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Abstract

Towards helping people in daily life, robots need to better interact with our physical
world and inevitably make contact with various objects. Touch provides contact
geometry and forces information during interactions, which can be challenging to
observe from vision due to occlusions or inherent limitations.

This thesis will focus on how to let robots leverage touch for manipulation in
interactive means. We demonstrate several hardware platforms equipped with tactile
sensing and integrated perception and control frameworks to apply interactive touch
to real-world manipulation tasks. First, we use touch for manipulating deformable
objects like cables, using real-time tactile feedback during sliding. The robot can slide
and pull the cable into different directions based on the tactile feedback to prevent
falling. Second, we perform tactile exploration for learning the physical features of
unknown objects. The extracted physical features are further applied to predict the
forward model and swing up the in-hand object to a target pose by dynamic motions.
Third, we embed tactile sensing with active rollers and design a 6-DoF roller grasper
for better in-hand tactile dexterity. We demonstrate that the tactile-enabled roller
grasper can robustly perform manipulation tasks for various objects, such as planar
object reorientation, rolling along cables with tension, picking and singulating thin
objects, etc. We hope applying interactive touch for manipulation can lead us closer
to intelligent robot automation and the transformation of our physical world.

Thesis Supervisor: Edward H. Adelson
Title: John and Dorothy Wilson Professor of Vision Science
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Chapter 1

Introduction

Touch is a natural window for perceiving and interacting with the physical world.

When we want to explore unknown objects and manipulate them, many contacts

happen between our hands, the objects, and the environment. Based on the contact

information from touch feedback, we update the understanding of the objects and

make the best decision for the interaction. Since tactile sensing is still at a relatively

early stage, previous works on robot touch mainly focus on tactile sensor design and

tactile perception [92, 174]. It is non-trivial to build a good tactile sensor and will still

require continuous effort to evolve. To demonstrate that the designed tactile sensor is

useful, applying it to tactile perception is straightforward and meaningful. However,

one most significant advantage of Robotics compared to other artificial intelligence

research areas (e.g., Computer Vision, Natural Language Processing, etc.) is the

capability to interact with the physical environment, also referred to as Embodied

Intelligence [15]. It creates more possibilities when combining tactile sensing with

robotic physical interactions. This thesis leverages GelSight tactile sensing[163] for

providing rich tactile information. It provides us opportunities to further explore

how robots can not only perceive but also interact with the physical world more

intelligently through touch.
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1.1 GelSight sensors for tactile sensing

This thesis leverage GelSight sensors to give robots a sense of touch. It is a type of

camera-based tactile sensor [143, 4, 117, 150, 79, 109, 112]. As a brief introduction,

GelSight sensors turn a touch signal into an image. Figure 1-1 shows the signals

from GelSight Wedge [140]. It consists of a slab of clear elastomer and reflective

skin. When touching objects, the membrane deformation yields a shaded image.

By putting a camera and shedding lights from different directions, we can use the

photometric stereo to estimate 3D shape. By tracking the motion of the markers on

the membrane, we can get observations of shear and torsional force distribution.

GelSight Wedge 3D Reconstruction Marker Displacement

A B C

Figure 1-1: GelSight Wedge. (A) The GelSight Wedge sensor [140] is a compact
version of GelSight sensors for robotic gripper, which is used in Chapter 2 and Chap-
ter 3. (B) 3D reconstruction shows the estimated depth of a screw. (C) Yellow
arrows show the marker displacement when torsional forces are applied from a screw.

GelSight sensors significantly lower the threshold for capturing and interpreting

touch signals. Cameras are ubiquitous, making the sensor low-cost while providing

high-resolution contact geometry and dense normal and tangential force distribution[163,

95]. The raw signals are represented in images or videos, making existing techniques

and models in computer vision possible to apply to touch signals. The design princi-

ples of the sensor make it flexible to adapt to different shapes for different mechanical

benefits, such as slim sensors [38, 140], and round sensors [112, 109, 48]. The softness

of the elastomer allows the sensor to comply with different objects, making it suitable

for grasping and manipulation.

One thing that distinguishes the GelSight sensor from other camera-based sensors
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is getting depth information with minimal effort. The sensor’s illumination is designed

for photometric stereo to capture 3D information. Compared with the raw signals,

3D information provides fundamental geometry information, which is a long-pursuing

goal of the computer vision community [29, 146, 20]. The 3D information provides

a natural way to connect vision and touch in the touch background. The authors

in [67] combined a 3D point cloud from vision and touch to track the object’s pose.

It is also a rotation-invariant representation, making it suitable for stitching with

different poses [88] and efficient learning. The depth can also provide more direct

normal forces information [163], and robust contact masks effortlessly, which will be

shown in Chapter 2.

With the advantages of GelSight sensors, in this thesis, we try to answer the

question of which important tasks would greatly benefit from tactile sensing and how

to use tactile sensing better in different settings.

1.2 What is tactile sensing for?

Regarding how robots use touch information, it can be categorized by the purpose.

Two significant purposes would be perception and manipulation. When using touch

for perception, the goal is to sense and understand the physical world, while when

using touch for manipulation, the goal is to change the physical world through inter-

actions, as shown in Figure 1-2.

Extensive research has focused on tactile perception, such as perceiving object

material [165, 94], 3D shape [141, 12, 135, 124], class [90, 116, 93], etc. However,

we are still in the exploration stage for tactile manipulation since it usually would

require integrating sensing, perception, and control to solve the manipulation task. A

related direction is grasping. Researchers have explored predicting the grasp stability

using tactile feedback [18, 137]. Furthermore, researchers also studied tactile re-

grasping policies, which use tactile feedback to guide the next grasp adjustment [16,

56, 21, 76, 30]. However, the primary goal is any stable grasp instead of a targeted

grasp for manipulation. It can be viewed as precedent works for tactile sensing for
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Figure 1-2: Touch for perception and manipulation. Various tactile tasks can
be categorized by their purposes: perception and manipulation. Most tasks lie in
the spectrum between perception and manipulation. When the task is more towards
manipulation, touch is more used in interactive and dynamic ways.

manipulation. Some recent works explored applying touch for manipulation in the

settings of marble manipulation [131], box manipulation [55], pushing [159], and

insertion [34]. This thesis extends this line of work, which is also closely related to

Tactile Dexterity [55]. It aims to explore the possible application of touch in various

manipulation settings toward improving robot dexterity.

Touch for perception usually focuses more on the static properties of the ob-

jects without changing the environment. However, the more touch is used toward

manipulation, the more it needs to consider the dynamics of the interaction. For

example, researchers have studied using touch for pose tracking [8, 67] or incipient

slip [36, 70, 136]. Although these tasks are for perception, they focus more on the

dynamic changes of the environment and can be further fed into control for better

manipulation.

Most robotic tactile tasks lie in the spectrum between touch for perception and

manipulation. They are also often beneficial to each other, such as applying manipu-

lation for better perception (e.g., interactive perception [13]) and applying perception

for better manipulation (e.g., perceptive manipulation [77]).

Compared to touch for perception, the benefit of touch can be further exploited

by combining it with interaction for manipulation. This thesis will introduce some of

the directions that demonstrate the importance and uniqueness of applying touch to
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manipulation tasks that are otherwise challenging to solve.

1.3 How to use tactile sensing?

In terms of how to apply touch to robotic tasks, touch could be used passively, actively,

or interactively, as shown in Figure 1-3. It has many similar properties analogous to

touch for perception and manipulation.

Figure 1-3: Passive, active and interactive touch. (A) Passive touch: the action
is not determined by the tactile feedback; mainly local information is perceived. (B)
Active touch: the action is guided by tactile feedback, without intentionally change
the state of the object; global information can be perceived. (C) Interactive touch:
the action is reactive based on tactile feedback, with the purpose of changing the
state of the object; more manipulation skills can be enabled.

When we apply passive touch, we would usually assume that the object’s state

is relatively static or will not change much after being touched. We want to perceive

some properties based on the tactile signals, such as cloth texture [166, 94], 3D [125],

object recognition [90, 116], etc. The action of where to touch is pre-defined and will

not adapt to the tactile feedback.

If we go further, when the action of where to touch depends on the tactile feedback,

we are moving towards the active or interactive touch. The subtle difference between

active and interactive touch is their goals. The major goal of active touch is to per-

ceive the world more efficiently and intelligently, such as active contour following [85],

active 3D reconstruction[157, 141], active cloth perception [165].

In contrast, the interactive touch emphasizes the ability to change the world.
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The action not only depends on the tactile feedback but also is applied to interact

with and reconfigure the object. Therefore, interactive touch requires us to focus

more on the dynamics and control of the system between the robot and objects.

Similarly, there are blurry boundaries between the active and interactive touch,

such as tactile SLAM [128], or haptic exploration [108], where we use manipulation

as a means to perceive the object’s state. In this thesis, the main focus would be

describing the benefits of interactive touch with the purpose of manipulation.

1.4 Unique Roles of Touch for Manipulation

Figure 1-4: Unique roles of touch for manipulation. Touch provides the contact
information under occlusion, and the forceful interaction during manipulation, which
is inherently challenging to perceive from vision.

Compared to vision, touch provides unique information for manipulation, as shown

in Figure 1-4. One aspect is to handle occlusion [67, 84]. During manipulation, the

hand or gripper inevitably occluded the object. The occlusion makes it challenging to

precisely track the object’s pose from vision. For robot manipulation tasks, a slight

tracking error can cause severe failure. Touch can provide the contact geometry under

the occlusion. With the local contact geometry, the robot can track the object pose

or feature more precisely, complementary to global vision.

The other aspect is to provide contact force information during the interaction [34,
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84]. It is inherently difficult to observe forces from vision. However, touch provides

direct force information between the hand, the manipulated object, and the envi-

ronment. The robot can use the force information to make better decisions, such as

modulating the minimal grasping force, keeping the desired force, adjusting poses,

switching motion primitives, etc.

This thesis will explore how to use the contact geometry and forces during inter-

actions towards dexterous manipulation in different settings.

1.5 Contributions

This thesis aims to discover the importance of touch for robotic tasks. We pro-

pose to apply robot touch for manipulation in more interactive ways. Compared to

the previous focus on tactile perception [92, 163], the application to manipulation

tasks emphasizes the dynamic interactions between robots and objects. Touch pro-

vides unique contact geometry and forces that are challenging to capture from vision.

Applying touch for manipulation requires more system integration between sensing,

perception, control, and planning, but eventually can lead us closer to robot automa-

tion for transforming our physical world. We will introduce the detailed methods

to apply interactive touch for manipulation to increase robot dexterity in different

settings.

In Chapter 2, we introduce a motion primitive of sliding enabled by touch for cable

manipulation. We use real-time tactile feedback control to follow a dangling cable

to the end. The robot can perceive the real-time pose of the cable and the friction

forces during the cable sliding. It interactively perceives and changes the cable states

by pulling the cable in different directions. We decouple the control into cable grip

control and cable pose control. The tactile-reactive behavior turns a complex task of

manipulating a highly deformable object with uncontrolled variations in friction and

shape into an achievable task.

In Chapter 3, we explore applying touch for dynamic manipulation tasks, where

we can increase robot dexterity through dynamic motion. The goal is to swing up
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the in-hand object to a target pose by dynamic motions. Since the task is sensitive to

the object’s physical properties, we propose tactile exploration, which provides touch

signals under different exploration interactions. The exploration data is later used

to extract physical features of the object and predict the forward model for control.

The tactile exploration with the self-supervised learning framework greatly improves

the performance of the dynamic manipulation task.

In Chapter 4, we explore improving in-hand dexterity by combining the rolling

motion for manipulation with tactile feedback. We design a 6-DoF roller grasper

equipped with vision-based tactile sensors and the perception algorithms to handle

the rolling contact. We demonstrate that the grasper can adjust its joints based on

the tactile signals to manipulate various objects continuously, such as planar object

reorientation, rolling along cables with tension, card singulation, etc. Combining

tactile sensors with dexterous hands opens up a whole new range of possibilities for

robot in-hand manipulation.

We conclude and discuss future directions in Chapter 5.
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Chapter 2

Cable Manipulation with a

Tactile-Reactive Gripper

We start our journey by exploring deformable linear objects manipulation, such as

cables, with tactile-reactive control. The real-time tactile signals enable the motion

primitive of sliding. Compared to the previous works of tactile contour following with

fixed objects [99, 85], we propose to incorporate cable-gripper dynamics and control,

and tactile regrasping policy to manipulate cables in the free space. The tactile

sliding also makes it more efficient and requires fewer constraints compared to previous

tabletop manipulation for deformable linear objects with vision [107, 155, 127].

2.1 Introduction

Contour following is a dexterous skill which can be guided by tactile servoing. A

common type of contour following occurs with deformable linear objects, such as

cables. After grasping a cable loosely between the thumb and forefinger, one can

slide the fingers to a target position as a robust strategy to regrasp it. For example,

when trying to find the plug-end of a loose headphone cable, one may slide along the

cable until the plug is felt between the fingers.

Cable following is challenging because the cable’s shape changes dynamically with

the sliding motion, and there are unpredictable factors such as kinks, variable friction,
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Figure 2-1: Following a cable with (a) human hands and (b) robotic grippers.

and external forces. For this reason, much work on cables (and other deformable linear

objects) has utilized mechanical constraints [155, 172, 107]. For example a rope may

be placed on a table, so that gravity and friction yield a quasistatic configuration of

the cable. A gripper can then adjust the rope configuration, step by step, at a chosen

pace.

Our goal is to manipulate cables in real time, using a pair of grippers, with no

added mechanical constraints. The cables are free to wiggle, swing, or twist, and our

grippers must rapidly react using tactile feedback. In particular, we look at the task

of picking one end of a cable with a gripper and following it to the other end with a

second gripper, as shown in Fig. 2-1.

We designed a novel gripper that is lightweight and fast reacting, and equipped
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it with high resolution tactile sensors. This novel hardware, when paired with appro-

priate control policies, allows us to perform real-time cable following in free space.

In this paper we do not use vision, relying on tactile sensing alone. While vi-

sion can be helpful, we are able to perform the task purely with tactile guidance.

Deformable linear objects are easily occluded from view by grippers, by the environ-

ment, and often by itself. Tactile perception allows for precise localization once the

cable is grasped. Tactile active perception, like when pulling from the two ends of a

cable until it is in tension, can also be used to simplify perception such as in the case

of a tangled rope.

We approach cable following by dividing the desired behavior into two goals:

1) Cable grip control, which monitors the gripping force to maintain friction forces

within a useful range; and 2) Cable pose control, which regulates the configuration of

the cable to be centered and aligned with the fingers. These two controllers work in

tandem to enable smooth and efficient cable sliding. The first controller maintains the

frictional interaction between cable and fingers near a desired working point, which

simplifies the dynamics that the cable pose controller has to regulate. To accomplish

this task, we build a system with the following modules:

• Tactile-reactive gripper. We design a parallel-jaw gripper with force and

position control capabilities (Sec. 2.4.1), fitted with GelSight-based tactile sen-

sors [162] yielding a 60Hz grip bandwidth control.

• Tactile perception. We estimate in real-time the pose of the cable in the

gripper, the friction force pulling from the gripper, and the quality of the tactile

imprints (Sec. 2.4.2).

• Cable grip controller. The gripper regulates the gripping force by combining

a PD controller and a leaky integrator that modulates the friction force on the

cable, and provides grip forces to yield tactile imprints of sufficient quality for

perception (Sec. 2.4.3).

