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Abstract

Urban public transit is an important component of transportation systems and plays
a critical role in providing mobility in many metropolitan areas. However, with aging
systems, continuous expansion, and near-capacity operations, transit systems are sus-
ceptible to unplanned delays and service disruptions caused by equipment, weather,
passengers, or other internal and external factors, resulting in great inconvenience for
passengers and economic loss for operators. Ensuring good service provision during
service disruptions is important for public transit management.

Resilience is an important concept related to incidents. It usually refers to the
ability of an entity to return to its initial conditions after it is disturbed. Since
monitoring, control, and planning are the three major tasks for public transit system
management, we define the resilience of a public transit system as the ability to
monitor, control, and plan for incidents (service disruptions) in ways to mitigate
congestion, improve travel efficiency, and reduce safety risks.

This dissertation focuses on the first two tasks to improve the resilience of public
transit operation in light of disruptions that regularly take places. Specifically, we aim
to 1) understand the impact of unplanned incidents on PT systems (i.e., monitoring);
and 2) design mitigating strategies to relieve incident impacts (i.e., control). The
specific topics we cover in the thesis can be categorized by a two-by-two matrix. The
first dimension considers short-term (e.g., less than a couple of minutes) v.s. long-term
(e.g., more than 1 hour) incidents while the second dimension considers monitoring
and control tasks. Five different studies under the umbrella of this two-by-two matrix
are presented.

The first study evaluates a transit system performance under random short-term
service suspensions using a bulk-service queue model. We prove that under random
suspensions, headways can be represented as the difference between two compound
Poisson exponential variables. Assuming no vehicle overtaking, we approximate the
headway as a zero-inflated truncated normal distribution to obtain a closed-form mo-
ment generating function (MGF). Based on the MGF, we derive the system stability
conditions and the mean and variance of queue length and waiting time at each sta-
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tion with analytical formulations. The second study provides an empirical analysis of
the impact of service disruptions. We use a real-world train collision incident at the
Chicago Transit Authority (CTA) system to analyze the impact of unplanned long-
term incidents on the system’s demand, supply, and passenger behavior. We also
propose a redundancy index to quickly identify alternative capacity in CTA under
service disruptions. The third study proposes a probabilistic method to infer passen-
gers’ behavior (e.g., waiting, switching to another line, transferring to a bus) under
disruptions. The main contribution is a probabilistic model to recognize whether
an observed smart card record (e.g., transfer to a bus stop) is a normal behavior
or due to the incident. This model allows us to extract the actual behavioral re-
sponses and outperforms the typical rule-based methods. The fourth study proposes
a station-based path recommendation model to reduce the total system travel time
during disruptions. We use a robust optimization-based formulation to address the
demand uncertainty. The closed-form robust counterpart is derived. To tackle the
lack of an analytical formulation of travel times due to left behind, we propose a
simulation-based first-order approximation to transform the original problem into a
linear program and solve it iteratively with the method of successive average. The
fifth study proposes an individual-based path recommendation model with the ob-
jective of minimizing total system travel time and respecting passengers’ path choice
preferences. Passengers’ behavior uncertainty in path choices given recommendations
and travel time equity are also considered in the formulation. We model the behavior
uncertainty based on passenger’s prior preferences and the posterior path choice prob-
ability distribution with two new concepts: 𝜖-feasibility and Γ-concentration, which
control the mean and variance of path flows in the optimization problem. We show
that these two concepts can be transformed into linear constraints using Chebyshev’s
inequality. The individual path recommendation problem with behavior uncertainty
is efficiently solved using Benders decomposition. Finally, we use a post-adjustment
heuristic to address equity requirements.

Future research directions and potential applications of the work are discussed in
the last chapter.

Thesis Supervisor: Jinhua Zhao
Title: Edward H. and Joyce Linde Associate Professor of Transportation and City
Planning, MIT

Thesis Supervisor: Haris N. Koutsopoulos
Title: Professor of Civil and Environmental Engineering, Northeastern University
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Chapter 1

Introduction

1.1 Background and motivation

In this section, we briefly discuss the background of service disruptions in public

transportation systems and the concept of resilience. We also introduce our definition

of a resilient public transit system.

1.1.1 Public transit systems and disruptions

Public transit plays an important role in the urban mobility system. Millions of

passengers use urban transit systems for daily commuting and accessing various ac-

tivities. However, with aging systems, continuous expansion, and near-capacity op-

erations, transit systems are susceptible to unplanned delays and service disruptions

caused by equipment failure, weather, passengers, and other internal and external

factors. Take the Chicago Transit Authority (CTA) system as an example (see Table

1.1). In 2019, 27,198 unplanned incidents are reported in the rail system alone, which

implies 75 incidents per day on average. The average number of major incidents per

day (duration ≥ 20 minutes) is 1.04.
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Table 1.1: CTA incident statistics1 (2019)

Total # of incidents Avg # incidents per day Avg # major2 incidents per day

27,198 75 1.04

1: Data calculated by the author.
2: Major incidents are those with a duration greater than 20 minutes

These statistics show that service disruptions and incidents are not unusual in

public transit systems. They cause great inconvenience to both customers and oper-

ators. Figure 1-1a shows a photo of the train crash incident at the Chicago O’Hare

station on March 24, while Figure 1-1b shows a typical crowding situation at plat-

forms during service disruptions. Incidents result in passenger delays, cancellation of

trips, economic losses, and safety concerns (e.g., due to crowding at platforms) [6]. It

is important to understand the impacts of incidents and propose mitigating strategies

to relieve them.

(a) Train crash (b) Crowding at platforms

Figure 1-1: Example of service disruptions and the consequences

1.1.2 Resilience

Resilience is an important concept related to incidents. Deriving from the Latin

verb “resiliere” (literally means “to bounce back”), resilience usually refers to the

ability of an entity to return to its initial conditions after it is disturbed [7]. As a
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concept, resilience has gained increasing attention in various fields, including ecology,

engineering, social sciences, and climate science. The proliferation of the concept in

different domains makes it polysemic, resulting in a diversifying set of definitions, each

of which may be sensible in its own context. Therefore, to properly discuss resilience

within an academic setting, it must be prefaced by the context within which it is to

be invoked. Keenan [1] illustrates the concept of resilience across a range of academic

disciplines (Figure 1-2). These definitions can be classified on a spectrum of varying

degrees of equilibrium states and normative characteristics.

Figure 1-2: Topology of resilience definitions across fields of study (adapted from
Keenan [1] and Martello [2])

In the context of engineered (or closed) systems, definitions tend to assume a

single-equilibrium system with different components arranged to achieve a prede-

fined system state (i.e., with intentionality [8]). Within such systems, definitions of

resilience are based on predefined value judgment according to the desired system

state. Therefore such systems are of a descriptive nature.

In contrast, systems that are more open and indeterminate, such as socio-ecological

systems, may achieve multiple equilibria. Therefore, the definition of resilience needs

to be interpreted or specified with desirable actions or system states, implying re-

silience is of a normative nature [9]. That is, within such systems, the description

of system processes and responses to perturbation are ultimately dependent on the

predefined cultural, organizational, or ideological norms [2].

Public transit systems are engineered systems. Resilience for an engineered system

is defined as:

25



“the endogenous capacity of a system to cope with a predefined exogenous per-

turbation, responding or reorganizing in ways that maintain its perceived essential

function, identity, and structure, while also maintaining the capacity for adaptation

and transformation” [10].

The engineering resilience in transport areas has been studied considerably in re-

cent years. Examples can be found in air [11], road [12], supply chain [13], waterborne

[14] and railway networks [15].

In an engineered single-equilibrium system, we may evaluate the system with a

predefined system function. The following building characteristics represent distinct

system states: vulnerability, survivability, response, and recovery (Figure 1-3).

Figure 1-3: Different system states for the definition of the resilience of an engineered
system (adapted from Bešinović [3])

Vulnerability is defined as how much performance remains after a disruption

event [15]. A similar definition can be found in Zhou et al. [16]. Other terms related to

vulnerability are resistance, flexibility, and redundancy. Robustness can be considered

as a counterpart of vulnerability. Survivability is the functionality of the system

that remains when it transitions from the normal system performance (i.e. 100%)

to a disrupted one. In practice, when a disruption happens, the system can degrade

differently (e.g. fail completely at once or have its performance deteriorate slowly

until finally reaches the disrupted steady-state). Response is the set of actions
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taken directly and immediately after a disruption in order to provide the best level of

service possible during a disruption. This phase represents a disrupted steady-state

of the system. Depending on the nature of the disruption, the duration of the phase

varies. Recovery is the ability of the system to return from the disrupted state to

its original condition. The nature of the response may affect the recovery process

(e.g., better response actions can shorten the recovery process). In certain types of

disruptions, some of these states may not exist. Also, in some cases, survivability is

considered as part of the response, while in others, the response may be part of the

recovery phase.

1.1.3 Public transit system management

To define the resilience of a public transit system, it is essential to first understand

the main functions of a public transit system and how it is managed. Figure 1-4

shows the three major tasks in public transit system management, including (histor-

ical) performance monitoring, (real-time) control, and (future) operation planning.

Each task contains many associated sub-problems, which cover different dimensions

of service management.

Monitoring means estimating the system performance (e.g., travel delays, train

load) and passenger behavior (e.g., path choices) to understand the situation of the

system, which is usually conducted for history scenarios. Control aims to adjust the

operations (e.g., rerouting) in real-time to provide better services, especially under

incident conditions. Planning tries to design and prepare the system to serve future

demands. The sub-tasks include designs of networks, fare policies, schedules, etc.

These tasks can allow operators to understand, inform, and improve transit services.

1.1.4 Resilience for public transit systems

Given the major tasks of a public transit system, we define its resilience as the ability to

cope with incidents (or service disruptions) through monitoring, control, and planning

to maintain connectivity, mitigate congestion, and reduce travel delays and safety
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Figure 1-4: Three major tasks for public transit system management

risks.

Our definition of resilience includes three aspects: retrospective, reactive, and

proactive. The first one implies the review of previous disruptions, understanding the

impact of incidents and the performance of response strategies. The second aspect

protects against possible disruptions with real-time control strategies. The last aspect

indicates the preparation and strategic planning for future disruptions.

The recent review of resilience definitions in Zhou et al. [17] indicates that there

is no unique choice on how to define resilience. However, certain similarities can be

observed across these resilience definitions. We summarize the comparison in Table

1.2. The definition we use in the thesis belongs to the first category.

Incidents can happen at different aspects of a public transit system [5]. From the

infrastructure aspect, disruptions may be caused by technical failures (e.g., bridge

collapses, power outages, vehicle malfunctions, etc.), extreme operating conditions

(floods, snowstorms, etc.), or deliberate attacks. From the service aspect, disruptions

can occur from events such as human errors or crew shortages due to sickness or

labor disputes. From the operations aspect, disruptions may arise from policy shifts

or budget cuts. From the demand aspect, incidents (e.g., demand surge) may occur

due to special events (e.g., concerts, Olympic games) or various forms of societal

upheaval and crises. To improve the system’s resilience, strategies can be designed

from all these different aspects.

Given the different layers of a public transit system, its system performance func-
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Table 1.2: Definitions of resilience in transport systems (adapted from Bešinović [3])

Definitions Reference

Ability to recover quickly from a dis-
ruption

Bababeik et al. [18], Chan and Schofer [19],
Lu [20], Adjetey-Bahun et al. [21], This dis-
sertation.

Remaining system’s performance
during a disruption

Khaled et al. [15], Diab and Shalaby [22], Fer-
ranti et al. [23], Dawson et al. [24], Dorbritz
[25]

Described with four properties: ro-
bustness, redundancy, resourceful-
ness and rapidity

Bruneau et al. [26], Beiler et al. [27], Bocchini
et al. [28]

A function of the system’s vulnera-
bility against potential disruption

Mansouri et al. [14], Saadat et al. [29], Zhang
et al. [30]

tion also has different implications. Figure 1-5 shows two examples of system functions

from the supply and demand sides. From the supply side, we can define the system

function for a transit system as the service frequency. Disruptions may directly de-

crease the service frequency due to suspensions of services. The recovery of service

frequency is also an indicator of the end of the incident from the operators’ point of

view. From the demand side, we may define the system function as the service quality

index defined based on the passenger’s waiting time (e.g., No-incident waiting time
Incident waiting time ). Note

that a higher waiting time indicates a lower system performance. The evolution pro-

cesses of supply and demand system functions are asynchronous. For example, though

the system may recover to the normal service frequency, the dissipation of congestion

may take additional time due to accumulated populations during the incident period.

1.2 Research questions

This dissertation focuses on the first two tasks in Figure 1-4 (monitoring and control)

to develop a resilient public transit system. Specifically, we aim to

• understand the impact of unplanned incidents on PT systems (i.e.,
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Figure 1-5: Different system performance function definitions for public transit sys-
tems

monitoring) and

• design mitigating strategies to relieve incident impacts (i.e., control).

There are a lot of research questions that can be studied for monitoring and control

tasks during service disruptions.

For the monitoring task, we can analyze incidents’ impact on public transit sys-

tems from different angles (demand, supply, level of service), incident types (planned

vs. unplanned, long-term vs. short-term vs. special events), and research approaches

(data-based empirical studies, theoretical studies such as queuing models, dynamical

systems, graph theories, and simulation-based studies). We can also analyze inci-

dents’ impact on passenger behavior. The analysis can be categorized based on the

nature of the behavior change (instantaneous, temporary, permanent), analysis level

(aggregate-level, individual-level), and used data sources (survey-based, empirical

data-based).

For the control tasks, we can design models and strategies from the supply and

demand sides. On the demand side, we can design station-based inflow control strate-

gies during disruptions to reduce system crowding. We can also design information

for passengers in the form of path recommendations to guide their route choices and

reduce congestion. On the supply side, we can adjust operations for existing ser-
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vices (e.g., re-scheduling, rolling stock adjustment, re-routing), design shuttle bus

services (e.g., routes and schedules), and develop multimodal integration models such

as integrating with Transportation Network Companies (TNC), bike/scooter sharing

systems, local bus companies, etc.

1.3 Research objectives and conceptual framework

Though there are many research questions under the public transit resilience um-

brella, the dissertation only addresses a subset of them. Figure 1-6 presents the

conceptual framework of the dissertation. It can be characterized by a two-by-two

matrix. The first dimension is incident type. We consider short-term service suspen-

sions (or perturbations) and long-term service disruptions (both are unplanned). The

second dimension is monitoring and control tasks.

Short-term service suspensions usually cause some delays (e.g., less than 5 min-

utes). The whole system is still working and no repairs are needed. These suspensions

may be caused by congestion or improper operating behavior. Most of the passengers

would choose to wait in this scenario. In this dissertation, the monitoring task for

short-term service suspensions is to evaluate the change in passengers’ queue length

and waiting time at a station. A bulk-service queue model is used to derive some

theoretical results. And the control task is to derive optimal control strategies to

reduce passengers’ waiting time based on the results in the monitoring part.

Long-term service disruptions usually cause the shutdown of the service with a

duration greater than 30 minutes. The impact of long-term service disruptions is

substantial. PT operators need to repair the system and passengers usually need to

change their travel modes. In the thesis, the monitoring task for long-term service

suspensions is to measure the impact of service disruptions on the system’s demand

and supply empirically, and infer passenger’s travel mode choices during disruptions.

And the control task is to design route recommendation strategies for passengers and

propose control strategies for operators (such as shuttle buses) so as to mitigate the

system impact and reduce passengers’ travel times.
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Figure 1-6: Conceptual framework of the dissertation (Gray texts are topics not
included in the dissertation)

Within this two-by-two matrix, the dissertation presents five different topics:

• System performance evaluation under short-term service suspensions using a

bulk-service queue model (Chapter 2),

• Empirical analysis for the impact of service disruptions (Chapter 3),

• Inferring passenger behavioral responses under disruptions (Chapter 4),

• Station-based passenger path recommendations (Chapter 5), and

• Individual-based passenger path recommendations (Chapter 6).

1.4 Data and context

1.4.1 Automatically collected data

There are two important automatically-collected data in public transit systems: au-

tomated fare collection (AFC) data and automated vehicle location (AVL) data [31].

AFC data include passengers’ usage transactions from smart card data. Based on the
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system, AFC data may contain transactions on both rail and buses (e.g., the CTA

system in Chicago) or only rail (e.g., Hong Kong). AFC systems are either open or

closed. Open systems require that passengers only tap in when they enter the system

(e.g. the MBTA system in Boston). Closed systems require both, tapping in and

tapping out (e.g. the transit system in Seoul, Korea). Many systems are hybrid,

utilizing an open architecture on the bus side and closed on the subway side (e.g.

London). For a closed system, AFC data can provide accurate origins and destina-

tions of passengers’ trips with tap-in and tap-out times. Given the rich information

provided, AFC data have been used for understanding travel patterns [32], predicting

individual trips [33], improving transit planning [34], etc. A complete review of the

use of AFC data for transit system management can be found in Pelletier et al. [35].

AVL data contains information on the time-dependent location of vehicles. Train

locations are collected from the rail tracking system. Bus locations are collected from

vehicles’ GPS units. AVL data have been used for measuring travel time variability

and reliability [36], predicting vehicle arrival time [37], updating real-time scheduling

[38]. A complete review of using AVL data for transit planning and management can

be found in Levy and Lawrence [39].

1.4.2 Case studies and application

Data from the Chicago Transit Authority (CTA) are used in the various case studies.

CTA is the second-largest transit system in the United States, providing services in

Chicago, Illinois, and some of its surrounding suburbs. It operates 24 hours each

day and is used by 0.84 million bus and 0.81 million train passengers per weekday

on average in 2019 [40]. CTA has approximately 1,800 buses that operate over 140

routes traveling along 2,230 miles. Buses serve more than 12,000 posted bus stops.

CTA’s 1,450 train cars operate over eight routes and 222 miles of track, serving 145

stations in Chicago and seven suburbs.

The map of the CTA rail system is shown in Figure 1-7a. The rail system consists

of eight lines (named after their color) and the “Loop”. The Loop, located in the

Chicago downtown area, is a 1.79 miles long circuit of elevated rail that forms the
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hub of the Chicago rail system. Its eight stations account for around 10% of the

weekday boardings of the CTA trains.

CTA’s AFC system is open. Passengers use their farecards only when entering a

rail station or boarding a bus, so no information about a trip’s destination is directly

provided. The train tracking system provides train arrival and departure times at

each station (i.e., AVL data).

1.4.3 CTA incidents

We obtain CTA’s incident information from the control center data. The control

center records every incident that occurred in the system with information on time,

location, duration, and causes. Figure 1-7b shows the number of incidents distribu-

tion over different stations (only consider incidents with a duration of more than 10

minutes). In general, transfer stations (e.g., Howard and Roosevelt) and terminal

stations (e.g., Forest park, O’Hare) have more incidents than others. This may be

due to the fact that these stations have more complex infrastructure systems.

(a) CTA rail system (b) Incidents location distribution

Figure 1-7: CTA incident overview
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Figure 1-8 shows the number of incidents distributed over different lines. We

find that the Red Line has the most incidents. Moreover, the proportion of major

incidents (duration more than 20 minutes) is also the highest in the Red Line. The

reason may be that the Red Line is the busiest line on the rail system (an average of

209,085 passengers boarding each weekday in 2019). It runs 24 hours a day, 365 days

a year. The intense operations under high demands bring more infrastructure issues

and management challenges (thus a high incident rate).

Figure 1-8: Incidents distribution over different lines (numbers in each bar show the
proportion of incidents for this line)

Figure 1-9 shows the distribution of the number of incidents over months in 2019.

January has the most incidents, which may be due to weather conditions.

Figure 1-9: CTA number of incidents over months in 2019

Figure 1-10 shows the incident duration distributions. Around 80% of incidents

in the CTA system are less than 5 minutes. The average incident duration is 4.97
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minutes. This emphasizes the importance of service management under short-term

service suspensions.

Figure 1-10: Incidents duration distribution

The incident causes distribution is shown in Figure 1-11. The fraction of incidents

due to “crime” is the highest. Notably, though “power and track” only accounts for

4% of all incidents, it has a high probability (around 50%) of causing disruptions of

more than 20 minutes.

Figure 1-11: Incidents causes distribution (numbers in each bar show the proportion
of number of incidents for this cause)
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1.5 Methodology and dissertation outline

1.5.1 Chapter 2: System performance evaluation under short-

term service suspensions using bulk-service queue model

According to our preliminary analysis of the CTA system, around 80% of incidents

in the system are less than 5 minutes, which makes it important to quantify the

impact of short-term incidents. The objective of this study is to evaluate how a

public transportation system is affected by random short-term service suspension.

Specifically, we aim to derive closed-form formulations for the stability condition and

mean and variance of the passengers’ queue length and waiting time at a platform.

There is no previous study using the bulk-service queue model to evaluate pub-

lic transit system performance under random service disruptions. Powell [41] has

derived closed-form formulations for a 𝑀/𝐺[𝑆]/1 model (i.e., arbitrary bulk-service

distribution) considering one terminal stations. In this study, we aim to derive the

formulations of 𝐺[𝑆] (i.e., the service distribution) for a single-route public transit

system under random service suspension.

We assume that vehicles may have random suspensions when traveling. The most

important part of this research is to derive the headway distribution under incidents

and the probability generating function (PGF) of the number of arriving passengers

within a headway.

Our analysis shows that headways can be represented as the difference between

two compound Poisson-exponential variables. Assuming no vehicle overtaking, we

approximate the headway as a zero-inflated truncated normal distribution to obtain

a closed-form moment generating function. Based on the headway distribution, the

PGF of the number of arriving passengers within a headway is derived. This is a

theoretical study that aims to extend the bulk-service queueing theory in the liter-

ature. The results can be used to calculate the public transit systems’ performance

and stability under different incident rates and duration lengths in an efficient way.
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1.5.2 Chapter 3: Empirical analysis for the impact of service

disruptions

For a long-term service disruption, it is important to understand how the operators

and passengers are affected during the incident empirically. This topic aims to propose

a general urban rail incident analysis framework from the supply and demand sides

using AFC and AVL data.

Specifically, on the supply side, we propose an incident-based network redundancy

index to analyze the network’s ability to provide alternative services under a specific

rail disruption. The impacts on the operations are analyzed through the headway

changes. On the demand side, the analysis takes place at two levels: aggregate

flows and individual responses. We calculate the demand changes of different rail

lines, rail stations, bus routes, and bus stops to better understand the passenger

flow redistribution under incidents. Individual behavior in terms of passengers’ mode

choices is analyzed using a binary logit model based on socio-demographics derived

from AFC data.

The analysis is conducted for the PT system of the Chicago Transit Authority.

Two rail disruption cases are analyzed, one with high network redundancy around the

impacted stations and the other with low. Results show that the service frequency of

the incident line was largely reduced (by around 30% 70%) during the incident time.

Nearby rail lines with substitutional functions are also slightly affected. Passengers

showed different behavioral responses in the two incident scenarios. In the low re-

dundancy case, most of the passengers chose to use nearby buses to move, either to

their destinations or to the nearby rail lines. In the high redundancy case, most of

the passengers transferred directly to nearby lines.

1.5.3 Chapter 4: Inferring passenger behavior responses un-

der disruptions

In a long-term service disruption case study, passengers may change their travel modes

during the incident. Understanding their choices is crucial for operational responses.
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The objective of this chapter is to use AFC data to infer passengers’ travel mode

choices during major incidents.

Most of the previous studies used surveys to investigate passengers’ travel modes

during incidents. Only a limited number of studies proposed inference models of

passenger behavior (e.g., waiting, leaving the system) using AFC data. However,

these models are all based on a closed system with both tap-in and tap-out data. The

methods are rule-based without considering passengers’ historical travel information.

This study aims to use a probabilistic framework to infer passengers’ travel mode

choices during incidents. The basic idea is that, based on individual historical trips

and the observed behavior during an incident (from AFC data), we calculate the

probability that this observed behavior is caused by the incident (instead of normal

behavior).

We enumerate 19 possible behaviors that passengers may exhibit based on the

stages of their trips when an incident happened (such as waiting, transferring to a

bus, etc.). A probabilistic model is proposed to estimate the mean and variance of

the number of passengers in each of the 19 behavioral groups. Results with synthetic

data show that the proposed approach can well estimate passengers’ behavior.

1.5.4 Chapters 5 and 6: Station-based and individual-based

path recommendations under disruptions

During a service disruption, passengers may make suboptimal choices during the

incident. For example, according to the empirical analysis, most of the passengers

used bus routes that are parallel to the incident rail line. Since the capacity of

bus routes is much less than the rail routes, congestion and high waiting times are

caused. However, other alternative routes that transfer to rail lines and connect to

downtown are not well utilized. Therefore, route recommendations are needed for

passengers during incidents to better distribute passengers and utilize the capacity in

the system.

Route recommendation problems are quite rich. As shown in Figure 1-12, whether
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providing information or not and how to provide it requires inputs from both passen-

gers and operators. Different assumptions can lead to different formulations of the

problem.

Figure 1-12: Richness of path recommendation problems

In this thesis, we consider two different route recommendation schemes: station-

based and individual-based.

Station-based route recommendation: Station-based route recommendations

are conducted by providing route information to passengers waiting at a station. Pas-

sengers with different departure times and destinations are provided with different

strategies. The objective is to minimize passengers’ total travel times. We model

the path recommendation problem as an optimal flow problem with uncertain de-

mand. To tackle the lack of analytical formulation of travel times due to capacity

constraints, we propose a simulation-based first-order approximation to transform the

original problem into a linear program. Uncertainties in demand are modeled using

robust optimization to protect the path recommendation strategies against inaccurate

estimates.

A real-world rail disruption scenario in the CTA system is used as a case study.

Results show that even without considering uncertainty, the nominal model can reduce

the system travel time by 9.1% (compared to the status quo), and outperforms the
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benchmark capacity-based path recommendation by around 3%. The average travel

time of passengers using the incident line (i.e., passengers receiving recommendations)

is reduced even more (-20.6% compared to the status quo). After incorporating the

demand uncertainty, the robust model can further reduce system travel times. The

best robust model can decrease the average travel time of incident-line passengers by

2.91% compared to the nominal model.

Individual-based route recommendation: Another route recommendation

scheme is individual-based, where each individual is recommended a specific route so

as to reduce the system travel time considering their preference heterogeneity (see

Figure 1-13). In this study, we narrow the scope of the problem by the following

assumptions: 1) We know the origins, destinations, and original path preferences of

all passengers when the incident takes place. Their original choices may neither be

optimal for themselves nor the system. 2) We know a subset of incident-relevant

passengers who can receive individual messages by phone. They follow the recom-

mendation with known probabilities. 3) We know the exact incident location, blocked

links, and the duration distribution of the incident.

Figure 1-13: Illustration of individual-based path recommendation

We propose a mixed-integer programming (MIP) formulation to model the individual-

based path (IPR) recommendation problem. Passengers’ behavior uncertainty in path
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choices given recommendations and their travel time equity are also considered. We

model the behavior uncertainty based on passenger’s prior preferences and poste-

rior path choice probability distribution with two new concepts: 𝜖-feasibility and

Γ-concentration, which control the mean and variance of path flows in the optimiza-

tion problem. The IPR problem with behavior uncertainty is solved efficiently with

Bender’s decomposition. A post-adjustment heuristic is used to address the equity

requirement. The proposed approach is implemented in the CTA system with a real-

world urban rail disruption as the case study. Results show that the proposed IPR

model significantly reduces the average travel times compared to the status quo and

outperforms the capacity-based benchmark path recommendation strategy. We also

show that incorporating behavior uncertainty with respect to responses to information

achieves lower system travel times than assuming that all passengers would follow the

recommendations. The post-adjustment heuristic effectively reduces the difference in

passengers’ travel times and increases equity, where in this study, equity is defined

as all passengers with the same origin, destination, and departure times should have

similar travel times if they follow the recommendations. The equity requirement

slightly increases the system travel time, showing the trade-off between efficiency and

equity. We also show that it is possible to make recommendations so that most of

the passengers (e.g., more than 70%) use their preferred paths while only increasing

the system travel time by 0.51%.

1.6 Related publications

The dissertation research has resulted in five papers.

The content in Chapter 2 is based on the paper “Resilience of public transit systems

under short random service suspensions: A bulk-service queue model” by Baichuan

Mo, Li Jin, Haris N. Koutsopoulos, Zuo-Jun Max Shen, Jinhua Zhao [42]. This paper

is under review.

The content in Chapter 3 is based on the paper “Impact of unplanned service

disruptions on urban public transit systems” by Baichuan Mo, Max Y von Franque,
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Haris N. Koutsopoulos, John P. Attanucci, and Jinhua Zhao [43]. This paper was

presented at Transportation Research Board 100th Annual Meeting.

The content in Chapter 4 is based on the paper “Inferring passenger responses to

urban rail disruptions using smart card data: A probabilistic framework” by Baichuan

Mo, Haris N. Koutsopoulos, Jinhua Zhao [44]. This paper has been published in

Transportation Research Part E: Logistics and Transportation Review.

The content in Chapter 5 is based on the paper “Robust Path Recommendations

During Public Transit Disruptions Under Demand Uncertainty” by Baichuan Mo,

Haris N. Koutsopoulos, Zuo-Jun Max Shen, Jinhua Zhao [45]. This paper is under

review.

The content in Chapter 6 is based on the paper “Individual path recommendation

under public transit service disruptions considering behavior uncertainty and equity”

by Baichuan Mo, Haris N. Koutsopoulos, Jinhua Zhao [46]. This paper is under

review.
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Chapter 2

System performance evaluation under

short-term service suspensions using

a bulk-service queue model

2.1 Introduction

Public transit (PT) systems play a crucial role in cities worldwide, transporting peo-

ple to jobs, homes, outings, and other activities. However, PT systems are usually

susceptible to unplanned delays and service disruptions, which may be caused by

equipment failures, weather, passengers, or other internal and external factors.

Short-term service suspension happens frequently in PT systems. According to

Mo et al. [43], there are on average 75 incidents happening in the Chicago urban

rail system per day and more than 75% of them are less than 5 minutes. Causes

for these short-term suspensions can be signal system failures, passenger behavior,

and infrastructure problems. For this reason, it is important to recognize how a PT

system is affected by these short-term service suspensions.

An important concept related to the system’s reaction to incidents is “resilience”.

Resilience, in the context of managed infrastructure systems, is defined as the endoge-

nous capacity of a system to cope with exogenous perturbations [47]. The measure-
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ment of resilience varies in different studies. In this study, we consider two aspects

regarding resilience: a) system’s ability to stay stable under random service suspen-

sions, and b) system performance changes under random service suspensions. The

first aspect requires stability analysis of the system. For the second aspect, we

calculate the mean and variance of passengers’ queue length and waiting time

under random service suspensions.

Queuing behavior at a PT station is usually modeled as a bulk-service queue

model [48, 49, 50]. Bulk service means that customers are served in groups rather

than individually. At a PT station, with the arrival of vehicles (e.g., buses or trains),

a group of passengers will board (i.e., being served in groups). If the vehicle capacity

is less than the number of customers waiting, some customers are left behind [51].

Most of the previous studies on a bulk service model for PT systems focus on stations

[52, 41, 50]. Islam et al. [49] used a Markov model to extend the station-level analysis

to the route level. However, these studies all considered PT systems under normal

operating conditions. The studies of PT systems under service suspensions using

queuing analysis are limited. Regarding the treatment of service disruptions in bulk-

service queue models, Madan [53] first considered a single channel bulk service queue

subject to interruptions. They assumed there are two states (work and repair) in

the system and derived the probability generating function (PGF) of queue length

using steady-state equations. Many researchers extended Madan [53]’s framework by

considering more channels [54], more heterogeneous states [55, 56], different service

interruption assumptions [57], and different repair policies [58, 59]. However, all these

studies assumed that the service is offered with a fixed batch size (i.e., fixed capacity),

which is not valid for PT systems where the available vehicle capacity for boarding

is a random variable depending on the current vehicle load. Besides, all these studies

used steady-state equations to derive multiple PGFs of queue length under different

system states (e.g., work and repair). Results are usually mathematically tedious and

the queue length and waiting time can only be analyzed with a very small service

batch size (e.g., Madan [53] only analyzed the problem with service batch size equal

to 1 and 2, for batch size more than 3, the closed-form formulas are hard to derive).
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Finally, previous studies usually consider the breakdown of servers. But there is

no trivial way to map the “breakdown of servers” to a PT system with valid real-

world assumptions because, in a PT system, the assumption that each station is an

independent server is not valid.

To fill the research gaps, we propose a bulk queue service-based framework to

describe the passenger and vehicle dynamics for a PT system and analyze the system

resilience under short random service suspensions. The objective of this study is to

derive the stability condition of a PT system and the mean and variance of passengers’

queue length and waiting time for each station under random suspensions. This

analysis provides important insights into PT systems’ resilience and performance

changes under service disruptions, which is helpful for future control and planning

strategies.

This work can be seen as an extension of Powell [41] and Islam et al. [49] from

normal conditions to incident conditions. Powell [41] proposed a bulk service queue

model for transportation terminals (i.e., station-level) with analytical queue length

and waiting time formulations under normal conditions using transform methods (as

opposed to steady-state equations methods) and Islam et al. [49] extended the analysis

from station-level to route-level. In this study, we explicitly model the random service

suspension in a single-route PT system (in reality, it represents a bus route or one-

directional rail line, which is a basic element of more complex PT networks). Different

from typical service interruption studies where servers may break down, we assume a

vehicle in the PT system may suffer from random suspensions. A detailed discussion

of this assumption is provided in Section 2.3.2, where we show how it corresponds to

many real-world situations and can be seen as the first step toward a general incident

representation in PT systems. Under this assumption, we extend Powell [41] and

Islam et al. [49]’s work to obtain the mean and variance of passengers’ queue length

and waiting time at each station in the single route PT system by analyzing the

headway distribution under random service suspensions. The major contribution of

this chapter is fourfold:

• This is the first study to explore analytically the bulk-service queuing problem
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involving short random service suspensions applied to PT systems. We model

the service suspension in PT systems by analyzing vehicles’ speed profiles, which

is a novel and practical way to consider “server breakdown” in PT systems.

• We prove that the headway under random service suspensions can be repre-

sented as the difference between two compound Poisson exponential variables.

We assume there is no vehicle overtaking and approximate the headway distri-

bution as a zero-inflated truncated normal distribution to obtain a closed-form

moment generating function. Based on this we derive the PGF and correspond-

ing moments of the number of arrival passengers within a headway (these are

critical components for the bulk-service queue model). This is a new analytical

contribution to the bulk-service queuing theory.

• Based on Islam et al. [49]’s work, we introduce a Markov chain model to cap-

ture the inter-station passenger flow dynamics, which extends the typical bulk-

service queuing analysis from the station level to the route level.

• We propose an interpolation-based roots-solving method to find all complex

roots for this study’s model specification. Roots-solving is an essential step to

obtain the queue length and waiting time for the bulk-service queuing model.

The remaining chapter is organized as follows. Section 2.2 reviews the literature

on the bulk-service queue problem, random service disruptions, and queuing models

for public transit systems. Section 2.3 presents the model settings for a single-route

system with random service suspensions. Section 2.4 shows the analysis and deriva-

tions of the major results. Section 2.5 provides numerical examples to illustrate the

theoretical results and validates the proposed approach using simulation. Section 2.6

concludes the chapter and discusses future research directions.
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2.2 Literature review

2.2.1 Bulk queue models

In the bulk service queuing literature, customers are served in a batch of fixed or

variable lengths. The service rate may depend on the number of customers waiting

for service. The motivation of this model rises from addressing problems in manufac-

turing systems, elevators, transport systems, etc.

Bailey [60] originated the study of bulk queues by considering a system with

simple Poisson arrivals at a server that serves, at particular points in time, all waiting

customers up to a fixed capacity 𝑐. If no customers are waiting, a zero number of

customers are served, implying that the server is never idle. The queue, denoted by

M/G𝑐/1, is described using an embedded Markov chain defined at points of service

completions. Immediately following Bailey [60], Downton [61] obtained the waiting

time distribution of bulk service queues by considering random arrivals and random

service time distribution. Jaiswal [62] confirmed the results in Downton [61]. He

derived the waiting time distribution using the embedded Markov-chain approach.

The general bulk service rule was first introduced by Neuts [63], where a server,

upon finishing a batch, may remain idle if there are fewer than 𝑚 customers waiting

for service. Thus all departing batches from the queue have at least 𝑚 customers,

although no more than the service capacity.

Along with and after those milestone studies, papers have appeared which can

be differentiated on the basis of the queuing types (arrival process, service process,

number of servers), objectives (queues, waiting times, busy periods, etc.), the time

domain of the solution (i.e., steady-state or transient), and the method of solution

(transforms or direct numerical methods). Chaudhry and Templeton [64] and Sasikala

and Indhira [65] provide a more complete review of the developments in bulk service

queue models.
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2.2.2 Random service disruptions

The subject of queuing systems wherein the service channel is subject to breakdowns

is a popular subject that has received a lot of attention in the past fifty years. For

a recent survey of the related literature, readers can refer to Krishnamoorthy et al.

[66].

However, most of the research on this topic deals with models where the server

serves the customers one at a time. The related literature on bulk service is limited.

Madan [53] studied a single-channel queueing system with Poisson arrivals and expo-

nential service in batches of fixed size. The system is subject to random interruptions

with an operating state and a repairing state. Both the operating times and the repair

times of the service channel are assumed to be exponential. Madan [55] generalized

the model in Madan [53] to the case where the repairs are performed in two phases.

Singh and Ram [54] extended the model in Madan [53] by considering a system with

three identical channels, with operating and repair times for all three service channels

distributed exponentially. Jayaraman et al. [57] considered a single-server queueing

system with general bulk service. Arrivals are Poisson but alternate between two

modes according to whether the server is operational or in the failed state. The dura-

tion of the operating and repair periods are exponential and phase-type distributions,

respectively. Tadj and Choudhury [58] analyzed a bulk service queueing system with

an unreliable server, Poisson input, and general service and repair times. Tadj et al.

[59] considered a bulk service queuing system where service is provided to groups of

customers of fixed size. Service consists of two consecutive phases and may take a

vacation following the second phase of service. While providing service, the server

may break down and a delay period precedes the repair period.

