact point 𝑂 be the origin of a cartesian coordinate system (𝑥, 𝑦, 𝑧), where the 𝑥-𝑦
plane is the common tangent plane and the 𝑧-axis is directed along the inward nor-
mal of body 𝐵1. The initial gap 𝑔0(𝑥, 𝑦) measures the gap between the undeformed
bodies, and is given to lowest order by

𝑔0(𝑥, 𝑦) =𝑀𝑥2 +𝑁𝑦2, (2.2)
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Figure 2-1: Geometry of the contact problem. (a) In the reference configuration, the
two bodies are contacting at a single point 𝑂 and separated by a common tangent
plane. The coordinate system (𝑥, 𝑦, 𝑧) is defined in such a way that the (𝑥, 𝑦)-axes,
spanning the tangent plane, are aligned with the principal axes of the contour levels of
the initial gap function 𝑔0(𝑥, 𝑦). (b) In the deformed configuration, the two bodies are
pressed against each other with a normal force 𝐹 , resulting in a relative displacement
normal to the tangent plane as well as the establishment of a finite contact region 𝒜.
(c) In the tangent contact plane, the contact area takes the shape of an ellipse whose
major and minor axes (𝑥1, 𝑥2) are rotated by an angle 𝜑 with respect to the (𝑥, 𝑦)
axes. The set of polar coordinates (𝑟, 𝜃) used in Section 2.3.2 is defined with respect
to the (𝑥1, 𝑥2) axes.
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where the 𝑥- and 𝑦-axes have been chosen so that they align with the principal axes
of the contour levels of 𝑔0(𝑥, 𝑦), and 𝑁 ≥ 𝑀 by convention. In this work, we only
consider bodies with a smooth and convex surface, for which the first-order terms
of 𝑔0(𝑥, 𝑦) are zero and 𝑀 , 𝑁 are both positive. While outside the scope of this
chapter, we mention that formulae to obtain 𝑀 and 𝑁 from the principal radii of
curvature of bodies 𝐵1 and 𝐵2 at the contact point are given in the books of Johnson
[92] and Barber [12]. In the specific case of ellipsoidal bodies, the calculation of the
principal radii of curvature knowing the contact point and orientations of 𝐵1 and 𝐵2

is nontrivial and explained in the appendix of [199].
The bodies are then pressed against each other with a force 𝐹 directed along

the normal to the contact plane, which results in a relative displacement 𝛿 and the
establishment of a finite contact region 𝒜, as pictured in Figure 4-1(b). We denote
the vertical surface displacement generated in each body along the 𝑧-axis by 𝑤𝐵1(𝑥, 𝑦)
and 𝑤𝐵2(𝑥, 𝑦), both measured positive into the respective body. The final gap 𝑔(𝑥, 𝑦)
is then given by

𝑔(𝑥, 𝑦) = 𝑔0(𝑥, 𝑦)− 𝛿 + 𝑤𝐵1(𝑥, 𝑦) + 𝑤𝐵2(𝑥, 𝑦). (2.3)

Inside the contact region 𝒜, the gap 𝑔(𝑥, 𝑦) must vanish, which implies

𝑤𝐵1(𝑥, 𝑦) + 𝑤𝐵2(𝑥, 𝑦) = 𝛿 − 𝑔0(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝒜. (2.4)

Outside the contact region, the gap 𝑔(𝑥, 𝑦) must be positive, which translates as

𝑤𝐵1(𝑥, 𝑦) + 𝑤𝐵2(𝑥, 𝑦) > 𝛿 − 𝑔0(𝑥, 𝑦), (𝑥, 𝑦) /∈ 𝒜. (2.5)

We assume that the surfaces are frictionless, so that there is only a normal traction
(that is, a pressure) 𝑝(𝑥, 𝑦) between the bodies, which resultant over the contact area
𝒜 is equal to 𝐹 . The boundary conditions (2.4) and (2.5) are supplemented by the
condition that 𝑝(𝑥, 𝑦) > 0 for (𝑥, 𝑦) ∈ 𝒜, and 𝑝(𝑥, 𝑦) = 0 for (𝑥, 𝑦) /∈ 𝒜.

The problem, therefore, is to find the contact area 𝒜 and pressure distribution
𝑝(𝑥, 𝑦) such that the resulting surface displacements satisfy the boundary conditions
(2.4) and (2.5). In this way, the normal force 𝐹 between the two bodies can be related
with their relative displacement 𝛿. This elasticity problem was first solved analyti-
cally by Hertz [83] for elastically isotropic bodies, leading to the well-known Hertz
contact law. The solution process is, however, much more cumbersome for elastically
anisotropic bodies. While integral expressions have been derived and solution strate-
gies have been suggested by various authors using a range of mathematical techniques
[191, 11, 178, 183, 65, 10], an exact step-by-step solution scheme for generally-shaped
contacting surfaces, including the non-circular case 𝑀 ̸= 𝑁 , is still missing.

2.2.2 Solution methodology

Our general solution strategy for the contact problem is based on Hertz’s derivation of
the elastically isotropic case [83, 92], and proceeds in a similar way for both isotropic
and anisotropic bodies. First, one introduces the simplification that the contact region
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𝒜 is flat, and that the surface displacements generated by the pressure distribution
𝑝(𝑥, 𝑦) are equal to those that would be produced in equivalent semi-infinite bodies
(i.e., elastic half-spaces) loaded with the same surface pressure distribution over the
same contact region. In order for this simplification to hold, the size of the contact
area must be small with respect to the dimensions of each body as well as their prin-
cipal radii of curvature at the contact point. This simplification, first introduced by
Hertz, enables one to express the combined surface displacements as the convolution

𝑤𝐵1(𝑥, 𝑦) + 𝑤𝐵2(𝑥, 𝑦) =
∑︁

𝐵∈{𝐵1,𝐵2}

∫︁∫︁
𝒜
𝑤̂𝐵(𝑥− 𝑥′, 𝑦 − 𝑦′)𝑝(𝑥′, 𝑦′)𝑑𝑥′𝑑𝑦′, (2.6)

where 𝑤̂𝐵(𝑥− 𝑥′, 𝑦 − 𝑦′) is the vertical surface displacement at (𝑥, 𝑦) produced by a
unit concentrated normal load at (𝑥′, 𝑦′) on the surface of an elastic half-space. As we
will see later, the Green’s function 𝑤̂𝐵(𝑥, 𝑦) is a known quantity that depends on the
elasticity tensor C𝐵 of body 𝐵 together with, for anisotropic bodies, its orientation
with respect to the contact plane.

The next step is to find the shape of the contact region and distribution of pres-
sure such that the combined surface displacements predicted by (2.6) agree with the
boundary conditions (2.4) and (2.5). Consider a flat elliptical1 contact area with
semi-axes lengths 𝑎1 and 𝑎2,

𝒜 =

{︂
(𝑥1, 𝑥2) :

𝑥21
𝑎21

+
𝑥22
𝑎22

< 1

}︂
, (2.7)

where 𝑎2 ≤ 𝑎1 by convention, and the (𝑥1, 𝑥2) coordinates are rotated by some yet-
unknown angle 𝜑 about the (𝑥, 𝑦) coordinates, as shown in Figure 4-1(c). In addition,
consider a pressure distribution of the form

𝑝(𝑥1, 𝑥2) = 𝑝0

(︂
1− 𝑥21

𝑎21
− 𝑥22
𝑎22

)︂𝜉

, (𝑥1, 𝑥2) ∈ 𝒜, (2.8)

where the exponent 𝜉 is unknown2 in advance. For the respective cases of isotropic
and anisotropic bodies, Hertz [83] and Willis [191] showed that when 𝜉 = 1/2 (and
only then), the postulated contact area (2.7) and pressure distribution (2.8) produce
combined surface displacements (2.6) that are compatible with the conditions (2.4)
and (2.5), thereby validating the functional forms (2.7) and (2.8). In fact, in the
isotropic case, it can be immediately shown that (2.7) and (2.8) solve (2.4-2.6) by
appealing to a known analogous result from potential theory (see [110] for details).

The problem is now reduced to finding the scalar parameters 𝑎1, 𝑎2, 𝜑, and 𝑝0,
given 𝑀 , 𝑁 , 𝛿, as well as the orientation and elastic constants of the contacting

1Hertz was guided by his observations of elliptic optical interference fringes between two contact-
ing glass lenses, which is the very problem that motivated his subsequent analysis of the contact
deformation [92].

2Asymptotic arguments, however, require that for smooth contacting bodies the contact pressure
tend to zero at the boundary of the contact area [12], which implies that 𝜉 is positive.
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bodies. Once this is done by equating the coefficients in (2.4) and (2.6), the contact
law for the force 𝐹 can be obtained through the relation

𝐹 =

∫︁∫︁
𝒜
𝑝(𝑥′1, 𝑥

′
2)𝑑𝑥

′
1𝑑𝑥

′
2 =

2

3
𝜋𝑝0𝑎1𝑎2. (2.9)

The following section goes through this process in detail, beginning with elastically
isotropic bodies in Section 2.3.1 and followed by anisotropic bodies in Section 2.3.2.
In each case, the Green’s function is first presented (equations (2.10) and (2.22) for
isotropic and anisotropic bodies, respectively) and inserted in the convolution integral
(2.6) to obtain the surface displacements (equations (2.12) and (2.28) for isotropic
and anisotropic bodies, respectively). The unknown scalar parameters are then found
by enforcing the boundary condition (2.4), eventually leading to a relation between
the contact force 𝐹 and the relative displacement 𝛿 (equations (2.18) and (2.34) for
isotropic and anisotropic bodies, respectively).

2.3 Derivation of the exact contact force

2.3.1 Isotropic bodies

Green’s function and surface displacements

We begin with a review of the solution for elastically isotropic bodies, which we will
later refer to when developing a simplified anisotropic solution. In the isotropic case,
the Green’s function 𝑤̂𝐵(𝑥1, 𝑥2) is axisymmetric and given in closed form as

𝑤̂𝐵(𝑥1, 𝑥2) =
1

𝜋𝐸𝐵
* (𝑥

2
1 + 𝑥22)

1/2
, (2.10)

where 𝐸𝐵
* is the plane strain modulus of body 𝐵, defined from its Young’s modulus

𝐸𝐵 and Poisson’s ratio 𝜈𝐵 as

𝐸𝐵
* =

𝐸𝐵

1− (𝜈𝐵)2
. (2.11)

Inserting (2.10) into (2.6) and using (2.9), we find that the combined surface displace-
ment within the contact area 𝒜 caused by the pressure distribution (2.8) is [12]

𝑤𝐵1(𝑥1, 𝑥2) + 𝑤𝐵2(𝑥1, 𝑥2) =
3𝐹

4𝜋𝑎1𝐸𝑐
*

(︂
𝐼0(𝑒)−

𝑥21
𝑎21
𝐼1(𝑒)−

𝑥22
𝑎21
𝐼2(𝑒)

)︂
, (2.12)

where 𝐸𝑐
* is the composite plane strain modulus,

𝐸𝑐
* =

(︂
1

𝐸𝐵1
*

+
1

𝐸𝐵2
*

)︂−1

, (2.13)
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𝑒 is the eccentricity of the contact area,

𝑒 =

√︃
1−

(︂
𝑎2
𝑎1

)︂2

, (2.14)

and 𝐼0(𝑒), 𝐼1(𝑒), and 𝐼2(𝑒) are integrals defined as

𝐼0(𝑒) =

∫︁ 𝜋

0

𝑑𝜃

(1− 𝑒2 cos2 𝜃)1/2 , (2.15a)

𝐼1(𝑒) =

∫︁ 𝜋

0

sin2 𝜃𝑑𝜃

(1− 𝑒2 cos2 𝜃)3/2 , (2.15b)

𝐼2(𝑒) =

∫︁ 𝜋

0

cos2 𝜃𝑑𝜃

(1− 𝑒2 cos2 𝜃)3/2 . (2.15c)

It now remains to identify the surface displacements (2.12) with the boundary con-
dition (2.4) in order to solve for the unknowns 𝑎1, 𝑒, 𝜑, and 𝐹 . This last step of the
solution process is described hereafter.

Contact force solution

The solution procedure presented here is similar to that given in Barber [12], with
the exception that the latter reference uses complete elliptic integrals of the first and
second kind instead of (2.15). This leads to a numerically ill-posed problem when 𝑒
vanishes, which we avoid by working with expressions (2.15).

Equating the surface displacements (2.12) with the boundary condition (2.4), we
find that the pressure distribution (2.8) gives the correct surface displacements pro-
vided that the (𝑥1, 𝑥2) axes coincide with (𝑥, 𝑦) (that is, 𝜑 = 0, which means that
the major and minor axes of the pressure distribution are aligned with those of the
initial gap function). In addition, this yields the relations

3𝐹𝐼0(𝑒)

4𝜋𝑎1𝐸𝑐
*
= 𝛿, (2.16a)

3𝐹𝐼1(𝑒)

4𝜋𝑎31𝐸
𝑐
*
=𝑀, (2.16b)

3𝐹𝐼2(𝑒)

4𝜋𝑎31𝐸
𝑐
*
= 𝑁. (2.16c)

By combining (2.16b) and (2.16c), we obtain a simple nonlinear equation for the
eccentricity,

𝐼2(𝑒)

𝐼1(𝑒)
− 𝑁

𝑀
= 0. (2.17)

The contact force 𝐹 then follows from (2.16a) and (2.16b) as

𝐹 =
4𝜋

3
𝐸𝑐

*
[𝐼1(𝑒)]

1/2

[𝐼0(𝑒)]3/2
𝑀−1/2𝛿3/2, (2.18)
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where the material parameter 𝐸𝑐
* is defined in (2.13). In summary, the isotropic

contact force law requires the solution of equation (2.17) for 𝑒, after which 𝐹 can be
obtained with (2.18).

Spherical case

We conclude our review of isotropic materials with a discussion on the form of the
Hertzian solution for the limiting case of spherical contacting bodies, which results in
the celebrated expression commonly referred to as the Hertz contact law [200, 107].
Consider two contacting spheres of radii 𝑅𝐵1 and 𝑅𝐵2 . To lowest order, the gap
between the undeformed bodies is given by

𝑔0(𝑥, 𝑦) =
𝑥2

2𝑅
+
𝑦2

2𝑅
, (2.19)

where 1/𝑅 = 1/𝑅𝐵1 + 1/𝑅𝐵2 . Therefore 𝑀 = 𝑁 = 1/2𝑅, in which case (2.17) gives
𝑒 = 0, and (2.18) reduces to the Hertz contact law,

𝐹 =
4

3
𝐸𝑐

*𝑅
1/2𝛿3/2. (2.20)

2.3.2 Anisotropic bodies

Green’s function and surface displacements

For anisotropic bodies, there is no direct algebraic expression for the Green’s func-
tion 𝑤̂𝐵(𝑥1, 𝑥2). Various integral expressions have been derived by different authors,
starting with Willis [191] who performed a Fourier transform in the 𝑥-𝑦 plane and
solved implicitly the resulting equations. Willis’ expression, however, requires the si-
multaneous solution of multiple nonlinear integral equations, making it challenging to
work with in practice. Instead, we utilize in this chapter a direct integral expression
for the Green’s function derived by Barnett and Lothe [13], obtained by solving the
Fourier-transformed equations using a formalism due to Stroh [176].

First, let the coordinates (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) represent a basis that is preferentially

oriented for the material structure in body 𝐵, and with respect to which the compo-
nents of the elasticity tensor are C𝐵

𝑖𝑗𝑘𝑚. In body 𝐵, the stress and strain are therefore
everywhere related as

𝜖𝐵𝑖𝑗 = C𝐵
𝑖𝑗𝑘𝑚𝜎

𝐵
𝑘𝑚, (2.21)

where 𝜎𝐵
𝑘𝑚 and 𝜖𝐵𝑖𝑗 are, respectively, the components of the local stress and strain

tensors in the (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis. Figure 2-2(a) depicts this body-centric basis for

the same bodies 𝐵1 and 𝐵2 introduced in Figure 4-1, but here viewed from the global
reference frame (𝒳1,𝒳2,𝒳3). (The latter is introduced for future reference and will
not be referred to in this section.) We introduce the unit normal n to the contact
plane, which is directed from body 𝐵1 to body 𝐵2, i.e. along the negative 𝑧-direction.
As pictured in Figures 2-2(b) and 2-2(c), we denote by (𝑛𝐵

1 , 𝑛
𝐵
2 , 𝑛

𝐵
3 ) the components

of n in the (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis of each body. Then, Barnett and Lothe’s expression
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Figure 2-2: Further details on the geometry of the problem. (a) The two contact-
ing bodies depicted in Figure 4-1 are here viewed from the global reference frame,
defined by the coordinates (𝒳1,𝒳2,𝒳3). We represent the local coordinates bases
(𝑋𝐵1

1 , 𝑋𝐵1
2 , 𝑋𝐵1

3 ) and (𝑋𝐵2
1 , 𝑋𝐵2

2 , 𝑋𝐵2
3 ) of bodies 𝐵1 and 𝐵2, the contact normal and

tangent plane directions (𝑥, 𝑦, 𝑧), as well as the unit normal n to the tangent con-
tacting plane. (b,c) In the reference frames (𝑋𝐵1

1 , 𝑋𝐵1
2 , 𝑋𝐵1

3 ) and (𝑋𝐵2
1 , 𝑋𝐵2

2 , 𝑋𝐵2
3 ) of

body 𝐵1 and 𝐵2, respectively, the unit-length contact normal n can be parameterized
either by its coordinates (𝑛𝐵

1 , 𝑛
𝐵
2 , 𝑛

𝐵
3 ), or by the two Euler angles (𝛼𝐵, 𝛽𝐵).

for the vertical displacement at a point 𝑃 in the 𝑥-𝑦 plane due to a concentrated unit
vertical load at the origin reads3 (see the appendix of [185])

𝑤̂𝐵(x) =
1

|x|

[︂
𝑛𝐵
𝑘 𝐺

−1
𝑘𝑚

(︂
x

|x|

)︂
𝑛𝐵
𝑚

]︂
, (2.22)

where x is the position vector of 𝑃 . The matrix [G] in the above equation is defined
as

𝐺𝑖𝑗(t) =

∫︁ 2𝜋

0

(︀
{rr}𝑖𝑗 − {rs}𝑖𝑘{ss}−1

𝑘𝑟 {sr}𝑟𝑗
)︀
𝑑𝛾, (2.23)

where r, s, t are unit vectors such that (r, s, t) forms a right-hand Cartesian system,
𝛾 is the angle between r and some fixed point in the plane perpendicular to t, and
the matrices (ab) are defined as

{ab}𝑗𝑘 = 𝑎𝑖C𝐵
𝑖𝑗𝑘𝑚𝑏𝑚, (2.24)

with (𝑎1, 𝑎2, 𝑎3) and (𝑏1, 𝑏2, 𝑏3) denoting the components of vectors a and b in the
(𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis. It now remains to substitute (2.22) into (2.6) and solve the

resulting integral. This is no easy task, but Barber and Ciavarella [10] have suggested

3Although the unit normal n is shared between bodies 𝐵1 and 𝐵2 and hence points in opposite
directions with respect to each body’s surface, expression (2.22) is valid for both bodies since it is
quadratic in the components of n.
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an efficient strategy for doing so, which we formalize here.

We define the set of polar coordinates (𝑟, 𝜃) as (𝑥1, 𝑥2) = (𝑟 cos 𝜃, 𝑟 sin 𝜃), as shown
in Figure 4-1(c). The angle 𝜃 is measured with respect to the (𝑥1, 𝑥2) axes, which
are rotated by an as-yet-unknown angle 𝜑 with respect to the (𝑥, 𝑦) axes. Since the
orientation of the latter with respect to the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis is known, we write

the Green’s function (2.22) in the ‘rotated’ polar coordinates (𝑟, 𝜃) as

𝑤̂𝐵(𝑟, 𝜃;𝜑) =
1

𝑟

[︀
𝑛𝐵
𝑘 𝐺

−1
𝑘𝑚(𝜃;𝜑)𝑛

𝐵
𝑚

]︀
=
ℎ𝐵(𝜃;𝜑)

𝑟
, (2.25)

where the presence of 𝜑 emphasizes the dependence of the polar Green’s function
on the orientation 𝜑 of the (𝑥1, 𝑥2) basis. For completeness, we shall mention that
ℎ𝐵(𝜃;𝜑) is also a function of the material parameters as well as the (known) orien-
tation of the (𝑥, 𝑦, 𝑧) basis with respect to the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis, which can be

characterized by a rotation matrix as described in Appendix A.1. In an effort to pre-
serve clarity of exposure, however, we have omitted this dependence in our notation.

As a consequence of Maxwell’s reciprocal theorem (see [12]), the function ℎ𝐵(𝜃;𝜑)
satisfies the relation ℎ𝐵(𝜃;𝜑) = ℎ𝐵(𝜃+ 𝜋;𝜑) and therefore admits the Fourier expan-
sion

ℎ𝐵(𝜃;𝜑) =
∞∑︁

𝑚=0

𝑎𝐵𝑚(𝜑) cos 2𝑚𝜃 +
∞∑︁

𝑚=1

𝑏𝐵𝑚(𝜑) sin 2𝑚𝜃. (2.26)

Due to the way that the angles 𝜃 and 𝜑 are defined in Figure 4-1(c), we necessarily
have ℎ𝐵(𝜃;𝜑) = ℎ𝐵(𝜃 + 𝜑; 0). As a consequence, the Fourier coefficients 𝑎𝐵𝑚(𝜑) and
𝑏𝐵𝑚(𝜑) can be expressed as

𝑎𝐵𝑚(𝜑) = 𝑎𝐵𝑚(0) cos 2𝑚𝜑+ 𝑏𝐵𝑚(0) sin 2𝑚𝜑, (2.27a)
𝑏𝐵𝑚(𝜑) = −𝑎𝐵𝑚(0) sin 2𝑚𝜑+ 𝑏𝐵𝑚(0) cos 2𝑚𝜑. (2.27b)

Therefore, the knowledge of ℎ𝐵(𝜃; 0) suffices to calculate the Fourier coefficients 𝑎𝐵𝑚(𝜑)
and 𝑏𝐵𝑚(𝜑). Given the elasticity tensor C𝐵 as well as the orientation of the (𝑥, 𝑦, 𝑧)
basis with respect to the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis, we present in Appendix A.2 an algo-

rithm for computing ℎ𝐵(𝜃; 0). In practice, the Fourier coefficients 𝑎𝐵𝑚(0) and 𝑏𝐵𝑚(0)
decay very quickly with 𝑚, and we have found that truncating the Fourier series at
𝑚 = 5 is perfectly adequate.

As shown in Barber and Ciavarella [10], the integral (2.6) can then be solved in
polar coordinates using (2.26), leading to the combined surface displacement

𝑤𝐵1(𝑥1, 𝑥2) + 𝑤𝐵2(𝑥1, 𝑥2) =
3𝐹

4𝑎1

{︂ ∞∑︁
𝑚=0

𝑎𝑚(𝜑)

[︂
𝐼0,𝑚(𝑒)−

𝑥21
𝑎21
𝐼1,𝑚(𝑒)−

𝑥22
𝑎21
𝐼2,𝑚(𝑒)

]︂
+
𝑥1𝑥2
𝑎21

∞∑︁
𝑚=1

𝑏𝑚(𝜑)𝐼3,𝑚(𝑒)

}︂
, (2.28)

where 𝑎𝑚(𝜑) = 𝑎𝐵1
𝑚 (𝜑) + 𝑎𝐵2

𝑚 (𝜑), 𝑏𝑚(𝜑) = 𝑏𝐵1
𝑚 (𝜑) + 𝑏𝐵2

𝑚 (𝜑), and the integrals 𝐼0,𝑚(𝑒),
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𝐼1,𝑚(𝑒), 𝐼2,𝑚(𝑒), and 𝐼3,𝑚(𝑒) are defined as

𝐼0,𝑚(𝑒) =

∫︁ 𝜋

0

cos(2𝑚𝜃)𝑑𝜃

(1− 𝑒2 cos2 𝜃)1/2 , (2.29a)

𝐼1,𝑚(𝑒) =

∫︁ 𝜋

0

sin2 𝜃 cos(2𝑚𝜃)𝑑𝜃

(1− 𝑒2 cos2 𝜃)3/2 , (2.29b)

𝐼2,𝑚(𝑒) =

∫︁ 𝜋

0

cos2 𝜃 cos(2𝑚𝜃)𝑑𝜃

(1− 𝑒2 cos2 𝜃)3/2 , (2.29c)

𝐼3,𝑚(𝑒) =

∫︁ 𝜋

0

sin(2𝜃) sin(2𝑚𝜃)𝑑𝜃

(1− 𝑒2 cos2 𝜃)3/2 . (2.29d)

Note that these integrals relate to the ones defined in (2.15) for isotropic bodies as
𝐼0,0(𝑒) = 𝐼0(𝑒), 𝐼1,0(𝑒) = 𝐼1(𝑒), and 𝐼2,0(𝑒) = 𝐼2(𝑒). Finally, identifying the surface
displacement (2.28) with the boundary condition (2.4), one can solve for 𝑎1, 𝑒, 𝜑, and
𝐹 . This requires an iterative approach which we describe hereafter.

Contact force solution

We now present a solution procedure that goes beyond the solutions detailed in [183]
and [10], which are restricted to the specific case 𝑀 = 𝑁 . First, we express the initial
gap function 𝑔0 in the (𝑥1, 𝑥2) coordinates; see Figure 4-1(c). This can be done by
substituting the coordinate transformation relations

𝑥 = 𝑥1 cos𝜑− 𝑥2 sin𝜑, (2.30a)
𝑦 = 𝑥2 cos𝜑+ 𝑥1 sin𝜑, (2.30b)

into (2.2), leading to

𝑔0 = 𝑥21(𝑀 cos2 𝜑+𝑁 sin2 𝜑) + 𝑥22(𝑀 sin2 𝜑+𝑁 cos2 𝜑)

+ 𝑥1𝑥2(𝑁 −𝑀) sin 2𝜑. (2.31)

Equating the surface displacements (2.28) with the boundary condition (2.4) in the
(𝑥1, 𝑥2) coordinates, we obtain the relations

3𝐹

4𝑎1

∞∑︁
𝑚=0

𝑎𝑚(𝜑)𝐼0,𝑚(𝑒) = 𝛿, (2.32a)

3𝐹

4𝑎31

∞∑︁
𝑚=0

𝑎𝑚(𝜑)𝐼1,𝑚(𝑒) =𝑀 cos2 𝜑+𝑁 sin2 𝜑, (2.32b)

3𝐹

4𝑎31

∞∑︁
𝑚=0

𝑎𝑚(𝜑)𝐼2,𝑚(𝑒) =𝑀 sin2 𝜑+𝑁 cos2 𝜑, (2.32c)

3𝐹

4𝑎31

∞∑︁
𝑚=1

𝑏𝑚(𝜑)𝐼3,𝑚(𝑒) = (𝑀 −𝑁) sin 2𝜑. (2.32d)
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We recast (2.32b) to (2.32d) into two equations for 𝜑 and 𝑒:

(𝑀 −𝑁) sin 2𝜑
∞∑︁

𝑚=0

𝑎𝑚(𝜑)𝐼2,𝑚(𝑒)− (𝑀 sin2 𝜑+𝑁 cos2 𝜑)
∞∑︁

𝑚=1

𝑏𝑚(𝜑)𝐼3,𝑚(𝑒) = 0,

(2.33a)

(𝑀 cos2 𝜑+𝑁 sin2 𝜑)
∞∑︁

𝑚=0

𝑎𝑚(𝜑)𝐼2,𝑚(𝑒)− (𝑀 sin2 𝜑+𝑁 cos2 𝜑)
∞∑︁

𝑚=0

𝑎𝑚(𝜑)𝐼1,𝑚(𝑒) = 0.

(2.33b)

Together, (2.33a) and (2.33b) form a nonlinear system of equations for 𝑒 and 𝜑 that
can be solved numerically according to the procedure described in Appendix A.3, after
which the only remaining unknowns are 𝑎1 and 𝐹 . Combining (2.32a) and (2.32b),
we find that 𝐹 is given by

𝐹 =
4

3

[
∑︀∞

𝑚=0 𝑎𝑚(𝜑)𝐼1,𝑚(𝑒)]
1/2

[
∑︀∞

𝑚=0 𝑎𝑚(𝜑)𝐼0,𝑚(𝑒)]
3/2

(𝑀 cos2 𝜑+𝑁 sin2 𝜑)−1/2𝛿3/2. (2.34)

In summary, the anisotropic contact force law requires the calculation of ℎ𝐵(𝜃; 0)
from equation (2.25), after which the Fourier coefficients 𝑎𝐵𝑚(𝜑) and 𝑏𝐵𝑚(𝜑) can be
found using (2.26) and (2.27). These can then be substituted into equations (2.33a)
and (2.33b) to calculate 𝑒 and and 𝜑, before finally obtaining 𝐹 through equation
(2.34). Observe that the anisotropic solution retains the power 3/2 dependence of 𝐹
on 𝛿 from the isotropic solution (2.18). Moreover, in the limiting case of isotropic
materials, one obtains 𝑎𝐵0 (𝜑) = 1/𝜋𝐸𝐵

* and 𝑎𝐵𝑚(𝜑) = 𝑏𝐵𝑚(𝜑) = 0 for all 𝑚 > 0, and
this solution procedure appropriately reduces to the isotropic one given in Section
(2.3.1).

Limitations for an implementation in DEM

We end this section with a discussion on issues of computational cost. While the
solution procedure presented in this section is reasonably fast so long as one is merely
interested in computing the force between two bodies under a few different situations,
it is nevertheless too expensive for direct implementation into a DEM code. Indeed,
the latter case requires a calculation of the force at every contact and at every time
step, in which case the solution scheme quickly becomes prohibitively expensive. An
alternative option is to precompute, for a given material, a look-up table of stored
solution values for 𝑒 and 𝜑 that would then be accessed during the course of the
DEM simulation, with only the force 𝐹 remaining to compute from (2.34). However,
such a table would have to be four-dimensional – three parameters to describe the
orientation of the (𝑥, 𝑦, 𝑧) basis with respect to the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis, and one for

the ratio 𝑁/𝑀 – due to the coupling between equations (2.33) for 𝑒 and 𝜑, and the
Fourier coefficients of the Green’s function. In practice, this is not possible from a
storage requirement standpoint, which essentially precludes the applicability of the
exact contact force law (2.34) to the DEM. In order to circumvent this issue, we
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discuss in the following section two possible simplification strategies, which both rely
on shortening the form of the Green’s function (2.25) appearing in the exact solution.
We also propose an efficient implementation of the simplified solutions into DEM
simulations.

2.4 Simplifications of the anisotropic contact force

2.4.1 Isotropic truncation of the Green’s function

This approximation follows the exact anisotropic solution detailed in Section 2.3.2,
with the crucial difference that the Fourier expansion (2.26) of the Green’s function
(2.25) is truncated after the constant term 𝑎𝐵0 (𝜑), so that 𝑎𝐵𝑚(𝜑) = 𝑏𝐵𝑚(𝜑) = 0 for all
𝑚 > 0. This idea of truncating the Green’s function was introduced by Vlassak et al.
[183] in the context of a rigid indentor pressing against an anisotropic half space.

Setting 𝑚 = 0 in (2.27) reveals that 𝑎𝐵0 is not a function of 𝜑, as expected since
the constant term is equal to the average of ℎ𝐵(𝜃;𝜑) over all 𝜃. In contrast to the
other Fourier coefficients, it follows that 𝑎𝐵0 no longer depends on the full orientation
of the (𝑥, 𝑦, 𝑧) basis with respect to the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis attached to body 𝐵, but

only on the orientation of the unit contact normal n with respect to (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ).