• Cable pose controller. The robot controls the cable configuration on the
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gripper fingers with an LQR controller, based on a learned linear model of the

dynamics of the sliding cable (Sec. 2.4.3).

We evaluate the complete system in the task of cable following for various cables,

sliding at different velocities, and benchmark against several baseline algorithms. The

results in Sec. 2.6 show that training the system on a single cable type allows general-

ization to a range of cables with other physical parameters. Finally, we demonstrate

a robot picking a headphone cable, sliding the fingers until feeling the jack connector,

and inserting it, illustrating the potential role of the system in complex active per-

ception and manipulation tasks. Video demonstrations of the aforementioned tasks

are available on the project website at http://gelsight.csail.mit.edu/cable/.

2.2 Related Work

In this section we review work relevant to contour following and cable manipulation.

2.2.1 Contour following

Contour following of rigid objects has been widely studied using both visual [81] and

tactile perception [22, 144]. These techniques do not directly translate to deformable

objects due to dynamic shape changes that are difficult to model, especially in real

time.

The most similar contour following work to ours is by [53], who proposed a re-

inforcement learning approach to close a deformable ziplock bag with feedback from

BioTac sensors. The work demonstrated a robot grasping and following the edge of

the bag. In contrast to our approach, they use a constant grasping force and dis-

crete slow actions. As a consequence, they achieve a maximum speed of 0.5 cm/s,

compared to 6.5 cm/s in our work.
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2.2.2 Cable/rope manipulation

Manipulating deformable linear objects (DLOs) has attracted attention in the robotics

community [58] with tasks including tying knots [105, 113], untangling [91, 50], in-

sertion [142], reshaping [155, 172, 107], surgical suturing [101], or dynamic rope

manipulation [152, 171]. Our approach to cable manipulation through tactile per-

ception and control is fundamentally distinct from the existing literature and enables

a larger potential action space.

Approaches

Much of the classical work in DLO manipulation involves perceiving the state of the

DLO, simulating the dynamics of the DLO, or planning its motion. Visual percep-

tion for DLO state estimation is difficult given the infinite dimensional configuration

space with the object’s shape dynamically changing while often being occluded. [105]

described rope state topologically by listing intersections created by rope crossings.

Methods that more completely describe location along the entire length of the DLO

often use non-rigid registration techniques to track the rope from a known initial

state [130, 24]. Alternatively, an initial state estimate from a given point cloud can

be refined to better align with the system dynamics [91, 71].

The most common methods for simulating DLOs use mass-spring models [139],

energy minimization [10], or finite-element methods (FEM) [110]. These models can

be computationally expensive and require knowledge of the DLO’s physical properties

such as rigidity, elasticity, and friction. [9] avoids an explicit deformable object model

by using an approximation to the Jacobian of the deformable object to drive object

points to a target set. Work by [153] also avoids complicated dynamics models by

moving the cables at high enough speeds that they assume each rope segment follows

the motion of the robot with a constant time delay.

Motion planning for DLOs has traditionally used sampling-based approaches such

as a probabilistic roadmap (PRM) [75] or Rapidly-exploring Random Trees RRTs
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[82]. [104] used these methods to create local planners based on minimum energy

curves. For knot-tying, [113] plan long-horizon, complex motions by simulating de-

formations of a rope in response to random external forces and placing configurations

that would be part of the knot’s topological forming sequence in a PRM.

Learning-based approaches can help simplify aspects of the problem. Given the

inherent difficulty of complete state estimation, some DLO manipulation works are

trained directly from visual data without explicitly estimating the full state [51].

[107] learns a pixel-level inverse dynamics model for a rope with self-supervised au-

tonomous pick and place interactions. More recently, [127, 47] use dense object de-

scriptors to find pixel-wise correlations between images of ropes trained in simulation.

Another class of work learns dynamics models for rope and uses them with Model

Predictive Control (MPC). Work by [39] learns a video prediction model. While

these methods work for short-horizon tasks like shaping, planning for more complex,

long-horizon tasks like knotting requires more guidance, for example learning from

demonstration. While these data-driven methods allow for faster computation, they

are less generalizable for other DLO manipulation tasks.

Rope Manipulation Skills

Due to their high dimensional dynamics, manipulating deformable linear objects is

usually simplified by constraining their motion with external features, for example

against a table [155, 172, 107], with additional grippers [101], or pegs [113]. Another

common strategy involves limiting movements to long series of small deformations

with pick and place actions [155, 107]. Thus, the dynamics of the system can be

treated as quasistatic.

Furthermore, the action space in DLO manipulation literature is generally limited

to those using fixed grasps of the DLO. Besides pick and place, other actions include

following specific, potentially dynamic, trajectories [152], moving a segment of a rope

using two grippers [103], insertion [142], and wrapping [173].

Few works exploit sliding along the DLO. [173] routed a cable around pegs using

one end-effector that was attached to the cable end and another fixed end-effector
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that would passively let a cable slip through in order to pull out a longer length of

cable. This system, while allowing for sliding, loses the ability to sense and control

the state of the cable at the sliding end, which can be in contact with any point of

the cable.

[73] traces cables in a wire harness using a gripper with rollers in the jaws. This

gripper passively adjusts grip force using springs to accommodate different sized ca-

bles. They sense and control the force perpendicular to the translational motion along

the cable in order to follow the cable. The cables in our work are considerably smaller

and less rigid, so such forces would be difficult to sense.

Furthermore, both of the specialized, passive end-effectors in the above two works

have limited capabilities beyond sliding along the cable. In our work, the parallel jaw

gripper used to follow a cable is also used to insert the cable into a headphone jack,

demonstrating the potential of this hardware setup for additional tasks.

Another example of work involving sliding with rope from [154] shows how our

framework could potentially be extended for the knot-tying task. To pass one end

of the rope through a loop, they leverage tactile sensing to roll the two rope ends

relative to each other in between the fingers.

2.2.3 Cloth Manipulation Skills

A further suggestion of generality of the approach is the potential use of sliding in

fabric manipulation. Most work in fabric manipulation similarly uses the quasistatic

assumption and incremental pick and place movements [148, 61, 46]. However, the

sliding skill simplifies the task of finding two adjacent corners in order to fold a piece

of fabric. [114] holds up a corner of the fabric and uses gravity to trace straight down

to find the second corner without sensory feedback. Similarly, [167] executes a “pinch

and slide” motion along the top edge of a piece of fabric.

Besides the knotting example from [154], force and tactile sensors can be seen

in a variety of rope manipulation literature. [1] uses a force torque sensor to detect

changes in contact state, for example the rope moving from free space to contacting
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an edge of a rigid object. [168] detects vibration frequency of a rope using a force

torque sensor before counteracting the vibration.

2.2.4 Vision-based Tactile Sensor

The vision-based tactile sensor converts touch to vision by using a camera to

visualize the deformation of the contact surface. With its high spatial resolution, this

type of sensor shows unique advantages and has been successfully utilized in different

robotic manipulation tasks, for instance, contour following [86], cutting [151], dish

loading [78], in-hand manipulation [80], etc.

As a popular vision-based tactile sensor, the GelSight sensor [162] can recover a

precise depth map of the contact surface with designed three light illumination. The

measured high resolution local contact geometry can be used to estimate the object

state. Here we use it to estimate the pose of the cable in hand. Fig. 2-2 shows an

example of the sensor raw output and recovered depth image when grasping a cable.

The sensor also measures approximate shear force by tracking the black markers on

the sensor surface [164]. Here we use it to estimate the approximated friction force

during cable sliding.

The GelSight sensor has been extensively applied in various manipulation prob-

lems. [89] implemented a USB insertion task from random grasping poses based on

object pose estimation feedback from the sensor. [68] used the 3D point cloud from

GelSight sensor in a Kalman filter to better register the position of a screwdriver in

a peg-in-hole task. [17] and [57] used the tactile images to evaluate the quality of

a grasp and further infer better regrasp positions. [35] used the sensor to predict

slip and used it slip signal to modulate grasping forces while conducting a bottle cap

screwing task. [132] proposed a tactile-based model predictive control method to repo-

sition an object. [37] trained a tactile-based object insertion policy that could correct

small misalignment between the object and the environment. [55] designed closed-

loop tactile controllers for dexterous table-top manipulation with dual-arm robotic

palms, where similar idea to our method of simultaneously controlling contact state
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and object state was adopted. [138] implemented a task of swing an elongated object

to a target pose based on the learned friction, center of mass properties of the grasp

object with the GelSight sensor.

2.3 Tasks

Cable Following The goal of the cable following task is to use a robot gripper to

grip the beginning of the cable with proper force and then control the gripper to

follow the cable contour all the way to its tail end. The beginning end of the cable

is initially firmly gripped by another fixed gripper during the cable following process.

The moving gripper is allowed to regrasp the cable by bringing it back to the fixed

gripper, resulting in two-hand coordination with one of the hands fixed. Several

cables with different properties (shape, stiffness, surface roughness) are tested here

for generalization.

Cable Insertion The goal of the cable insertion task is to find the plug at the end

of a cable and insert the plug into the socket. We show that this can be done by

leveraging the ability to slide the fingers on the cable, and demonstrate it with a

headphone cable with a cylindrical jack connector at its end.

Robot System In order to tackle this task, the following four hardware elements

are necessary:

• tactile sensor to measure the grasped cable position and orientation in real time

• tactile sensor to measure the amount of friction force during sliding in real time

• fast reactive gripper to modulate the grasping force according to the measured

friction

• fast reactive robot arm to follow the measured cable orientation and keep the

measured cable position in the center of the gripper.
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2.4 Method

The key idea of our method is to use tactile control to monitor and manipulate the

position and forces on the cable between the fingers. The concept is illustrated in

Fig. 2-2. We divide the tactile controller into two parts:

i. Cable Grip Control so the cable alternates between firmly grasped and sliding

smoothly,

ii. Cable Pose Control so the cable remains centered and aligned with the fingers

when pulling and sliding.

This decomposition can be seen as an application of the tactile dexterity framework

in [55] applied to a sliding primitive and to deformable object manipulation. In this

section, we describe the implementation of the tactile controller by introducing the

reactive gripper, the tactile perception system, the modeling of the cable, and the

two controllers.

2.4.1 Hardware

Most commercialized robotic grippers do not offer sufficient bandwidth and low la-

tency for real-time feedback control. To that end we design a parallel gripper with

2 fingers (with a revised GelSight sensor), a compliant parallel-guiding mechanisms,

and slide-crank linkages actuated by a servo motor as shown in Fig. 2-3.

Mechanism design Parallelogram mechanisms are widely used to yield lateral dis-

placement and slider-crank mechanisms are broadly employed to actuate the paral-

lelogram mechanism for parallel grippers. We use them to facilitate parallel grasping.

To make a compact actuation mechanism, we use a tendon-driven system.

One end of a string (tendon) is tied to a motor disk which is fixed on the servo

motor installed in a motor case. The other end of the string is tied to the slider as

shown in Fig. 2-3. We use a compression spring between the slider and the motor

box with pre-tension forming a slider-string-spring system. The string then passes

through a pulley to change its direction. One end of the crank linkage is connected to
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Figure 2-2: The design concept of the cable manipulation system.

Table 2.1: Dimension specification.
Parameters Value Parameters Value

𝑟1 15 mm 𝑙1 23.25 mm
𝑟2 50 mm 𝑙2 100 mm
𝑟3 30 mm 𝜃𝑖2 127∘
𝑟4 64 mm 𝜃𝑖3 307∘

the slider and the other is coupled with the rocker of the parallelogram mechanism.

The finger is attached to the coupler of the parallelogram mechanism. The string

drives the slider down, actuating the parallelogram mechanism via the crank linkage

and producing the desired lateral displacement of the finger. Two fingers assembled

symmetrically around the slider yields a parallel gripper.

Mechanism dimensions The next step is to determine the dimensions of the grip-

per. The design guidelines are as follows: 1) The max opening of the gripper is

targeted at 100 mm, i.e., 50 mm displacement for each finger; 2) The parallelogram

mechanism should fit the size of the revised GelSight fingertips; 3) Reduce overall size

and weight of the gripper as much as possible. According to the kinematics of the

parallelogram and slider-crank mechanism as well as the aforementioned constraints,

we designed a gripper with the dimensions in Table 2.1. Refer to Fig. 2-3 for the

definition of all variables. Note that 𝜃𝑖2 and 𝜃𝑖3 are the initial values of 𝜃2 and 𝜃3.

Compliant joint design The original gripper design is comprised of four sets of

rigid parallelogram mechanisms (two sets on each side), which contains 28 assembly
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Figure 2-3: Mechanism design. A servo motor drives the slider-crank mechanism
via the slider-string-spring system, actuating the parallelogram mechanism via the
crank linkage, and finally yielding the motion of opening/closing of the gripper.

pieces and consumes assembly time. Compliant mechanisms [63] can produce exactly

the same motion as those produced by rigid body mechanisms, but greatly reduce the

part count and assembly procedures. We consider to use compliant joints to simplify

the parallelogram mechanism.

Modeling and analysis of compliant mechanisms is however more complex than

that of rigid-body mechanisms due to their infinite degrees of freedom (DOFs) and

complex deformations. Screw theory-based methods [59, 60, 106], beam theory [134,

6], topological synthesis [45], and Pseudo-Rigid-Body (PRB) model [65, 66] are the

common methods to model and analyze the compliant mechanisms. Among those ap-

proaches, the PRB model bridges the compliant mechanisms and rigid body theories,
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(a)

(b)

Figure 2-4: Compliant joint design (a) The rigid parallelogram mechanism includes
28 assembly parts. (b) The compliant parallel-guiding mechanism replaces the rigid
parallelogram mechanism reducing the assembly parts from 28 pieces to a single piece.

which will be used in this work.

The PRB model provides a simple and computationally efficient solution to an-

alyze kinematics and statics (kinetostatic) of the compliant mechanisms. Given a

specific compliant mechanism, the kinetostatic analysis of the mechanism with the

PRB model is referred to the forward analysis. If we know a particular rigid body

mechanism, the design of a corresponding compliant mechanism is referred to the

inverse analysis. In this work, we consider to leverage the latter one to design a

corresponding compliant mechanism to replace the rigid parallelogram mechanisms.

The rigid parallelogram mechanism and the corresponding gripper are as shown

in Fig. 2-4a. Considering the revolute joint as the pseudo rigid joint, one can replace

it by the living hinge with the inverse analysis. The living hinge is a special form of

a flexural pivot with little resistance throughout its deflection [64]. With the sub-
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stituted living hinges, one can convert the mechanisms in Fig. 2-4a to the compliant

parallel-guiding mechanism and the corresponding gripper in Fig. 2-4b.

We use the living hinge design to convert the rigid parallelogram mechanism in

Fig. 2-4a to an equivalent compliant parallel-guiding mechanism to reduce the assem-

bly process. The living hinge design reduces the 28 pieces of the rigid mechanism to a

single part while offers the approximately same kinematics functionality. The overall

size of the final prototype has length 260 mm, width 140 mm, and thickness 85 mm

at the rest position.

Actuation We select a high torque and high speed servo motor, dynamixel

XM430-W210-T from Robotis, as the actuator for the gripper. It offers 77 rpm

no-load speed and 3 N.m stall torque. According to the kinematics anaylysis of the

crank-slide mechanism, we map the motor speed (Ω) to the gripping speed (𝑉 ) as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑉 = 2𝜃2𝑙2

𝜃2 = 𝑠̇
cos 𝜃3

𝑟2 sin(𝜃3 − 𝜃2)

𝑠̇ = Ω𝑟𝑑,

(2.1)

where 𝑟𝑑 is the radius of the motor disk, and 𝑠 is the displacement of the slider.