2.2.3 Queuing models in public transit systems

Queuing theory in PT systems is usually conducted at the station level, aiming at

obtaining the mean queue length and waiting time. In the case of regular services

where headways are equal, assuming that a) passengers arrive at stops according to
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a Poisson process and b) passengers can be served by the first arriving vehicle, the

mean waiting time of passengers (E[𝑊 ]) is given by:

E[𝑊 ] = 𝐻/2, (2.1)

where 𝐻 is the service headway and 𝑊 is the passenger waiting time. This is the

most widely used queuing assumption in transit studies [67, 68, 69]. However, in the

case where service is not reliable, the assumption of regular service can be problem-

atic. Numerous models have been proposed to account for the stochastic nature of

headways [70, 71]. A well-known model proposed by Osuna and Newell [71] with

Poisson arrival passengers and stochastic headways is

E[𝑊 ] =
1

2
·
[︂
E[𝐻] +

Var[𝐻]

E[𝐻]

]︂
, (2.2)

where E[𝐻] and Var[𝐻] are the expectation and variance of headways, respectively.

In the case of regular services, the variance is zero and the model reverts to Equation

2.1.

However, the results in Eq. 2.1 and 2.2 do not consider the vehicle capacity

(i.e., they assume all passengers can board the first vehicle). In a congested PT

system, passengers may be left behind due to limited vehicle capacity, leading to an

increase in waiting times [4]. Bulk service queue models have been applied in PT

systems to capture the effects of capacity constraints. Powell [48, 72, 41] used a bulk

service queue model to calculate the passenger queue length and waiting times at

public transportation terminals. The closed-form mean and variance for these two

quantities are derived using a transform method. Rapoport et al. [73] studied bulk

service queues with constant or variable capacity and exogenously determined arrival

times (e.g., passenger arrivals based on smart card data). Wang et al. [50] proposed

a bulk service and batch arrival queuing model with reneging behavior to estimate

passengers’ waiting for public transport services.

All the aforementioned studies consider the queuing analysis at the station level.

The extension of queuing analysis from a station level to a route level is not a triv-
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ial problem. First, the boarding and alighting behavior at upstream stations affect

the available capacity distribution at downstream stations. Second, headways may

be correlated across stations, leading to different headway distributions for different

stations [74, 75]. To address this problem, Islam et al. [49, 76] proposed a Markov

model to combine the Powell [48] and Hickman [75]’s approaches and used a bulk

service model to analyze system performance at the route level. However, a limita-

tion of their research is that the calculation of headway correlation does not consider

the vehicle capacity (though the capacity constraint is considered in the queuing be-

havior), resulting in the inconsistency of model assumptions. Also, they assume that

headways follow the Erlang distribution, which leads to model tractability but is not

consistent with empirical observations [77].

Our study can be seen as an extension of Powell [41]’s and Islam et al. [49]’s work

to incorporate random service suspensions in a PT system with more consistent and

reasonable assumptions. And we also characterize the headway distribution under

service suspensions.

2.2.4 Service interruptions in public transit systems

Studies on service interruption in public transit systems can be categorized into two

groups: impact analysis and operations control. Impact analysis studies have used

a variety of methods to analyze the impact of service disruptions on performance

and level of service. Of these methods, the most common is based on graph theory,

surveys, simulation, and empirical data. Graph theory-based methods usually derive

resilience or vulnerability indicators based on the network topology [78, 30, 79, 80].

These methods are effective for understanding high-level network properties related to

incidents. Survey-based methods investigate passenger behavior and opinions during

incidents [81, 82, 83, 84, 85]. Passengers’ individual-level behavior is analyzed and

understood using econometric models. Simulation-based methods simulate passenger

flows on the transit network under incident scenarios [86, 87, 88]. The empirical

data-based methods use smart card and vehicle location data to analyze real-world

incident impacts [89, 90, 43]. These studies can output many metrics of interest
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such as vehicle load, travel delays caused by incidents, distribution of the impact,

etc. Studies focusing on operations control under service disruptions address aspects

including shuttle bus design [91, 92], vehicle holding [93], integrating local services

[94], and timetable adjustment [95].

The resilience analysis presented in this study belongs to the “impact analysis”

category, which aims to obtain stability conditions for PT systems and the mean and

variance of passengers’ queue length and waiting time of each station under short

random suspensions. None of the previous studies has used the bulk service model

for this type of analysis.

2.3 Model

2.3.1 Single-route public transit system and vehicle movements

Consider a single-route PT system with 𝑁 stations as shown in Figure 2-1. Vehicles

are dispatched from a transportation hub (also referred to as station 0) and travel

from station 1 to station 𝑁 . At a specific station 𝑛, we assume that passenger arrivals

follow a Poisson process with a fixed rate 𝜆(𝑛) during the time period of interest. When

a vehicle arrives at station 𝑛, each passenger in the vehicle has a probability of 𝛼(𝑛)

to alight. Thus, the number of alighting passengers at station 𝑛 follows a binomial

distribution. Poisson arrivals and binomial alighting are two common assumptions

in much of the PT-related literature [75]. In this study, we do not consider reneging

behavior of passengers (i.e., passengers may leave the system if they have waited for

too long) since the focus of the study is on “short” service suspensions and we assume

passengers choose to wait. Empirical studies [89, 96] show that passengers start to

leave the system only when delays are large (e.g., 30 minutes or more). Incorporating

balking and reneging is outside the scope of this study and can be a future extension

of this work.

Let 𝑙 = 1, 2, ... be a superscript denoting the vehicle run number (or vehicle ID).

Smaller 𝑙 means vehicles dispatched at an earlier time. Figure 2-2 summarizes the
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Figure 2-1: Schematic presentation of a single-route public transit system

vehicle and passenger interactions at station 𝑛 over time. Let 𝑡
(𝑛,𝑙)
𝐴 be the time that

vehicle 𝑙 arrives at station 𝑛, and 𝑡
(𝑛,𝑙)
𝐷 the time that vehicle 𝑙 departs station 𝑛. 𝐻(𝑛,𝑙)

is the headway between the preceding vehicle 𝑙− 1 and vehicle 𝑙, as they depart from

stop 𝑛 (i.e., 𝐻(𝑛,𝑙) = 𝑡
(𝑛,𝑙)
𝐷 − 𝑡

(𝑛,𝑙−1)
𝐷 ). When a vehicle arrives at station 𝑛, some of

the on-board passengers alight first, then the queuing passengers start to board. Let

𝑄(𝑛,𝑙) be the number of queuing passengers when vehicle 𝑙 arrives at station 𝑛, 𝑅(𝑛,𝑙)

the number of left behind passengers when vehicle 𝑙 departs station 𝑛, and 𝑌 (𝑛,𝑙) the

number of passengers arriving between 𝑡
(𝑛,𝑙)
𝐷 and 𝑡

(𝑛,𝑙+1)
𝐴 . By definition,

𝑄(𝑛,𝑙+1) = 𝑅(𝑛,𝑙) + 𝑌 (𝑛,𝑙). (2.3)

In this study, we assume that the dwell time (i.e., 𝑡(𝑛,𝑙)𝐷 − 𝑡
(𝑛,𝑙)
𝐴 ) is negligible com-

pared to the vehicle travel time (𝑡(𝑛+1,𝑙)
𝐴 − 𝑡

(𝑛,𝑙)
𝐷 ) such that the number of passengers

arriving during the dwell time is zero (same assumption as in Powell [48]). Then,

given the headway 𝐻(𝑛,𝑙+1), 𝑌 (𝑛,𝑙)|𝐻(𝑛,𝑙+1) follows a Poisson distribution with param-

eter 𝜆(𝑛)𝐻(𝑛,𝑙+1):

𝑌 (𝑛,𝑙) | 𝐻(𝑛,𝑙+1) ∼ Poi(𝜆(𝑛)𝐻(𝑛,𝑙+1)). (2.4)

In other words, 𝑌 (𝑛,𝑙) can be seen as the number of arriving passengers within a

headway (i.e., 𝐻(𝑛,𝑙+1)).

From the vehicle’s perspective, let 𝑆(𝑛,𝑙) be the number of available space after
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Figure 2-2: Diagram of vehicles and passengers interaction at station 𝑛 in the time
dimension

passengers alighting from vehicle 𝑙 at station 𝑛, 𝐺(𝑛,𝑙) the number of remaining pas-

sengers on vehicle 𝑙 after passengers alighting at station 𝑛. By definition,

𝐺(𝑛,𝑙) = 𝐶 − 𝑆(𝑛,𝑙), (2.5)

where 𝐶 is the capacity of vehicles. Denote 𝑉 (𝑛,𝑙) as the vehicle load (i.e., number of

on-board passengers) when vehicle 𝑙 departs station 𝑛 (i.e., the vehicle load when it

arrives at station 𝑛+ 1). Then, the number of alighting passengers from vehicle 𝑙 at

station 𝑛 given 𝑉 (𝑛−1,𝑙) follows a binomial distribution:

𝑉 (𝑛−1,𝑙) −𝐺(𝑛,𝑙) | 𝑉 (𝑛−1,𝑙) ∼ Bin(𝑉 (𝑛−1,𝑙), 𝛼𝑛). (2.6)

2.3.2 Random service suspensions and vehicle speed profile

Let us assume that there are random service suspensions when a vehicle travels in

the system. Given these disturbances, the speed curve of vehicle 𝑙 from station 𝑛

to 𝑛 + 1 can be described by the red line in Figure 2-3. Every random incident

causes a speed reduction or stop of the vehicle. In reality, these incidents can be

caused by many reasons. For example, in a bus system, they may be caused by

traffic congestion or accidents, drivers’ or passengers’ behavior, vehicle engine issues,
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etc. In a rail system, the reasons may be signal failures, infrastructure problems,

and drivers’ or passengers’ behavior. The speed curve is a general representation of

different incidents, interruptions, suspensions, or disruptions that impede the vehicle’s

movement.

Figure 2-3: Schematic speed curve of vehicle 𝑙 traveling from station 𝑛 to 𝑛+ 1

The actual vehicle speed profile under interruptions can be complicated. To fa-

cilitate mathematical modeling, we assume that the speed of a vehicle under random

interruptions can be approximated by an impulse function (blue line in Figure 2-

3). The impulse function separates the vehicle trajectory into traveling and stopping

phases, denoted as normal state and failure state, respectively. In the normal state,

a vehicle travels at a constant speed. Once an incident happens, the vehicle stops

immediately and enters the failure state. We assume that, in a sufficiently small time

interval, Δ, the probability of incident occurrence is 𝛾Δ. Furthermore, the duration

of an incident follows an exponential distribution with rate 𝜃 (i.e., mean of 1
𝜃
). Then,

the state of a vehicle is a two-state Markov process (Figure 2-4) with the state space

of {Normal, Failure}.

Figure 2-4: Transition diagram of vehicle states

For the two-state Markov process, the duration of failure and normal states follows

the exponential distribution with rates 𝜃 and 𝛾, respectively.
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Approximating the actual speed curve as an impulse function can be seen as the

first step toward a general incident representation in PT systems. Actually, any type

of incident can be represented as a mixture of different types of normal and failure

states. The normal and failure states can be defined with heterogeneous occurrence

probabilities and duration for different categories of incidents, which results in a more

sophisticated speed curve representation.

2.3.3 Headway under random service suspensions

Under the assumption of an impulse-function speed profile, all vehicles have the same

fixed travel speed under the normal state. Therefore, if there is no incident in the

system, all stations have the same deterministic headway (denoted as �̄�). The rela-

tionship among �̄�, route cycle time �̄� (i.e., the time that a vehicle travels from the

transportation hub to the last station and returns to the hub), and fleet size (denoted

as 𝐹 ) for the route is

�̄� =
�̄�

𝐹
(2.7)

With random service suspensions, the route cycle time would increase. There are two

possible responses for the transit agency: 1) To maintain the same planned headway

�̄�, the agency needs to increase the fleet size for the route. 2) With the same fleet

size (i.e., limited resources), the agency would have to increase the planned headway

�̄�. In this study, we consider the second scenario because it reflects incidents’ impact

on headway and service performance, which is more relevant to this chapter’s topic.

Therefore, we assume that at the route planning stage, transit agencies have an

estimate of the average delay in the cycle time, �̄�. Let 𝐼(𝑛,𝑙) be the total duration of

all incidents happening during the vehicle 𝑙’s travel time from the transportation hub

to station 𝑛 (a random variable). Then E[𝐼(𝑁,𝑙)] is the expected incident duration for

a vehicle traveling from the transportation hub to the last station 𝑁 . Assuming the

road conditions for two directions of the route are the same, then the total estimated
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delay for the cycle trip is

�̄� = 2 · E[𝐼(𝑁,𝑙)] (2.8)

It is worth noting that some transit agencies may plan the headway by assuming

a larger delay (e.g., not the mean, but the 85% percentile). Hence, we may also

formulate �̄� as a general function of E[𝐼(𝑁,𝑙)]. In this study, we adopt Eq. 2.8 for

simplicity. Then, the incident-adjusted planned headway (denoted as �̄�Adj) is

�̄�Adj =
�̄� + �̄�

𝐹
= �̄� +

2 · E[𝐼(𝑁,𝑙)]

𝐹
(2.9)

where 2·E[𝐼(𝑁,𝑙)]

𝐹
is the planned headway adjustment term due to incidents. Note that

we assume 𝐼(𝑁,𝑙) are identically distributed for all 𝑙. So the incident-adjusted planned

headway is not affected by vehicle ID. In this study, we assume that the single-route

PT system will dispatch vehicles based on the incident-adjusted planned headway

�̄�Adj and all dispatches are on time.

Let 𝑇 (𝑛) be the travel time for vehicles from the transportation hub to station

𝑛 when there is no incident ( a fixed constant in this study due to the fixed speed

assumption). Without loss of generality, let us assume vehicle (𝑙 − 1) departs from

the transportation hub at time 0. Considering random service suspensions, vehicle

(𝑙 − 1)’s departure time from station 𝑛 is:

𝑡
(𝑛,𝑙−1)
𝐷 = 𝑇 (𝑛) + 𝐼(𝑛,𝑙−1) (2.10)

Note that the dwell time is ignored as we assumed before.

Given that the incident-adjusted planned headway is �̄� + 2·E[𝐼(𝑁,𝑙)]

𝐹
, the departure

time of vehicle 𝑙 from station 𝑛 is

𝑡
(𝑛,𝑙)
𝐷 = �̄� +

2 · E[𝐼(𝑁,𝑙)]

𝐹
+ 𝑇 (𝑛) + 𝐼(𝑛,𝑙) (2.11)
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Therefore, with random incidents, the actual headway of vehicle 𝑙 at station 𝑛 is

𝐻(𝑛,𝑙) = 𝑡
(𝑛,𝑙)
𝐷 − 𝑡

(𝑛,𝑙−1)
𝐷 = �̄� +

2 · E[𝐼(𝑁,𝑙)]

𝐹
+ 𝐼(𝑛,𝑙) − 𝐼(𝑛,𝑙−1). (2.12)

In this study, we assume 𝐼(𝑛,𝑙) and 𝐼(𝑛,𝑙−1) are independent. This assumption

facilitates closed-form derivations. In reality, if the incidents are caused by road

congestion or infrastructure issues, it is possible that the incident durations for two

consecutive vehicles passing through the same route segment are correlated. However,

addressing the correlation is not a trivial problem in the bulk service queue model

[48] and is beyond the scope of this study.

2.4 Analysis

The objective of this study is to derive the stability conditions of a PT system and

the mean and variance of passengers’ queue length and waiting time at each station

under random service suspensions. Figure 2-5 shows how the distributions of dif-

ferent random variables (particularly, 𝑆(𝑛,𝑙), 𝑉 (𝑛,𝑙), 𝑄(𝑛,𝑙)) are calculated. The major

calculation consists of three parts:

• Given the distribution of 𝑉 (𝑛−1,𝑙), calculate the distribution of 𝑆(𝑛,𝑙). The details

are shown in Section 2.4.1

• Given the distribution of 𝑆(𝑛,𝑙), calculate the distribution of 𝑄(𝑛,𝑙) and the mean

and variance of queue length and waiting time at station 𝑛. This is discussed

in Section 2.4.3.

• Given the distribution of 𝑆(𝑛,𝑙) and 𝑄(𝑛,𝑙), calculate the distribution of 𝑉 (𝑛,𝑙),

which is discussed in Section 2.4.2

With the three components, we can derive the distribution of 𝑆(𝑛,𝑙), 𝑄(𝑛,𝑙), 𝑉 (𝑛,𝑙)

for all 𝑛 = 1, ..., 𝑁 given the distribution of 𝑉 (0,𝑙) (i.e., vehicle load when vehicle 𝑙

arrives at the first station, it is always zero by definition). Note that, in this section,

we focus on the steady-state distribution of these variables (i.e., 𝑙 → ∞).
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Figure 2-5: Analysis framework

After obtaining the corresponding distributions, we discuss the stability conditions

in Section 2.4.4 and summarize the approach in Section 2.4.5.

2.4.1 Available vehicle space steady-state distribution

In this section, we aim to derive the steady-state distribution of 𝑆(𝑛,𝑙) given the steady-

state distribution of 𝑉 (𝑛−1,𝑙). Define 𝑣
(𝑛,𝑙)
𝑘 := P(𝑉 (𝑛,𝑙) = 𝑘), 𝑠(𝑛,𝑙)𝑘 := P(𝑆(𝑛,𝑙) = 𝑘),

and 𝑔
(𝑛,𝑙)
𝑘 := P(𝐺(𝑛,𝑙) = 𝑘) for all 𝑘 = 0, 1, ..., 𝐶. Assuming that the steady state

probabilities for all variables exist (the stability condition will be discussed in Section

2.4.4), we have 𝑣
(𝑛)
𝑘 := lim𝑙→∞ 𝑣

(𝑛,𝑙)
𝑘 = P(𝑉 (𝑛) = 𝑘), 𝑠(𝑛)𝑘 := lim𝑙→∞ 𝑠

(𝑛,𝑙)
𝑘 = P(𝑆(𝑛) =

𝑘), and 𝑔
(𝑛)
𝑘 := lim𝑙→∞ 𝑔

(𝑛,𝑙)
𝑘 = P(𝐺(𝑛) = 𝑘), where 𝑉 (𝑛) = lim𝑙→∞ 𝑉 (𝑛,𝑙), 𝑆(𝑛) =

lim𝑙→∞ 𝑆(𝑛,𝑙), and 𝐺(𝑛) = lim𝑙→∞𝐺(𝑛,𝑙).

Proposition 1. ∀ n = 1,..,N, given the distribution of 𝑉 (𝑛−1) (i.e., 𝑣(𝑛) := [𝑣
(𝑛−1)
0 , ..., 𝑣

(𝑛−1)
𝐶 ] ∈

R𝐶+1), the distribution of 𝑆(𝑛) (i.e., 𝑠(𝑛) := [𝑠
(𝑛−1)
0 , ..., 𝑠

(𝑛−1)
𝐶 ] ∈ R𝐶+1) is given as:

𝑠
(𝑛)
𝑘 = 𝑔

(𝑛)
𝐶−𝑘 ∀𝑘 = 0, 1, ..., 𝐶, (2.13)

where 𝑔(𝑛) := [𝑔
(𝑛)
0 , ..., 𝑔

(𝑛)
𝐶 ] ∈ R𝐶+1 and

𝑔(𝑛) = 𝑣(𝑛−1)𝐴(𝑛), (2.14)

𝐴(𝑛) is a (𝐶 + 1) by (𝐶 + 1) matrix with the element in row 𝑖 and column 𝑗 equal to
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𝑎
(𝑛)
𝑖𝑗 , and 𝑎

(𝑛)
𝑖𝑗 is defined as

𝑎
(𝑛)
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑖 = 0 and 𝑗 = 0(︂

𝑖

𝑖− 𝑗

)︂
(𝛼(𝑛))𝑖−𝑗(1− 𝛼(𝑛))𝑗, if 𝑖 ≥ 𝑗 and 𝑖, 𝑗 ̸= 0

0, otherwise

∀ 𝑖, 𝑗 = 0, 1, ..., 𝐶

(2.15)

Proof. When vehicle 𝑙 arrives at station 𝑛, by definition, there are 𝑉 (𝑛−1,𝑙) number of

passengers in the vehicle. Given that there are 𝑖 passengers on-board when vehicle 𝑙

arrives at station 𝑛, let the probability that there are 𝑗 passengers remaining on the

vehicle be 𝑎
(𝑛)
𝑖𝑗 . 𝑎(𝑛)𝑖𝑗 also represents the probability of 𝑖−𝑗 passengers alighting, which

follows a binomial distribution with parameters 𝑖 and 𝛼(𝑛) (if 𝑖 ≥ 𝑗 and 𝑖, 𝑗 ̸= 0).

Hence, 𝑎(𝑛)𝑖𝑗 can be expressed as Eq. 2.15. Then we have

𝑔(𝑛,𝑙) = 𝑣(𝑛−1,𝑙)𝐴(𝑛) (2.16)

where 𝑣(𝑛−1,𝑙) = [𝑣
(𝑛−1,𝑙)
0 , ..., 𝑣

(𝑛−1,𝑙)
𝐶 ] ∈ R𝐶+1, 𝑔(𝑛,𝑙) = [𝑔

(𝑛,𝑙)
0 , ..., 𝑔

(𝑛,𝑙)
𝐶 ] ∈ R𝐶+1. Accord-

ing to the relationship between 𝑆(𝑛,𝑙) and 𝐺(𝑛,𝑙) as shown in Eq. 2.5, the distribution

of the number of available spaces after alighting is simply

𝑠
(𝑛,𝑙)
𝑘 = 𝑔

(𝑛,𝑙)
𝐶−𝑘 ∀𝑘 = 0, 1, ..., 𝐶 (2.17)

Note that Eq. 2.16 and 2.17 hold for all 𝑙. Since we assume the steady state

distributions exist, letting 𝑙 → ∞ on both sides of Eq. 2.16 and 2.17 completes the

proof.

2.4.2 Vehicle load steady-state distribution

In this section, we derive the steady-state distribution of 𝑉 (𝑛,𝑙) given the steady-state

distribution of 𝐺(𝑛,𝑙) and 𝑄(𝑛,𝑙). Define 𝑞
(𝑛)
𝑘 := lim𝑙→∞ 𝑞

(𝑛,𝑙)
𝑘 = P(𝑄(𝑛) = 𝑘), where

𝑄(𝑛) = lim𝑙→∞𝑄(𝑛,𝑙) and 𝑞
(𝑛,𝑙)
𝑘 = P(𝑄(𝑛,𝑙) = 𝑘). Denote the first 𝐶 elements of the

steady-steady queue length distribution as 𝑞(𝑛)0:𝐶−1, where 𝑞(𝑛)0:𝐶−1 = [𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1] ∈ R𝐶 .
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Proposition 2. ∀ n = 1,..,N, given the distribution of 𝐺(𝑛) (i.e., 𝑔(𝑛)) and 𝑞
(𝑛)
0:𝐶−1,

the distribution of 𝑉 (𝑛) can be expressed as:

𝑣(𝑛) = 𝑔(𝑛)𝐵(𝑛) (2.18)

where 𝐵(𝑛) is a matrix with the element in row 𝑖 and column 𝑗 equal to 𝑏
(𝑛)
𝑖𝑗 :

𝑏
(𝑛)
𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑞
(𝑛)
𝑗−𝑖, if 0 ≤ 𝑖 ≤ 𝑗 < 𝐶

1−
𝐶−𝑖−1∑︁
𝑘=0

𝑞
(𝑛)
𝑘 , if 𝑗 = 𝐶 and 0 ≤ 𝑖 < 𝐶

1, if 𝑖 = 𝑗 = 𝐶

0, otherwise

∀ 𝑖, 𝑗 = 0, 1, ..., 𝐶 (2.19)

Proof. Let 𝑏
(𝑛,𝑙)
𝑖𝑗 be the probability that the load of vehicle 𝑙 is 𝑗 after passenger

boarding given that there are 𝑖 passengers on-board after alighting (i.e., 𝐺(𝑛,𝑙) = 𝑖)

at station 𝑛. Hence, if 0 ≤ 𝑖 ≤ 𝑗 < 𝐶, 𝑏(𝑛,𝑙)𝑖𝑗 is simply the probability that there are

𝑗 − 𝑖 passengers in the queue (such that after boarding there are 𝑗 passengers on the

vehicle):

𝑏
(𝑛,𝑙)
𝑖𝑗 = 𝑞

(𝑛,𝑙)
𝑗−𝑖 , if 0 ≤ 𝑖 ≤ 𝑗 < 𝐶. (2.20)

If 𝑗 = 𝐶 and 0 ≤ 𝑖 < 𝐶, the vehicle reaches capacity after boarding. Then 𝑏
(𝑛,𝑙)
𝑖𝑗

should be the probability that the number of passengers in the queue is greater than

or equal to 𝐶 − 𝑖 (i.e., one minus the probability that there are less than or equal to

𝐶 − 𝑖− 1 passengers in the queue). This leads to:

𝑏
(𝑛,𝑙)
𝑖𝑗 = 1−

𝐶−𝑖−1∑︁
𝑘=0

𝑞
(𝑛,𝑙)
𝑘 , if 𝑗 = 𝐶 and 0 ≤ 𝑖 < 𝐶. (2.21)

When 𝑖 = 𝑗 = 𝐶, we simply have 𝑏
(𝑛,𝑙)
𝑖𝑗 = 1 because regardless the number of waiting

passengers in the queue, nobody can board as the vehicle is full. Given Eq. 2.19, the
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vehicle load distribution can be calculated as

𝑣
(𝑛,𝑙)
𝑗 =

𝐶∑︁
𝑖=1

𝑔𝑖 · 𝑏(𝑛,𝑙)𝑖𝑗 ∀𝑗 = 0, 1, ..., 𝐶 (2.22)

Notice that Eq. 2.22 holds for all 𝑙. As we assume that the steady state distribu-

tions exist, taking 𝑙 → ∞ for both sides of Eq. 2.22 and rewriting it in a matrix form

completes the proof.

2.4.3 Queuing analysis at a station

In this section, assuming that we know the distribution of 𝑆(𝑛) (i.e., 𝑠(𝑛) = [𝑠
(𝑛)
0 , ..., 𝑠

(𝑛)
𝐶 ] ∈

R𝐶+1), our goal is to derive 𝑞
(𝑛,𝑙)
0:𝐶−1 and the mean and variance of passenger queue

length and waiting time.

Probability generating function of queue length

We start with deriving the probability generating function (PGF) for 𝑄(𝑛), where

𝑄(𝑛) = lim𝑙→∞𝑄(𝑛,𝑙).

Proposition 3. ∀ n = 1,..,N, given the distribution of 𝑆(𝑛) (i.e., 𝑠(𝑛)), the PGF of

𝑄(𝑛) can be expressed as:

𝑄(𝑧) =

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

[︁∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖 (𝑧𝐶 − 𝑧𝐶−𝑢+𝑖)

]︁
𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢

, (2.23)

where 𝑌 (𝑧) is the PGF of 𝑌 (𝑛) and 𝑌 (𝑛) = lim𝑙→∞ 𝑌 (𝑛,𝑙) is the number of arrival

passengers at station 𝑛 within a headway at the steady state.

Proof. The proof follows a similar idea in Powell [48] and is attached in 2.7.1. The

difference from Powell [48] is that we consider an arbitrary vehicle capacity distri-

bution 𝑠
(𝑛)
0 , ..., 𝑠

(𝑛)
𝐶 , while in Powell [48] the capacity is fixed. Note that Powell [41]

provided an equivalent formulation as Eq. 2.23 with variable vehicle capacities using

the transform of 𝑆(𝑛).

63



In Eq. 2.23, there are 𝐶 unknown variables, 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1. Note that 𝑞

(𝑛)
𝐶 does

not appear in 𝑄(𝑧) because when 𝑢 = 𝐶 and 𝑖 = 𝐶, we have 𝑞
(𝑛)
𝐶 (𝑧𝐶 − 𝑧𝐶−𝑢+𝑖) ≡ 0.

To quantify 𝑄(𝑧), Rouche’s theorem is used [97]. Let Num(𝑧) and Den(𝑧) be the

numerator and denominator of 𝑄(𝑧) (i.e., 𝑄(𝑧) = Num(𝑧)
Den(𝑧) ). As shown in Powell [48],

one can prove that Den(𝑧) (i.e., 𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢) has exactly 𝐶 complex roots

within (or on) the unit circle on a complex plane using Rouche’s theorem. Notice

that for any 𝑧 ∈ C that satisfies |𝑧| ≤ 1, where C is the set of complex numbers,

the generating function 𝑄(𝑧) must be analytic. Therefore, if 𝑧* is the root of Den(𝑧)

(i.e., Den(𝑧*) = 0), it should also be the root of Num(𝑧) (i.e., Num(𝑧*) = 0) such

that 𝑄(𝑧) is analytic [98]. Hence, one can solve for 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 using the following

two steps:

• Step 1: Solve Den(𝑧) = 0 for 𝐶 different roots 𝑧*0 , ..., 𝑧
*
𝐶−1 ∈ C that satisfy

|𝑧*𝑖 | ≤ 1, ∀ 0 ≤ 𝑖 ≤ 𝐶 − 1. Note that 𝑧 = 1 is always a root of Den(𝑧). But

it does not give information about 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 as Num(1) = 0 is naturally

satisfied. Hence, we adopt the convention that 𝑧*0 = 1.

• Step 2: Combining Num(𝑧*𝑖 ) = 0 (∀ 1 ≤ 𝑖 ≤ 𝐶 − 1) and 𝑄(1) = 1, solve for

𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 (there are 𝐶 system equations and 𝐶 unknown variables). Note

that when 𝑧 → 1, both Num(𝑧) and Den(𝑧) approach 0. Therefore, using

L’Hopital’s rule,

lim
𝑧→1

𝑄(𝑧) = lim
𝑧→1

Num′(𝑧)

Den′(𝑧)
=

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

[︁∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖 (𝑢− 𝑖)

]︁
𝑆(𝑛) − 𝑌 (𝑛)

= 1 (2.24)

where 𝑆(𝑛) =
∑︀𝐶

𝑢=0 𝑢𝑠
(𝑛)
𝑢 = E[𝑆(𝑛)], 𝑌 (𝑛) = 𝑌 ′(1) = E[𝑌 (𝑛)]. Eq. 2.24 is the

equation used to solve for 𝑞
(𝑛)
0:𝐶−1 (instead of directly using 𝑄(1) = 1).

Queue length distribution

Though 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 can be obtained by solving 𝐶 system equations as mentioned

in Section 2.4.3, we provide a simpler way to calculate 𝑞
(𝑛)
0:𝐶−1, which is known as

matching the polynomial coefficients.
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Proposition 4. ∀ n = 1,..,N, given the distribution of 𝑆(𝑛) (i.e., 𝑠(𝑛)), all complex

roots of Den(𝑧) (i.e., 𝑧*0 , ..., 𝑧*𝐶−1), and 𝑌 (𝑛), if 𝑠(𝑛)𝐶 > 0, then 𝑞
(𝑛)
0:𝐶−1 can be solved as:

𝑞
(𝑛)
0 =

1

𝑠
(𝑛)
𝐶

(𝑆(𝑛) − 𝑌 (𝑛))
𝐶−1∏︁
𝑖=1

𝑧*𝑖
𝑧*𝑖 − 1

, (2.25)

and

𝑞
(𝑛)
0:𝐶−1 = 𝜂(𝑛)(Λ(𝑛))−1, (2.26)

where 𝜂(𝑛) = [𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
0 , 𝑠

(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
1 , ..., 𝑠

(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
𝐶−1] ∈ R𝐶 and

Λ(𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
(𝑛)
𝐶 𝑠

(𝑛)
𝐶−1 𝑠

(𝑛)
𝐶−2 ... 𝑠

(𝑛)
1

0 𝑠
(𝑛)
𝐶 𝑠

(𝑛)
𝐶−1 ... 𝑠

(𝑛)
2

... 0 𝑠
(𝑛)
𝐶 ... 𝑠

(𝑛)
3

0 ... 0 ... 𝑠
(𝑛)
4

0 0 ... ... ...

0 0 0 ... 𝑠
(𝑛)
𝐶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝐶×𝐶 . (2.27)

𝜂
(𝑛)
𝑗 is the polynomial coefficient of 𝑧𝑗 in

∏︀𝐶−1
𝑖=0

(︁
1− 𝑧

𝑧*𝑖

)︁
(i.e.,

∑︀𝐶
𝑗=0 𝜂

(𝑛)
𝑗 𝑧𝑗 :=

∏︀𝐶−1
𝑖=0

(︁
1− 𝑧

𝑧*𝑖

)︁
).

As 𝑧*𝑖 is specified for station 𝑛, a superscript 𝑛 is added to the coefficients.

Proof. The derivation is shown in 2.7.2.

Note that assuming 𝑠
(𝑛)
𝐶 > 0 in Proposition 4 is not restrictive because otherwise

we can reduce 𝐶 such that 𝑠
(𝑛)
𝐶 > 0 always holds.
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Analytical formulation of mean and variance of queue length and waiting

time

After solving for 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1, 𝑄(𝑧) is determined. The expectation and variance of

the queue length at station 𝑛 can be written by definition as:

E[𝑄(𝑛)] =
∞∑︁
𝑘=0

𝑘𝑞
(𝑛)
𝑘 =

𝑑𝑄(𝑧)

𝑑𝑧

⃒⃒⃒⃒
𝑧=1

(2.28)

Var[𝑄(𝑛)] = E[(𝑄(𝑛))2]− E[𝑄(𝑛)]2 =
𝑑2𝑄(𝑧)

𝑑𝑧2

⃒⃒⃒⃒
𝑧=1

+ E[𝑄(𝑛)]− E[𝑄(𝑛)]2. (2.29)

Proposition 5. ∀ n = 1,..,N, given the distribution of 𝑆(𝑛) and the expression of

𝑌 (𝑧), E[𝑄(𝑛)] and Var[𝑄(𝑛)] can be calculated as:

E[𝑄(𝑛)] =
¯̄𝑆(𝑛) + ¯̄𝑌 (𝑛) + (𝑆(𝑛) − 𝑌 (𝑛))[1 + 2(𝑆(𝑛) − 𝐶)]− (𝑆(𝑛) − 𝑌 (𝑛))2

2(𝑆(𝑛) − 𝑌 (𝑛))
+

𝐶−1∑︁
𝑖=1

1

1− 𝑧*𝑖

(2.30)

Var[𝑄(𝑛)] =
1

12(𝑆(𝑛) − 𝑌 (𝑛))2

[︂
− 4(

¯̄̄
𝑆(𝑛) − ¯̄̄

𝑌 (𝑛))(𝑆(𝑛) − 𝑌 (𝑛)) + 3( ¯̄𝑆(𝑛) + ¯̄𝑌 (𝑛))2

− [6( ¯̄𝑆
(𝑛)

− ¯̄𝑌
(𝑛)

)− 1](𝑆(𝑛) − 𝑌 (𝑛))2 − (𝑆(𝑛) − 𝑌 (𝑛))4
]︂
−

𝐶−1∑︁
𝑖=1

𝑧*𝑖
(1− 𝑧*𝑖 )

2

(2.31)

where ¯̄𝑆(𝑛) and ¯̄̄
𝑆(𝑛) (resp. ¯̄𝑌 (𝑛) and ¯̄̄

𝑌 (𝑛)) are the second and third central moments

of 𝑆(𝑛) (resp. 𝑌 (𝑛)).

Proof. The derivation follows the same idea in Powell [48]. Details are mathematical

tedious and are thus attached in 2.7.3. These results are equivalent to Powell [41]

who considered the general bulk-service queue model (but Powell [41] did not provide

the detailed proof in the paper).

Proposition 6. ∀ n = 1,..,N, given the distribution of 𝑆(𝑛) and the expression of

𝑌 (𝑧), the mean and variance of waiting time at station 𝑛 (denoted as 𝑊 (𝑛)) is given

66



as:

E[𝑊 (𝑛)] =
�̄�

(𝑛)
𝑡

𝜆(𝑛)
(2.32)

Var[𝑊 (𝑛)] =
¯̄𝑄
(𝑛)
𝑡 − �̄�

(𝑛)
𝑡

(𝜆(𝑛))2
(2.33)

where 𝑄
(𝑛)
𝑡 is the queue length at an arbitrary time point (as opposed to 𝑄(𝑛) which is

the queue length at the time of vehicle arrival). �̄�
(𝑛)
𝑡 and ¯̄𝑄

(𝑛)
𝑡 are defined as

�̄�
(𝑛)
𝑡 = E[𝑄(𝑛)]− 𝑌 (𝑛) +

1

2

(︁
¯̄𝑌 (𝑛)/𝑌 (𝑛) + 𝑌 (𝑛) − 1

)︁
(2.34)

¯̄𝑄
(𝑛)
𝑡 = Var[𝑄(𝑛)]− ¯̄𝑌 (𝑛) +

1

12(𝑌 (𝑛))2

[︁
4𝑌 (𝑛) ¯̄̄𝑌 (𝑛) + 6(𝑌 (𝑛))2 ¯̄𝑌 (𝑛) − (𝑌 (𝑛))2 + (𝑌 (𝑛))4 − 3( ¯̄𝑌 (𝑛))2

]︁
(2.35)

Eq. 2.32 is the application of Little’s law. Proposition 6 is directly obtained from

Powell [41].

Remark 1. The formulation of E[𝑄(𝑛)], Var[𝑄(𝑛)], E[𝑊 (𝑛)], and Var[𝑊 (𝑛)] in this

study are equivalent to Powell [41] because in his paper the 𝑀/𝐺[𝑆]/1 bulk queue

model was considered, where 𝐺[𝑆] represents a general (i.e., arbitrary) bulk-service

distribution, which includes the service distribution incorporating random service

suspension considered in this study. However, this does not lower the contribution of

this study because to implement these equations, the formulation of 𝑌 (𝑧) needs to

be specified. And in the next section 2.4.3 we show how random service suspension

introduces a new distribution for 𝑌 (𝑛), which has not been considered in the literature.

Headway distribution

According to Propositions 4 to 6, to calculate 𝑞
(𝑛)
0:𝐶−1 and the mean and variance of

queue length and waiting time, it is essential to specify 𝑌 (𝑧) (i.e., the PGF of the

number of passengers arriving within a headway). According to Eq. 2.4, taking

𝑙 → ∞ gives that 𝑌 (𝑛)|𝐻(𝑛) is a Poisson random variable with parameter 𝜆(𝑛)𝐻(𝑛)

. Therefore, we first consider the distribution of 𝐻(𝑛) under the random service
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suspension.