As shown in Figures 2-2(b) and 2-2(c), this relative orientation can be parameterized
either by the components (𝑛𝐵

1 , 𝑛
𝐵
2 , 𝑛

𝐵
3 ) of n or by the two Euler angles (𝛼𝐵, 𝛽𝐵), both

measured with respect to the local (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis. The two representations are

related as

(𝑛𝐵
1 , 𝑛

𝐵
2 , 𝑛

𝐵
3 ) = (cos𝛼𝐵

√︀
1− cos2 𝛽𝐵, sin𝛼𝐵

√︀
1− cos2 𝛽𝐵, cos 𝛽𝐵), (2.35a)

(𝛼𝐵, 𝛽𝐵) = (arctan2(𝑛𝐵
2 , 𝑛

𝐵
1 ), arccos𝑛

𝐵
3 ), (2.35b)

where arctan2(·, ·) denotes the four-quadrant inverse tangent. From here on, we will
indicate the contact normal direction with respect to body 𝐵 in terms of the Euler
angles (𝛼𝐵, 𝛽𝐵), and the dependence of 𝑎𝐵0 on the latter will be denoted explicitly.

After truncation of the Fourier series, the Green’s function (2.25) reduces to the
same form as that for isotropic bodies,

𝑤̂𝐵(𝑟) =
𝑎𝐵0 (𝛼

𝐵, 𝛽𝐵)

𝑟
=

1

𝜋𝐸̃𝐵
* (𝛼

𝐵, 𝛽𝐵)𝑟
, (2.36)

where 𝐸̃𝐵
* (𝛼

𝐵, 𝛽𝐵) is the plane strain modulus of the equivalent isotropic body, defined
by Vlassak et al. [183] as

𝐸̃𝐵
* (𝛼

𝐵, 𝛽𝐵) =
1

𝜋𝑎𝐵0 (𝛼
𝐵, 𝛽𝐵)

. (2.37)

In (2.36) and (2.37), the superscript 𝐵 attached to 𝑎𝐵0 and 𝐸̃𝐵
* indicates a dependence

of these quantities on the elasticity tensor C𝐵 of body 𝐵, which may differ between
bodies 𝐵1 and 𝐵2.
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By virtue of the similarity between the truncated Green’s function (2.36) and its
isotropic counterpart (2.10), the rest of our solution proceeds in an analogous way
to isotropic materials and is considerably simpler than the full anisotropic solution.
Similar to the isotropic case detailed in Section 2.3.1, the phase angle 𝜑 = 0 and the
eccentricity 𝑒 satisfies

𝐼2(𝑒)

𝐼1(𝑒)
− 𝑁

𝑀
= 0. (2.38)

Hence, the normal force 𝐹 is expressed as

𝐹 =
4𝜋

3
𝐸̃𝑐

*(𝛼
𝐵1 , 𝛽𝐵1 , 𝛼𝐵2 , 𝛽𝐵2)

[𝐼1(𝑒)]
1/2

[𝐼0(𝑒)]3/2
𝑀−1/2𝛿3/2, (2.39)

where 𝐸̃𝑐
*, the composite plain strain modulus of the equivalent isotropic bodies, is

given by

𝐸̃𝑐
*(𝛼

𝐵1 , 𝛽𝐵1 , 𝛼𝐵2 , 𝛽𝐵2) =

(︂
1

𝐸̃𝐵1
* (𝛼𝐵1 , 𝛽𝐵1)

+
1

𝐸̃𝐵2
* (𝛼𝐵2 , 𝛽𝐵2)

)︂−1

. (2.40)

Spherical case

Similarly to isotropic materials, the particular case of spherical bodies lends itself to
further simplification. As discussed in Section 2.3.1, the gap function coefficients for
two contacting spheres of radii 𝑅𝐵1 and 𝑅𝐵2 are given by 𝑀 = 𝑁 = 1/2𝑅, with
1/𝑅 = 1/𝑅𝐵1 + 1/𝑅𝐵2 . It then follows that the eccentricity 𝑒 = 0, and the normal
force 𝐹 reduces to

𝐹 =
4

3
𝐸̃𝑐

*(𝛼
𝐵1 , 𝛽𝐵1 , 𝛼𝐵2 , 𝛽𝐵2)𝑅1/2𝛿3/2. (2.41)

Efficient implementation in DEM through a look-up table

The simplified solutions (2.39) and (2.41) obtained from the truncation of the Green’s
function assume the same form as the exact isotropic solutions (2.18) and (2.20), with
the exception of 𝐸̃𝑐

*, the composite plain strain modulus (2.40). In the anisotropic
solution, the latter depends on the relative orientation of the contact normal with
respect to the two bodies through the equivalent plane strain modulus 𝐸̃𝐵

* (𝛼
𝐵, 𝛽𝐵)

defined in (2.37). The computation of 𝐸̃𝐵
* (𝛼

𝐵, 𝛽𝐵) through the truncation of the
Green’s function (2.25) is rather demanding, which prevents its online integration
into a DEM code. Nevertheless, we may leverage the fact that besides the angles 𝛼𝐵

and 𝛽𝐵, the quantity 𝐸̃𝐵
* solely depends on the elasticity tensor C𝐵 of body 𝐵.

An effective remedy to the computational cost issue is thus to create, for every
different material C𝐵 present in the simulation, a table [𝐸̃*](·, · ;C𝐵) of values of the
equivalent plane strain modulus spanning all contact normal directions 𝛼𝐵 ∈ [0, 2𝜋]
and 𝛽𝐵 ∈ [0, 𝜋]. These two-dimensional look-up tables are to be precomputed offline
and their values interpolated online according to the instantaneous values of 𝛼𝐵 and
𝛽𝐵 when (2.40) is called during the course of the DEM simulation. In this way, the
simplified anisotropic contact laws (2.39) and (2.41) are equally fast to compute as
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their isotropic counterparts, save for the interpolation of the look-up tables. Given a
material, we describe in Appendix A.4 an algorithm for the calculation of such a look-
up table — this table is then shared among all bodies made of the same material. The
value of the composite plain strain modulus 𝐸̃𝑐

* corresponding to two contacting bodies
𝐵1 and 𝐵2 can then be retrieved from two (or one, if C𝐵1 = C𝐵2) precomputed tables
[𝐸̃*](·, · ;C𝐵1) and [𝐸̃*](·, · ;C𝐵2) according to the algorithm presented in Appendix
A.5.

Lastly, the solution to (2.38) for the eccentricity 𝑒 of the contact area, which is
required for non-spherical particles in both the isotropic and anisotropic contact laws,
takes just a few Newton-Raphson iterations to converge4 and can either be directly
implemented into a DEM code, or stored in another one-dimensional look-up table
as a function of the ratio 𝑀/𝑁 .

With 𝐸̃𝑐
* and 𝑒 in hand, the contact force can be readily calculated from (2.39). A

Python implementation of the computational approach described in this section, in-
cluding the computation of the look-up table, has been shared in an online repository
at https://github.com/smowlavi/AnisotropicGrains.git.

2.4.2 Ad hoc computation of the plane strain modulus

As we have noted above, the main issue with the first simplification strategy lies in
the need to compute the anisotropic Green’s function (2.25) in order to obtain the
equivalent plane strain modulus 𝐸̃𝐵

* (𝛼
𝐵, 𝛽𝐵) defined in (2.37). In this section, we

present an alternative, ad hoc approach to obtain 𝐸̃𝐵
* that is much faster to compute,

yet retains directional information and makes full use of all elastic constants of the
material. Recall that for isotropic materials, the plain strain modulus is given by

𝐸𝐵
* =

𝐸𝐵

1− (𝜈𝐵)2
, (2.42)

where 𝐸𝐵 and 𝜈𝐵 are respectively the Young’s modulus and Poisson’s ratio of body 𝐵.
Returning to anisotropic materials, we may define an ad hoc equivalent plain strain
modulus 𝐸̃𝐵

* (𝛼
𝐵, 𝛽𝐵) through a direct generalization of the above expression. We

substitute 𝐸𝐵 and 𝜈𝐵 with the effective Young’s modulus 𝐸𝐵
n (𝛼

𝐵, 𝛽𝐵) and effective
Poisson’s ratio 𝜈𝐵n (𝛼𝐵, 𝛽𝐵) along the contact normal direction n, giving

𝐸̃𝐵
* (𝛼

𝐵, 𝛽𝐵) =
𝐸𝐵

n (𝛼
𝐵, 𝛽𝐵)

1− (𝜈𝐵n (𝛼
𝐵, 𝛽𝐵))2

. (2.43)

The effective material quantities 𝐸𝐵
n and 𝜈𝐵n are defined the same way as for isotropic

materials, with the exception that they now depend on the relative orientation (𝛼𝐵, 𝛽𝐵)
of the unit normal n with respect to the body. First, consider a state of uniform uni-

4To speed up convergence, one may start the iterations from 𝑒 = 2𝑒𝑔/
√
3 with 𝑒𝑔 =

√︀
1−𝑀/𝑁 ,

which provides an excellent approximation to the solution in the range 0 < 𝑒𝑔 < 0.4 and remains
reasonably accurate up to 𝑒𝑔 ≃ 0.8 (see [12], Section 3.3.1).
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axial stress along n,
𝜎 = 𝜎n⊗ n, (2.44)

which induces a strain 𝜖𝐵 = S𝐵𝜎, with S𝐵 the compliance tensor of particle 𝐵. The
resulting normal strain along the contact normal n is then given by

𝜖𝐵n = n · 𝜖𝐵n = n · (S𝐵𝜎)n, (2.45)

and the resulting normal strain in the transverse direction is given by

𝜖𝐵t =
1

2𝜋

∫︁ 2𝜋

0

(t · 𝜖𝐵t)𝑑𝛾 =
1

2𝜋

∫︁ 2𝜋

0

(t · (S𝐵𝜎)t)𝑑𝛾, (2.46)

where t is a unit vector orthogonal to n, and 𝛾 is the angle between t and an arbitrary
fixed point in the plane perpendicular to n. Denoting u, v a fixed orthogonal basis
within that plane, the substitution t = cos 𝛾 u+sin 𝛾 v enables the explicit calculation
of the above integral, leading to

𝜖𝐵t =
1

2
(u · (S𝐵𝜎)u) +

1

2
(v · (S𝐵𝜎)v). (2.47)

The effective Young’s modulus and Poisson’s ratio along n are thus

𝐸𝐵
n (𝛼

𝐵, 𝛽𝐵) =
𝜎

𝜖𝐵n
, 𝜈𝐵n (𝛼

𝐵, 𝛽𝐵) = −𝜖
𝐵
t

𝜖𝐵n
. (2.48)

Finally, we insert the above quantities back into the ad hoc definition (2.43) of the
equivalent plane strain modulus, and we use (2.38) and (2.39) to find the resulting
normal force. We note that while the computation of the plane strain modulus using
the ad hoc approach described here is much faster than the Green’s function ap-
proach described in Section 2.4.1, it is still more demanding than simply retrieving
a precomputed value from a look-up table. Therefore, it is also advantageous to use
the latter approach in this case, creating a table of values [𝐸̃*](·, · ;C𝐵) of the ad hoc
plain strain modulus as a function of 𝛼𝐵 and 𝛽𝐵, for every material present in the
simulation.

2.4.3 Summary of the exact and simplified laws

For the convenience of the reader, we provide in Table 2.1 a summary of the exact
and simplified anisotropic contact force laws that we have presented in Sections 2.3.2,
2.4.1, and 2.4.2. We display separately the general case of an elliptic gap function
(i.e. 𝑀 ̸= 𝑁) and the limiting case of a circular gap function (i.e. 𝑀 = 𝑁), for which
the simplified contact laws assume an even cleaner form5. Note that in Section 2.4.1,

5Willis [191] demonstrated that the contact area remains elliptic in the exact solution for a
circular gap function and general anisotropic media. Thus, the exact contact law still requires the
coupled solution of 𝑒 and 𝜑 through (2.33), while its simplified counterparts simply return a circular
contact area as described in Section 2.4.1.
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Contact force law
Elliptic 𝑔0 (𝑀 ̸= 𝑁) Circular 𝑔0 (𝑀 = 𝑁)

𝐹 𝐸̃𝐵
* 𝑒 𝜑 𝐹 𝐸̃𝐵

* 𝑒 𝜑

Exact (Section 2.3.2) (2.34) – (2.33) (2.33) (2.34) – (2.33) (2.33)
Truncated (Section 2.4.1) (2.39) (2.37) (2.38) 0 (2.41) (2.37) 0 0

Ad hoc (Section 2.4.2) (2.39) (2.43) (2.38) 0 (2.41) (2.43) 0 0

Table 2.1: Summary of the exact and simplified anisotropic contact laws.

we have described the circular limit in the context of two spherical contacting bodies
of radii 𝑅𝐵1 and 𝑅𝐵2 , in which case 𝑀 = 𝑁 = 1/2𝑅 with 1/𝑅 = 1/𝑅𝐵1 + 1/𝑅𝐵2 .
From here on, we will refer to the simplified laws described in Sections 2.4.1 and 2.4.2
as the truncated and ad hoc contact laws, respectively.

2.5 Validation of the contact force laws

In this section, we first validate the accuracy of the exact contact force law against
finite-element method (FEM) simulations, before comparing the accuracy of the two
simplified contact force laws with respect to their exact counterpart. To this effect,
we perform numerical calculations of the force experienced by a flat rigid plate (body
𝐵2) pressing against a smooth elastic body made of a given material (body 𝐵1), as
pictured in Figure 2-3(a). Following our previous convention, we parameterize the
direction of the unit normal n to the contact plane with respect to the local coordinate
basis (𝑋𝐵1

1 , 𝑋𝐵1
2 , 𝑋𝐵1

3 ) of body 𝐵1 by the two Euler angles 𝛼𝐵1 and 𝛽𝐵1 depicted in
Figure 2-3(a).

We consider a number of possible scenarios by changing (i) the material, (ii) the
orientation of 𝐵1, represented by 𝛼𝐵1 and 𝛽𝐵1 , as well as (iii) the geometry of the
smooth surface, defined by the gap function (2.2). In terms of materials, we selected
three different crystals spanning a wide range of degrees of symmetry. First is iron
(Fe), which has a cubic crystalline structure described by three independent elastic
constants 𝐶11 = 231, 𝐶44 = 116, and 𝐶12 = 135 GPa, as determined in [158]. Second
is quartz (SrO2), which has a trigonal crystalline structure described by 6 independent
elastic constants, measured by [84] as 𝐶11 = 87.2, 𝐶33 = 106, 𝐶44 = 57.2, 𝐶12 = 6.57,
𝐶13 = 12.0, and 𝐶14 = −17.2 GPa. Finally, third is zirconia (ZrO2), which has a
monoclinic crystalline structure described by 13 independent elastic constants, which
were characterized by [30] as 𝐶11 = 361, 𝐶22 = 408, 𝐶33 = 258, 𝐶44 = 99.9, 𝐶55 = 81.2,
𝐶66 = 126, 𝐶12 = 142, 𝐶13 = 55.0, 𝐶15 = −21.3, 𝐶23 = 196, 𝐶25 = 31.2, 𝐶35 = −18.2,
and 𝐶46 = −22.7 GPa.

2.5.1 Validation of the exact contact force law

We begin by comparing predictions of the exact contact force law with results from
FEM simulations. The 3D setup presented in Figure 2-3(a) is implemented in ABAQUS
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Figure 2-3: (a) A flat rigid plate 𝐵2 is assigned a vertical displacement 𝛿 into a smooth
elastic body 𝐵1 with possibly unequal principal radii of curvature. The orientation
of the local coordinate basis of 𝐵1 with respect to the contact normal direction n is
parameterized by the Euler angles 𝛼𝐵1 and 𝛽𝐵1 . The contour levels on the vertical cut
display the magnitude of the elastic displacement generated by an indentation depth
𝛿 = 5 nm, as computed in FEM. (b) Contact force predicted by the exact contact
law (solid line) and the FEM simulations (red dots) for 𝛼𝐵1 = 𝜋/2 and 𝛽𝐵1 = 0 as a
function of 𝛿 (left pane), and for 𝛼𝐵1 = 𝜋/2 and 𝛿 = 5 nm as a function of 𝛽𝐵1 (right
pane).
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(2017). The elastic body 𝐵1 is designed with principal radii of curvature at the contact
point of 𝑅1 = 0.5𝜇m and 𝑅2 = 0.25𝜇m, corresponding to gap function coefficients
𝑀 = 1/2𝑅1 = 1𝜇m−1 and 𝑁 = 1/2𝑅2 = 2𝜇m−1 [12]. The contact interaction
between 𝐵1 and 𝐵2 is modeled following the ‘surface-to-surface’ formulation, with
hard contact in the normal direction and no friction in the tangential direction. We
assign the elastic properties of quartz (SrO2) to 𝐵1 by specifying its full elasticity
tensor and rotating the corresponding material directions (𝑋𝐵1

1 , 𝑋𝐵1
2 , 𝑋𝐵1

3 ) according
to the desired values of 𝛼𝐵1 and 𝛽𝐵1 . Body 𝐵1 is discretized using 112752 quadratic
tetrahedral elements (C3D10M), and its base is pinned in the vertical direction. An
incremental vertical displacement directed into 𝐵1 is prescribed to the flat rigid plate
𝐵2, which is defined as an ‘analytical rigid surface’. The analysis is carried out using
the explicit solver by moving the rigid plate at a rate slow enough to ensure that
the deformation proceeds in a quasi-static manner, as verified by the fact that (i)
the total kinetic energy never exceeds 0.03% of the total internal energy, and (ii) the
contact force measured at the plate is within 1% equal to the sum of the vertical
reaction forces at the basal nodes of 𝐵1.

The contour levels on the vertical cut of body 𝐵1 in Figure 2-3(a) display the
magnitude of the elastic displacements induced by an indentation depth 𝛿 = 5 nm,
as computed in FEM, for material orientation 𝛼𝐵1 = 𝛽𝐵1 = 𝜋/2. Interestingly, the
anisotropy of the constitutive relation is reflected in the absence of axisymmetry (with
respect to the contact normal direction) of the elastic displacement field. For a more
quantitative analysis, the red dots in the left pane of Figure 2-3(b) depict the FEM
contact force for material orientation 𝛼𝐵1 = 𝜋/2, 𝛽𝐵1 = 0 and four different values of
the vertical displacement 𝛿 of 𝐵2 into 𝐵1. These FEM results are in excellent agree-
ment with the corresponding predictions from the exact contact force law shown by
the solid line; the power 3/2-dependence of 𝐹 on 𝛿 is also clearly visible. Conversely,
the red dots in the right pane of Figure 2-3(b) display the FEM contact force for
𝛿 = 5 nm and different material orientations defined by 𝛼𝐵1 = 𝜋/2 and varying values
of 𝛽𝐵1 . Once again, the FEM results agree well with the exact contact force law
shown by the solid line, with the difference between the two not exceeding 3.4%.

The slight discrepancy between FEM and theoretical results observed in Figure
2-3(b) can be attributed to various reasons. On the one hand, the FEM solution is
dependent on the resolution of the mesh in the vicinity of the contact region, and
further refinement of the mesh would reduce errors arising from the numerical dis-
cretization. On the other hand, the exact contact force law relies on the assumptions
that the size of the contact area is small with respect to the dimensions of 𝐵1 as well
as its radii of curvature at the contact point. Such assumptions are never satisfied
exactly, thus invariably lead to small errors when the contact law is applied to a real-
case scenario. Notwithstanding, the comparisons displayed in Figure 2-3(b) exhibit a
sufficient level of agreement to validate both the accuracy and the implementation of
the exact contact force law.
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2.5.2 Accuracy of the simplified contact force laws

Polar visualizations

We now proceed with the comparison of the two simplified contact force laws with
respect to their exact counterpart. As in the previous section, we calculate the contact
force experienced in the setup pictured in Figure 2-3(a), this time using a wider range
of materials, orientations and surface geometries. We first show polar visualizations
of the directional dependence of the force predicted by the exact solution and its two
simplifications for an indentation depth (overlap) 𝛿 = 100 nm. Due to the symmetry
exhibited by the Green’s function (2.22) with respect to the sign of the unit normal
n, the behavior of the force is completely specified for all materials by the hemisphere
𝛼𝐵1 ∈ [0, 2𝜋], 𝛽𝐵1 ∈ [0, 𝜋/2]. Thus, we visualize the directional dependence of the
contact force by projecting each direction point on the hemisphere to a plane through
stereographic projection, in such a way that the data pertaining to the orientation
(𝛼𝐵1 , 𝛽𝐵1) will be displayed at the location (tan(𝛽𝐵1/2) cos𝛼𝐵1 , tan(𝛽𝐵1/2) sin𝛼𝐵1)
in a disk of unit radius.

Figures 2-4 and 2-5 display such polar visualizations of the exact contact force law
and its two simplifications for a circular gap function (𝑀 = 𝑁 = 1𝜇m−1) in Figure
2-4 and an elliptic gap function (𝑀 = 1𝜇m−1, 𝑁 = 2𝜇m−1) in Figure 2-5. In the
elliptic case, we have chosen to orient the principal axes (𝑥, 𝑦) of the gap function
along the polar (𝛼, 𝛽) directions. For both figures, (a,b,c) correspond to iron, (d,e,f)
to quartz, and (g,h,i) to zirconia. Surprisingly, we notice that the truncated force
law is remarkably close to the exact solution for all materials, contact directions and
shapes of the gap function. This result is extremely promising for DEM applications
since the truncated law can return a near-exact contact force at a very reasonable cost
(presuming that one uses a look-up table approach as described in Section 2.4.1 and
Appendix A.5). The ad hoc approximation, on the other hand, deviates further away
from the exact solution. The accuracy with which it predicts the shape of the contour
levels of the force depends on the degree of symmetry of the material – it performs
very well in this regard for iron, reasonably well for quartz, and more poorly for
zirconia. More importantly, it fails to correctly predict the extrema of the force and
displays a much stronger dependence of the latter on the contact normal direction,
as compared with the other solutions.

The relative dependence of the force on the contact normal direction is not strongly
influenced by the geometry of the gap function, as one observes by comparing Figures
2-4 and 2-5. The most apparent difference between the circular and elliptic gap
functions under a given overlap distance is that the force is lower in the elliptic case
for all contact normal orientations, which is expected since the case 𝑀 = 1𝜇m−1,
𝑁 = 2𝜇m−1 has a higher mean curvature at the contact point than the case 𝑀 =
𝑁 = 1𝜇m−1. Curiously, the other geometrical features of the exact solution – namely
the eccentricity 𝑒 and orientation 𝜑 of the contact area – are more sensitive to the
geometry of the gap function, as shown in Appendix A.6.
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Figure 2-4: Polar visualizations of the normal force 𝐹 predicted by the exact contact
force law and its two simplifications for iron (a,b,c), quartz (d,e,f), and zirconia (g,h,i),
under indentation depth 𝛿 = 100 nm and gap function coefficients 𝑀 = 𝑁 = 1𝜇m−1.
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Figure 2-5: Polar visualizations of the normal force 𝐹 predicted by the exact contact
force law and its two simplifications for iron (a,b,c), quartz (d,e,f), and zirconia (g,h,i),
under indentation depth 𝛿 = 100 nm and gap function coefficients 𝑀 = 1𝜇m−1 and
𝑁 = 2𝜇m−1.
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Error analysis

Next, we perform a quantitative analysis of the accuracy of the two simplified con-
tact force laws with respect to their exact counterpart. Let us first define 𝑒𝑔, the
eccentricity of the gap function, as

𝑒𝑔 =

√︂
1− 𝑀

𝑁
. (2.49)

The quantity 𝑒𝑔 measures the eccentricity of the contour levels of the gap function
𝑔0(𝑥, 𝑦), in the same way that 𝑒 quantifies the eccentricity of the boundary of the
contact area. A circular gap function corresponds to 𝑒𝑔 = 0. We first quantify the
sensitivity of the various contact laws with respect to the contact normal direction
for different values of 𝑒𝑔, using the same overlap 𝛿 = 100 nm as prescribed before. To
this effect, Figure 2-6 shows the mean and extrema values, over all contact normal
directions, of the normal force predicted by the exact and simplified contact laws
versus 𝑒𝑔, for iron (a), quartz (b) and zirconia (c). We again observe that the truncated
law is very accurate, while the ad hoc law exaggerates the dependence of the force on
the orientation. For a more quantitative comparison, we define, for a given value of
𝑒𝑔 and a given material, the relative error

ℰ =
1

2𝜋

∫︁ 2𝜋

0

∫︁ 𝜋/2

0

|𝐹s(𝛼, 𝛽)− 𝐹e(𝛼, 𝛽)|
𝐹e(𝛼, 𝛽)

sin 𝛽𝑑𝛼𝑑𝛽, (2.50)

where 𝐹e and 𝐹s refer, respectively, to the exact and simplified solutions. Thus,
(2.50) returns the mean relative error over all contact normal orientations. Figure 2-7
shows the error as a function of the eccentricity of the gap function 𝑒𝑔 for the three
materials considered previously. The accuracy of the truncated law is remarkable for
small values of the gap function eccentricity 𝑒𝑔, and remains very good as 𝑒𝑔 increases,
with the relative error ℰ remaining near or under 1%. The ad hoc law, on the other
hand, behaves more poorly with the error being on the order of 10% for the three
materials.

We now study the behavior of the exact and simplified contact laws as the con-
stitutive relation approaches the isotropic limit. For this purpose, we construct an
arbitrary cubic material of varying anisotropy ratio AR defined by [196] as

AR =
2𝐶44

𝐶11 − 𝐶12

, (2.51)

with the particular case AR = 1 corresponding to an isotropic material, and we pick
the same values for 𝐶11 and 𝐶12 as for iron. (For reference, iron then corresponds
to the case AR = 2.41.) Figure 2-8 shows the mean and extrema values, over all
contact normal directions, of the normal force predicted by the exact and simplified
contact laws for this arbitrary material and a circular gap function, that is, 𝑒𝑔 = 0.
As expected, the two simplified contact laws degenerate to the exact solution in the
limiting case AR = 1 of an isotropic material. This remains true for a finite value
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Figure 2-6: Mean, maximum and minimum values of the normal force 𝐹 , over all
contact normal directions, predicted by the exact and simplified contact laws as a
function of the eccentricity 𝑒𝑔 of the gap function, for (a) iron, (b) quartz, and (c)
zirconia.
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Figure 2-7: Mean relative error ℰ over all contact normal directions of the force 𝐹
predicted by the two simplified contact laws as a function of the eccentricity 𝑒𝑔 of the
gap function, for iron, quartz, and zirconia.
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Figure 2-8: (a) Mean, maximum and minimum values of the normal force 𝐹 , over all
contact normal directions, predicted by the exact and simplified contact laws for an
arbitrary cubic material with varying anisotropy ratio AR and 𝑒𝑔 = 0.
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Figure 2-9: Mean relative error ℰ over all contact normal directions of the force 𝐹
predicted by the two simplified contact laws as a function of the anisotropy ratio AR
of an arbitrary cubic material.

of 𝑒𝑔, as displayed in Figure 2-9 for 𝑒𝑔 = 0.7 in terms of the mean relative error 𝜖
defined in (2.50). Here again, the truncated contact law is remarkably close to the
exact solution for all values of anisotropy ratio AR and gap function eccentricity 𝑒𝑔,
with the relative error ℰ remaining under 1%, while the second approximation returns
larger relative errors on the order of 10%.

Going forward, we select the truncated simplification as the contact force law
of choice for implementation into a DEM code. Implemented with a look-up table
approach, the computation of this force law is equally fast as the ad hoc simplification,
yet returns results that are accurate to within 1% for ellipsoids and within 0.1% for
spherical particles.

2.6 Applications

We now implement the truncated anisotropic contact law described in Section 2.4.1
into a custom DEM code, which enables the simulation of granular materials com-
posed of elastically anisotropic particles. Even though the contact laws that we have
derived are applicable to arbitrarily-shaped bodies as long as their surfaces are smooth
and convex, we will here restrict ourselves to spherical particles. We will show two ex-
amples, one static and one dynamic, where the anisotropy of the constitutive relation
induces changes in the macroscopic properties of the system.

2.6.1 Equations of motion

Consider a system of 𝑁 spherical particles 𝑖 = 1, . . . , 𝑁 with (possibly distinct)
elasticity tensors C𝑖. In this section, we adopt a slight change of notation and indicate
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quantities pertaining to body 𝑖 with a subscript 𝑖, in line with conventions from the
DEM literature. The positions and orientations of the particles are described by a set
of generalized coordinates {q𝑖} = ({r𝑖}, {𝜖𝑖}), where {r𝑖} ∈ R3 denotes the position
of the center of mass of body 𝑖, and {𝜖𝑖} ∈ R4 is a set of Euler parameters (unit
quaternions) that characterizes the orientation of body 𝑖, both in the global reference
frame (𝒳1,𝒳2,𝒳3) shown in Figure 2-2(a). The linear and angular velocities of the
particles are described by generalized velocities {v𝑖} = ({ṙ𝑖}, {𝜔𝑖}), where {𝜔𝑖} ∈ R3

is the angular velocity of body 𝑖 in the global frame and relates to the time derivative
of the Euler parameters {𝜖𝑖} as (see [61, 58] or equation (9.3.37) in [78])

{𝜖𝑖} =
1

2
[A(𝜖𝑖)]{𝜔𝑖}, (2.52)

with the matrix [A(𝜖𝑖)] ∈ R4×3 defined as

[A(𝜖𝑖)] =

⎡⎢⎢⎣
−𝜖𝑖,1 −𝜖𝑖,2 −𝜖𝑖,3
𝜖𝑖,0 𝜖𝑖,3 −𝜖𝑖,2
−𝜖𝑖,3 𝜖𝑖,0 𝜖𝑖,1
𝜖𝑖,2 −𝜖𝑖,1 𝜖𝑖,0

⎤⎥⎥⎦ . (2.53)

Two bodies 𝑖 and 𝑗, with diameters 𝑑𝑖 and 𝑑𝑗, interact when their signed overlap
function,

𝛿𝑖𝑗 =
𝑑𝑖 + 𝑑𝑗

2
− |r𝑖 − r𝑗|, (2.54)

is positive. Denoting by 𝑐𝑖 = {𝑗 : 𝛿𝑖𝑗 ≥ 0} the set of particles that are in contact with
body 𝑖, the generalized velocities can be integrated in time using Newton’s equations
of motion,

𝑚𝑖{r̈𝑖} =
∑︁
𝑗∈𝑐𝑖

{F𝑖𝑗}+𝑚𝑖{g}, (2.55a)

𝐼𝑖{𝜔̇𝑖} =
∑︁
𝑗∈𝑐𝑖

(𝑎𝑖𝑗{n𝑖𝑗} × {F𝑖𝑗}), (2.55b)

where 𝑚𝑖 and 𝐼𝑖 denote respectively the mass and moment of inertia of particle 𝑖. At
each contact, 𝑎𝑖𝑗 = (𝑑𝑖−𝛿𝑖𝑗)/2 denotes the distance from the center of mass of particle
𝑖 to its contact point with particle 𝑗, the unit normal vector n𝑖𝑗 = (r𝑗− r𝑖)/|r𝑗− r𝑖| is
directed from 𝑖 to 𝑗, and the force {F𝑖𝑗} consists of normal and tangential components,

{F𝑖𝑗} = 𝐹 𝑛
𝑖𝑗{n𝑖𝑗}+ 𝐹 𝑡

𝑖𝑗{t𝑖𝑗}, (2.56)

where the tangent unit vector t𝑖𝑗 belongs to the contact plane and depends on the
history of relative tangential velocities of 𝑖 and 𝑗 at the contact point. In this chapter,
we consider frictionless6 bodies so that 𝐹 𝑡

𝑖𝑗 = 0. The normal force 𝐹 𝑛
𝑖𝑗 comprises an

6A direct consequence of this assumption is that in the absence of external torques, spherical
particles will keep their initial orientation throughout the simulation. Nevertheless, our exposition
accounts for the possible presence of angular velocities in an effort to be as general as possible.
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elastic and a dissipative part,

𝐹 𝑛
𝑖𝑗 = −max(𝐹 𝑒

𝑖𝑗 + 𝐹 𝑑
𝑖𝑗, 0), (2.57)

where the max(·) function forbids the existence of a cohesion force, and the orientation-
dependent elastic component 𝐹 𝑒

𝑖𝑗 is given by the normal contact force law derived in
Section 2.4.1,

𝐹 𝑒
𝑖𝑗 =

4

3
𝐸̃𝑐

*({𝜖𝑖}, {𝜖𝑗}, {n𝑖𝑗})𝑅1/2
𝑖𝑗 𝛿

3/2
𝑖𝑗 , (2.58)

where 1/𝑅𝑖𝑗 = (2/𝑑𝑖 + 2/𝑑𝑗). Likewise, one expects the dissipative component 𝐹 𝑑
𝑖𝑗

to inherit an orientation dependence from the anisotropy of the material structure.
However, deriving such a relation falls outside the scope of this chapter, and we
restrict ourselves to the standard isotropic expression

𝐹 𝑑
𝑖𝑗 = 𝛾𝑛𝛿̇𝑖𝑗, (2.59)

where 𝛾𝑛 is a constant damping coefficient. This simplification is reasonable for
flowing granular materials, where damping is known to play a negligible role within
a particular range of strain rates [43]. For quasi-static problems, the form of the
dissipation is inconsequential so long as one is interested in static quantities after
particles have come to a rest, which is the case of our only upcoming example using
a nonzero damping coefficient 𝛾𝑛.