Similarly, we map the motor torque (𝜏) to the gripping force (𝐹 ) according to the

energy method and free body diagram (FBD):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐹 =
𝑀2

𝑙2 sin 𝜃2

𝑀2 =
𝑃 𝑠̇

𝜃2
=

𝑃𝑟2 sin(𝜃3 − 𝜃2)

cos 𝜃3

𝑃 =
𝜏

𝑟𝑑
− 𝑘𝑠,

(2.2)

where 𝑀2 is the reaction torque at 𝜃2 given a grip force 𝐹 at the fingertip, 𝑃 is the

reaction force at the slide in the vertical direction corresponding to 𝑀2, and 𝑘 is the

stiffness of the compression spring.
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Figure 2-5: Tactile perception. (a) Gripper with GelSight sensors grasping a ca-
ble. (b) Top view of the gripper grasping different cable configurations and the
corresponding cable pose estimations. The white ellipse shows the estimation of the
contact region. The red and green lines show the first and second principal axes of
the contact region, with lengths scaled by their eigenvalues. (c) Top view of pulled
cable while the gripper registers marker displacements indicating the magnitude and
direction of the frictional forces.

2.4.2 Perception

Figure 2-5 illustrates the process to extract cable pose, cable force and grasp quality

from tactile images.

Cable pose estimation First, we compute depth images from the raw tactile im-

ages by estimating surface normal and applying Fast Poisson Solver (FPS) for inte-

gration [162]. Then, we extract the contact region by thresholding the depth image.

Finally, we use Principal Component Analysis (PCA) on the contact region to get

the principal axis of the imprint of the cable on the sensor.

Cable friction force estimation We use blob detection to locate the center of

the black markers in the tactile images [35]. Then we use a matching algorithm to

associate marker positions between frames, with a regularization term to maintain the

smoothness of the marker displacement flow. We compute the mean of the marker

displacement field (D), which is approximately proportional to the resultant friction

force.

Cable grasp quality In this task, we evaluate the grasp quality (S) based on whether

the area of the contact region is larger than a certain area. A tactile imprint with

poor quality (small contact region) will give noisy and uncertain pose estimation. By

increasing the grasping force, as shown in Fig. 2-6, we can increase the grasp quality.
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2.4.3 Control

Cable Grip Controller The goal of the grip controller is to modulate the grasping

force such that 1) the friction force stays within a reasonable value for cable sliding

(too small and the cable falls from the grip, too large and the cable gets stuck),

and 2) the tactile signal quality is maintained. We employ a combination of a PD

controller and a leaky integrator. The PD controller uses the mean value of the marker

displacement (D) (approximately proportional to the resultant frictional force) as

feedback and regulates it to a predefined target value (𝐷𝑡). We use position control

to modulate gripping force with the following PD controller for the reference position

𝑢𝑝𝑑 of the servo motor:

𝑢𝑝𝑑[𝑛] = 𝐾𝑝𝑒[𝑛] +𝐾𝑑(𝑒[𝑛]− 𝑒[𝑛− 1])

𝑒[𝑛] = 𝐷[𝑛]−𝐷𝑡[𝑛],
(2.3)

where 𝐾𝑝 and 𝐾𝑑 are the coefficients for the proportional and derivative terms, and

𝐷[𝑛] is the measured mean value of the marker displacement. The leaky integrator

raises 𝐷𝑡 of the PD controller if the signal quality (S) is poor as follows:

𝐷𝑡[𝑛] = 𝛼𝐷𝑡[𝑛− 1] + (1− 𝛼)(1− 𝑆),

𝑆 =

⎧⎪⎨⎪⎩1 if good quality

0 if poor quality

(2.4)

where 𝛼 is the leakage at each time step and S is the signal quality indicator. If

𝑆 = 1, the desired reference friction 𝐷𝑡 leaks. If 𝑆 = 0, the desired reference friction

𝐷𝑡 increases.

Cable-Gripper Dynamics Model We model the cable-gripper dynamics as a pla-

nar pulling problem. As shown in Fig. 2-7, the region of the cable in contact with the

tactile sensor (blue rectangle on the right) is represented as a 2D rigid sliding object.

We parameterize its position and orientation with respect to 𝑋 axis of the sensor

frame with 𝑦 and 𝜃. We further define the angle 𝛼 between the center of the cable
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Figure 2-6: Trade-off between tactile quality and sliding friction. Larger
gripping forces lead to higher-quality tactile imprints but difficult sliding. With the
same normal force, the grasp quality and friction force varies among cables. The
tactile-reactive control adjusts to different cables.

on the moving gripper and the orientation of the fixed gripper (blue rectangle on the

left). These three parameters [𝑦 𝜃 𝛼] define the state of the cable-gripper system. We

finally define the control input on the system 𝜑 as the pulling direction relative to the

angle 𝛼 (labeled with red arrow).

Since a deformable gel surface has complex friction dynamics, we use a data-driven

method to fit a linear dynamic model rather than first principles. The state of the

model is x = [𝑦 𝜃 𝛼]𝑇 , the control input u = [𝜑], and the linear dynamic model:

ẋ = 𝐴x +𝐵u, (2.5)

where 𝐴 and 𝐵 are the linear coefficients of the model.

To efficiently collect data, we use a simple proportional (P) pulling controller as

the base controller supplemented with uniform noise for the data collection process.

The P controller controls the velocity of the robot TCP in the 𝑦 axis and we leave the

velocity in the 𝑥 axis constant. The controller is expressed in Equation 2.6, where 𝐾𝑣
𝑝
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is the coefficient of the proportional term, and 𝑁 [𝑛] is random noise sampled from

a uniform distribution [−0.01, 0.01]. The intuition for this baseline controller is that

when the robot (sensor) moves to the +𝑦⃗ direction in world frame and composes a

+𝛼 angle, the cable gets pulled from the opposite direction −𝑦⃗ and dragged back to

the center of the gripper if it is initially located in the +𝑦⃗ region. Similar idea applies

to the opposite scenarios.

𝑣𝑦[𝑛] = 𝐾𝑣
𝑝𝑦[𝑛] +𝑁 [𝑛] (2.6)

Figure 2-7: Model cable-gripper dynamics. Schematic diagram of the planar
cable pulling modeling.

Cable Pose Controller The goal of the cable pose controller is to maintain the

cable position in the center of the tactile sensor (𝑦* = 0), the orientation of the cable

to be parallel to the 𝑋 axis (𝜃* = 0) and the inclination of the pulled cable also

parallel to the 𝑋 axis (𝛼* = 0). The nominal trajectory of the cable pose controller

(x[n]*, u[n]*) is then constant and equal to ([0 0 0]𝑇 , [0]), that is, regulating around

zero.

We formulate an LQR controller with the 𝐴 and 𝐵 matrices from the linear model

and solve for the optimal feedback gain 𝐾, which in turn gives us the optimal control
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input ū[𝑛] = −𝐾x[𝑛], where x = [𝑦 𝜃 𝛼]𝑇 as shown in Fig 2-7. The parameters of

the LQR controller we use are Q = [1, 1, 0.1] and R = [0.1], since regulating 𝑦 and 𝜃

(making sure the cable does not fall) is more important than regulating 𝛼 (maintain

the cable straight).

2.4.4 Robotic Cable Manipulation Flowchart

An overview of the robotic cable manipulation flowchart is given in Fig 2-8, which

includes the major components of the system: tactile perception, pose controller, and

grip controller. The flowchart presents an overview of the perception and control

algorithms. The perception module takes the raw feedback (raw image) from the

tactile sensors as the input, and generates the cable pose, marker displacement, and

contact area as the outputs. On one hand, the cable pose is fed to the pose controller,

generating action commands applied to the robot to modulate the pose of the cable in

the gripper. On the other hand, the marker displacement and contact area are fed to

the grip controller, generating action commands applied to the gripper to modulate

the griping force. Note that the flowchart reflects the logic of the cable following task,

and the insertion task is not included in the flowchart for the sake of brevity.

2.5 Experiment

2.5.1 Experimental Setup

The experimental setup in Fig. 2-9 includes a 6-DOF UR5 robot arm, two reactive

parallel-jaw grippers (as described in Section 2.4.1) and two pairs of revised fingertip

GelSight sensors attached to the gripper fingers. One of the grippers is fixed on the

table and another one is attached to the robot. The control loop frequencies of the

UR5 and the gripper are 125 Hz and 60 Hz, respectively.

We use five different cables/ropes to test the controllers (Fig. 2-14 bottom): Thin
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Figure 2-8: The robotic cable manipulation flowchart. The flowchart includes
three modulus: tactile perception, pose controller, and grip controller.

USB cable with nylon surface; thick HDMI cable with rubber surface; thick nylon

rope; thin nylon rope; and thin USB cable with rubber surface.

2.5.2 Cable following experiments

Experimental process The beginning end of the cable is initially grasped firmly

with the fixed gripper secured at a known position. The moving gripper picks up the

cable and follows it along its length until reaching its tail end. During that process,

the grasping force is modulated with the cable grip controller and the pose of the
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Figure 2-9: Experimental setup. UR5 robot arm and two reactive grippers with
GelSight sensors.

cable is regulated with the cable pose controller. We convert the control input 𝜑 to

the robot velocity along 𝑥 and 𝑦 axis in the world frame with the following kinematic

relation:
𝑣𝑥 = 𝑣(𝑐𝑜𝑠(𝜑+ 𝛼)),

𝑣𝑦 = 𝑣(𝑐𝑜𝑠(𝜑+ 𝛼)),
(2.7)

where 𝑣 is a predefined magnitude of the velocity of the robot. The moving gripper

can regrasp the cable by feeding the holding part to the fixed gripper if it feels it

is going to loose control of the cable, or the robot reaches its workspace bounds.

Within a regrasp, the robot adjusts the position of the moving gripper according to

the position of the cable detected by the fixed gripper.

Metrics we use three metrics to evaluate performance:

• Ratio of cable followed vs. total cable length

• Distance traveled per regrasp, normalized by the maximum workspace of the

moving gripper.
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• Velocity of the sliding task, normalized by max velocity in the 𝑥 direction.

Note that all these metrics have a max and ideal value of 1.

Controller comparison We compare the proposed LQR controller with three base-

lines: 1) purely moving the robot to the 𝑥 direction without any feedback (open-loop

controller), 2) open-loop controller with emergency regrasps before losing the cable,

3) Proportional (P) controller we use to collect data. Since the initial configuration

of the cable affects the result, we try to keep the configuration as similar as possible

for the control experiments and average the results for 5 trials of each experiment.

Generalization We conduct control experiments with the LQR robot controller +

PD gripper controller to test the performance across 1) different velocities (𝑣): 0.025,

0.045, and 0.065 m/s; and 2) 5 different cables. Similarly, we also conduct 5 trials for

each experiment and average the results.

2.5.3 Cable following and insertion experiment

An illustrative application of the cable following skill is to find a connector at the end

of a cable to insert it. This is a robust strategy to find the connector end of a cable

when it is not directly accessible or under position uncertainties. Here we conduct an

experiment on a headphone cable. The relative position in the workspace of the hole

where to insert the connector is calibrated. The cable following process is identical

to what we illustrated in the previous section. We detect the plug (thick) based on

its geometry difference compared to the cable (thin) using the GelSight sensor. To

estimate the pose of the plug before insertion, we use the same tactile estimation

method as used to estimate the cable pose during cable following.

2.6 Experimental Results

In this section, we evaluate the performance of the linear dynamic model. We then

detail the results of the cable following experiments with different robot controllers,

different velocities and different cables, according to the evaluation metrics. See
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Fig. 2-14 for a summary. We also show the results of the cable following and insertion

experiment (Fig. 2-13).

Figure 2-10: Cable following experiment. For three instances in time, (a) camera
view; (b) pose estimation from tactile imprints, where the yellow line in the center
indicates the desired in-hand pose alignment; (c) top view of the trajectory of the
end-effector and velocity output of the LQR controller, shown in red. The green
dotted line illustrates 𝛼. The controller keeps adjusting the cable state in real-time
by changing the moving direction to achieve the desired pulling angle.

2.6.1 Linear dynamic model evaluation

We evaluate the learned linear dynamic model with a collected dataset of cable-gripper

interactions.

Data collection We collect the data in the similar way as the system runs at the

test time, as described in Sec. 2.5.2, experimental process. But we let the fixed grip-

per always grip the beginning end of the cable, so that the data collection can run

repeatedly. The sliding motion can reset the cable to different initial configurations.

In addition, we add some perturbances to the initial cable configurations for data di-
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Figure 2-11: Predicted vs. actual velocity 𝑦̇, 𝜃, and 𝛼̇, of the generalized coordi-
nates of the cable-gripper dynamics, as defined in Fig. 2-7.

versity. We use approximately 3000 data points with a single cable. Each data point

contains the measured states 𝑦, 𝜃, 𝛼, the recorded control input 𝜑, and the estimated

velocities 𝑦̇, 𝜃, 𝛼̇. We train the model with two thirds of the data, and validate the

result with the rest.

Evaluation Fig. 2-11 shows the performance of the linear regression model over 𝑦̇,

𝜃, and 𝛼̇. The horizontal axis corresponds to ground truth and vertical axis repre-

sents the estimated velocities. According to the comparison, the simple linear model

captures the cable dynamics with coefficient of determination 𝑅2 of 0.61, 0.64, 0.55

respectively. We further show a sample sequence of prediction results during one slid-

ing in Fig. 2-12. The predicted velocities (orange dash line) align well with the ground

truth (blue solid line) most of the time. We expect non-linear models like Gaussian

Process and Neural Networks could achieve more accurate predictions, but whether

those more accurate predictions would translate to better control performance, would

need to be investigated.

2.6.2 Controller evaluation

We further evaluate the LQR controller with the learned linear dynamic model, and

demonstrate it is sufficient to accomplish the task efficiently.

We compare four different robot controllers: open-loop, open-loop with emergency

regrasps, P controller, and LQR controller. The top row in Fig. 2-14 shows that the
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Figure 2-12: Sequence of predicted (orange dash line) and actual (blue solid
line) velocity 𝑦̇, 𝜃, and 𝛼̇.

open-loop controller only follows in average 36% of the total length of the cable.

The gripper loses the cable easily when it curves. The simple addition of emergency

regrasps is sufficient for the open loop controller to finish the task. This indicates that

a timely detection of when the cable is about to fall from the gripper is important

for this task. This controller, however, still requires many regrasps and is slower than

the P and the LQR controllers. The results show that the LQR controller uses the

least number of regrasps compared to other controllers. The LQR controller does not

show much experimental improvement in the velocity metric, possibly because the

robot travels more trying to correct for cable deviations.

Figure 2-10 shows snapshots of the experimental process using the LQR controller.
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Note that this controller always tries to move the gripper back to the center of the

trajectory once the cable is within the nominal configuration since 𝛼 (the angle be-

tween the center of the cable in hand to the beginning end) is also part of the state.

This can be observed from the middle time instance of Fig. 2-10, where the cable

is straight and close to the middle of the GelSight sensor, but 𝛼 is large (the angle

between the x axis and the green line to 𝑡1 in the bottom of Fig. 2-10). The output of

the controller shows the direction to the center of the trajectory. The pose in the last

time instance is similar, but because 𝛼 is smaller, the controller outputs a direction

that will correct the cable pose. This feature is an advantage of the LQR controller

over the P controller.