According to the discussion in Section 2.3.3, the actual headway for vehicle 𝑙 at

station 𝑛 is 𝐻(𝑛,𝑙) = �̄� + 2·E[𝐼(𝑁,𝑙)]

𝐹
+ 𝐼(𝑛,𝑙) − 𝐼(𝑛,𝑙−1), where 𝐼(𝑛,𝑙) is the total duration

of incidents for vehicle 𝑙 during its travel from the transportation hub to station 𝑛.

Since �̄� and E[𝐼(𝑛,𝑙)] are constants, obtaining the headway distribution is equivalent

to quantifying the distribution of 𝐼(𝑛,𝑙) − 𝐼(𝑛,𝑙−1).

Notice that 𝐼(𝑛,𝑙) and 𝐼(𝑛,𝑙−1) are i.i.d for all 𝑙 by our assumption. It is useful to

first consider the distribution of 𝐼(𝑛,𝑙).

Proposition 7. The total incident duration for vehicle 𝑙 during its travel from the

transportation hub to station 𝑛 (i.e., 𝐼(𝑛,𝑙)) follows a compound Poisson-Exponential

distribution with Poisson rate 𝛾𝑇 (𝑛) and exponential rate 𝜃. Mathematically,

𝐼(𝑛,𝑙) =
𝐾∑︁
𝑖=1

𝑋𝑖 where 𝑋𝑖 ∼ Exp(𝜃) ∀𝑖 = 1, ..., 𝐾, and 𝐾 ∼ Poi(𝛾𝑇 (𝑛)) (2.36)

Proof. When there are no incidents in the system, vehicle 𝑙 reaches station 𝑛 after 𝑇 (𝑛)

time units. Since the system can only switch to the incident state from the normal

state, the number of incident occurrences, 𝐾, follows a Poisson distribution with rate

𝛾𝑇 (𝑛). The vehicle stopping time for the 𝑖-th incident, 𝑋𝑖, follows an exponential

distribution with rate 𝜃 (i.e., mean 1
𝜃
). Therefore, the duration of all incidents is

𝐼(𝑛,𝑙) =
∑︀𝐾

𝑖=1𝑋𝑖, where 𝑋𝑖 ∼ Exp(𝜃) ∀𝑖 = 1, ..., 𝐾, and 𝐾 ∼ Poi(𝛾𝑇 (𝑛))

The moment generating function (MGF) of a compound Poisson-Exponential vari-

able can be written as [99]

𝑀𝐼(𝑛,𝑙)(𝑡) = E[𝑒𝑡𝐼(𝑛,𝑙)

] = 𝑒𝛾𝑇
(𝑛)( 𝜃

𝜃−𝑡
−1) ∀ 𝑡 < 𝜃 (2.37)

Similarly, the MGF of −𝐼(𝑛,𝑙−1) is

𝑀−𝐼(𝑛,𝑙−1)(𝑡) = E[𝑒−𝑡𝐼(𝑛,𝑙−1)

] = 𝑒𝛾𝑇
(𝑛)( 𝜃

𝜃+𝑡
−1) ∀ 𝑡 > −𝜃 (2.38)

From the MGF of 𝐼(𝑛,𝑙), we obtain E[𝐼(𝑁,𝑙)] = 𝛾𝑇 (𝑁)

𝜃
. Then the headway equation (Eq.
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2.12) becomes

𝐻(𝑛,𝑙) = �̄� +
2𝛾𝑇 (𝑁)

𝜃𝐹
+ 𝐼(𝑛,𝑙) − 𝐼(𝑛,𝑙−1) (2.39)

The following proposition provides the headway distribution:

Proposition 8. Under the setting of this study, ∀ n = 1,..,N, the MGF of 𝐻(𝑛) can

be expressed as

𝑀𝐻(𝑛)(𝑡) = 𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹
)𝑒

𝛾𝑇 (𝑛)( 2𝑡2

𝜃2−𝑡2
) (2.40)

Proof.

𝑀𝐻(𝑛,𝑙)(𝑡) = E[𝑒𝑡𝐻(𝑛,𝑙)

] = E[𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹 𝑒𝑡𝐼
(𝑛,𝑙)

𝑒−𝑡𝐼(𝑛,𝑙−1)

]

= 𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹 E[𝑒𝑡𝐼(𝑛,𝑙)

]E[𝑒−𝑡𝐼(𝑛,𝑙−1)

]

= 𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹 𝑒𝛾𝑇
(𝑛)( 𝜃

𝜃−𝑡
−1)𝑒𝛾𝑇

(𝑛)( 𝜃
𝜃+𝑡

−1)

= 𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹
)𝑒

𝛾𝑇 (𝑛)( 2𝑡2

𝜃2−𝑡2
) (2.41)

where Eq. 2.41 is because of the independence between 𝐼(𝑛,𝑙) and 𝐼(𝑛,𝑙−1). As this equa-

tion holds for all vehicles 𝑙, the MGF of 𝐻(𝑛) (i.e., 𝑙 → ∞) is 𝑀𝐻(𝑛)(𝑡) = 𝑀𝐻(𝑛,𝑙)(𝑡).

From the MGF of 𝐻(𝑛), we can obtain the corresponding mean and variance of

headway as:

E[𝐻(𝑛)] = �̄� +
2𝛾𝑇 (𝑁)

𝜃𝐹
(2.42)

Var[𝐻(𝑛)] =
4𝑇 (𝑛)𝛾

𝜃2
(2.43)

Remark 2. The results show that random suspensions can increase the mean and

variance of headway. The impact on mean headway is through the increase in cycle

time at the route planning stage. The headway variance will increase with a higher

incident rate (𝛾) and higher average incident duration (1
𝜃
). Meanwhile, our model

also captures the headway variance propagation along stations as observed in many

69



previous studies [100, 75]: Var[𝐻(𝑛)] increase with the station index 𝑛 (due to the

increase in 𝑇 (𝑛)).

However, the support of the derived headway distribution is R, meaning that 𝐻(𝑛)

can be negative due to the overtaking of vehicles. The negative value of 𝐻(𝑛) will

cause problems in the definition of 𝑌 (𝑛) (i.e., the number of arrival passengers within

a headway). To address this problem, we assume that drivers are not allowed to

overtake the preceding vehicles. This is true for the subway systems. Many transit

agencies also use this policy for bus operations. Given this assumption, the support

of 𝐻(𝑛) becomes [0,+∞]. Whenever 𝐻(𝑛) < 0, the actual headway will be 0 since

the successor vehicle will not pass through the predecessor and they will arrive at

the station simultaneously (i.e., bus bunching). Hence, the new truncated headway,

denoted as �̂�(𝑛), has a zero-inflation mixture distribution:

�̂�(𝑛) =

⎧⎨⎩ 0 if 𝐻(𝑛) ≤ 0

𝐻(𝑛) otherwise
(2.44)

The zero-inflation truncated headway distribution is also observed in the previous

empirical study assuming no overtaking [77].

However, to the best of the author’s knowledge, there is no closed-form MGF for

�̂�(𝑛) because the difference between two compound Poisson-exponential random vari-

ables has no closed-form probability density function. Therefore, to have a tractable

headway distribution, we have to approximate 𝐻(𝑛) with other distributions for which

the corresponding zero-inflation truncated distribution has analytical MGF.

𝐼(𝑛,𝑙) can be seen as the summation of a large number of i.i.d random variables

when the incident frequency is high (i.e., 𝐾 is large, which is true for this study

because we are considering high-frequency short random disturbance). Hence, from

the Central Limit Theorem (CLT), we may approximate 𝐼(𝑛,𝑙) as a normal distribution,

which leads to 𝐻(𝑛) being a normal distribution as well. Approximating the headway

disturbance as a normal random variable with the CLT was also used in Daganzo

[101]. In fact, we observe the third central moment of 𝐻(𝑛), which is a measure of
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skewness, is Skewness[𝐻(𝑛)] = 0, implying that 𝐻(𝑛) is symmetric. Moreover, the

MGF of the normal distribution of 𝐻(𝑛)
Normal with the same mean and variance is

𝑀
𝐻

(𝑛)
Normal

(𝑡) = 𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹
)𝑒𝛾𝑇

(𝑛)( 2𝑡
2

𝜃2
), (2.45)

which is very similar to Eq. 2.40 (the MGF of 𝐻(𝑛)). Therefore, it is reasonable to

approximate the distribution of 𝐻(𝑛) as a normal distribution with the same mean

and variance. Note that the first three moments of 𝐻(𝑛) and 𝐻
(𝑛)
Normal are the same.

And the corresponding forth moments (i.e., Kurtosis) are:

Kurtosis[𝐻(𝑛)] =
48(𝑇 (𝑛)𝛾)2 + 48𝑇 (𝑛)𝛾

𝜃4
(2.46)

Kurtosis[𝐻(𝑛)
Normal] =

48(𝑇 (𝑛)𝛾)2

𝜃4
(2.47)

which means that the distribution of 𝐻(𝑛) may have heavier tails and peakedness

compared to 𝐻
(𝑛)
Normal.

Figure 2-6 empirically compares the distribution of 𝐻(𝑛) and 𝐻
(𝑛)
Normal with various

values of 𝑇 (𝑛), 𝜃, and 𝛾. The histogram of 𝐻(𝑛) is generated by sampling variables from

the associated exponential and Poisson distributions to get the compound distribu-

tion. Results show that the normal distribution approximates the original distribution

well. As expected, 𝐻(𝑛) shows more peakedness than 𝐻
(𝑛)
Normal.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2-6: Empirical validation for approximating the headway distribution as nor-
mal
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Next, let us consider a zero-inflation truncated distribution of 𝐻(𝑛)
Normal with support

[0,+∞] and a probability mass concentrated at zero. Denote the new random variable

as �̂�
(𝑛)
Normal.

Proposition 9. Under the setting of this study, ∀ n = 1,..,N, the MGF of �̂�(𝑛)
Normal

can be expressed as

𝑀
�̂�

(𝑛)
Normal

(𝑡) =Φ

(︃
−(�̄�𝜃 + 2𝛾𝑇 (𝑁)

𝐹
)

2
√︀

𝑇 (𝑛)𝛾

)︃
+

𝑒𝑡(�̄�+ 2𝛾𝑇 (𝑁)

𝜃𝐹
)𝑒𝛾𝑇

(𝑛)( 2𝑡
2

𝜃2
)

[︃
1− Φ

(︃
−(�̄�𝜃 + 2𝛾𝑇 (𝑁)

𝐹
)

2
√︀
𝑇 (𝑛)𝛾

− 2𝑡
√︀

𝑇 (𝑛)𝛾

𝜃

)︃]︃
(2.48)

where Φ(·) is the cumulative density function (CDF) of a standard normal distribu-

tion.

Proof. Let 𝜇 and 𝜎2 be the mean and variance of 𝐻(𝑛)
Normal, respectively, where 𝜇 =

�̄� + 2𝛾𝑇 (𝑁)

𝜃𝐹
and 𝜎 =

2
√

𝑇 (𝑛)𝛾

𝜃
. The MGF of �̂�(𝑛)

Normal can be derived as

𝑀
�̂�

(𝑛)
Normal

(𝑡) = E[𝑒𝑡�̂�
(𝑛)
Normal ] = P[𝐻(𝑛)

Normal ≤ 0] · 𝑒0 +
∫︁ +∞

0

𝑒𝑡𝑧 · 𝜑
𝐻

(𝑛)
Normal

(𝑧) · 𝑑𝑧

= Φ(
−𝜇

𝜎
) +

1

𝜎
√
2𝜋

∫︁ +∞

0

𝑒
𝑡𝑧+

(𝑧−𝜇)2

−2𝜎2 𝑑𝑧

= Φ(
−𝜇

𝜎
) + 𝑒𝜇𝑡+

𝜎2𝑡2

2

[︂
1− Φ(

−𝜇

𝜎
− 𝜎𝑡)

]︂
(2.49)

where Eq. 2.49 follows the same derivation of a truncated normal distribution [102].

Subsisting the value of 𝜇 and 𝜎 completes the proof.

Based on the MGF of �̂�(𝑛)
Normal, notice that

[︀
1− Φ

(︀−𝜇
𝜎

)︀]︀
= Φ

(︀
𝜇
𝜎

)︀
, we can get the

corresponding mean and variance as follows.

E[�̂�(𝑛)
Normal] = 𝜇 · Φ

(︁𝜇
𝜎

)︁
+ 𝜎 · 𝜑

(︂
−𝜇

𝜎

)︂
(2.50)

Var[�̂�(𝑛)
Normal] = 𝜇𝜎𝜑

(︂
−𝜇

𝜎

)︂
+ Φ

(︁𝜇
𝜎

)︁ (︀
𝜇2 + 𝜎2

)︀
−
(︂
𝜇Φ
(︁𝜇
𝜎

)︁
+ 𝜑

(︂
−𝜇

𝜎

)︂
𝜎

)︂2

(2.51)

where 𝜑(·) is the probability density function (PDF) of a standard normal distribution.
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It is not clear how incidents will affect the mean headway from Eq. 2.50 directly.

However, the following proposition shows that the mean headway increases as incident

frequency (𝛾) and average incident duration (1
𝜃
) increase.

Proposition 10. The mean of the zero-inflation truncated headway (i.e, either E[�̂�(𝑛)]

or E[�̂�(𝑛)
Normal]) increases with the increase in incident intensity (i.e., increase in 𝛾 or

1
𝜃
, or both).

Proof. The strict mathematical proof can be done by taking derivative of E[�̂�(𝑛)
Normal]

in terms of 𝛾 or 1
𝜃

and show that it is always positive. However, in this study, we

adopt a more intuitive graphical proof, which is easier for understanding.

As shown in Figure 2-7, consider an arbitrary truncated headway distribution

(shown in the red line, denoted the headway as �̂�Red). When the incident intensity

increases, according to Eqs. 2.42 and 2.43, both 𝜇 and 𝜎 increase. Let us first

consider the increase in 𝜎 and assume 𝜇 does not change (which correspond to the

scenario where 𝐹 → ∞). Then the distribution will become the blue curve (denote the

corresponding headway as �̂�Blue). Note that �̂�Red and �̂�Blue have the same peak value,

but since �̂�Blue has longer positive tail, we have E[�̂�Blue] > E[�̂�Red]. Next, let us also

consider the incident’s impact on the increase in 𝜇 as well. The distribution is shown

by the green curve (denoted the headway as �̂�Green). Since �̂�Blue and �̂�Green has the

same 𝜎, but �̂�Green has higher 𝜇 (shifted right), we have E[�̂�Green] > E[�̂�Blue]. Hence,

E[�̂�Green] > E[�̂�Red], showing that the increase in incident intensity will increase 𝜇

and 𝜎, thus increase the mean of the truncated headway.

Proposition 10 is useful for the analysis of system stability with respect to inci-

dents, which is shown in Section 2.4.4.

Distribution of 𝑌 (𝑛)

The distribution of 𝑌 (𝑛) is derived by assuming the headway is �̂�
(𝑛)
Normal (instead of

𝐻(𝑛), which may be negative). To derive the PGF of 𝑌 (𝑛), the following lemma is

introduced.

Lemma 1. For two arbitrary random variable 𝑈 and 𝑉 , assume that
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Figure 2-7: Illustration for the impact of incidents on expected headway. As the
probability mass at zero does not contribute to the expectation calculation, it is not
shown in the figure.

• there is a 𝛿 > 0 such that for 𝑡 in (−𝛿, 𝛿), the MGF of 𝑈 |𝑉 is 𝑀𝑈 |𝑉 (𝑡) =

𝐶1(𝑡)𝑒
𝐶2(𝑡)𝑉 , where 𝐶1(𝑡) and 𝐶2(𝑡) are finite functions of 𝑡 that do not depend

on 𝑉 ,

• and the MGF of 𝑉 , 𝑀𝑉 (·), exists and 𝑀𝑉 [𝐶2(𝑡)] is finite for 𝑡 in (−𝛿, 𝛿).

Then the MGF of 𝑈 is given by

𝑀𝑈(𝑡) = 𝐶1(𝑡)𝑀𝑉 [𝐶2(𝑡)], −𝛿 < 𝑡 < 𝛿. (2.52)

Proof. The proof of Lemma 1 can be found in Villa and Escobar [103] Result 1.

Proposition 11. Under the setting of this study, ∀ n = 1,..,N, the PGF of 𝑌 (𝑛),

𝑌 (𝑧), can be expressed as

𝑌 (𝑧) = Φ

(︂
−𝜇

𝜎

)︂
+ 𝑒𝜇𝜆

(𝑛)(𝑧−1)+
𝜎2(𝜆(𝑛)𝑧−𝜆(𝑛))2

2

[︂
1− Φ

(︂
−𝜇

𝜎
− 𝜎𝜆(𝑛)(𝑧 − 1)

)︂]︂
(2.53)

where 𝜇 = �̄� + 2𝛾𝑇 (𝑁)

𝜃𝐹
and 𝜎 =

2
√

𝑇 (𝑛)𝛾

𝜃
are the mean and standard deviation of

𝐻
(𝑛)
Normal, respectively.

Proof. Recall that 𝑌 (𝑛)|�̂�(𝑛)
Normal is a Poisson random variable with parameter 𝜆(𝑛)�̂�

(𝑛)
Normal.

So, the MGF of 𝑌 (𝑛)|�̂�(𝑛)
Normal is 𝑀

𝑌 (𝑛)|�̂�(𝑛)
Normal

(𝑡) = exp[𝜆(𝑛)�̂�
(𝑛)
Normal(𝑒

𝑡 − 1)]. Based on
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Lemma 1, setting 𝐶1(𝑡) = 1 and 𝐶2(𝑡) = 𝜆(𝑛)(𝑒𝑡 − 1), we conclude that the MGF of

𝑌 (𝑛) is

𝑀𝑌 (𝑛)(𝑡) = Φ

(︂
−𝜇

𝜎

)︂
+ 𝑒𝜇𝜆

(𝑛)(𝑒𝑡−1)+
𝜎2(𝜆(𝑛)𝑒𝑡−𝜆(𝑛))2

2

[︂
1− Φ

(︂
−𝜇

𝜎
− 𝜎𝜆(𝑛)(𝑒𝑡 − 1)

)︂]︂
(2.54)

Substituting 𝑡 = log 𝑧 in Eq. 2.54 completes the proof.

From Eq. 2.54, we can obtain 𝑌 (𝑛), ¯̄𝑌 (𝑛), and ¯̄̄
𝑌 (𝑛) by taking corresponding

derivatives. The expression of 𝑌 (𝑛) is shown below. The expressions for ¯̄𝑌 (𝑛) and
¯̄̄
𝑌 (𝑛) are complicated and thus omitted.

𝑌 (𝑛) =

(︂
𝜇 · Φ

(︁𝜇
𝜎

)︁
+ 𝜎 · 𝜑

(︂
−𝜇

𝜎

)︂)︂
· 𝜆(𝑛) (2.55)

With the expression of 𝑌 (𝑧), the 𝑧*0 , ..., 𝑧
*
𝐶−1 can be obtained by solving the non-

linear equation Den(𝑧) = 0 (see Section 2.4.3 for details). Then 𝑞
(𝑛)
0:𝐶−1 and other

resilience indicators at station 𝑛 can be obtained accordingly.

Solving for the roots

It is well known in the queuing literature that solving for the roots of Den(𝑧) is

practically difficult because typical optimization algorithms usually only find only

one root, while we need to find all 𝐶 roots within the unit circle. This is especially

changeling for 𝑌 (𝑧) with complex expressions because the objective function can be

highly nonlinear (such as 𝑌 (𝑧) in this study). We propose an interpolation search

algorithm to efficiently find all roots of Den(𝑧) within the unit circle.

Notice that Den(𝑧) = 0 is equivalent to find 𝑧*0 , ..., 𝑧
*
𝐶−1, such that

1

𝑌 (𝑧*𝑘)
− 𝑆(1/𝑧*𝑘) = 0 ⇔ 𝐽(𝑧*𝑘) = 1 ∀ 𝑘 = 0, ..., 𝐶 − 1 (2.56)

where 𝐽(𝑧) := 𝑌 (𝑧)𝑆(1/𝑧). Taking the logarithm of both sides of Eq. 2.56 and
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matching the real and imaginary parts gives:

⎧⎨⎩Re[log(𝐽(𝑧))] = 0

Im[log(𝐽(𝑧))] = 0
(2.57)

where Re[·] and Im[·] represent the real and imaginary part of a complex number. Eq.

2.57 can be solved efficiently with many optimization algorithms (such as trust-region

and Levenberg-Marquardt algorithms). However, as there are 𝐶 optimal solutions for

this problem with |𝑧*| ≤ 1, the challenge is how to select different initial values so as

to find all solutions.

It can be empirically observed that the distribution of the 𝐶 solutions has an

oval-like shape. Figure 2-8 shows some examples of the solution distribution with

different values of 𝜌(𝑛) (where 𝜌(𝑛) = 𝑌 (𝑛)/𝑆(𝑛) is the utilization ratio of a bulk service

queuing system) and 𝑠(𝑛). It is found that the closer 𝜌(𝑛) is to 1 (resp. 0), the closer

the shape of the root distribution is to an ellipse (resp. circle). The value of 𝑠(𝑛) (i.e.,

available capacity distribution) can also slightly affect the root distribution.

(a) 𝜌(𝑛) = 0, 𝐶 = 40 (b) 𝜌(𝑛) = 0.15, 𝐶 = 40 (c) 𝜌(𝑛) = 0.64, 𝐶 = 40 (d) 𝜌(𝑛) = 0.74, 𝐶 = 40

Figure 2-8: Examples of root distribution

We first express the complex number in polar coordinate system with 𝑧 = 𝑟 exp[𝜙𝑖],

where 𝑖 =
√
−1, 𝑟 is the length from 𝑧 to the origin, and 𝜙 is the angle. Eq. 2.57

now has 𝐶 optimal solutions (𝑟*𝑘, 𝜙
*
𝑘) for 𝑘 = 0, 1, ..., 𝐶 − 1, where 0 ≤ 𝑟*𝑘 ≤ 1 and

0 ≤ 𝜙*
𝑘 < 2𝜋. Note that 𝑧*0 = 1 corresponds to 𝑟*0 = 1 and 𝜙*

0 = 0. Another property
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is that the roots must appear as conjugate pairs. Hence, if (𝑟*, 𝜙*) is a root and

0 < 𝜙* < 𝜋, then (𝑟*, 2𝜋 − 𝜙*) is also a root.

The proposed search algorithm has two steps. The first step is referred to as

“clockwise searching”, which is adapted from the numerical method in Powell [41].

The empirical observation (Figure 2-8) shows a rough relationship that 𝑟*𝑘+1 − 𝑟*𝑘 ≈

𝑟*𝑘 − 𝑟*𝑘−1, especially for small 𝜌(𝑛). This is equivalent to

𝑟*𝑘+1 ≈ 2𝑟*𝑘 − 𝑟*𝑘−1 (2.58)

Eq. 2.58 provides a way to determine the initial value for solving for the 𝑘 + 1-th

root when the 𝑘-th and 𝑘 − 1-th roots are available. As we already know 𝑟*0 = 1 and

𝜙*
0 = 0, we first set the initial value for solving for the second root as 𝑟Ini

1 = 1−0.5𝜌(𝑛)

and 𝜙Ini
1 = 3𝜋/𝐶. This is motivated by the shape of the root distribution with respect

to 𝜌(𝑛). Then 𝑟Ini
1 and 𝜙Ini

1 are used as the initial value to solve for 𝑟*1 and 𝜙*
1 based

on Eq 2.57. For 𝑘 ≥ 2, the initial values for solving the for 𝑘-th root are set to

𝑟Ini
𝑘 = 𝑟*𝑘−1 + (𝑟*𝑘−1 − 𝑟*𝑘−2), 𝜙Ini

𝑘 = 𝜙*
𝑘−1 + (𝜙*

𝑘−1 − 𝜙*
𝑘−2) according to Eq. 2.58.

However, only performing step 1 (i.e., Powell [41]’s method) may not find all 𝐶

distinct roots. Figure 2-9 shows some examples of the comparison between roots

found in step 1 and all roots. We observe that when 𝜌(𝑛) is relatively large (i.e., the

system is relatively congested), the clockwise search does not perform well because

the approximate relationship in Eq. 2.58 does not hold. Even when 𝜌(𝑛) is relatively

small, it is also possible that some roots do not perfectly fit the oval-like shape (such

as Figure 2-9a), resulting in the failure of step 1 to find all roots.

Therefore, we propose a second step called “interpolation search”. Let the set of

found roots from step 1 be 𝒵(0) = {(𝑟(0)0 , 𝜙
(0)
0 ), (𝑟

(0)
1 , 𝜙

(0)
1 ), ..., (𝑟

(0)
𝑀0

, 𝜙
(0)
𝑀0

)}, where 𝑀0 =

|𝒵(0)| is the number of roots from step 1. Without loss of generality, assume that the

elements in 𝒵(0) are clockwise ranked (i.e., 𝜙(0)
0 < 𝜙

(0)
1 < ... < 𝜙

(0)
𝑀0

). The interpolation

search is described in Algorithm 1. The main idea is to perform interpolation between

any two adjacent roots that are already found. The interpolated points are set as

initial values and fed into Eq. 2.57 to solve for new distinct roots. Then we update the
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(a) 𝜌(𝑛) = 0.17, 𝐶 = 40 (b) 𝜌(𝑛) = 0.48, 𝐶 = 36 (c) 𝜌(𝑛) = 0.64, 𝐶 = 40 (d) 𝜌(𝑛) = 0.85, 𝐶 = 40

Figure 2-9: Comparison between roots found with clockwise search and all roots

set of roots with the new distinct roots or perform a finer (i.e., larger 𝐿) interpolation

if no distinct roots are found. This process is repeated until there are 𝐶 distinct roots

found. In Algorithm 1, 𝐿 is a parameter controlling how many points to interpolate

between two known roots, and 𝜖 is a predetermined probability threshold to add

randomness in the search process.

From the results of numerical testing, our algorithm allows us to find desired roots

for all testing scenarios (Section 2.5.1). The methods in Powell [41] (i.e., only step 1)

and Wilson [104] (which is used in Islam et al. [76]) fail to.

2.4.4 Stability condition

For all the derivations above, we assume that the steady-state distributions of all

variables exist. This triggers the discussion about the stability condition, which is

also an important indicator of the system’s resilience. At the station level, the stability

condition is described in Proposition 12.

Proposition 12. Under the setting of this study, the bulk-service queuing system at

station 𝑛 is stable if and only if

𝜌(𝑛) =
𝑌 (𝑛)

𝑆(𝑛)
=

(︀
𝜇 · Φ

(︀
𝜇
𝜎

)︀
+ 𝜎 · 𝜑

(︀−𝜇
𝜎

)︀)︀
· 𝜆(𝑛)∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑢

=
𝜆(𝑛) · E[�̂�(𝑛)

Normal]∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢 𝑢

< 1 (2.59)
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Algorithm 1 Interpolation searching

1: Initialize 𝒵(0), 𝑀0, 𝜖. Initialize 𝐿 = 2, 𝑘 = 0.
2: while 𝑀𝑘 < 𝐶 do
3: Initialize 𝒵 Ini as an empty set.
4: for 𝑖 = 1 : 𝑀𝑘 do
5: for 𝑑 = 1 : 𝐿− 1 do
6: 𝑟Ini = 𝑟

(𝑘)
𝑖 + 𝑑 · 𝑟

(𝑘)
𝑖+1−𝑟

(𝑘)
𝑖

𝐿
; 𝜙Ini = 𝜙

(𝑘)
𝑖 + 𝑑 · 𝜙

(𝑘)
𝑖+1−𝜙

(𝑘)
𝑖

𝐿

7: Draw a random value 𝑤 uniformly from [0, 1)
8: if 𝑤 < 𝜖 then
9: Draw a random value 𝛿1 uniformly from [− |𝑟(𝑘)𝑖+1−𝑟

(𝑘)
𝑖 |

2𝐿
,
|𝑟(𝑘)𝑖+1−𝑟

(𝑘)
𝑖 |

2𝐿
]

10: 𝑟Ini = 𝑟Ini + 𝛿1

11: Draw a random value 𝛿2 uniformly from [− |𝜙(𝑘)
𝑖+1−𝜙

(𝑘)
𝑖 |

2𝐿
,
|𝜙(𝑘)

𝑖+1−𝜙
(𝑘)
𝑖 |

2𝐿
]

12: 𝜙Ini = 𝜙Ini + 𝛿2

13: Add (𝑟Ini, 𝜙Ini) into 𝒵 Ini.
14: Initialize 𝒵temp as an empty set.
15: for all 𝑧Ini in 𝒵 Ini do
16: Solve Eq. 2.57 using 𝑧Ini as the initial value, obtaining 𝑧*temp. Let its

conjugate be 𝑧*temp.
17: If 𝑧*temp (𝑧*temp) not in 𝒵(𝑘), add it to 𝒵temp, otherwise do nothing.

18: 𝒵(𝑘+1) = 𝒵(𝑘) ∪ 𝒵temp and rank all elements in 𝒵(𝑘+1) clockwise
19: Denote 𝒵(𝑘+1) as {(𝑟(𝑘+1)

0 , 𝜙
(𝑘+1)
0 ), ..., (𝑟

(𝑘+1)
𝑀𝑘+1

, 𝜙
(𝑘+1)
𝑀𝑘+1

)}
20: 𝑘 = 𝑘 + 1
21: if 𝑀𝑘+1 = 𝑀𝑘 then
22: 𝐿 = 𝐿+ 1

where 𝜌(𝑛) is the utilization ratio for station 𝑛.

Proof. The stability condition is equivalent to P(𝑄(𝑛) = 0) = 𝑞
(𝑛)
0 > 0. In Eq. 2.25,

we notice that
∏︀𝐶−1

𝑖=1
𝑧*𝑖

𝑧*𝑖 −1
is always greater than 0 (see 2.7.2 for details), and 𝑠

(𝑛)
𝐶 > 0

is a known condition. Therefore, 𝑞(𝑛)0 > 0 if and only if 𝑌 (𝑛) < 𝑆(𝑛) (i.e., 𝜌(𝑛) < 1),

which completes the proof.

Proposition 12 is intuitive as it indicates that station 𝑛 is stable if the average

number of passengers arrived within a headway is smaller than the average available

capacity for each arrival vehicle (after alighting). From Proposition 7, we know that

a higher rate of incidents (i.e., larger 𝛾) and higher duration of incidents (i.e., higher
1
𝜃
) increase E[�̂�(𝑛)

Normal], which makes the system more likely to be unstable. There are

some remarks for Proposition 12.
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Remark 3. As 𝜌(𝑛) depends on 𝑠(𝑛) and 𝑠(𝑛) depends on the roots (i.e., 𝑧*0 , ..., 𝑧*𝐶−1)

at station 𝑛, there is no direct way to judge the stability at station 𝑛 without iterating

the previous 𝑛 − 1 stations. But for the first station (𝑛 = 1), we have 𝑠
(1)
𝐶 = 1 and

𝑠
(1)
𝑢 = 0 for all 𝑢 = 0, ..., 𝐶 − 1. Then Eq. 2.59 reduces to 𝜌(1) =

𝜆(𝑛)·E[�̂�(𝑛)
Normal]

𝐶
, which

can be used to assess the stability directly.

Remark 4. Proposition 12 only discusses the stability at the station level. At the

route level, a route is considered stable if “all stations in the route are stable”. Math-

ematically, a route is stable if and only if 𝜌(𝑛) < 1,∀ 𝑛 = 1, 2, ..., 𝑁 .

Remark 5. It is worth discussing the relationship of stability of stations 𝑛 and 𝑛−1.

If station 𝑛−1 is stable, then 𝑠(𝑛) can be calculated as described in Section 2.4.1, and

the stability of station 𝑛 can be evaluated accordingly. However, if station 𝑛−1 is not

stable, station 𝑛 may be stable because there may be passengers alighting at station

𝑛. For this situation, we have 𝑣
(𝑛−1)
𝐶 = 1 and 𝑣

(𝑛−1)
𝑘 = 0 for all 𝑘 = 0, 1, ..., 𝐶 − 1.

Then 𝑠(𝑛) is determined by the alighting rate at station 𝑛. It is easy to verify that in

this situation 𝑆(𝑛) = 𝛼(𝑛)𝐶. And the stability condition is 𝜌(𝑛) =
𝜆(𝑛)·E[�̂�(𝑛)

Normal]

𝛼(𝑛)𝐶
< 1.

2.4.5 Summary of calculation procedure

So far, we have derived the calculation process for all variables of interest. Algorithm

2 summarizes the calculation procedure, which iterates through the 𝑁 stations of the

route. This is more efficient and provides more analytical insights than a simulation

model.

2.5 Numerical example

2.5.1 Experimental design

To test the proposed framework, we use an example bus route adapted from Islam

et al. [76] and Hickman [75]. There are 10 stations and the attributes for each station

are shown in Table 2.1. The layout of the bus route is shown in Figure 2-10, where
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Algorithm 2 Resilience indicators calculation procedure

1: Initialize 𝑣
(0)
0 = 1 and 𝑣

(0)
𝑘 = 0 ∀𝑘 = 1, ...𝐶.

2: for 𝑛 = 1 : 𝑁 do
3: 𝑔(𝑛) = 𝑣(𝑛−1)𝐴(𝑛) ◁ Eq. 2.14
4: 𝑠

(𝑛)
𝑘 = 1− 𝑔

(𝑛)
𝐶−𝑘 ∀𝑘 = 0, 1, ..., 𝐶 ◁ Eq. 2.13

5: Calculate 𝑆(𝑛), ¯̄𝑆(𝑛), and ¯̄̄
𝑆(𝑛) based on 𝑠(𝑛).

6: Calculate 𝑌 (𝑛), ¯̄𝑌 (𝑛), and ¯̄̄
𝑌 (𝑛) ◁ Section 2.4.3

7: if 𝑌 (𝑛) < 𝑆(𝑛) then ◁ Station 𝑛 is stable
8: Solve the roots 𝑧*0 , ..., 𝑧

*
𝐶−1 for the denominator of 𝑄(𝑧) in Eq. 2.23 ◁

Section 2.4.3
9: Calculate 𝑞

(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 based on 𝑧*0 , ..., 𝑧

*
𝐶−1 ◁ Section 2.4.3

10: Calculate E[𝑄(𝑛)],Var[𝑄(𝑛)],E[𝑊 (𝑛)], and Var[𝑊 (𝑛)] ◁ Eq. 2.30 - 2.33
11: 𝑣(𝑛) = 𝑔(𝑛)𝐵(𝑛) ◁ Eq. 2.18. 𝐵(𝑛) is a function of 𝑞(𝑛)0:𝐶−1

12: else ◁ Station 𝑛 is not stable
13: 𝑞

(𝑛)
𝑘 = 0 ∀𝑘 = 0, 1, ..., 𝐶 − 1

14: Set E[𝑄(𝑛)],Var[𝑄(𝑛)],E[𝑊 (𝑛)], and Var[𝑊 (𝑛)] to infinity
15: 𝑣

(𝑛)
𝐶 = 1 and 𝑣

(𝑛)
𝑘 = 0 ∀𝑘 = 0, 1, ..., 𝐶 − 1

we assume the no-incident travel time between two consecutive stations is 5 minutes,

the total cycle time without incident is �̄� = 100 min, and travel time from the

transportation hub to the last station is 𝑇 (𝑁) = 50 minutes.

Table 2.1: Example bus system parameters

Station ID 𝜆(𝑛) (passengers/min) 𝛼(𝑛) Station ID 𝜆(𝑛) (passengers/min) 𝛼(𝑛)

1 0.75 0 6 1 0.8
2 1.5 0 7 0.75 0.5
3 0.75 0.1 8 0.5 0.1
4 3 0.25 9 0.2 0.75
5 1.5 0.25 10 0 1

To test the sensitivity of resilience indicators to different parameters, we consider

different values of 𝐶, 𝜃, 𝛾, �̄�, and demand (Table 2.2). The demand is adjusted by a

scaling factor that is applied to the arrival rates 𝜆(𝑛) in Table 2.1. The fleet size 𝐹 is

determined as �̄�
�̄�

. When the sensitivity testing is conducted for one parameter (e.g.,

𝐶), other parameters (e.g., 𝜃, 𝛾, �̄�, and the demand factor) are set to their reference

values for comparison.
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Figure 2-10: Case study route layout

Table 2.2: Scenario design

Parameters Value space Reference value

𝐶 {30, 34, 38} 34

𝛾 (/min) {0, 1/10, 1/5, 1/3} 1/5

𝜃 (/min) {2, 1 ,1/2} 1

�̄� (min) {2, 4, 7} 6

Demand factor {0.2, 0.4, 0.6, 0.8, 1} 0.8

2.5.2 Resilience indicators

The mean and standard deviation of queue length for each station under different

testing scenarios are shown in Figure 2-11. Generally, for all scenarios, the queue

length patterns are consistent with the congestion patterns we expect given the pas-

senger arrival and alighting rates. That is, the expected queue length is relatively

higher at stations 2 and 8. The expected queue length at the last station is always

zero as its passenger arrival rate is 0.

Figure 2-11a shows the queue length patterns with respect to bus capacity. The

system is not very sensitive to bus capacity. The reason is that under the reference

scenario, the system is not congested and capacity is not fully utilized. Thus, increas-

ing capacity does not affect the queuing distribution. Figure 2-11b shows the impact

of incident occurrence rate 𝛾 on queue length. When there is no random suspension in
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the system (𝛾 = 0), the expected queue length at station 8 is 4.5. As the frequency of

incidents increases, the system becomes more congested with longer expected queue

length and higher variance. When the incident frequency increases to 1/3 per minute

on average (𝛾 = 1/3), the expected queue length at station 8 is increased to 8.3 units.

Similar results can be observed for the duration of incidents (Figure 2-11c). When

the average incident duration is 30 seconds (𝜃 = 2), E(𝑄(8)) = 5.0. When the average

incident duration is 2 minutes (𝜃 = 1/2), E(𝑄(8)) increases to 12.6. The impacts of

𝜃 and 𝛾 on queue length are both more significant at crowded stations. The impact

of �̄� is shown in Figure 2-11d. As expected, higher headway means a lower service

rate and thus a higher expected queue length. As �̄� increases from 2 minutes to

7 minutes, the queue length at station 8 increases from 4.1 to 9.7. The impact of

the demand factor (Figure 2-11e) shows the similar patterns. As the demand factor

increases from 0.5 to 1.0, the queue length at station 8 increases from 4.1 to 8.3. The

impact of �̄� and the demand factor are relatively similar for crowded and uncrowded

stations.