In equation (2.58), the dependence of 𝐸̃𝑐
* on the relative orientations of bodies 𝑖

and 𝑗 with respect to the contact normal direction has been indicated through the Eu-
ler parameters {𝜖𝑖}, {𝜖𝑗} and the components {n𝑖𝑗} of the contact normal, which are
readily available in the simulation. Given these inputs, we present in Appendix A.5
an algorithm to retrieve the value of 𝐸̃𝑐

* from two (or one, if C𝑖 = C𝑗) precomputed
tables of values of the plane strain modulus, [𝐸̃*](·, · ;C𝑖) and [𝐸̃*](·, · ;C𝑗), the com-
putation of which is described in Appendix A.4. These algorithms for the calculation
of the look-up tables and contact force have been provided as a Python code in an
online repository at https://github.com/smowlavi/AnisotropicGrains.git. Fur-
ther details regarding the numerical implementation of the DEM code and parameter
values are listed in Appendix A.8.

2.6.2 Static force distribution in a pyramid

As a first example, we consider a static square-based pyramid of close-packed single-
crystal zirconia spheres, with ten particles along each side of the base. This system
is statically indeterminate due to each interior particle possessing twelve neighbors
[140]. Therefore, the equilibrium contact forces will depend on the contact stiffnesses
(that is, on the composite plain strain moduli 𝐸̃𝑐

*), which in the case of anisotropic
particles are a function of the contact directions and particle orientations. As we will

Torques may arise in other works as a result of the geometry or surface roughness of the particles,
and it is critical to treat their orientations correctly since the anisotropic contact law is orientation-
dependent.
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show next, our anisotropic DEM framework enables us to investigate the relationship
between the floor pressure at the base of the pyramid and the orientation of the
particles.

Notice from Figure 2-4 that a sphere made of single-crystal zirconia may be
thought of as having a band of high contact stiffness along its equator. We will
consider four separate arrangements in which every particle is either oriented such
that the strong band is roughly horizontal (orientation 1), resulting in all contacts
witnessing approximately the same stiffness from that particle; or the strong band
is roughly aligned with a vertical plane parallel to the 𝑦 = 𝑥 diagonal of the square
base (orientation 2), causing stiffer contacts oriented in those directions compared to
those oriented in the other direction.

Figure 2-10(a) shows a three-dimensional visualization of the pyramid, which is
initialized by placing the particles in a position where they barely touch their neigh-
bors. The pyramid is then allowed to settle under the acceleration of gravity, with the
contact forces oscillating during a transient phase before reaching their equilibrium
values. For the case of all particles following orientation 1, Figure 2-10(b) shows this
phenomenon through the time evolution of

∑︀
𝑗∈𝑐𝑖 |F𝑖𝑗|/𝑚𝑔, the normalized sum of the

force magnitudes that each particle experiences at all its contact points. The same
quantity is shown at final time in Figure 2-10(a) as the semi-transparent color applied
to each grain.

In Figure 2-11, we display the distribution of normalized reaction forces 𝐹𝑧/𝑚𝑔
on the base of the pyramid, once equilibrium is reached. We consider four separate
arrangements of particle orientation, which we visualize by displaying particles in
orientation 2 with a diagonal line aligned along their strong band. Particles in upper
layers are oriented identically to the base layer particles belonging to the same 𝑦 =
𝑥 + 𝑐 vertical plane. As expected, the reaction forces are symmetrical in the case
shown in Figure 2-11(a) where all particles have orientation 1, since all the contacts
see approximately the same stiffness. That symmetry is broken and a clear effect
of anisotropy emerges in Figure 2-11(b), where all particles have orientation 2. Due
to the stronger contacts along directions parallel to the 𝑦 = 𝑥 plane, the two corner
particles aligned along the ‘strong’ 𝑦 = 𝑥 diagonal inherit a larger reaction force than
the other two corner particles. The picture gets even more interesting in Figures 2-
11(c) and (d), which demonstrate that it is possible to tune the reaction force beneath
the pyramid by mere rotation of the constituent particles. To conclude, this simple
example highlights the importance of accounting for anisotropic effects in the discrete
element modeling of elastically anisotropic particles, even in situations that involve
no dynamics at all.

2.6.3 Sound transmission in a granular chain

As a second example, we investigate the transmission of sound in a compressed chain
of adjacent spherical particles between two fixed walls. A large body of work has
researched the behavior and frequency response of such ‘granular crystals’ to small-
amplitude dynamic displacements of the particles, where small is in comparison with
the static overlap imposed between adjacent particles by the compression force. In
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Figure 2-10: (a) Geometry of the static square-based pyramid. Each particle 𝑖 is
colored according to

∑︀
𝑗∈𝑐𝑖 |F𝑖𝑗|/𝑚𝑔, the normalized sum of the force magnitudes

that it withstands at all its contact points. (b) The same quantity is plotted over
time during the settling of the pyramid.
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Figure 2-11: Distribution of normalized reaction forces 𝐹𝑧/𝑚𝑔 on the base of the
pyramid for particles oriented such that either all contacts see uniform stiffness from
the particle, or contacts along directions parallel to the 𝑦 = 𝑥 plane are stronger.
Particles belonging to the second group are displayed with a diagonal line, and par-
ticles in upper layers are oriented identically to the base layer particles belonging to
the same 𝑦 = 𝑥+ 𝑐 vertical plane.
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Figure 2-12: (a) Schematic of the granular chain, composed of periodically repeated
four-particle unit cells and compressed between two fixed walls. The orientation 𝜓 of
the middle two particles in each unit cell is varied systematically, while that of the
two edge particles is fixed. (b) Dependence of the linearized contact stiffnesses 𝜅1,
𝜅2, 𝜅3 on the orientation 𝜓 of the middle particles.

particular, different authors have shown that by combining particles with different
geometrical or material properties, it is possible to obtain a frequency response char-
acterized by acoustic band gaps inside of which no frequencies are allowed [85, 82, 21],
thus filtering out input frequencies. Such filters are desirable for a range of purposes
ranging from acoustic filters to vibrational isolation, and the tunability of these band
gaps is key to delivering optimal performance.

The existence of acoustic band gaps requires the contact stiffnesses between the
grains to be non-uniform [89]. This is most simply achieved in diatomic chains con-
sisting of particles with alternating properties, for which a single band gap appears
[26, 103, 85]. A second band gap was shown in [21] to emerge in diatomic chains
composed of three-particle unit cells. The tunability of these band gaps requires a
change in the properties of the particles, which is typically done by altering their size,
geometry or constituent material. Clearly, this is not feasible in practice when one
desires to control the band gap frequencies in real-time.

As we have seen throughout this chapter, elastically anisotropic bodies exhibit an
orientation-dependent contact stiffness. Here, we utilize this property to construct a
monoatomic granular crystal that possesses band gaps that may be tuned by mere
rotation of its constituent particles. Specifically, consider the chain of anisotropic
zirconia particles pictured in Figure 2-12(a) and compressed between two fixed walls.
The chain consists of periodically repeated four-particle unit cells in which the orien-
tation 𝜓 of the middle two particles is varied systematically while that of the two edge
particles is kept fixed. The angle 𝜓 is defined as the orientation of the strong band of
the zirconia spheres (schematized in Figure 2-12(a) by the straight line within each
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Figure 2-13: Analytical dispersion relation of the compressed granular chain for an
infinite number of particles, in the case 𝜓/𝜋 = 0.45.

sphere) with respect to the plane orthogonal to the chain axis. The edge particles
within each unit cell are oriented such that the strong band is orthogonal to the chain
axis.

In the linear regime that we investigate, the relative displacement between any
two adjacent particles is small with respect to their static overlap 𝛿0𝑖𝑗 caused by the
compression force 𝐹0. Thus, the overlap term 𝛿

3/2
𝑖𝑗 occurring in the contact force law

(2.58) can be linearized about 𝛿0𝑖𝑗, producing a force-displacement relation that is
linear with a proportionality constant termed the linearized contact stiffness. The
latter is clearly a function of the composite plain strain modulus 𝐸̃𝑐

* and therefore
depends on the orientation of the particles. (For more details, the reader is invited
to refer to Appendix A.9.) As pictured in Figure 2-12(a), the structure of the unit
cell in our granular chain gives rise to three different linearized contact stiffnesses 𝜅1,
𝜅2, and 𝜅3, which depend on the orientation 𝜓 of the middle particles according to
Figure 2-12(b). Note that 𝜅3 is constant since it measures the stiffness between the
edge particles of two adjacent unit cells, the orientations of which are fixed. Finally,
we neglect dissipation effects, which in practice result in a small uniform shift of the
band-gap frequencies but do not change their overall topological features [89, 20].

In order to obtain analytical insight into the frequency response of our granular
crystal with four-particle unit cells, we derive in Appendix A.9 the dispersion relation
of the system for an infinite number of particles, which relates the wavenumber 𝑘 of
propagating sound waves to their frequency 𝜔. The dispersion relation is displayed in
nondimensional form for the case 𝜓/𝜋 = 0.45 in Figure 2-13, where 𝑘 is normalized
by the equilibrium length 𝑎 of each unit cell, and the corresponding 𝜔 is normalized
by the 𝜓-independent time scale 𝑡0 =

√︀
𝑚/𝜅3, with 𝑚 the mass of each sphere.

Compared with the three-particle unit cell studied in [21], we report the emergence
of an additional fourth band of propagating frequencies above the usual acoustic
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and optical bands. As a consequence, our chain of four-particle unit cells inherits
three bands of forbidden frequencies, or band gaps, in which sound waves decay
exponentially and cannot propagate along the chain. The second band-gap, however,
has negligible width for the material properties that we consider here.

We now demonstrate the tunability of these vibrational band gaps by rotation of
the middle particles in each unit cell. First, we verify the agreement between the
analytical band frequencies and the behavior of a finite-length chain composed of
102 particles, which we simulate in our anisotropic DEM framework. A small initial
velocity is assigned to the first sphere in the chain, reproducing the effect of an impact
excitation, and the force felt by the last sphere is measured as a function of time.
Figure 2-14(a) shows the resulting power spectral density for the case 𝜓/𝜋 = 0.45,
with the shaded regions corresponding to the four bands of propagating frequencies
predicted by the dispersion relation pictured in Figure 2-13. We observe excellent
agreement between the theoretical predictions and numerical results, with vanishing
energy of the force spectrum in the band gap regions. Next, we investigate the
tunability of these band gaps by repeating the same numerical experiment for a range
of orientations 𝜓 of the middle particles in each unit cell. The resulting spectrum is
displayed in Figure 2-14(b) as a filled contour plot where each column corresponds
to a particular value of 𝜓, and demonstrates the adjustability of the band gaps by
simple rotation of some of the particles. The white lines are the cut-off frequencies
predicted by the dispersion relation and agree very well with the numerics. We note
that the band gaps disappear as 𝜓 goes to zero, corresponding to the limiting case
of a uniform chain. Finally, it is worth keeping in mind that the dimensional band
gap frequencies are a function of the precompression force through the power −1/6
dependence of the time scale 𝑡0 on 𝐹0, inherited from the dependence of 𝜅3 on 𝐹0

(see equation (A.8) in Appendix A.9). As a consequence, the precompression force
provides an additional control parameter to tune the band gaps, besides the angle 𝜓.

2.7 Conclusions and perspectives

In this chapter, we have introduced a method to resolve the normal force arising be-
tween two elastically anisotropic contacting bodies of arbitrary geometry with smooth
and frictionless surfaces, with the aim of obtaining a contact law that can be easily
implemented into a DEM code. We first presented a numerical procedure for the
exact solution of the full linear elasticity equations, resulting in an exact anisotropic
contact force law. The computational cost of this exact contact law precluded its
direct implementation into a DEM code, and its dependence on four parameters at a
time prevented the use of a look-up table of precomputed values.

By shortening the form of the full Green’s function used in the exact solution, we
then derived two simplifications to the exact contact law. Both simplifications take the
same form as the Hertzian contact law for isotropic bodies, save for the dependence
of the contact (or plane strain) modulus associated with each body on the relative
orientation of the contact normal direction and on the full set of elastic constants of the
body. The precise form of the contact modulus differs between the two simplifications.
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Figure 2-14: Frequency response of the compressed granular chain. (a) Power spectral
density of the force observed at the last grain for 𝜓/𝜋 = 0.45. The shaded regions
correspond to the four bands of propagating frequencies predicted by the dispersion
relation pictured in Figure 2-13. (b) Power spectral density of the force observed at
the last grain, plotted in log scale for a range of values of 𝜓/𝜋. The white lines are
the cut-off frequencies predicted by the analytical dispersion relation for an infinitely
long chain.
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In both cases, the parameter dependence of the computationally expensive part was
reduced from four in the exact contact law down to two, a significant reduction that
enabled the implementation of these simplified laws into a DEM code through the
use of two-dimensional look-up tables of precomputed values of the contact modulus
over all possible contact directions. Remarkably, the first of the two simplifications,
which we called the truncated contact law, exhibited excellent accuracy compared to
its exact counterpart, with the relative error on the predicted force remaining near
or below 1% for a wide range of materials and surface geometries.

Next, we presented the implementation of the truncated contact law into a DEM
code, which we leveraged to showcase two application examples in which elastic
anisotropy of the particles induced changes in the macroscopic behavior of the sys-
tem. The first example we considered was that of a static square-based pyramid of
contacting single-crystal zirconia spheres. By changing the orientation of the par-
ticles, we demonstrated that the pressure at the base of the pyramid is affected by
the anisotropy of the contact forces. We then studied the transmission of sound
waves in a compressed chain of adjacent single-crystal zirconia spheres, known as a
‘monoatomic granular crystal’. We leveraged the orientation-dependence of the con-
tact stiffnesses between adjacent spheres to achieve frequency filtering characteristics
that normally belong to the realm of diatomic granular crystals (assembled from two
different constituent particles). More precisely, we revealed through theory and nu-
merical computations the emergence of band gaps in which sound frequencies are
unable to propagate down the chain. These band gaps are tunable by mere rotation
of the particles, which offers an attractive prospect for adoption of such anisotropic
granular crystals in scenarios that demand real-time control.

The present work opens the door to two distinct avenues of research. The first
concerns the extension of our anisotropic contact law to frictional bodies, which can
support tangential surface tractions in contrast to the frictionless bodies that we have
treated. In general, the tangential force 𝐹 𝑡

𝑖𝑗 is related to the normal force 𝐹 𝑛
𝑖𝑗 through

Coulomb’s law, 𝐹 𝑡
𝑖𝑗 ≤ 𝜇𝐹 𝑛

𝑖𝑗, with 𝜇 a friction coefficient [123]. In order to determine
the magnitude of 𝐹 𝑡

𝑖𝑗 in the static friction case 𝐹 𝑡
𝑖𝑗 < 𝜇𝐹 𝑛

𝑖𝑗 as well as the onset of the
dynamic friction case 𝐹 𝑡

𝑖𝑗 = 𝜇𝐹 𝑛
𝑖𝑗, the tangential contact law is typically regularized

through a virtual tangential spring in a fashion that was pioneered by [41]. While
such an approach can be readily combined with our anisotropic contact law, we men-
tion that several authors [182, 187, 50] have developed more rigorous extensions of
the tangential contact law for isotropic bodies, based on the early work of [135]. In
these studies, the tangential spring becomes nonlinear and its stiffness is related to
the elastic constants of the material, much in the same way that Hertzian contact
theory provides a normal contact force law that is connected to the material param-
eters. Unlike the Hertzian normal force law, these tangential force relations depend
on normal force history of the contact, which may have complex extensions in the
anisotropic case. Although highly non-trivial, a generalization of the aforementioned
studies to the elastically anisotropic case would be very valuable.

The second avenue of research enabled by the anisotropic contact law concerns
the effect of elastic anisotropy on the behavior of granular systems, both at the mi-
croscopic and macroscopic levels. Granular materials sustain external loads through
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force chains, which are, in turn, responsible for the mechanical response of the sam-
ple [198]. Considerable efforts have therefore been devoted to their characterization
from both experimental [125] and theoretical [170] perspectives. Recently, Hurley
et al. [87] measured the distribution of contact forces in an assembly of elastically
anisotropic quartz grains undergoing a compression cycle, and discovered a surpris-
ing inverse relationship between macroscopic load and heterogeneity of the contact
forces, despite the clear formation of force chains. Reproducing their experiment in
a DEM simulation using our anisotropic contact law could possibly shed light on the
potential role of anisotropy in explaining their observation. Another potential area
of application outside the realm of granular materials is the mechanical behavior of
rock, which can be modeled in the DEM by a heterogeneous material comprised of
cemented grains whose contact force law includes both grain-based and cement-based
contributions [147, 91, 33]. Although the elastic component of the grain-based por-
tion of the normal contact law is usually considered isotropic, crystalline rocks such as
granite possess a microstructure consisting of individual crystals, and would therefore
benefit from the incorporation of our elastically anisotropic normal force law.
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Chapter 3

Interplay between hysteresis and
nonlocality during onset and arrest of
flow in granular materials

3.1 Introduction
Granular materials are well-known for displaying both solid-like and fluid-like be-
havior depending on their internal stress state [64, 3, 175]. Flow can be induced
or arrested through external loading variations, which has direct implications for a
wide range of catastrophic geophysical phenomena such as landslides, avalanches and
earthquakes [45, 122, 162]. The transition between solid-like and liquid-like behavior
in frictional granular media is characterized by several unique macroscopic features,
which have been uncovered through simple experiments in model systems [133]. Fig-
ure 3-1 showcases typical results from such experiments, where flow is triggered then
arrested by ramping up and down the applied stress in (a) an annular shear cell [42],
(b) a layer of grains on an inclined plane [149], and (c) a partially-filled rotating drum
[38]. The features revealed in these experiments are universal to most geometries and
can be outlined as follows:

(F1) the level of stress required to trigger flow is larger than that below which flow
stops, leading to a hysteresis of the flow velocity as the applied stress is ramped
up and down;

(F2) the onset of flow is accompanied by a finite jump in the velocity of the system;
(F3) the critical stresses for onset and arrest of flow depend on the size1 of the system,

with smaller system sizes displaying increased strengthening.

Each feature is directly relevant to geophysical events such as landslides and avalanches,
since (F1) controls the mobilized mass that flows down, (F2) explains why they are so
spontaneous and catastrophic, and (F3) determines the circumstances under which
they might occur. The objective of the present work is to formulate a continuum

1By system size, we refer to the relevant length scale controlling the width of shear regions in the
flow field. Depending on the geometry, this length scale can either be geometric or stress-induced.
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Figure 3-1: Previous experimental investigations of the flow threshold in various
geometries. (a) Annular shear cell [42]: ratio of shear stress to pressure at the inner
wall, 𝜇w, versus dimensionless mean strain rate, 𝛾̇

√︀
𝑑/𝑔, for increasing and decreasing

torque applied to the inner cylinder. (b) Inclined plane [149]: angles of inclination
at flow onset and arrest, 𝜃start and 𝜃stop, versus dimensionless layer thickness, 𝐻/𝑑.
(c) Rotating drum [38]: angles of inclination at flow onset and arrest, 𝜃start and 𝜃stop,
versus dimensionless drum width, 𝑊/𝑑.

model that is able to describe quantitatively the onset and arrest of flow in fric-
tional granular materials in various two-dimensional geometries, and analyze how its
constituent ingredients play a role in reproducing each of these three features, with
particular focus on geometries displaying inhomogeneous flow fields.

It is now well accepted that dense and homogeneous flows of grains follow the 𝜇(𝐼)
constitutive relationship, which states that the stress ratio 𝜇 and the inertial number
𝐼 are related through a one-to-one function 𝜇 = 𝜇loc(𝐼) [133, 44]. In two dimensions,
𝜇 = 𝜏/𝑃 is the ratio of shear stress 𝜏 to pressure 𝑃 , and 𝐼 = 𝛾̇

√︀
𝑚/𝑃 is the

strain rate 𝛾̇ nondimensionalized with a particle-wise rearrangement time scale formed
by the mean grain mass 𝑚 and confining pressure 𝑃 . While 𝜇loc(𝐼) has long been
believed to be a monotonic function of 𝐼, several recent experiments [51, 108, 144, 160]
and simulations [194, 47] have revealed the existence at very low 𝐼 of a strain-rate
weakening regime, wherein the stress ratio 𝜇 decreases with increasing 𝐼. One possible
non-monotonic functional form is

𝜇loc(𝐼) = 𝜇𝑠 +
𝜇2 − 𝜇𝑠

(𝜇2 − 𝜇𝑠)/(𝑏𝐼 + 𝜒(𝐼;𝜅)) + 1
, (3.1)

where 𝜇𝑠, 𝜇2, and 𝑏 are dimensionless rheological constants, 𝜅 = 𝑘𝑛/𝑃 a dimensionless
stiffness with 𝑘𝑛 the grain stiffness, and 𝜒 is a decreasing function of 𝐼 that accounts
for the strain-rate weakening regime. The microscopic origin of the strain-rate weak-
ening regime has recently come under debate, with some studies arguing that it is
caused by inertia of the grains [151, 39, 47], while others observing velocity-weakening
behavior in over-damped, inertia-less particulate media [144]. The present work is
not concerned with this particular issue, and we simply leave open the possibility
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for the amount of strain-rate weakening to depend on the grain stiffness through the
dimensionless parameter 𝜅 entering 𝜒. In any case, the non-monotonicity of (3.1)
necessarily implies that features (F1) and (F2) above are realized in homogeneous
flows: the level of stress required to trigger flow is higher than that at which flow
stops, and flow onset is characterized by a velocity jump[88, 134].

However, the 𝜇(𝐼) constitutive relationship breaks down in inhomogeneous flows,
in the sense that 𝜇 is no longer a one-to-one function of 𝐼 [106, 179]. Due to the
finite size of the grains, velocity fluctuations generated at an arbitrary location will
spread over some grain-size-dependent correlation length and change the rheology of
the neighboring material [132, 69, 155, 67], resulting in wider shear regions than are
predicted by the 𝜇(𝐼) rheology, especially in the quasi-static limit [133]. Such spatial
cooperativity at the scale of individual grains also explains why thinner layers on an
inclined plane start flowing at higher inclination angles than thicker layers, despite
the stress ratio 𝜇 being independent of the layer height [133]. Nonlocal rheological
models, which incorporate an intrinsic length scale, have been shown to capture
several of these phenomena [96]. Here, we focus on the nonlocal granular fluidity
(NGF) model [98, 79], which relates the stress ratio and strain rate through a granular
fluidity field 𝑔 = 𝛾̇/𝜇 that is governed by a reaction-diffusion partial differential
equation (PDE). Our choice of the NGF model stems from its ability to reproduce
the system-size dependence of the flow threshold in various geometries [97, 118],
which partially explains feature (F3) above. But the current formulation of the NGF
model reduces to the monotonic form of the 𝜇loc(𝐼) relationship in homogeneous flow
conditions, meaning that the model does not have a built-in mechanism to account
for the remaining features (F1) and (F2).

In this chapter, we modify the NGF model so that it instead reduces to the non-
monotonic form of the 𝜇loc(𝐼) relationship, equation (3.1), in homogeneous flows. By
computing time-dependent model predictions in a stress-driven planar shear config-
uration under gravity, we evaluate the specific ways in which nonlocality and non-
monotonicity contribute to each of the three features (F1–F3) of the flow-arrest tran-
sition in inhomogeneous flows. We show that inclusion of, and interplay between both
ingredients is necessary to reproduce all three features, in ways sometimes surprising:
the planar shear with gravity configuration displays a finite velocity jump during on-
set of flow only when both non-monotonicity and nonlocality are present. In a second
part, we assess the capability of the modified NGF model to predict quantitatively
the behavior of dense granular materials both around the flow-arrest transition as well
as in the flowing regime. To this effect, we calibrate the model using discrete element
method (DEM) simulations in the simple shear geometry shown in Figure 3-2(a), and
we compare predictions of the calibrated model against stress-driven DEM simula-
tions in the other geometries displayed in Figures 3-2(b) and 3-2(c), namely plane
shear under gravity and inclined plane. These two configurations are both subject to
nonlocal effects as a result of the spatial inhomogeneity of their flow fields, but they
critically differ in an important way – in plane shear with gravity, flow inhomogeneity
is mostly a consequence of the spatial dependence of the stress ratio 𝜇, while it is
mainly caused by the rough base in inclined plane flow [118]. We observe that the
accuracy of the NGF model depends on which of these two mechanisms is at play,
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Figure 3-2: Geometries considered in this study: (a) plane simple shear, (b) plane
shear under gravity, and (c) inclined plane flows. Particles that are free to flow are
colored according to their relative velocity magnitude, and fixed wall particles are
shown in brown.

with predictions being accurate in the case of plane shear with gravity but less so
for inclined plane, which we ultimately attribute to the role played by the boundary
conditions.

The remainder of this chapter is organized as follows. In Section 3.2, we present
a modified NGF model that incorporates a non-monotonic local rheology, and we
evaluate the combined effects of nonlocality and non-monotonicity on the features
of the flow-arrest transition. We then compare in Section 3 predictions from the
NGF model with DEM simulation results in stress-driven planar shear with gravity
and inclined plane configurations. We close the chapter with concluding remarks in
Section 4.

3.2 Nonlocal granular rheology

In this section, we discuss our nonlocal continuum modelling approach based on the
nonlocal granular fluidity (NGF) model. We begin by presenting the NGF model in its
current form, which does not capture the hysteresis of the flow-arrest transition. We
then describe the incorporation of bistable behavior into the NGF model. Finally, we
evaluate the combined effects of bistability and nonlocality on the qualitative behavior
of the flow-arrest transition.

3.2.1 Nonlocal model without hysteresis

Extending earlier fluidity-based nonlocal models for concentrated emulsions [145, 69,
19] to granular materials, the NGF model introduces a positive granular fluidity field
𝑔 that relates the strain rate 𝛾̇ with the stress ratio 𝜇 through the following two
constitutive equations:

𝛾̇ = 𝑔𝜇, (3.2a)

𝑡0𝑔̇ = 𝐴2𝑑2∇2𝑔 − (𝜇2 − 𝜇s)(𝜇s − 𝜇)
𝜇2 − 𝜇

𝑔 − 𝑏
√︂
𝑚

𝑃
𝜇𝑔2, (3.2b)
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where 𝑡0 is a constant timescale associated with the dynamics of 𝑔, and the nonlocal
amplitude 𝐴 > 0 is a dimensionless scalar parameter quantifying the strength of
spatial cooperativity in the flow. As a side note, we mention that recent studies
[198, 17, 101] have endowed the granular fluidity field with a clear physical meaning
– 𝑔 is a purely kinematic quantity related to the velocity fluctuations 𝛿𝑣, grain size 𝑑
and solid fraction 𝜑 through 𝑔 = (𝛿𝑣/𝑑)𝐹 (𝜑), where 𝐹 depends solely on 𝜑.

The flow rule (3.2a) states that the strain rate 𝛾̇ is directly proportional to the
fluidity 𝑔. Therefore, there can only be flow provided 𝑔 is nonzero, and the nonlo-
cal granular rheology is driven by the dynamics of equation (3.2b) for the fluidity.
The latter takes the form of a reaction-diffusion equation, and its behavior can be
understood as follows.

In the absence of boundary effects or nonuniformities in the stress ratio 𝜇, the 𝑔
field becomes spatially uniform and (3.2b) reduces to the simple dynamical system

𝑡0𝑔̇ = −
(𝜇2 − 𝜇s)(𝜇s − 𝜇)

𝜇2 − 𝜇
𝑔 − 𝑏

√︂
𝑚

𝑃
𝜇𝑔2 ≡ 𝐹 (𝑔;𝜇, 𝑃 )𝑔, (3.3)

where 𝐹 (𝑔;𝜇, 𝑃 ) is a simple linear function of 𝑔. The steady behavior of the system
is then governed by the steady-state solutions 𝑔loc of (3.3), which we illustrate by the
thick lines in Figure 3-3 using arbitrary values2 for 𝜇s = 0.25, 𝜇2, 𝑏, and 𝑃 . When
𝜇 ≤ 𝜇s, the function 𝐹 (𝑔;𝜇, 𝑃 ) < 0 for all 𝑔 ≥ 0 as shown in Figure 3-3(a), hence
(3.3) only admits the stable, arrested steady state 𝑔loc = 0, represented by the zero
green branch in Figure 3-3(b). When 𝜇 > 𝜇s, the linear function 𝐹 (𝑔;𝜇, 𝑃 ) acquires
one positive root and 𝐹 (𝑔 = 0;𝜇, 𝑃 ) > 0, which has two consequences. First, the
arrested steady state becomes unstable, shown by the red branch in Figure 3-3(b).
Second, a stable, flowing steady-state solution 𝑔loc(𝜇) > 0 emerges, represented by
the positive green branch in Figure 3-3(b). Using the flow rule (3.2a) together with
the definition of the inertial number 𝐼, the flowing and arrested stable solutions can
be inverted and expressed as

𝜇loc(𝐼) = 𝜇𝑠 +
𝜇2 − 𝜇𝑠

(𝜇2 − 𝜇𝑠)/𝑏𝐼 + 1
, (3.4)

for 𝐼 > 0, and 𝜇loc ≤ 𝜇s otherwise. This relationship is pictured in green in Figure
3-3(c), together with the unstable arrested solution above 𝜇𝑠 in red. Therefore, the
NGF model reduces to the local 𝜇(𝐼) rheology in steady and homogeneous flows such
as plane shear without gravity.