2.6.3 Generalization to different velocities

The model of the cable-gripper dynamics is fit with data collected with robot velocity

of 0.025 m/s. We also test the LQR controller at 0.045 m/s and 0.065 m/s. The results

in the second row of Fig. 2-14 show that the performance does not degrade, except

requiring more regrasps per unit of distance travelled. This is likely because, going

faster, the controller has less time to react to sudden pose changes and, therefore,

tends to trigger regrasps more. Although the number of regrasps increases with larger

velocity, the total time is still shorter due to the faster velocity.

2.6.4 Generalization to different cables

We also test the system with the LQR controller on 5 different cables, each with

different physical properties (diameters, materials, stiffness). In experiments, the

system generalizes well and can follow 98.2% of the total length of the cables.

Comparing the performance on the different cables shows that cable 4 (thin and

light nylon rope) requires the most regrasps. It is difficult to adjust in-hand pose since

it is very light and the un-followed part of the cable tends to move with the gripper.

The cable with best performance is cable 5 (thin and stiff rubber USB cable), which

is stiff and locally straight most of the time.
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Figure 2-13: Headphone cable following and insertion process. (a)(b) cable
following to the plug end, (c) plug on top of the hole with pose mismatch (d) plug
pose adjusted and aligning with the hole, (e)(f) cable plugged into the headphone
jack on the phone. The plug is labeled with red circle and the headphone jack is
labeled with red arrow.

The tactile reactive gripper in this paper is designed to manipulate cables in our

daily life such as USB cables, earbud cables, ethernet cables, etc. A common feature

of these cables is that they are relatively thin. For cables with larger diameter, the

contact region will increase, and the depth (cable penetration into gel) will decrease,

given the same gripping force. Accordingly, the major axis of the ellipsoid and the

minor axis of the ellipsoid will increasingly become of similar magnitude, which will

be difficult to estimate the direction of the cable. One potential solution is to scale

up the sensor and the gripper for larger diameter cables, or, as humans do, use larger

contact areas, such as multiple fingers, or palms.

2.6.5 Cable following and insertion

The process to grasp, follow, and insert the headphone cable is illustrated in Fig. 2-

13. Parts (a) and (b) show the robot following the cable all the way to the plug

and identifying the moment it reaches the plug. After the plug is detected, the fixed

gripper opens and the robot moves the plug over the headphone jack on the phone

shown in Fig. 2-13(c).

After cable sliding, the gripper uses the tactile feedback from a GelSight sensor

to localize the plug and align it with the hole, as shown in Fig. 2-13(d). Afterwards,
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Figure 2-14: Experimental results. Different robot controllers (top), different
following velocities (middle), different cables (bottom). For visualization, the three
metrics are normalized to [0, 1] by dividing 100%, 0.45 m, and 0.02 m/s respectively
(max 1, ideal 1).

the robot moves down to insert the cable into the headphone jack in Fig. 2-13(e)-(f).

We repeat the insertion only experiment (plug directly fed to the gripper by human

with random pose) for 20 times and can insert the headphone plug with an 85%

success rate. For better visualization of combined experiments of cable following and

insertion, see videos at http://gelsight.csail.mit.edu/cable/

2.6.6 Failure cases

We observed several failure cases that deserve further thought.

• Hand-to-hand regrasps. Regrasps make it possible to robustly follow cables

with arbitrary length. However, it needs the coordination of two grippers, and

break the contact temporarily from each of them. One failure mode is that

the fixed gripper (currently without touch sensing) fails to grasp the cable after

breaking the contact. This is because the piece of cable between two grippers

has uncertain orientation depending on its stiffness. Stiffer cables hold straight,

and softer ones bend more easily under gravity. Constant relative pose between
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two grippers may results in regrasp failure. We could improve the robustness

by adding touch sensing to both grippers and applying an iterative regrasp

strategy.

• Plug misdetection. One failure mode for following-and-insertion is plug mis-

detection. To detect the end of the cable, the system needs to constantly search

for the plug during sliding. Misdetection of the plug can cause early or late

stop, which results in a failed insertion. We use the thickness difference be-

tween the cable and the plug to distinguish them in the earphone example. We

could apply more advanced computer vision methods [88, 67, 8] to increase the

detection accuracy.

• Extreme plug pose. Another failure mode includes extreme plug orientation

(large 𝜃), which could make it impossible to avoid collision during insertion.

We could improve it by adjusting the plug pose in gripper before insertion, e.g.

with regrasping.

2.7 Conclusions and Discussion

2.7.1 Conclusions

In this paper, we present a perception and control framework to tackle the cable

following task. We show that the tight integration of tactile feedback, gripping control,

and robot motion, jointly with a sensible decomposition of the control requirements is

key to turning the–a priori–complex task of manipulating a highly deformable object

with uncontrolled variations in friction and shape, into an achievable task. The main

contributions of the work are:

• Tactile Perception. Applying vision-based tactile sensor, like GelSight, to

cable manipulation tasks. It provides rich but easy-to-interpret tactile imprints

for tracking the cable pose and force in real-time. These local pose and force
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information about the cables are otherwise difficult to be captured by a vi-

sion system during continuous manipulation because they are usually occluded,

expensive to interpret, and not sufficiently accurate.

• Tactile Gripper. The design of a reactive gripper that uses compliant joints,

making it easy to fabricate, and protecting the tactile sensor from unexpected

collisions. The gripper modulates grasping force at 60 Hz which enables tasks

that need fast response to tactile feedback such as cable manipulation.

• Tactile Control. We divide the control of the interaction between cable and

gripper into two controllers: 1) Cable Grip Controller, a PD controller and leaky

integrator that maintain an adequate friction level between gripper and cable

to allow smooth sliding; and 2) Cable Pose Controller, an LQR controller based

on a linearized model of the gripper-cable interaction dynamics, that maintains

the cable centered and aligned with the fingers.

The successful implementation of the tactile perception and model-based con-

troller in the cable following task, and its generalization to different cables and to

different following velocities, demonstrates that it is possible to use simple models

and controllers to manipulate deformable objects. The illustrative demonstration of

picking and finding the end of a headphone cable for insertion provides a example of

how the proposed framework can play a role in practical cable-related manipulation

tasks.

2.7.2 Discussions

Robotic manipulation has had an impact on a range of real-world tasks, such as pick-

and-place and assembly. In most cases, the objects manipulated are rigid. Manipula-

tion of deformable objects is more challenging since soft materials are represented by

more complex states and follow more complex dynamics. A common approach to ma-

nipulating deformable objects is to iteratively transition between static stable states

via pick-and-release sequences. This reduces complexity, but also makes manipula-

tion inefficient. Natural manipulation of deformable objects observed from humans
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involves dynamic interactions such as sliding along an earbud cable to find the plug

or sliding along the edge of a sheet to find its corner.

This “sliding" motion yields new challenges: cables are highly deformable with

complex dynamics, and the operation requires real-time adjustments. Correspond-

ingly, the design of control policies for this type of task becomes difficult. However, we

can exploit the the local constraints imposed by the same sliding motion to simplify

control, specially when supported by state feedback via advanced tactile sensors.

Global vs. Local dynamics From a global perspective, the state and dynamics

of a deformable object are computationally challenging due to their large number of

DOFs. Fig. 2-15 (left) shows the global view of an earphone cable and a piece of cloth.

However, the state and dynamics are simplified for specific types of interaction. For

example when the cable or piece of cloth are in tension, it is easier to control the task

of sliding the fingers. The dimension of the deformable object is reduced by the same

constraints imposed by the sliding motion. This makes it possible to design simple

and efficient controllers for real-time robotic manipulation. In Fig. 2-15 (Right) the

state of cable and the cloth is simplified in between the 2 grasping points.

It is worth noting that it would be challenging to apply the current pose estimation

method (PCA) to soft cloths because the contact region may no longer be an ellipsoid.

One may consider using a different method, maybe a supervised data-driven method,

to estimate the principal direction of the edge of the cloth. The same idea applies to

very soft cables such as wool. In terms of the pose controller, soft cloths would also

be more challenging than relatively stiff cables for robotic manipulation. We expect

that leveraging extrinsic dexterity like the gravity of fabric for self-straightening or

partial table support with external forces, will be important. The grip controller

might also need to be adjusted such that the gripper opens further to better adjust

the in-hand pose when required. But in general, the idea of following tactile features

(like principal axis/edges) of deformable objects can serve as an alternative motion

primitive to alleviate the complexity of state and dynamic modeling.

The cable following technique we demonstrate in this work bypasses the complexi-

ties of global state estimation and control by designing policies that rely only on local
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Global
Complex State & Dynamics

Local
Simple State & Dynamics

Figure 2-15: Simplified state and dynamics from sliding. The comparison of the
global (left) and local (right) perspective of manipulating a piece of cable and fabric.
From a global view, it is challenging to model the state and dynamics of a deformable
objects due to the large number of degrees of freedom. However, the sliding motion
adds constraints to the objects, simplifying the local state and dynamics. It enables
fast and reactive manipulation skills.

state feedback, which can be captured by tactile sensors. The technique to change the

grasp on the cable by sliding the fingers can be thought of as a closed-loop primitive

action (the “sliding regrasp”) applicable to a range of objects (not just cables, but

also rigid objects and other types of deformable objects, e.g., cloth). On the percep-

tion side, this requires a sensor that can track local motions of the local geometry

at contact. On the control side, this requires a model of the local pulling-sliding

dynamics.

Contact state control & Object state control This work proposes a novel control

framework for robotics manipulation of deformable objects with sliding operations by

decoupling the complex manipulation policy into two simple independent controllers:

contact state control (i.e., cable grip controller) and object state control (i.e., cable
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pose control). This is equivalent to the decoupling control approach proposed for

tactile dexterity by Hogan et. al [55] with manipulation primitives for rigid objects,

and by enforcing sticking. In the case of this work, however, we apply it to a primitive

aimed at manipulating deformable objects with sliding interactions. The key idea is

the same: one controller (contact state controller) regulates the interaction between

the gripper and object to a nominal contact state, and a second controller (object

state controller) manipulates the object by exploiting the regulated nominal contact

state.

In our case, the contact state controller regulates the contact forces between the

gripper and cable to facilitate smooth sliding, while the object state controller main-

tains the cable at the center of the gripper. These two orthogonal controllers interact

and benefit from each other. By decoupling the control policies into two orthogonal

controllers, we can use simple controllers (PID and LQR respectively) in separate

threads to perform the task, enabling real-time control for complex dynamic manip-

ulation of deformable objects.
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Chapter 3

SwingBot: Learning Physical

Features from In-hand Tactile

Exploration for Dynamic Swing-up

Manipulation

In Chapter 2, we introduced the tactile-reactive sliding, which provided an efficient

and robust way for cable manipulation. Another way to increase robot dexterity is by

dynamic manipulation [100]. The dynamic motion of the robot arm provides extrinsic

dexterity [27]. However, the dynamic manipulation tasks are usually sensitive to

the physical properties of the objects [169]. Vision alone can be ambiguous, since

objects with similar appearances can have very different physical properties [149]. In

this chapter, we will apply tactile exploration for learning the physical features of

unknown objects under different interactions. The learned features can significantly

improve the downstream dynamic swing-up manipulation.

3.1 Introduction

As applications for robotic manipulation shift from industrial to service tasks, the

need for robots to deduce the physical properties of objects increases. To cope with
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the diversity of objects and tasks in the real world, robots require models that can

quickly infer the physical properties of objects, with as few interactions as possible

and without explicit supervision. These models could allow the robot to perform

more dynamic interactions with its environment or with held objects in the cases

where in-hand manipulation is desired. Vision based methods for learning physical

object representations through dynamic interaction have shown some promise towards

achieving such models [149]. However, vision based approaches are still restricted to

interactions in structured environments and do not address the limitations of deploy-

ing deep learning based vision systems into the real-world scenarios.

Tactile sensing can be seen as an attractive alternative to vision. In particular,

vision-based tactile sensors provide direct observations of the deformation caused by

contact with an object [163]. Considering the local nature of these observations,

the influence of environmental noise is negligible, making methods developed with

this modality potentially more transferable to real-world environments. Additionally,

vision-based tactile sensors are able to accurately estimate the normal and shear forces

being applied to the sensing surface. So rather than designing an environment to make

the influences of external forces easily observable with vision, it is preferable to have

very accurate sensing directly at the interaction points, i.e, performing interactions

with a sensorized hand. Therefore, tactile sensing seems like an appropriate modality

for learning object physical representations. However, it is not without its limitations

as these sensors are soft, making the modeling and measuring of the properties of the

sensor itself more complex.

In this work we develop a method to infer the physical parameters of an unknown

object through in-hand exploration. To do this, we use the information provided by a

GelSight sensor [163] to learn a low-dimensional embedding of the object’s properties

as well as the properties of the GelSight itself. We learn the embedding in a self-

supervised fashion and use it to optimize the performance of a dynamic in-hand

manipulation task. In particular we have the robot swing-up a set of unknown objects

to a desired pose in-hand. We find the optimal control parameters for the swing-up

task with the aid of a swing-up angle predictor that uses our learned embedding as
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Figure 3-1: SwingBot. We develop a learning-based in-hand physical feature ex-
ploration method with a GelSight tactile sensor, which assists the robot to perform
accurate dynamic swing-up manipulation.

input. We also prove the portability of this embedding to new tasks by showing that

we can use it to directly regress to object parameters such as mass, center of mass,

moment of inertia and friction.

Our approach consists of two main components: (1) an information fusion model

and (2) a forward dynamics model. SwingBot starts by performing two in-hand

exploration actions, tilting and shaking. As each of these actions provides different

information about the physical parameters of the object, a fusion model takes the

information from both actions in order to learn a joint physical feature embedding

of the object in-hand. Once the embedding is learned, a forward dynamics model

uses the embedding and the control parameters that generate the swing-up motion

in order to predict the final swing-up angle.

The main contribution of this work is to demonstrate that the robot is able to

learn a low-dimensional embedding of the physical features of a held object from

dense tactile feedback acquired through a small number of active exploration actions.

The learned embedding allows the robot to accurately and consistently perform a
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(a) (b) (c) (d)

Figure 3-2: Challenges. Swing-up is a highly-dynamic process, where changing
objects’ physical properties would have a big impact on the final swing-up angle.
Here we show, with the same control parameters, that the dynamics vary when the
objects vary: same mass but different center of mass (a)(b); different mass (b)(c);
and different friction coefficient (c)(d).

swing-up task on a set of objects, with an overall 17.2 degree error on unseen objects.

Furthermore, our experiments show that the fusion network can accurately estimate

physical parameters of unknown objects once the features are disentangled.

3.2 Related Work

Robotic manipulation has been dominated by the paradigm of kinematic manipula-

tion, and for good reasons. In reducing the effects of task dynamics, it is easier to

ensure that a robot can perform its task consistently without error. However, this

has limited the application of robotics to a set of simple tasks like pick-and-place.

As robotic manipulation becomes more ubiquitous, the need for robots that can per-

form more tasks becomes important. One path forward is to increase the mechanical

complexity of robots by using dexterous hands. However this also comes with a cost

in terms of control and design complexity. Alternatively, [100] illustrates that simple

mechanical designs can achieve more than pick-and-place if we reconsider the task

dynamics.

Inspired by [100], researchers have been successful in developing methods that

exploit the task dynamics for performing actions like dynamically sliding an object in-

hand [121], tossing an object into the air to regrasp it [27], and swinging up an object

to a desired pose [123]. However, these methods require experts to first determine
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which parameters of the system are important for the task, a model of the dynamics,

and accurate measures of the physical properties of importance for each object used.