(a) Sensitivity on 𝐶 (b) Sensitivity on 𝛾 (c) Sensitivity on 𝜃

(d) Sensitivity on �̄� (e) Sensitivity on demand factor

Figure 2-11: Mean and standard deviation of queue length (the shaded part is
0.2×standard deviation)
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Figure 2-12 shows the mean and standard deviation of passenger waiting time for

the different scenarios. We observe that the downstream stations generally have higher

waiting time expectations and variances due to the headway variance propagation.

For congested stations, such as stations 3 and 8, extra waiting times are observed due

to passengers left behind with capacity constraints.

Figure 2-12a shows the impact of capacity on waiting time. Similar to the results

on queue length, the impact is not very significant. The impacts of 𝛾 and 𝜃 on

waiting times are shown in Figure 2-12b and 2-12c, respectively. As increases in 𝛾

and 1/𝜃 result in an increase in expected headway, the mean waiting times at all

stations are increased. The impacts on crowding stations are more significant. When

𝛾 = 0, there is no incident in the system. In this case, there are no left behind or

headway irregularity at any stations and their expected waiting times are all equal to

2 minutes (i.e., 1
2
�̄�, as no incidents means all stations have the same fixed headway).

When 𝛾 increases to 1/5, station 3 has left behind passengers and the waiting time is

increased to 4.6 minutes. When 𝜃 decreases (i.e., mean incident duration increases)

from 2 to 1/2, the expected waiting time at station 8 increases from 3.0 to 11.8

minutes. Changes in �̄� have the most direct impact on the expected waiting time.

The increase in planned headway causes an increase in waiting time for all stations.

There are a few left behind passengers observed at stations 3 and 8 when �̄� = 7 min.

Finally, as demand increases, the waiting time increases only if there are left behind

(e.g., when demand factor = 1) because it does not change the headway distribution.

At station 3, the increase in the demand factor from 0.5 to 1.0 results in an increase

in the expected waiting time from 3.5 to 4.2 minutes.

2.5.3 Comparison between simulated and theoretical results

Simulation model

To validate the theoretical results, we develop a simulation model to calculate the

expectation and variance of queue length and waiting time. The simulation procedure

is shown in Algorithm 3. For each vehicle 𝑙 at each station 𝑛, we generate the total
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(a) Sensitivity on 𝐶 (b) Sensitivity on 𝛾 (c) Sensitivity on 𝜃

(d) Sensitivity on �̄� (e) Sensitivity on demand factor

Figure 2-12: Mean and standard deviation of waiting time (the shaded part is
0.2×standard deviation)

duration of incidents 𝐼(𝑛,𝑙) as a compound Poisson exponential variable to get the

arrival time. Since no overtaking is allowed, the arrival time at station 𝑛 cannot

be earlier than vehicle 𝑙 − 1. When a vehicle arrives at a station, passengers board

based on the first-come-first-serve (FCFS) principle up to the vehicle’s capacity 𝐶.

Queue lengths at vehicle arrival and passenger waiting times are recorded during

the simulation. To ensure the system reaches steady-state conditions, the first 10%

records are dropped.

Results

We compare the simulation and theoretical results for the reference parameter setting

(Table 2.2). A total of 𝐿 = 50, 000 vehicle runs are simulated. The comparisons of

mean and standard deviation for queue length and waiting time are shown in Figure

2-13. We observe that the simulation and theoretical results match well, validating the

theoretical model’s correctness. However, the theoretical results slightly overestimate

the mean and variance of the queue length and waiting time. The main reason may
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Algorithm 3 Simulation procedure
1: Initialize model parameters: 𝐶, 𝛾, 𝜃, �̄�, Demand factor. Set the total number of

vehicles 𝐿.
2: for 𝑙 = 1:𝐿 do
3: Get vehicle dispatch time as 𝐷𝑇 (𝑙)

4: for 𝑛 = 1 : 𝑁 do
5: Sample total incident duration 𝐼(𝑛,𝑙) from a compound Poisson exponential

distribution
6: 𝑡

(𝑛,𝑙)
𝐷 = min {𝐷𝑇 (𝑙) + 𝑇 (𝑛) + 𝐼(𝑛,𝑙), 𝑡

(𝑛,𝑙−1)
𝐷 }

7: Headway for vehicle 𝑙 at station 𝑛 is 𝑡
(𝑛,𝑙)
𝐷 − 𝑡

(𝑛,𝑙−1)
𝐷

8: Sample the arrival passengers within the headway as a Poisson process
based on 𝜆(𝑛).

9: Record queue length (including left behind passengers from the last run)
10: Alight passengers based on the binomial distribution with parameter 𝛼(𝑛)

11: Board passengers based on FCFS principle up to the vehicle capacity,
record left behind passengers

12: Record boarding passengers’ waiting time
13: Drop the first 10% records. Calculate E[𝑄(𝑛)],Var[𝑄(𝑛)],E[𝑊 (𝑛)], and Var[𝑊 (𝑛)]

based on the recorded samples for 𝑛 = 1, ..., 𝑁

be the approximation of headway distribution as normal. As shown in Figure 2-6,

the actual headway has more probability density concentrated at the mean (i.e., more

peakedness), implying that the actual headway has less probability of deviating from

the planned one, thus the simulation scenario may have a smaller queue length and

waiting time.

2.6 Conclusion and discussion

This study proposes a stochastic framework to model the resilience of public transit

systems under short random service suspensions. Specifically, we analyze the system

stability conditions and derive closed-form formulations for the mean and variance of

queue length and waiting time at each station. The derived stability conditions are

intuitive and imply that the system is more likely to be unstable with high incident

rates, high incident duration, high demand, low service frequency, and low vehicle

capacity. The proposed model is implemented using an example bus network adapted

from the literature. A sensitivity analysis of different parameters (such as incident
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(a) E[𝑄(𝑛)] (b) Std dev[𝑄(𝑛)]

(c) E[𝑊 (𝑛)] (d) Std dev[𝑊 (𝑛)]

Figure 2-13: Comparison between simulation and theoretical results (reference sce-
nario)

rate, incident duration, vehicle capacity, etc.) was conducted. The results show that

the congested stations (i.e., stations with high demand rates) are more vulnerable

to random service suspensions. The results are validated with a simulation model,

showing consistency between theoretical and simulation outcomes.

The proposed model has several potential applications. 1) It can facilitate the de-

sign and planning of public transit systems with the consideration of random system

interruptions, such as the design of headways and determination of vehicle capacity.

Moreover, the estimated queue length can be used to evaluate the layout and capacity

of congested stations. 2) The model can be used to monitor system performance and

identify critical stations by inputting the historical demand and incident information.

3) The model can support efficient cost-benefit analysis of approaches to improve

services using estimates of waiting time and queue length. For example, the model

can answer that, to control the waiting time within a threshold, what is the most

cost-effective way (e.g., increase vehicle size, decrease headway, or increase mainte-

nance frequency to reduce the random suspension rate). In summary, the efficient
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calculation of the system’s resilience indicators can be used in public transit planning,

operations, and management applications.

Future studies can address a number of aspects. First, the model can be ex-

tended from route-level to network-level. The main difference between route level

and network level is the consideration of transfer passengers. A straightforward way

is to incorporate the transfer demand as part of the arrival demand. But additional

transfer-related parameters (which should be connected with the alighting rate) need

to be specified in the model. Second, like many previous random service disruption

papers (Section 2.2.2), the model can be extended to consider partial interruptions

(as opposed to fully stopped as assumed in this study). With partial interruptions,

vehicles can still have positive speed at the failure state. The headway distribution

assumption needs to be revised. Third, as mentioned before, this study assumes no

balking and reneging behavior of passengers. Future studies may extend the model

by considering a more complicated passenger-side behavior.

2.7 Appendix

2.7.1 Derivation of probability generating function of 𝑄(𝑛)

From the relationship in Eq. 2.3, we have

𝑞
(𝑛,𝑙+1)
𝑘 =

𝑘∑︁
𝑖=0

𝑟
(𝑛,𝑙)
𝑖 𝑦

(𝑛,𝑙)
𝑘−𝑖 (2.60)

where 𝑟
(𝑛,𝑙)
𝑘 := P(𝑅(𝑛,𝑙) = 𝑘) and 𝑦

(𝑛,𝑙)
𝑘 := P(𝑌 (𝑛,𝑙) = 𝑘) for all non-negative integers 𝑘.

Let 𝑆(𝑛,𝑙) be the number of available spaces for train 𝑙 when it arrives at station 𝑛.

Given that 𝑆(𝑛,𝑙) = 𝑢, if 𝑢 is greater than or equal to 𝑄(𝑛,𝑙), all passengers can board

and there is no left-behind. Then we have

𝑟
(𝑛,𝑙)
0

⃒⃒⃒
𝑆(𝑛,𝑙)=𝑢

= P(𝑢 ≥ 𝑄(𝑛,𝑙)) =
𝑢∑︁

𝑘=0

𝑞
(𝑛,𝑙)
𝑘 (2.61)
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where 𝑟
(𝑛,𝑙)
𝑘

⃒⃒⃒
𝑆(𝑛,𝑙)=𝑢

= P(𝑅(𝑛,𝑙) = 𝑘 | 𝑆(𝑛,𝑙) = 𝑢). If 𝑢 is less than 𝑄(𝑛,𝑙), only 𝑢

passengers can board and there are 𝑄(𝑛,𝑙) − 𝑢 number of left-behind passengers. So

𝑟
(𝑛,𝑙)
𝑖

⃒⃒⃒
𝑆(𝑛,𝑙)=𝑢

= P(𝑄(𝑛,𝑙) − 𝑢 = 𝑖) = 𝑞
(𝑛,𝑙)
𝑢+𝑖 𝑖 = 1, 2, ... (2.62)

Based on Eq. 2.61 and 2.62, Eq 2.60 can be reformulated as

𝑞
(𝑛,𝑙+1)
𝑘 =

𝐶∑︁
𝑢=0

𝑠(𝑛,𝑙)𝑢

(︃
𝑢∑︁

𝑖=0

𝑞
(𝑛,𝑙)
𝑖 𝑦

(𝑛,𝑙)
𝑘 +

𝑢+𝑘∑︁
𝑖=𝑢+1

𝑞
(𝑛,𝑙)
𝑖 𝑦

(𝑛,𝑙)
𝑘−𝑖+𝑢

)︃
(2.63)

Assume the steady state probabilities for all variables exist, we have lim𝑙→∞ 𝑞
(𝑛,𝑙)
𝑘 =

𝑞
(𝑛)
𝑘 , lim𝑙→∞ 𝑠

(𝑛,𝑙)
𝑘 = 𝑠

(𝑛)
𝑘 , lim𝑙→∞ 𝑦

(𝑛,𝑙)
𝑘 = 𝑦

(𝑛)
𝑘 . Taking the limit of 𝑙 for both sides of

Eq. 2.63 leads to

𝑞
(𝑛)
𝑘 =

𝐶∑︁
𝑢=0

𝑠(𝑛)𝑢

𝑢∑︁
𝑖=0

𝑞
(𝑛)
𝑖 𝑦

(𝑛)
𝑘 +

𝐶∑︁
𝑢=0

𝑠(𝑛)𝑢

𝑢+𝑘∑︁
𝑖=𝑢+1

𝑞
(𝑛)
𝑖 𝑦

(𝑛)
𝑘−𝑖+𝑢 (2.64)

Assume the probability generating function (PGF) for 𝑄(𝑛), 𝑅(𝑛) and 𝑌 (𝑛) are

𝑄(𝑧), 𝑅(𝑧), and 𝑌 (𝑧), respectively, where 𝑄(𝑛), 𝑅(𝑛) and 𝑌 (𝑛) and the steady state

random variables of 𝑄(𝑛,𝑙), 𝑅(𝑛,𝑙) and 𝑌 (𝑛,𝑙). Hence,

𝑄(𝑧) =
∞∑︁
𝑘=0

𝑞
(𝑛)
𝑘 𝑧𝑘 (2.65)

𝑅(𝑧) =
∞∑︁
𝑘=0

𝑟
(𝑛)
𝑘 𝑧𝑘 =

∞∑︁
𝑘=0

𝑧𝑘
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢 · 𝑟(𝑛)𝑘

⃒⃒⃒
𝑆(𝑛)=𝑢

(2.66)

𝑌 (𝑧) =
∞∑︁
𝑘=0

𝑦
(𝑛)
𝑘 𝑧𝑘 (2.67)

89



Substituting Eq. 2.61 and 2.62 into 2.66 results in

𝑅(𝑧) =
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢

𝑢∑︁
𝑖=0

𝑞
(𝑛)
𝑖 +

∞∑︁
𝑘=1

𝑧𝑘
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢 𝑞
(𝑛)
𝑘+𝑢 (2.68)

=
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢

[︃
𝑢∑︁

𝑖=0

𝑞
(𝑛)
𝑖 +

1

𝑧𝑢
𝑄(𝑧)− 1

𝑧𝑢

𝑢∑︁
𝑖=0

𝑞
(𝑛)
𝑖 𝑧𝑖

]︃
(2.69)

Notice that 𝑄(𝑛) = 𝑅(𝑛) + 𝑌 (𝑛) (this is obtained by taking the limit of 𝑙 for Eq.

2.3). Since 𝑅(𝑛) and 𝑌 (𝑛) are independent, we have

𝑄(𝑧) = 𝑅(𝑧)𝑌 (𝑧) (2.70)

Combining Eq. 2.69 and 2.70 obtains

𝑄(𝑧) =
𝑌 (𝑧)

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

[︁∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖 (1− 𝑧𝑖

𝑧𝑢
)
]︁

1−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢

𝑌 (𝑧)
𝑧𝑢

=

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

[︁∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖 (𝑧𝐶 − 𝑧𝐶−𝑢+𝑖)

]︁
𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢

(2.71)

2.7.2 Derivation of 𝑞(𝑛)0:𝐶−1 by matching polynomial coefficients

Though 𝑞
(𝑛)
0 , ..., 𝑞

(𝑛)
𝐶−1 can be obtained by solving 𝐶 system equations as mentioned

in Section 2.4.3, we attempt to provide a more direct way to calculate 𝑞
(𝑛)
0:𝐶−1 in this

section.

Using the fact that the numerator of 𝑄(𝑧) is in the polynomial order of 𝐶, 𝑄(𝑧)

can be reformulated in terms of 𝑧*1 , ..., 𝑧*𝐶−1 as:

𝑄(𝑧) =
(𝑧 − 1)

∏︀𝐶−1
𝑖=1 (𝑧 − 𝑧*𝑖 )

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖

𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢

(2.72)

When 𝑧 → 1, both Num(𝑧) and Den(𝑧) approach 0. We also have the fact that
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lim𝑧→1𝑄(𝑧) = 1. Therefore, using L’Hopital’s rule we have

lim
𝑧→1

𝑄(𝑧) = 1 = lim
𝑧→1

Num′(𝑧)

Den′(𝑧)
=

∏︀𝐶−1
𝑖=1 (1− 𝑧*𝑖 )

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢

∑︀𝑢
𝑖=0 𝑞

(𝑛)
𝑖∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑢− 𝑌 ′(1)

(2.73)

⇒
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢

𝑢∑︁
𝑖=0

𝑞
(𝑛)
𝑖 =

∑︀𝐶
𝑢=0 𝑠

(𝑛)
𝑢 𝑢− 𝑌 ′(1)∏︀𝐶−1

𝑖=1 (1− 𝑧*𝑖 )
(2.74)

Define 𝑌 (𝑛) := 𝑌 ′(1) = E[𝑌 (𝑛)] as the mean number of arrival passengers within a

headway at station 𝑛, 𝑆(𝑛) :=
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑢 = as the mean number of available spaces

in an arriving bus at station 𝑛. Substituting Eq. 2.74 into 2.72, 𝑄(𝑧) can be rewritten

as

𝑄(𝑧) =
(𝑆(𝑛) − 𝑌 (𝑛))(𝑧 − 1)

∏︀𝐶−1
𝑖=1

𝑧−𝑧*𝑖
1−𝑧*𝑖

𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢

(2.75)

Comparing Eq. 2.75 and 2.23, let the numerators of two equations be equal, we

have

(𝑆(𝑛) − 𝑌 (𝑛))(𝑧 − 1)
𝐶−1∏︁
𝑖=1

𝑧 − 𝑧*𝑖
1− 𝑧*𝑖

=
𝐶∑︁

𝑢=0

𝑠(𝑛)𝑢

[︃
𝑢∑︁

𝑖=0

𝑞
(𝑛)
𝑖 (𝑧𝐶 − 𝑧𝐶−𝑢+𝑖)

]︃
(2.76)

As the LHS and RHS of Eq. 2.76 are both polynomials about 𝑧, the coefficients of

each polynomial in 𝑧 must be equal. By matching the coefficients of 𝑧0, we have

(−1)(𝑆(𝑛) − 𝑌 (𝑛))
𝐶−1∏︁
𝑖=1

𝑧*𝑖
𝑧*𝑖 − 1

= −𝑞
(𝑛)
0 𝑠

(𝑛)
𝐶 (2.77)

which leads to

𝑞
(𝑛)
0 =

1

𝑠
(𝑛)
𝐶

(𝑆(𝑛) − 𝑌 (𝑛))
𝐶−1∏︁
𝑖=1

𝑧*𝑖
𝑧*𝑖 − 1

(2.78)

Note that
∏︀𝐶−1

𝑖=1
𝑧*𝑖

𝑧*𝑖 −1
is always greater than 0 because 1) when 𝐶 is odd, as the

complex roots appear as conjugates,
∏︀𝐶−1

𝑖=1
𝑧*𝑖

𝑧*𝑖 −1
> 0. 2) when 𝐶 is even, besides

𝑧*0 = 1, there exists another real root on the negative real axis (denoted as 𝑧*𝐶
2

, where
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−1 ≤ 𝑧*𝐶
2

< 0). So, we have
𝑧*𝐶

2

𝑧*𝐶
2

−1
> 0, which leads to

∏︀𝐶−1
𝑖=1

𝑧*𝑖
𝑧*𝑖 −1

> 0.

To validate Eq. 2.76, consider the fixed capacity situation where 𝑠
(𝑛)
𝐶 = 1 and

𝑆(𝑛) = 𝐶. Then Eq. 2.76 reduces to

𝑞
(𝑛)
0

⃒⃒⃒
𝑠
(𝑛)
𝐶 =1

= (𝐶 − 𝑌 (𝑛))
𝐶−1∏︁
𝑖=1

𝑧*𝑖
𝑧*𝑖 − 1

(2.79)

This is the same as Chaudhry et al. [105]. Now we will derive 𝑞
(𝑛)
1:𝐶−1. Observing that

the numerator of Eq. 2.75 can be rewritten as

(𝑆(𝑛) − 𝑌 (𝑛))(𝑧 − 1)
𝐶−1∏︁
𝑖=1

𝑧 − 𝑧*𝑖
1− 𝑧*𝑖

=
1

𝑠
(𝑛)
𝐶

(𝑆(𝑛) − 𝑌 (𝑛))
𝐶−1∏︁
𝑖=1

𝑧*𝑖
𝑧*𝑖 − 1

𝐶−1∏︁
𝑖=1

𝑧*𝑖 − 𝑧

𝑧*𝑖
(𝑧 − 1)𝑠

(𝑛)
𝐶

= 𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 (𝑧 − 1)

𝐶−1∏︁
𝑖=1

(︂
1− 𝑧

𝑧*𝑖

)︂

= −𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0

𝐶−1∏︁
𝑖=0

(︂
1− 𝑧

𝑧*𝑖

)︂
(2.80)

Define
∏︀𝐶−1

𝑖=0

(︁
1− 𝑧

𝑧*𝑖

)︁
:=
∑︀𝐶

𝑗=0 𝜂𝑗𝑧
𝑗, where 𝜂𝑗 is the polynomial coefficient of 𝑧𝑗. For

the RHS of Eq. 2.76, the polynomial coefficient of 𝑧𝐶−𝑘 is −
∑︀𝐶

𝑢=𝑘 𝑠
(𝑛)
𝑢 𝑞

(𝑛)
𝑢−𝑘. And from

Eq. 2.80, the polynomial coefficient of 𝑧𝐶−𝑘 is −𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂𝐶−𝑘. Matching the coefficient

of the same order of 𝑧 leads to

𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂𝐶−𝑘 =

𝐶∑︁
𝑢=𝑘

𝑠(𝑛)𝑢 𝑞
(𝑛)
𝑢−𝑘 𝑘 = 1, 2, ..., 𝐶 − 1 (2.81)

To validate Eq. 2.81, consider the fixed capacity situation where 𝑠
(𝑛)
𝐶 = 1 and 𝑠

(𝑛)
𝑘 =

0,∀ 0 ≤ 𝑘 < 𝐶. then Eq. 2.81 reduces to

𝑞
(𝑛)
𝐶−𝑘 = 𝑞

(𝑛)
0 𝜂𝐶−𝑘 𝑘 = 1, 2, ..., 𝐶 − 1 if 𝑠(𝑛)𝐶 = 1 (2.82)

which is the same as Chaudhry et al. [105].

Eq. 2.81 can be expressed in a matrix form by adding 𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
0 = 𝑠

(𝑛)
𝐶 𝑞

(𝑛)
0 (note
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that 𝜂
(𝑛)
0 = 1 by definition):

𝜂(𝑛) = 𝑞
(𝑛)
0:𝐶−1Λ

(𝑛) (2.83)

where 𝜂(𝑛) = [𝑠
(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
0 , 𝑠

(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
1 , ..., 𝑠

(𝑛)
𝐶 𝑞

(𝑛)
0 𝜂

(𝑛)
𝐶−1] ∈ R𝐶 and

Λ(𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
(𝑛)
𝐶 𝑠

(𝑛)
𝐶−1 𝑠

(𝑛)
𝐶−2 ... 𝑠

(𝑛)
1

0 𝑠
(𝑛)
𝐶 𝑠

(𝑛)
𝐶−1 ... 𝑠

(𝑛)
2

... 0 𝑠
(𝑛)
𝐶 ... 𝑠

(𝑛)
3

0 ... 0 ... 𝑠
(𝑛)
4

0 0 ... ... ...

0 0 0 ... 𝑠
(𝑛)
𝐶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R𝐶×𝐶 (2.84)

As 𝑠
(𝑛)
𝐶 > 0 is a known condition, the triangular matrix Λ(𝑛) is invertible. Thus, we

have

𝑞
(𝑛)
0:𝐶−1 = 𝜂(𝑛)(Λ(𝑛))−1 (2.85)

2.7.3 Derivation of queue length mean and variance

Here we try to provide analytical formulations of E[𝑄(𝑛)] and Var[𝑄(𝑛)]. The key is

to find 𝑄′(1) and 𝑄′′(1). The derivation follows the similar idea in Powell [48].

Let 𝐴(𝑧) = (𝑆(𝑛)−𝑌 (𝑛))(𝑧−1)
𝑧𝐶

𝑌 (𝑧)
−
∑︀𝐶

𝑢=0 𝑠
(𝑛)
𝑢 𝑧𝐶−𝑢

and 𝐵𝑖(𝑧) =
𝑧−𝑧*𝑖
1−𝑧*𝑖

, then 𝑄(𝑧) = 𝐴(𝑧)
∏︀𝐶−1

𝑖=1 𝐵𝑖(𝑧).

Based on the fact that 𝐵𝑖(1) = 1 and 𝑄(𝑧) = 1, we must have 𝐴(1) = 1. Hence,

𝑄′(1) = 𝐴′(1)𝐵1(1)...𝐵𝐶−1(1) + 𝐴(1)𝐵′
1(1)...𝐵𝐶−1(1) + ...+ 𝐴(1)𝐵1(1)...𝐵

′
𝐶−1(1)

= 𝐴′(1) +
𝐶−1∑︁
𝑖=1

𝐵′
𝑖(1) (2.86)

Since 𝐵′
𝑖(1) =

1
1−𝑧*𝑖

, the problem now becomes finding 𝐴′(1). Again, let 𝐴(𝑧) = 𝐴1(𝑧)
𝐴2(𝑧)

.
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Then,

𝐴′(𝑧) =
𝐴′

1(𝑧)𝐴2(𝑧)− 𝐴1(𝑧)𝐴
′
2(𝑧)

(𝐴2(𝑧))2
(2.87)

Notice that when 𝑧 → 1, the numerator and denominator of 𝐴′(𝑧) approach 0 (because

𝐴1(1) = 0 and 𝐴2(1) = 0). Therefore, applying L’Hopital’s rule yields:

𝐴′(𝑧) =
𝐴′′

1(𝑧)𝐴2(𝑧)− 𝐴1(𝑧)𝐴
′′
2(𝑧)

2𝐴2(𝑧)𝐴′
2(𝑧)

(2.88)

Again we have 0/0 when 𝑧 → 1 because 𝐴′′
1(𝑧) = 0 and 𝐴2(1) = 0. Applying

L’Hopital’s rule once more gives:

𝐴′(𝑧) =
−𝐴′

1(𝑧)𝐴
′′
2(𝑧)− 𝐴1(𝑧)𝐴

′′′
2 (𝑧)

2𝐴′
2(𝑧)𝐴

′
2(𝑧) + 2𝐴2(𝑧)𝐴′′

2(𝑧)
(2.89)

Substituting 𝑧 = 1 leads to

𝐴′(1) =
−𝐴′

1(1)𝐴
′′
2(1)

2(𝐴′
2(1))

2
(2.90)

Based on the fact that 𝑌 (1) = 1, 𝑌 ′(1) = 𝑌 (𝑛), 𝑌 ′′(1) = E[(𝑌 (𝑛))2]− 𝑌 (𝑛), we have

𝐴′
1(1) = 𝑆(𝑛) − 𝑌 (𝑛) (2.91)

𝐴′
2(1) =

𝐶𝑧𝐶−1𝑌 (𝑧)− 𝑌 ′(𝑧)𝑧𝐶

𝑌 (𝑧)2
−

𝐶∑︁
𝑢=0

(𝐶 − 𝑢)𝑠(𝑛)𝑢 𝑧𝐶−𝑢−1

⃒⃒⃒⃒
⃒
𝑧=1

= 𝑆(𝑛) − 𝑌 (𝑛) (2.92)

𝐴′′
2(1) =

𝐶(𝐶 − 1)𝑧𝐶−2

𝑌 (𝑧)
− 2𝑌 ′(𝑧)𝐶𝑧𝐶−1

𝑌 (𝑧)2
− 𝑌 ′′(𝑧)𝑧𝐶

𝑌 (𝑧)2
+

2𝑌 ′(𝑧)2𝑧𝐶

𝑌 (𝑧)3

−
𝐶∑︁

𝑢=0

(𝐶 − 𝑢)(𝐶 − 𝑢− 1)𝑠(𝑛)𝑢 𝑧𝐶−𝑢−2

⃒⃒⃒⃒
⃒
𝑧=1

= 𝐶(𝐶 − 1)− 2𝑌 (𝑛)𝐶 − E[(𝑌 (𝑛))2] + 2(𝑌 (𝑛))2 + 𝑌 (𝑛) − 𝐶2 + 𝐶 + 2𝐶𝑆(𝑛)

− 𝑆(𝑛) − E[(𝑆(𝑛))2]

= −2𝑌 (𝑛)𝐶 − E[(𝑌 (𝑛))2] + 2(𝑌 (𝑛))2 + 𝑌 (𝑛) + 2𝐶𝑆(𝑛) − 𝑆(𝑛) − E[(𝑆(𝑛))2]

(2.93)
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Substituting Eq. 2.91, 2.92, and 2.93 into Eq. 2.90 results in

𝐴′(1) =
2𝑌 (𝑛)𝐶 + E[(𝑌 (𝑛))2]− 2(𝑌 (𝑛))2 − 𝑌 (𝑛) − 2𝐶𝑆(𝑛) + 𝑆(𝑛) + E[(𝑆(𝑛))2]

2(𝑆(𝑛) − 𝑌 (𝑛))
(2.94)

Therefore, we have

E[𝑄(𝑛)] =
2𝑌 (𝑛)𝐶 + E[(𝑌 (𝑛))2]− 2(𝑌 (𝑛))2 − 𝑌 (𝑛) − 2𝐶𝑆(𝑛) + 𝑆(𝑛) + E[(𝑆(𝑛))2]

2(𝑆(𝑛) − 𝑌 (𝑛))
+

𝐶−1∑︁
𝑖=1

1

1− 𝑧*𝑖

(2.95)

To validate this formulation, let us consider a fixed capacity situation with 𝑠
(𝑛)
𝐶 = 1.

Then 𝑆(𝑛) = 𝐶, E[(𝑆(𝑛))2] = 𝐶2. Then Eq. 2.95 reduces to

E[𝑄(𝑛)]
⃒⃒
𝑠
(𝑛)
𝐶 =1

=
𝐶 − 𝐶2 + 2𝑌 (𝑛)𝐶 + E[(𝑌 (𝑛))2]− 2(𝑌 (𝑛))2 − 𝑌 (𝑛)+

2(𝐶 − 𝑌 (𝑛))
+

𝐶−1∑︁
𝑖=1

1

1− 𝑧*𝑖

(2.96)

which is equivalent to Powell [48]’s.

According to Eq. 2.29, the key to obtain Var[𝑄(𝑛)] is to calculate 𝑄′′(1). Taking

the logarithm of 𝑄(𝑧) = 𝐴(𝑧)
∏︀𝐶−1

𝑖=1 𝐵𝑖(𝑧) gives

log𝑄(𝑧) = log𝐴(𝑧) +
𝐶−1∑︁
𝑖=1

log𝐵𝑖(𝑧) (2.97)

Taking derivatives of both sides leads to

𝑄′(𝑧)

𝑄(𝑧)
=

𝐴′(𝑧)

𝐴(𝑧)
+

𝐶−1∑︁
𝑖=1

𝐵′
𝑖(𝑧)

𝐵𝑖(𝑧)
(2.98)

Taking derivatives again:

𝑄′′(𝑧)

𝑄(𝑧)
− 𝑄′(𝑧)2

𝑄(𝑧)2
=

𝐴′′(𝑧)

𝐴(𝑧)
− 𝐴′(𝑧)2

𝐴(𝑧)2
+

𝐶−1∑︁
𝑖=1

(︂
𝐵′′

𝑖 (𝑧)

𝐵𝑖(𝑧)
− 𝐵′

𝑖(𝑧)
2

𝐵𝑖(𝑧)2

)︂
(2.99)
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Solving for 𝑄′′(𝑧) and letting 𝑧 = 1 gives:

𝑄′′(1) = E[𝑄(𝑛)]2 + 𝐴′′(1)− 𝐴′(1)2 +
𝐶−1∑︁
𝑖=1

(︀
𝐵′′

𝑖 (1)−𝐵′
𝑖(1)

2
)︀

(2.100)

Notice that 𝐵′′
𝑖 (1) = 0 (∀𝑖 = 1, ..., 𝐶 − 1) and E[𝑄(𝑛)] = 𝑄′(1). Substituting Eq. 2.86

and 2.100 into Eq. 2.29 gives

Var[𝑄(𝑛)] = 𝐴′′(1)− 𝐴′(1)2 + 𝐴′(1) +
𝐶−1∑︁
𝑖=1

(︀
𝐵′

𝑖(1)−𝐵′
𝑖(1)

2
)︀

(2.101)

Now we only need to solve for 𝐴′′(1). The process is similar to finding 𝐴′(1).

Applying L’Hopital’s rule five times to Eq. 2.89 and substituting 𝑧 = 1 leads to

𝐴′′(1) =
−2𝐴′

2(1)𝐴
′′′
2 (1) + 3𝐴′′

2(1)
2

6𝐴′
2(1)

(2.102)

Notice that the derivation process uses 𝐴′′
1(𝑧) = 0, 𝐴1(1) = 0, 𝐴2(1) = 0, and

𝐴′
1(1) = 𝐴′

2(1). Details are omitted due to the tedious mathematical manipulation.

To obtain 𝐴′′′
2 (1), taking derivative of Eq. 2.93 gives:

𝐴′′′
2 (1) =

[︂
𝐶(𝐶 − 1)(𝐶 − 2)𝑧𝐶−3

𝑌 (𝑧)
− 3𝑌 ′(𝑧)𝐶(𝐶 − 1)𝑧𝐶−2

𝑌 (𝑧)2
− 3𝑌 ′′(𝑧)𝐶𝑧𝐶−1

𝑌 (𝑧)2
+

4𝑌 ′(𝑧)2𝐶𝑧𝐶−1𝑌 (𝑧)

𝑌 (𝑧)4

− 𝑌 ′′′(𝑧)𝑧𝐶

𝑌 (𝑧)2
+

2𝑌 (𝑧)𝑌 ′(𝑧)𝑌 ′′(𝑧)𝑧𝐶

𝑌 (𝑧)4
+

4𝑌 ′′(𝑧)𝑌 ′(𝑧)𝑧𝐶 + 2𝐶𝑧𝐶−1𝑌 ′(𝑧)2

𝑌 (𝑧)3
− 6𝑌 (𝑧)𝑌 ′(𝑧)3𝑧𝐶

𝑌 (𝑧)6

−
𝐶∑︁

𝑢=0

(𝐶 − 𝑢)(𝐶 − 𝑢− 1)(𝐶 − 𝑢− 2)𝑠(𝑛)𝑢 𝑧𝐶−𝑢−3

]︃
𝑧=1

= 𝐶(𝐶 − 1)(𝐶 − 2)− 3𝑌 (𝑛)𝐶(𝐶 − 1)− 3𝑌 ′′(1)𝐶 + 6(𝑌 (𝑛))2𝐶 − 𝑌 ′′′(1) + 6𝑌 (𝑛)𝑌 ′′(1)

− 6(𝑌 (𝑛))3 − (𝐶3 − 3𝐶2 + 2𝐶) + (2 + 3𝐶2 − 6𝐶)𝑆(𝑛) + (3− 3𝐶)E[(𝑆(𝑛))2] + E[(𝑆(𝑛))3]

(2.103)
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Notice that 𝑌 ′′′(1) = E[(𝑌 (𝑛))3]− 3E[(𝑌 (𝑛))2] + 2𝑌 (𝑛). Hence,

𝐴′′′
2 (1) = 3𝐶2𝑆(𝑛) − 3𝐶2𝑌 (𝑛) − 6𝐶𝑆(𝑛) − 3𝐶E[(𝑆(𝑛))2]− 3𝐶E[(𝑌 (𝑛))2] + 6𝐶(𝑌 (𝑛))2

+ 6𝐶𝑌 (𝑛) + 2𝑆(𝑛) + 3E[(𝑆(𝑛))2] + E[(𝑆(𝑛))3] + 6E[(𝑌 (𝑛))2]𝑌 (𝑛)+

3E[(𝑌 (𝑛))2]− E[(𝑌 (𝑛))3]− 6(𝑌 (𝑛))3 − 6(𝑌 (𝑛))2 − 2𝑌 (𝑛) (2.104)

Substituting Eq. 2.92, 2.93, and 2.104 into Eq. 2.102 results in

𝐴′′(1) =

[︂
6𝐶2(𝑆(𝑛))2 − 12𝐶2(𝑆(𝑛))(𝑌 (𝑛)) + 6𝐶2(𝑌 (𝑛))2 − 6𝐶(𝑆(𝑛))E[(𝑆(𝑛))2]

− 6𝐶(𝑆(𝑛))E[(𝑌 (𝑛))2](𝑌 (𝑛))2 + 12𝐶(𝑆(𝑛)) + 6𝐶E[(𝑆(𝑛))2](𝑌 (𝑛)) + 6𝐶E[(𝑌 (𝑛))2](𝑌 (𝑛))

− 12𝐶(𝑌 (𝑛))3 − (𝑆(𝑛))2 − 2(𝑆(𝑛))E[(𝑆(𝑛))3]− 12(𝑆(𝑛))E[(𝑌 (𝑛))2](𝑌 (𝑛)) + 2(𝑆(𝑛))E[(𝑌 (𝑛))3]

+ 12(𝑆(𝑛))(𝑌 (𝑛))3 + 2(𝑆(𝑛))(𝑌 (𝑛)) + 3E[(𝑆(𝑛))2]2 + 6E[(𝑆(𝑛))2]E[(𝑌 (𝑛))2]

− 12E[(𝑆(𝑛))2](𝑌 (𝑛))2 + 2E[(𝑆(𝑛))3](𝑌 (𝑛)) + 3E[(𝑌 (𝑛))2]2

− 2E[(𝑌 (𝑛))3](𝑌 (𝑛))− (𝑌 (𝑛))2
]︂⧸︂

6(𝑆(𝑛) − 𝑌 (𝑛)) (2.105)

Now with Eq. 2.105 and 2.94 we have

𝐴′′(1)− 𝐴′(1)2 + 𝐴′(1) =[︂
(𝑆(𝑛))2 − 4𝑆(𝑛)E[(𝑆(𝑛))3]− 24𝑆(𝑛)E[(𝑌 (𝑛))2]𝑌 (𝑛) + 4𝑆(𝑛)E[(𝑌 (𝑛))3]

+ 24𝑆(𝑛)(𝑌 (𝑛))3 − 2𝑆(𝑛)𝑌 (𝑛) + 3E[(𝑆(𝑛))2]2 + 6E[(𝑆(𝑛))2]E[(𝑌 (𝑛))2]− 12E[(𝑆(𝑛))2](𝑌 (𝑛))2

+ 4E[(𝑆(𝑛))3]𝑌 (𝑛) + 3E[(𝑌 (𝑛))2]2 + 12E[(𝑌 (𝑛))2](𝑌 (𝑛))2 − 4E[(𝑌 (𝑛))3]𝑌 (𝑛) − 12(𝑌 (𝑛))4 + (𝑌 (𝑛))2
]︂

⧸︂
12(𝑆(𝑛) − 𝑌 (𝑛))2 (2.106)
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Slight manipulation of Eq. 2.106 leads to

𝐴′′(1)− 𝐴′(1)2 + 𝐴′(1)

=

[︂
− 4(

¯̄̄
𝑆(𝑛) − ¯̄̄

𝑌 (𝑛))(𝑆(𝑛) − 𝑌 (𝑛)) + 3( ¯̄𝑆(𝑛) + ¯̄𝑌 (𝑛))2 − [6( ¯̄𝑆
(𝑛)

− ¯̄𝑌
(𝑛)

)− 1](𝑆(𝑛) − 𝑌 (𝑛))2

− (𝑆(𝑛) − 𝑌 (𝑛))4
]︂⧸︂

12(𝑆(𝑛) − 𝑌 (𝑛))2 (2.107)

Observe that 𝐵′
𝑖(1) − 𝐵′

𝑖(1)
2 =

−𝑧*𝑖
(1−𝑧*𝑖 )

2 . Therefore, substituting Eq. 2.106 into

2.101 gives the final results:

Var[𝑄(𝑛)] =
1

12(𝑆(𝑛) − 𝑌 (𝑛))2

{︁
−4(

¯̄̄
𝑆(𝑛) − ¯̄̄

𝑌 (𝑛))(𝑆(𝑛) − 𝑌 (𝑛)) + 3( ¯̄𝑆(𝑛) + ¯̄𝑌 (𝑛))2 −

[6( ¯̄𝑆
(𝑛)

− ¯̄𝑌
(𝑛)

)− 1](𝑆(𝑛) − 𝑌 (𝑛))2 − (𝑆(𝑛) − 𝑌 (𝑛))4]
}︁
−

𝐶−1∑︁
𝑖=1

𝑧*𝑖
(1− 𝑧*𝑖 )

2

(2.108)
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Chapter 3

Empirical analysis for the impact of

service disruptions

3.1 Introduction

Urban public transit systems play a crucial role in cities worldwide, transporting

people to jobs, homes, outings, and a variety of other activities. Millions rely on

urban transit systems to provide them with transportation. However, transit systems

are susceptible to unplanned delays and service disruptions caused by equipment,

weather, passengers, or other internal and external factors.