In the presence of boundary effects or nonuniformities in the stress ratio 𝜇, how-
ever, the diffusion term in (3.2b) spreads the granular fluidity over a cooperativity
length scale proportional to the grain size 𝑑, resulting in a nonlocal flow rule (3.2a).
Regions where 𝜇 > 𝜇s act as stress-driven sources of granular fluidity, which is then
diffused towards lower-stress regions or boundaries. Such nonlocal, cooperative effects

2We note that the qualitative behavior of the model is independent of its specific parameter
values. The latter are therefore chosen to be reasonably close to the calibrated values obtained later
in Section 3.3.1, while displaying the hysteretic behavior of the model with enough clarity in Figures
3-3 and 3-4.
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Figure 3-3: Steady-state solutions of the local limit of the NGF model for homo-
geneous flows, without hysteresis (thick lines) and with hysteresis (thin lines). (a)
Behavior of 𝐹 (𝑔;𝜇, 𝑃 ) and 𝐹ℎ(𝑔;𝜇, 𝑃 ) in (3.3) and (3.7), showing the existence of
zero, one or two roots for different stress ratios 𝜇. (b) Unstable (red) and stable
(green) steady-state local solutions 𝑔loc as a function of 𝜇. (c) Resultant local rhe-
ology 𝜇loc(𝐼), with both the unstable (red) and stable (green) branches shown. The
model with hysteresis displays a strain-rate weakening regime absent in the model
without hysteresis.

have manifold consequences, and the NGF model explains many phenomena evad-
ing local rheological models. For instance, the model recovers the decaying motion
of grains in regions where 𝜇 < 𝜇s [79, 117, 179] as well as the so-called secondary
rheology, wherein flow anywhere in a granular media removes the yield stress else-
where [80, 115]. Conversely, the model is able to explain the strengthening of the
flow threshold with decreasing system size [97, 118], which is caused by boundaries
or low-stress regions preventing flow in other regions where 𝜇 > 𝜇s unless 𝜇 is large
enough. This last property relates to feature (F3) mentioned in the introduction.
Yet, the current form of the NGF model is unable to reproduce features (F1) and
(F2) due to the monotonicity of its limiting local rheology (3.4).

3.2.2 Nonlocal model with hysteresis

We now discuss the inclusion of non-monotonicity of the local rheological response
into the NGF model. Taking inspiration from previous hysteretic nonlocal models
[5, 114], we add a new term to the right-hand side of the fluidity equation (3.2b).
The constitutive equations (3.2) become

𝛾̇ = 𝑔𝜇, (3.5a)

𝑡0𝑔̇ = 𝐴2𝑑2∇2𝑔 − (𝜇2 − 𝜇s)(𝜇s − 𝜇)
𝜇2 − 𝜇

𝑔 − 𝑏
√︂
𝑚

𝑃
𝜇𝑔2

− 𝜒(𝑔;𝜇, 𝑃 )𝑔, (3.5b)
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where the new term 𝜒(𝑔;𝜇, 𝑃 ) takes the form

𝜒(𝑔;𝜇, 𝑃 ) = 𝑎

[︂
1− tanh

(︂
𝑐

√︂
𝑚

𝑃
𝜇𝑔𝜅𝑛

)︂]︂
, (3.6)

with 𝑎, 𝑐, 𝑛 constant scalar parameters, and 𝜅 = 𝑘𝑛/𝑃 the nondimensional particle
stiffness. Here, we choose to express the new term 𝜒 with a tanh function so that
it vanishes for large 𝑔, which restricts its contribution to the behavior of the system
near the jamming transition.

As before, we begin by evaluating the dynamics of the 𝑔 field for the case of
homogeneous flows, in which 𝑔 is spatially uniform and (3.5b) reduces to the simple
dynamical system

𝑡0𝑔̇ = −
(𝜇2 − 𝜇s)(𝜇s − 𝜇)

𝜇2 − 𝜇
𝑔 − 𝑏

√︂
𝑚

𝑃
𝜇𝑔2 − 𝜒(𝑔;𝜇, 𝑃 )𝑔

≡ 𝐹ℎ(𝑔;𝜇, 𝑃 )𝑔, (3.7)

where 𝐹ℎ(𝑔;𝜇, 𝑃 ) is a function of 𝑔. Contrary to the previous case without hysteresis,
the presence of the 𝜒 term induces a decrease in 𝐹ℎ(𝑔;𝜇, 𝑃 ) when 𝑔 approaches zero,
as illustrated by the thin lines in Figure 3-3(a) using the same parameter values as
before and new arbitrary values for the parameters of 𝜒. As a result, there exists a
range of stress ratios 𝜇* < 𝜇 < 𝜇*

s in which the function 𝐹ℎ(𝑔;𝜇, 𝑃 ) inherits a second
positive root, so that (3.7) admits two flowing steady-state solutions 𝑔loc(𝜇) > 0, one
stable and one unstable, shown by the thin lines in Figure 3-3(b). These two flowing
solution branches merge at 𝜇 = 𝜇*. The stable branch reverts for 𝜇 > 𝜇*

s to the same
flowing solution as the NGF model without hysteresis, while the unstable branch
merges at 𝜇 = 𝜇*

s with the arrested steady-state solution 𝑔loc = 0, which remains
stable until 𝜇 exceeds 𝜇*

s . Collecting the pieces, the steady-state solutions of (3.7)
can be expressed in terms of the inertial number 𝐼 as

𝜇loc(𝐼) = 𝜇𝑠 +
𝜇2 − 𝜇𝑠

(𝜇2 − 𝜇𝑠)/(𝑏𝐼 + 𝜒(𝐼;𝜅)) + 1
, (3.8)

for 𝐼 > 0, and 𝜇loc ≤ 𝜇*
s otherwise. The function 𝜒 is now formulated in terms of 𝐼

and 𝜅 as
𝜒(𝐼;𝜅) = 𝑎 [1− tanh (𝑐𝐼𝜅𝑛)] , (3.9)

and the static yield stress ratio 𝜇*
s is obtained as

𝜇*
s = 𝜇loc(𝐼 → 0) =

𝜇s(𝜇2 − 𝜇s) + 𝑎𝜇2

𝜇2 − 𝜇s + 𝑎
. (3.10)

Thus, the modified NGF model reduces to the non-monotonic 𝜇(𝐼) rheology (3.1)
in steady homogeneous flows, and the corresponding stable and unstable branches
are displayed by the thin green and red lines in Figure 3-3(c). In the quasi-static,
low-𝐼 regime, the presence of 𝜒 induces a weakening relationship between 𝜇 and
𝐼. For higher values of 𝐼, the vanishing of 𝜒 leads to a strain-rate strengthening
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regime in which the non-monotonic local rheology (3.8) converges to its monotonic
counterpart (3.4). The crossover between the two regimes occurs at 𝑑𝜇loc/𝑑𝐼 = 0,
which corresponds to

𝐼* =
1

𝑐𝜅𝑛
sech−1

√︂
𝑏

𝑎𝑐𝜅𝑛
and 𝜇* = 𝜇loc(𝐼

*). (3.11)

In agreement with force balance arguments [88], the strain-rate weakening regime
is unstable while the strain-rate strengthening regime is stable. Since the latter exists
for 𝜇 above 𝜇* and the arrested solution is stable below 𝜇*

s , there exist two stable
steady-state solutions – one flowing and one arrested – in the range 𝜇* < 𝜇 < 𝜇*

s .
In the absence of flow gradients, this bistable behavior generates hysteresis when the
stress ratio 𝜇 is ramped up and down: flow is triggered at 𝜇*

s but stops at a lower
𝜇*. In addition, the onset of flow is accompanied by a finite jump in the velocity
of the system, as the inertial number jumps from the arrested solution to the stable
flowing solution. Hence features (F1) and (F2) are accounted for, but it is unclear
whether this would hold for inhomogeneous flow, in the presence of nonlocal diffusion
imparted by boundaries or nonuniformities in the stress ratio.

3.2.3 Interplay between hysteresis and nonlocality

We now investigate qualitatively the combined effects of non-monotonicity and non-
local diffusion on the characteristics of the flow-arrest transition in the presence of
a spatially-varying stress ratio. To do so, we calculate quasi-steady, stress-driven
predictions of the NGF model with hysteresis in the plane shear under gravity config-
uration pictured in Figure 3-2(b), where flow occurs along the 𝑥-direction and gravity
acts orthogonally along the 𝑧-direction. A shear stress 𝜏w and pressure 𝑃w are ap-
plied at the top wall, imparting under quasi-steady conditions a constant shear stress
𝜏(𝑧) = 𝜏w and a nonuniform pressure 𝑃 (𝑧) = 𝑃w + 𝜑𝜌s𝐺𝑧, where 𝜌s is the grain den-
sity, 𝜑 the mean area packing fraction and 𝐺 the acceleration of gravity. The ratio of
shear stress to pressure is thus given by

𝜇(𝑧) =
𝜏(𝑧)

𝑃 (𝑧)
=

𝜇w

1 + 𝑧/ℓ
, (3.12)

where 𝜇w = 𝜏w/𝑃w is the applied stress ratio at the top wall, and ℓ = 𝑃w/𝜑𝜌s𝐺 is
a loading length scale measuring the relative importance of the pressure imparted
by the top wall versus that due to the weight of the grains. Critically, ℓ is inversely
proportional with the degree of nonuniformity of the stress ratio (3.12) and, thus,
the strength of nonlocal effects in this geometry [150]. Results from previous DEM
simulations [118] as well as our own (see Section 3.3.2) have shown that these nonlocal
effects induce the same flow-arrest transition features (F1–F3) that are observed in
other geometries.

We compute quasi-steady, time-dependent solutions of the NGF model with hys-
teresis using the same arbitrary parameters as in the previous section. Because the
dynamics are uniform in the streamwise 𝑥-direction, the fluidity equation (3.5b) re-
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duces to a one-dimensional PDE for 𝑔(𝑧, 𝑡), which is discretized following the pro-
cedure presented in Appendix B.2. From there, the strain rate 𝛾̇(𝑧, 𝑡) and therefore
the velocity profile 𝑣(𝑧, 𝑡) can be computed using the flow rule (3.5a). The fluidity
equation is driven by the stress ratio (3.12), for which we choose an arbitrary value
ℓ = 100𝑑 small enough that the results are independent of the height of the domain3.
Following previous work [118], the influence of boundaries is minimized by prescribing
homogeneous Neumann boundary condition for 𝑔 at both walls. Simulations begin in
a flowing state at 𝜇w = 0.35, then 𝜇w is progressively decreased to 0.25 before being
ramped back up to 0.35 in order to induce flow arrest and restart. We ensure that
the ramp rate is slow enough that it does not affect the results. Most importantly,
we perform these simulations for various values of the scalar parameter 𝐴 prescribing
the strength of nonlocal effects, so that we can pinpoint the specific contributions of
nonlocal diffusion and non-monotonicity of the limiting local rheology (3.8) to each
of the three features (F1–F3).

Figures 3-4(a–c) display the time-dependent dimensionless velocity at the top
wall, 𝑣w(𝑡), versus the applied stress ratio, 𝜇w(𝑡), for (a) 𝐴 = 0, (b) 𝐴 = 0.03, and (c)
𝐴 = 0.9. Here, the dimensionless velocity is defined as 𝑣w(𝑡) = 𝑣(𝑧 = 0, 𝑡)/ℓ

√︀
𝑚/𝑃𝑤.

The down stress ramp is shown in blue while the up stress ramp is shown in black, as
depicted by the arrows. Further, Figures 3-4(d–f) display both 𝑔 fields corresponding
to the two states indicated by the lone circle and cross on the down and up ramps
at 𝜇w = 0.33. Correspondingly, these fields are shown with circle or cross markers
depending on the stress ramp that they belong to, and they are superimposed to
the stable (green) and unstable (red) steady-state solutions 𝑔loc of the local fluidity
equation (3.7) under the same stress ratio and pressure fields. A movie version of
Figure 3-4, which follows the state of the system as the applied stress ratio 𝜇w(𝑡) is
progressively decreased and increased, is also included in the electronic supplementary
information.

We begin with the case 𝐴 = 0, for which nonlocal effects are turned off and hence
the fluidity equation (3.5b) is identical with its local limit (3.7). As shown in Figure
3-4(a), the non-monotonicity of the limiting local rheology (3.8) leads to different 𝜇w

versus 𝑣w branches in Figure 3-4(a) when the stress is ramped down or up. Indeed,
the bistable behavior of (3.7) for 𝜇* < 𝜇 < 𝜇*

s implies that there are two stable
steady-state solutions 𝑔loc – one flowing and one arrested – within a range of heights,
as shown by the green branches in Figure 3-4(d). When the applied stress is ramped
down, the bistable region moves towards smaller (shallower) values of 𝑧, that were
previously flowing; thus, the time-dependent solution for 𝑔 will remain on the flowing
branch. Conversely, when the applied stress is ramped up, the bistable region moves
towards larger (deeper) values of 𝑧, that were previously arrested; thus, the time-
dependent solution will remain on the arrested branch. This explains why the down
ramp flows at a higher wall velocity 𝑣w than the up ramp in Figure 3-4(a), which also
causes flow to arrest at a lower wall stress ratio, 𝜇*, than that at which it restarts, 𝜇*

s .

3Previous DEM simulations[118] have shown that the vertical extent of the shear region below
the top wall scales with ℓ. For small enough ℓ, the bottom region is thus quasi-static, and the results
are independent of domain height.
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Figure 3-4: Qualitative behavior of the NGF model with hysteresis in stress-driven
plane shear with gravity. (a,b,c) Time-dependent dimensionless velocity at the top
wall, 𝑣w(𝑡), versus the applied stress ratio at the wall, 𝜇w(𝑡). (d,e,f) Fluidity field
𝑔(𝑧, 𝑡) corresponding to the state indicated in (a,b,c) by the lone circle (cross) on
the down (up) branch at 𝜇w = 0.33. The field belonging to the down (up) branch
is shown with circle (cross) markers and is superimposed to the stable (green) and
unstable (red) steady-state solutions 𝑔loc of the local fluidity equation (3.7) under the
stress ratio field (3.12). A movie version of this figure, which follows the state of
the system as 𝜇w(𝑡) is progressively decreased and increased, is also included in the
electronic supplementary information.
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Further, the onset of flow during the up ramp is characterized by a smooth increase
in the top wall velocity since the thickness of the flowing layer beneath the top wall
smoothly increases from zero (see movie). In conclusion, the non-monotonicity of
the local rheology suffices to endow the flow-arrest transition with feature (F1), but
features (F2) and (F3) are absent – there is no finite velocity jump at flow onset, and
the starting and stopping stresses are identical with the local rheology predictions in
Figure 3-3(c).

We then turn to the case 𝐴 = 0.03, corresponding to a tiny amount of nonlocal
effects. Figure 3-4(b) suggests that in this situation, the main role of the nonlocal
diffusion term in (3.5b) is to merge the flowing section of the up stress ramp with that
of the down stress ramp, which is almost unchanged from the case 𝐴 = 0. In other
words, there is only one possible flowing solution for every value of 𝜇w, and Figure
3-4(e) shows that in the bistable range of heights, this unique solution follows the
flowing local solution 𝑔loc and not the arrested one. This is a direct consequence of
the regularizing effect of the diffusion term, which acts to minimize discontinuities in
the fluidity profile. A crucial side effect is that a finite velocity jump emerges at flow
onset, since the entire bistable region beneath the top wall suddenly jumps from the
arrested to the flowing local solution (see movie). The interplay between nonlocality
and non-monotonicity of the local rheology is therefore critical in achieving feature
(F2), with (F3) the only one that remains unaccounted for.

Finally, we investigate the case 𝐴 = 0.9, corresponding to the real calibrated
value that we use later. Figure 3-4(b) shows that similar to the case 𝐴 = 0.03, there
is only one possible flowing solution for every value of 𝜇w. However, the increased
strength of nonlocal diffusion leads to a different 𝜇w versus 𝑣w relationship than before,
with much higher wall stress ratios at flow arrest and onset. This is caused by the
diffusion term spreading fluidity towards the 𝜇 < 𝜇* region where the local solution
is arrested, as revealed in Figure 3-4(f). Thus, when 𝜇w is hardly higher than the
stopping and starting stress ratios observed in the case 𝐴 = 0.03, the 𝜇 < 𝜇* region
acts as a fluidity sink that prevents the overall nonlocal solution from flowing. The
resulting strengthening of the wall stress ratio at flow onset and arrest is dependent
on the degree of nonuniformity of the stress ratio (3.12) controlled by the loading
length scale ℓ, and increases with decreasing ℓ. As a result, nonlocal diffusion induces
strengthening of the threshold for flow onset and arrest with reducing system size,
which generalizes a similar conclusion from previous studies [97, 117] that only looked
at the stopping stress.

To summarize, non-monotonicity and nonlocality are seen to contribute in different
ways to the features (F1–F3) of the flow arrest transition in the case of plane shear
with gravity:

(F1) hysteresis of the critical stresses for flow onset and arrest is achieved through
non-monotonicity of the local rheology;

(F2) the finite velocity jump at flow onset requires an interplay between non-monotonicity
and nonlocal diffusion;

(F3) increased strengthening at smaller system sizes is caused by nonlocal diffusion.
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Clearly, all three features are simultaneously achievable only when both non-monotonicity
and nonlocality are included in the model. Even though these results have been ob-
tained in a plane shear under gravity configuration, they should hold in other geome-
tries that display a similar spatially-varying stress ratio profile such as annular shear
between concentric cylinders, since the mechanisms at play are similar [150, 118].
Finally, the conclusions that we have reached should apply to other nonlocal rheolog-
ical models, including in particular those that treat the inertial number 𝐼 as an order
parameter in place of 𝑔 [24, 114].

3.3 Comparisons with DEM simulations

Now that we have established that the NGF model with hysteresis is able to repro-
duce qualitatively the various features of the flow-arrest transition, the next step is
to compare quantitatively model predictions with discrete element method (DEM)
simulations in a variety of geometries. To do so, we first calibrate the rheological
parameters of the model using DEM simulations of homogeneous, simple plane shear.
The calibrated model is then compared with DEM simulations in plane shear under
gravity and inclined plane geometries.

We first describe the general setup of our DEM simulations, which we perform in
the open-source software LAMMPS [146]. We simulate 2D disks with mean diameter
𝑑 = 0.0008m and aerial density 𝜌s = 1.3 kg/m2, corresponding to a characteristic
grain mass 𝑚 = 𝜌s𝜋𝑑

2/4. The disk diameters are uniformly distributed within ±20%
of 𝑑 in order to prevent crystallisation. Following seminal previous work [44], we
use the standard spring-dashpot model with Coulomb friction for the contact force
between overlapping particles [41]. More specifically, the normal force is given by
𝐹𝑛 = 𝑘𝑛𝛿𝑛 + 𝑔𝑛𝛿̇𝑛 where 𝛿𝑛 ≥ 0 is the normal contact overlap, 𝑘𝑛 the normal stiffness
and 𝑔𝑛 the damping coefficient, which can be expressed in terms of the coefficient
of restitution 𝑒 for a binary collision as 𝑔𝑛 = −(𝑚𝑘𝑛)1/2(2 ln 𝑒)/(2(𝜋2 + ln2 𝑒))1/2.
The tangential force is given by 𝐹𝑡 = 𝑘𝑡𝛿𝑡 where 𝛿𝑡 is the accumulated tangential
contact displacement and 𝑘𝑡 is the tangential stiffness, and its magnitude is limited
by the surface friction coefficient 𝜇surf so that |𝐹𝑡| ≤ 𝜇surf |𝐹𝑛|. Thus, the contact force
model is fully described by the parameters 𝑘𝑛, 𝑘𝑡, 𝑒, and 𝜇surf , to which we assign
the same values as in past studies [106, 99, 118]. Namely, we use 𝜇surf = 0.4 and
we choose 𝑘𝑛 so that 𝜅 = 𝑘𝑛/𝑃 > 104, with 𝑃 the characteristic confining pressure,
corresponding to the stiff grain limit [159, 44]. Further, we set 𝑘𝑡/𝑘𝑛 = 1/2 and
𝑒 = 0.1, with both having little influence on the phenomenology of dense flows of stiff
disks [165, 29]. Finally, we choose a time step equal to 0.1 times the binary collision
time 𝜏𝑐 = (𝑚(𝜋2 + ln2 𝑒)/4𝑘𝑛)

1/2. At the end of each simulation, the particle-wise
quantities in each saved system snapshot are coarse-grained into continuum fields
according to the procedure described in Appendix B.1. Because the geometries that
we investigate are homogeneous along the 𝑥-direction, this spatial averaging procedure
returns an instantaneous streamwise velocity field 𝑣(𝑧, 𝑡), as well as instantaneous
stress field components 𝜎𝑥𝑥(𝑧, 𝑡), 𝜎𝑧𝑧(𝑧, 𝑡), and 𝜎𝑥𝑧(𝑧, 𝑡).
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3.3.1 Calibration with simple plane shear

We first simulate a simple plane shear geometry in DEM, since the homogeneity of
the flow in this configuration enables us to calibrate the local part of the NGF model,
given by the limiting local rheology (3.8). The configuration is pictured in Figure 3-
2(a), and consists of two parallel walls of length 𝐿 = 120𝑑 aligned along the horizontal
𝑥-direction, and separated by a distance 𝐻 along the vertical 𝑧-direction. The walls
consist of glued disks, colored in brown in Figure 3-2(a), and they shear a dense
collection of enclosed disks, colored according to their relative velocity magnitude in a
particular snapshot of a flowing state. Periodic boundary conditions are applied along
the 𝑥-direction, and the absence of gravity leads to a uniform stress ratio throughout,
which is imparted by the walls. The top wall is assigned a horizontal velocity 𝑣w
that is either directly prescribed, corresponding to a velocity boundary condition, or
calculated following a control scheme that simulates an applied tangential stress 𝜏w to
the top wall through the feedback law 𝑣̇w = (𝜏w − 𝜎𝑥𝑧(𝑧 = 0, 𝑡))𝐿/𝑀w, corresponding
to a stress boundary condition. Here, the instantaneous tangential stress 𝜎𝑥𝑧 exerted
by the flowing grains is directly evaluated at the wall, and the effective wall mass 𝑀w

acts as a damping parameter, which we take as 𝑀w = 2000𝑚. Although velocity-
driven DEM simulations of plane shear flow are the norm [133], such simulations
miss important features of the flow-arrest transition [173]. To our knowledge, stress-
driven plane shear simulations have only been implemented in very few studies either
through a solid wall [186, 34], which corresponds to our setup, or through shearing
of the periodic boundaries [143, 169, 172, 174]. Finally, the pressure at the top wall
is maintained close to a target value 𝑃w through a widely used feedback law [44]
according to which the distance 𝐻 between the walls evolves as 𝐻̇ = (𝑃w + 𝜎𝑧𝑧(𝑧 =
0, 𝑡))𝐿/𝑔w, where the instantaneous normal stress 𝜎𝑧𝑧 exerted by the flowing grains
is directly evaluated at the wall, and 𝑔w is a damping parameter that we take as
𝑔w = 100(𝑚𝑘𝑛)

1/2.
We begin by performing velocity-driven DEM simulations under various prescribed

values of the top-wall velocity 𝑣w and for two nominal system heights 𝐻 = 50𝑑 and
25𝑑. After each simulation has reached a steady state, we save 4000 system snapshots
evenly distributed in time over a minimum additional top-wall shear displacement of
78𝐻. The instantaneous continuum velocity and stress fields produced by the coarse-
graining procedure are then averaged in time. As expected from numerous previous
studies [133, 44], the strain rate and the stress components are all approximately con-
stant in the central part of the sheared layer, four grain diameters away from the walls.
We therefore spatially average these quantities into the strain rate 𝛾̇ = ⟨|𝑑𝑣/𝑑𝑧|⟩, shear
stress 𝜏 = ⟨𝜎𝑥𝑧⟩ and pressure 𝑃 = ⟨|𝜎𝑧𝑧|⟩, from which we calculate the stress ratio
𝜇 = 𝜏/𝑃 and the inertial number 𝐼 = 𝛾̇

√︀
𝑚/𝑃 . Different values of the prescribed

top-wall velocity produce different (𝜇, 𝐼) pairs, which are displayed in Figure 3-5(a)
for the two nominal system heights considered. We also plot corresponding results
from the DEM simulations of Liu and Henann [118], obtained under identical system
parameters and for a nominal height 𝐻 = 60𝑑. The agreement between the two sets
of data validates our simulations; furthermore, the negligible difference between the
𝜇(𝐼) curves pertaining to different system heights demonstrates the negligible influ-
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Figure 3-5: Calibration of the local part of the NGF model using simulations of plane
shear without gravity. (a) Local 𝜇(𝐼) rheology obtained from velocity-driven DEM
simulations for two system sizes, compared with data from Liu and Henann [118].
(b) Applied stress ratio at the top wall, 𝜇w, versus wall-based inertial number, 𝐼w,
obtained from stress-driven DEM simulations for 𝐻 = 50𝑑, in which the stress ratio
applied to the upper wall is first slowly ramped down (black lines), then ramped back
up (red lines). Different lines correspond to different initial conditions, realized by
letting the system flow at 𝜇 = 0.4 for varying amounts of time. (c) Determination
of the local yield stress ratio 𝜇*

s from the stochastic 𝜇start values pertaining to the
different realizations. (d) The limiting non-monotonic local rheology (3.8) is fit in two
steps. First, the parameters shared with the monotonic form (3.4) are calibrated using
the velocity-driven DEM data for 𝐼 ≥ 10−2 (filled circles), producing the monotonic
𝜇loc(𝐼) fit. Then, the parameters of the strain-rate weakening term 𝜒(𝐼;𝜅) are chosen
so that 𝜇*

s is equal to the value extracted from the stress-driven DEM data (filled
square) and the minimum of 𝜇 occurs for 10−3 < 𝐼* < 10−2, finally producing the
non-monotonic 𝜇loc(𝐼) fit.
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ence of the walls. Importantly, we observe the presence of a strain-rate weakening
regime at low enough values of 𝐼, directly corroborating previous simulation results
from DeGiuli and Wyart [47]. However, a decreasing relationship between shear stress
and strain rate is mechanically unstable and typically results in the formation of shear
bands that, in turn, render impossible the accurate measurement of the true strain
rate in the strain-rate weakening regime [54]. Furthermore, past theoretical studies
[195, 119] suggest that in this regime, systems with a nonlocal flow rule select a spe-
cific stress state independent of the nominal strain rate imparted by the walls. The
NGF model, therefore, cannot be simply calibrated on velocity-driven DEM data if it
is to accurately predict onset and arrest of flow under variations of the applied stress.

In order to extract the true critical stresses delineating the transition between
static and flowing regimes, we run stress-driven DEM simulations of flow onset and
arrest under slowly decreasing and increasing ramps of the top-wall stress ratio 𝜇w,
for a nominal system height 𝐻 = 50𝑑. Specifically, we assign a time-dependent top-
wall shear stress 𝜏w(𝑡) = 𝜇w(𝑡)𝑃w according to the control procedure described above,
where 𝜇w(𝑡) is the target stress ratio applied to the top wall and 𝑃w is the constant
target pressure. We run 20 different simulations by letting the system flow at 𝜇w = 0.4
for a varying amount of time after it has reached steady state, effectively imparting
a different initial microstructure to each simulation. The applied stress ratio 𝜇w is
then linearly decreased from 0.4 to 0.25 over a time duration of 6.5 · 107𝜏𝑐 ≃ 113 s,
inducing jamming of the grains. We then let the contact forces relax by decreasing
𝜇w from 0.25 to 0 over a time duration of 2 · 107𝜏𝑐 ≃ 35 s and keeping 𝜇w at 0 for
1 ·107𝜏𝑐 ≃ 17 s. Finally, 𝜇w is linearly ramped back up, first from 0 to 0.25 over a time
duration of 2 · 107𝜏𝑐 ≃ 35 s, then from 0.25 to 0.4 over 6.5 · 107𝜏𝑐 ≃ 113 s, triggering
onset of flow. The ramp rate is slow enough that the system can be assumed to
undergo quasi-steady motion. We save 4000 system snapshots evenly distributed in
time, from start to end of the stress ramp. At the end of each simulation, we calculate
an instantaneous wall-based inertial number 𝐼w(𝑡) = 𝑣w(𝑡)/𝐻w

√︀
𝑚/𝑃w, where 𝑣w(𝑡)

is a moving time window average over 50 snapshots of the instantaneous wall velocity
to smooth out small fluctuations, and 𝐻w is the average true vertical distance between
both walls. Thanks to the little amount of observed wall slip4 and the quasi-steady
conditions, we may consider both 𝜇w and 𝐼w as smooth approximations of the highly-
fluctuating instantaneous values of 𝜇 and 𝐼 in the bulk. The resulting 𝜇w versus 𝐼w
curves are shown in Figure 3-5(b) in black and red for the decreasing and increasing
stress ramps, respectively, with different curves corresponding to different simulations.
Observe the similarity between these curves and the ones shown in Figure 3-2(a), with
hysteresis (feature F1) and a velocity jump at flow onset (feature F2) clearly visible in
both geometries. Besides, our simulations reveal that the critical stress ratio at flow
onset is stochastic and noticeably higher than the threshold obtained from velocity-
driven simulations in Figure 3-5(a) as 𝐼 vanishes. Such variability in the transition
between arrested and flowing states has been observed previously [36], and may be
explained by the role played by the specific structure of the particle contact network

4In our DEM simulations, the relative difference between the upper wall velocity and the coarse-
grained streamwise velocity of the grains near the upper wall never exceeds 3%.
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[18, 37, 175]. On the other hand, the critical stress ratio at flow arrest is much more
narrowly distributed and similar to the velocity-driven flow threshold.

Thus, the NGF model needs to be calibrated using data from both velocity-driven
and stress-driven DEM simulations, so as to correctly predict the characteristics of
both the flowing regime and the transition between arrested and flowing states. How-
ever, the critical stress ratio for flow onset observed in the stress-driven simulations
is highly stochastic, while the limiting local rheology (3.8) of the model predicts a
deterministic value 𝜇*

s . To reconcile this apparent contradiction, we note that because
continuum models in general aim to reproduce the ensemble-average behavior of the
discrete system across all possible realizations, we expect our NGF model to predict
onset of flow so long as any measurable region of the space of ensembles initiates flow.
With this in mind, we therefore reduce the stochastic critical stress from DEM to a
unique deterministic value that represents the lowest achievable starting stress of the
system as follows. For each realization, we first define 𝜇start as the observed 𝜇w when
𝐼w last exceeds 10−3 during stress increase. We then assume that the ensemble of
stochastic 𝜇start values follows a uniform probability distribution over a finite range
(bounded from below by the lowest achievable starting stress), which allows us to
fit a linear function to their cumulative distribution (CDF), shown in Figure 3-5(c).
An estimate for the lowest achievable 𝜇start is given by the 𝑥-intercept of the fitted
CDF, which we thus assign to 𝜇*

s = 0.2724. Finally, we show in Appendix B.3 that
the distribution of stochastic 𝜇start values barely changes for smaller nominal heights
𝐻 = 25𝑑 and 10𝑑, which supports our methodology of calculating the local yield
stress ratio 𝜇*

s predicted by the model using stress-driven simulations at 𝐻 = 50𝑑.