Therefore, these methods are hard to deploy in real-world environments.

To alleviate the need for careful modelling and accurate measurements, researchers

have been working on an alternative method known as intuitive physics [147, 2].

Intuitive physics allows a robot to estimate the parameters of an object via learning

based approaches and interaction. In [147, 87, 149, 44], direct regression over the

physical parameters of an object, like mass and friction, was performed for tasks like

sliding an object and predicting the stability of a tower of stacking blocks. However,

knowing exactly which physical parameters are needed for a task or directly observing

those parameters from feedback may be difficult. So, several methods [2, 42, 156, 169]

instead indirectly estimate object parameters by learning an object embedding in a

self-supervised way for tasks like pushing and tossing an object to a desired pose.

However, these methods still require a structured environment. In particular, [149]

used a set of ramps to make the result of a dynamic interaction easily observable with

vision.

Rather then using the environment we can instead use in-hand manipulation to

extract properties about the object. In fact, [83] suggest that humans perform a set

of exploratory procedures to extract object properties like friction, mass and center

of mass. While, it is possible to monitor in-hand interactions with vision, [16] shows

tactile sensing outperforms vision alone when doing tasks that require feedback about

contact interactions like determining if a grasp is successful. This work along with

other works that explore tactile sensing for tasks like slip control [136, 36, 126], re-

grasping [21, 30, 56], contour following [85, 53, 119], and ball manipulation [131] focus

mainly on static or quasi-static interactions. The object’s physical properties have

less of an influence on the performance of a controller for static or quasi-static in-

teractions then they would have in more dynamic manipulation tasks like swing up.

As a result, none of aforementioned works that explore tactile sensing estimate the

physical parameters of the object. In contrast, we focus on learning physical represen-

tations from simple in-hand tactile exploration, and show that such representations
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Figure 3-3: Overview of the architecture. The robot takes several steps to acquire
and use the physical features of the held object: (1) Tilting the object at 20∘ and 45∘.
The corresponding marker information is encoded by a network with CNN and MLP
into a 40-dimensional embedding. (2) Shaking the object. The sequence of marker
information is processed by a RNN network into a 40-dimensional embedding. (3)
A fusion model concatenates the embedding from both actions and outputs a fused
physical feature embedding. (4) A prediction model takes the physical embedding
and control paramaters as input and outputs a prediction of the final swing-up angle.
During training, the whole pipeline is trained in an end-to-end fashion using the
final angle for self-supervision. During inference, a set of control parameters are
uniformly sampled. The action with the prediction result closest to the goal is selected
to perform the swing-up.

are useful for manipulation tasks that requires physical knowledge.

3.3 Method

The goal of SwingBot is to enable the robot to swing up an unknown object to a

desired pose (0∘ ∼ 200∘) after performing a single exploratory action. In [123], the

authors suggest the robot must first build a dynamic model of the task, and once

the robot has a notion of what this model is, it must then extract which physical

parameters of an object are keys to completing the task. Thus, when a novel object

is introduced, the system only needs to extract those parameters to tune the model.

Therefore, we create a method to estimate the desired control parameters of a hand

coded control policy by performing a set of hand coded exploration actions. To

accomplish this we use GelSight, a vision based tactile sensor, to monitor the state of
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the object while performing in-hand exploration of the object in the form of shaking

and tilting. These exploratory procedures extract different type of object information,

and as a result we create a method to fuse the information from both procedures into

a joint physical feature embedding of the object. We then create a forward dynamics

model that uses the embedding to infer which action will result in our desired object

pose.

3.3.1 GelSight

While previous methods exploring physical object property estimation monitored

the result of a dynamic interaction with vision [149], vision as a modality has its

limitations for this task. Beyond errors in state estimation due to environmental

noise, it lacks the ability to perceive the forces being applied to an object. Hence, if

you were performing an exploratory action like tilting an object in-hand to estimate

it’s mass, its change in position as you tilt the object would be almost imperceptible,

as seen in Fig 3-4. Therefore, we rely on tactile sensing, the GelSight sensor [163] in

particular. The GelSight enables us to have high resolution information about the

contact surface between the object and the finger. This enables us to have information

about local geometry of the object for pose estimation. Beyond that the sensor used

in this experiment is equipped with markers along the sensing surface which provides

information about tangential displacements, giving us rich information about the

sheer forces and torques being applied to the sensing surface.

3.3.2 Information Fusion for Multiple Exploration Actions

While the use of a GelSight has its advantages in providing rich information about the

contact dynamics between the finger and the object, it also comes with its limitations.

The material used to make the GelSight (Polydimethylsiloxane) exhibit nonlinear

mechanical properties that are difficult to measure and model. So, while previous

approaches [149] were able to directly regress over physical properties like mass and

friction and perform a forward simulation, we take a different approach. Rather
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Figure 3-4: Exploration actions and GelSight Signals. The robot executes
two in-hand explorations, tilting and shaking, to acquire tactile observations of the
object. When tilting, different force and torque distributions are generated by the
objects weight can be observed. When shaking, different frictions and vibrations can
be observed from temporal sequences of tactile signals.

than regressing over the physical parameters, we hand design a set of exploratory

procedures that clearly encode physical properties of the object like fiction and mass,

and then let the model create its own low-dimensional embedding of the object using

self-supervised learning in hopes it also encodes the gel’s dynamics.

In designing these exploration actions, we had to determine what set of parame-

ters to search for. In [123], a dynamic analysis of the swing-up task was performed,

concluding that the surface friction, mass of the object, center of mass and

moment of inertia play roles in swing-up dynamics. Since we use a parallel gripper

for this task we are limited to what we can choose in terms of actions. We deter-

mined that shaking and tilting the object in hand were the only methods that can be

performed reliably. After some experimentation with these behaviors, we determined

that tilting was able to give us information about mass, center of mass and the

moment of inertia, while shaking is able to inform us of the friction of the object

as show in Fig. 3-4.

In-hand Object Tilting: Using tactile feedback and tilting the object in-hand to

different angles provides us information about the mass and center of mass, as

showed in Fig. 3-4. We observed that as the object was tilted to a low angle we could

obtain its mass, while tilting the object to a larger angle gave us information about

the torque being applied to the sensor. Combining mass in torque estimates we were
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Figure 3-5: Template objects. The template objects consist of three components:
handle, rack and weights. Different components can be assembled and replaced easily,
which creates a variety of objects with different physical properties.

then able to infer the center of mass. Therefore, after the robot grasped the object

and held it in-hand, it is then able to tilt the object into 20 and 45 degree poses.

The marker feedback (𝑊 × 𝐻 × 2; 𝑊 = 14, 𝐻 = 12 in our experiments) from the

GelSight tactile sensor at each angle is recorded and used as the input information to

the model. Then, the model concatenates the marker information of three angles into

a 4 dimensional inputs, followed by a CNN network with kernel size of 5 × 5, 3 × 3

and 2 × 2. The last layer of the network is a fully-connected layer which outputs a

40-dimensional feature as the fusion of the learned physical proprieties for tilting.

In-hand Object Shaking: Shaking in turn contains information about the friction,

and potentially for the moment of inertia. After holding the object in a 0-degree

pose, the robot first loosens the gripper force to enable a small range of rotation

flexibility (Fig. 3-4). Then, the robot starts a quick switch between forward and

backward rotations (5 degrees in our experiments) on the joint of the end effector.

During this process, we record a sequence of the tactile marker displacements (60-70

frames per trial). Each frame is then processed into a 40-dimensional embedding with

the CNN network, which has the same architecture as the one introduced above. Since
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we want to extract the inter-frame information of the shaking action, we use a long-

short term memory (LSTM) [54], which starts with zero hidden states and iteratively

processes all the embeddings of each frame. The last layer will concatenate the hidden

states ℎ and cell state 𝑐 into a 80-dimensional embedding as the fusion of the learned

physical properties for shaking.

3.3.3 Prediction Model for Forward Dynamics

To perform the swing-up action we use an impulse-momentum method [3]. The

first stage of the swing-up action begins by having the robot build up the object’s

linear and rotation momentum by simultaneously accelerating the object upwards

and rotating the wrist in the direction of the swing while holding the object firmly.

After a short period the robot creates an impulse, by quickly accelerating the object

downwards and rotating the wrist in the opposite direction of the swing. At the

moment of the impulse the robot loosens the gripper, so that the inertia of the object

can overcome the forces of rotational friction and gravity. Thus, the object freely

rotates in-hand. After some time, the gripper is tightened to stop the motion of the

object at some pose. We use current based position control for the gripper so that

the robot automatically decides the gripper width for holding different objects tightly

with the same motor torque. When designing the action, the linear and rotational

movements of the arm are predefined as well as the timing of gripper tightening, but

the robot selects how much the gripper loosens at the impulse. This allows the robot

to control the objects deceleration so that it can precisely control the object’s end

pose.

In order to use the learned physical features to find the control parameter, the

gripper width, for the swing-up manipulation, we propose a forward dynamics model

that takes the fused physical features and the action as inputs and outputs a prediction

of the final swing-up angle (Fig. 3-3). The model is trained in a self-supervised

learning fashion. The data collection is introduced in Sec. 3.4. During the inference

mode, the robot first records the marker information of the tilting and shaking actions.

Then, the trained information fusion model processes these inputs into a joint physical
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feature. After that, a set of gripper widths are uniformly sampled. The prediction

model predicts the final swing-up angle for each sampled gripper width and then

selects the one with the prediction result closest to the goal pose.

3.3.4 Template Objects and Dataset

When it comes to model generalization, the diversity of the training conditions highly

influences the models performance on unseen objects. To this end, inspired by [7], we

design a modular system to quickly build a set of test objects. Our object templates

are shown in Fig 3-5. There are three major components: handle, rack, and weight.

They can be assembled or replaced by simple rotational press-fit. The goal is to

change the object’s physical properties easily by placing different weights in different

positions and exchanging handles.

With our template objects, we collect a dataset that contains 33 different objects

and each object was used in 50 swing-up trials, performed with a random control

parameter. These objects contain variance in different category of physical proprieties:

• 3 different surface frictions on the handle: foam, slick tape, and plastic.

• 3 disks with different mass: 3.7 g, 7.3 g and 14.5 g.

• a pole-shaped rack (15.6 g) allowing for different placement of the disks for

variance in center of mass (77-134 mm) and moment of inertia (0.03-0.58

𝑔 ·𝑚2)

In each data collection trial, the robot first grasps the object and holds it a 0-degree

pose. It then rotates its end effector into two angles (20∘, 45∘ in our experiments),

as introduced in Sec. 3.3, and records the marker information from the tactile sensor.

After that, the robot resets the object pose to 0∘ and loosens the gripper force before

it starts shaking as introduced in Sec. 3.3. The marker sequence is recorded. Then

the robot selects a random control parameter and starts its swing up. The final angle

in the end of the swing-up is saved as the supervision ground truth for training the

prediction model. At the end of each data collection trial, the robot opens the gripper
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and lets the object fall into a recycle box at the bottom of the system. The recycle

box will return the object to the same initial position every time so that the robot

can automatically start another trial. The reset process is demonstrated in our video

supplementary files.

3.4 Experiments

In the experimental section, we would like to answer the following questions: (1)

How does the prediction model with the learned physical features compare to the one

without physical exploration? (2) How does the fusion of the multiple exploration

actions compare to each individual action? (3) Can the physical properties of an

object be regressed from the learned features? (4) Are objects with similar dynamics

close in the embedding space? (5) Can our method accurately swing-up a set of

unknown objects to a desired poses consistently?

To answer these questions, we evaluate our method on both seen and unseen

objects with a 5-DoF robot arm. Here, “unseen” refers to objects with physical

proprieties that never appeared in the training set. To assess what information is

included in the learned physical feature embedding, we conduct a experiment to

directly regress the physical proprieties (friction, mass, center of mass and moment

of inertia) from the physical embedding on both seen and unseen objects.

3.4.1 Experimental Setup

Dataset for seen objects: We collected data with 33 objects with different physical

properties as introduced in Sec. 3.3. For the experiments on “seen” objects, we split

the data of each object into 90% for training and 10% for evaluation. Thus, the

training set contains 1485 samples (33 objects) and the testing set consists of 165

trials (33 objects).

Dataset for unseen objects: For the “unseen” objects, we split the 33 objects into

27 objects for training and 6 objects (showed in Table. 3.3) for testing. The testing set

is composed of a combination of 2 different frictions and two different masses placed
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Rand. None PP Tilt. Shak. Comb.
Seen 66.7 25.4 11.0 13.3 10.9 10.2
Unseen 66.7 26.8 18.5 17.6 15.0 12.9

Table 3.1: Quantitative evaluation results of the prediction model with physical em-
bedding from different variants of the fusion model on seen and unseen datasets. The
results are shown in degrees.

at 2 different locations. The training set contains 1350 samples and the testing set

consists of 300 trials.

Architectures: We compare five model variants that show case the effectiveness of

our design choices:

• None: No tactile exploration information is given. The model takes the action

as input and directly predicts the final swing-up angle.

• PP : The numerical value of each physical property (friction, mass, center of

mass and moment of inertia) of the object is given to the model as inputs.

• Tilting : The model only process the tactile information of the tilting action into

the physical features.

• Shaking : The model only process the tactile information of the shaking action

into the physical features.

• Combined : Both tactile information of tilting and shaking actions are processed

by the fusion model into a joint physical feature embedding.

Robot experiment setup: As shown in Fig. 3-6, we use a 5-DoF robot arm (Re-

actorX 150 Robot Arm, Interbotix) for our experiments. For better performance, we

replace all the servo motors with DYNAMIXEL XM-430-W350T, ROBOTIS. We use

OpenCM9.04 C micro-controller for controlling the robot. In order to get consistent

performance, we found that it was critical to send the trajectory to micro-controller

buffer in advance and execute on board. Otherwise, the communication latency be-

tween PC and micro-controller can produce prohibitively large amounts of actuation

noise.
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Figure 3-6: Experiment setup. The GelSight tactile sensor is mounted on a gripper
of the robot arm. The recycling system enables automatic data collection.

3.4.2 Model Performance

Table. 3.1 shows the evaluation results of five of our model variants on both seen

and unseen datasets. The metric is the error in degrees on the final angle prediction

results. Since the baseline method None does not have any information about the

physical proprieties of the object, it could only output a mean value of the training

dataset, showcasing the worst performance. On the other hand, the Combined method

which uses the fusion model to combine the information from both exploration actions

achieves the best results, which surpass the None for more than 13∘ on both datasets.

This improvement shows the importance of in-hand physical exploration for dynamic

manipulation tasks like swing-up.

Also, the Tilting, Shaking and Combined methods outperforms the PP baseline

method by up to 5 degrees. This is due to the components of the ground truth

information being based on the ideal physical model, which has the risk of missing
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Seen
Friction Mass Cent. of Mass Mom. of Iner.

Random 33.3% 0.333 0.333 0.333
Tilting 89.6% 0.101 0.150 0.090
Shaking 96.9% 0.121 0.203 0.184
Combined 94.8% 0.085 0.135 0.112
End-to-End 98.9% 0.078 0.083 0.056

Unseen
Friction Mass Cent. of Mass Mom. of Iner.