Mitigating the impact of unplanned service disruptions is an important task for

urban transit agencies. For this reason, it is important to recognize how a transit

system is affected by service disruptions. The analysis framework for incident impacts

can be summarized in Table 3.1. The two main dimensions of analysis, supply and

demand, can further be broken down into “network performance” and “service” for

supply analysis and “passenger flow” and “individual behavior” for demand analysis.

The network performance analysis usually uses graph theory-based techniques to

calculate indicators related to incidents [80, 79, 78, 30], such as network resilience,

vulnerability, redundancy, and a variety of other properties. The service analysis

focuses on changes in an agency’s operations during the incident period including

headway, routing, staffing, and other operator-controlled factors designed to mitigate
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Table 3.1: Analysis framework for incident impacts

Analysis tasks Description

Supply Network performance Indicators such as resilience, vulnerability, redundancy
Service Changes in agency’s operations (e.g., headway, routing)

Demand Passenger flow Demand changes at different stations, lines
Individual behavior Passengers’ mode choices under incidents

the incidents. From the demand point of view, passenger flow analysis investigates

the demand changes at different stations, lines, or regions of a network, presenting

passenger choices and flow redistribution after service disruptions. The individual be-

havior analysis focuses on studying the individual’s response (such as mode choices,

waiting time tolerance) to the incident and its relationship to the individual’s charac-

teristics (e.g., travel histories, demographics) [106, 96]. Surveys are usually used for

such studies.

Previous research has used a variety of methods to analyze the impact of service

disruption, including graph theory-based, survey-based, and simulation-based. Graph

theory-based methods usually derive resilience or vulnerability indicators based on

the network topology [78, 30, 79, 80]. These methods are effective for understanding

high-level network properties related to incidents. Survey-based methods investigate

passenger behavior during and opinions about the incident [81, 82, 83, 84, 85]. Passen-

gers’ individual-level behavior is analyzed and understood using econometric models.

Simulation-based methods simulate passenger flows on the transit network under in-

cident scenarios [86, 87, 88]. These studies can output many metrics of interest such

as vehicle load changes, additional travel delays caused by incidents, distribution of

the impact, etc.

Recently, automated data collection systems in transit networks enable a data-

driven analysis of the impacts of service disruptions. The two major sources are

automatic fare collection (AFC) and automatic vehicle location (AVL) data. AFC

data is collected when passengers tap their transit cards on smart card readers (in

buses or rail station gates). The records include times, locations, and card IDs.

Depending on whether the fare system requires passengers to tap out, AFC data may
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only include tap-in records or both tap-in and tap-out records. AVL data records

vehicle’s (bus and train) time-dependent locations based on GPS and train tracking

systems. From the AVL records, information such as headways can be inferred.

Recently, a limited number of studies have been conducted using AFC and AVL data

to look at unplanned transit disruptions. For example, Sun et al. [89] analyzed three

types of abnormal passenger flows during unplanned rail disruptions using AFC data

with both tap-in and tap-out records. Tian and Zheng [90] proposed a classification

model to predict whether commuters switch from rail to other transportation modes

because of unexpected travel delays using six months of AFC data.

However, despite numerous studies on incident analysis, there are still research

gaps. First, for the graph theory-based approaches, the network indicators such as

redundancy are usually defined for the whole network, an OD pair, or a link, and

do not consider the influence of the disruption duration. Incidents usually cause

service interruptions at multiple links depending on the power system and rail track

configuration. And the duration of an incident can vary from 5 minutes to several

hours, resulting in various impacts on the network. An incident-based indicator that

reflects the network’s redundancy under an actual incident with a specific location and

duration is needed. Second, the studies that leverage AFC data to analyze passengers’

mode choices under disruptions are very limited. Such approaches would require the

inference of both individual choices and socio-demographic information from the AFC

data. Third, most of the previous studies on incident analysis only addressed one or

two aspects in Table 3.1 using case studies of a single incident. A comprehensive

study that analyzes all four dimensions of the problem with comparable case studies

using AFC and AVL data is missing from the literature.

The chapter aims to fill these research gaps by developing a data-driven method-

ology for the comprehensive analysis of the impact of unplanned rail disruptions on

passengers and operations. Specifically, on the supply side, we propose an incident-

based network redundancy index to analyze the ability of bus and rail networks to

provide alternative services under a specific rail disruption. The impacts on opera-

tions are evaluated through headway changes across the systems. On the demand
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side, we calculate the demand changes at different rail lines, rail stations, bus routes,

and bus stops to better understand the passenger flow redistribution under incidents.

Individual behavior is analyzed using a binary logit model based on inferred pas-

sengers’ mode choices and socio-demographics using AFC data. The public transit

system of the Chicago Transit Authority (CTA) is used for a case study with two rail

disruptions, one of which has high network redundancy and the other low.

The main contributions of this chapter are as follows:

• Propose an incident-based network redundancy index to reflect the system’s

ability to provide alternative services considering the integrated bus and rail

systems. The index leverages the proposed concept of path throughput to in-

corporate the impact of the incident duration on the redundancy calculation.

• Develop an incident analysis framework using AFC and AVL data and apply

it to incidents with different characteristics. Specifically, we analyze two types

of incidents with high and low redundancy separately from both demand and

supply perspectives.

• Propose an individual mode choice analysis method using AFC data. The

approach includes a travel mode inference model and a passenger demographics

extraction model. To the best of our knowledge, this is the first study that

adopts AFC data for individual mode choice analysis during incidents.

• Conduct an empirical study to demonstrate the proposed framework using AFC

and AVL data from two real-world incidents in the CTA system. The corre-

sponding policy implications and operation suggestions are also discussed.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

literature. Section 3.3 presents the methodology used in this study. Case studies and

data are described in Section 3.4 and results are discussed in Section 3.5. Section 3.6

concludes the chapter and discusses the policy implications.
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3.2 Literature review

There are generally four methods researchers use to analyze the impact of disrupted

operations: graph theory-based, survey-based, AFC data-based, and simulation-

based. Graph theory-based analysis is majorly used for supply network performance

and supply service analysis. Survey and AFC data-based methods are primarily used

for passenger flows and individual behavior analysis. Lastly, simulation-based anal-

ysis can be used for both supply and demand analysis. Each method has strengths

and weaknesses depending on the context.

3.2.1 Supply analysis

Network performance

Network performance analysis usually uses graph theory-based techniques to identify

key aspects of the network’s properties related to incidents, such as resilience, redun-

dancy, and vulnerability based on graph theory (or complex network theory). For

example, Yin et al. [78] studied subway networks with respect to disruptions, finding

the weakness or critical locations of the network using “network betweenness” and

“global efficiency” metrics. Similarly, Zhang et al. [30] built a general framework to

assess the resilience of large and complex metro networks by quantitatively analyzing

their vulnerability and recovery time using graph theory-based definitions.

Simulation is also used to evaluate the impact of incidents on networks. Usually,

different hypothetical incident scenarios are tested. System performance metrics,

such as travel delays and vehicle loads, are output to analyze the incident effects.

For example, Suarez et al. [87] looked at the effects of climate change on Boston’s

transportation system performance using a simulation model, suggesting almost a

doubling in delays and lost transit trips due to a variety of climate change effects.

Redundancy is an important indicator for analyzing the network performance un-

der incidents. Redundancy is best defined as “the extent to which elements, systems,

or other units of analysis exist that are substitutable, i.e., capable of satisfying func-

tional requirements in the event of a disruption, degradation, or loss of function”
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[26]. Redundancy has been widely studied, not just for transportation networks,

but also in other areas including reliability engineering [107], communications [108],

water distribution systems [109], and supply chain and logistics [110]. In terms of

transportation-specific resiliency and redundancy, Berdica [80] developed a qualita-

tive framework and basic concepts for vulnerability, resilience, and redundancy for

transportation systems. Wilson-Goure et al. [111], Murray-Tuite [112], and Goodchild

et al. [113], defined redundancy in the context of a specific transportation application

areas such as evacuation, traffic network, and freight network.

However, nearly all previous studies defined redundancy at the level of networks,

links, or OD pairs. Redundancy can also be defined for a specific incident to assess

the system’s ability to provide alternative services under a specific condition. This

study proposes such an incident-based redundancy index to evaluate the network’s

ability to satisfy functional requirements under a specific incident. Both incident

location and duration impact the redundancy. Moreover, the bus system, which is an

important alternative for rail but rarely considered in previous studies, is included in

the redundancy calculation.

Service Analysis

Service analysis mainly focuses on changes in an agency’s operations during an in-

cident period. This type of analysis looks at headways, routing, staffing, shuttle

services, and other operator-controlled factors designed to mitigate the incident. For

example, Nash and Huerlimann [114] developed a simulation model to analyze service

variables such as headways and routing in the wake of disruptions. Schmöcker et al.

[115] evaluated different operating strategies in six metro systems under service dis-

ruptions. Service delays and recovering times are treated as performance indicators.

Similarly, Mo et al. [4] proposed an event-based simulation model that is capable of

analyzing the impacts of incidents on service performance (e.g., headways).
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3.2.2 Demand analysis

Passenger flow

Passenger flow analysis focuses on understanding how passengers choose alternative

services at an aggregated level. Simulation-based methods can be applied to pas-

senger flow analysis. For example, Hong et al. [88] simulated passenger flows in a

metro station during an emergency. Using AFC data, Sun et al. [89] quantified three

types of passenger flows: leaving the system, taking a detour, and continuing the

journey but being delayed. This model was applied to the Beijing metro network.

Tian and Zheng [90] looked at unexpected train delay effects on Singapore’s MTR

customers. Using AFC data, they built a classification model to predict whether com-

muters switch from MRT to other transportation modes because of unexpected train

delays. Wu et al. [116] used AFC data to detect passenger flow volumes and travel

time increases under station closures. Liu et al. [117] uses AFC data to comprehen-

sively analyze unplanned disruption impacts, especially on passenger flows with trip

cancellation, station changes, etc.

Individual behavior

Individual behavior analysis usually focuses on individual responses, like mode choice,

waiting time tolerance, and a variety of other variables. These studies are usually

conducted using surveys. Surveys are a good means to understand individual choices.

Revealed preference (RP) and stated preference (SP) are two major types of survey

design. Examples of transit-oriented RP studies include Currie and Muir [81], who

conducted an RP survey to understand rail passengers’ behavior, perceptions, and

priorities in response to unplanned urban rail disruptions in Melbourne, Australia.

Murray-Tuite et al. [82] used a web-based RP survey to understand the long-term

impacts of a deadly metro rail collision in Washington DC. Tsuchiya et al. [118] con-

ducted an RP survey in Japan that looked at passenger choices of four alternative

routes. Pnevmatikou and Karlaftis [119] used RP survey data to analyze the ef-

fect of a pre-announced closure of an Athens Metro Line. SP survey studies include

105



Kamaruddin et al. [120], who studied the modal shift behavior of rail users after

incidents. Fukasawa et al. [83] investigated the effect of providing information such

as estimated arrival time, arrival order, and congestion level on passengers’ modal

shift behavior in response to an unplanned transit disruption. Similar research was

conducted by Bai and Kattan [121], who found that various socioeconomic attributes

and experience with the systems had strong influences on travelers’ behavioral re-

sponses in the context of real-time information. Additionally, Rahimi et al. [96, 106]

used a failure time model and a discrete choice model to analyze individuals’ waiting

time tolerances and mode choices, respectively, during unplanned service disruptions

in Chicago using survey data.

The major drawback of survey-based methods is that they are time-consuming

and labor-intensive. Hence, it is important to develop individual behavior analysis

methods using AFC data as an alternative.

3.2.3 Comparison between our study and the literature

Table 3.2 summarizes the various studies in the literature from three aspects: study

methods, data sources, and research focus. The main methodologies include graph

theory-based methods (GTB), simulation-based (SB), optimization models (OM), de-

scriptive analysis (DA), statistical inference (SI), machine learning (ML), and econo-

metric models (EM).

Our study presents a comprehensive analysis focusing on four aspects: travel mode

choice, passenger flow, redundancy, and service. It is also exclusive based on AFC

and AVL data.

3.3 Methodology

In this section, we present the building blocks and methods used to support the anal-

ysis framework of an unplanned incident. On the supply side, a method to calculate

the network redundancy index under a certain incident is proposed, which reflects

the network’s ability to provide alternative routes when incidents occur. To analyze
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Table 3.2: Summary of literature review

Study Study Method Data Sources Research Focus

Yin et al. [78] GTB Network, AFC 1NP - Efficiency
Zhang et al. [30] GTB Network NP - Resilience
Balakrishna et al. [86] SB Network, Survey NP - Efficiency, Passenger flow, Service
Hong et al. [88] SB Synthetic Passenger Flow
Suarez et al. [87] SB Network, Geographical NP - Resilience
Mo et al. [4] SB, OM Network, AFC Passenger Flow, Service
Jenelius and Cats [122] SB Network, AFC NP - Redundancy
Adnan et al. [123] SB Survey NP - Efficiency, Service
Schmöcker et al. [115] DA AVL, AFC, Survey NP - Resilience, Service
Sun et al. [89] DA, SI AFC Passenger Flow
Tian and Zheng [90] ML AFC Delay
Wu et al. [116] SI AFC Passenger Flow
Liu et al. [117] DA AFC, AVL, Network Passenger Flow, Delay
Currie and Muir [81] EM Survey Travel mode choice, User satisfaction
Murray-Tuite et al. [82] EM Survey Travel mode choice
Tsuchiya et al. [118] EM Survey Travel mode choice
Pnevmatikou and Karlaftis [119] EM Survey Travel mode choice
Kamaruddin et al. [120] EM Survey Travel mode choice
Fukasawa et al. [83] EM Survey Travel mode choice
Bai and Kattan [121] EM Survey Travel mode choice
Lin et al. [85] EM Survey Travel mode choice
Pnevmatikou et al. [124] EM Survey Travel mode choice
Rahimi et al. [96] EM Survey Travel mode choice
Rahimi et al. [106] EM Survey User waiting behavior

Current study GTB, EM, DA AFC, AVL, Network Travel mode choice, Passenger flow,
NP - Redundancy, Service

1NP: Network performance.

the agency’s service, we calculate the headway distribution using AVL data. On the

demand side, we describe how to analyze passenger flows under incidents using AFC

data, and how to use AFC data to analyze passengers’ mode choice using a binary

logit model.

To infer the effect of an incident, we compare data from the incident day to

corresponding data from normal days. A “normal day” is defined as a recent day

with the same day of the week and there are no incidents occurring in the incident

line or nearby region during the incident period on that day. For example, if an

incident happened on Friday 9:00-10:00 AM at a station, normal days can be all

Fridays in recent months without incidents from 8:00-11:00 AM (a buffer is added to

ensure normal services on a normal day) on the same line. Headways and passenger

flow during the incident day are compared to those of normal days to reveal their

difference.
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3.3.1 Supply analysis

Network redundancy under incidents

As mentioned in Section 3.2, since redundancy is used to evaluate a network’s func-

tional response in the event of disruptions, it is important to develop an incident-

specific redundancy index (opposite to network, link, or OD pair-specific in the lit-

erature). For a given incident, such an index can be used to evaluate the network’s

ability to provide alternative services under this incident. Furthermore, given the

substitutional relationship between bus and urban rail systems, the proposed redun-

dancy index in this study also explicitly considers the complementary role of bus and

rail systems during the incident.

Redundancy is usually a function of the number of available paths for each OD

pair because more available paths correspond to more opportunities of realizing the

impacted trips when encountering service disruptions [79]. Hence, network redun-

dancy under incidents (NRUI) should capture the transport capacity of alternative

paths during the incident. Typical path capacity is defined as the maximum num-

ber of passengers transported per time unit (i.e. service frequency times the vehicle

capacity). It is a time-insensitive value, which means the travel times of paths are

not considered. However, for the redundancy calculation, path travel times are also

important because passengers may not successfully finish their trips during the in-

cident period if they choose paths with a long travel time. This means that the

time-insensitive path capacity does not reflect the actual ability of paths to move

passengers. Hence, a time-sensitive path capacity should be used for the calculation.

In this study, we propose a new metric for the calculation of NRUI. The basis of

the analysis uses the concept of throughput, instead of the classic definition of path

capacity. In our approach, throughput explicitly takes into account the travel time on

each alternative path. Throughput is defined as the number of “equivalent” passenger

trips that have been completed per time unit during the incident. If a passenger has

completed half of the trip on an alternative path by the time an incident is over, the

“equivalent” trip count is 0.5.
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More specifically, let 𝒲 be the set of all OD pairs of the rail network. For an OD

pair 𝑤 ∈ 𝒲 , let 𝒫𝑤 be the set of available paths for 𝑤 before the incident. As we

consider both bus and urban rail systems, a path 𝑝 ∈ 𝒫𝑤 may include segments of bus

trips. 𝒫𝑤 can be obtained in several ways, such as route choice surveys, Google Map

API, and 𝑘-shortest paths. In this study, 𝑘-shortest path is used to obtain 𝒫𝑤 with

additional manual tuning to filter out unrealistic paths (e.g., too many transfers).

Let 𝐷𝐼 be the duration of incident 𝐼, 𝐻𝑝 the headway of path 𝑝 (defined as the

maximum headway of each segment of path 𝑝), 𝐶𝑝 be the vehicle (i.e. train or bus)

capacity of path 𝑝 (defined as the minimum vehicle capacity over all segments of

path 𝑝), and 𝐿𝑝 the travel time of path 𝑝. Then ⌊𝐷𝐼/𝐻𝑝⌋ is the total number of

vehicles dispatched on path 𝑝 during the incident period. The throughput aims to

capture the number of passengers at various stages of completing their trips during the

incident. Figure 3-1 illustrates how the equivalent number of passengers completing

trips are calculated during the incident period. If 𝐷𝐼 < 𝐿𝑝 (Figure 3-1a), all vehicles

in the path cannot reach the final destination. Therefore, the number of transported

passengers is counted proportionally based on their travel time in the vehicle. For

example, the first vehicle has traveled for 𝐷𝐼 during the incident period (i.e. 𝐷𝐼

𝐿𝑝
of

the total path length). We assume this is equivalent to 𝐶𝑝
𝐷𝐼

𝐿𝑝
completed passenger

trips. And it is easy to show that the 𝑘-th vehicle’s travel time is 𝐷𝐼 − (𝑘 − 1)𝐻𝑝,

which corresponds to 𝐶𝑝
𝐷𝐼−(𝑘−1)𝐻𝑝

𝐿𝑝
equivalent completed passenger trips during the

incident period. If 𝐷𝐼 ≥ 𝐿𝑝 (Figure 3-1b), the first vehicle can reach the destination.

So it accounts for 𝐶𝑝 completed passenger trips. In the example shown in Figure 3-

1b, the second vehicle can also reach the destination during the incident (accounting

for 𝐶𝑝 passenger trips), while the third cannot (accounting for 𝐶𝑝
𝐷𝐼−2𝐻𝑝

𝐿𝑝
passenger

trips). Therefore, combining these two scenarios, the number of equivalent completed

passenger trips for vehicle 𝑘 can be calculated as min {𝐷𝐼−(𝑘−1)𝐻𝑝,𝐿𝑝}
𝐿𝑝

· 𝐶𝑝.

Let 𝐴𝑝 be the throughput of path 𝑝 under incident 𝐼. From the analysis above, it
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(a) 𝐷𝐼 < 𝐿𝑝 (b) 𝐷𝐼 ≥ 𝐿𝑝

Figure 3-1: Illustration of path throughput. The bars show the number of equivalent
completed passenger trips during the incident period (unfinished trips are counted
proportionally based on their travel time). The orange (blue) bars represent vehicles
that cannot (can) finish the trips.

can be formulated as

𝐴𝑝 =
1

𝐷𝐼

⌊𝐷𝐼/𝐻𝑝⌋∑︁
𝑘=1

min {𝐷𝐼 − (𝑘 − 1)𝐻𝑝, 𝐿𝑝}
𝐿𝑝

· 𝐶𝑝 (3.1)

Eq. 3.1 counts the total number of equivalent passenger trips along path 𝑝 that have

been completed per time unit during the incident (passengers who did not finish their

trips are counted proportionally).

A larger value of 𝐷𝐼 implies that 𝐴𝑝 is less sensitive to the path travel time.

On the extreme situation where 𝐷𝐼 → ∞, 𝐴𝑝 → 𝐶𝑝

𝐻𝑝
(proof in Section 3.7.1), which

corresponds to the typical definition of capacity where 𝐿𝑝 does not matter. The

intuition behind this is that the proposed 𝐴𝑝 limits the capacity calculation in the

incident period. When 𝐷𝐼 is large, even if passengers have a longer travel time on a

path, the majority of the passengers impacted by the incident will have their trips

completed. On the contrary, if 𝐷𝐼 is small, most of the passengers using paths with

long travel times cannot finish their trips. The typical definition of 𝐶𝑝

𝐻𝑝
does not

capture this important aspect. Hence, considering travel time in the redundancy

calculation is much more representative of the actual conditions.

In summary, 𝐴𝑝 is an indicator reflecting a path’s ability to serve impacted trips
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during the incident period. And
∑︀

𝑝∈𝒫𝑤
𝐴𝑝 reflects the ability of the network to

provide services for OD pair 𝑤. Actually, one of the network-level definitions of

redundancy in the literature is
∑︀

𝑤∈𝒲
∑︀

𝑝∈𝒫𝑤
𝐴𝑝 (where 𝐴𝑝 is defined differently),

which measures the total path capacity in the network [125].

In this study, we want to capture the incident-specific characteristics of redun-

dancy. Let 𝒲𝐼 be the set of all OD pairs with at least one path blocked due to

incident 𝐼. Mathematically, 𝒲𝐼 = { 𝑤 ∈ 𝒲 : ∃𝑝 ∈ 𝒫𝑤 s.t. 𝑝 is blocked due to

incident 𝐼 }. Then, only passengers with OD in 𝒲𝐼 are affected by the incident. Let

the total path throughput of 𝑤 before the incident be 𝑇𝑤.

𝑇𝑤 =
∑︁
𝑝∈𝒫𝑤

𝐴𝑝 ∀𝑤 ∈ 𝒲𝐼 (3.2)

Because of the incident, passengers may augment their typical path choice alter-

natives with paths that were not considered before the incident. Hence, we define

𝒫𝑤 as the set of available paths for 𝑤 ∈ 𝒲𝐼 during the incident. 𝒫𝑤 can be seen as

𝒫𝑤 without the blocked paths and adding the augmented paths. Usually, augmented

paths are longer and less preferred by passengers. For a specific OD pair 𝑤 ∈ 𝒲𝐼 ,

the total path throughput of 𝑤 after the incident, denoted as 𝑇𝑤, should be less than

or equal to that before. Therefore, we define 𝑇𝑤 as:

𝑇𝑤 = min{
∑︁
𝑝∈𝒫𝑤

𝐴𝑝, 𝑇𝑤} ∀𝑤 ∈ 𝒲𝐼 (3.3)

This corresponds to our assumption that the throughput during the incident cannot

exceed that before the incident for a specific OD pair. Hence, the NRUI for incident

𝐼 is formulated as:

𝑅𝐼 =

∑︀
𝑤∈𝒲𝐼

𝑇𝑤∑︀
𝑤∈𝒲𝐼

𝑇𝑤

(3.4)

where the numerator (denominator) is the total throughput of available paths after

(before) the incident. Since 𝑇𝑤 ≥ 𝑇𝑤 for all 𝑤 ∈ 𝒲𝐼 by definition, we have 0 ≤ 𝑅𝐼 ≤ 1.
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𝑅𝐼 = 1 means the capacities before and after the incident are the same, suggesting

that the incident does not deteriorate the function of the network (i.e. the network is

fully redundant under incident 𝐼). 𝑅𝐼 = 0 means no alternative paths are available

during the incident (i.e. the network has no redundancy under incident 𝐼)

For a better understanding of the index, we present a small numerical example

to show how 𝑅𝐼 is calculated. As shown in Figure 3-2, consider a system with only

one OD pair 𝑤. Path 1 and 2 are primary and alternative paths, respectively, where

𝒫𝑤 = {1} and 𝒫𝑤 = {2} (i.e. before the incident path 2 is not chosen by passengers).

The attributes of the two paths are shown in the figure. For path 1, there are

⌊𝐷𝐼/𝐻𝑝⌋ = 2 vehicles dispatched. The first vehicle has traveled for min{𝐷𝐼 , 𝐿1} = 20

minutes and reached the destination. The second vehicle, which was dispatched 30

minutes later, can also travel for min{𝐷𝐼 − 𝐻1, 𝐿1} = 20 minutes and reach the

destination. Therefore, these two vehicles successfully carried 400 passengers to the

destination. According to Eq. 3.1, we have

𝐴1 =
min{𝐷𝐼 , 𝐿1}

𝐿1𝐷𝐼

𝐶1 +
min{𝐷𝐼 −𝐻1, 𝐿1}

𝐿1𝐷𝐼

𝐶1 = 400 passengers/hour (3.5)

In terms of path 2, similarly, there are two vehicles dispatched during the incident.

The first vehicle can reach the destination and the second one can only finish 30
60

of

its journey. Therefore,

𝐴2 =
min{𝐷𝐼 , 𝐿2}

𝐿2𝐷𝐼

𝐶2 +
min{𝐷𝐼 −𝐻2, 𝐿2}

𝐿2𝐷𝐼

𝐶2 = 300 passengers/hour (3.6)

The two terms in Eq. 3.6 represent the number of passengers carried (successfully

and partially) by the two vehicles in path 2 per time unit.

The redundancy index for this single network under incident 𝐼 is

𝑅𝐼 =
𝑇𝑤

𝑇𝑤

=
𝐴2

𝐴1

=
300

400
= 0.75 (3.7)

which means during the incident when passengers start to use path 2, the system

maintains 75% of its original capacity. For comparison purpose, if one follows the
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typical definition of path capacity and calculate 𝐴𝑝 as 𝐶𝑝

𝐻𝑝
, the redundancy index will

be 1 because 𝐶1 = 𝐶2 and 𝐻1 = 𝐻2 in this example, which is obviously unreasonable

because it implies that the system maintains 100% capacity and the incident has no

impact.

Figure 3-2: Example of network redundancy calculation

It is worth noting that we illustrate the definition of the NRUI assuming a fixed

vehicle capacity 𝐶𝑝. Actually, 𝐶𝑝 can be defined as the “available capacity” in a

vehicle considering the onboard passengers. In this way, the NRUI can also capture

the impact of demand. The “available capacity” can be calculated for the specific

day of the incident using a transit assignment model [4]. Alternatively, the average

“available capacity” can also be used. In the case study, due to lack of data, the total

capacity of a vehicle is used.

Headway analysis

Headways are important indicators of the level of service for transit systems. Analyz-

ing headway patterns during an incident can provide direct information about how

services are reduced by the incident. As mentioned in Section 3.1, AVL data provide

the headway of each station in the urban rail system. In this study, we calculate the

headway temporal distribution for lines of interest to capture the impact of incidents.

Let us divide the analysis time period into several intervals with equal length.

Denote the headway on station 𝑖 of trip 𝑗 as 𝐻𝑖,𝑗 (i.e. the length of interval between

trip 𝑗 and 𝑗 − 1 and 𝐻𝑖,1 = 0). Suppose line 𝑙 has two directions, inbound and
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outbound. The headway of line 𝑙 outbound at time interval 𝜏 is calculated as

𝐻out
𝑙,𝜏 =

∑︀
𝑖∈𝒮out

𝑙

∑︀
𝑗∈ℛ𝑖,𝜏

𝐻𝑖,𝑗∑︀
𝑖∈𝒮out

𝑙
|ℛ𝑖,𝜏 | − 1

(3.8)

where 𝒮out
𝑙 is set of outbound stations in line 𝑙. ℛ𝑖,𝜏 is the set of trips passing through

station 𝑖 during the time interval 𝜏 . Eq. 3.8 implies the headway of a line is calculated

as the mean of all stations along the line. The inbound headway, 𝐻 in
𝑙,𝜏 , is calculated in

a similar way by replacing 𝒮out
𝑙 with 𝒮 in

𝑙 . The headway distributions of both normal

days and the incident day are calculated for comparison.

3.3.2 Demand analysis

Passenger flow analysis

AFC data record passengers’ tap-in information in bus and rail systems (tap-out is

not available in this study). These transactions can capture passengers’ route choices

during an incident if they use the transit system again [126]. Therefore, analyzing

AFC data can help understand passenger flow redistribution during an incident.

At the station level, we calculate the number of tap-in passengers at the stations in

the incident area, and compare the values on the incident day and normal days. The

difference in this number is an indicator of the impact of the incident on passenger flow

redistribution. Stations with high demand increases reflect passengers’ choices after

the incident. Similarly, at the line level, we calculate the number of tap-in passengers

for lines near the incident area for both the incident day and normal days. Line-level

demands are calculated as the sum of all station-level demands in corresponding lines.

Note that we assume the number of tap-in passengers is approximately normally

distributed. Hence, if the incident day demand is beyond the ±2×standard deviation

of the normal day demand, we say that a significant difference is observed (i.e., the

impact of the incident is significant).
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Individual behavior analysis

Passengers may make different mode choices after the incident. One important ques-

tion is how the characteristics of the passengers influence their mode choices. This

is typically using data from surveys. In this study, we propose a method based on

conveniently available AFC data for individual behavior analysis.

The proposed approach consists of two steps: a) inferring individual’s mode choice

and b) extracting samples’ characteristics. We infer individual choices using AFC

data. In this study, only two choices are considered: 1) using transit and 2) other

(including canceling trips and using other travel modes). This is because these two

options can be confidently identified using AFC data and they are important for tran-

sit operators. Since passenger travel patterns in transit systems show high irregularity

[127], it is more convenient to identify the behavioral changes of regular passengers

[128]. In this study, we define regular passengers as those who use the public tran-

sit system every normal day and have the same travel trajectories. Note that, as

normal days have the same day of week as the incident day, regular passengers are

not necessarily frequent users as they may only use the system on a specific day of

week. For example, if an incident happened on Friday, a passenger who only uses

the public transit system on Friday (i.e. on each normal day) is a regular passenger.

But since he/she only uses the transit once a week, he/she may not be a frequent

user. Mathematically, let us denote the trajectories of passenger 𝑖 in normal day 𝑘 as

𝒯 𝑖,𝑘 = {(𝑜𝑖,𝑘1 , 𝑑𝑖,𝑘1 , 𝑡𝑖,𝑘1 ), ..., (𝑜𝑖,𝑘
𝑁 𝑖,𝑘 , 𝑑

𝑖,𝑘
𝑁 𝑖,𝑘 , 𝑡

𝑖,𝑘
𝑁 𝑖,𝑘)}, where 𝑜𝑖,𝑘𝑛 , 𝑑𝑖,𝑘𝑛 , and 𝑡𝑖,𝑘𝑛 are the origin,

destination and start time of the 𝑛-th trip, respectively (𝑡𝑖,𝑘1 < ... < 𝑡𝑖,𝑘
𝑁 𝑖,𝑘). 𝑁 𝑖,𝑘 is

the total number of trips in normal day 𝑘 for passenger 𝑖. The set of regular pas-

sengers is defined as {𝑖 ∈ ℐ | 𝑜𝑖,𝑘𝑛 = 𝑜𝑖,𝑘
′

𝑛 , 𝑑𝑖,𝑘𝑛 = 𝑑𝑖,𝑘
′

𝑛 , 𝑡𝑖,𝑘𝑛 ∈ [𝑡𝑖𝑛 − 𝜎𝑖
𝑛, 𝑡

𝑖
𝑛 + 𝜎𝑖

𝑛], 𝑁
𝑖,𝑘 =

𝑁 𝑖,𝑘′ , ∀𝑘, 𝑘′ ∈ 𝒦, 𝑘 ̸= 𝑘′}, where ℐ is the set of all passengers, 𝑡𝑖𝑛 and 𝜎𝑖
𝑛 are the mean

and standard deviation of the start time of trip 𝑛 for passenger 𝑖 over all normal

days. 𝒦 is the set of all normal days considered in this study. This means regular

passengers have the same number of trips and corresponding origins and destinations

in each normal day (for tap-in only AFC systems, destinations are not considered).
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And the corresponding trip start times in each normal day are stable (i.e. within

a standard deviation). Hence, if these passengers had different travel patterns on

the incident day, most likely they would be affected by the incident and chose a

new travel mode. Denote the trip sequence of passenger 𝑖 on the incident day as

𝒯 𝑖,In = {(𝑜𝑖,In1 , 𝑑𝑖,In1 , 𝑡𝑖,In1 ), ..., (𝑜𝑖,In
𝑁 𝑖,In , 𝑑

𝑖,In
𝑁 𝑖,In , 𝑡

𝑖,In
𝑁 𝑖,In)}. And let [𝑇𝑒, 𝑇𝑠] be the incident pe-

riod, where 𝑇𝑒 and 𝑇𝑠 is the incident start and end time. The mode choice during the

incident for a regular passenger 𝑖 is denoted as 𝑌𝑖. We infer 𝑌𝑖 as follows:

• 𝑌𝑖 = “Transit” if 1) there are additional transit trips (compared to that in

a normal day) during the incident period or 2) there are changes of tap-in

stations during the incident period. The first condition implies that the regular

passenger may have transferred to a nearby rail station or bus stop, with more

transit trips than usual. The second condition implies that the regular passenger

may have changed to a different rail line or bus route in response to the incident.

Let 𝒯 𝑖,𝑘
𝐼 = {(𝑜𝑖,𝑘𝑛 , 𝑑𝑖,𝑘𝑛 , 𝑡𝑖,𝑘𝑛 ) ∈ 𝒯 𝑖,𝑘 | 𝑇𝑠 ≤ 𝑡𝑖𝑛 ≤ 𝑇𝑒} and 𝒯 𝑖,In

𝐼 = {(𝑜𝑖,In𝑛 , 𝑑𝑖,In𝑛 , 𝑡𝑖,In𝑛 ) ∈

𝒯 𝑖,In | 𝑇𝑠 ≤ 𝑡𝑖,In𝑛 ≤ 𝑇𝑒} be sub-sequences of trips within the incident period

(i.e. [𝑇𝑠, 𝑇𝑒]) on a normal and the incident day, respectively. Mathematically,

the first condition can be expressed as: |𝒯 𝑖,In
𝐼 | > |𝒯 𝑖,𝑘

𝐼 | and the second: ∃𝑛 s.t.

𝑜𝑖,𝑘𝑛 ̸= 𝑜𝑖,In𝑛 , where (𝑜𝑖,𝑘𝑛 , 𝑑𝑖,𝑘𝑛 , 𝑡𝑖,𝑘𝑛 ) ∈ 𝒯 𝑖,𝑘
𝐼 and (𝑜𝑖,In𝑛 , 𝑑𝑖,In𝑛 , 𝑡𝑖,In𝑛 ) ∈ 𝒯 𝑖,In

𝐼 . Note that

𝑘 ∈ 𝒦 can be any normal day because the trajectories for all normal days are

the same for a regular passenger by definition.

• 𝑌𝑖 = “Other” if the transit trips that are supposed to happen during the in-

cident period on the normal days disappear on the incident day. This means

that the regular passengers may change to other modes or cancel their trips.

Mathematically, this can be expressed as |𝒯 𝑖,In
𝐼 | < |𝒯 𝑖,𝑘

𝐼 |.

Other regular passengers without the above behavior may not be affected by the

incident or have other choices that are hard to be identified (e.g., transfer to another

line without leaving the system), which are not considered in the analysis.

In the second step, the characteristics of each regular passenger (i.e. demographics

and trip information) are extracted. We aim to use information that is available in
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AFC and sale transaction data as a proxy to passengers’ socio-demographics.

Since regular passengers have consistent travel trajectories, we can infer their

home locations as the tap-in rail station or bus stop of the first trip on a normal day

(i.e. 𝑜𝑖,𝑘1 for any 𝑘 ∈ 𝒦). Given the station/stop location, we can obtain the median

household income in passenger 𝑖’s neighborhood or census tract using census data.

Living in a high-income or low-income neighborhood can be a proxy of passengers’

income. AFC data can also provide passengers’ fare status information, such as

whether the passenger is in a reduced fare status. Reduced fare status users are

usually students, seniors, and people with disabilities. This information is also a

proxy for socio-demographic characteristics.

Sale transaction data provide the historical add-value transactions of passengers.

We extract three variables in this study: total added value per year, add-value fre-

quency (i.e. number of add-value transactions per year), and maximum single added

value in a year. The first two variables reflect the passenger’s dependence on and fa-

miliarity with public transit and part of their income information. The last variable

can also be used to some extent as a proxy for income because low-income people

may not be able to deposit a large amount of money in the smart card at once. We

denote all this “proxy” demographic information for passenger 𝑖 as 𝑋𝑖.