The parameters of the limiting local rheology (3.8) can now be calibrated following
a two-step approach pictured in Figure 3-5(d). First, the parameters shared with the
monotonic form (3.4) are calibrated using the velocity-driven DEM data correspond-
ing to 𝐻 = 50𝑑 and 𝐼 ≥ 10−2 (filled circles), producing the monotonic 𝜇loc(𝐼) fit. The
velocity-driven DEM data for 𝐼 < 10−2 (open circles) is also shown for reference, but
is not used in the calibration. Second, the parameters of the strain-rate weakening
term 𝜒(𝐼;𝜅) are chosen so that 𝜇*

s is equal to the value extracted from the stress-
driven DEM data (filled square) and the minimum of 𝜇 occurs for 10−3 < 𝐼* < 10−2,
finally producing the non-monotonic 𝜇loc(𝐼) fit. The resulting parameter values are
𝜇s = 0.2610, 𝜇2 = 0.9784, 𝑏 = 1.6406, 𝑎 = 0.0116, 𝑐 = 50, and 𝑛 = 1/4. We note that
once 𝜇s and 𝜇2 are known from the first step, 𝑎 is obtained in the second step from 𝜇*

s

by inverting (3.10). In the second step, we have selected the value 1/4 from DeGiuli
and Wyart [47] for the parameter 𝑛 that controls the grain stiffness-dependence of
the hysteresis amplitude. We have nonetheless verified that choosing instead 𝑛 = 0,
which removes the stiffness dependence, and recalibrating 𝑐 accordingly produces neg-
ligible changes in our results to follow. Finally, we adopt the value 𝐴 = 0.9 from Liu
and Henann [118] for the nonlocal amplitude, which they calibrated on DEM data
obtained with the same particle and contact force law properties.
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3.3.2 Plane shear under gravity

We now compare the predictions of the calibrated NGF model with stress-driven DEM
simulations of plane shear under gravity shown in Figure 3-2(b). We have already
investigated in Section 3.2.3 the qualitative behavior of the model in this geometry,
in which the gravity field imparts a nonuniform distribution of stress ratio 𝜇(𝑧) char-
acterized by a loading length scale ℓ; see equation (3.12). Besides the presence of
gravity, the DEM setup of the system is identical to that of the previous section,
except for the nominal distance 𝐻 = 60𝑑 between the walls. The shear stress and
pressure at the top wall are controlled according to the feedback schemes described
in the previous section, and the bottom wall is fixed.

Similar to the case of simple plane shear, we perform DEM simulations of arrest
and onset of flow under decreasing then increasing ramps of applied stress. Specifi-
cally, a time-varying top-wall stress ratio 𝜇w(𝑡) is prescribed through a time-dependent
target shear stress 𝜏𝑤(𝑡) = 𝜇w(𝑡)𝑃w and constant target pressure 𝑃𝑤. The applied
stress ratio 𝜇w(𝑡) follows the same protocol as in Section 3.3.1, with the only difference
being that we start from, and end at, a top value of 𝜇w = 0.45 instead of 𝜇w = 0.4.
Correspondingly, the duration of the decreasing and increasing sections of the stress
ramp between 0.45 and 0.25 is lengthened to 9 · 107𝜏𝑐 ≃ 157 s so that the rate of
change of 𝜇w(𝑡) is unaffected. As before, for each length scale ℓ we run 20 different
simulations corresponding to different initial microstructures, by letting the system
spend a varying amount of time in the initial shearing period at 𝜇w = 0.45. During
that period, gravity is first turned off to ensure homogeneous mixing of the grains,
before being turned back on. We save 4000 system snapshots for each simulation,
from which we calculate 𝑣w(𝑡), a moving time window average over 50 snapshots of
the instantaneous wall velocity. We then calculate the nondimensional wall veloc-
ity as 𝑣w(𝑡) = 𝑣w(𝑡)/ℓ

√︀
𝑚/𝑃w. In order to compare deterministic predictions from

the NGF model with the DEM results corresponding to all 𝑁 = 20 different runs,
we transform the discrete values 𝑣(𝑖)w (𝑡) for 𝑖 = 1, . . . , 𝑁 at each time step into a
continuous probability density function (PDF) as follows:

𝑓(𝑣w) =

∫︁ ∞

−∞
𝑤(𝑣 − 𝑣w)

[︃
1

𝑁

𝑁∑︁
𝑖=1

𝛿(𝑣 − 𝑣(𝑖)w )

]︃
𝑑𝑣, (3.13)

where 𝛿 is the Dirac delta function, and 𝑤 is the Gaussian kernel

𝑤(𝑣) =
1√
2𝜋𝐿

𝑒−𝑥2/2𝐿2

, (3.14)

with 𝐿 the kernel size, which we choose equal to 0.01 times the maximum observed
value of 𝑣(𝑖)w (𝑡) across all runs and times. The PDF (3.13) can be conveniently ex-
pressed as

𝑓(𝑣w) =
1

𝑁

𝑁∑︁
𝑖=1

𝑤(𝑣w − 𝑣(𝑖)w ), (3.15)

and it integrates to one, as it should. Further, we also need to reduce the stochastic
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transition stresses between flowing and arrested states into a unique deterministic
value, which we define in a similar way to Section 3.3.1 as the lowest achievable value
to be consistent with the methodology followed in calibrating the local yield stress
ratio 𝜇*

s of the model. For each realization, we first calculate 𝜇w,start as the observed
𝜇w when 𝑣w last exceeds the threshold value 10−3 during stress increase, and 𝜇w,stop

as the observed 𝜇w when 𝑣w last falls below the same threshold during stress decrease.
The deterministic starting and stopping critical stress ratios are then defined as the
𝑥-intercept of a fitted linear CDF to the stochastic 𝜇w,start and 𝜇w,stop values, similar
to Figure 3-5(c). In the following, we will refer to these deterministic thresholds as
𝜇w,start and 𝜇w,stop.

We also compute NGF model predictions in the same geometry, using the cali-
brated parameter values from Section 3.3.1. As described in Section 3.2.3, the fluidity
equation (3.5b) reduces to a one-dimensional PDE for 𝑔(𝑧, 𝑡) that requires the stress
ratio profile 𝜇(𝑧, 𝑡) as input. Thanks to the homogeneous and quasi-steady condi-
tions, the latter is given through (3.12) and set by the top-wall stress ratio 𝜇w(𝑡), to
which we assign the exact same temporal protocol as in the DEM simulations. Since
the NGF model is not expected to be valid in the vicinity of the walls, we end the
corresponding simulation domain at a distance 𝑑w = 2𝑑 away from the real walls. Fur-
thermore, we follow previous work [118] in using homogeneous Neumann (𝜕𝑔/𝜕𝑧 = 0)
boundary conditions on 𝑔 at the walls in order to minimize their influence. The details
of the discretization method for the ODE governing 𝑔(𝑧, 𝑡) are presented in Appendix
B.2. Once 𝑔(𝑧, 𝑡) is known, the strain rate 𝛾̇(𝑧, 𝑡) can be calculated using the flow
rule (3.5a) and integrated into the velocity profile 𝑣(𝑧, 𝑡), taking into account a slip
length equal to 𝑑w for the velocity at the bottom wall. Finally, the top-wall velocity
is extrapolated as 𝑣w(𝑡) = 𝑣(𝑧 = −𝑑w, 𝑡)+𝑑w𝛾̇(𝑧 = −𝑑w, 𝑡) and is nondimensionalized
into 𝑣w(𝑡).

Figures 3-6(a,b,d,e) display the relationship between 𝜇w and 𝑣w obtained from
both DEM simulations and NGF model predictions for two different loading length
scales of (a,d) ℓ = 100𝑑 and (b,e) ℓ = 25𝑑. The increasing stress ramp is shown
in (a,b) while the decreasing stress ramp is shown in (d,e). The DEM results are
displayed as contours of 𝑓(𝑣w) corresponding to each value of 𝜇w, in such a way that
the plots can be read as the probability of occurrence of individual realizations, with
yellow color indicating high probability and blue color indicating low probability. The
deterministic 𝜇w,start and 𝜇w,stop values from DEM are also displayed as filled circles,
and the NGF model prediction is shown as the red line. An excellent agreement
between NGF and DEM is observed in the flowing regime5. Similarly, the transition
between arrested and flowing states occurs at similar stress levels in both cases, and
displays all three features (F1–F3) identified in the introduction: hysteresis between
onset and arrest, velocity jump at onset, and strengthening with smaller ℓ/𝑑. The
amount of velocity jump at flow onset exhibited by the NGF solution appears smaller
than that observed in the DEM simulations; this is a consequence of the NGF model

5The small discrepancy observed in the case ℓ/𝑑 = 25 is probably attributable to the choice of
boundary conditions for 𝑔. An extensive discussion on the role of the latter is presented in Section
3.3.3.
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Figure 3-6: Comparison between NGF model predictions and DEM simulations for
plane shear under gravity. (a,b,d,e) Relationship between stress ratio 𝜇w and dimen-
sionless velocity 𝑣w at top wall from DEM (contour of probability values extracted
from 20 different runs) and NGF (red lines) for two different loading length scales of
(a,d) ℓ = 100𝑑 and (b,e) ℓ = 25𝑑, with the (a,b) increasing and (d,e) decreasing stress
ramps shown separately. The filled circles display the deterministic 𝜇w,start and 𝜇w,stop

critical stress ratios obtained from all DEM runs. (c,f) Critical stress ratios 𝜇w,start

and 𝜇w,stop versus dimensionless loading length scale ℓ/𝑑 from DEM (filled circles) and
NGF (continuous line). The crosses show the individual transition stresses pertain-
ing to each of the 20 different runs, while the filled circles represent the deterministic
value extracted from the linear fit of the CDF.
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being calibrated so as to start flowing at the lowest possible critical stress based on
the DEM simulations.

Finally, Figures 3-6(c,f) display the critical stresses 𝜇w,start and 𝜇w,stop versus the
dimensionless loading length scale ℓ/𝑑. Shown are the individual transition stresses
from all 20 DEM runs (crosses), the deterministic values extracted from the linear
fit of the CDF (filled circles), and the corresponding NGF predictions (continuous
line). The NGF predictions of the critical stresses are obtained using the methodol-
ogy described in Appendix B.4, which circumvents the need to run time-dependent
simulations for every value of ℓ/𝑑. Overall, the NGF model predicts a similar amount
of strengthening as apparent in the DEM simulations. The slightly higher critical
stresses exhibited in DEM for large loading length scales is caused by an observed
change in the slope of the 𝑔 field at the boundary as the pressure applied by the
top wall increases. Accordingly, implementing a homogeneous Robin boundary con-
dition for 𝑔 with a finite associated length scale would lead the NGF model to predict
higher values for the transition stresses, closing the gap with the DEM data. Lastly,
Appendix B.5 shows that the hysteresis amplitude 𝜇w,start − 𝜇w,stop is only weakly
dependent on the dimensionless loading length scale ℓ/𝑑.

3.3.3 Inclined plane

As a last example, we evaluate predictions from the calibrated NGF model against
DEM simulations in the inclined plane configuration shown in Figure 3-2(c). A fixed
basal wall of length 𝐿 = 120𝑑 and consisting of glued disks is inclined at an angle 𝜃
with respect to the horizontal, and is covered by a dense collection of freely moving
disks forming a layer of height 𝐻. The 𝑥- and 𝑧-directions are parallel and orthogonal
to the base wall, respectively, and periodic boundary conditions are applied along the
𝑥-direction. The gravity field imparts a uniform ratio of shear stress to pressure
throughout the layer at steady state equal to 𝜇 = tan 𝜃, making this configuration
inherently stress-driven. Even though 𝜇 is uniform, nonlocal effects still arise from
the presence of the rough base, which acts as a sink for velocity fluctuations within
the moving grains. The transition between onset and arrest of flow on an inclined
plane exhibits all three features mentioned in the introduction, as documented in
many past experimental and computational studies [148, 45, 165, 149, 157, 167, 160].

Following the previous cases, we run DEM simulations of flow arrest and onset
by slowly decreasing then increasing the inclination angle. Specifically, we prescribe
a temporal profile for 𝜃(𝑡) such that the stress ratio 𝜇(𝑡) = tan 𝜃(𝑡) follows the same
protocol as in Section 3.3.1, with an initial flowing period at 𝜇 = 0.4 followed by a
continuous decrease to 𝜇 = 0 and a continuous increase back to 𝜇 = 0.4. As before,
we execute 20 runs for each layer height 𝐻, each with a different time duration spent
in the initial flowing regime at 𝜇 = 0.4, giving a unique microstructure to every
simulation before the start of the stress ramp. We save 4000 system snapshots in
each simulation, from which we compute the instantaneous continuum velocity field
𝑣(𝑧, 𝑡). Anticipating that the NGF model will be run over a truncated domain ending
at a distance 𝑑𝑤 = 2𝑑 away from the bottom wall and 𝑑𝑠 = 3𝑑 away from the layer’s
free surface, we then calculate a depth-averaged instantaneous velocity 𝑣(𝑡) over the
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corresponding truncated domain, which we smooth out using a moving time window
average over 50 snapshots. We then express 𝑣(𝑡) in terms of a dimensionless Froude
number defined as Fr(𝑡) = 𝑣(𝑡)/

√
𝐺𝐻. As was done in the previous section, the

discrete values Fr (𝑖)(𝑡) at each time step, for 𝑖 = 1, . . . , 𝑁 corresponding to all 𝑁 = 20
different runs, are transformed into a continuous PDF 𝑓(Fr) through the convolution
(3.13). Finally, the stochastic transition stresses between flowing and arrested states
are reduced into deterministic numbers 𝜇start and 𝜇stop according to the procedure
detailed in Sections 3.3.1 and 3.3.2. For each realization, we first calculate 𝜇start as
the observed 𝜇 when Fr last exceeds the threshold value 10−2 during stress increase,
and 𝜇stop as the observed 𝜇 when Fr last falls below the same threshold during stress
decrease. The deterministic starting and stopping critical stress ratios are then defined
as the 𝑥-intercept of a fitted linear CDF to the stochastic 𝜇start and 𝜇stop values, similar
to Figure 3-5(c). In the following, we will refer to these deterministic thresholds as
𝜇start and 𝜇stop.

We compute predictions of the NGF model in the same geometry, using the cali-
brated parameter values from Section 3.3.1 and the same temporal protocol for 𝜃(𝑡)
as in the DEM simulations. The fluidity equation (3.5b) reduces to a one-dimensional
PDE for 𝑔(𝑧, 𝑡) that takes as input the stress ratio profile, which is still related to
the inclination angle as 𝜇(𝑡) = tan 𝜃(𝑡) thanks to the quasi-steady conditions. The
uniformity of the stress ratio implies that nonlocal effects are entirely imparted by
boundaries, making the choice of boundary conditions critical. Similarly to our ap-
proach in Section 3.3.2, the domain for the NGF solution is defined to start at a
distance 𝑑w = 2𝑑 away from the bottom wall due to the lack of validity of the NGF
model near the boundary. At that location, the DEM data suggests a Robin-type
homogeneous boundary condition for 𝑔, with an associated length scale 𝛿 that may be
sensitive to various factors. We choose to sidestep the exact modeling of the bound-
ary condition by considering the two edge cases of 𝛿 = 0 and 𝛿 = ∞, corresponding
to homogeneous Dirichlet (𝑔 = 0) and Neumann (𝜕𝑔/𝜕𝑧 = 0) boundary conditions,
respectively. Regarding the top boundary, the DEM data shows that the strain rate
vanishes about 3 grain diameters below the surface, corroborating previous studies
[165, 167]. We thus end the NGF simulation domain at a distance 𝑑𝑠 = 3𝑑 away
from the layer’s free surface, and we prescribe a homogeneous Neumann (𝜕𝑔/𝜕𝑧 = 0)
boundary condition for 𝑔 there, following Kamrin and Henann [97]. We also assign
a finite pressure to the top boundary equal to the weight of the neglected layer of
thickness 𝑑𝑠, which is approximately equal to 𝑃 (𝑧 = −𝑑𝑠) = 0.8𝜌𝑠𝐺(2𝑑) cos 𝜃(𝑡) due
to the drop in packing fraction near the layer’s surface. The details of the discretiza-
tion method for the ODE governing 𝑔(𝑧, 𝑡) are presented in Appendix B.2. Once
𝑔(𝑧, 𝑡) is known, the strain rate 𝛾̇(𝑧, 𝑡) can be computed through the flow rule (3.5a).
Finally, the velocity can be integrated from 𝛾̇(𝑧, 𝑡), taking into account a velocity slip
length equal to 𝑑w at the bottom boundary of the NGF domain, and depth-averaged
to produce 𝑣(𝑡) and hence Fr(𝑡).

Figures 3-7(a,b,d,e) display the relationship between 𝜇 and Fr obtained from
both DEM simulations and NGF model predictions for two different layer heights
at rest of (a,d) 𝐻 = 45.5𝑑 and (b,e) 𝐻 = 9𝑑. The increasing stress ramp is shown
in (a,b) while the decreasing stress ramp is shown in (d,e). The DEM results are
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Figure 3-7: Comparison between NGF model predictions and DEM simulations for
inclined plane. (a,b,d,e) Relationship between stress ratio 𝜇 = tan 𝜃 and Froude
number Fr from DEM (contour of probability values extracted from 20 different
runs) and NGF (red lines) for two different layer heights of (a,d) 𝐻 = 45.5𝑑 and (b,e)
𝐻 = 9𝑑, with the (a,b) increasing and (d,e) decreasing stress ramps shown separately.
The filled circles display the deterministic 𝜇start and 𝜇stop critical stress ratios obtained
from all DEM runs. (c,f) Critical stress ratios 𝜇start and 𝜇stop versus dimensionless
layer height 𝐻/𝑑 from DEM (filled circles) and NGF (blue lines). The crosses show
the individual transition stresses pertaining to each of the 20 different runs, while
the filled circles represent the deterministic value extracted from the linear fit of the
CDF.
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displayed as contours of 𝑓(Fr) corresponding to each value of 𝜇, in such a way that
the plots can be read as the probability of occurrence of individual realizations, with
yellow color indicating high probability and blue color indicating low probability. The
deterministic 𝜇start and 𝜇stop values from DEM are also displayed as filled circles, and
the NGF model predictions pertaining to the two basal boundary conditions for 𝑔 are
shown as the continuous (homogeneous Neumann) and dash-dotted (homogeneous
Dirichlet) red lines. The Neumann boundary condition in the NGF model leads to an
excellent agreement with DEM in the flowing regime. However, it does not predict
any strengthening of the critical transition stresses 𝜇start and 𝜇stop for smaller layer
height 𝐻. The Dirichlet boundary condition, on the other hand, reproduces the
strengthening of the transition stresses but fails to match the DEM results in the
flowing regime.

The critical stresses 𝜇start and 𝜇stop are depicted in greater detail in Figures 3-
7(c,f) versus the dimensionless layer height 𝐻/𝑑. Shown are the individual transition
stresses from all 20 DEM runs (crosses), the deterministic values extracted from the
linear fit of the CDF (filled circles), and the corresponding NGF predictions using
homogeneous Neumann (continuous line) or homogeneous Dirichlet (dash-dotted line)
boundary conditions. As we did for planar shear with gravity, the NGF predictions of
the critical stresses are obtained using the methodology described in Appendix B.4,
which bypasses the need to run time-dependent simulations for every value of 𝐻/𝑑.
The Neumann boundary condition does not produce any strengthening of the critical
stresses, since it kills the principal cause of flow inhomogeneity in this geometry6. On
the other hand, the Dirichlet boundary condition generates a level of strengthening
roughly comparable with the DEM data. As was the case for plane shear under
gravity, Appendix B.5 shows that the hysteresis amplitude 𝜇w,start − 𝜇w,stop is only
weakly dependent on the dimensionless layer height 𝐻/𝑑.

In summary, it appears that the critical stresses are best predicted by the NGF
model endowed with a homogeneous Dirichlet boundary condition for 𝑔, while the
flowing regime is most accurate when a homogeneous Neumann boundary condition
is used. This dichotomy could stem either from missing ingredients in the NGF
model itself or from an inaccurate description of the boundary condition. Regarding
the former, a known shortcoming of the current formulation of the model is that it
does not produce the widely documented collapse of the Froude number for all layer
heights and angles [148, 167, 63]. We have thus modified the fluidity equation (3.5b)
following the procedure given in Kamrin and Henann [97] so that the model collapses
the Froude number far away from flow threshold, in the limit 𝜒 → 0. We also tried
another version of that procedure replacing the quadratic term with a cubic one as
in the model of Lee and Yang [114]. Yet neither of these modified models performed
substantially better, with the no-slip solution still flowing significantly slower than
the DEM data. This points to the boundary condition being the main culprit –
incidentally, the true length scale 𝛿 at the bottom boundary is observed to increase

6In the presence of the Neumann boundary condition, a small amount of flow inhomogeneity
is still incurred by the pressure-dependent quadratic term in the fluidity equation (3.5b), which
explains the slight dependence of 𝜇stop on 𝐻/𝑑 in Figure 3-7(f).
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with flow rate in the DEM data. With a velocity-dependent 𝛿 that jumps from
near zero in the arrested state to a large value in the flowing state, the NGF model
could potentially produce correct predictions of both the transition stresses and the
flowing regime. A boundary condition of this type could be formulated as a dynamical
system governing the evolution of 𝛿 in response to relevant driving quantities. As we
note in the conclusion, however, formulating accurate and physically-justified fluidity
boundary conditions remains a key open issue within NGF modeling, and such an
endeavor is relegated to future work.

3.4 Conclusions

In this chapter, we have studied the combined role of strain-rate weakening behavior
and nonlocal effects in explaining key features of the hysteretic transition between
solid-like and liquid-like behavior in dense granular materials as the applied stress is
ramped up and down. These features include the hysteresis of the critical stresses at
flow onset and arrest, the finite jump in velocity during flow onset, and the strength-
ening of the critical stresses with reducing system size. In a first part, we modified the
nonlocal granular fluidity (NGF) model so that it reduces to a non-monotonic local
rheology in homogeneous flows. Through numerical simulations of flow onset and
arrest in planar shear with gravity using the modified NGF model, we demonstrated
qualitatively that the inclusion of both nonlocal effects and non-monotonicity of the
local rheology is essential to account for all three features mentioned above.

In a second part, we compared quantitatively predictions of the modified NGF
model with DEM simulations of flow onset and arrest in various geometries. First, we
calibrated the local parameters of the model using DEM simulations of homogeneous
plane shear flow. In so doing, we highlighted the importance of calibrating the local
critical stress for flow onset using stress-driven simulations, since measurements based
on velocity-driven simulations are unreliable in the strain-rate weakening regime. The
stress-driven simulations, however, exhibited large variability in the transition stresses
between arrested and flowing regimes. Thus, we developed a criterion to extract a
unique deterministic value, corresponding to the lowest observable critical stress, from
a large number of repeated runs. We then compared predictions of the calibrated NGF
model with stress-driven DEM simulations in planar shear with gravity and inclined
plane configurations. In the former case, the model gave accurate predictions of both
the transition between flowing and arrested states as well as the characteristics in the
flowing regime. In the latter case, the accuracy of the model predictions was strongly
affected by the choice of boundary conditions, with no single choice able to reproduce
both the transition stresses as well as the average velocity in the flowing regime.

These results suggest that the NGF model generally leads to more accurate pre-
dictions when nonlocal effects are generated by the spatial dependence of the 𝜇 field,
as is the case for planar shear with gravity, rather than by boundaries alone, as is
the case for inclined plane flow. A possible explanation stems from Liu and Henann’s
[118] observation that an inhomogeneous 𝜇 field leads to much stronger size-dependent
strengthening than boundary effects, making the accuracy of model predictions less
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reliant on the particular choice of fluidity boundary conditions when both mechanisms
are present. Conversely, model predictions are much more sensitive to the specific
type of boundary conditions when the latter are the sole source of nonlocal effects,
which calls for better understanding of the interaction between flowing particles and
the boundary. In fact, numerous experimental and computational studies have also
underscored the sensitivity on wall roughness of transition stresses and velocity pro-
files in inclined plane flow [157, 166, 68, 190], plane shear flow without gravity [163],
as well as annular shear flow [62]. Although progress has been made for flat fric-
tional walls [7, 6], the correct modeling of boundary conditions in the general case is
still an open question whose resolution would benefit all nonlocal rheological models
[5, 31, 118].
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Chapter 4

Solving geometry identification
inverse problems via topology
optimization with physics-informed
neural networks

4.1 Introduction

In inverse problems, the goal is to find physical or geometric properties of a sys-
tem that optimize a desired objective function under the constraint of the governing
physical laws [8, 127]. Such problems concern either the identification of unobserved
properties of an actual system given a set of measurement data, or the design of
properties of a hypothetical system to achieve a target functionality, and they arise
in various fields of engineering including solid mechanics [16, 22, 55], fluid mechanics
[23, 46], optics [90, 137], and acoustics [57, 66]. Inverse problems involving identifica-
tion or design of geometric properties are particularly hard to solve due to the very
large number of parameters involved in describing the geometry [77], in addition to
the complexity of the governing physical laws which usually take the form of par-
tial differential equations (PDEs). An additional difficulty for topology optimization
methods is to avoid restricting the search space to geometries of a given topology
(number of structures or holes), as is the case in shape optimization methods, which
requires a mechanism to handle merging or splitting of geometrical structures [164].

Motivated by the design of structures that exhibit minimum compliance under
load, there exists various topology optimization methods for geometry design prob-
lems, although most of them are very complex as they combine traditional numerical
solvers such as the finite-element or boundary-element method, adjoint techniques
to evaluate the sensitivity of the objective function with respect to the shape or the
topology, and gradient descent-based optimization algorithms to update the geometry
at every iteration [14, 60, 1, 71]. For geometry identification problems, on the other
hand, most methods are restricted to shape optimization since they require the num-
ber of shapes to be specified in advance [131, 112, 2, 188, 100, 94]. Other approaches
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that can find the right number of shapes require a priori knowledge of the geometry
of each shape [27, 177]. Only a few studies perform topology optimization by letting
both the number and the shape of structures to be identified as part of the problem
[113, 128, 129]. These studies, however, limit themselves to squares and circles and
do not attempt to discover different shapes within the same geometry.

Physics-informed neural networks (PINNs) have recently emerged as a popular
framework for solving inverse problems constrained by PDEs [53, 109, 152, 28]. By
incorporating the residual of the PDEs together with the objective to minimize into
the loss function of neural network-based approximations for the unknown state vari-
ables and properties to be found, PINNs can seamlessly blend measurement data or
design objectives with physical constraints. Thus, they constitute a very user-friendly
approach to solving inverse problems, and they also easily adapt to irregular domains
thanks to their mesh-free nature. So far, PINNs have been applied successfully to
a range of inverse problems involving identification and design of unknown physical
properties or control inputs, in fields ranging from mechanics to optics and medicine
[153, 161, 121, 74, 138, 32]. However, their application to geometry identification and
design problems has been more limited due to the difficulty in representing shapes with
well-defined boundaries. A notable exception is the recent study of Ref. [197], which
applied PINNs to the problem of identifying voids and inclusions in elastic structures
from boundary measurements of the response to a prescribed loading. They predefine
both the number and the type (circle, ellipse, etc) of shapes to be identified, leav-
ing the PINNs with the task of inferring the scalar parameter values defining these
shapes. The practical applicability of their method is therefore restricted by the need
for prior knowledge of the topology of the solution and the types of structures to
expect.

Here, we introduce a topology optimization framework based on PINNs for iden-
tifying unknown geometries without any prior knowledge on the number and type of
shapes. We allow for arbitrary solution topology by parametrizing the geometry using
a material density field equal to 0 in one phase and 1 in the other, and defined by
an underlying neural network. This neural network needs to be regularized in order
to drive the material distribution towards 0 or 1 and avoid unphysical intermediate
values. Thus, the key ingredient of our framework is a so-called eikonal regulariza-
tion, inspired from level-set methods [141], that encourages the norm of the gradient
of the underlying neural network to be unity in a narrow band along the interface.
This ensures that the thickness of the interface region where the material distribution
transitions between 0 and 1 is uniform everywhere, leading to well-defined bound-
aries throughout the domain. Following the standard PINNs procedure, the neural
networks underlying the material distribution and the physical quantities are then
trained to minimize a loss that enforces the governing equations as well as the mea-
surement data to be satisfied. We apply our framework to the problem of identifying
hidden voids or rigid inclusions in an elastic body using measurements of the surface
deformation in response to a prescribed surface loading. Our approach successfully
discovers the topology, locations and shapes of hidden structures in a variety of ge-
ometries with both linear elastic and nonlinear hyperelastic materials. This opens a
pathway for physics-informed neural networks to be applied to a wide range of geom-
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Figure 4-1: Setup of two geometry identification problems in elastic bodies under plain
strain. (𝑎) A square elastic matrix with hidden voids or rigid inclusions is pulled by a
uniform traction on two opposite sides. The goal is to identify the number, locations
and shapes of the voids or inclusions using measurements of the displacement along
the outer boundary of the matrix. (𝑏) An elastic layer on top of a hidden rigid
substrate is compressed from the top by a uniform pressure. The goal is to identify
the shape of the substrate using measurements of the displacement of the top surface.

etry identification and design problems in solid mechanics, fluid mechanics, optics,
and beyond.

4.2 Methodology

4.2.1 Problem formulation

To illustrate our topology optimization framework, we consider two prototypical
plane-strain elasticity problems pictured in Figure 4-1. In the first case, a square
elastic matrix with hidden voids or rigid inclusions is pulled by a uniform traction 𝑃𝑜

on two sides. The goal of the inverse problem is to identify the number, locations and
shapes of the voids or inclusions using discrete measurements of the displacement of
the outer boundary of the matrix. In the second case, an elastic layer on top of a
hidden rigid substrate is compressed from the top by a uniform pressure 𝑃𝑜, with pe-
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riodic lateral boundary conditions. The goal is to identify the shape of the substrate
using discrete measurements of the displacement of the top surface. For both cases,
we assume that we know the constitutive properties of the elastic material that is
being pulled or compressed. We will consider two different types of constitutive laws:
compressible linear elasticity, which characterizes the small deformation of any com-
pressible elastic material, and incompressible nonlinear hyperelasticity, which models
the large deformation of rubber-like materials. These two elasticity inverse problems
are well suited for evaluating the accuracy of the topology optimization framework
that we introduce in this paper, because of the existence of guarantees on the unique-
ness of the solution. Indeed, Ref. [4] proves that in the case of a linear elastic material
and a single void, there exists at most one cavity which yields the same surface dis-
placements and stresses on an finite portion of the external boundary. Although this
does not mean that the numerical problem is necessarily well-posed since small noise
in the measurement data could cause large differences in the solution, this uniqueness
result still makes these elasticity problems unique amongst inverse problems which in
general do not have unique solutions [59].