Random 33.3% 0.333 0.333 0.333
Tilting 75.6% 0.184 0.086 0.141
Shaking 90.1% 0.263 0.125 0.233
Combined 93.9% 0.200 0.099 0.117
End-to-End 95.4% 0.073 0.110 0.095

Table 3.2: Quantitative evaluation results of the physical feature disentanglement on
both seen and unseen datasets. The metric for the friction is classification success
rate (3 classes). The metric for the rest properties is error in percentage (normalized
to 0-1 with the minimum and maximum of the value).

other physical features that also contribute to the model performance such as the

elasticity of the contact area of the gripper and the pose of the object in-hand. Since

the GelSight tactile sensor provides rich contact information on the finger tip, meth-

ods relying on this information have the potential to learn their own joint physical

understanding about the held object and the system. These results showcase the

advantage of using an intuitive physics reasoning compared to manually engineering

physical features.

In the ablation study between Tilting, Shaking and Combined, the performance

of the methods with individual exploration action is inferior to the combined version,

especially for the unseen situation. Hence, we conducted an additional experiment to

evaluate what information is learned in each exploration action and why the combined

version could achieve the best performance.

3.4.3 Physical Feature Disentanglement

We use a three-layer MLP as a disentangle network which takes the physical feature

embedding as input and regresses to the numerical values of mass, center of mass
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(a) (b)

Figure 3-7: Task-oriented physical feature visualization: (a) Visualization (with
PCA) of the outputted physical embedding (Combined) on the testing samples of the
6 unseen objects (listed in Table. 3.3). (b) Visualization of the data distribution
(X-axis: control parameter; Y-axis: final angle) of the testing samples of each object.
Each color point refers to one data sample. Objects with similar dynamics are also
close to each other on the learned physical embedding space (e.g. 5 and 6). And
objects with different dynamics are far away from each other (e.g. 1 and 4).

and moment of inertia. Another branch of the network outputs a classification result

for the friction (3 classes). The training and testing data for both seen and unseen

situations follow the same setting as the prediction model. The weights of the network

that generates the physical embedding are fixed and only the disentangle network is

trained and tested. In addition to the model variants introduced previously, we add

another End-to-End method which trains the whole pipeline to output the physical

properties. This method can be regarded as the best performance that the model can

reach.

Table. 3.2 shows the experimental results of the physical feature disentanglement.

The metric of the friction is the classification success rate. The metric for the rest of

the physical properties is the error in percentage, where each property is normalized to

0-1 based on the minimum and maximum value. For both seen and unseen situation,

all the model variants outperform the Random baseline, which proves that all of the

physical properties are included in the learned embedding.

In addition, we can observe from the results the difference in focus between each of
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the exploration actions. For instance, the tilting action is good at reasoning the mass

and center of mass, which surpasses the shaking for 8% in mass and 4% in center of

mass on the unseen situation. This is mainly because the tilting action provides stable

torque force signal by placing the held object at different angles, for which is easier to

calculate these properties compared to shaking. On the other hand, the shaking action

achieves 93.9% friction classification success rate which is higher than tilting action

by 15%. This is to the fact that, as opposed to tilting when the object is held firmly,

shaking loosens the gripper to enable in-hand sliding of the object, capturing friction

information. Because of the loosening if the gripper, shaking failed to acquire the mass

and center of mass information, which requires stable observations. It is surprising

to find that the moment of inertia of the tilting also outperforms the shaking. One

of the possible reasons for this is the model inferring the moment of inertia based

on its understanding of mass and center of mass. The combined method successfully

fuses the information from both actions and achieved a balanced performance among

all the physical properties. This experiments show the importance of fusing multiple

exploration actions and why the combined method could reach the best prediction

results.

3.4.4 Task-oriented Physical Feature

Another advantage of learning joint physical features compared to estimating each

property individually is its potential to generate task-oriented feature embeddings,

where the objects close to each other in the embedding space can share similar control

policies. We use PCA [145] to project the learned physical embeddings from the

Combined method to points on a 2D plot and visualize all the testing results of the

6 unseen testing objects in Fig. 3-7(a). We also visualize the data distribution of

these test samples in Fig. 3-7(b), where the X-axis refers to the control parameter

and the Y-axis is the final swing-up angle. As we can see, for objects with similar

policy distribution (objects 5 and 6), the distance between their embedding is also

short. And for objects with large differences in the policy distribution (objects 1

and 4), the distance between their embedding is large. This result confirms that
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ID Objects Errors (∘) ID Objects Errors (∘)

1 21.4 2 12.3

3 19.8 4 8.3

5 18.3 6 23.4
Mean 17.2

Table 3.3: Swing-up results on 6 unseen testing objects (with ID 1-6 same as Fig. 3-7).
The robot uniformly samples a set of actions and selects the one with the prediction
result closest to the final goal to perform the task. In this table, each object is tested
20 trials (5 trials for each desired angle: 45∘, 90∘, 135∘ and 180∘) and the mean error
is listed.

the learned physical embeddings are indeed task-oriented, which largely benefits the

dynamic swing-up manipulation.

3.4.5 Swing-up Results

We deploy the trained model of the Combine method in the robot arm. Given the

target angle, the robot samples different control parameters, and chooses the one

whose prediction is closest to the target angle. We test 20 times (5 times each for

45, 90, 135, 180 degrees as target angle) for each unseen object. The robot is able

to adapt the control policy automatically for objects with different physical proper-

ties. The evaluation shows that the model performs better on lighter objects which

have less uncertainty compared to heavier objects. The detailed results are shown in

Table. 3.3.

3.5 Discussion and Future Work

We have presented SwingBot, a robot system that identifies physical features of held

objects from tactile exploration, providing crucial information for a dynamic swing-up

manipulation. SwingBot is based on a novel multi-action fusion network that com-

bines the information acquired via multiple exploration actions into a joint embedding

space. The whole pipeline is trained in an end-to-end self-supervised manner. We

used the performance of the swing-up task to compare our embedding with variants
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trained with single actions and with swing-up actions that do not consider any form

of tactile information. These comparisons showed that swing-up actions that relied

on our fusion method achieved the best performances. Furthermore, we showed that

the learned task-oriented feature embedding could also be used to successfully regress

individual physical properties such as mass, center of mass, moment of inertia and

friction.

Current limitations are inherently coupled to the fact that our analysis of the

embedding is based on the performance of a single task. This task is very specific

and heavily conditioned by the available hardware. The robot platform that was

used suffers from high actuation noise increasing the error of the swing-up angle

predictions.

In addition, while the GelSight sensors provide very rich information, the current

sensing latencies prevent the observation of the full swing-up movement. Using a

more robust robotic system in conjunction with a GelSight sensor with lower latencies

would potentially enable the use of real time feedback control as opposed to the open

loop solution that was proposed.

Regarding future work, one interesting direction is to learn the optimal explo-

ration actions by using the quality of the resulting embeddings to guide the learning.

Another interesting direction is to assess how useful these embeddings are for other

task and if an embedding learn for one task can be transferred onto other tasks.
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Chapter 4

Tactile-Enabled Roller Grasper

In Chapter 2, and Chapter 3, we improved dexterity by combining tactile signals

with a robot arm motion, such as sliding and dynamic swing-up. This chapter will

explore another direction towards dexterous manipulation by improving in-hand tac-

tile dexterity. Since complex humanoid robotic hands can be challenging to control,

we explore simplifying the hand design using a joint motion beyond humans: rolling.

We design a roller grasper with tactile sensing, and develop a perception system to

tackle the challenges brought by continuous rolling. We will demonstrate its capabil-

ities to manipulate various objects robustly, and use manipulation for more efficient

perception. The combination of active roller and tactile sensing opens up a new range

of manipulation skills.

4.1 Introduction

Similar to how the dexterity of human hands allows us to accomplish a variety of

everyday tasks, the in-hand manipulation capabilities of robots are necessary to ac-

complish a wide range of complex tasks in different environments. Out of all the

manipulation tasks a human hand could perform, in-hand manipulation requires the

most dexterity. However, while having high dexterity is desirable for robot hands,

designing robot hands or fingers based on their human counterparts might not be op-

timal. On one hand, while linkage-based finger designs reminiscent of human fingers
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are very popular, it is very difficult to obtain similar performance due to limitations

such as force density and sensing fidelity. On the other hand, even if human hands are

perfectly replicated on robots, they are not necessarily optimally suited for a variety

of in-hand manipulation tasks.

Specifically, for in-hand manipulation involving large translation or reorientation,

linkage-based robotic hands need to have their fingers repeatedly establish contact,

break contact, and re-establish contact for the grasped object to be moved. Such

methods could be highly inefficient and difficult to control, motivating a robot grasper

with the ability to proficiently manipulate objects within the hand.

The Roller Graspers [160, 161] introduced an entirely new way to manipulate

objects within hand. They have demonstrated success in various in-hand manipula-

tion applications. However, one of the major limitations is the lack of local contact

information. Tactile sensors are a crucial component for successful robot in-hand

manipulation, much like how humans rely extensively on haptic feedback during ma-

nipulation tasks. Previous works have shown the importance of tactile sensing in

robot in-hand manipulation for linkage-based robot hands [158, 41, 119]. Compared

to regular linkage-based fingers, tactile information can be even more important for

Roller Graspers for two reasons. (1) Steerable rolling mechanisms introduce more

complex contact mechanisms between the rollers and the grasped objects. Under-

standing the nuances of the contact conditions would further improve the in-hand

manipulation capabilities of the Roller Graspers. (2) The steerable rollers may be

slightly larger relative to some linkage-based fingers, which makes object occlusion a

more prominent issue for external vision-based tracking techniques. As important as

tactile sensors can be, none of the previous robot hands with active surfaces success-

fully incorporated tactile sensors. This is because the continuous rotation mechanism

makes it difficult to deploy wires to the surface of fingertips, making it infeasible to

integrate traditional tactile sensors based on resistance, capacitance, and piezoelec-

tricity [28, 158, 26]. To overcome this challenge, we chose to integrate a vision-based

tactile sensor where the sensing areas are not connected to the sensor module (i.e.

camera), allowing tactile sensing on a continuously rotating sensing area.
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In this work, we propose a highly non-anthropomorphic robot hand - the Tactile-

Enabled Roller Grasper (TERG) - which is a two-finger grasper with steerable active

rollers at the fingertips. Each roller is equipped with a vision-based tactile sensor

allowing the grasper to obtain high-fidelity contact information during in-hand ma-

nipulation. We also demonstrated how the raw tactile information can be processed

and used for various tasks. The unique interactions of the steerable fingertips with the

contacted objects in combination with the high-definition vision-based tactile sensor

allows both successful in-hand manipulation of a diverse set of objects and geometric

property identification, leading to tactile SLAM [43, 128].

4.2 Related Work

4.2.1 Robot Hand for In-Hand Manipulation

For the past century, there have been a number of robotic hands designed with in-

hand object manipulation capability [111]. Most of these hands are linkage-based,

including anthropomorphic hands [25, 32, 52] and other fully-actuated hands [115, 69].

While they may theoretically have sufficient degrees of freedom (DoF) to achieve the

dexterity required for in-hand manipulation, the resulting grasp gaiting motions can

be difficult to achieve and are an inefficient way to perform in-hand manipulation.

Alternatively, in-hand manipulation can be achieved without intentionally switching

contact locations, but this severely limits the object’s range of motion. There have

also been works that use underactuated linkage-based hands [96, 11] to achieve in-

hand manipulation. While these works managed to achieve in-hand manipulation

with the limited controllability of underactuated hands, the same issues as with the

linkage-based hands still exist as described above.

Another approach towards in-hand manipulation is to use non-anthropomorphic

hands [98, 102]. One particular type of non-anthropomorphic hands use active sur-

faces that allow the hand to move a grasped object with minimal modification of

the grasp pose. Earlier works on this type of hands have fixed conveyor direc-
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tions [31, 49, 133, 97, 74]. [160] and [161] further developed this concept and in-

corporated steerable rollers for more dexterous in-hand manipulation. However, as

mentioned before, the challenge of incorporating traditional tactile sensors into active

surfaces made us choose a vision-based tactile sensor for this application.

4.2.2 Vision-based Tactile Sensing

Vision-based tactile sensors [143, 4, 117, 150, 79, 109, 112] are a type of tactile sensor

which converts contact signals into images. It has become increasingly popular in

recent years because it provides high-resolution, force-sensitive data that are low-cost

and flexible to modifications. Vision-based tactile sensors usually consist of a piece

of elastomer, a camera, and a lighting system. When externally in contact with an

object, the sensor captures the deformation of the elastomer by a camera and infers

characteristics, such as the shape of the contact, and the shear and torsional forces.

While tactile sensors based on resistance, capacitance, and piezoelectricity [28,

158, 26] can be great options for regular linkage-based robotic hands, they are not

suitable to be integrated with continuously rolling mechanisms. Because their de-

sign involves deploying wires/cables from the electronics to the sensing area, the

wires/cables would inevitably get tangled due to the continuous rotation. Vision-

based tactile sensors, in comparison, provide great advantages by allowing the tactile

signal to be transferred through light, eliminating the mechanical coupling between

the sensing area and the electronics making it an ideal choice for continuously rolling

mechanisms.

There have been previous works [122, 19] that integrate vision-based tactile sensors

into passive rollers for inspection tasks. It was demonstrated that rolling action

greatly improves the efficiency of inspection especially when scanning large areas.

However, since the rollers in these works are passive, they rely on the motions of

robotic arm navigate through the inspection areas.

In this work, we integrate a category of vision-based tactile sensors - known as

GelSight sensors [163] - into actively-driven rollers, which not only enables better

capabilities for in-hand manipulation through rolling contact, but also has the ad-
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vantage of efficiently inspecting the geometric properties of the grasped object during

manipulation. In addition to the shear forces and 2D contact geometry, GelSight sen-

sors can also provide high-resolution 3D contact geometry by applying photometric

stereo [163]. The 3D information can be further processed and be used for normal

forces estimation, pose estimation, and surface reconstruction. We design the sen-

sor so that it can fit into a compact form-factor of the actively driven rollers while

preserving the high-resolution 3D contact geometry.

4.3 Method

4.3.1 Sensor and Hand Design

Figure 4-1: CAD renderings of the mechanical design of Roller Grasper
V4. (A) Fully assembled hand. (B) Optical components required for the GelSight
sensor located inside the roller. These components are not rotating with the roller.
The non-rotating structure that houses the optical components is called stator. In
comparison, the rotating part is called the rotor. (C) The roller (the unbounded
rotating mechanism) (D) Arrangement of the camera and mirror inside the roller.
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The TERG is a two-fingered grasper with each finger consisting of three actuated

DoF. The design of the grasper is shown in Fig. 4-1. The base DoF is driven by

a Robotis Dynamixel XM430-X350 actuator through a four-bar linkage mechanism.

The mechanism allows the rollers to stay in parallel planes during manipulation and

enables up to 160𝑚𝑚 opening between the rollers. A micro DC motor embedded

in the L-shaped hub controls the second DoF and is capable of pivoting the roller

head up to ±90∘ through a five-bar parallelogram mechanism. The mechanism was

improved from the parallelogram mechanism in the previous work [160] to allow for

a greater range of motion. Another micro DC motor is embedded at the back of the

roller head to drive the roller through spur gears. Unlike the previous generations of

the Roller Grasper, the motor driving the roller is located outside the roller to make

space for the optical components required for the tactile sensor.

One of the most important considerations for vision-based tactile sensors is de-

signing for clear optical paths. Specifically, the space between the light source, the

sensing area and the camera all need to be optically clear. As a result, the mechani-

cal structure of the roller consists of a clear acrylic tube glued with two clear acrylic

rings on both ends, allowing unobstructed light passage from the light source. A

3D-printed gear is attached to one of the acrylic rings. Eight dowel pins arranged

around the perimeter are inserted into both the gear and the acrylic ring to provide

sufficient torque transmission. The clear gel is molded directly over the acrylic tube

for the best optical transparency.