The characteristics of passenger 𝑖’s trip (denoted as 𝑍𝑖) during the incident may

also affect mode choices. We define the incident-related trip (trip ID denoted as 𝑛*)

as the first trip with 𝑡𝑖,𝑘 in the incident period. Mathematically, 𝑛* = argmin𝑛{𝑛 =

1, ..., 𝑁 𝑖,𝑘 | 𝑡𝑖𝑛 ∈ [𝑇𝑠, 𝑇𝑒]}. Since regular passengers are supposed to have stable travel

patterns, 𝑜𝑖,𝑘𝑛* and 𝑑𝑖,𝑘𝑛* should be the intended origin and destination for passenger 𝑖

on the incident day. Based on (𝑜𝑖,𝑘𝑛* , 𝑑
𝑖,𝑘
𝑛* ), two trip-related variables are considered.

The first is whether the 𝑑𝑖,𝑘𝑛* is downtown, which is a proxy for work trips. Note that

for a tap-in only system, 𝑑𝑖,𝑘𝑛* can be inferred from a destination estimation model

[129, 130, 131]. The second variable is OD-based redundancy, defined as

𝑅OD
𝑖 =

𝑇𝑤𝑖

𝑇𝑤𝑖

(3.9)
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where 𝑅OD
𝑖 is the OD-based redundancy for passenger 𝑖, measuring the availability of

alternative transit services for the specific OD pair during an incident. 𝑤𝑖 = (𝑜𝑖,𝑘𝑛* , 𝑑
𝑖,𝑘
𝑛* )

is passenger 𝑖’s OD pair for the incident-related trip. It is worth noting that 𝑅OD
𝑖 can

be seen as the NRUI for the case of a single OD pair.

In this study, we use a binary logit model [132] to better understand the main

factors that impact choice 𝑌𝑖. Let the utility of mode 𝑗 for passenger 𝑖 be 𝑈𝑖𝑗.

𝑈𝑖𝑗 = ASC𝑗 + 𝛼𝑗𝑋𝑖 + 𝛽𝑗𝑍𝑖 + 𝜖𝑗 (3.10)

where ASC𝑗 is the alternative specific constant (ASC) for mode 𝑗. 𝜖𝑗 is the error term

that is assumed to be Gumbel distributed. 𝛼𝑗 and 𝛽𝑗 are the vectors of parameters

to be estimated. The probability of passenger 𝑖 choosing mode 𝑗 is

P(𝑌𝑖 = 𝑗) =
exp(ASC𝑗 + 𝛼𝑗𝑋𝑖 + 𝛽𝑗𝑍𝑖)∑︀
𝑗′∈𝒞 exp(ASC𝑗 + 𝛼𝑗𝑋𝑖 + 𝛽𝑗𝑍𝑖)

∀𝑗 ∈ 𝒞 (3.11)

where 𝒞 = {“Transit”, “Other”} is the choice set.

The approach of the individual behavioral analysis model is summarized in Figure

3-3.

Figure 3-3: Summary of the individual behavioral analysis model
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3.4 Application

3.4.1 Chicago Transit System

We use incident data from the Chicago Transit Authority (CTA) public transit system

for the model application in this section. CTA is the second-largest transit system in

the United States, providing services in Chicago, Illinois, and some of its surrounding

suburbs. It operates 24 hours each day and is used by 0.84 million bus and 0.81 million

train passengers per weekday on average [40]. The map of the CTA rail system is

shown in Figure 3-4. The rail system consists of eight lines (named after their color)

and the "Loop". The Loop, located in the Chicago downtown area, is a 2.88 km

long circuit of elevated rail that forms the hub of the Chicago rail system. Its eight

stations account for around 10% of the weekday boardings of the CTA trains.

Figure 3-4: CTA rail system map

CTA’s AFC system is entry-only, meaning passengers use their farecards only

when entering a rail station or boarding a bus, and so no information about a trip’s

destination is directly provided. The train tracking system provides train arrival and

departure times at each station.

According to the control center data, CTA experienced a total of 27,198 incidents

in 2019. However, around 80% percent of the incidents have a duration of fewer than

10 minutes. Since small incidents may not affect the system significantly, this study

focuses on substantial incidents that lasted longer than 1 hour. Passengers who leave
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the rail system because of service disruptions need to re-tap in if they decide to use

other CTA services (buses or rails). They are only charged a transfer fee. However,

no tap-in is needed for shuttle service that may have been deployed in response to

the incident. Hence, there is no information for passengers using shuttle buses.

3.4.2 Redundancy index

Prior to analyzing actual incidents, we first present an overview of the CTA system

redundancy. As the NRUI is defined based on each incident, for the purpose of this

analysis, we assume that a hypothetical incident takes place at a station in the system

(one at a time), blocking the track segment that connects the station for 1 hour.

Note that if a station has two separate tracks, each track is blocked independently

and there will be two incident cases for this station. For example, the Roosevelt

station has two different tracks for the Red Line and Purple/Yellow Lines. So two

hypothetical incident cases are generated, each corresponding to the interruption of

a track. Considering the infrastructure layout of urban rail systems, assuming that

incidents occur at the track level is more realistic than simply assuming an incident

blocks the whole station as in many previous studies that used graph-based methods

[133, 134].

Besides the incident-specific redundancy index, the occurrence frequency of in-

cidents at various stations is also of importance. Figure 3-5 shows the redundancy

index at each station against the number of incidents taking place per year at that

station (only incidents with a duration greater than 10 minutes are counted). The

combination of the two metrics divides the figure into four sections: 1) Stations in the

red section (upper left) have high incident occurrence frequency and low redundancy.

These are critical stations in the system where alternative public transit services are

limited and service disruptions happen frequently. Transit operators need to prepare

strategies in advance for these stations. 2) Stations in the yellow section (upper right)

have high incident occurrence frequency and high redundancy. In these stations, pas-

sengers are able to seek alternative services during a disruption. Operators need to

provide direct information to passengers with suggestions regarding alternatives. 3)
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Stations in the blue section (lower left) have low incident occurrence frequency and

low redundancy. Though incidents may not happen frequently, mitigation plans need

to be prepared as there are limited substitutional services. 4) Stations in the green

section (lower right) have low incident occurrence frequency and high redundancy.

These stations are less critical in terms of incident management compared to stations

in other sections.

Figure 3-5 shows that most of the stations in the CTA system are in the blue or

green sections. And only a limited number of stations are in the red section. This

implies that CTA can focus more on some critical stations with adequate incident

management strategies. In terms of critical stations (red section), most of them are

terminal stations (such as Howard, Forest Park). This is expected as terminal stations

usually have more complex infrastructure layouts (i.e. more prone to failures) and are

usually located in suburban areas (i.e. fewer alternative services and low redundancy

index). Backup shuttle services can be provided in these stations.

Figure 3-5: Redundancy index v.s. incident occurrence rate.

3.4.3 Rail disruption cases

Since the location of the incidents may influence their impact, we selected two inci-

dents at locations with high and low redundancy, respectively, for comparative anal-
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ysis.

Brown and Purple Lines Sedgwick incident

On September 24 (Tuesday), 2019, at 9:09 AM, a Purple Line train collided with a

Brown Line train at the Sedgwick station. The incident caused a number of stations

to be blocked and closed in both Brown and Purple Lines since these two lines share

the same track in this area. The impacted stations were Fullerton and Armitage

to the north and Chicago and Merchandise Mart (MM) to the south. Southbound

trains short turned at Fullerton, while northbound trains short turned at MM. At 9:28

AM, 19 minutes after the incident started, bus substitution service began between

Fullerton to MM. Service resumed at all blocked stations at 10:19 AM, 70 minutes

after the start of the incident. The incident on the Brown and Purple Lines is a high

redundancy case because the Red Line is a good substitution for the incident location

(See Figure 3-6).

Figure 3-6: Incident diagram of Brown Line Sedgwick case

Blue Line Jefferson Park incident

On February 1 (Friday), 2019, at 8:14 AM, the inbound track Blue Line between

Harlem and Jefferson Park was closed due to infrastructure problems. All trains in

the Blue Line were suspended. CTA used the remaining single-direction track to serve
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trains from both directions in the incident link. At 9:03 AM, 49 minutes after the

incident, single track operations commenced between Harlem and Jefferson Park, with

shuttle service starting 7 minutes later. At 9:40 AM, all inbound trains succeeded to

move under the single-track operation. At 12:09 PM, the full line was reopened. The

entire incident lasted 4 hours and 9 minutes. The incident on the Blue Line is a low

redundancy case because the Blue Line is far away from other rail lines with limited

alternative services (see Figure 3-7).

Figure 3-7: Incident diagram of Blue Line Jefferson Park case

3.5 Analysis

The framework discussed in Section 3.3 was used for the analysis of the cases. For each

case, the results are organized from supply to demand analysis. The individual choice

analysis is conducted based on samples of affected passengers from two incidents.

3.5.1 Brown and Purple Line incident analysis

Redundancy index

The NURI (Eq. 3.4) for the Brown and Purple Line case is 0.732, meaning that

the transit system maintains 73.2% transporting capacity for the Brown and Purple

Lines incident during the incident period. The high redundancy of the Brown and

Purple Lines incident is as expected. In the incident area, the Red Line is almost
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parallel with the Brown and Purple Lines. In addition, there exist many south-bound

bus routes going to Downtown Chicago (see Figure 3-11). This implies that during

the Brown and Purple Line incident, CTA can focus on guiding passengers to find

alternative services. Some information dissemination strategies need to be applied,

such as route and transfer recommendations.

Headway analysis

The headway analysis results from the Brown and Purple Line Sedgwick incident are

summarized in Figure 3-8. The shade around normal day lines indicates ±standard

deviation (same for all the following figures with shades around normal day lines).

The line-level headway is calculated as Eq. 3.8. We selected three lines with directions

of interest to analyze. Recall that the Brown and Purple Lines share tracks in the

incident area, while the Red Line runs on separate tracks in the incident area but

shares tracks further north of the line.

(a) Brown Line (southbound) (b) Purple Line (southbound) (c) Red Line (southbound)

Figure 3-8: Headway temporal distribution (Brown and Purple Lines Sedgwick inci-
dent). The shade around normal day lines indicates ±standard deviation (same for
all following figures)

A rise in southbound headways for both the Brown and Purple Lines are observed

(Figures 3-8a and 3-8b) and the changes are significant (i.e., beyond the two standard

deviation ranges). This is as expected because these two lines are blocked due to the

incident. On average, headway increases from 5 minutes to 15 minutes in the Brown

Line and from 5 minutes to 7 minutes in the Purple Line, implying a reduction of
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service frequency by 66.7% and 28.6% for the Brown and Purple Lines, respectively.

The Brown Line experiences a continuous increase in headways towards the end of

the incident. And we see a decrease in headways once the incident clears. The Purple

Line, which has most of its local stops farther away from the incident area, has less

disrupted service at the line level, despite sharing tracks with the Brown Line. So its

headways deviated less from the normal-day average.

As shown in Figure 3-8c, the Red Line experiences little deviation from its normal

day service for the first half of the incident (before 9:30 AM), largely because it

does not share tracks at the incident location and could run largely uninterrupted.

However, halfway through the incident, there is a headway increase spike. This could

be caused by two possible reasons: 1) Because of the bad service on Brown and Purple

Lines, passengers chose to take the Red Line southbound instead, leading to more

passengers and thus the delays at the stations when loading and unloading passengers.

2) The unusual operation (e.g., short-turn) of the trains on Brown and Purple Lines

may occupy facilities in the Red Line, resulting in congestion and longer headways.

The headway increase in nearby lines implies that the transit operator should pay

attention to both incident lines and nearby lines to better serve passengers.

Passenger flow analysis

Passenger flows can be examined at multiple levels, including system-wide, line level,

and station level. Figure 3-9 shows the total number of tap-in passengers for the

bus and rail systems during the Brown and Purple Lines incident. The results show

that there is no significant difference between the incident day and normal days for

both bus and rail because the demand lines on the incident day are within the ±2

standard deviation range. This implies that though the incident lasted for more than

1 hour and blocked several stations, the impact on the whole system demand is still

negligible (i.e., as influential as the inherent demand variations).

The line-level demand changes for the Brown and Purple Line incident are shown

in Figure 3-10. As expected, demand on the Brown and Purple Lines (interrupted

by the incident) both decreased during the incident and returned to normal after the
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Figure 3-9: System level passenger flow analysis (Brown and Purple Lines incident).

incident. And the decrease is significant. As the Red Line runs adjacent to the Brown

and Purple Lines for a significant portion and is not suspended, we see a significant

increase in demand during the incident period with a return to normal after the

incident is over.

(a) Brown Line (blocked) (b) Purple Line (blocked) (c) Red Line (open)

Figure 3-10: Line level passenger flow analysis (Brown and Purple Lines incident)

We further examine the demand changes at rail and bus stations close to the in-

cident area (shown in Figure 3-11). During the incident, we see an increase in rail

demand at Fullerton and Belmont stations that have direct connections to the unin-

terrupted Red Line. We also see clusters of increased bus demand near the incident

lines. Of note are the clusters outlined in red and blue squares. The red clusters

represent increased bus demand proximal to blocked stations. These passengers may

have transferred directly to nearby bus stops from the blocked line. Additionally, the

126



blue clusters represent increases in bus demand for routes that connect directly to

downtown. The increase may be attributed to passengers who live in nearby neigh-

borhoods and change to buses during the incident.

The total decrease in the number of tap-in passengers in the Brown and Purple

Lines is 1,141, while the increase in nearby bus stations and the Red Line is 696

and 1,414, respectively. The demand decrease in the Brown and Purple lines is

smaller than the corresponding increase in the Red Line and bus stations. This is

probably because some passengers may first tap in the Brown and Purple Lines and

then leave (this phenomenon will be illustrated in Figure 3-12), which leads to the

underestimation of demand decrease in the Brown and Purple Lines. For all the

2,110 observed passengers using the alternative services, around one-third of them

(696) transfer to buses and two-thirds (1,414) to the Red Line. Note that there

may also be many passengers with direct transfers without leaving the system, which

cannot be observed from the AFC data.

Figure 3-11: Station demand increase patterns (Brown and Purple Lines incident)

Additionally, Figure 3-12 shows the temporal demand distribution at three sta-

tions: Sedgwick (the incident station), Fullerton (a nearby partially blocked station),

and North/Clybourn (a nearby station in the Red Line that is open). The illustrated

trends align with the incident pattern. At Sedgwick (Figure 3-12a), the center of
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the incident, we see a drastic decrease in demand once the incident starts. As some

passengers may not be aware of the incident and accidentally tapped into the station,

the demand is not zero during the incident period. After the incident is over, we

see a quick recovery in demand. In terms of the Fullerton (Figure 3-12b) station,

despite it being partially blocked (the tracks of the Brown/Purple Lines are blocked

but the tracks of the Red Line are not), we see an immediate rise in demand. This

indicates that passengers used Fullerton station for the Red Line. Lastly, we see a

sharp increase in the number of tap-in passengers at the North/Clybourn station in

the Red Line (Figure 3-12c), which is within walking distance from Sedgwick station.

This implies that passengers from the Brown and Purple Lines may also walk to the

Red Line to finish their journey. Additionally, this station gives passengers access

to Fullerton station, where they can switch to Brown or Purple Lines trains going

northbound. The sharp increase may represent the first wave of transfer passengers.

The demand analysis is helpful for transit operators to identify passengers’ choices,

supplement transit on other lines, and inform passengers of better alternatives.

(a) Sedgwick (incident station,
blocked)

(b) Fullerton (partially blocked) (c) North/Clybourn (Red Line,
open)

Figure 3-12: Station level passenger flow analysis (Brown and Purple Lines incident)
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3.5.2 Blue Line incident analysis

Redundancy index

The NURI (Eq. 3.4) for the Blue Line Jefferson Park case is 0.093, meaning that

the transit system maintains 9.3% transporting capacity during the incident period.

The relatively low redundancy, in this case, is due to the lack of alternative rail lines.

Though there are some nearby bus services (see Figure 3-16), the capacity of buses is

much lower than that of the metro lines. Also, most of the bus routes are not directly

connected to downtown, which increases the travel time for passengers using buses.

The low NURI indicates that during the Blue Line incident, CTA needs to provide

more alternative services, such as dispatching shuttle buses, increasing the frequency

of substitutional bus routes.

Headway analysis

The headway analysis results from the Blue Line incident are shown in Figure 3-13.

Looking at the Blue Line southbound (Figure 3-13b), the headway was a little bit

longer than usual at the start of the day for unknown reasons. As the incident starts,

the headway increases immediately for southbound trips. The increase is steeper

before 9:30 AM, which is understandable since before that time CTA was working

on changing the system to single-track operation. Once the single-track operation

successfully deployed for all southbound trains, the headway plateaued, and then

gradually decreased after 9:30 AM. On average, headway increases from 7 minutes

to 17 minutes in the Blue Line southbound, indicating a 58.8% reduction in service

frequency.

Figure 3-13a shows the headway change for the Blue Line northbound. Similarly,

the headway was a little bit longer than usual at the start of the day. As the incident

started, headways gradually increased. However, though the single-track operation

starts at 9:30 AM, the northbound headway still remains higher than normal. This

may be because CTA allowed more southbound trains to cross the single track area

as they serve the major demand in the morning peak, which caused delays for the

129



northbound trains. On average, headway increases from 8 minutes to 12 minutes in

the Blue Line southbound, indicating a 33.3% reduction in service frequency.

The headway for the Brown Line southbound is also shown in Figure 3-13c as the

Brown Line may be a possible alternative for passengers in the south part of the Blue

Line. The headway remains relatively unchanged throughout the Blue Line incident,

which means the incident did not affect the Brown Line operations.

(a) Blue Line (southbound) (b) Blue Line (northbound) (c) Brown Line (southbound)

Figure 3-13: Headway temporal distribution (Blue Line incident)

Passenger flow analysis

We first look at the system level demand change during the Blue Line incident in

Figure 3-14. Similar to the results from the Brown and Purple Lines incident, there

is no significant difference between incident day and normal days for both bus and

rail systems because the incident demand is within the 2 standard deviation range,

implying that the incident did not significantly change the demand patterns for the

whole system.

The demand patterns of the Blue, Brown, and Red Lines during the Blue Line

incident are shown in Figure 3-15. The Blue Line (Figure 3-15a) initially experiences

a drop in the number of tap-in passengers immediately after the incident, which is

as expected because passengers were informed of the incident and chose to not tap

in. As the single-track operation started, the number of tap-ins gradually returned

to regular levels as the system’s backlog slowly began to clear. By 9:40 AM, single

130



Figure 3-14: System level demand analysis (Blue Line incident)

tracking is in full operation. Hence, the number of tap-in passengers is closer to

average.

For the Brown Line (Figure 3-15b), we see a slight spike of demand about 30

minutes after the incident. This is because the Brown Line is not within the walking

distance from the Blue Line. Passengers need to take the eastbound bus routes and

then transfer onto the Brown Line to continue their journeys, which takes around 30

minutes. We also observe a consistent (though not significant) demand increase in

the Red Line for the entire major incident period (Figure 3-15c). The reason may

be that Red and Brown Lines are largely overlapped near the incident area and can

both be alternatives for the Blue Line.

(a) Blue Line (blocked) (b) Brown Line (open) (c) Red Line (open)

Figure 3-15: Line level passenger flow analysis (Blue Line incident)

Demand changes at individual rail stations and bus stops near the incident area

131



are shown in Figure 3-16. Figure 3-16a shows that demand rises at the bus stations

that are close to the Blue Line, which means many passengers switched to bus services

during the incident. We also observe a substantial increase in ridership on the nearby

Brown and Red Lines. This is presumably from passengers taking buses from the Blue

Line and transferring to the Brown and Red Lines. However, we see little increase in

ridership on the Green Line in comparison. Since the Green Line is close to the Blue

Line and provides service to downtown as well, it should be a good alternative. But

the small number of passengers using it implies that some passengers did not make

good choices.

Figure 3-16b illustrates the demand changes for nearby bus routes. The demand

for several bus lines increased, with routes 56, 72, and X49 being the top 3. Route 56

demand increased most because it runs parallel to much of the Blue Line and connects

directly to downtown. The increase in route 72 may be due to passengers transferring

to that route and using it to connect to the Brown and Red Lines. Since there is little

increase in the Green Line where the X49 connects, most of the increased ridership

in route X49 was probably passengers with destinations in the south that route X49

directly serves.

The total decrease of the number of tap-in passengers in the Blue Line is 2,219,

while the increases in nearby bus stations, Brown Line, and Red Line are 2,426, 845,

and 1,125, respectively. It is worth noting that passengers may tap in the Blue Line

then get out to use buses due to long waiting times. This implies that the actual

demand decrease in the Blue Line is larger than 2,219. For all passengers using

nearby bus stations (2,426), most of them (845+1,125) transferred to Brown and Red

Lines.

Further analysis can be done on specific key stations in terms of temporal demand

patterns. Figure 3-17 summarizes the demand changes at the Jefferson Park (incident

station, partially blocked) (Figure 3-17a), California, (partially blocked) (Figure 3-

17b), and Addison (Brown Line, open) (Figure 3-17c) stations. At Jefferson Park,

the number of tap-in passengers does not show a significant difference compared to

that of normal days (i.e., within two standard deviations). Possible reasons are 1)
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(a) Demand changes of nearby bus stops and rail stations

(b) Demand changes of nearby bus routes

Figure 3-16: Station and bus route demand increase patterns (Blue Line incident)

passengers were not well informed of the incident and entered the station during the

service disruption; 2) there are not enough alternative services for passengers at the

Jefferson Park station, so passengers chose to enter the station and wait for service.

At the California station, we see a huge drop-off in ridership before 9:00 AM. This

may be due to the fact that California is closer to downtown and has more bus

options for riders, which corresponds to the results in Figure 3-16a. As the single

track operations stabilize (around 9:00 AM), we see an increase in the number of tap-

ins. Lastly, looking at Addison (Figure 3-17c), we observe normal ridership during

the first part of the incident. Halfway through, a large spike in ridership takes place.

This is most likely explained by Blue Line riders taking a bus to the Brown Line,
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as outlined in Figure 3-16a. And the spike is due to the fact that they arrived as a

group.

(a) Jefferson Park (incident sta-
tion, partially blocked)

(b) California (partially blocked) (c) Addison (Brown Line, open)

Figure 3-17: Station level passenger flow analysis (Blue Line incident)

3.5.3 Individual passenger choice analysis

To analyze the individual-level passenger choices, we sampled 1,060 regular passengers

who are affected by the incident (see Section 3.3.2 for method details) using the AFC

data from the two incidents above, 533 of which are from the Brown and Purple

Line incident case and 527 from the Blue Line incident case. Table 3.3 provides

descriptive statistics related to various variables of interest. All transaction-related

variables (such as total added value and total add-value times) are calculated based

on smart card transaction data from January to December 2019.

The estimation results of the binary logit model are shown in Table 3.4. “Other”

is set as the base travel mode. We observe that passengers with larger total added

value and those who use a pass (as opposed to pay-as-you-go) are more likely to choose

CTA during the incident. This is understandable because these passengers generally

use the public transit system more frequently. They are familiar with the service

and able to find alternative public transit routes during the incident. Passengers

who live in high household income areas and have high max single added value are

less likely to choose CTA (both are significant at 0.15 level). Note that both of
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Table 3.3: Descriptive statistics of samples

Variables Mean Standard deviation

Total added values ($/year) 917.7 367.8
Add-value frequency (times/year) 31.38 32.76
Max single added value ($) 65.99 37.61
Living in high household income area1 (Yes = 1) 0.093 0.291
Living in low household income area2 (Yes = 1) 0.013 0.114
Using pass3 (Yes = 1) 0.374 0.484
Reduced fare status (Yes = 1) 0.087 0.281
OD-based redundancy 0.929 0.237
Downtown destination (Yes = 1) 0.635 0.482

Number of observations: 1,060 (533 from Brown Line case and 527 from Blue Line case)
Choices: CTA: 268; Other: 792
1: Living in areas where the median annual household income is greater than $120,000
2: Living in areas where the median annual household income is less than $25,000
3: The fare type is “pass” on the incident day

these two variables are used as proxies for the high income. Hence, their choice of

other options may be because they can afford alternative modes of transportation

(such as Uber/Lyft). Passengers with reduced fare status are more likely to use CTA

services. The reason may be that reduced fare status users are usually students,

seniors, and disabled people likely on limited incomes. They usually rely primarily on

CTA to travel. OD-based redundancy has a positive impact on choosing CTA, which

is as expected because higher redundancy indicates better alternative public transit

services. Another interesting result is that passengers with the destinations in the

downtown area are less likely to use CTA. This may be because these passengers were

going to work and they have a higher motivation to arrive on time, thus changing to

alternative modes (such as Uber/Lyft).

We also evaluate the sensitivity of the probability of choosing CTA with respect

to the OD-based redundancy (Figure 3-18). The probabilities in Figure 3-18 are cal-

culated by fixing the remaining variables to the corresponding sample means. Similar

to the results above, low-income passengers have a higher probability of using CTA

than that of high income, and the difference increases with the increase in redun-

dancy. This implies that low-income passengers have higher elasticity with respect

to redundancy. Assuming OD-based redundancy equal to 0.5, a 1% increase in OD-
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Table 3.4: Individual choice model estimation results

Parameters Value (standard error)

CTA: ASC -3.27 (0.522) ***

CTA: Total added value ($1000/year) 1.26 (0.277) ***

CTA: Add-value frequency (100 times/year) -0.449 (0.365)
CTA: Max single added value ($1000) -5.89 (3.72) ·
CTA: Living in high household income area (Yes = 1) -0.396 (0.269) ·
CTA: Living in low household income area (Yes = 1) 1.380 (0.568) **

CTA: Using pass (Yes = 1) 1.13 (0.215) ***

CTA: Reduced fare status (Yes = 1) 0.627 (0.297) **

CTA: OD-based redundancy 1.26 (0.432) ***

CTA: Downtown destination (Yes = 1) -0.335 (0.159) **

Other: ASC 0 (fixed)

Number of individuals: 1060. Adjusted 𝜌2 = 0.245
***: 𝑝 < 0.01; **: 𝑝 < 0.05; *: 𝑝 < 0.1; ·: 𝑝 < 0.15

based redundancy can lead to a 0.03% increase in the probability of choosing CTA

for high-income passengers, and a 0.11% increase for low-income passengers.

Understanding the impact of demographics on travel mode choices is helpful for

transit operators to customize their operation strategies during the incident. For

example, as low-income passengers are more likely to use CTA during the incident,

alternative services can be provided to serve low-income areas first.

Figure 3-18: Impact of OD-based redundancy for passengers living in high and low
income areas
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3.6 Conclusion and Discussion

3.6.1 Conclusion

This study proposes a general incident analysis framework both from the supply and

demand sides using automatically collected data (AFC and AVL) in public transit

systems. Specifically, from the supply side, we propose an incident-based network

redundancy index to analyze the network’s ability to provide alternative services

under a specific rail disruption. The impacts on service operations are analyzed

through the headway changes. From the demand side, we calculate the demand

changes at different rail lines, rail stations, bus routes, and bus stops to understand

the passenger flow redistribution under incidents. Individual behavior is analyzed

using a binary logit model based on inferred passengers’ mode choices and socio-

demographics inferred from AFC and sale transaction data. Two incidents in the

CTA public transit system are used as case studies. The two rail disruption cases

have different attributes, one at a location with high network redundancy and the

other with low network redundancy.

Results show that the service frequency of the incident line was largely reduced

during the incident time. Nearby lines with substitutional functions are also slightly

affected. Depending on the incident location, the network’s redundancies are different,

as well as the passengers’ behavior. In the low redundancy scenario, most of the

passengers chose to use nearby buses to move, either to their destinations or to the

nearby rail lines. In the high redundancy scenario, most of the passengers transferred

directly to nearby rail lines.

3.6.2 Policy implications and suggestions

The results of the case study provide useful insights into operations when dealing

with incidents. We summarize the main policy implications below.

Planning for incident responses using redundancy index. In Section 3.4.2,

we calculate the NRUI for different stations by assuming a one-hour track-block in-
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cident. The NRUI can be adapted to different types of incidents, network blockages,

and duration. Based on a graph similar to Figure 3-5, transit operators can better

plan for future incidents, such as planning alternative services for low-redundancy

locations, preparing route recommendation strategies for high-redundancy locations,

etc.

Headway management for both the incident line and nearby lines. In

Sections 3.5.1 and 3.5.2, we observe that headways increase in both the incident line

and nearby lines. The results suggest that transferred passengers from the incident

line and unusual operations of the incident line may also affect operations of nearby

lines. More comprehensive headway management should be considered during inci-

dents.

Provision of timely customer information. The results indicate that passen-

gers tap into the blocked station during the incident, implying that these passengers

are not well informed. Transit agencies should improve their customer information

delivery during incidents (especially at fare gates). This can be done through text

messaging, Twitter, in-station signs, station staff, and a variety of other methods to

keep the passenger informed.

Provision of route recommendations during incidents. During the Blue

Line incident, not many passengers use the Green Line, although it is a good alterna-

tive (see Section 3.5.2). This suggests that passengers may not act rationally, or they

lack knowledge about the available alternatives. Providing route recommendations

to passengers during the incident can increase the utilization of alternative services

and improve the level of service.

Data-driven methods to design alternative services. The analysis provides

a better understanding of how passengers move and the alternatives they may choose,

based on which operators can better allocate available buses or trains. For example,

most passengers used Bus Route 56 as a substitutional service during the Blue Line

incident (Section 3.5.2). CTA may increase the service frequency of these heavily

used routes.

Provision of shuttle services to improve the use of alternative routes.
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During the Blue Line incident, one of the reasons that the Green Line is not fully uti-

lized may be that it is not directly connected to the Blue Line (Section 3.5.2). Hence,

CTA may provide shuttle services to connect the Blue and Green lines to encourage

more passengers to follow the recommendation (note that multiple recommendations

should be provided to avoid overwhelm of a specific line).

3.7 Appendix

3.7.1 Proof of lim𝐷𝐼→∞𝐴𝑝

Let 𝑘* be the last trip of path 𝑝 that can reach the destination during the incident

period. Mathematically, 𝑘* = argmin𝑘{𝑘 = 1, 2, ..., ⌊𝐷𝐼/𝐻𝑝⌋ | 𝐷𝐼 − (𝑘− 1)𝐻𝑝 ≤ 𝐿𝑝}.

Therefore, we have

min {𝐷𝐼 − (𝑘 − 1)𝐻𝑝, 𝐿𝑝} = 𝐿𝑝 ∀𝑘 ≤ 𝑘* (3.12)

min {𝐷𝐼 − (𝑘 − 1)𝐻𝑝, 𝐿𝑝} = 𝐷𝐼 − (𝑘 − 1)𝐻𝑝 ∀𝑘* < 𝑘 ≤ ⌊𝐷𝐼/𝐻𝑝⌋ (3.13)

This leads to

lim
𝐷𝐼→∞

𝐴𝑝 = lim
𝐷𝐼→∞

1

𝐷𝐼

⌊𝐷𝐼/𝐻𝑝⌋∑︁
𝑘=1

min {𝐷𝐼 − (𝑘 − 1)𝐻𝑝, 𝐿𝑝}
𝐿𝑝

· 𝐶𝑝

= lim
𝐷𝐼→∞

𝑘*∑︁
𝑘=1

𝐿𝑝

𝐿𝑝 ·𝐷𝐼

· 𝐶𝑝 + lim
𝐷𝐼→∞

⌊𝐷𝐼/𝐻𝑝⌋∑︁
𝑘=𝑘*+1

𝐷𝐼 − (𝑘 − 1)𝐻𝑝

𝐿𝑝 ·𝐷𝐼

· 𝐶𝑝 (3.14)

= lim
𝐷𝐼→∞

𝑘* 1

𝐷𝐼

· 𝐶𝑝 + lim
𝐷𝐼→∞

⌊𝐷𝐼/𝐻𝑝⌋∑︁
𝑘=𝑘*+1

𝐷𝐼 − (𝑘 − 1)𝐻𝑝

𝐿𝑝 ·𝐷𝐼

· 𝐶𝑝

Notice that 𝑘* → ⌊𝐷𝐼/𝐻𝑝⌋ as 𝐷𝐼 → ∞ because when 𝐷𝐼 is large enough, almost

all trips can reach the destination. And lim𝐷𝐼→∞⌊𝐷𝐼/𝐻𝑝⌋ = 𝐷𝐼/𝐻𝑝 by definition.

Therefore,

lim
𝐷𝐼→∞

𝐴𝑝 = lim
𝐷𝐼→∞

⌊𝐷𝐼/𝐻𝑝⌋ ·
1

𝐷𝐼

· 𝐶𝑝 + 0 =
𝐶𝑝

𝐻𝑝

(3.15)
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Chapter 4

Inferring passenger behavioral

responses under disruptions

4.1 Introduction

Urban rail transit plays an important role in urban mobility. However, with aging sys-

tems, continuous expansion, and near-capacity operations, service disruptions often

occur. Disruptions can range from short-term delays at some stations to shutdowns

of entire subway lines over an extended period. These incidents may result in delays

and cancellation of thousands of trips as well as economic and opportunity losses [6].

Consequently, there is growing research interest and literature in the area of rail

disruption analysis and management. These efforts can be classified into two types:

supply-oriented and demand-oriented [135]. The supply-oriented research focuses on

analyzing the network vulnerability and improving network resilience from the supply

and operation perspectives. The literature in rail transit network vulnerability based

on complex network theory is very intensive. It explores the vulnerability of network

topology when some nodes or links of the network are failed. Degree, betweenness,

centrality measures, and connectivity methods are usually used [136, 137, 138, 139].

From the operations point of view, many studies look at adjusting the timetable

[140], managing rolling stock [141], and designing shuttle buses [91] during urban rail

disruptions to ensure operational feasibility and improve system efficiency.
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Demand-oriented research focuses on understanding and modeling passengers’ be-

havior under rail disruptions. Transit users’ behavior can be significantly different

in the event of service disruptions and vary depending on the stage of the trip at

the time of the disruption [85]. A better understanding of passengers’ behavior in

the event of disruption is important for operators to recommend alternative routes,

adjust the capacity of rail lines, and provide shuttle services [142]. However, nearly all

of the previous research investigated passenger behavior using survey-based methods

[121, 84, 82]. For example, Lin et al. [85] used a joint revealed and stated preference

(SP) survey to estimate transit user mode choice in response to a transit service dis-

ruption in the City of Toronto. Rahimi et al. [106] utilized survey data collected in

the Chicago Metropolitan Area to analyze how transit users respond to unplanned

service disruptions and the factors that affect their behavior. Survey-based methods

are usually time-consuming and labor-intensive. Besides, SP surveys require passen-

gers to respond to hypothetical situations, which may not reflect the actual travel

choices of passengers [89].

Recently, thanks to the widely adopted automated fare collection (AFC) system,

passengers’ travel information is recorded in the AFC data, providing opportunities

to capture individual choices under rail disruptions using data-driven approaches.

However, studies using AFC data to explore the impact of unplanned disruptions on

individual responses are limited. Silva et al. [143] proposed a method to analyze large-

scale mass transportation systems during unplanned disruptions. They estimated

the disruption effects on passenger volumes during incidents using smart card data.

van der Hurk [144] developed a model based on smart cards to forecast the route

choices of passengers impacted by disruptions under different scenarios. The study

shows that operators can help passengers minimize their overall inconvenience by

providing individual advice. Sun et al. [89], using AFC data, estimated three groups

of passengers (leaving the system, detouring, and continuing to travel) during the rail

disruption. Recently, Liu et al. [117] also proposed a data-driven approach to evaluate

disruption impacts on system performance and individual responses in urban railway

systems using AFC data. They considered four groups of passengers: performing
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trips, changing travel time, changing stations, and changing modes.

However, there are some limitations in the previous studies. First, the approaches

of identifying passenger responses in previous studies are rule-based and determinis-

tic, meaning that they directly map the observed AFC records to a specific response

behavior. The rule-based method ignores uncertainty and randomness in passengers’

behavior (i.e., the observed AFC records may be due to behavior randomness, rather

than the impact of incidents), which may introduce estimation bias. Also, determinis-

tic methods cannot quantify the uncertainty (i.e., variance) in the estimated results.

Second, most of the previous studies are based on data from closed AFC systems

with both tap-in and tap-out information, which does not apply to many open tran-

sit systems where only tap-in information is available (such as the transit systems in

Chicago, Boston, and New York). Third, most of the previous studies only considered

three or four possible response behaviors. In this chapter, we show that passenger’s

responses are diverse depending on where they are when the incident happens. There

are 19 possible responses identified in this study.

To fill the research gap, this chapter proposes a probabilistic passenger behavior

estimation framework under rail disruptions using tap-in-only AFC data. The his-

torical travel trajectories before the incident and the subsequent travel records after

the incident are both used for inference and capturing the uncertainty in passengers’

behavior. We first identify 19 possible response behaviors that passengers may have

based on their decision-making times and locations1 (i.e, the stage of their trips when

an incident happened), including transferring to a bus line, canceling trips, waiting,

delaying departure time, etc. A statistical inference model is proposed to estimate

the mean and variance of the number of passengers in each of the 19 behavior groups

using passengers’ AFC data. The urban bus and rail system operated by the Chicago

Transit Authority (CTA) is used as a case study. The proposed model is validated

with a synthetic data set and applied using an actual data set from CTA. Results

show that the proposed model can estimate passengers’ travel behavior after the rail

1The proposed model is not restricted to the 19 behaviors. The way of recognizing possible
responses is general and can be extended to different case studies. See Section 4.2.1 for details.
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disruption accurately and outperform the rule-based benchmark model.

The identified 19 behavioral responses can be classified from two aspects. From

the behavioral aspect, they can be grouped into 5 aggregated response behaviors

including using bus, using rail (changing or not changing route), not using public

transit, and not being affected. These five aggregated response behaviors are general

and applicable for the incident analysis for any other public transit system. From

the methodological aspect, the inference of the 19 behaviors can be classified into

four cases based on the information used (historical trips vs. subsequent trips) and

the context of the observed transactions (direct incident-related vs. indirect incident-

related).

The main contributions of the chapter are as follows:

• Provide a comprehensive framework of passengers’ behavior under service dis-

ruptions. A total of 19 possible behavior groups for passengers at different

stages of their trips are considered, which enables a more detailed modeling

framework. The behavior identification is based on when and where passengers

are making their decisions during a disruption. The method is general and can

be used for other transit systems (the resulting possible behaviors may vary

according to the context of the system, i.e., not necessarily 19)

• Propose a probabilistic behavior inference model with a specific formulation for

each of the 19 behavior groups. The model enables the estimation of the mean

and variance of the number of passengers in each group to capture passenger’s

behavior uncertainty. To the best of the authors’ knowledge, this is the first

article providing the estimation for both mean and variance of post-incident

behaviors using AFC data.