In order to avoid any restriction or prior knowledge on the number or the shape
of the hidden structures to be discovered, we parametrize the geometry through a
discrete-valued material distribution function 𝜌(x) = {0, 1} that is defined at any
point x in a global domain Ω comprising both the elastic material and the hidden
voids or rigid inclusions. The material distribution is equal to 1 in the elastic solid
phase and 0 in the void or rigid inclusion phase. The inverse problem can then
be formulated as finding 𝜌(x) for x ∈ Ω so that the corresponding solution for the
displacement fields throughout Ω, which is given by the physical governing equations
of elasticity and the applied boundary conditions, matches the discrete displacement
measurements at the surface. Denoting by u(x) and 𝜎(x) the displacement and stress
fields throughout Ω, these governing equations comprise the equilibrium relation

∇ · 𝜎 = 0, x ∈ Ω, (4.1)

and the constitutive relation, which we write in general form as

𝐹 (𝜎,∇u, 𝜌) = 0, x ∈ Ω. (4.2)

Splitting the outer boundary 𝜕Ω of the domain into a portion 𝜕Ω𝑡 with prescribed
traction t̄(x) and a portion 𝜕Ω𝑢 with prescribed displacement ū(x), the applied
boundary conditions will take the form

u(x) = ū(x), x ∈ 𝜕Ω𝑢, (4.3a)
𝜎(x)n(x) = t̄(x), x ∈ 𝜕Ω𝑡, (4.3b)

where n denotes the outward unit normal vector. In the case of the elastic layer, the
outer boundary also comprises a portion 𝜕Ω𝑝 with periodic boundary conditions on
the displacement and traction. Finally, assuming that we measure surface displace-
ments u𝑚

𝑖 at discrete locations x𝑖 forming a subset 𝜕Ω𝑚 of 𝜕Ω𝑡, the requirement that
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the predictions for u match the measurement data is expressed as

u(x𝑖) = u𝑚
𝑖 , x𝑖 ∈ 𝜕Ω𝑚. (4.4)

Appendix C.1 provides a detailed formulation of the two inverse problems that we
solve, including the material-specific constitutive relations as well as the detailed
boundary conditions applied in both problems.

Before proceeding further, we nondimensionalize all physical quantities and here-
after express them in dimensionless form. Specifically, we nondimensionalize tractions
and stresses with the magnitude 𝑃𝑜 of the external applied traction, and we nondi-
mensionalize displacements with the characteristic length scale 𝑃𝑜𝐿/𝐸, where 𝐿 is
the width of the elastic matrix or elastic layer, and 𝐸 is the Young’s modulus of
the elastic material (in the hyperelastic case, we use the equivalent Young’s modulus
𝐸 = 3𝜈, where 𝜈 is the shear modulus of the hyperelastic material). Although rarely
employed in the PINN community, such nondimensionalization is critical to enabling
neural networks to consistently handle elasticity problems across a wide range of ma-
terial moduli and applied loads. These neural networks will be defined in the next
section, along with our general framework for solving the inverse problem defined
above.

Since the discrete nature of the optimization problem makes the solution very
challenging, we relax the binary constraint on the material distribution and allow for
intermediate values of 𝜌 between 0 and 1, which is a standard approach in topology
optimization [164]. Such relaxation transforms the problem into a continuous one
amenable to gradient-based optimization, but requires special treatment to ensure
that the optimized material distribution converges to 0 and 1 values instead of settling
on unphysical intermediate values. A common strategy in topology optimization is to
penalize implicitly these intermediate values through a suitably chosen interpolation
function between material properties and material density [14, 15, 23]; however, this
method only works in the presence of a volume constraint (for instance, maximum
allowable fraction of solid). The volume constraint is not present in the geometry
identification problem, which calls for another type of regularization. Ref. [128],
who also parametrized the geometry through a material distribution field, proposed
to employ a total variation diminishing regularization that penalizes the gradient
norm |∇𝜌| throughout the domain. When combined with PINNs, we have found this
approach to produce solutions with sharp material density transitions but containing
large regions of intermediate 𝜌 values between 0 and 1. Instead, we will introduce
a novel eikonal regularization inspired from level-set methods and signed distance
functions to regularize the material distribution. We first present the general PINN-
based topology optimization framework in Section 4.2.2, before describing the novel
regularization approach in Section 4.2.3.

4.2.2 General framework

The topology optimization framework based on PINNs that we propose for solving ge-
ometry identification problems in mechanics is illustrated in Figure 1. We present the
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methodology in a general setting in the next two sections, and describe in Appendix
C.2 its particular application to the two problems formulated in the introduction.
At the root of the framework are several deep neural networks that approximate all
𝑛 physical quantities describing the problem, which we lump into a vector field 𝜓(x),
and the material distribution 𝜌(x). For the physical quantities, each neural network
maps the spatial location x = (𝑥1, 𝑥2) to one of the variables in 𝜓 = (𝜓1, · · · , 𝜓𝑛),
where the 𝜓𝑖’s consist of the different components of displacement and stress. These
maps can be expressed as 𝜓𝑖(x) = 𝜓𝑖(x;𝜃𝑖), where 𝜓𝑖 is the map defined by the 𝑖th
neural network and its associated set of trainable parameters 𝜃𝑖 (see Appendix C.3.1
for details). For the material distribution, we first define a neural network with train-
able parameters 𝜃𝜑 that maps x to a scalar variable 𝜑(x) = 𝜑(x;𝜃𝜑). A sigmoid func-
tion is then applied to 𝜑(x) to yield 𝜌(x) = sigmoid(𝜑(x)/𝛿) = sigmoid(𝜑(x;𝜃𝜑)/𝛿),
which we simply write as 𝜌(x) = 𝜌(x,𝜃𝜑). This construction ensures that the material
distribution 𝜌(x) remains between 0 and 1, and 𝛿 is a transition length scale that we
will comment on later.

The goal is then to find the parameters 𝜃𝜓 = {𝜃1, . . . ,𝜃𝑛} and 𝜃𝜑 so that the
neural network approximations for 𝜓(x) and 𝜌(x) satisfy the governing equations
of elasticity (4.1)-(4.2) and the applied boundary conditions (4.3), while matching
the discrete measurements of displacement at the surface (4.4). This is achieved by
constructing a loss function of the form

ℒ(𝜃𝜓,𝜃𝜑) = 𝜆measℒmeas(𝜃𝜓) + 𝜆govℒgov(𝜃𝜓,𝜃𝜑) + 𝜆eikℒeik(𝜃𝜑), (4.5)

where ℒmeas and ℒgov measure the degree to which the neural network approximations
do not satisfy the discrete measurements and governing equations, respectively, ℒeik

is a crucial regularization term that drives 𝜌 towards 0 or 1 values and that we
will explain below, and the 𝜆’s are scalar weights. Assume that we have a set of
measurements (𝜓𝑗)

𝑚
𝑖 of the physical quantity 𝜓𝑗 at discrete locations x𝑖 ∈ 𝜕Ω𝑚

𝑗 for
𝑗 = 1, . . . , 𝑛, where 𝜕Ω𝑚

𝑗 refers to the set of measurement locations of 𝜓𝑗. The
measurement loss then takes the form

ℒmeas(𝜃𝜓) =
𝑛∑︁

𝑗=1

1

|𝜕Ω𝑚
𝑗 |

∑︁
x𝑖∈𝜕Ω𝑚

𝑗

|𝜓𝑗(x𝑖;𝜃𝑗)− (𝜓𝑗)
𝑚
𝑖 |2, (4.6)

where |𝜕Ω𝑚
𝑗 | denotes the size of the set 𝜕Ω𝑚

𝑗 . Expressing the governing equations of
elasticity in the residual form r𝑗(𝜓(x), 𝜌(x)) = 0 for 𝑗 = 1, . . . , 𝑛gov, where 𝑛gov is the
number of governing equations, the corresponding loss takes the form

ℒgov(𝜃𝜓,𝜃𝜑) =

𝑛gov∑︁
𝑗=1

1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|r𝑗(𝜓(x𝑖;𝜃𝜓), 𝜌(x𝑖;𝜃𝜑))|2, (4.7)

where Ω𝑑 is a set of collocation points in Ω. The two sets Ω𝑑 and 𝜕Ω𝑚 = 𝜕Ω𝑚
1 ∪ · · · ∪

𝜕Ω𝑚
𝑛 are illustrated in Figures 4-3(𝑎) and 4-3(𝑏) for the case of a square matrix with

voids. We use automatic differentiation to calculate in a mesh-free fashion the spatial
derivatives contained in the residuals r𝑗 of the governing equations. Further, we design
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Figure 4-2: (Caption on the next page.)
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Figure 4-2: Topology optimization framework for solving geometry identification in-
verse problems in mechanics. The geometry of the system, which is initially unknown,
is parametrized by a material distribution field given through a level-set function and
equal to 1 in the elastic solid and 0 in the voids or rigid inclusions. The level-set
function and the physical quantities describing the problem are approximated with
deep neural networks designed to inherently satisfy the applied boundary conditions.
These neural networks are then trained to minimize a loss function that drives the
material distribution and physical quantities towards satisfying the governing equa-
tion of elasticity while matching the discrete measurements of surface displacements
and tractions. Crucially, an eikonal regularization term in the loss function ensures
that the material distribution transitions between 0 and 1 over a prescribed length
scale and avoids settling on intermediate values. At the end of the optimization pro-
cess, the converged material distribution reveals the location and shapes of the hidden
structures.

Ωdeik

∂Ωm

Ωd

(a) (b) (c)

Figure 4-3: Example of the distribution of (𝑎) collocation points in Ω𝑑, (𝑏) measure-
ment points in 𝜕Ω𝑚, and (𝑐) collocation points in Ω𝑑

eik, for the specific case of a square
matrix containing two voids delimited by the zero contour level of 𝜑.

the architecture of our neural networks in such a way that they inherently satisfy the
boundary conditions. This approach, referred to in the literature as hard constraint as
opposed to the soft constraint approach of enforcing the boundary conditions through
the loss function [120, 121], is described in Appendix C.2.

Finally, the optimal parameters 𝜃*𝜓 and 𝜃*𝜑 that solve the problem can be obtained
by training the neural networks to minimize the loss (4.5) using gradient-based opti-
mization:

𝜃*𝜓,𝜃
*
𝜑 = arg min

𝜃𝜓 ,𝜃𝜑
ℒ(𝜃𝜓,𝜃𝜑). (4.8)

The corresponding physical quantities 𝜓*(x) = 𝜓(x;𝜃*𝜓) and material distribution
𝜌*(x) = 𝜌(x;𝜃*𝜑) will match the discrete measurements of displacement and traction at
the surface while satisfying the governing equations of elasticity and applied boundary
conditions. The number, locations and shapes of the hidden voids or rigid inclusions
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is then directly obtained from the profile of the material distribution 𝜌*(x) or from
the zero contour levels of the level-set function 𝜑*(x).

4.2.3 Material density regularization

We now describe the key ingredient that ensures the success of our framework. As
mentioned above, the main challenge is to promote the material distribution 𝜌(x) to
converge towards 0 or 1 rather than values in between, which do not have physical
meaning. Further, we desire the length scale of the transition region from 0 to 1 to
be uniform everywhere, so that the inner boundaries defined by the distribution 𝜌(x)
lead to the same local physical behavior at the interface (think for instance of the
vanishing fluid velocity at a solid interface).

To illustrate the problem, we show in the top row of Figure 4-4 a random initializa-
tion of the neural network 𝜑(x) = 𝜑(x,𝜃𝜑), the magnitude of its gradient |∇𝜑(x)| as
well as the corresponding material distribution 𝜌(x) = sigmoid(𝜑(x)/𝛿) with 𝛿 = 0.01.
Thanks to the sigmoid transformation, 𝜌 is bounded between 0 and 1, with dark blue
regions (𝜌 = 0) corresponding to one phase and yellow regions (𝜌 = 1) correspond-
ing to another. We define the transition between the two phases to be at 𝜌 = 0.5,
or equivalently 𝜑 = 0. The zero level-set of 𝜑, shown in black lines in Figure 4-4,
therefore implicitly defines the interface between the two material phases. Since this
is identical to the way shapes are parametrized in level-set methods [142, 141], we
hereafter refer to 𝜑 as a level-set function. However, one observes in Figure 4-4(𝑐)
that the thickness of the transition region where 𝜌 goes from 0 to 1 is not uniform
everywhere, resulting in large zones where 𝜌 assumes unphysical values between 0 and
1. Figure 4-4(𝑏) reveals that this issue is caused by the nonuniformity of the gradient
norm |∇𝜑| along the interface, with small and large values of |∇𝜑| leading to wide
and narrow transition regions, respectively.

We propose to solve this issue by forcing the gradient norm |∇𝜑| to be unity in a
narrow band of width 𝑤 along the interface defined by 𝜑 = 0. In this way, 𝜑 becomes
a signed distance function to the interface in the narrow band, thereby constraining
the gradient of 𝜌 to be constant along the interface. Further, we choose 𝑤 = 10𝛿
so that 𝜌 = sigmoid(±𝑤/2𝛿) = sigmoid(±5) ≃ 0 or 1 along the edge of the narrow
band. This ensures that the transition region where 𝜌 goes from 0 to 1 will be entirely
contained within the narrow band and thus have uniform thickness everywhere. We
illustrate this idea in the second row of Figure 4-4, where we have forced the previous
neural network 𝜑(x) = 𝜑(x,𝜃𝜑) to behave such that |∇𝜑| = 1 in a narrow band of
width 𝑤 = 10𝛿 = 0.1, while keeping the same interface, defined by 𝜑 = 0, as in the
top row of Figure 4-4. The edges of the narrow band are displayed in dotted lines in
Figure 4-4(𝑒). Clearly, 𝜑 now behaves like a signed-distance function in the narrow
band, which leads to a uniform interface transition thickness everywhere as observed
in Figure 4-4(𝑓).

In practice, we implement this regularization into our framework by adding the
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Figure 4-4: Eikonal regularization of the material distribution. (𝑎, 𝑑) Level-set
function 𝜑, (𝑏, 𝑒) magnitude of its gradient |∇𝜑|, and (𝑐, 𝑓) material distribution
𝜌 = sigmoid(𝜑/𝛿) defined by (𝑎-𝑐) a random initialization of the neural network
𝜑 = 𝑁𝜑(x,𝜃𝜑), and (𝑑-𝑓) the same network trained to minimize the eikonal loss
ℒeik(𝜃𝜑).

loss term ℒeik in (4.5), which takes the form

ℒeik(𝜃𝜑) =
1

|Ω𝑑
eik|

∑︁
x𝑖∈Ω𝑑

eik

(|∇𝜑(x𝑖)| − 1)2 , (4.9)

where Ω𝑑
eik = {x𝑖 ∈ Ω𝑑 : |𝜑(x𝑖)| < 𝑤/2}. The aim of this term is to penalize deviations

away from the constraint |∇𝜑| = 1 in a narrow band of width 𝑤 along the interface
defined by the zero level-set 𝜑(x) = 0. Because finding the true narrow band of width
𝑤 at every step of the training process would be too expensive, we relax the domain
over which the constraint |∇𝜑| = 1 is active by evaluating the eikonal loss ℒeik on the
subset of points x𝑖 in Ω𝑑 that satisfy |𝜑(x𝑖)| < 𝑤/2. As the constraint |∇𝜑| = 1 is
better and better satisfied, this set of collocation points will by construction overlap
with the true narrow band of width 𝑤 along the zero level-set of 𝜑, which is illustrated
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in 4-3(𝑐) for the case of a square matrix with two voids.
Since the constraint |∇𝜑| = 1 takes the form of an eikonal equation in the narrow

band, we call this approach eikonal regularization, with the subscript in ℒeik referring
to eikonal. In contrast to standard eikonal equations that are posed as boundary
value problems, however, our regularization does not force 𝜑 to vanish on a specified
boundary. Rather, 𝜑 is allowed to evolve freely during the optimization in such a way
that the corresponding material distribution 𝜌 = sigmoid(𝜑/𝛿) and physical quantities
𝜓 minimize the total loss (4.5).

4.3 Results

We construct a number of test cases by varying the number and shapes of the hidden
voids or rigid inclusions to be discovered in the matrix problem shown in Figure 4-1(𝑎),
and by varying the shape of the rigid substrate to be discovered in the layer problem
shown in Figure 4-1(𝑏). We consider both linear elastic and nonlinear hyperelastic
materials for the matrix problem, while we only consider linear elastic materials for the
layer problem. As a substitute for real experiments, we use the finite element software
Abaqus to compute the deformed shape of the elastic structure and generate the
measurement data for each case. Using this measurement data, we run our topology
optimization framework to discover the number, locations and shapes of the hidden
voids or rigid inclusions, which we then compare with the ground truth to assess
the efficacy of our framework. The architecture of the neural networks, the training
procedure and parameter values are described in detail in Appendix C.3, while the
setup of the Abaqus simulations is presented in Appendix C.4.

4.3.1 Elastic matrix

We first treat the matrix problem shown in Figure 4-1(𝑎) in the small-deformation
regime. Accordingly, we consider that the matrix consists of a linear elastic material
with nondimensional Young’s modulus 𝐸 = 1 and Poisson’s ratio 𝜈 = 0.3. The
measurement data is acquired in Abaqus by applying a nondimensional traction 𝑃𝑜 =
0.05 on the left edge of the matrix.

We first consider a matrix containing two circle-shaped voids and show in Figure
4-5 the corresponding results obtained with our topology optimization framework. In
(𝑎-𝑐), we display the evolution of the material distribution 𝜌 during the optimization
and its final state 𝜌*. The evolution of the various loss components is shown in (𝑑),
while the final level-set function 𝜑* and its gradient magnitude |∇𝜑*| are shown in
(𝑒,𝑓). Finally, (𝑔-𝑖) show the final Cauchy stress components 𝜎*

11, 𝜎*
22, and 𝜎*

12, in the
deformed configuration obtained from the final displacement components 𝑢*1 and 𝑢*2.
Although the solver starts from a single void, it recognizes that the solution consists
of two separate structures and splits the initial single void into two around epoch
9k. The two final holes obtained at epoch 150k match closely the true locations and
shapes of the voids that were used to generate the measurement data in Abaqus. This
demonstrates that our framework discovers not merely the shape but also the topology
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Figure 4-5: Linear elastic matrix with two circle-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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of the hidden geometry, and is therefore a true topology optimization framework.
Further, we notice that by epoch 7k, the thickness of the transition region from 𝜌 = 0
to 𝜌 = 1 is uniform all along the interface, thanks to the Eikonal regularization that
constrains the level-set function 𝜑 to have a unit slope in a band of width 𝑤 along
the interface, as can be seen in (𝑓). We also consider a matrix containing four circle-
shaped voids, with the corresponding results shown in Figure 4-6. Here too, the solver
recognizes that the solution consists of four separate structures, and the final holes
obtained at epoch 150k match closely the true locations and shapes of the voids.

To investigate the ability of our framework to find more complicated shapes than
circles, we then consider a matrix with one rectangle-shaped and one star-shaped
void. The corresponding results obtained from our topology optimization framework
are presented in Figure 4-7. As in the previous case, the framework is able to detect
the presence of two structures and has already split the initial single void in two by
epoch 3k. Subsequent iterations allow the solver to discover the intricacies of each
shape, and the final structures obtained at epoch 150k closely match the true void
locations and shapes, including the aspect ratio of the rectangle and, impressively,
the concavity of the star. Next, we consider a matrix containing a slit-shaped void,
with the corresponding results shown in Figure 4-8. The slit is designed to resemble
the location and aspect ratio of that considered in a similar setup in Ref. [197]. In
their case, the geometry of the slit was parametrized by the 𝑥 and 𝑦 coordinates
of the circles at both ends and its width known in advance. Still, finding these
four scalar parameters required measurement data from 10 points located inside the
matrix. On the other hand, our framework only relies on measurement data from
the surface and does not know that it should be looking for a slit or even a single
structure. Even then, it is able to identify the slit with remarkable accuracy. Next,
we consider a matrix with a U-shaped void, with the corresponding results shown in
Figure 4-9. The shape found by our framework lacks the middle part of the U. Since
the middle part undergoes very little deformation and stress, its presence negligibly
affects the measurements of displacement and traction at the surface, which highlights
a limitation of our framework. Finally, we consider a matrix with a T-shaped void,
with the corresponding results shown in Figure 4-10. The shape of the T is globally
well-identified, with the exception of the two concave corners that undergo very little
deformation and stress, similar to the middle part of the U in the previous example.

We then consider a matrix containing a circle-shaped rigid inclusion. The corre-
sponding results obtained from our topology optimization framework are presented
in Figure 4-11. The rigid inclusion leads to a strengthening of the matrix and, ac-
cordingly, produces a less noticeable signature on the measurements of outer surface
displacement. Even then, the framework is able to identify the location and shape of
the inclusion. We also consider a matrix with a square-shaped rigid inclusion, with
the corresponding results shown in Figure 4-12. In this case too, we are able to find
the location and approximate shape of the inclusion.

Finally, we consider the same matrix problem but in the large-deformation regime.
This time, we consider that the matrix consists of a nonlinear hyperelastic material
with nondimensional shear modulus 𝜇 = 1/2.6, and the measurement data is acquired
in Abaqus by applying a nondimensional traction 𝑃𝑜 = 0.2 on the left edge of the
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Figure 4-6: Linear elastic matrix with four circle-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-7: Linear elastic matrix with one rectangle-shaped and one star-shaped void.
(𝑎-𝑐) Evolution of the material distribution 𝜌 during the optimization, and its final
state 𝜌*. (𝑑) Evolution of the various loss components during the optimization. (𝑒,
𝑓) Final level-set function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy
stress components 𝜎*

11, 𝜎*
22, and 𝜎*

12, displayed in the deformed configuration obtained
from the final displacement components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-8: Linear elastic matrix with one slit-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)
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Figure 4-9: Linear elastic matrix with one U-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-10: Linear elastic matrix with one T-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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Figure 4-11: Linear elastic matrix with one circle-shaped rigid inclusion. (𝑎-𝑐) Evo-
lution of the material distribution 𝜌 during the optimization, and its final state 𝜌*.
(𝑑) Evolution of the various loss components during the optimization. (𝑒, 𝑓) Final
level-set function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress
components 𝜎*

11, 𝜎*
22, and 𝜎*

12, displayed in the deformed configuration obtained from
the final displacement components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-12: Linear elastic matrix with one square-shaped rigid inclusion. (𝑎-𝑐) Evo-
lution of the material distribution 𝜌 during the optimization, and its final state 𝜌*.
(𝑑) Evolution of the various loss components during the optimization. (𝑒, 𝑓) Final
level-set function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress
components 𝜎*

11, 𝜎*
22, and 𝜎*

12, displayed in the deformed configuration obtained from
the final displacement components 𝑢*1 and 𝑢*2.
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matrix. We investigate the same six matrix geometries containing voids as before,
and we display in Figures 4-13, 4-14, 4-15, 4-16, 4-17, and 4-18 the corresponding
results. All the geometries are identified equally well or almost as well as in the linear
elastic case, which illustrates the ability of the framework to cope with nonlinear
constitutive models.

4.3.2 Elastic layer

We now turn to the elastic layer problem shown in Figure 4-1(𝑏), which we treat in the
small-deformation regime. Accordingly, we consider that the matrix consists of a lin-
ear elastic material with nondimensional Young’s modulus 𝐸 = 1 and Poisson’s ratio
𝜈 = 0.3. The measurement data is acquired in Abaqus by applying a nondimensional
pressure 𝑃𝑜 = 0.1 on the top edge of the matrix.

We first consider a pulse-shaped rigid substrate, with the corresponding results
shown in Figure 4-19. Notice that the nature of this problem is very different from
the matrix one, since the hidden structure to be discovered is not entirely contained
within the total domain Ω, and the measurements are only taken at the top surface
instead of all four sides. Still, the topology optimization framework is able to find
the correct shape of the rigid substrate by the end of the optimization process. We
then consider a random-shaped rigid substrate, with the corresponding results shown
in Figure 4-20. In this case too, the framework is able to identify the correct shape
of the substrate, including in places that are far away from the surface.

4.4 Discussion

We have presented a topology optimization framework based on PINNs, with an
eikonal regularization inspired by level-set methods and signed distance functions.
Thanks to the parametrization of the geometry through a material density field that
can adapt to any topology, our framework is able to discover both the number and
the shape of hidden structures, without any prior knowledge required regarding the
number or the type of shape to expect. In other words, it is a true topology optimiza-
tion framework since it can discover the right topology of the solution beyond merely
discovering the right shape(s) given a known topology. We note that this makes our
approach stand out amongst other approaches in the literature that treat the same
geometry identification problem, for which one needs to specify in advance either the
number of structures to identify, the type of geometries to identify (e.g. circle, slit,
etc), or both. Notable exceptions are the studies in Ref. [113] which parametrizes
the geometry using a curve defined through a set of control nodes that can represent
multiple structures at the same time, and Ref. [128] which parametrizes the geom-
etry through a material distribution field. Ref. [113] demonstrates the detection of
three circle-shaped inclusions but does not present results involving more compli-
cated shapes, while Ref. [128] only considers examples with a single circle-shaped
inclusion. By contrast, our framework is, to our knowledge, the first one to success-
fully detect multiple structures with each very different shapes. Moreover, thanks
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-13: Hyperelastic matrix with two circle-shaped voids. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-14: Hyperelastic matrix with four circle-shaped voids. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-15: Hyperelastic matrix with one rectangle-shaped and one star-shaped void.
(𝑎-𝑐) Evolution of the material distribution 𝜌 during the optimization, and its final
state 𝜌*. (𝑑) Evolution of the various loss components during the optimization. (𝑒,
𝑓) Final level-set function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy
stress components 𝜎*

11, 𝜎*
22, and 𝜎*

12, displayed in the deformed configuration obtained
from the final displacement components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-16: Hyperelastic matrix with one slit-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-17: Hyperelastic matrix with one U-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-18: Hyperelastic matrix with one T-shaped void. (𝑎-𝑐) Evolution of the
material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evolution
of the various loss components during the optimization. (𝑒, 𝑓) Final level-set function
𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components 𝜎*

11, 𝜎*
22,

and 𝜎*
12, displayed in the deformed configuration obtained from the final displacement

components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-19: Linear elastic layer with a pulse-shaped rigid substrate. (𝑎-𝑐) Evolution
of the material distribution 𝜌 during the optimization, and its final state 𝜌*. (𝑑) Evo-
lution of the various loss components during the optimization. (𝑒, 𝑓) Final level-set
function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress components
𝜎*
11, 𝜎*

22, and 𝜎*
12, displayed in the deformed configuration obtained from the final

displacement components 𝑢*1 and 𝑢*2.
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(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 4-20: Linear elastic layer with a random-shaped rigid substrate. (𝑎-𝑐) Evo-
lution of the material distribution 𝜌 during the optimization, and its final state 𝜌*.
(𝑑) Evolution of the various loss components during the optimization. (𝑒, 𝑓) Final
level-set function 𝜑* and its gradient magnitude |∇𝜑*|. (𝑔-𝑖) Final Cauchy stress
components 𝜎*

11, 𝜎*
22, and 𝜎*

12, displayed in the deformed configuration obtained from
the final displacement components 𝑢*1 and 𝑢*2.
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to the representation of the geometry through a material distribution field and the
flexibility of PINNs, extending our framework to the three-dimensional case should
be straightforward.

Since we parametrize the geometry implicitly through a material density field, a
major challenge is to drive the latter towards 0 or 1 and avoid intermediate values
that do not have physical meaning. In this work, we have proposed to solve this
problem by requiring that the level-set function underlying the material distribution
satisfies the eikonal equation in a narrow band of finite width along its zero contour
level. Since the zero contour level defines the location of the interface between the
two phases, this ensures that the level-set function becomes a signed distance function
to the interface. As a result, the thickness of the interface zone where the material
density transitions between 0 and 1 is everywhere uniform, and there cannot be large
zones of intermediate material density values. This eikonal constraint on the level-set
function is naturally implemented in the PINN framework through the inclusion of
an additional loss function, which we call eikonal regularization. This regularization
bears resemblance to the work of Ref. [70], which showed that neural networks can
be trained to learn signed distance functions by enforcing the Eikonal equation to
be satisfied everywhere in space. However, in their case the neural network is also
forced to vanish at a set of points sampled on a predefined surface of interest, while
in our case the neural network approximation of the level-set function is allowed to
evolve freely in such a way that the geometry defined by its zero level set solves the
geometry identification problem. Another difference is that we only impose the eikonal
constraint in a narrow band around the zero level set; outside the band the material
density is nearly equal to 0 or 1 so the specific values of the level-set function do not
matter. In fact, we have observed that imposing the eikonal constraint in the entire
domain leads to worse results. Interestingly, we note that restricting the level-set
function to solve the eikonal equation only in a narrow band around its zero level set
is similar in spirit to narrow-band algorithms in traditional level-set methods. These
algorithms nevertheless require an explicit velocity vector with which to update in
a separate step the position of the zero level set, which is usually calculated using
complex adjoint-based methods.

Although we have applied our framework to the problem of identifying hidden
shapes and inclusions in elastic bodies, we emphasize that the methodology we pro-
pose is very general. Specifically, the idea of parametrizing geometries of arbitrary
topologies with a material density field regularized with the eikonal constraint opens a
pathway for PINNs to be applied to a wide range of geometry identification or design
problems constrained by physical governing equations. The main requirement is that
the same governing equations describe, through an explicit dependence on the ma-
terial density variable, both phases of the problem under consideration. Within the
realm of solid mechanics, such problems include topology optimization of structures
[16] and metamaterials [95, 105], where the goal is to design structures that exhibit
minimum compliance under load or other desirable mechanical, acoustic or thermal
properties. In fluid mechanics, shape or topology optimization of structures is also a
subject of interest, this time with the objective of minimizing the drag or maximizing
the heat exchange of the fluid flowing through or around the structure [23, 136, 46].

110



Finally, one can also envision applications in photonic design, where the goal is to
design lenses that demonstrate specified optical properties [137, 124].
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have introduced analytical and numerical techniques to address
several forward and inverse problems in systems ranging from a single elastic body to
thousands of interacting ones. As such, a common theme between the different chap-
ters has been the development of tools and techniques to address various engineering
problems. Here, we give a high-level overview of the methodological contributions
made in the different chapters. In Chapter 2, we focused on forward problems involv-
ing systems of a few hundred particles, each with elastically-anisotropic constitutive
behavior. We derived analytically an orientation-dependent contact law for the force
generated between elastically-anisotropic particles of any smooth shape. This contact
law, which can be implemented in any DEM code, enables fast and accurate com-
putational modeling of these systems in ways that were previously not possible. In
Chapter 3, we focused on forward problems involving granular systems with millions
of particles. We extended an existing continuum model for such systems in order to
describe accurately the onset and arrest of flow in response to external loading vari-
ations in different geometries. Our approach rests on the integration of mechanisms
for both hysteretic and nonlocal behavior, which provides a blueprint for modeling
of other systems displaying similar properties, such as emulsions. In Chapter 4, we
focused on inverse problems in single elastic bodies. We combined machine learn-
ing, physical governing equations and a novel regularization methodology to devise
a topology optimization framework for geometry identification of hidden voids or in-
clusions based on surface response measurements. Our framework is very general and
can be applied to a wide range of geometry identification and design problems across
various fields of engineering.

5.2 Future directions

We trace out a few directions in which the different parts of the work can be extended
in the future. Some of these have already been mentioned at the end of the respective
chapter; some others are new.
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In Chapter 2, the contact force model we have derived is limited to elastic defor-
mation of the particles. As the force between two contacting particles increases, they
eventually enter into a plastic deformation regime, which changes the relationship
between force and overlap predicted by the contact force model. Thus, integrating
plastic effects into our elastically anisotropic contact law is one potential avenue for
future research. A second limitation of our work is that our contact law does not
specify the tangential component of the contact force; addressing this shortcoming
would be a valuable contribution. Finally, the custom DEM code in which we have
implemented our contact law can accommodate a few particles at most; integrating
the contact law into a high-performance DEM solver such as LAMMPS would be
critical study the effect of elastic anisotropic on the macroscopic behavior of larger
systems such as powders.