The roller rotates around the stator of the roller head; both ends of the stator are

rigidly connected to the rest of the roller head. As shown in Fig. 4-1D, a Raspberry

Pi camera is located at the bottom of the stator. The camera is oriented 20∘ from

its horizontal mounting surface and streams images from the sensing area through a

mirror oriented 20∘ from the rolling axis. This optical design accommodates for the

focal length of the camera inside the relatively narrow space inside the roller while

maximizing the utilization of the camera’s field of view (FOV).
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Figure 4-2: Mold for the seamless roller elastomer. From Left to Right : CAD
model of the mold; 3D printed positive mold, with surface smoothed; rubber negative
mold; seamless elastomer covering around clear acrylic tube.

4.3.2 Sensor fabrication

Lighting The lighting system was designed to have accurate 3D reconstruction based

on photometric stereo, while fitting into the compact form-factor of the roller. To

satisfy the requirements, we modified the design of the lighting system from the

GelSight Wedge sensor [140] to be suitable to illuminate the curved roller surface.

As shown in Fig. 4-1, the clear acrylic tube located at the center of the roller

provides mechanical support for the rotor while allowing light to shine through. A

camera is mounted at the bottom of the stator, and captures the sensing area through

a mirror. Two LED bars (one blue and one red, respectively) are located near either

vertical edge of the mirror to provide directional light from two different directions

toward the sensing area. A green LED ring attached below the roller shines light

through the bottom acrylic plate to provide the third color component essential for

3D reconstruction.

In order for the lighting system to not be disrupted by the rotation of rollers, a

clear acrylic plate was glued at the bottom end of the acrylic tube with clear UV

resin (Ultraviolet Curing Epoxy Resin, Limino). The top end is constructed similarly

for aesthetic purposes. The clear UV resin fills in the gap between the acrylic tube

and plates, making the interface between the two surfaces optically clear for the light

from the LED ring at the bottom to travel through.
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Camera We used a Raspberry Pi camera with a 120∘ FOV, allowing us to obtain

a relatively large sensing area while fitting the camera inside the tight interior of

the roller. The camera was customized with a 200 mm long flex cable, so the bulky

connector can be located outside the roller. We streamed the video at 30Hz through

mjpg_streamer to the Raspberry Pi, with a 640x480 resolution. The images were

then transmitted from the Rspberry Pi to a PC to be used for higher-level tasks.

Elastomer We designed and fabricated the seamless elastomer to obtain contin-

uous tactile signals during rolling. In comparison, another fabrication technique is

to cast a piece of flat elastomer to be wrapped around the rotor core[122, 19], which

would be less durable and result in discontinuous sensing signals at the seam.

Fig. 4-2 shows the sequence of the elsatomer fabrication. We first 3D printed

the positive mold and smoothed the curved surface with a layer of coating (XTC-3D,

Smooth-On, Inc.). A stretchable negative mold was then cast using the translucent

silicone (Ecoflex, Smooth-On, Inc.). Next, the clear silicone (XP-565, Silicones, Inc.)

on the roller was cast together with the acrylic tube. We applied a layer of primer

(DOWSIL PR-1200, RTV Prime Coat, DOW) on the outside of the acrylic tube

before casting to increase the acrylic-to-elastomer bonding. Finally, we sprayed a

layer of opaque gray (Lambertian) silicone inks (Print-On Silicone Ink, Raw Material

Suppliers) onto the surface of the roller.

Markers To provide information of shear and torsional forces, we added multiple

arrays of markers on the surface of the roller. The markers were directly lasercut

around the curved surface of the roller using a 𝐶𝑂2 laser cutter with a rotary at-

tachment. The laser cutter etched away the gray coating at each pre-defined marker

location over the entire surface of the roller, leaving only the transparent silicone

exposed. Finally, we applied a layer of black silicone ink (Print-On Silicone Ink, Raw

Material Suppliers) on the surface of the roller. The resulting roller presents black

markers with a gray background in the camera view.
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Figure 4-3: Camera calibration and encoder marker. Left: A 6x7 Checkerboard
mounted on a calibration tool to get the camera intrinsic matrix, and the correspond-
ing extrinsic matrix in the roller frame; Right: The pattern of the encoder marker to
provide precise position encoding, and the corresponding image from the sensor view.

4.3.3 Tactile Signal Processing

This section discusses the signal processing techniques for the raw tactile signal. It

also addresses the challenges created by the continuous rolling and convex sensing

surface, and the corresponding solutions that we proposed.

Encoding In order to achieve 3D reconstruction and marker tracking, the signal

processing algorithms require each image to be compared with a reference image

taken in the absence of contact [163]. Unlike GelSight sensors with the conventional

form-factor, our sensing area expands the entire perimeter of the roller and thus

multiple reference images in correspondence to different roller positions need to be

taken in order to properly process the sensor signal. This requires the algorithm to

find the correct reference image. However, due to backlash in the transmission and

latency between the actuator and camera, the roller motor encoder cannot be used

to correspond a given image to its designated reference. Therefore, we attached an

encoder inside the camera FOV, as shown in Fig. 4-3, in order to match a given

image with its reference. The encoder designed with this method can achieve pixel-
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level precision.

During the calibration process, the roller slowly rotates at a constant speed, al-

lowing the camera to record reference images along with the encoder images in order

to construct a lookup table for each frame. During manipulation, we extract the

encoder portion of the image and find the L2 distance between the current encoder

image and references from the lookup table to determine the corresponding reference

image. Finding the correct reference image is a crucial early step toward the successful

processing of tactile signals.

Surface Projection Camera matrices are used to calculate the correspondence

between the points on the sensor surface in 3D and the 2D camera image pixels. The

transformation [129] can be represented as:

𝜆

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ = 𝐾[𝑅|𝑡]

⎡⎢⎢⎢⎣
𝑋6

𝑌6

𝑍6

⎤⎥⎥⎥⎦ (4.1)

where (𝑢, 𝑣)𝑇 represents the image coordinates of the sensor input; 𝜆 is a scale factor;

𝐾 is the camera intrinsic matrix; [𝑅|𝑡] is the camera extrinsic matrix, with rotation

𝑅 and translation 𝑡; (𝑋6, 𝑌6, 𝑍6)
𝑇 represents the 3D coordinates in the sensor frame,

shown as Frame 𝐴6/𝐵6 in Fig. 4-11.

The camera was calibrated using a 7x6 checkerboard. The camera, along with the

mirror, was first mounted to the 3D printed housing and calibrated before the stator

was assembled with the rest of the roller head. During camera calibration, multiple

sensor images were collected with different checkerboard poses, which were later used

for providing the camera intrinsic matrix 𝐾. The extrinsic matrix [𝑅|𝑡] was derived

by taking the image of the checkerboard and using its known position with respect

to frame 𝐴6/𝐵6 when it is rigidly mounted on the stator, as shown in Fig. 4-3. We

applied OpenCV calibrateCamera [14] to the image pixels and their corresponding

3D positions to get the intrinsic matrix 𝐾 and the extrinsic matrix [𝑅|𝑡].

3D Reconstruction The 3D positions of the points on the convex sensing area

can be projected from the Cartesian space to the 2D camera image space using the
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Figure 4-4: 3D reconstruction and marker tracking for the roller sensor. (A)
The camera view shows a screw head pressing on the roller sensor, and the 3D shows
the estimated 3D reconstruction. (B) The camera view demonstrates the torque
exerted on the roller sensor, and the marker displacement visualizes the magnified
motion of the markers captured from the sensor. (C) The camera inside the roller
sensor captures the raw image, and the sensing area is captured in the mirror. (D)
The raw image is unwarped into a rectangular image. (E) The reference image is
extracted with the encoder marker from the unwarped image. (F) The difference
image is calculated between the unwarped image (after contact) and the reference
image (before contact). It is further processed to get the 3D reconstruction, and
marker displacement.

camera matrices. Because the geometry of the roller is known, this projection also

allows us to trace the 3D position of a point given its 2D coordinate in the image.

This mapping of the points on the sensing area between their 3D positions and 2D

image pixels are saved for 3D reconstruction when an external object is in contact

with the roller.

As shown in Fig. 4-4, when an object is in contact the roller the elastomer on the

roller is deformed, creating a shaded image that is recorded by the camera. After

unwarping the image into a rectangular shape (with the same pixel density along its

horizontal and vertical axes), we applied photometric stereo to create a depth image:

each pixel on the depth image will have a corresponding depth value, indicating the
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offset from its position on the undeformed roller surface. We apply this depth image

on top of the mapping described previously to reconstruct the 3D geometry of the

contacted object. This is accomplished by subtracting the offset of each pixel in the

depth image from its corresponding 3D position along the surface normal direction.

The photometric stereo technique used in this work is based on the previous work

in 3D reconstruction using a planar elastomer. Specifically, we first transformed the

shaded image into surface normals, and then applied the fast Poisson solver [33] for

integration to produce the depth image. Further details of this method can be found

in [163].

Marker Tracking The shear force estimation can be obtained by motion analysis,

i.e., analyzing the marker displacement on the sensor in comparison with the reference

images. During operation, markers are constantly disappearing and appearing from

the boundaries of the sensor image due to the rotation of the roller, making the

calculation of the marker displacement field difficult. A sensor image might even have

a different number of markers compared to its reference image because certain markers

are located at the very edge of the sensing area. In such situations, techniques using

marker tracking with nearest temporal matching [163, 150] or optical flow[118, 170]

tend to generate erroneous results. We adopted Random Optimization to reliably

track marker displacement during rolling. We randomly sampled possible solutions

to maximize the marker flow smoothness while minimizing the mismatching penalty.

Specifically, the marker flow smoothness describes the phenomenon that nearby points

move with similar velocities [62]. The flow smoothness of each marker is the difference

between its displacement and the average displacement of its surrounding markers.

The total flow smoothness of the sensing area is the sum of the flow smoothness of

individual markers. The mismatching penalty is designed to handle the situation when

a sensor image does not have the same number of markers compared to the reference

image, which adds a penalty for each marker that does not have a corresponding

marker in the reference frame.

One of the most important steps of computing the marker displacement is to

match each marker in the sensor image to a corresponding marker in the reference
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image. A possible option is to use the greedy approach, which matches each marker

in the sensor image to the closest marker in the reference image. While it might work

in certain situations, it would fail completely when the shear force is large enough

to displace a marker for over half of the marker spacing, because it will recognize

it’s neighboring marker in the reference image as its correspondence. In contrast, the

Random Optimization uses a weighted sampling technique, where markers (in the

sensor image and the reference image, respectively) with closer distances will have a

higher probability to be matched. Because the sensor image and the reference image

can have different numbers of markers, our algorithm does allow makers to have no

matching. In addition, each marker in the sensor image is only allowed to be matched

to up to one unique corresponding marker in the reference image.

Our method is also designed for real-time signal processing. While an exhaustive

search can give us similar final results, it is also computationally expensive, which is

not suitable for online operations. To further speed up our algorithm, we implemented

the code in C++ with Python bindings. We sampled 200 possible solutions for each

frame, allowing the algorithm to achieve real-time marker tracking at the frequency

of 30 Hz.

4.3.4 Control methods for In-Hand Manipulation

We developed a series of demonstrations for TERG to demonstrate its capabilities.

While these demonstrations required various high-level control methods, the low-

level joint space control method is consistent across all of them. The base joints used

current-limited position control to ensure that the object is being grasped securely

without excessive internal force. Position control is used to drive the pivot angle

between ±90∘. Smooth rolling motion is achieved through velocity control of the

rollers. A summary of the control strategies for different demonstrations is shown in

Table 4.1 Some of the demonstrations were carried out both with and without the

sensor feedback in order to highlight the benefits of tactile sensing.

One of the most direct ways of using tactile information is to extract the contact

location of the object to use as the control input. For well-defined simple tasks,
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Table 4.1: Control Strategies for Manipulation Demonstrations
Object Cylindrical Planar Spherical Cable Card
Input 𝑢 𝑣 𝑥𝐺, 𝑦𝐺 𝑣 𝑓𝑢 𝑓𝑢
Target 0 0 𝑇𝑟𝐺 0 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 heuristic rules
Control 𝜔𝑟 𝜃𝑝 𝜔𝑟 𝜃𝑝 𝜔𝑟 𝜔𝑟

control can be done directly in the image space where we control the joint output

based on the contact location in the image space. The contact location is obtained

by locating the coordinate within the contact area that has the largest indentation.

Cylindrical object rotation For example, in the manipulation of a cylindrical

object (Fig. 4-5), the controller adjusts the rolling speed of the rollers to keep the

contact location of the pen and roller at the center of the processed image. We found

the controller is robust even in the presence of external disturbances as the pen was

kept within grasp our experiments. In addition, we can extract the primary and

secondary principal axes of the contact area using principal coordinate analysis [120].

For an object with a relatively consistent contact shape, the primary and secondary

principal axes indicate the orientation of the contact geometry, and subsequently the

pose of the grasped object. In this particular example, the principal axis indicates

the long axis of the pen.

Figure 4-5: In-hand manipulation - cylindrical object.

Planar object reorientation The planar object reorientation (Fig. 4-6) also

uses the contact coordinate in the image space as feedback and uses the pivot joint
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angle as a control output. The planar objects used in this demonstration are 3D

printed with varying radii of curvature to demonstrate that the control method can

adapt to complex and unknown 2D geometries.

Both of the previous two examples were also run in open-loop without the sensor

feedback, and the grasped objects were dropped shortly after the beginning of the

manipulation. Without the tactile information, there is no way for the high-level

controller to deduce the object status.

Figure 4-6: In-hand manipulation - planar object.

Spherical object screw motion and trajectory following Unlike the previous

two demonstrations with a fixed control target, the spherical object manipulation

task (Fig. 4-7) attempts to move the object along pre-defined trajectories in the

operational space. With a known sphere diameter, we can compute the position of

the object through the forward kinematics, which is then used to close the high-

level trajectory following control loop. In this example, the object goes through

screw motions with the translational and rotational motions coupled according to the

relative pivot angles of the two rollers. We also specifically picked a transparent object

to demonstrate the benefit of using tactile sensors for objects that are challenging to

track using other techniques such as vision-based tracking.

Note that in this demonstration, the acrylic marble achieved screw motions, which

are difficult or impossible to perform with traditional robot hands. TERG easily

achieves screw motions by setting the rollers in opposite orientations, forming a cross.

Changing angle between the rollers enables setting the screw pitch from zero to in-

finity, and anywhere in between.
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Figure 4-7: In-hand manipulation - spherical object.

In addition to the in-hand manipulation demonstrations that only use depth in-

formation from the tactile sensor, we can combine the depth and shear information

to achieve a more comprehensive manipulation demonstration, as shown in the two

examples below.