• Leverage both passengers’ historical travel trajectories and their subsequent tap-

in records after the incident to facilitate behavior inference. This is contrary to

previous studies where only the AFC data on the incident day is used.

The rest of the chapter is organized as follows. Sections 4.2 and 4.3 present the

methodology of this study. Section 4.4 discusses the case study for model application
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and the corresponding results. Section 4.5 concludes the chapter and discusses future

research directions.

4.2 Model framework

Figure 4-1 shows an overview of the model framework. There are two steps for infer-

ring passenger’s responses. At the first step, we aim to identify all possible passenger

response behaviors to the incident based on their decision-making times and locations.

Details of step 1 are shown in Section 4.2.1. At step 2, based on the results of step

1, we aim to associate each passenger to a specific response behavior by calculating

the corresponding probabilities based on the observed passenger AFC records and

his/her travel histories. The input data for the inference include AFC, AVL (auto-

mated vehicle location), and incident log. There are four different formulations for

the probability calculation, which are categorized by the used information and prop-

erties of observed AFC records. Then, we aggregate the probabilities to the mean

and variance of the number of passengers in the different response behavior groups.

Details of the step 2 are shown in Sections 4.2.2 and 4.3.

4.2.1 Passenger behavior under disruptions

A prerequisite for behavior inference is to identify possible options passengers may

have during the disruption. According to Sun et al. [89], passenger responses to a

service disruption are generally triggered when the delay time is long enough (e.g.,

greater than 30 minutes). Hence, for a meaningful analysis, this study focuses on

substantial unplanned service disruptions (i.e., blockage or shutdown of service as

opposed to reduced capacity or frequency) so that there are observable behavior

changes.

For an incident beginning at 𝑇1 and ending at 𝑇2, we consider the analysis time

period as [𝑇𝑠, 𝑇𝑒] = [𝑇1 − 𝛿1, 𝑇2 + 𝛿2], where 𝛿1 is set as the maximum travel time in

the system because all passengers tapping in before 𝑇1 − 𝛿1 are not affected. 𝛿2 is

the recovery time for the system after the incident ends, which can be pre-calculated
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Figure 4-1: Framework of the methodology

based on the smart card data [145] (i.e., we assume that after 𝑇2 + 𝛿2 the system is

fully recovered). We only consider passengers who were potentially affected by the

incident, defined as passengers who had (or were supposed to have) tap-in records

during the analysis period ([𝑇𝑠, 𝑇𝑒]) on the incident day. Passengers who are supposed

to tap in are those with historical trips indicating that they may have a rail trip during

this period, though we do not observe them on the incident day AFC data. These

passengers are considered because they may cancel their trips or use other undetected

modes (details can be found in the following sections).

Figure 4-2 summarizes possible passenger behaviors under different cases. A total

of 19 possible response behaviors are considered. The general approach to characterize

these behaviors is elaborated on below. The approach can be applied to other public
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Figure 4-2: Passenger responses to an unplanned rail disruption

transit systems to identify a similar set of possible response behaviors.

Passengers’ behavior may vary a lot depending on the stage of their trips at the

time of service disruption [146]. Therefore, all potentially affected passengers are

first divided into two groups: a) passengers in and b) out of the rail system. The

first group of passengers was on a train or inside a station platform when the incident

happened, while passengers in the second group have not entered the system yet (e.g.,

at home).

When the disruption happens, some of the stations in the rail system are blocked

(i.e. trains are not allowed to move in these stations) due to the incident. Passen-

gers who are in the blocked stations/trains are forced to leave the system. These

passengers have five options: changing to a bus line, changing to another rail line or

station, waiting until the system is restored, canceling the trip, or changing to other

undetected modes. It is worth noting that if they choose transit services (rail or bus)

again, they need to re-tap to use the alternative services. The undetected modes in-
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clude Transit Network Companies (TNC), walking, bicycling, etc. It is worth noting

that using a shuttle bus that was deployed to mitigate the incident impacts can be

categorized into “bus” or “undetected mode” depending on whether passengers are re-

quired to tap their fare card or not. If passengers are not in the blocked stations, their

trains could still move. Hence, they may not be affected by the incident. Or if they

were affected, compared with passengers in the blocked stations, they would have one

more option: transferring halfway to another line without leaving the system.

For passengers out of the system when the incident happens, if their travel routes

on the rail system are not blocked, they are not affected. Otherwise, instead of

following the original route, they may choose to use buses, use rails but change the

tap-in station, use rail by transferring at a halfway station, use other undetected

modes, cancel the trip, or delay their departure time until the system recovers.

All these behaviors can be summarized into five groups: use rail (changing route),

use rail (same route), use buses, not use public transit, and not being affected. Note

that these five alternatives are general for different transit systems and can be used

to guide the potential behavior identification. To better describe these behaviors,

we assign a specific ID to each (i.e., numbers in the red circle in Figure 4-2). These

behaviors are inferred separately based on their characteristics in the AFC data.

4.2.2 Probabilistic behavior inference

We propose a probabilistic framework to infer passengers in each behavior group using

AFC data. The probabilistic framework facilitates the inference of whether a specific

observed behavior for a passenger is due to the incident, or is typical. In this study,

we focus on open public transit systems where only tap-in information is available.

The AFC data include both bus and rail boarding records.

The key idea of the inference framework is to identify 1) whether an observed

AFC data record (e.g., transfer to bus) is atypical or not and 2) whether the atypical

behavior is owing to the incident or behavioral randomness. These two questions

are answered probabilistically (i.e., obtaining the corresponding probabilities). And

the corresponding probabilities are used to calculate the mean and variance of the
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number of passengers in each behavior group.

Figure 4-3 presents an explanatory example for the probabilistic behavior inference

method. Consider a passenger 𝑝 in the system. We observe that he/she has a transfer

record to a nearby bus stop from the incident line. In typical rule-based method

[89, 117], this passenger will be directly identified as “transferring to bus due to

incident”. However, in the probabilistic framework, we consider two possible reasons

for this observed record: 1) he/she transfers to a bus for a normal commute. 2)

he/she transfers to an alternative route due to the incident. We should only account

for the second reason as the impact of incidents. Therefore, we use historical data to

calculate the probability that “this transfer is an atypical behavior” (i.e., due to the

incident). Then, the mean and variance of the number of passengers with a specific

response behavior can be obtained from this probability (by the definition of the

Bernoulli random variable).

Figure 4-3: Illustration example of the probabilistic behavior inference

Notation

Denote 𝑆𝑖 as the set of passengers who have behavior 𝑖 in response to the incident,

𝑖 ∈ 𝒵 = {1, 2, ..., 𝑍} (behavior IDs are shown in Figure 4-2, for example, “Behavior 1”

means offloading from the train when an incident happens and using bus to respond

to the incident). Let 𝑁𝑆𝑖
be the number of passengers in set 𝑆𝑖. The day when the

incident happens is referred to as the incident day. A normal day is defined as a

day without (substantial) incidents in the analysis period and area and with the same
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day of the week as the incident day. For example, if an incident happens on Friday

[8:00 ∼ 9:00] at Line X, then a normal day can be all Fridays in the last 2 months

where there are no substantial incidents occurring during [8:00-𝛿1 ∼ 9:00+𝛿2] at Line

X.

Note that we use the term “no substantial incidents” due to the high frequency of

various types of incidents in a public transit system and it may be hard to find an

“absolute normal day” without any incidents. The selection of normal days is a trade-

off between sample sizes and accuracy. A larger number of normal days can provide

more observations to estimate the habitual behaviors of passengers. However, it may

also include days with incidents that can introduce bias. Usually, we aim to have

normal days with consistent demand and supply characteristics, and are significantly

different from the incident day (as shown in the case study, Section 4.4.4).

Suppose that we have collected the AFC data of the incident day and a total

of 𝑀 normal days. Let 𝒫 be the set of all potentially affected passengers, which is

defined as the set of all passengers with at least one AFC data record in [𝑇𝑠, 𝑇𝑒] on

the incident day or any of the 𝑀 normal days. Let 𝒫𝐻 ⊆ 𝒫 be a subset of passengers

with reliable history trips and 𝑀𝑝 be the number of normal days that passenger 𝑝 has

trips on (𝑀𝑝 ≤ 𝑀). Then 𝒫𝐻 = {𝑝 ∈ 𝒫 : 𝑀𝑝 ≥ 𝑀R}, which means passengers with

more than 𝑀R normal days with travel, where 𝑀R is a predetermined threshold to

recognize passengers with reliable history trips. In future studies, a more complicated

method to define 𝒫𝐻 can be explored considering the travel regularity [127].

Consider a passenger 𝑝 ∈ 𝒫 with a public transit trip chain { (𝑜𝑝1 , 𝑡𝑝1 ,𝑚𝑝1),(𝑜𝑝2 , 𝑡𝑝2 ,𝑚𝑝2),...,

(𝑜𝑝𝐾𝑝
, 𝑡𝑝𝐾𝑝

, 𝑚𝑝𝐾𝑝
)} within the analysis time period. 𝑜𝑝𝑘 is the origin of the 𝑘-th trip.

𝑡𝑝𝑘 is the start time (transaction time) of the 𝑘-th trip. And 𝑚𝑝𝑘 is the mode of 𝑘-th

trip (𝑚𝑘 ∈ {rail, bus}). It holds that 𝑇𝑠 ≤ 𝑡𝑝1 < 𝑡𝑝2 < ... < 𝑡𝑝𝐾𝑝
≤ 𝑇𝑒. We define

𝒫𝐹 ⊆ 𝒫 as the subset of passengers with subsequent trips after the incident on the in-

cident day, that is, 𝒫𝐹 = {𝑝 ∈ 𝒫 : 𝑝 has trips after 𝑇𝑒 on the incident day}. Accord-

ing to previous destination estimation studies for tap-in only systems [129, 130, 131],

the destination of the trip (𝑜𝑝𝑘 , 𝑡𝑝𝑘 ,𝑚𝑝𝑘) can be inferred using information of the next

trip (𝑜𝑝𝑘+1
, 𝑡𝑝𝑘+1

,𝑚𝑝𝑘+1
) (i.e., the trip chain method). The basic idea is to use the next
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tap-in location to estimate the destination of the current trip. Hence, for 𝑝 ∈ 𝒫𝐹 ,

we can obtain the destination of the trip (𝑜𝑝𝐾𝑝
, 𝑡𝑝𝐾𝑝

, 𝑚𝑝𝐾𝑝
). It is worth noting that

if the incident happened in the evening, we would extend 𝒫𝐹 to include passengers

with trips in the next morning.

As mentioned above, when a disruption happens, some of the stations in the rail

system are blocked. The set of all blocked rail stations due to the disruption is denoted

as 𝒲 .

The notation used in this study is summarized in Table 4.1.

Conceptual framework

We first outline the framework of the general inference model. For a specific behavior

𝑆𝑖, we define 𝐵𝑆𝑖
as the set of passengers with related observable behavior that can

be identified from the AFC data. The word “observable” indicates that 1{𝑝∈𝐵𝑆𝑖
} is a

known constant, where 1{·} is an indicator function which returns 1 if the event is

true and 0 otherwise. For example, 𝐵𝑆𝑖
can be a set of passengers with a bus transfer

trip during the incident period, or a set of passengers with a rail tap-in trip during

the incident period, etc. The definition of 𝐵𝑆𝑖
should satisfy that 𝑆𝑖 ⊆ 𝐵𝑆𝑖

. The goal

is to identify 𝑆𝑖 from 𝐵𝑆𝑖
.

The specification of 𝐵𝑆𝑖
depends on to what extent passengers in 𝑆𝑖 can be ob-

served in the AFC data. If the behavior of 𝑆𝑖 generates many special AFC records,

𝐵𝑆𝑖
can be defined in more detail. In this case, |𝐵𝑆𝑖

| is relatively small, which reduces

the scope for inferring 𝑆𝑖. On the other hand, if the behavior of 𝑆𝑖 does not generate

special AFC records, 𝐵𝑆𝑖
can only be defined in a general way (e.g., passengers with

a rail trip during the incident), bringing challenges in extracting 𝑆𝑖.

According to the context of 𝑆𝑖, there are two types of 𝐵𝑆𝑖
regarding their relation-

ship to the incident. For a passenger 𝑝 ∈ 𝐵𝑆𝑖
, historical information can be used to

infer whether the behavior that passenger 𝑝 is showing in 𝐵𝑆𝑖
is atypical or not. How-

ever, “atypical” may not be enough to conclude whether 𝑝 is affected by the incident

or not. For example, 𝐵𝑆𝑖
may be defined as passengers with a bus trip during the

incident period. “atypical” only indicates the bus trip is a change of the passenger’s
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Table 4.1: Notation

Variable Type Description
𝑍 Constant Total number of behaviors considered.
𝑀 Constant Total number of normal days considered.
𝑁𝑆𝑖

Random vari-
able

Number passengers in set 𝑆𝑖.

𝒫 Set The set of all potentially affected passengers.
𝒫𝐻 Set The set of passengers with reliable history trips.
𝒫𝐹 Set The set of passengers with future trips after the incident on

that day.
𝑆𝑖 Set The set of passengers with behavior 𝑖 (see Figure 4-2).
𝐵𝑆𝑖

Set A set of passengers that is defined to infer 𝑆𝑖.
𝑜𝑝𝑘 Constant Origin of the 𝑘-th trip for passenger 𝑝 within the analysis

period.
𝑡𝑝𝑘 Constant Tap-in time of the 𝑘-th trip for passenger 𝑝 within the analysis

period.
𝑚𝑝𝑘 Constant Travel mode of the 𝑘-th trip for passenger 𝑝 within the analysis

period.
𝐾𝑝 Constant Total number of public transit trips for passenger 𝑝 within the

analysis period.
𝑀𝑝 Constant Total number of normal days passenger 𝑝 has public transit

trips.
𝑇𝑠 Constant Start time of the analysis period.
𝑇𝑒 Constant End time of the analysis period.
𝑇1 Constant Incident start time.
𝑇2 Constant Incident end time.
𝑇𝑇𝑑 Constant Threshold to identify transfer trips for two consecutive tap-

ins.
𝑑𝑟 Constant Maximum walking distance for transferring to a rail station.
𝑑𝑏 Constant Maximum walking distance for transferring to a bus.
𝐷(𝑠, 𝑠′) Constant A function which returns the walking distance between station

𝑠 and 𝑠′.
1{·} Constant or

Random vari-
able

Indicator function which returns 1 if the event is true and 0
otherwise.

𝒲 Set The set of all blocked rail stations during the incident.
𝒲𝑏 Set The set of bus stops within walking distance from any of the

blocked stations.
𝒲𝑟 Set The set of all unblocked rail stations within walking distance

from any of the blocked stations.
𝑑𝑝𝑘 Random vari-

able
Inferred original destination for trip 𝑘 for passenger 𝑝.

𝒟𝑝𝑘 Set The set of all possible original destinations for trip 𝑘 for pas-
senger 𝑝.

𝑠𝑝(𝑇, 𝑑) Constant Location of passenger 𝑝 at time 𝑇 if his/her destination is 𝑑.
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habitual behavior. However, the behavioral change on that particular day may be

caused by many reasons, not necessarily the incident. To conclude 𝑝 ∈ 𝑆𝑖, 𝑝’s behav-

ior needs to satisfy both “atypical” and “change is due to the incident”. This type of

𝐵𝑆𝑖
is referred to as “indirect incident-related”. However, sometimes, if 𝐵𝑆𝑖

is speci-

fied based on a lot of information related to the incident, we can infer that “atypical”

is equivalent to “affected by the incident”. For example, if 𝐵𝑆𝑖
are passengers with

a transfer to bus stops close to the blocked rail stations after the incident, and this

behavior is atypical, we can assume this change is due to the incident because 𝐵𝑆𝑖
is

based on direct incident-related information (i.e., the transfer bus stops are close to

the blocked rail stations). This type of 𝐵𝑆𝑖
is referred to as “direct incident-related”.

Besides historical information, the subsequent trips information after the incident

can also be used. As mentioned before, the subsequent tap-in information can be used

to infer trip destinations using the trip chain method [129, 130, 131]. Though recent

studies also use historical information to infer passenger’s destination [147], for the

purpose of this study, only subsequent tap-in information is used as the destination

estimation part is not the focus of this study. Note that the proposed probabilistic

framework is quite general and any destination estimation model can be used as long

as the probability of each candidate destination can be obtained (see Section 4.3.2 for

details). Although passengers may have multiple path choices in rail systems [148],

we assume that all passengers follow the schedule-based shortest path to simplify the

formulation [149]. This assumption can be relaxed by summing over all paths with

corresponding path choice probabilities in the formulation, instead of only considering

a single path. For a passenger 𝑝, we obtain his/her original path in the rail system

as the shortest path to the inferred destination 𝑑. Based on the characteristics of

the path (explained below), we define a related event 𝑌𝑝(𝑑). Since the path is known

given 𝑑, 1{𝑌𝑝(𝑑)} is a known constant. 𝑆𝑖 can thus be inferred based on 1{𝑌𝑝(𝑑)} (i.e. the

property of the original path). For example, 𝐵𝑆𝑖
can be a set of passengers without

transfer trips during the incident period. 𝑌𝑝(𝑑) can be the event that the original

path for 𝑝 is blocked and a transfer is not available. Then if 𝑌𝑝(𝑑) is true, a passenger

𝑝 ∈ 𝐵𝑆𝑖
can only use other undetected modes or cancel trips.
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In summary, historical trips and subsequent trips after the incident are two types of

available information to infer 𝑆𝑖. Therefore, from model formulations perspective, we

can characterize the inference model in two dimensions: 1) historical trip information

vs. subsequent trip information, 2) indirect incident-related 𝐵𝑆𝑖
vs. direct incident-

related 𝐵𝑆𝑖
. We summarize the formulation in each case as follows:

• (1) “Historical trip information + direct incident-related 𝐵𝑆𝑖
” : In this

case, we have “atypical” = “affected by the incident”. Therefore,

E[1{𝑝∈𝑆𝑖}] = 1{𝑝∈𝐵𝑆𝑖
} · P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖

) (4.1)

𝑆1, 𝑆2, 𝑆4, and 𝑆12 belong to this case. P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖
) is esti-

mated based on the context of 𝑆𝑖 using historical trip information. Details of

the formulation can be found in Section 4.3.1.

• (2) “Historical trip information + indirect incident-related 𝐵𝑆𝑖
” : In this

case, we need to satisfy both “atypical” and “the change is due to the incident”

in order to identify 𝑆𝑖. Therefore,

E[1{𝑝∈𝑆𝑖}] = 1{𝑝∈𝐵𝑆𝑖
} · P(“Behavior atypical”,“Change is due to the incident” | 𝑝 ∈ 𝐵𝑆𝑖

)

(4.2)

𝑆5, 𝑆11, 𝑆14, 𝑆15, 𝑆17, 𝑆18, and 𝑆19 belong to this case. The joint probability

P(·, · | 𝑝 ∈ 𝐵𝑆𝑖
) is not estimated directly. Instead, we show that it can be

estimated using the difference of the marginal probabilities between normal

and incident days. Details of the formulation can be found in Section 4.3.3.

• (3) “Subsequent trip information only” : In this case, the event of path

properties (as a function of the inferred destination 𝑑) can help to identify 𝑆𝑖.
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Hence,

E[1{𝑝∈𝑆𝑖}] =
∑︁
𝑑

1{𝑝∈𝐵𝑆𝑖
} · 1{𝑌𝑝(𝑑)} · P(“Original destination is 𝑑” | 𝑝 ∈ 𝐵𝑆𝑖

)

(4.3)

𝑆3, 𝑆7, 𝑆10, and 𝑆16 belong to this case. Some behavior assumptions are made

when two groups are indistinguishable by the above formulation. P(“Original

destination is” 𝑑 | 𝑝 ∈ 𝐵𝑆𝑖
) is estimated based on a destination inference model

[131] with subsequent trip information. Details of the formulation can be found

in Section 4.3.4.

• (4) “Historical trip information + direct incident-related 𝐵𝑆𝑖
+ Sub-

sequent trip information” : This scenario is a combination of historical and

future information. Hence, we combine Eq. 4.1 and 4.3:

E[1{𝑝∈𝑆𝑖}] =
∑︁
𝑑

1{𝑝∈𝐵𝑆𝑖
} · P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖

)

· 1{𝑌𝑝(𝑑)} · P(“Original destination is 𝑑” | 𝑝 ∈ 𝐵𝑆𝑖
) (4.4)

𝑆8 and 𝑆9 belong to this case. Details of the formulation can be found in

Section 4.3.2.

The above cases and the corresponding formulations are used to infer whether a

specific passenger belongs to a certain group. The expected number of passengers in

the group is calculated as

E[𝑁𝑆𝑖
] =

∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆𝑖}] (4.5)

It is worth noting that there are no explicit criteria to assign the inference of 𝑆𝑖

to one of the four cases. There is a trade-off between including more information and

dealing with sample sparsity. For example, one may argue that both historical and

subsequent trip information should be included for all inferences. However, many
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passengers do not have reliable history trips or future trips (i.e. 𝑝 /∈ 𝒫𝐻 ∩ 𝒫𝐹 ).

The inference for those passengers can only be approximated by the results of 𝑝 ∈

𝒫𝐻 ∩𝒫𝐹 (details in Section 4.3). Hence, simply including more information will lead

to higher approximation errors due to sample sparsity, which is the reason that we

have four types of formulations and some of them only include either future or history

information, but not both. Determining the formulation for an 𝑆𝑖 needs empirical

knowledge and numeral tests to judge which kinds of information are more critical

for the inference.

Uncertainty

In this study, we estimate the variance of the 𝑁𝑆𝑖
(Var[𝑁𝑆𝑖

]) to quantify the un-

certainty. Var[𝑁𝑆𝑖
] captures the behavioral randomness of passengers in 𝐵𝑆𝑖

. The

behavior of a passenger in 𝐵𝑆𝑖
is atypical or not (i.e., 1{“Behavior atypical” | 𝑝∈𝐵𝑆𝑖

}) is

an indicator random variable. High behavioral randomness indicates high variance of

𝑁𝑆𝑖
because we cannot easily conclude whether a passenger’s observed behavior in the

incident day is typical or not. In this case, P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖
) is close

to 0.5 (where Var[𝑁𝑆𝑖
] reaches the maximum), which implies that the passenger’s

behavior pattern is hard to estimate from the historical trips.

Besides passengers’ inherent travel irregularity, Var[𝑁𝑆𝑖
] is also determined by

the definition of 𝐵𝑆𝑖
. If 𝐵𝑆𝑖

is specified narrowly, such as a set of passengers with

a transfer trip to bus stops near the blocked rail stations after the incident, pas-

sengers may seldom have this “complicated” behavior on normal days. If a pas-

senger has this behavior in the incident day, it is highly likely to be atypical (i.e.,

P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖
) is close to 1). In this case, the Var[𝑁𝑆𝑖

] is relatively

low. However, if 𝐵𝑆𝑖
has a very broad definition, such as a set of passengers with

a bus trip in the incident period, P(“Behavior atypical” | 𝑝 ∈ 𝐵𝑆𝑖
) may be close to

0.5 because passengers may use different modes on different normal days and it is

difficult to infer having a bus trip is atypical or not on the incident day. In this case,

the Var[𝑁𝑆𝑖
] is relatively high. Since the definition of 𝐵𝑆𝑖

is according to 𝑆𝑖, Var[𝑁𝑆𝑖
]

provides the information about whether 𝑆𝑖 is easy to be inferred by the AFC data or
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not (low variance means 𝑆𝑖 can be inferred more precisely).

4.3 Model formulation

In this section, we elaborate on the inference formulation for every behavior group.

The section is organized by the formulation cases mentioned in Section 4.2.2. How-

ever, due to the tedious derivations and some formulation duplication, we only present

the formulations for a part of behavior groups. The complete formulations can be

found in Section 4.6.

4.3.1 Historical trip information + direct incident-related 𝐵𝑆𝑖
:

Inferring 𝑆1 and 𝑆2

By definition, passengers in 𝑆1 and 𝑆2 have at least one rail tap-in record before 𝑇1

because they were in the blocked stations/trains when the incident happened. Since

passengers who decide to use the public transit system again after alighting need to

re-tap in, passengers in 𝑆1 have another bus tap-in record after 𝑇1, and passengers in

𝑆2 have another rail tap-in record after 𝑇1.

As passengers in 𝑆1 and 𝑆2 left the rail system from the blocked stations, the re-

tap-in bus/rail stations should be close to the blocked stations and the time difference

between two consecutive tap-ins should not be too large. Otherwise, they may be two

separate trips instead of a transfer. Let 𝑇𝑇𝑑 be the tap-in time difference threshold

for transferring. We assume that if 𝑡𝑝𝑘 −𝑡𝑝𝑘−1
< 𝑇𝑇𝑑, trip 𝑘 is a transfer trip following

trip 𝑘−12. Denote the walking distance threshold for passengers transferring to a bus

(resp. rail) as 𝑑𝑏 (resp. 𝑑𝑟). Then the set of bus (resp. rail) stops close to the blocked

stations is defined as 𝒲𝑏 = {𝑠 : 𝑠 is a bus station and ∃𝑠′ ∈ 𝒲 s.t. 𝐷(𝑠, 𝑠′) ≤ 𝑑𝑏}

(resp. 𝒲𝑟 = {𝑠 : 𝑠 /∈ 𝒲 is a rail station and ∃𝑠′ ∈ 𝒲 s.t. 𝐷(𝑠, 𝑠′) ≤ 𝑑𝑟}), where

𝐷(𝑠, 𝑠′) returns the walking distance between stations 𝑠 and 𝑠′.

To identify passengers in 𝑆1, we define a passenger set 𝐵𝑆1 = {𝑝 : ∃𝑘 ∈ {1, ..., 𝐾𝑝−
2This is a typical way for tap-in only public transit systems to determine transfer trips for fare

calculation. Future study may include tap-out time estimation model to better define a transfer trip
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1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1
, 𝑡𝑝𝑘+1

− 𝑡𝑝𝑘 < 𝑇𝑇𝑑, 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1
= bus, 𝑜𝑝𝑘+1

∈ 𝒲𝑏}.

𝐵𝑆1 represents passengers with a rail tap-in record before the incident and a bus

transferring tap-in record after the incident. And the second tap-in station is within

the walking distance of the blocked stations. As we described above, passengers in 𝑆1

should also in 𝐵𝑆1 (𝑆1 ⊆ 𝐵𝑆1). However, 𝑆1 and 𝐵𝑆1 are not necessarily equivalent

because passengers in 𝐵𝑆1 may transfer to a bus stop as a normal routine, that is,

they did not transfer to a bus line in response to the rail disruption. Denote the event

that 𝑝 was affected by the incident as 𝐴𝑝. Then we have

E[𝑁𝑆1 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆1}] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝐵𝑆1
} · 1{𝐴𝑝 | 𝑝∈𝐵𝑆1

}] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆1
} · P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1)

(4.6)

Note that 1{𝑝∈𝐵𝑆1
} is a constant because for every 𝑝, we observe whether it belongs

to 𝐵𝑆1 or not using the AFC data from the incident day. P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1) is calculated

as

P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1) = 1− # normal days 𝑝 showing trip records described in 𝐵𝑆1

𝑀𝑝⏟  ⏞  
Prob. that transferring to a bus stop near blocked station is a typical behavior

∀𝑝 ∈ 𝒫𝐻 .

(4.7)

Eq. 4.7 means that given a passenger with the observed behavior described in 𝐵𝑆1

on the incident day, the probability that this behavior is atypical3 equals to 1 minus

the relative frequency that the passenger has the same behavior on normal days. For

example, if 𝑝 transferred to a bus stop in 𝒲𝑏 on every normal day, then transferring

to the bus stop in 𝒲𝑏 is highly likely to be a routine, rather than a change in behavior

due to the incident (i.e., P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1) =
0

𝑀𝑝
= 0). Then, 𝑝 will not be counted into

𝑆1.

If history information of 𝑝 is unavailable or very limited (i.e., 𝑝 /∈ 𝒫𝐻), Eq. 4.7

3Formulation type 1, “atypical” = “affected by the incident” in this case
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may fail to work. In this scenario, we assume

P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1) =

∑︀
𝑝′∈𝒫𝐻 P(𝐴𝑝′ | 𝑝′ ∈ 𝐵𝑆1)

|𝒫𝐻 ∩𝐵𝑆1|
∀𝑝 /∈ 𝒫𝐻 (4.8)

which estimates the corresponding probability of passengers with little historical infor-

mation using that of passengers with enough historical information. This is a typical

way to estimate behavior of passengers without enough information in the AFC data

[131], though it may be biased considering different behavior patterns for 𝑝 ∈ 𝒫𝐻 and

𝑝 /∈ 𝒫𝐻 . There is no better way to address this issue given data limitations.

As 1{𝐴𝑝 | 𝑝∈𝐵𝑆1
} is a Bernoulli random variable with probability P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1),

the corresponding variance of 𝑁𝑆1 can be calculated as

Var[𝑁𝑆1 ] =
∑︁
𝑝∈𝒫

(1{𝑝∈𝐵𝑆1
})

2 · Var[1{𝐴𝑝 | 𝑝∈𝐵𝑆1
}]

=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆1
} · [P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1)− P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆1)

2] (4.9)

Similarly, for passengers in 𝑆2, similarly, we can define 𝐵𝑆2 = {𝑝 : ∃𝑘 ∈ {1, ..., 𝐾𝑝−

1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1
, 𝑡𝑝𝑘+1

− 𝑡𝑝𝑘 < 𝑇𝑇𝑑, 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1
= rail, 𝑜𝑝𝑘+1

∈ 𝒲𝑟}.

Then we have

E[𝑁𝑆2 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆2
} · P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆2) (4.10)

where P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆2) can be calculated in the same way as Eq. 4.7 and 4.8 by

replacing 𝐵𝑆1 with 𝐵𝑆2 . And the variance of 𝑁𝑆2 can be calculated as

Var[𝑁𝑆2 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆2
} · [P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆2)− P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆2)

2] (4.11)
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4.3.2 Historical trip information + direct incident-related 𝐵𝑆𝑖

+ subsequent trip information: Inferring 𝑆8 and 𝑆9

Passengers in groups 𝑆8 and 𝑆9 continued to use the public transit system after the

incident. Hence, they have at least one tap-in record before 𝑇1 and at least one tap-in

record after 𝑇1. The difference between 𝑆8, 𝑆9 and 𝑆1, 𝑆2 is that passengers in 𝑆8 and

𝑆9 leave the rail system at some upstream station before the blocked stations. To

differentiate 𝑆8 and 𝑆9 with other normal transfer passengers, we need to infer their

original route and consider whether the route is blocked. If their original routes are

not blocked, the transfers are not due to the incident.

We first identify 𝑆8. Consider a passenger 𝑝 ∈ 𝒫𝐹 . Suppose ∃𝑘 ∈ {1, ..., 𝐾𝑝 −

1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1
, 𝑡𝑝𝑘+1

− 𝑡𝑝𝑘 < 𝑇𝑇𝑑,𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1
= bus, and 𝑜𝑝𝑘+1

/∈

𝒲𝑏, which means 𝑝 has a rail trip before the incident and a bus transfer trip after

the incident, and the boarding stop of bus trip is not close to the blocked stations

(otherwise he/she is already considered in the inference of 𝑆1). If 𝑝 was affected by

the incident, the transferring trip 𝑘 + 1 would be an atypical behavior for 𝑝.

Denote the event “transferring is atypical for 𝑝” as 𝑇𝐴𝑝. Let (𝑜𝑝𝑘* , 𝑡𝑝𝑘* ,𝑚𝑝𝑘* ) be

the next non-transfer trip of trip 𝑘 + 1. Mathematically, 𝑘* = min{𝑘′ > 𝑘 + 1 :

𝑡𝑝𝑘′ − 𝑡𝑝𝑘+1
> 𝑇𝑇𝑑}. Given 𝑇𝐴𝑝, if without any incident, the original trip chain

for passenger 𝑝 is {..., (𝑜𝑝𝑘 , 𝑡𝑝𝑘 ,𝑚𝑝𝑘), (𝑜𝑝𝑘* , 𝑡𝑝𝑘* ,𝑚𝑝𝑘* ), ...}, the observed transfer bus

trip (𝑜𝑝𝑘+1
, 𝑡𝑝𝑘+1

,𝑚𝑝𝑘+1
) is caused by the disruption. Our goal is to use trip 𝑘* to

infer the original destination of trip 𝑘 (i.e. the destination under normal condition).

This can be done from the destination estimation model using the trip chain method

[129, 130, 131]. Let the set of all possible original destinations for trip 𝑘 be 𝒟𝑝𝑘 .

and 𝑑𝑝𝑘 the random variable representing the original destination of trip 𝑘. The

destination estimation model provides P(𝑑𝑝𝑘 = 𝑑) for any 𝑑 ∈ 𝒟𝑝𝑘 .

However, trip 𝑘* may not exist for some 𝑝 because the subsequent trip information

may not be available (e.g., 𝑝 /∈ 𝒫𝐹 ). For 𝑝 /∈ 𝒫𝐹 , the destination distribution can be
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approximated by 𝑝 ∈ 𝒫𝐹 [131]:

P(𝑑𝑝𝑘 = 𝑑) =

∑︀
𝑝′∈𝒫𝐹 :𝑜𝑝𝑘=𝑜𝑝′

𝑘

P(𝑑𝑝′𝑘 = 𝑑)

|{𝑝′ ∈ 𝒫𝐹 : 𝑜𝑝𝑘 = 𝑜𝑝′𝑘}|
∀𝑝 /∈ 𝒫𝐹 , 𝑑 ∈ 𝒟𝑝𝑘 . (4.12)

Eq 4.12 means that the probability of 𝑑𝑝𝑘 = 𝑑 for 𝑝 /∈ 𝒫𝐹 is estimated as the average

value of 𝑝 ∈ 𝒫𝐹 with the same origin.

As we assume that, for a given 𝑑𝑝𝑘 , passengers follow the shortest path [149], the

original route for 𝑝 from 𝑜𝑝𝑘 to 𝑑𝑝𝑘 can be obtained. Using automated vehicle location

(AVL) data and a transit loading model [150, 4], we can further infer the location of

passenger 𝑝 in the rail system at time 𝑇1 for a given 𝑑𝑝𝑘 . Suppose that at time 𝑇1,

𝑝 was in location 𝑠𝑝(𝑇1, 𝑑𝑝𝑘) (which corresponds to a station or some middle point

between two stations). Then, if the remaining route segment from 𝑠𝑝(𝑇1, 𝑑𝑝𝑘) to 𝑑𝑝𝑘

was blocked, 𝑝 would be affected by the incident. Let the event that the original route

of 𝑝 is blocked given the original destination is 𝑑 be 𝑅𝐵𝑝(𝑑).

We define 𝐵𝑆8 = {𝑝 : ∃𝑘 ∈ {1, ..., 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1
, 𝑡𝑝𝑘+1

− 𝑡𝑝𝑘 <

𝑇𝑇𝑑, 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1
= bus, 𝑜𝑝𝑘+1

/∈ 𝒲𝑏}, which represents passengers with a

rail tap-in record before the incident and a bus transferring tap-in record after the

incident. Then we have 1{𝑝∈𝑆8} = 1{𝑝∈𝐵𝑆8
} · 1{𝑇𝐴𝑝} ·

∑︀
𝑑∈𝒟𝑝𝑘

1{𝑅𝐵𝑝(𝑑)} · 1{𝑑𝑝𝑘=𝑑}. Note

that 1{𝑇𝐴𝑝} and 1{𝑅𝐵𝑝(𝑑)} are independent because the former is determined by the

historical trips while the later is determined by the subsequent trips after the incident.

Therefore, the number of passengers in 𝑆8 can be calculated as:

E[𝑁𝑆8 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆8}] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝑘

1{𝑝∈𝐵𝑆8
} · P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆8) · 1{𝑅𝐵𝑝(𝑑)} · P(𝑑𝑝𝑘 = 𝑑)

(4.13)

1{𝑅𝐵𝑝(𝑑)} is a constant because given the original destination and path, we can con-

clude whether the path is blocked or not. P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆8) can be calculated in the

same way as Eq. 4.7 and 4.8 by replacing 𝐵𝑆1 and 𝐴𝑝 with 𝐵𝑆8 and 𝑇𝐴𝑝, respectively.
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The variance of 𝑁𝑆8 can be calculated as

Var[𝑁𝑆8 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝑘

1{𝑝∈𝐵𝑆8
} · 1{𝑅𝐵𝑝(𝑑)}

· [P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆8) · P(𝑑𝑝𝑘 = 𝑑)− P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆8)
2 · P(𝑑𝑝𝑘 = 𝑑)2]

(4.14)

Similarly, for passengers in 𝑆9, we have 𝐵𝑆9 = {𝑝 : ∃𝑘 ∈ {1, ..., 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤

𝑇1 < 𝑡𝑝𝑘+1
, 𝑡𝑝𝑘+1

− 𝑡𝑝𝑘 < 𝑇𝑇𝑑, 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1
= rail, 𝑜𝑝𝑘+1

/∈ 𝒲𝑟}. Then:

E[𝑁𝑆9 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝑘

1{𝑝∈𝐵𝑆9
} · P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆9) · 1{𝑅𝐵𝑝(𝑑)} · P(𝑑𝑝𝑘 = 𝑑) (4.15)

Var[𝑁𝑆9 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝑘

1{𝑝∈𝐵𝑆8
} · 1{𝑅𝐵𝑝(𝑑)}

· [P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆9) · P(𝑑𝑝𝑘 = 𝑑)− P(𝑇𝐴𝑝 | 𝑝 ∈ 𝐵𝑆9)
2 · P(𝑑𝑝𝑘 = 𝑑)2]

(4.16)

4.3.3 Historical trip information + indirect incident-related

𝐵𝑆𝑖
: Inferring 𝑆5 and 𝑆11

𝑆5 and 𝑆11 are people who were already in the rail system and decided to cancel their

trips because of the rail disruption. The AFC records of passengers in 𝑆5 and 𝑆11 can

be described as 𝐵𝑆5,11 = {𝑝 : 𝑡𝑝𝐾𝑝
≤ 𝑇1, 𝑚𝑝𝐾𝑝

= rail}, which means passengers having

at least one rail tap-in record before 𝑇1 and no tap-in record between 𝑇1 and 𝑇𝑒.