In Chapter 3, we have not been able to obtain a quantitative match between
the continuum model predictions and the DEM simulations, and we have speculated
that the discrepancy is due to the modeling of the boundary conditions. Addressing
this question is a critical step towards practical usability of the model for engineering
applications in which one needs accurate predictions both during the onset and arrest
of flow as well as in the flowing regime. Furthermore, our study has revealed that the
threshold for onset of flow is highly stochastic. While we have developed a procedure
to adapt our deterministic continuum model to this stochastic threshold, a more
accurate approach would be to make the continuum model itself stochastic, perhaps
through the inclusion of stochastic term that only affects the threshold for onset of
flow.

In Chapter 4, we have applied our topology optimization to linear elastic and
hyperelastic materials in plane-strain configurations. An immediate next step would
be to apply the framework to a wider range of constitutive models as well as to three-
dimensional geometries. Other than the static loading scenario we have considered,
the framework could be applied to geometry identification problems in other types of
experiments such as acoustic or electromagnetic scattering. Beyond geometry identi-
fication problems, our method could also potentially be extended to inverse problems
involving design of geometries to achieve targeted properties. These include struc-
tures that minimize compliance under load, airfoils that minimize drag, lenses that
focus light on a target, and many other problems in a wide range of fields.
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Appendix A

Supplementary information for
Chapter 2

A.1 Coordinate systems and transformations
In this appendix, we introduce coordinate transformation matrices between the vari-
ous reference frames that are utilized, which will come in handy when we describe the
implementation of the contact force law in the following appendices. Recall Figure
2-2(a), which shows the two contacting bodies introduced in Figure 4-1, this time
viewed from the global (laboratory) reference frame which is defined by the set of
coordinates (𝒳1,𝒳2,𝒳3). In Section 2.3.2, we have introduced a local set of coordi-
nates (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) that is oriented along the material structure of a given body

𝐵, rotating with it at all times. Finally, we also need to consider the set of coordi-
nates (𝑥, 𝑦, 𝑧) aligned with the contact normal and tangent plane directions. Before
proceeding further, we introduce three sets of orthonormal basis vectors:

• (e𝒳1 , e
𝒳
2 , e

𝒳
3 ), for the global coordinate system (𝒳1,𝒳2,𝒳3),

• (e𝑋1 , e
𝑋
2 , e

𝑋
3 ), for the body-centric coordinate system (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ),

• (e𝑥1 , e
𝑥
2 , e

𝑥
3), for the contact coordinate system (𝑥, 𝑦, 𝑧).

The orientation of body 𝐵 – defined by coordinates (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) – with respect

to the global reference frame (𝒳1,𝒳2,𝒳3) can be parameterized by a rotation matrix
[R𝐵] whose components are defined by 𝑅𝐵

𝑖𝑗 = e𝒳𝑖 · e𝑋𝑗 . (Appendix A.7 provides a
relationship between these rotation matrices and the Euler parameters introduced in
Section 2.6.1 to characterize the orientation of particles in the DEM code.) Further,
we also introduce a coordinate transformation matrix [Q𝐵] from the contact basis to
the body-centric basis, with elements given by 𝑄𝐵

𝑖𝑗 = e𝑋𝑖 · e𝑥𝑗 .
With this in hand, one can relate the components of a vector v in the global or

contact bases to its components in the local basis of body 𝐵 as

{v}𝑋 = [R𝐵]T{v}𝒳 , (A.1a)
{v}𝑋 = [Q𝐵]{v}𝑥, (A.1b)
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where the superscripts 𝑋, 𝒳 , and 𝑥 denote the components in the body-centric,
global, and contact bases, respectively.

A.2 Calculation of the Green’s function
Algorithm 1 presents a numerical procedure for computing the Green’s function
ℎ𝐵(𝜃; 0) introduced in Section 2.3.2, which is a function of the elasticity tensor C𝐵

as well as the relative orientation of the contact (𝑥, 𝑦, 𝑧) basis with respect to the
body-centric (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis. The latter is parameterized by the coordinate

transformation matrix [Q𝐵] introduced in Appendix A.1. Hereafter, we offer some
complementary information on the algorithm. For the polar orientation 𝜃 and 𝜑 = 0,
the coordinates of the unit vectors r and s introduced in (A.2) are given in the (𝑥, 𝑦, 𝑧)
contact basis by

{r}𝑥 = (cos 𝛾 sin 𝜃,− cos 𝛾 cos 𝜃,− sin 𝛾)T, (A.2a)
{s}𝑥 = (− sin 𝛾 sin 𝜃, sin 𝛾 cos 𝜃,− cos 𝛾)T, (A.2b)

which is used in line 3. In line 9, we have used the fact that the unit normal n is related
to the basis vector e𝑥3 as n = −e𝑥3 ; therefore its coordinates in the (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis

are given by 𝑛𝐵
𝑖 = −𝑄𝐵

𝑖3. In practice, we discretize the integrals and iterate the for
loops on lines 1 and 2 over 100 values of 𝜃 and 𝛾, equispaced between 0 and 2𝜋.

Algorithm 1: Calculation of the Green’s function ℎ𝐵(𝜃; 0)
Input: Coordinate transformation matrix [Q𝐵] from (𝑥, 𝑦, 𝑧) basis to

(𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis, components of elasticity tensor C𝐵 in

(𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis

1 for 𝜃 = 0 to 2𝜋 do
2 for 𝛾 = 0 to 2𝜋 do
3 Calculate coordinates of r, s in (𝑥, 𝑦, 𝑧) basis with (A.2)
4 Transform coordinates of r, s to (𝑋𝐵

1 , 𝑋
𝐵
2 , 𝑋

𝐵
3 ) basis using (A.1b)

with [Q𝐵]
5 Compute integrand of (2.23) using (2.24)
6 end
7 Perform integral in (2.23) to get 𝐺𝑖𝑗(𝜃; 0)

8 end
9 Using (2.25), compute ℎ𝐵(𝜃; 0) ← 𝑄𝐵

𝑘3𝐺
−1
𝑘𝑚(𝜃; 0)𝑄

𝐵
𝑚3

Output: Green’s function ℎ𝐵(𝜃; 0)

A.3 Solution strategy for 𝑒 and 𝜑

We describe our strategy to solve numerically the coupled equations (2.33) for the
eccentricity 𝑒 and phase angle 𝜑. First, we recast these equations as a minimization
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problem for the objective function 𝐽(𝑒, 𝜑) = log(𝑓 2
1 (𝑒, 𝜑) + 𝑓 2

2 (𝑒, 𝜑)), where 𝑓1(𝑒, 𝜑)
and 𝑓2(𝑒, 𝜑) denote respectively the left-hand-sides of (2.33a) and (2.33b). We then
perform a global search for the minimum of 𝐽 on a coarse grid of values in the
range 𝑒 ∈ [0, 0.8] and 𝜑 ∈ [−𝜋/2, 𝜋/2], and feed the resulting value as an initial
condition to a gradient-based constrained optimization solver. We use MATLAB’s
fmincon function, which implements an interior-point algorithm, and constrain the
search over the region 𝑒 ∈ [0, 1]. Since the objective function is 2𝜋-periodic in the
𝜑-direction, we have found that the optimization procedure is more robust when we
leave 𝜑 unconstrained, and bring its value back to the interval [−𝜋/2, 𝜋/2] once the
algorithm has converged.

A.4 Calculation of a look-up table for 𝐸̃𝐵
*

Given a material represented through its elasticity tensor C𝐵, Algorithm 2 describes
a numerical procedure for computing a look-up table of values of the equivalent plane
strain modulus 𝐸̃𝐵

* (𝛼
𝐵, 𝛽𝐵) defined in Section 2.4.1, for all possible orientations 𝛼𝐵 ∈

[0, 2𝜋] and 𝛽𝐵 ∈ [0, 𝜋]. We emphasize that the look-up table, [𝐸̃*](·, · ;C𝐵), is purely
a function of the elasticity tensor C𝐵. As a result, a given simulation simply requires
one look-up table per material present in the system. In the common case where
all particles are made of the same material, only one such look-up table needs to be
precomputed and stored. In our implementation, we have used 100 equispaced values
for 𝛼𝐵 and 50 for 𝛽𝐵. In line 7, the computation of the constant term of the Fourier
series may be performed efficiently through the average 𝑎𝐵0 = (2𝜋)−1

∫︀ 2𝜋

0
ℎ𝐵(𝜃; 0)𝑑𝜃.

Note that the orientation of the unit vectors u, v selected in line 4 of Algorithm 2
is inconsequential since only the mean component of the Green’s function ℎ𝐵(𝜃; 0) is
used.

Algorithm 2: Calculation of a look-up table of precomputed values of 𝐸̃𝐵
*

Input: Components of elasticity tensor C𝐵 in (𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis

1 for 𝛼𝐵 = 0 to 2𝜋 do
2 for 𝛽𝐵 = 0 to 𝜋 do
3 Use (2.35a) to construct n from Euler angles (𝛼𝐵, 𝛽𝐵)
4 Construct u and v such that (u,v,n) forms an orthonormal basis
5 Build the coordinate transformation matrix

[Q𝐵]← [{u}𝑋 , {v}𝑋 , {n}𝑋 ]
6 Call Algorithm 1 using [Q𝐵] and C𝐵 to get the Green’s function

ℎ𝐵(𝜃; 0)

7 Calculate [𝐸̃*](𝛼
𝐵, 𝛽𝐵;C𝐵) from ℎ𝐵(𝜃; 0) with (2.37)

8 end
9 end

Output: Look-up table [𝐸̃*](·, · ;C𝐵)
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A.5 Retrieving 𝐸̃𝑐
* from the look-up table

We outline in Algorithm 3 a procedure for retrieving the composite plain strain mod-
ulus 𝐸̃𝑐

* between two contacting bodies 𝐵1 and 𝐵2 from their orientations and the
look-up table(s) precomputed by Algorithm 2. (Appendix A.7 presents formulae for
obtaining the rotations matrices [R𝐵1 ] and [R𝐵2 ] characterizing the orientations of 𝐵1

and 𝐵2 from the Euler parameters utilized in Section 2.6.1.) The algorithm is outlined
for the general case where 𝐵1 and 𝐵2 are made of different materials with elasticity
tensors C𝐵1 and C𝐵2 , requiring the passage of two look-up tables as an input, one
corresponding to each material. Note however that if 𝐵1 and 𝐵2 are made of the same
material, then only one look-up table is required. As pointed out in Section 2.3.2,
the Green’s function (2.22), and therefore the plane strain modulus 𝐸̃𝐵

* , are blind to
the sign of the contact normal n. Thus, we use in line 2 the same n to define the
components of the contact normal direction in the reference frames of both bodies.

Algorithm 3: Retrieving the composite plain strain modulus 𝐸̃𝑐
*

Input: Rotation matrices [R𝐵1 ] and [R𝐵2 ] describing the orientations of
bodies 𝐵1 and 𝐵2, components {n}𝒳 of contact normal direction n in
global basis, look-up tables [𝐸̃*](·, · ;C𝐵1) and [𝐸̃*](·, · ;C𝐵2)

1 for 𝐵 = 𝐵1, 𝐵2 do
2 Transform the coordinates of n from the global to the body’s local

(𝑋𝐵
1 , 𝑋

𝐵
2 , 𝑋

𝐵
3 ) basis using (A.1a) with [R𝐵]

3 Convert these coordinates to Euler angles (𝛼𝐵, 𝛽𝐵) using (2.35b)
4 Use (𝛼𝐵, 𝛽𝐵) to interpolate 𝐸̃𝐵

* from the look-up table [𝐸̃*](·, · ;C𝐵)

5 end
6 Calculate 𝐸̃𝑐

* using (2.40)
Output: Composite plain strain modulus 𝐸̃𝑐

*

A.6 Geometric features of the exact contact law
Here, we provide further details on the geometric features of the exact contact law for
the materials and indentation parameters considered in Section 2.5.2. More specifi-
cally, we show polar visualizations of the eccentricity 𝑒, orientation 𝜑, and semi-major
axis length 𝑎1 of the contact area incurred by an indentation depth 𝛿 = 100 nm, for
a circular gap function (𝐴 = 𝐵 = 1𝜇m−1) in Figure A-1 and an elliptic gap function
(𝐴 = 1𝜇m−1, 𝐵 = 2𝜇m−1) in Figure A-2. In both figures, (a,b,c) correspond to iron,
(d,e,f) to quartz, and (g,h,i) to zirconia. Note that the discontinuities of the 𝜑 field
appearing in Figure A-1 are merely a visual artefact; indeed, the orientations 𝜑 = 𝜋/2
and 𝜑 = −𝜋/2 are effectively identical as can be inferred from Figure 4-1(c). Inter-
estingly, the contact normal direction-dependence of the fields 𝑒, 𝜑, and 𝑎1 undergoes
drastic change as the gap function changes from circular to elliptic, while that of the
normal force 𝐹 remains relatively unaffected, as was shown in Figures 2-4 and 2-5.
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Figure A-1: Polar visualizations of the eccentricity 𝑒, orientation 𝜑, and semi-major
axis length 𝑎1 of the contact area predicted by the exact solution for iron (a,b,c),
quartz (d,e,f), and zirconia (g,h,i), under indentation depth 𝛿 = 100 nm and gap
function coefficients 𝐴 = 𝐵 = 1𝜇m−1.
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Figure A-2: Polar visualizations of the eccentricity 𝑒, orientation 𝜑, and semi-major
axis length 𝑎1 of the contact area predicted by the exact solution for iron (a,b,c),
quartz (d,e,f), and zirconia (g,h,i), under indentation depth 𝛿 = 100 nm and gap
function coefficients 𝐴 = 1𝜇m−1 and 𝐵 = 2𝜇m−1.
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A.7 Relationship between Euler parameters and ro-
tation matrices

In the DEM code presented in Section 2.6, the orientation of a given particle 𝑖 is
described using Euler parameters, or unit quaternions, {𝜖𝑖} since their time integra-
tion from the angular velocity {𝜔𝑖} is straightforward. In Appendices A.1 and A.5,
however, the orientation is specified by a rotation matrix [R𝐵𝑖 ] (with 𝐵𝑖 referring to
particle 𝑖), since the latter can be utilized to transform vector components from the
global to the body-centric coordinate systems. Here, we specify the simple relation-
ship that exists between the two representations. Dropping the index 𝑖, the rotation
matrix is given by the Euler parameters as [78]

[R𝐵] = 2

⎡⎣ 𝜖20 + 𝜖21 − 1/2 𝜖1𝜖2 − 𝜖0𝜖3 𝜖1𝜖3 + 𝜖0𝜖2
𝜖1𝜖2 + 𝜖0𝜖3 𝜖20 + 𝜖22 − 1/2 𝜖2𝜖3 − 𝜖0𝜖1
𝜖1𝜖3 − 𝜖0𝜖2 𝜖2𝜖3 + 𝜖0𝜖1 𝜖20 + 𝜖23 − 1/2

⎤⎦ , (A.3)

while the Euler parameters are given by the rotation matrix as

𝜖20 =
tr[R𝐵] + 1

4
, (A.4a)

𝜖1 =
𝑅𝐵

32 −𝑅𝐵
23

4𝜖0
, (A.4b)

𝜖2 =
𝑅𝐵

13 −𝑅𝐵
31

4𝜖0
, (A.4c)

𝜖3 =
𝑅𝐵

21 −𝑅𝐵
12

4𝜖0
. (A.4d)

Note that the quadratic equation for 𝜖0 possesses two roots, and the choice of a
particular root also affects the signs of 𝜖1, 𝜖2, and 𝜖3. Since the elements of [R𝐵] are
quadratic in the Euler parameters, either root may be selected for 𝜖0 and still define
the same physical orientation of the body.

A.8 Further details on the DEM implementation

We provide additional details regarding our DEM code. We consider spherical zirconia
particles with density 𝑚 = 5680 kg/m3 and uniform diameter 𝑑 = 1 cm. The elastic
part of the normal force is calculated with our anisotropic contact law, using the
elastic constants of zirconia given in Section 2.5. The viscous part is given a damping
parameter 𝛾𝑛 = 200Ns/m in Section 2.6.2, and 𝛾𝑛 = 0 in Section 2.6.3. The code is
implemented in MATLAB and utilizes a semi-implicit Euler method to evolve (2.52)
and (2.55). The linear and angular velocities are first integrated explicitly, following
which the positions and orientations are integrated using the new (end-of-time-step)
linear and angular velocities. We use a time step ∆𝑡 = 10−6 s.
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A.9 Theoretical analysis of the compressed chain

In this appendix, we derive the dispersion relation of the compressed chain of particles
investigated in Section 2.6.3. Our derivation follows the exposition of [82] and [21],
extending the latter to the present case of a four-particle unit cell. First, consider
the force that is generated between any two particles 𝑖 and 𝑗 in the chain as a result
of both the static force 𝐹0 and the dynamic displacement of the particles. Following
our contact force law (2.41), this force reads

𝐹𝑖𝑗 = 𝐾𝑖𝑗(𝛿
0
𝑖𝑗 + 𝛿𝑖𝑗)

3/2, (A.5)

where 𝛿0𝑖𝑗, 𝛿𝑖𝑗 are the overlaps between particles 𝑖 and 𝑗 due respectively to the static
and dynamic force, and 𝐾𝑖𝑗 is the nonlinear contact stiffness between particles 𝑖 and
𝑗, defined as

𝐾𝑖𝑗 =
2

3
𝐸̃𝑐

*(𝛼𝑖, 𝛽𝑖, 𝛼𝑗, 𝛽𝑗)𝑑
1/2, (A.6)

with 𝛼𝑖, 𝛽𝑖, 𝛼𝑗, 𝛽𝑗 the Euler angles describing the orientations of particles 𝑖 and 𝑗
with respect to the contact normal direction (which is parallel to the chain axis), and
𝑑 the uniform diameter of the particles. Assuming that 𝛿𝑖𝑗 ≫ 𝛿0𝑖𝑗, the force-overlap
relationship (A.5) can be linearized about 𝛿0𝑖𝑗, leading to

𝐹𝑖𝑗 ≃ 𝐾𝑖𝑗(𝛿
0
𝑖𝑗)

3/2 +
3

2
𝐾𝑖𝑗(𝛿

0
𝑖𝑗)

1/2𝛿𝑖𝑗 = 𝐹0 + 𝜅𝑖𝑗𝛿𝑖𝑗, (A.7)

where we have substituted the static force 𝐹0 = 𝐾𝑖𝑗(𝛿
0
𝑖𝑗)

3/2 and defined the linearized
stiffness 𝜅𝑖𝑗 between particles 𝑖 and 𝑗 as

𝜅𝑖𝑗 =
3

2
𝐾𝑖𝑗(𝛿

0
𝑖𝑗)

1/2 =
3

2
𝐾

2/3
𝑖𝑗 𝐹

1/3
0 . (A.8)

Going back to Figure 2-12(a), we recall that our particles are oriented in a way that
gives rise to three different possible stiffnesses between any two particles. Letting
these stiffnesses 𝜅1, 𝜅2, and 𝜅3, we can write the linearized governing equations for
the infinitely long chain as

𝑚𝑢̈4𝑛−3 = 𝜅3(𝑢4𝑛−4 − 𝑢4𝑛−3)− 𝜅2(𝑢4𝑛−3 − 𝑢4𝑛−2), (A.9a)
𝑚𝑢̈4𝑛−2 = 𝜅2(𝑢4𝑛−3 − 𝑢4𝑛−2)− 𝜅1(𝑢4𝑛−2 − 𝑢4𝑛−1), (A.9b)
𝑚𝑢̈4𝑛−1 = 𝜅1(𝑢4𝑛−2 − 𝑢4𝑛−1)− 𝜅2(𝑢4𝑛−1 − 𝑢4𝑛), (A.9c)
𝑚𝑢̈4𝑛 = 𝜅2(𝑢4𝑛−1 − 𝑢4𝑛−0)− 𝜅3(𝑢4𝑛 − 𝑢4𝑛+1), (A.9d)

where 𝑚 denotes the uniform mass of the particles, 𝑢𝑖 is the dynamic displacement of
particle 𝑖 with respect to its static equilibrium position in the compressed chain, and
𝑛 is the index of the unit cell. These are wave equations on a lattice with periodicity
equal to the static unit cell length 𝑎 = 4𝑑− 𝛿01− 2𝛿02− 𝛿03, where 𝛿0𝑐 refers to the static
overlap at a contact with stiffness 𝜅𝑐. We therefore express the solution as a Bloch
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wave expansion,

{𝑢4𝑛−3, 𝑢4𝑛−2, 𝑢4𝑛−1, 𝑢4𝑛} = {𝑈, 𝑉,𝑊,𝑋}𝑒𝑖(𝑘𝑎𝑛−𝜔𝑡), (A.10)

where the wavenumber 𝑘 belongs to the first Brillouin zone, [−𝜋/𝑎, 𝜋/𝑎]. In order
to find the frequency 𝜔 corresponding to each 𝑘, we substitute the expansion (A.10)
into (A.9) and solve for a nontrivial solution. This results in the dispersion relation

𝑚4𝜔8 + 𝑐6𝑚
3𝜔6 + 𝑐4𝑚

2𝜔4 + 𝑐2𝑚𝜔
2 + 𝑐0 = 0, (A.11)

where 𝑐6, 𝑐4, 𝑐2, 𝑐0 are functions of 𝜅1, 𝜅2, 𝜅3 as follows:

𝑐6 = −2(𝜅1 + 2𝜅2 + 𝜅3), (A.12a)
𝑐4 = −𝜅21 − 2𝜅22 − 𝜅23 + (𝜅1 + 𝜅2)

2 + (𝜅2 + 𝜅3)
2

+ 4(𝜅1 + 𝜅2)(𝜅2 + 𝜅3), (A.12b)
𝑐2 = 2(𝜅1 + 𝜅2)(𝜅

2
2 + 𝜅23) + 2(𝜅2 + 𝜅3)(𝜅

2
1 + 𝜅22)

− 2(𝜅1 + 𝜅2)(𝜅2 + 𝜅3)
2 − 2(𝜅2 + 𝜅3)(𝜅1 + 𝜅2)

2, (A.12c)
𝑐0 = 𝜅21𝜅

2
3 + 𝜅42 + (𝜅1 + 𝜅2)

2(𝜅2 + 𝜅3)
2 − 𝜅21(𝜅2 + 𝜅3)

2

− 𝜅23(𝜅1 + 𝜅2)
2 − 2𝜅1𝜅

2
2𝜅3 cos 𝑘𝑎 = 0. (A.12d)

The dispersion relation (A.11) possesses four 𝜔 solutions for every value of 𝑘, which
are plotted in Figure 2-13 in the range 𝑘 ∈ [0, 𝜋/𝑎] due to the symmetry of 𝑐0 with
respect to 𝑘 = 0.
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Appendix B

Supplementary information for
Chapter 3

B.1 Coarse-graining methodology

In this appendix, we describe our coarse-graining procedure for extracting continuum
velocity and stress fields from the particle-wise DEM data. The approach we follow
was introduced in Zhang and Kamrin [198], building upon earlier work [106, 3, 190].
Since the geometries that we consider are homogeneous along the 𝑥-direction, the
spatial averaging generates fields defined at discrete heights 𝑧𝑘, spaced 0.5𝑑 apart.
For a given position 𝑧𝑘, we define the instantaneous velocity and stress fields as

v(𝑧𝑘, 𝑡) =
𝑀∑︁

𝑚=−𝑀

𝑤𝑚v̄(𝑧𝑚, 𝑡), (B.1)

𝜎(𝑧𝑘, 𝑡) =
𝑀∑︁

𝑚=−𝑀

𝑤𝑚𝜎̄(𝑧𝑚, 𝑡), (B.2)

where v̄ and 𝜎̄ are sublayer-wise velocity and stress averages at the heights 𝑧𝑚 =
𝑧𝑘+(𝑊/2)(𝑚/𝑀), each weighted by the coefficient 𝑤𝑚 = cos((𝜋/2)(𝑚/𝑛)). Following
Zhang and Kamrin [198], we choose 𝑊 = 2𝑑 and 𝑀 = 5. We now let 𝐿𝑖𝑚 denote the
cross-sectional length between particle 𝑖 and the horizontal line at height 𝑧𝑚. The
sublayer-wise instantaneous velocity is given by

v̄(𝑧𝑚, 𝑡) =

∑︀
𝑖 𝐿𝑖𝑚v𝑖(𝑡)∑︀

𝑖 𝐿𝑖𝑚

, (B.3)

where v𝑖 is the velocity of grain 𝑖. Then, the sublayer-wise instantaneous stress field
is defined by

𝜎̄(𝑧𝑚, 𝑡) =

∑︀
𝑖 𝐿𝑖𝑚𝜎𝑖(𝑡)

𝐿
, (B.4)

where 𝐿 is the domain length along the 𝑥-direction, and 𝜎𝑖 is the stress tensor asso-
ciated with grain 𝑖. The latter consists of contact and kinetic contributions, and is
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given by

𝜎𝑖(𝑡) =
1

𝐴𝑖

∑︁
𝑖 ̸=𝑗

f𝑖𝑗(𝑡)⊗ r𝑖𝑗(𝑡) +
𝑚𝑖

𝐴𝑖

𝛿v𝑖(𝑡)⊗ 𝛿v𝑖(𝑡), (B.5)

where 𝐴𝑖 = 𝜋𝑑2𝑖 /4 and 𝑚𝑖 = 𝜌𝑠𝐴𝑖 are respectively the area and mass of grain 𝑖,
f𝑖𝑗 is the contact force exerted on grain 𝑖 by grain 𝑗, and r𝑖𝑗 is the vector pointing
from the center of grain 𝑖 to that of grain 𝑗. In the kinetic contribution, the velocity
fluctuations are calculated as 𝛿v𝑖(𝑡) = v𝑖(𝑡) − v(𝑧𝑖, 𝑡), where v(𝑧𝑖, 𝑡) is the coarse-
grained instantaneous velocity (B.1) interpolated to the vertical position 𝑧𝑖 of grain
𝑖.

B.2 Numerical discretization

Here, we present our numerical discretization method for solving the fluidity equation
(3.5b) under a time-dependent applied stress. In the problems that we consider, the
equation reduces to a one-dimensional PDE for 𝑔(𝑧, 𝑡) that is driven by a prescribed
stress ratio function 𝜇(𝑧, 𝑡). The physics governing the time scale 𝑡0 that appears
in the fluidity equation are still unknown, and we simply assign a sufficiently small
value 𝑡0 = 10−4 s that it does not affect the dynamics of the solution. The spatial
domain is discretized into 𝑁 = 100 nodes, and the diffusion term is evaluated using
second-order finite differences. The fluidity equation is then integrated in time using
an implicit Euler scheme with a time step ∆𝑡 = 5 · 10−4 s, which we implement in
MATLAB. Further, we artificially limit 𝑔(𝑧, 𝑡) to a minimum value of 10−2 s−1 in
order to avoid 𝑔(𝑧, 𝑡) reaching infinitesimally small values during the arrested portion
of the stress ramp. Indeed, this would prevent 𝑔(𝑧, 𝑡) from growing sufficiently fast
when flow onset should occur, as the applied stress is subsequently increased. We
have verified that the floor value for 𝑔(𝑧, 𝑡) is small enough that it does not alter the
observed transition stresses.

B.3 Size effects in simple plane shear

We report in Figure B-1 additional DEM results on the system-size dependence of the
critical transition stresses 𝜇start and 𝜇stop in plane shear without gravity. Mirroring
our definition of 𝜇start in Section 3.3.1, 𝜇stop is defined as the observed 𝜇w when 𝐼w last
falls below 10−3 during stress decrease. Shown are the individual transition stresses
from 20 DEM runs (crosses) and the corresponding deterministic values (filled circles)
extracted from the linear fit of the CDF according to the procedure outlined in Figure
3-5(c). We observe that the critical stresses are almost independent of system size,
corroborating results from a previous DEM study[31].
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Figure B-1: Critical stresses 𝜇start and 𝜇stop in simple plane shear versus true system
height 𝐻/𝑑, obtained from 20 different DEM runs. The crosses show the individual
transition stresses pertaining to every run, while the filled circles represent the deter-
ministic value extracted from the linear fit of the CDF.

B.4 Critical stresses from NGF

In this appendix, we explain how to obtain the critical starting and stopping stresses
predicted by the NGF model without computing time-dependent solutions to a slowly
varying applied stress, which are computationally intensive due to the required low
rate of change of the applied stress to ensure quasi-steady conditions. Let the scalar
𝜇̄ denote the amplitude of the applied stress ratio 𝜇(𝑧) throughout the domain – for
instance, 𝜇̄ is 𝜇w in the case of plane shear with gravity, or tan 𝜃 in inclined plane.
For a given geometry, implying a certain distribution of the stress ratio 𝜇(𝑧), we then
rewrite the fluidity equation (3.5b) as

𝑡0𝑔̇ = ℱ(𝑔; 𝜇̄), (B.6)

where the dependence on the magnitude of 𝜇(𝑧) has been explicitly denoted through
𝜇̄. In the following, we will call 𝑔0 any steady-state solution of (B.6).

At low 𝜇̄, the arrested state 𝑔0 = 0 is the only stable solution. Gradually increasing
𝜇̄, flow onset occurs the moment the 𝑔0 = 0 solution becomes unstable to small
perturbations 𝑔′, which defines the critical starting stress 𝜇̄start [5]. These small
perturbations are governed by the linear equation

𝑡0𝑔̇
′ = ℒ(𝑔0; 𝜇̄)𝑔′, (B.7)

where ℒ(𝑔0; 𝜇̄) – the linearization (also called Fréchet derivative) of ℱ(𝑔; 𝜇̄) around
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𝑔0 – acts on the perturbation 𝑔′ as

ℒ(𝑔0; 𝜇̄)𝑔′ = 𝐴2𝑑2∇2𝑔′ − (𝜇2 − 𝜇s)(𝜇s − 𝜇)
𝜇2 − 𝜇

𝑔′ − 2𝑏

√︂
𝑚

𝑃
𝜇𝑔0𝑔

′

− 𝜒(𝑔0;𝜇, 𝑃 )𝑔′ −
𝜕𝜒

𝜕𝑔
(𝑔0;𝜇, 𝑃 )𝑔0𝑔

′. (B.8)

To evaluate whether perturbations grow or decay, we substitute 𝑔′ = 𝑔′(𝑧)𝑒𝜆𝑡 into
(B.7), which leads to the eigenvalue problem

𝑡0𝜆𝑔
′(𝑧) = ℒ(𝑔0; 𝜇̄)𝑔′(𝑧) (B.9)

for the growth rate 𝜆. This eigenvalue problem can be solved numerically by discretiz-
ing ℒ(𝑔0; 𝜇̄) using a finite difference approximation, giving a spectrum of eigenvalues
with the one having the largest real part, 𝜆𝑚, dictating the overall rate of growth or
decay of the perturbation. Setting 𝑔0 = 0, one can perform repeatedly this calculation
for increasing values of 𝜇̄ until 𝑅𝑒{𝜆𝑚} becomes positive, at which point the arrested
solution loses stability and 𝜇̄ = 𝜇̄start.