Cable tracing Unlike rigid body objects, cables can withstand substantial tensile

load but can buckle under modest compressive loads. This makes a cable a very

difficult object for robot manipulation. Even when humans try to trace along a cable,

a typical practice is to use our fingers to grasp onto a location on the cable near where

it is anchored and then slide along the cable. Such motion can only be achieved while

sliding away from where the cable is anchored in order to maintain the cable tension,

rather than towards the anchored location which will apply a compressive load due to

friction. The combination of the rolling motion and the ability to compute shear force

applied by the cable makes it possible for the rollers to trace along a cable both toward

and away from the anchor point while keeping the cable in tension. On the other hand,

the contact location is also computed in this case to make sure that the cable does not

get dropped due to gravity during tracing. This is achieved by adjusting the pivot

direction in response to the changing contact locations between the cable and the

roller. We tested two open-loop cases for this demonstration. The first case does not
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use any sensor feedback, which results in the cable being dropped almost immediately;

without monitoring the cable contact location, the rollers cannot adjust their pivot

accordingly and the cable is lost. The second case tracks the contact location but

ignores the shear information. The rollers are able to move along the cable for longer,

however, the cable eventually became slack and was no longer traversable.

Figure 4-8: Cable tracing. The roller grasper can reactively roll along cables back
and forth without losing the cables. The tactile sensor provides the contact location
of the cable and estimated shear forces in real time. The contact location is used to
modulate the pivoting angle to compensate for the cable gravity during rolling. The
shear force is used to keep the tension during rolling. Left: Without the shear force
adjustment, the cable can be accumulate slack over time. Right: With the shear force
adjustment, the roller can consistently maintain the tension of the cable over time.

Card picking Another way of using the tactile information is to capture the

transient events, which is also frequently done by humans during our daily activities.

One of the difficulties in interfacing with thin objects, such as paper or playing cards,

is detecting the number of pieces within the hand. Because of their extreme aspect

ratios, it is very likely for multiple pieces of paper or cards to stick together when they

get picked up. To distinguish between multi-card and single card situations we can

actuate one side of a given card and monitor the amount of shear force observed on

the tactile sensor. In the case when multiple cards are within the hand, the relative

motion of any two cards will reduce the amount of shear force created on the roller.

However, if the shear force suddenly increases, this indicates that only one card is

left in grasp. This is only one specific example demonstrating the transient property

of the shear information. In practice, there are a variety of situations where this

methodology can be used [137, 23, 77], especially in cases where the state of the

hand-object configuration experiences a sudden change.
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Figure 4-9: Card picking. We distinguish whether there is only one card picked up
by actuating one roller and monitoring the change in shear force. When the number
of card within hand is reduced to one, there will be a increase in shear force detected
by the tactile sensor.

4.4 Results

The advantages of combining the Roller Grasper and the GelSight sensor are two-

fold. First, incorporating tactile sensing greatly improves the in-hand manipulation

capabilities of the Roller Grasper by enabling the grasper to detect local contact

information between the rollers and the grasped object. Second, the steerable rollers

enable the tactile sensor to easily scan potentially large and complex surfaces, leading

to efficient and accurate 3D reconstructions. Our robotic system includes the TERG,

a Universal Robots UR5e robot arm, and a computer, as shown in Fig. 4-10.

4.4.1 In-Hand Manipulation with Tactile Sensing

In terms of kinematics, the two-finger design with six total actuated DoFs for the

TERG is a significant simplification compared to the previous Roller Graspers (three-

finger Roller Grasper V1/V2 and four-fingers Roller Grasper V3). This simplification

was made possible largely because of its tactile sensing capabilities, allowing it to

actively manipulate the grasped object based on the contact information without the

need for the extra grasp stability provided by the grasper’s redundancies present in

the previous versions. Even with the vastly reduced DoFs, TERG is still capable of

translating or rotating the grasped object in each of the 𝑋𝑂, 𝑌𝑂 and 𝑍𝑂 directions

(defined in Fig. 4-11A). The manipulation directions that the grasper can impart
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Figure 4-10: System Diagram

on the grasped object are presented in Fig. 4-11. The combination of the different

manipulation directions allows the grasped object to be manipulated between a wide

variety of initial and target poses.

The tactile sensor provides both depth and shear information for an object in

contact with the rollers. The raw sensor data can be further processed to extract

higher-level information suited for in-hand manipulation. In the acrylic ball manip-

ulation demonstration (Fig. 4-7), we extracted the real-time contact center of the

ball using the depth information, which was used in the forward kinematics for an

operational space trajectory following. In the cable manipulation demonstration, the

contact center was used for tracking the contact location of the cable to adjust the

pivot joint in order to prevent the cable from slipping out due to gravity. At the same

time, we adjust the rolling speed to maintain the cable’s tension by tracking the shear

force applied on the roller by the cable.

The tactile sensor also helps mitigate certain hardware limitations. For example,

the transmission ratio between the the roller and the actuator is relatively high in

order to achieve ample torque from the micro DC motor selected for the compact

form factor, which makes the roller non-backdrivable. The tactile sensor enables a
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Figure 4-11: 3D kinematics and roller configurations. (A) Roller Grasper V4
frame definitions. The Two fingers are represented by letters 𝐴 and 𝐵, respectively.
Frame 𝑂 is the hand fixed frame located at the base of the hand. The numerical
subscripts represent frames attached at different locations of the hand. Frames 1-5
are attached at different joints while Frame 6 is at the bottom of the roller used as the
reference frame for sensor image. The 𝑋, 𝑌 and 𝑍 axes are represented in red, green
and blue colors, respectively. Frame 𝑂 is the world frame with which we reference
the manipulation directions. (B) Object rotation in 𝑋𝑂. (C) Object rotation in 𝑍𝑂

or object translation in 𝑌𝑂, depending on the rolling directions of the two rollers. (D)
Object rotation in 𝑌𝑂 or object translation in 𝑍𝑂, depending on the rolling directions
of the two rollers. (Any rotation or translation in directions within 𝑌𝑂 − 𝑍𝑂 plane
are possible with different pivot positions) (E) Object translation in 𝑋𝑂. (F) Object
screw motion (coupled rotation and translation)

force control along the shear direction, which opens up additional abilities for object

manipulation and safe interaction. The rollers could either not react to shear force (As

shown in Fig. 4-12A), taking advantage of the friction of the transmission for secure

grasping and in-hand manipulation, or actively adjust for the speed based on the

shear information (As shown in Fig. 4-12BC), allowing for a compliant manipulation

or safe external interactions.
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Figure 4-12: Roller actuation modes. (A) The roller can hold the current position
to grasp the cable, resisting external forces. The marker displacement from the sensor
images indicate the exerted external forces. (B) The roller can reactively roll along
the cable, following the external forces. (C) The roller can actively roll along the
cable, without external forces.

Figure 4-13: Surface scanning. (A) Rolling along a credit card. (B) Stacked tactile
images in the time sequence, showing the embossed numbers on the credit card. (C)
Processed tactile image with interpolation at the marker region and sharpening filters
for better visualization. (D) Rolling along a transparent cup. (E) The embossed
characters on the cup. (F) Scanned tactile images stitched in 3D spaces.

4.4.2 Efficient object/image reconstruction using Steerable rollers

The rolling action combined with tactile sensing results in efficient surface inspection

or reconstruction, compared with previous methods where researchers needed to apply

a long and slow sequence of discrete touches when inspecting surface roughness after

sanding[5], detect defects on objects [40, 72], and reconstruct 3D shapes[12, 141, 124].

We demonstrated this ability through the reconstruction of surface geometries

for both a credit card (2D) and a transparent cup (3D). In the 2D demonstration,

the grasper carefully guided the credit card in between its rollers while scanning the

surface textures of the card, as shown in Fig. 4-13. The tactile images were then
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stacked in the time sequence to recover the credit card numbers. We also show the

raw stacked images in comparison with the processed images to better visualize the

effects of filters and the interpolation required to fill the areas occluded by the black

markers.

The 3D demonstration reconstructed a transparent cup with an embossed logo.

The cup was mounted on a turntable to enable pure rotation around 𝑍𝑂. The surface

of the cup was inspected through a series of motions. The rollers held onto the

opposing sides of the cup near its opening, and traversed from the lip to its base; the

rollers then tilted a small angle and rolled upwards until they reached the opening

of the cup at adjacent positions to where they started. The slightly tilted angles

of the rollers resulted in a screw motion of the cup: every time when the rollers

rolled down and up, the cup was rotated by a small angle. The sequence would

repeat until the scanning of the entire surface was completed. To better align the

multiple scanned images, we applied cross-correlation between them to match their

correspondence. The resulting images are presented in point clouds, as shown in

Fig. 4-13. We specifically picked a transparent cup to show the capabilities of this

technique, which can be challenging to accomplish when using color or depth cameras.

4.4.3 Contributions

This work presents the design of a Roller Grasper that has steerable active rollers at

fingertips integrated with high-resolution tactile sensors. We developed algorithms to

process tactile signals in order to provide real-time feedback for in-hand manipulation

and object reconstruction. Incorporation of tactile sensing and continuously rotating

mechanisms is a nontrivial problem, but through clever mechanical and algorithmic

design we were able to overcome these challenges. To the best of the author’s knowl-

edge, this is the first time a robot grasper has demonstrated the ability to perform

robust in-hand manipulation for various objects through tactile-guided rolling con-

tact, even with unknown dynamics or external disturbances. We also demonstrated

its unique capability to efficiently retrieve object geometries (both in 2D and 3D)

during manipulation. This was only made possible with the combination of actively
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driven rolling contact and high-resolution tactile information.

In summary, we presented the abilities of the Roller Grasper for in-hand ma-

nipulation and object reconstruction as well as its potential to complete complex

perception and manipulation tasks in various real-world robotic settings. We hope

this work would push the boundaries in both robotic manipulation and tactile sensing.

4.4.4 Limitations and future works

While we have demonstrated the incredible abilities of TERG, there are different

aspects of this work that can be further explored.

In terms of the design of the grasper, although rollers on TERG have a convex

curvature, a spherical shape roller would ultimately provide better grasp stability for

objects with complex shapes. Another limitation of the current design is that the

size of the sensing area is restricted by the 90∘ camera field of view, which could be

increased by using a camera with larger FOV, i.e., a fish-eye camera.

Our demonstrations presented feedback control methods using only tactile infor-

mation, however, inclusion of additional sensing modalities could provide both global

object information as well as local contact information.

TERG’s control pipeline could be augmented through integrating its object ge-

ometry reconstruction and in-hand manipulation abilities: while TERG can manip-

ulate objects with unknown geometry and dynamics, the geometry of the object

reconstructed during manipulation can further be used to improve the manipulation

results.
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Chapter 5

Conclusion

This thesis has explored different directions to apply touch to improve robot dexterity

in manipulation tasks more interactively. In this chapter, we will summarize what we

have learned, and propose several future directions.

5.1 Summary of Contributions

We started with cable manipulation, introducing tactile-reactive control for the sliding

motion. We used real-time tactile feedback to accomplish the task of following a

dangling cable. Touch provided the pose of the cable in the grip, and the friction

forces during cable sliding. Because the cable is deformable and moves in the free

space, the robot can interactively perceive and change the cable state, with the help

of touch. To make the control effective but simple, we decoupled controller into two

tactile-based controllers: 1) Cable grip controller, where a PD controller combined

with a leaky integrator regulates the gripping force to maintain the frictional sliding

forces close to a suitable value; and 2) Cable pose controller, where an LQR controller

based on a learned linear model of the cable sliding dynamics keeps the cable centered

and aligned on the fingertips to prevent the cable from falling from the grip. This

controlled-sliding motion is possible by a reactive gripper fitted with GelSight-based

high-resolution tactile sensors. The robot can follow one meter of cable in random

configurations within 2-3 hand regrasps, adapting to cables of different materials and
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thicknesses. The tactile-reactive behavior made it robust to external disturbances.

We can further improve the dexterity of the robots with dynamic movements.

Such tasks are susceptible to variations in the physical properties of the manipulated

objects. In SwingBot, we presented a robot system that can learn the physical fea-

tures of a held object through tactile exploration, and apply the learned features to

the dynamic swing-up manipulation task. Because the dynamic movement is fast,

the robot gathered tactile exploration data during various interactions in this task

and planned for the action to perform the dynamic manipulation. Two exploration

actions (tilting and shaking) provided the tactile information used to create a physical

feature embedding space. With this embedding, SwingBot can predict the swing an-

gle achieved by a robot performing dynamic swing-up manipulations on a previously

unseen object. Using these predictions, the robot can search for the optimal control

parameters for a desired swing-up angle. We showed that, with the learned physical

features, our end-to-end self-supervised learning pipeline could improve the accuracy

of swinging up unseen objects substantially. We also show that objects with similar

dynamics are closer to each other on the embedding space and that the embedding

can be disentangled into values of specific physical properties.

Besides using dynamic movement from the robot arm, another direction to im-

prove robot manipulation is to increase in-hand tactile dexterity. With the Tactile-

Enabled Roller Grasper (TERG), we explored novel ways to manipulate objects by

combining active rolling and tactile sensing. The Roller Grasper designs allow the

grasped objects to be rotated or translated within hand while maintaining stable

grasps. In addition, its novel capabilities were greatly enhanced by adding tactile

sensing. Such sensing provided information about an object’s local shape and tex-

ture, and was used in feedback for controlled manipulation. The capabilities of the

TERG were demonstrated through a series of comprehensive in-hand manipulation

and object reconstruction tasks. Specifically, we showed that the tactile feedback

allowed the grasped object to be manipulated stably and continuously, resisting ex-

ternal disturbances, in contrast to the situations without feedback. We believe that

the combination of active surface and tactile sensing on the robot end-effector opens
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up a whole new range of possibilities for robot in-hand manipulation.

In summary, this thesis introduced various ways to improve robot dexterity through

interactive touch. Compared to vision, touch provides unique information about the

contact geometry (in-hand pose of cables/pens/planar objects, etc.), and contact

forces (forces along sliding, rolling, and exploratory procedures, etc.). This informa-

tion is crucial for handling contact, but inherently challenging to perceive from vision.

I believe touch can really shine for robot manipulation and hope this thesis provided

some directions to push forward the boundaries of touch and manipulation research.

5.2 Future Work

Sensor and Hand Design There are many aspects to improve in terms of hardware

design. For example, for tactile sensor design, it is desired to 1) provide dense contact

geometry and forces for fine/contact-rich manipulation2) be compact enough to fit

into various robotic hands; 3) be multi-directional to sense the contact not only from

the front but also from the side/back; 4) provide large coverage over the hand; 5) be

multi-modal to sense richer information such as vibration, proximity, etc; and more.

Based on applications, there will be different focuses and compromises to achieve the

goal, which is exciting to keep exploring. For hand design, it can be viewed as a

co-design of tactile sensor and hand. A dexterous hand without tactile sensing can

be extremely difficult to control. Tactile sensors without more degrees of freedom

can provide limited tactile dexterity. It would be simultaneously optimized design for

both sensor and hand to achieve more dexterous manipulation tasks.

Multi-modal Learning Humans use multi-modal sensory data all the time. Touch

alone provides unique contact information, but touch is local and only provides sig-

nals after contact. With the complementary information of vision or sound, the

robot can perceive the global context better. Robots can use different modalities

for cross-modal learning of the common representation, and multi-modal learning of

the complimentary representation. The inherently self-supervision between different

modalities can make learning more efficient. In addition, combining the unique aspect
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of each modality can make the policy more robust.

Scaling up Robot Learning Large datasets contribute significantly to the success

of machine learning models. Unfortunately, there are not many large touch datasets

yet. With the emerging touch simulators and commercial touch sensors, high-quality

large datasets become necessary and can benefit the community to thrive. Touch

might be easier to transfer between different workspaces compared to vision, since

touch has more structured signals and does not get influenced by the outside en-

vironments. However, because different tactile sensors can have different physical

properties (hardness, illumination, marker density, etc.), calibration to the common

representation (contact location, depth, dense forces field, etc.) can potentially lead

to more efficient transfer.
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