Gradually decreasing 𝜇̄ from a value above 𝜇̄start, flow arrest occurs the moment
(B.6) ceases to admit a nonzero steady-state solution 𝑔0, which defines the critical
stopping stress 𝜇̄stop. To check whether that is true at a given value of 𝜇̄, it suffices to
perform Newton-Raphson iterations to find 𝑔0. Starting from an initial guess 𝑔0, the
algorithm performs at each step 𝑛 the update 𝑔𝑛+1 = 𝑔𝑛 + 𝜔∆𝑛, where 0 < 𝜔 < 1 is
a relaxation parameter and the step direction ∆𝑛 is given through the linear system

ℒ(𝑔𝑛; 𝜇̄)∆𝑛 = −ℱ(𝑔𝑛; 𝜇̄). (B.10)

We stop the iterations when the norm of ℱ(𝑔𝑛; 𝜇̄) falls under a specified threshold,
indicating that 𝑔𝑛 has converged to a steady-state solution 𝑔0 of (B.6). Thus, our
strategy to find 𝜇̄stop goes as follows. We start with a value of 𝜇̄ above 𝜇̄start, for
which we are guaranteed a nonzero 𝑔0 solution. We compute the latter by letting
𝑔 reach steady-state in the time-dependent solver. Then, we repeatedly compute 𝑔0
for incrementally decreasing values of 𝜇̄ through Newton-Raphson iterations, using
at each step level of 𝜇̄ the converged solution 𝑔0 from the previous step as an initial
guess. At some point the Newton-Raphson iterations will suddenly converge to the
arrested 𝑔0 = 0 solution, indicating that 𝜇̄ has reached 𝜇̄stop.

Both the eigenvalue problem (B.9) and linear system (B.10) are implemented in
MATLAB borrowing the same grid and discretized differential operators used in the
time-dependent solver. In the Newton-Raphson iterations, we use 𝜔 = 0.5 to balance
stability and speed of convergence. Previous studies [97, 118] have shown that for
some geometries and boundary conditions, there exist analytical or semi-analytical
solutions for the growth rate 𝜆 and thus the threshold 𝜇start. However, such solutions
are much harder to obtain for 𝜇stop, despite partial progress in that direction on a
𝐼-gradient model applied to the inclined plane scenario [114]. Therefore, we limit
ourselves in this paper to the numerical methodology that we have outlined above,

128



0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50

Figure B-2: Critical stress difference 𝜇start−𝜇stop versus dimensionless loading length
scale ℓ/𝑑 for plane shear with gravity, and versus dimensionless layer height 𝐻/𝑑 for
inclined plane. The DEM data (filled circles) and NGF data (blue lines) is the same
as in Figures 3-6(c,f) and 3-7(c,f).

noting that it is computationally very efficient – the starting and stopping curves in
Figures 3-6 and 3-7 were calculated in a few minutes on a laptop.

B.5 Hysteresis size dependence
Here, we investigate the system-size dependence of the hysteresis amplitude, measured
by the difference of the starting and stopping critical stress ratios, based on the DEM
simulations and NGF model predictions reported in Figures 3-6 and 3-7 in Sections
3.3.2 and 3.3.3. Figure B-2 displays 𝜇start − 𝜇stop as a function of the dimensionless
loading length scale ℓ/𝑑 for plane shear with gravity data, and as a function of the
dimensionless layer height 𝐻/𝑑 for inclined plane data. The DEM and NGF data are
within a comparable range and suggest a weak effect of system size on the hysteresis
amplitude.
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Appendix C

Supplementary information for
Chapter 4

C.1 Problem formulation

Here, we provide details on the formulation of the two plane-strain elasticity in-
verse problems formulated in the introduction. In both problems, we define the
two-dimensional domain Ω formed by the union of the elastic solid and the voids or
rigid inclusions. Denoting with x = (𝑥1, 𝑥2) ∈ Ω the planar spatial coordinates, the
hidden geometrical layout of voids or rigid inclusions is characterized by the material
distribution 𝜌(x), equal to 1 in the elastic phase and 0 in the void or rigid inclu-
sion phase. We will now treat separately the small-deformation case where a linear
elastic material is considered and the large-deformation case where an incompressible
Neo-Hookean hyperelastic material is used, since the mathematical formalism and
governing equations are different in the two cases.

C.1.1 Small-deformation linear elasticity

We first consider the case where the elastic material is governed by a linear elastic
constitutive law with Young’s modulus 𝐸 and Poisson’s ratio 𝜈, which describes the
small-deformation behavior of a wide range of materials. The mechanics of the two
problems pictured in Figure 4-1 can then be described by a planar displacement
field u(x) = (𝑢1(x), 𝑢2(x)) and a Cauchy stress tensor 𝜎(x) with components 𝜎𝑖𝑗(x),
𝑖, 𝑗 = 1, 2, for x = (𝑥1, 𝑥2) ∈ Ω.

The stress tensor must satisfy the equilibrium equation

∇ · 𝜎 = 0, x ∈ Ω, (C.1)

while the displacement is related to the stress through a linear stress-strain relation
that depends on 𝜌(x) and will be expressed differently depending on whether we are
considering voids or rigid inclusions. For voids, the stress must vanish in the 𝜌 = 0
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regions and the stress-strain relation is therefore

𝜎 = 𝜌(x) [𝜆 tr(𝜖) I+ 2𝜇 𝜖] , x ∈ Ω, (C.2)

where 𝜖 = (∇u+∇u𝑇 )/2 is the infinitesimal strain tensor with components 𝜖𝑖𝑗, 𝑖, 𝑗 =
1, 2, tr(𝜖) = 𝜖11 + 𝜖22 denotes its trace, and 𝜆 = 𝐸𝜈/(1 + 𝜈)(1− 2𝜈), 𝜇 = 𝐸/2(1 + 𝜈)
are the Lamé constants. In the case of rigid inclusions, the strain must vanish in the
𝜌 = 0 regions, thus we consider the stress-strain relation in the inverted form

𝜖 = 𝜌(x)

[︂
1 + 𝜈

𝐸
𝜎 − 𝜈(1 + 𝜈)

𝐸
tr(𝜎) I

]︂
, x ∈ Ω, (C.3)

where tr(𝜎) = 𝜎11+𝜎22 is the trace of the stress tensor. Note that the above relation
differs from the three-dimensional one due to the plane strain assumption.

A particular loading is prescribed on the outer boundary 𝜕Ω of the domain, which
can be decomposed into a portion 𝜕Ω𝑡 with prescribed traction and a portion 𝜕Ω𝑢

with prescribed displacement. The corresponding boundary conditions are

u(x) = ū(x), x ∈ 𝜕Ω𝑢, (C.4a)
𝜎(x)n(x) = t̄(x), x ∈ 𝜕Ω𝑡, (C.4b)

where ū(x) and t̄(x) are the prescribed boundary displacement and traction, respec-
tively, and n denotes the outward unit normal vector. In the case of the elastic layer,
the outer boundary also comprises a portion 𝜕Ω𝑝 with periodic boundary conditions
on the displacement and traction. Upon application of the loading, the elastic body
deforms in a way that satisfies the equilibrium equation (C.1), the constitutive rela-
tion (C.2) or (C.3), and the boundary conditions (C.4). We then measure the surface
displacements u𝑚

𝑖 at discrete locations x𝑖 forming a subset 𝜕Ω𝑚 of 𝜕Ω𝑡.

The geometry identification problem can then be stated as follows. Given the
measured surface displacements u𝑚

𝑖 , 𝑖 = 1, . . . , |𝜕Ω𝑚|, we want to find the hidden
material distribution 𝜌(x) in Ω such that the difference between the predicted and
measured surface quantities vanish, that is,

u(x𝑖) = u𝑚
𝑖 , x𝑖 ∈ 𝜕Ω𝑚. (C.5)

For a given guess of 𝜌(x), the predicted displacement and stress fields u(x) and 𝜎(x)
must satisfy the equilibrium equation (C.1), the constitutive relation (C.2) or (C.3),
and the boundary conditions (C.4).

This formulation is applicable to both problems pictured in Figure 4-1, with the
only difference being the domain Ω under consideration and the boundary conditions.
For the elastic matrix, the domain is Ω = [−0.5, 0.5] × [−0.5, 0.5] and the loading is
defined by the boundary conditions

𝜎(x)n(x) = −𝑃𝑜e1, x ∈ {−0.5, 0.5} × [−0.5, 0.5], (C.6a)
𝜎(x)n(x) = 0, x ∈ [−0.5, 0.5]× {−0.5, 0.5}. (C.6b)
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For the elastic layer, the domain is Ω = [0, 1]× [−0.5, 0] and the loading is defined by
the boundary conditions

𝜎(x)n(x) = −𝑃𝑜e2, x ∈ [0, 1]× {0}, (C.7a)
u = 0, x ∈ [0, 1]× {−0.5}, (C.7b)

and periodic boundary conditions for the displacement and traction on x ∈ {0, 1} ×
[−0.5, 0].

C.1.2 Large-deformation hyperelasticity

We now consider the case where the elastic material is an incompressible Neo-Hookean
hyperelastic solid with shear modulus 𝜇. Since this constitutive law describes large
deformations, we now need to distinguish between the reference (undeformed) and
current (deformed) configurations. Keeping consistency with our previous notation,
we will denote by x = (𝑥1, 𝑥2) ∈ Ω and y = (𝑦1, 𝑦2) ∈ Ω* the coordinates in the refer-
ence and deformed configurations, respectively, with Ω* the deformed image of Ω. The
deformation can then be described by the displacement field u(x) = (𝑢1(x), 𝑢2(x))
that takes an initial position x ∈ Ω into its current location y = x + u(x) ∈ Ω*. Fi-
nally, in order to formulate the governing equations and boundary conditions in the
reference configuration, we need to introduce the first Piola-Kirchhoff stress tensor
S(x) with components 𝑆𝑖𝑗(x), 𝑖, 𝑗 = 1, 2, for x = (𝑥1, 𝑥2) ∈ Ω. Unlike the Cauchy
stress tensor, the first Piola-Kirchhoff stress tensor is not symmetric.

The stress tensor must satisfy the equilibrium equation

∇x · S = 0, x ∈ Ω, (C.8)

where the derivatives in ∇x are taken with respect to the reference coordinates x.
As before, the stress-strain relation will depend on 𝜌(x); here we only consider the
presence of voids so that the stress must vanish in the 𝜌 = 0 regions. The nonlinear
constitutive law for incompressible Neo-Hookean materials thus takes the form

S = 𝜌(x)
[︀
−𝑝F−𝑇 + 𝜇F

]︀
, x ∈ Ω, (C.9)

where F(x) = I + ∇xu(x) is the deformation gradient tensor, and 𝑝(x) is a scalar
field that serves to enforce the incompressibility constraint

𝜌(x) [det(F)− 1] = 0, x ∈ Ω. (C.10)

The presence of 𝜌(x) turns off the incompressibility constraint in the 𝜌 = 0 regions
since voids do not deform in a way that preserves volume.

Similar to the small-deformation case, the outer boundary 𝜕Ω of the domain can
be decomposed into a portion 𝜕Ω𝑡 with prescribed traction and a portion 𝜕Ω𝑢 with
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prescribed displacement. The corresponding boundary conditions are

u(x) = ū(x), x ∈ 𝜕Ω𝑢, (C.11a)
S(x)n0(x) = s̄(x), x ∈ 𝜕Ω𝑡, (C.11b)

where ū(x) and s̄(x) are, respectively, the prescribed boundary displacement and
traction in the reference configuration, and n0 denotes the outward unit normal vector
in the reference configuration. In the case of the elastic layer, the outer boundary
also comprises a portion 𝜕Ω𝑝 with periodic boundary conditions on the displacement
and traction. Upon application of the loading, the elastic body deforms in a way
that satisfies the equilibrium equation (C.8), the constitutive relation (C.9), and
the boundary conditions (C.11). We then measure the surface displacements u𝑚

𝑖 at
discrete locations x𝑖 forming a subset 𝜕Ω𝑚 of 𝜕Ω𝑡.

The geometry identification problem can then be stated as follows. Given the
measured surface displacements u𝑚

𝑖 , 𝑖 = 1, . . . , |𝜕Ω𝑚|, we want to find the hidden
material distribution 𝜌(x) in Ω such that the difference between predicted and mea-
sured surface displacements vanish, that is,

u(x𝑖) = u𝑚
𝑖 , x𝑖 ∈ 𝜕Ω𝑚. (C.12)

For a given guess of 𝜌(x), the predicted displacement and stress fields u(x) and S(x)
and the scalar field 𝑝(x) must satisfy the equilibrium equation (C.8), the constitutive
relation (C.9), the incompressibility condition (C.10), and the boundary conditions
(C.11).

We will only treat the matrix inclusion problem pictured in Figure 4-1 in this large-
deformation framework. The domain and loading are identical to the definitions given
in Section C.1.1, with the only difference that 𝜎 and n are replaced with S and n0,
respectively.

C.2 Additional information on the solution method-
ology

Here, we describe in detail the application of our methodology presented in Sections
4.2.2 and 4.2.3 to the solution of the two plane-strain elasticity inverse problems
formulated in the introduction and Appendix C.1. We will treat separately the small-
deformation linear elasticity case and the large-deformation hyperelasticity case.

C.2.1 Small-deformation linear elasticity

The governing physical laws presented in Appendix C.1.1 show that the problem is
described by the field of physical quantities𝜓 = (𝑢1, 𝑢2, 𝜎11, 𝜎22, 𝜎12) in addition to the

134



material distribution 𝜌. We therefore introduce the neural network approximations

𝑢1(x) = 𝑢̄1(x;𝜃1), (C.13a)
𝑢2(x) = 𝑢̄2(x;𝜃2), (C.13b)
𝜎11(x) = 𝜎̄11(x;𝜃3), (C.13c)
𝜎22(x) = 𝜎̄22(x;𝜃4), (C.13d)
𝜎12(x) = 𝜎̄12(x;𝜃5), (C.13e)
𝜑(x) = 𝜑(x;𝜃𝜑), (C.13f)

and the material distribution is given by 𝜌(x) = 𝜌(x;𝜃𝜑) = sigmoid(𝜑(x;𝜃𝜑)/𝛿). We
then formulate the loss function (4.5) by specializing the loss term expressions pre-
sented in Section 4.2.2 to the linear elasticity problem, using the governing equations
given in Appendix C.1.1. Omitting the 𝜃’s for notational simplicity, we obtain

ℒmeas(𝜃𝜓) =
1

|𝜕Ω𝑚|
∑︁

x𝑖∈𝜕Ω𝑚

|ū(x𝑖)− u𝑚
𝑖 |2, (C.14a)

ℒgov(𝜃𝜓,𝜃𝜑) =
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|req(𝜎̄(x𝑖))|2 +
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|rcr(ū(x𝑖), 𝜎̄(x𝑖), 𝜌(x𝑖))|2,

(C.14b)

ℒeik(𝜃𝜑) =
1

|Ω𝑑
eik|

∑︁
x𝑖∈Ω𝑑

eik

(︀
|∇𝜑(x𝑖)| − 1

)︀2
, (C.14c)

where ū = (𝑢̄1, 𝑢̄2) and 𝜎̄ has components 𝜎̄𝑖,𝑗, 𝑖, 𝑗 = 1, 2. In (C.14b), the terms req
and rcr refer to the residuals of the equilibrium equation (C.1) and the constitutive
relation (C.2) or (C.3). The eikonal loss term is problem-independent and therefore
identical to (4.9).

We note that instead of defining neural network approximations for the displace-
ments and the stresses, we could define neural network approximations solely for the
displacements, that is, 𝜓 = (𝑢1, 𝑢2). In this case, the loss term (C.14b) would only
include the residual of the equilibrium equation (C.1), in which the stress compo-
nents would be directly expressed in terms of the displacements and the material
distribution using the constitutive relation (C.2). However, several recent studies
[154, 74, 81, 156] have shown that the mixed formulation adopted in the present
work results in superior accuracy and training performance, which could partly be
explained by the fact that only first-order derivatives of the neural network outputs
are involved since the displacements and stresses are only differentiated to first oder
in (C.1) and (C.2). In our case, the mixed formulation holds the additional advan-
tage that it enables us to treat rigid inclusions using the inverted constitutive relation
(C.3) instead of (C.2). Finally, the mixed formulation allows us to directly integrate
both displacement and traction boundary conditions into the output of the neural
network approximations, as we describe in the next paragraph.

We design the architecture of the neural networks in such a way that they inher-
ently satisfy the boundary conditions. For the elastic matrix, we do this through the
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transformations

𝑢̄1(x;𝜃1) = 𝑢̄′1(x;𝜃1), (C.15a)
𝑢̄2(x;𝜃2) = 𝑢̄′2(x;𝜃2), (C.15b)
𝜎̄11(x;𝜃3) = (𝑥− 0.5)(𝑥+ 0.5) 𝜎̄′

11(x;𝜃3) + 𝑃𝑜, (C.15c)
𝜎̄22(x;𝜃4) = (𝑦 − 0.5)(𝑦 + 0.5) 𝜎̄′

22(x;𝜃4), (C.15d)
𝜎̄12(x;𝜃5) = (𝑥− 0.5)(𝑥+ 0.5)(𝑦 − 0.5)(𝑦 + 0.5) 𝜎̄′

12(x;𝜃5), (C.15e)
𝜑(x;𝜃𝜑) = (𝑥− 0.5)(𝑥+ 0.5)(𝑦 − 0.5)(𝑦 + 0.5)𝜑′(x;𝜃𝜑) + 𝑤, (C.15f)

where the quantities with a prime denote the raw output of the neural network. In this
way, the neural network approximations defined in (C.13) obey by construction the
boundary conditions (C.6). Further, since we know that the elastic material is present
all along the outer surface 𝜕Ω, we defined 𝜑 so that 𝜑 = 𝑤 on 𝜕Ω, which ensures that
𝜌 = sigmoid(𝜑/𝛿) ≃ 1 on 𝜕Ω (recall that 𝑤 is such that sigmoid(𝑤/2𝛿) ≃ 1). For the
elastic layer, we introduce the transformations

𝑢̄1(x;𝜃1) = (𝑦 + 0.5) 𝑢̄′1(cos𝑥, sin𝑥, 𝑦;𝜃1), (C.16a)
𝑢̄2(x;𝜃2) = (𝑦 + 0.5) 𝑢̄′2(cos𝑥, sin𝑥, 𝑦;𝜃2), (C.16b)
𝜎̄11(x;𝜃3) = 𝜎̄′

11(cos𝑥, sin𝑥, 𝑦;𝜃3), (C.16c)
𝜎̄22(x;𝜃4) = 𝑦 𝜎̄′

22(cos𝑥, sin𝑥, 𝑦;𝜃4)− 𝑃𝑜, (C.16d)
𝜎̄12(x;𝜃5) = 𝑦 𝜎̄′

12(cos𝑥, sin𝑥, 𝑦;𝜃5), (C.16e)
𝜑(x;𝜃𝜑) = 𝑦(𝑦 + 0.5)𝜑′(cos𝑥, sin𝑥, 𝑦;𝜃𝜑) + 8𝑤(𝑦 + 0.25), (C.16f)

so that the neural network approximations defined in (C.13) obey by construction
the boundary conditions (C.7) and are periodic along the 𝑥 direction. Further, since
we know that the elastic material is present all along the top surface 𝑦 = 0 and the
rigid substrate is present all along the bottom surface 𝑦 = −0.5, we define 𝜑 so that
𝜑 = 𝑤 for 𝑦 = 0 and 𝜑 = −𝑤 for 𝑦 = −0.5, which ensures that 𝜌 = sigmoid(𝜑/𝛿) ≃ 1
for 𝑦 = 0 and 𝜌 ≃ 0 for 𝑦 = −0.5.

C.2.2 Large-deformation hyperelasticity

The governing physical laws presented in Appendix C.1.2 show that the problem
is described by the field of physical quantities 𝜓 = (𝑢1, 𝑢2, 𝑆11, 𝑆22, 𝑆12, 𝑆21, 𝑝) in
addition to the material distribution 𝜌. We therefore introduce the neural network
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approximations

𝑢1(x) = 𝑢̄1(x;𝜃1), (C.17a)
𝑢2(x) = 𝑢̄2(x;𝜃2), (C.17b)
𝑆11(x) = 𝑆11(x;𝜃3), (C.17c)
𝑆22(x) = 𝑆22(x;𝜃4), (C.17d)
𝑆12(x) = 𝑆12(x;𝜃5), (C.17e)
𝑆21(x) = 𝑆21(x;𝜃6), (C.17f)
𝑝(x) = 𝑝(x;𝜃7), (C.17g)
𝜑(x) = 𝜑(x;𝜃𝜑), (C.17h)

and the material distribution is given by 𝜌(x) = 𝜌(x;𝜃𝜑) = sigmoid(𝜑(x;𝜃𝜑)/𝛿). We
then formulate the loss function (4.5) by specializing the loss term expressions pre-
sented in Section 4.2.2 to the linear elasticity problem, using the governing equations
given in Appendix C.1.1. Omitting the 𝜃’s for notational simplicity, we obtain

ℒmeas(𝜃𝜓) =
1

|𝜕Ω𝑚|
∑︁

x𝑖∈𝜕Ω𝑚

|ū(x𝑖)− u𝑚
𝑖 |2, (C.18a)

ℒgov(𝜃𝜓,𝜃𝜑) =
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|req(S̄(x𝑖))|2 +
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|rinc(ū(x𝑖), 𝜌(x𝑖))|2

+
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|rcr(ū(x𝑖), S̄(x𝑖), 𝑝(x𝑖), 𝜌(x𝑖))|2, (C.18b)

ℒeik(𝜃𝜑) =
1

|Ω𝑑
eik|

∑︁
x𝑖∈Ω𝑑

eik

(︀
|∇𝜑(x𝑖)| − 1

)︀2
, (C.18c)

where ū = (𝑢̄1, 𝑢̄2) and S̄ has components 𝑆𝑖,𝑗, 𝑖, 𝑗 = 1, 2. In (C.18b), the terms req,
rinc, and rcr refer to the residuals of the equilibrium equation (C.8), the incompress-
ibility constraint (C.10), and the constitutive relation (C.9). The eikonal loss term is
problem-independent and therefore identical to (4.9).

As in the linear elasticity case, we design the architecture of the neural networks
in such a way that they inherently satisfy the boundary conditions. For the elastic
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matrix problem,

𝑢̄1(x;𝜃1) = 𝑢̄′1(x;𝜃1), (C.19a)
𝑢̄2(x;𝜃2) = 𝑢̄′2(x;𝜃2), (C.19b)
𝑆11(x;𝜃3) = (𝑥− 0.5)(𝑥+ 0.5)𝑆 ′

11(x;𝜃3) + 𝑃𝑜, (C.19c)
𝑆22(x;𝜃4) = (𝑦 − 0.5)(𝑦 + 0.5)𝑆 ′

22(x;𝜃4), (C.19d)
𝑆12(x;𝜃5) = (𝑦 − 0.5)(𝑦 + 0.5)𝑆 ′

12(x;𝜃5), (C.19e)
𝑆21(x;𝜃6) = (𝑥− 0.5)(𝑥+ 0.5)𝑆 ′

21(x;𝜃6), (C.19f)
𝑝(x;𝜃7) = 𝑝′(x;𝜃7), (C.19g)
𝜑(x;𝜃𝜑) = (𝑥− 0.5)(𝑥+ 0.5)(𝑦 − 0.5)(𝑦 + 0.5)𝜑′(x;𝜃𝜑) + 𝑤, (C.19h)

where the quantities with a prime denote the raw output of the neural network. In
this way, the neural network approximations defined in (C.17) obey by construction
the boundary conditions of the problem. As before, since we know that the elastic
material is present all along the outer surface 𝜕Ω, we define 𝜑 so that 𝜑 = 𝑤 on 𝜕Ω,
which ensures that 𝜌 = sigmoid(𝜑/𝛿) ≃ 1 on 𝜕Ω.

C.3 Neural network architecture and training

Here, we provide implementation details regarding the architecture of the deep neural
networks, the training procedure and corresponding parameter values.

C.3.1 Neural network architecture

State variable fields of the form 𝜓(x) are approximated using deep fully-connected
neural networks that map the location x to the corresponding value of 𝜓 at that
location. This map can be expressed as 𝜓(x) = 𝜓(x;𝜃), and is defined by the sequence
of operations

z0 = x, (C.20a)
z𝑘 = 𝜎(W𝑘z𝑘−1 + b𝑘), 1 ≤ 𝑘 ≤ ℓ− 1, (C.20b)

𝜓 = zℓ = Wℓzℓ−1 + bℓ. (C.20c)

The input x is propagated through ℓ layers, all of which (except the last) take the
form of a linear operation composed with a nonlinear transformation. Each layer
outputs a vector z𝑘 ∈ R𝑞𝑘 , where 𝑞𝑘 is the number of ‘neurons’, and is defined by
a weight matrix W𝑘 ∈ R𝑞𝑘×𝑞𝑘−1 , a bias vector b𝑘 ∈ R𝑞𝑘 , and a nonlinear activation
function 𝜎(·). Finally, the output of the last layer is assigned to 𝜓. The weight
matrices and bias vectors, which parametrize the map from x to 𝜓, form a set of
trainable parameters 𝜃 = {W𝑘,b𝑘}ℓ𝑘=1.

The choice of the nonlinear activation function 𝜎(·) and the initialization proce-
dure for the trainable parameters 𝜃 are both important factors in determining the
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performance of neural networks. While the tanh function has been a popular candi-
date in the context of PINNs [120], recent works by Refs. [168, 192] have shown that
using sinusoidal activation functions can lead to improved training performance by
promoting the emergence of small-scale features. In this work, we select the sinusoidal
representation network (SIREN) architecture from Ref. [168], which combines the use
of the sine as an activation function with a specific way to initialize the trainable pa-
rameters 𝜃 that ensures that the distribution of the input to each sine activation
function remains unchanged over successive layers. Specifically, each component of
W𝑘 is uniformly distributed between −

√︀
6/𝑞𝑘 and

√︀
6/𝑞𝑘 where 𝑞𝑘 is the number

of neurons in layer 𝑘, and b𝑘 = 0, for 𝑘 = 1, . . . , ℓ. Further, the first layer of the
SIREN architecture is z1 = 𝜎(𝜔0W

1z0+b1) instead of (C.20b), with the extra scalar
𝜔0 serving to promote higher-frequency content in the output.

C.3.2 Training procedure

We construct the total loss function (4.5) and train the neural networks in Tensor-
Flow 2. The training is performed using ADAM, a first-order gradient-descent-based
algorithm with adaptive step size [102]. Three training tricks resulted in noticeably
improved training performance and consistency:

• First, we found that pretraining the level-set neural network 𝜑(x) = 𝜑(x;𝜃𝜑)
in a standard supervised setting leads to much more consistent results over
different initializations of the neural networks. During this pretraining step,
carried out before the main optimization step in which all neural networks are
trained to minimize the loss (4.5), we minimize the mean-square error

ℒsup(𝜃𝜑) =
1

|Ω𝑑|
∑︁
x𝑖∈Ω𝑑

|𝜑(x𝑖;𝜃𝜑)− 𝜑𝑖|, (C.21)

where Ω𝑑 is the same set of collocation points as in (4.7), the supervised labels
𝜑𝑖 = |x𝑖| − 0.25 for the elastic matrix, and 𝜑𝑖 = 𝑦𝑖 + 0.25 for the elastic layer.
The material density 𝜌(x;𝜃𝜑) = sigmoid(𝜑(x;𝜃𝜑)/𝛿) obtained at the end of this
pretraining step is one outside a circle of radius 0.25 centered at the origin for
the elastic matrix, and it is one above the horizontal line 𝑦 = −0.25 for the
elastic layer. This choice for the supervised labels is justified by the fact that
𝜌 is known to be one along the outer boundary of the domain Ω for the elastic
matrix, and it is known to be one (zero) along the top (bottom) boundary of Ω
for the elastic layer.

• Second, during the main optimization in which all neural networks are trained
to minimize the loss (4.5), we evaluate the loss component ℒgov in (4.7) using
a different subset of residual points from Ω𝑑 at every iteration. Although this
practice is well-known in machine learning, where it is referred to as mini-batch
learning, it is rarely employed in the PINN community except for some recent
studies [193]. In our case, we choose to divide the set Ω𝑑 into 10 different
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mini-batchs (subsets) of size |Ω𝑑|/10, which are then employed sequentially to
evaluate ℒgov during each subsequent gradient update

𝜃𝑘+1
𝜓 = 𝜃𝑘𝜓 − 𝛼𝜓(𝑘)∇𝜃𝜓ℒ(𝜃𝑘𝜓,𝜃𝑘𝜑), (C.22a)

𝜃𝑘+1
𝜑 = 𝜃𝑘𝜑 − 𝛼𝜑(𝑘)∇𝜃𝜑ℒ(𝜃𝑘𝜓,𝜃𝑘𝜑). (C.22b)

An epoch of training, which is defined as one complete pass through the whole
set Ω𝑑, therefore consists of 10 gradient updates.

• Third, the initial nominal step size 𝛼𝜓 governing the learning rate of the physical
quantities neural networks is set to be 10 times larger than its counterpart 𝛼𝜑

governing the learning rate of the level-set neural network. This results in a
separation of time scales between the rate of change of the physical quantities
neural networks and that of the level-set neural network, which is motivated
by the idea that physical quantities should be given time to adapt to a given
geometry before the geometry itself changes.

C.3.3 Parameter values

The parameter values described below apply to all results presented in this paper.

• Neural network architecture. We opted for neural networks with 4 hidden
layers of 50 neurons each, which we found to be a good compromise between ex-
pressivity and training time. Further, we choose 𝜔0 = 10 as the scalar appearing
in the first layer of the SIREN architecture.

• Residual and measurements points. In the elastic matrix problem, we
consider that the boundary displacement is measured along each of the four
external boundaries at 100 equally-spaced points, which amounts to |𝜕Ω𝑚| =
400. In the elastic layer problem, we consider that the boundary displacement is
measured along the top boundary at 100 equally-spaced points, which amounts
to |𝜕Ω𝑚| = 100. For both geometries, the set of residual points |Ω𝑑| consists of
10000 points distributed in Ω with a Latin Hypercube Sampling (LHS) strategy,
yielding 10 mini-batchs containing 1000 points each.

• Training parameters. The pretraining of the level-set neural network is car-
ried out using the ADAM optimizer with nominal step size 10−3 over 800 train-
ing epochs, employing the whole set Ω𝑑 to compute the gradient of ℒsup at
each update step. The main optimization, during which all neural networks are
trained to minimize the total loss (4.5), is carried out using the ADAM opti-
mizer over a total of 150k training epochs. For the first 40k epochs, we use a
nominal step size 10−4 for the level-set neural network and 10−3 for the other
neural networks. For the next 40k epochs, we use a nominal step size 10−4 for all
neural networks. Finally, we use a nominal step size 10−5 for the remaining 70k
epochs. The scalar weights in the loss (4.5) are assigned the values 𝜆meas = 10,
𝜆gov = 1, and 𝜆eik = 4. Further, we multiply the second term of ℒgov in (C.14b)
and (C.18b) with a scalar weight 𝜆cr = 4.
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C.4 Finite-element method simulations
The finite-element method simulations that provide the boundary displacement data
are performed in the software Abaqus, using its Standard (implicit) solver. For both
the elastic matrix and elastic layer geometries, every considered case is meshed using
a linear density of 200 elements per boundary, corresponding to between 25k to 40k
total elements depending on the number and shapes of voids or inclusions. We employ
bilinear quadrilateral CPE4 plain-strain elements for the small-deformation linear
elastic cases, and their hybrid constant-pressure counterpart CPE4H for the large-
deformation hyperelastic cases. For the elastic matrix, we apply a load 𝑃𝑜/𝐸 = 0.05
in the linear elastic case, and a load 𝑃𝑜/𝐸 = 0.173 in the hyperelastic case. For the
elastic layer, we apply a load 𝑃𝑜/𝐸 = 0.1.
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