Consider a passenger 𝑝 ∈ 𝒫𝐹 ∩𝒫𝐻 . Let (𝑜𝑝𝑘* , 𝑡𝑝𝑘* ,𝑚𝑝𝑘* ) be the next non-transfer

trip following trip 𝐾 (i.e., 𝑘* = min{𝑘′ > 𝐾 : 𝑡𝑝𝑘′ − 𝑡𝑝𝐾𝑝
> 𝑇𝑇𝑑}). As 𝑘* is the

next non-transfer trip right after 𝐾, 𝑝 had no non-transfer trips within [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘* ] on

the incident day. We use an example to illustrate the AFC records that may help

to identify 𝑆5 and 𝑆11. Consider a passenger who plans to go to the supermarket on

the incident day. He/she was in the system when the incident happened. Suppose

that he/she decided to cancel his/her trip and return home. Then he/she would not

have the typical returning trip from the supermarket. In this situation, 𝑘* may be
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some other trips late in the evening or the first trip in the next day. However, in

the historical AFC records. the typical trip right after 𝐾𝑝 should be the returning

trip from the supermarket. Therefore, we can assume that if passenger 𝑝 has high

probability of having trips within [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘* ] on normal days, he/she is very likely to

cancel the trip 𝐾𝑝 because the typical following trip for 𝐾𝑝 that is supposed to occur

in [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘* ] does not exist on the incident day.

However, it is worth noting that since we only have public transit trip records,

passengers who do not cancel trips but use other travel modes to replace both trip

𝐾𝑝 and the returning trip may also be identified as “cancel trips”. Consider the

example above, if a passenger takes Uber to the supermarket and then takes Uber

back. He/she would be identified as “cancel trips”. However, the information in AFC

data is not enough to differentiate these two groups of passengers. Hence, in this

study, we assume that the incident only changes passengers’ mode choices of trips

in the analysis period, which implies that the returning trip travel mode for the

passenger will be public transit if he/she usually uses public transit. Note that this

assumption can be relaxed if we focus on estimating the number of passengers “not

using public transit” in an aggregated framework (see Figure 4-2).

Denote the event that passenger 𝑝 ∈ 𝐵𝑆5,11 canceled trip 𝐾𝑝 after the incident as

𝐶𝑇𝑝. Based on the assumption above, we can derive the probability as

P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11)

= 1−
# normal days 𝑝 has rail trips in [𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝

but no trip in [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘* ]

# normal days 𝑝 has rail trips in [𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝

(4.17)

∀𝑝 ∈ 𝒫𝐻 ∩ 𝒫𝐹

The second term in Eq. 4.17 represents the conditional probability that there is no

trip in [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘* ] on normal days given that the passenger already has a rail trip in

[𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝
. The lower is this probability, the higher is the probability

that this behavior is atypical (i.e. the passenger actually cancels his/her trip) on the
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incident day.

For 𝑝 /∈ 𝒫𝐻 ∩𝒫𝐹 , similar to Eq. 4.8, we can approximate the probability by that

of passengers in 𝒫𝐻 ∩ 𝒫𝐹 :

P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11) =

∑︀
𝑝′∈𝒫𝐻∩𝒫𝐹 P(𝐶𝑇𝑝′ | 𝑝 ∈ 𝐵𝑆5,11)

|𝒫𝐻 ∩ 𝒫𝐹 ∩𝐵𝑆5,11|
∀𝑝 /∈ 𝒫𝐻 ∩ 𝒫𝐹 (4.18)

As mentioned before, passengers may cancel trips due to many reasons, not nec-

essarily because of the incidents. Therefore, we need to consider the event 𝐶𝑇𝑝 ∩𝐴𝑝,

which represents passengers canceling trips because of the incident. However, di-

rectly calculating P(𝐶𝑇𝑝, 𝐴𝑝 | 𝑝 ∈ 𝐵𝑆5,11) is difficult. The following equations show

an aggregate calculation approach:

E[𝑁𝑆5 +𝑁𝑆11 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆5∪𝑆11}] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · P(𝐶𝑇𝑝, 𝐴𝑝 | 𝑝 ∈ 𝐵𝑆5,11)

=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11) · P(𝐴𝑝 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11)

=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11)(1− P((𝐴𝑝)

𝑐 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11))

= 𝑁𝐶𝑇 − �̃�𝐶𝑇 (4.19)

where

𝑁𝐶𝑇 :=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11) (4.20)

�̃�𝐶𝑇 :=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11) · P((𝐴𝑝)

𝑐 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11) (4.21)

𝑁𝐶𝑇 is the expected number of passengers who canceled trips on the incident day (not

necessarily due to the incident) and �̃�𝐶𝑇 is the expected number of passengers who

canceled trips on the incident day and the reason is not the incident. We can approx-

imate �̃�𝐶𝑇 as the number of passengers canceling trips on normal days. Specifically,

denote �̃�
(𝑗)
𝐶𝑇 as the number of canceling-trip passengers calculated by applying Eq.
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4.20 to the AFC data of 𝑗-th normal day. Then we have

E[𝑁𝑆5 +𝑁𝑆11 ] = 𝑁𝐶𝑇 − �̃�𝐶𝑇 = 𝑁𝐶𝑇 −
∑︀𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝑇

𝑀
(4.22)

To calculate the variance of 𝑁𝑆5 +𝑁𝑆11 , we assume

P(𝐴𝑝 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11) =
𝑁𝐶𝑇 − �̃�𝐶𝑇

𝑁𝐶𝑇

. ∀𝑝 ∈ 𝐵𝑆5,11 (4.23)

Eq. 4.23 means the probability that 𝑝’s behavior is atypical given that he/she canceled

trips equals the expected number of passengers canceling trips due to the incident

divided by the total expected number of passengers canceling trips (not necessary due

to the incident). It implies that we are using population statistics to approximate the

individual probability. Then, we can calculate the variance as:

Var[𝑁𝑆5 +𝑁𝑆11 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆5,11
} · [P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11)P(𝐴𝑝 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11)−

P(𝐶𝑇𝑝 | 𝑝 ∈ 𝐵𝑆5,11)
2P(𝐴𝑝 | 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11)

2]

(4.24)

It is worth noting that the number of passengers canceling trips due to the incident

is expected to be small. Therefore, Eq. 4.22 may be smaller than zero due to variations

in the AFC data. This means that there is no big difference between the number

of canceling trips passengers (Eq. 4.20) on the incident day and on normal days,

implying the number of passengers who canceled trips due to the incident is negligible.

In this situation, we simply let E[𝑁𝑆5 +𝑁𝑆11 ] = 0 and Var[𝑁𝑆5 +𝑁𝑆11 ] = 0.

4.3.4 Subsequent trip information only: Inferring 𝑆3, 𝑆7 and

𝑆10

Identifying 𝑆3, 𝑆7 and 𝑆10 is similar to identifying 𝑆8 and 𝑆9. The inference leverages

the subsequent trip information to infer the original routes. We consider these three

groups together because they have the same AFC records in the incident day (i.e., at
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least one rail tap-in record before 𝑇1 and no tap-in record between 𝑇1 and 𝑇𝑒.). We

define the corresponding set as 𝐵𝑆3,7,10 = {𝑝 : 𝑡𝑝𝐾𝑝
≤ 𝑇1, 𝑚𝑝𝐾𝑝

= rail}.

Passengers in 𝑆7 are those who transfer at some upstream stations (not go out)

if their original rail route is blocked. For 𝑝 in 𝐵𝑆3,7,10 ∩ 𝒫𝐹 , let 𝑘* be his/her next

non-transfer trip after trip 𝐾𝑝. Then, using the same way as in Section 4.3.2, we

can infer the destination distribution for trip 𝐾𝑝 (i.e. obtain P(𝑑𝑝𝐾𝑝
= 𝑑) for any

𝑑 ∈ 𝒟𝑝𝐾𝑝
), as well as their locations when the incident happened (i.e. 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝

)).

For a given 𝑑𝑝𝐾𝑝
, if the original route from 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝

) to 𝑑𝑝𝐾𝑝
is blocked, as we do

not observe another tap-in record in [𝑇1, 𝑇2], 𝑝 would only have three options: 1)

transferring to alternative routes from 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝
) to 𝑑𝑝𝐾𝑝

without going out of the

rail system (𝑆7), 2) using other undetected modes (𝑆3 + 𝑆10), and 3) canceling the

trip (𝑆5+𝑆11). This section focuses on the first two behaviors. It is worth noting that

passengers can transfer only if there exist alternative routes from 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝
) to 𝑑𝑝𝐾𝑝

within the rail system. Given an inferred original destination 𝑑 ∈ 𝒟𝑝𝐾𝑝
, we denote

the event that 𝑝’s original route is blocked but transfer is available as 𝑅𝐵𝑇𝐴𝑝(𝑑).

We assume that passengers would not cancel trips when alternative routes were

available. Then, if 𝑅𝐵𝑇𝐴𝑝(𝑑) was true, 𝑝 could either use intra-system transferring

or use other undetected modes. However, given the data limitations, there is no

available information to differentiate these two behaviors. We, thus, assume that the

probability of using rail if a transfer is available, given the destination 𝑑 of passenger 𝑝,

is 𝛼𝑝,𝑑, that is, P(1{𝑈𝑅𝑇𝐴𝑝|𝑑} = 1) = 𝛼𝑝,𝑑, where 𝑈𝑅𝑇𝐴𝑝|𝑑 is the event that passenger

𝑝 will use rail if a transfer is available given the destination is 𝑑. 𝛼𝑝,𝑑 can be estimated

using a discrete choice model (DCM) with the utility expressed as a function of the

travel cost, travel time of different travel modes (including transfer by rail, TNC, etc.)

[132]. Given 𝑑, travel cost and travel time of different travel modes can be obtained

from the Google Map API, and the parameters in the DCM can be estimated from

survey data [106].

Notice that 1{𝑈𝑅𝑇𝐴𝑝|𝑑} is independent of 1{𝑑𝑝𝐾=𝑑} (i.e., the conditional indepen-

166



dence). And based on the above assumptions, we have

E[𝑁𝑆7 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆7}] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · 𝛼𝑝,𝑑 · P(𝑑𝑝𝐾 = 𝑑)

(4.25)

And the corresponding variance is

Var[𝑁𝑆7 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · [𝛼𝑝,𝑑 · P(𝑑𝑝𝐾 = 𝑑)− 𝛼2

𝑝,𝑑 · P(𝑑𝑝𝐾 = 𝑑)2]

(4.26)

Passengers in 𝐵𝑆3,7,10 whose original routes were blocked and a transfer is not

available have two options: 1) using other undetected modes or 2) canceling trips.

Hence, we can use the total number of transfer-unavailable passengers minus the

number of canceling-trip passengers to represent passengers using other undetected

modes (𝑆3 +𝑆10). Note that when a transfer is available, passengers with probability

1−𝛼𝑝,𝑑 may choose other undetected modes, and should also be counted into 𝑆3+𝑆10.

Given an inferred original destination 𝑑 ∈ 𝒟𝑝𝐾𝑝
, denote the event that 𝑝’s original

route is blocked and transfer is not available as 𝑅𝐵𝑇𝑁𝑝(𝑑). Then,

E[𝑁𝑆3 +𝑁𝑆10 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾𝑝

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · (1− 𝛼𝑝,𝑑) · P(𝑑𝑝𝐾𝑝

= 𝑑) +

∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾𝑝

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝑁𝑝(𝑑)} · P(𝑑𝑝𝐾𝑝

= 𝑑) −

E[𝑁𝑆5 +𝑁𝑆11 ] (4.27)

The first term in Eq. 4.27 indicates passengers with available intra-system transfer

routes but still choosing other undetected modes. The second term represents the

total number of passengers without intra-system transfer routes. And the third term

(E[𝑁𝑆5 + 𝑁𝑆11 ]) is the number of passengers canceling trips, which is calculated in

Section 4.3.3.

According to Section 4.3.3, 𝑁𝑆5 +𝑁𝑆11 =
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆5,11
} ·1{𝐶𝑇𝑝,𝐴𝑝 | 𝑝∈𝐵𝑆5,11

}. And

167



1{𝑈𝑅𝑇𝐴𝑝|𝑑} · 1{𝑑𝑝𝐾𝑝
=𝑑} is independent of 1{𝐶𝑇𝑝,𝐴𝑝 | 𝑝∈𝐵𝑆5,11

} because the choice behav-

ior (1{𝑈𝑅𝑇𝐴𝑝|𝑑}) is estimated from survey data, the destination inference (1{𝑑𝑝𝐾𝑝
=𝑑})

is based on subsequent trip information, while the estimation of canceling trips (

1{𝐶𝑇𝑝,𝐴𝑝 | 𝑝∈𝐵𝑆5,11
}) is based on historical trip information. So, the variance can be

calculated as

Var[𝑁𝑆3 +𝑁𝑆10 ]

=
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · [(1− 𝛼𝑝,𝑑) · P(𝑑𝑝𝐾 = 𝑑)− (1− 𝛼𝑝,𝑑)

2 · P(𝑑𝑝𝐾 = 𝑑)2] +

∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10
} · 1{𝑅𝐵𝑇𝑁𝑝(𝑑)} · [P(𝑑𝑝𝐾 = 𝑑)− P(𝑑𝑝𝐾 = 𝑑)2] + Var[𝑁𝑆5 +𝑁𝑆11 ]

where Var[𝑁𝑆5 +𝑁𝑆11 ] is obtained in Section 4.3.3.

4.4 Case study

4.4.1 Chicago Transit System

We use data from the CTA transit system as the case study because this research

focuses on open public transit systems with only tap-in information and CTA is an

open system.

CTA is the second-largest transit system in the United States, providing services

in Chicago, Illinois, and some of its surrounding suburbs. The transit network consists

of the Chicago "L" (rail) and CTA bus services. It operates 24 hours each day and

on an average weekday provides 0.84 and 0.81 million rides on buses and trains,

respectively [40]. The map of the CTA rail system is shown in Figure 4-4. The rail

system consists of eight lines (named by color) and the "Loop". The Loop, located

in the Chicago downtown area, is the 2.88 km long circuit of elevated rail that forms

the hub of the Chicago rail system. Its eight stations account for around 10% of all

weekday boardings on the CTA trains.
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Figure 4-4: CTA rail system map

Two data sources are used in this study: the AFC transaction data and train

tracker (or AVL) data. CTA’s AFC system is entry-only as passengers only use their

fare cards when entering a rail station or boarding a bus. No information about a trip’s

destination is directly provided. The AVL system provides trains’ arrival/departure

times at each station.

4.4.2 Disruption background

The rail disruption used in this study happened on September 24, 2019. At 9:09AM,

two trains collided at the Sedgwick station on the Brown line (see Figures 4-4 and 4-

5). This collision caused an interruption in service with five stations near Sedgwick on

both Purple and Brown lines which are paralleled in this area being blocked (Figure 4-

5). The disruption lasted for 70 minutes and ended at 10:19 AM when trains returned

to normal operations.

The reasons for choosing this incident are as follows: 1) It is a substantial un-

planned service disruption that can trigger observable behavior changes. 2) The

incident area has enough alternative services (such as nearby rail lines, bus routes,

etc.) to cover 19 possible behaviors so that we can illustrate the proposed model’s

performance.
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When the incident happened, passengers who were in blocked stations and trains

were cleared out of the system. The station closure sign was placed outside the fare

collection gate in blocked stations, reminding passengers about the service suspension.

CTA informed passengers about the incident from both the Ventra app (CTA user

app to manage and pay fares on CTA) and CTA Tweets right after the disruption.

All passengers in the system were informed of train and platform announcements.

During the service interruption, CTA provided bus shuttle services between Fuller-

ton and Merchandise Mart. People who were forced to leave their trains from the

blocked stations would re-tap-in if they decided to use CTA normal bus or rail services

and were only charged a small transfer fee4. However, no tap-in is needed for shuttle

bus users. Hence, the shuttle bus is defined as an undetected mode in this study.

Figure 4-5: Rail disruption case

4.4.3 Parameter settings

Based on the incident information, the incident start time is 𝑇1 = 9 : 09 AM and

end time 𝑇2 = 10 : 19 AM. 𝛿1 = 𝛿2 = 60 min is used according to the network scale

and the analysis of system recovery time [145]. Therefore, the analysis period is from

4Sometimes there is no need to re-tap-in, depending on whether the control center has informed
the CTA staff working in rail stations and bus drivers to allow free rides, and whether passengers
asked for free rides due to the incident. In this study, we assume all passengers would re-tap-in
according to the observation in the AFC data
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𝑇𝑠 = 8 : 09 AM to 𝑇𝑒 = 11 : 19 AM. The normal days are selected as all Fridays

(except for the incident day) in September and October, 2019.

The time threshold for transferring 𝑇𝑇𝑑 = 2 hours is used based on the CTA fare

system. The walking distance threshold for bus and rail systems are set as 𝑑𝑏 = 0.7 km

and 𝑑𝑟 = 1.2 km, respectively. These two numbers are slightly higher than the typical

public transit transfer distance [151] so as to capture the increase in wiliness-to-walk

during service disruptions.

As discussed before, 𝛼𝑝,𝑑 and 𝛽𝑝 can be calculated based on the passenger’s travel

time and travel cost for different choices (including canceling trips) using DCM. The

parameters in the DCM can be estimated from survey data or extracted from previous

survey-based studies [85, 106]. The reason for using 𝛼𝑝,𝑑 and 𝛽𝑝 is that, from AFC

data alone, some groups of passengers cannot be identified as they have the same

AFC transactions. AFC data only allows estimating 𝑁𝑆3 +𝑁𝑆7 +𝑁𝑆10 (the number of

passengers using intra-system transfers or not using public transit) and 𝑁𝑆17 + 𝑁𝑆18

(the number of passengers out of the system when the incident happens and not using

public transit) as a whole. Model-based inferences are necessary for differentiating

these groups. In this study, as we focus on a data-driven approach, the model-based

parameters are set as 𝛼𝑝,𝑑 = 0.95, 𝛽𝑝 = 0.9 for all 𝑝 and 𝑑 for simplicity. These values

are based on the sample statistics of CTA riders who participated in the survey about

travel mode choices during incidents [106].

4.4.4 Descriptive analysis

For a better understanding of the incident, we show the demand patterns of three rail

lines (Brown, Purple, and Red) and bus stations around the incident area (i.e., 𝒲𝑏).

The line-level demand is calculated as the sum of all station demands in the line.
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(a) Brown Line (b) Purple Line

(c) Red Line (d) Nearby bus stations

Figure 4-6: Demand comparison for normal days and the incident day. A green thin
line represents the demand curve for a single normal day. The green shade areas
represent the ±standard deviation. The demand change is calculated as the total
number of tap-ins during the incident period (9:09 - 10:19 AM) on the incident day
minus that of the normal day average.

Figure 4-6 shows the comparison of the number of tap-in passengers on the in-

cident day and normal days (aggregated by 15-minutes interval). We observe that

the normal day demand patterns are relatively consistent compared to the incident

day, which enables us to differentiate behavioral discrepancy on the incident day. As

expected, the demand on the Brown and Purple Lines (interrupted by the incident)

both decreased during the incident (Figures 4-6a and 4-6b). And it gradually returned

to normal with the end of the incident. As the Red Line runs adjacent to the Brown
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and Purple Lines for a large portion (see Figure 4-5) in the incident area and it is not

suspended, we see a significant increase in demand during the incident period with a

return to normal after the incident is over (Figures 4-6c). In terms of the nearby bus

stops, the demand pattern is similar to that of the Red Line.

In terms of the demand change numbers, we see that the demand increase on

the Red Line (1,413) is much higher than that in the nearby bus stations, implying

that most of the passengers choose the Red Line as the alternative. Note that the

total demand decrease in Brown and Purple lines is slightly smaller than the total

demand increase due to the fact that some passengers may first tap into the incident

lines and then leave. This means that the actual demand decrease is higher than

680 + 506 = 1, 186.

4.4.5 Rule-based benchmark models

We choose the rule-based deterministic method that has been used in previous studies

[89, 117] as the benchmark model. The rule-based method directly maps passengers

with observed behavior (𝐵𝑆𝑖
) to those who are influenced by the incident (𝑆𝑖). Note

that as this study considers different behavior sets from those of previous studies, we

cannot use their rules to classify passengers. For a fair comparison, we use the rule

defined in our study (𝐵𝑆𝑖
) as the criterion. Recall that there are four formulations in

Section 4.2.2 to infer passengers’ responses. For the rule-based model, the number of

formulations reduces to two because some cases share the same formulation:

• “Historical trip information + direct incident-related 𝐵𝑆𝑖
” and “His-

torical trip information + indirect incident-related 𝐵𝑆𝑖
” : In the rule-

based method, we assume 𝑝 ∈ 𝐵𝑆𝑖
is equivalent to 𝑝 ∈ 𝑆𝑖. Therefore, eliminating

the probability component in Eqs. 4.1 and 4.2, we have

1{𝑝∈𝑆𝑖} = 1{𝑝∈𝐵𝑆𝑖
} (4.28)

𝑆1, 𝑆2, 𝑆4, 𝑆12, 𝑆5, 𝑆11, 𝑆14, 𝑆15, 𝑆17, 𝑆18, and 𝑆19 belong to this case.
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• “Subsequent trip information only” and “Historical trip information

+ direct incident-related 𝐵𝑆𝑖
+ Subsequent trip information” : In this

case, we first infer a destination 𝑑 for the passenger. Then, eliminating the

probability component in Eqs. 4.3 and 4.4, we have

1{𝑝∈𝑆𝑖} = 1{𝑝∈𝐵𝑆𝑖
} · 1{𝑌𝑝(𝑑)} (4.29)

The estimated number of passengers in group 𝑆𝑖 is calculated as.

�̂�𝑆𝑖
=
∑︁
𝑝∈𝒫

1{𝑝∈𝑆𝑖} (4.30)

Since this is a deterministic method, variance information is not available.

4.4.6 Model validation with synthetic data

Synthetic data generation

Since there are no available observations for passengers’ actual choices, the model

validation is conducted with a simulation-based synthetic data set generated from

the actual AFC data. The generation process is as follows. And the illustration

diagram is shown in Figure 4-7.

Figure 4-7: Diagram for synthetic data generation

Step 1: Sample intended trajectories. For each passenger 𝑝 who has used

the CTA system in any of 𝑀 normal days (i.e., 𝑀𝑝 ≥ 1), we randomly sample one
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normal day ID (from 1 to 𝑀), denoted 𝑖𝑝. If the passenger does not have an AFC

record on the 𝑖𝑝-th normal day, we assume that he/she did not use public transit on

the incident day. Otherwise, the AFC records on the 𝑖𝑝-th normal day are treated as

his/her intended trajectory. We assume that, on the incident day, passenger 𝑝 would

follow the same travel trajectory as the 𝑖𝑝-th normal day (i.e., tap-in and tap-out

records) if there was no incident. For all intended trajectories, the public transit trip

destinations are inferred from the destination estimation model [131].

Step 2: Generate synthetic AFC data for the incident. The data from step

1 are the passenger “intended” trajectories under normal conditions. We also need to

generate the “actual” AFC records subject to the incident at Sedgwick station (see

Section 4.4.2). Specifically, with the intended trajectories of all passengers, we can

infer their locations when the incident occurs based on a transit assignment model

(see Section 4.3.2). For the purpose of model validation, we assume that passengers’

behavior follows the diagram in Figure 4-2. From passengers’ locations and intended

routes, we can identify all affected and unaffected passengers based on whether their

original routes are blocked or not. For all affected passengers, we first enumerate

their possible choices based on the stage of the trip they are at when the incident

occurs (e.g., at the blocked stations, in the system but not at blocked stations, outside

the system, etc.) and availability of different travel modes. Then, each passenger is

assigned an available mode based on the choice probabilities. For this application, the

choice probabilities are calculated using the behavior model in Rahimi et al. [106] and

Lin et al. [85]. If the passenger is assigned with public transit, we find the available

nearby bus or alternative rail lines for him/her and calculate his/her tap in time

based on the walking distance. The new tap-in record is added to the synthetic data

on the incident day. For passengers who decide to wait until the system recovers,

we assume they all wait outside the blocked stations and tap in right after 𝑇2. Then

new AFC records are added to the synthetic data. If the passenger is out of the

system when the incident happens and is assigned with an undetected travel mode or

canceling trips, we remove his/her AFC transaction in [𝑇𝑠, 𝑇𝑒]. For passengers in the

system deciding to cancel their trips, we remove their subsequent AFC transactions
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(i.e., returning trips) as assumed in Section 4.3.3. The new AFC records are treated

as synthetic data on the incident day (where the incident does happen).

The synthetic AFC data on the incident day and passengers’ “true” choices are

then used as the ground truth for model validation. Data generation and model

estimation processes are replicated 15 times.

Validation criteria

Since the proposed model can output the expected number of passengers in each

behavior group (i.e., E[𝑁𝑆𝑖
]) and corresponding variance (i.e., Var[𝑁𝑆𝑖

]), it is worth

validating both estimates. The validation of E[𝑁𝑆𝑖
] is straightforward. As in the

synthetic data we have the “true” value of 𝑁𝑆𝑖
, a comparison between the “true”

𝑁𝑆𝑖
and the estimated E(𝑁𝑆𝑖

) can be conducted (For the benchmark model, the

comparison is against �̂�𝑆𝑖
). Since the data generation and model estimation processes

are replicated 15 times, the “true” average of 𝑁𝑆𝑖
and estimated E[𝑁𝑆𝑖

] are compared

(Figure 4-8).

To validate Var[𝑁𝑆𝑖
], we notice that the “true” 𝑁𝑆𝑖

in each replication of the syn-

thetic data can be seen as a sample drawn from the underlying behavioral distribution.

This distribution is a reflection of passenger’s choice probabilities and inferred desti-

nation distribution. Therefore, the sample variance of 𝑁𝑆𝑖
over the 15 replications can

be seen as the “true” Var[𝑁𝑆𝑖
], which is compared with the estimated Var[𝑁𝑆𝑖

] (Figure

4-9). Note that since we have 15 estimated Var[𝑁𝑆𝑖
] from different replications, the

average value is used for comparison.

To quantify the estimation errors over all behavior groups, we calculate the root

mean square error (RMSE) and mean absolute percentage error (MAPE) as follows:

RMSE(E[·]) =

√︃∑︀𝑍
𝑖=1(�̄�𝑆𝑖

− Ē[𝑁𝑆𝑖
])2

𝑍
, (4.31)

MAPE(E[·]) = 1

𝑍

𝑍∑︁
𝑖=1

|�̄�𝑆𝑖
− Ē[𝑁𝑆𝑖

]|
�̄�𝑆𝑖

, (4.32)

where �̄�𝑆𝑖
(resp. Ē[𝑁𝑆𝑖

]) is the average value of the “true” 𝑁𝑆𝑖
(resp. estimated
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E[𝑁𝑆𝑖
]) over the 15 replications. The RMSE and MAPE of Var[𝑁𝑆𝑖

] are calculated

in a similar way.

Results

Model estimation results with synthetic data are shown in Figures 4-8 and 4-9. Note

that we exclude the results of 𝑁𝑆6 and 𝑁𝑆13 (number of not affected passengers) in

the graph as their values are too large and may distort the comparison. In Figure

4-9, the standard deviations (i.e.,
√︀

Var[𝑁𝑆𝑖
]) are shown instead of variance for unit

consistency.

Figure 4-8 presents the estimated results of E[𝑁𝑆𝑖
] (probabilistic model) and �̂�𝑆𝑖

(rule-based). Results show that the probabilistic model can estimate passenger’s

response behaviors with an RMSE = 144 and MAPE = 20.5%. It significantly out-

performs the rule-based benchmark model (RMSE = 536 and MAPE = 60.3%). The

absolute errors of the probabilistic model are relatively large for E[𝑁𝑆16 ] and E[𝑁𝑆7 ].

This may be due to the fact that there are around 30% passengers without future

information for destination inference. Their destination distribution is approximated

by the inferred population (Eq. 4.12), leading to estimation errors. In terms of the

rule-based model, it has a system error (overestimation) because it does not account

for the fact that some observed behaviors are due to behavior randomness, rather

than the impact of incidents.

Figure 4-9 presents the estimation results for
√︀

Var[𝑁𝑆𝑖
]. Note that the rule-based

model cannot output estimated variance, thus is not plotted in the figure. Results

show that the probabilistic model can capture the patterns of standard deviation for

different behavior groups well. The RMSE is 4.4 and MAPE is 69.8%, which is higher

compared to the error of the expected values. This is reasonable because variance is

the second moment which in general is harder to estimate than the first moment (i.e.,

expectation).
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Figure 4-8: Estimation results of expectations with synthetic data

Figure 4-9: Estimation results of standard deviations with synthetic data

4.4.7 Model application with real-world data

Results

In the real-world data, we only implement the probabilistic method. Table 4.2 sum-

marizes the estimation results for the real-world data from the CTA system. Overall,

most of the passengers (97.43%) are not affected by the incident. This is reasonable

because the incident only affected a small area. 69.51% of all affected passengers

choose to use rail by changing routes. This is expected because the Red Line is a
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good substitution for the blocked Brown and Purple lines. Most of the OD pairs can

be connected by the Red line when the Brown and Purple lines do not work. 6.57%

of passengers choose to wait or delay their departure times (i.e., using rail without

changing routes). 15.72% choose to use buses while 8.09% choose to not use public

transit.

Table 4.2: Passenger behavior estimation results

Behavior

(Prop.; Impacted Prop.2)
Group Mean

Variance

(Coeff. of variation1, %)
Proportion (%)

Proportion

(Impacted2, %)

Use rail changing route S2 595 157.4 (2.11) 0.25 9.61

(1.79%; 69.51%) S7 1282 1005.7 (2.47) 0.53 20.71

S9 56 49.0 (12.5) 0.02 0.9

S15 831 675.5 (3.13) 0.35 13.43

S16 1538 2639.4 (3.34) 0.64 24.85

Use rail not changing route S4+S12 48 11.5 (7.07) 0.02 0.78

(0.17%; 6.57%) S19 365 295.9 (4.71) 0.15 5.9

Use bus S1 315 87.8 (2.97) 0.13 5.09

(0.40%, 15.72%) S8 202 170.5 (6.46) 0.08 3.26

S14 456 412.9 (4.46) 0.19 7.37

Not use public transit S3+S10 291 255.8 (5.5) 0.12 4.7

(0.21%, 8.09%) S17 180 180.2 (7.46) 0.07 2.91

S5+S11 10 10.4 (32.18) 0 0.16

S18 20 20.0 (22.39) 0.01 0.32

No impact S6 63503 1748.1 (0.07) 26.37 N.A.

(97.43%, N.A.) S13 171085 4223.9 (0.04) 71.06 N.A.
1: Coefficient (Coeff.) of variation is calculated as the standard division divided by the mean.
2: Impacted proportion (prop.) is the proportion within all affected passengers (excluding S6 and S13).

The variance in Table 4.2 captures the behavioral randomness of 𝑆𝑖 and how much

information of 𝑆𝑖 can be captured in 𝐵𝑆𝑖
by AFC data (see Section 4.2.2). Generally,

the variances are proportional to the means. The coefficients of variation for 𝑁𝑆1

and 𝑁𝑆2 are low, meaning these two behaviors are relatively easy to be captured by

AFC data. This is reasonable because multiple tap-in records are generated by these

behaviors, leading to the direct incident-related 𝐵𝑆𝑖
. Canceling trips and using other

undetected modes have a relatively high coefficient of variation. This means these

two behaviors are hard to be estimated using the AFC data.
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Figure 4-10 shows the behavior distribution for passengers in the rail system

when the incident happened. 46% of those passengers choose the inside rail transfer

(i.e. transfer without leaving the rail system). This is reasonable because passengers

coming from stations north of the blocked stations (main morning peak demand)

have multiple rail transfer stations (such as Belmont and Fullerton) that connect

the suspended Brown and Purple lines to the Red line (see Figure 4-5). This allows

passengers to conveniently continue to use the rail system without leaving the system.

19% and 23% of passengers choose to leave the system and transfer to a bus line

and other rail stations, respectively. Around 10% of passengers choose to use other

undetected modes. And only a small proportion of passengers choose to wait (2%)

or cancel their trips (0.3%). Overall, the estimated proportions of different behaviors

are reasonable.

Figure 4-11 shows the behavior distribution for all affected passengers out of the

rail system when the incident happened. Similar to the results above, most of those

passengers (45%) chose to transfer to another rail line without leaving the system.

25% of them changed tap-in stations and 13% chose to use buses. We also observe

that 11% of passengers delayed their departure time and 5% used other undetected

modes. Only around 1% of passengers canceled their trips. Compared to the results

above, we find there is a decrease in the percentage of passengers using buses and

other undetected modes and an increase in using rail. This is reasonable because

when passengers are out of the system, they are more flexible in choosing rail routes,

thus more likely to keep using rail services.

Analysis of real-world results

Though there is no direct validation for the estimation results using real-world data,

we propose two indirect approaches to discuss the reasonableness of the results.

The first is to compare the ridership increase in bus stops and rail stations that

are close to the blocked stations (i.e., 𝒲𝑏 and 𝒲𝑟). The ridership increase at these

bus stops and rail stations should be similar to (slightly larger than) 𝑁𝑆1 and 𝑁𝑆2 ,

respectively. “Slightly larger” is because some ridership increase may be passengers
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Figure 4-10: Behavior distribution for passengers in the rail system when the inci-
dent happened (texts in boxes are behavior description, number of passengers, and
proportion, respectively).

Figure 4-11: Behavior distribution for passengers out of the rail system when the
incident happened.

living in the nearby neighborhoods, which do not belong to 𝑆1 and 𝑆2. The ridership

increase is calculated as the number of tap-in passengers during the incident period

minus the mean on normal days. The ridership increase for nearby bus stops is 401

passengers (slightly larger than the estimated E[𝑁𝑆1 ] = 315), and for rail stations 720

passengers (slightly larger than the estimated E[𝑁𝑆2 ] = 595), which is as expected.

The second approach is based on the CTA incident logs. CTA incident logs report

that “run 505 (Purple line) unloads around 300 customers” and “run 416 (Brown line)

unloads around 500 customers”. According to the AVL data, these two trains are

the only trains that unloaded passengers. Assuming that passengers who entered

the blocked stations between 𝑇1 and the time of the last train departure waited at

the platforms, there were a total of 437 waiting passengers on the platforms of the
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blocked stations when the incident happened (based on the AFC and AVL data).

According to Figure 4-2, the total number of unloaded and waiting passengers should

be equal to the number of passengers at the blocked stations (i.e.,
∑︀5

𝑖=1 𝑁𝑆𝑖
). Hence,

the estimated value of
∑︀5

𝑖=1 E[𝑁𝑆𝑖
] should be close to 300 + 500 + 437 = 1, 237

passengers. However, the inference model provides estimates for E[𝑁𝑆1 ] and E[𝑁𝑆2 ],

but not E[𝑁𝑆3 ], E[𝑁𝑆4 ], and E[𝑁𝑆5 ] (because E[𝑁𝑆3+𝑁𝑆10 ], E[𝑁𝑆4+𝑁𝑆12 ], and E[𝑁𝑆5+

𝑁𝑆11 ] are estimated as a whole). Since E[𝑁𝑆4 +𝑁𝑆12 ] and E[𝑁𝑆5 +𝑁𝑆11 ] are relatively

small,
∑︀5

𝑖=1 E[𝑁𝑆𝑖
]+E[𝑁𝑆10 ]+E[𝑁𝑆11 ]+E[𝑁𝑆12 ] should be slightly greater than 1,237

and E[𝑁𝑆1 ]+E[𝑁𝑆2 ] slightly smaller than 1,237 if the estimates are correct. A simple

calculation leads to

E[𝑁𝑆1 +𝑁𝑆2 ] = 910 < 1237 <
5∑︁

𝑖=1

E[𝑁𝑆𝑖
] + E[𝑁𝑆10 ] + E[𝑁𝑆11 ] + E[𝑁𝑆12 ] = 1259,

(4.33)

supporting the validity of the estimation results.

4.5 Conclusion and discussion

This study proposes a probabilistic framework to infer passengers’ response behavior

to an unplanned rail service disruption using smart card data in a tap-in-only public

transit system. We enumerate 19 possible behaviors that passengers may have based

on the stages of their trips when the incident happened. A probabilistic model is

proposed to estimate the mean and variance of the number of passengers in each of

the 19 groups using passengers’ historical and subsequent trip information. Based on

the information used and the context of the behavior, four cases of formulations are

used in the probabilistic model. Data from the CTA public transit system (bus and

urban rail) is used for the case study with a rail incident. The model is implemented

with both synthetic data (consistent with the CTA AFC data) and real-world data.

The main conclusions of this study are as follows:

• The proposed approach can estimate passengers’ behavior well and outperform
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the rule-based benchmark model. Results with synthetic data show that the

RMSE and MAPE for the estimated expected number of passengers in each

behavior group are 143.9 and 20.5%, respectively. The RMSE and MAPE for the

estimated standard deviation are 4.4 and 69.8%, respectively. The estimation

results with real-world data are consistent with the incident’s context. An

indirect model validation using ridership change information and incident log

data demonstrates the reasonableness of the results.

• Results with real-world data find that most of the passengers (97.43%) are not

affected by the incident. This is reasonable because the incident only affected

a small area. The incident we analyzed has high service redundancy with the

Red line substituting the blocked Brown and Purple lines. Our model results

show that in the high redundancy case, most of the affected passengers (69.51%)

choose to use rail by changing routes.

• Based on the results, CTA operators can confirm that the Red line is a good

alternative and quantify the impact. To relieve the incident impact, operators

can increase service frequency in the Red line. The model indicates that only

8.1% of passengers choose to leave the public transit system. This number can

help CTA conduct the service loss analysis due to the incident.

The proposed model has several practical significances. First, The model is data-

driven. Compared to the conventional survey-based methods, the proposed approach

can effectively estimate passengers’ responses without collecting data manually. Sec-

ond, the output results can help transit operators better understand passengers’

choices during a disruption, based on which they can design better operating strate-

gies on the supply side to mitigate the impact of incidents. For example, for heavily

used alternative services during the disruption, operators can increase the service

frequency or provide shuttle buses with similar routes. Third, based on the results,

operators can identify congestion in the network. They can disseminate information

(e.g., route recommendation) to passengers, or conduct flow control at the gate level,

to avoid overloaded routes.
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Future studies can focus on the following directions. 1) Estimate the estimation

error (i.e., Var[E[𝑁𝑆𝑖
]]). The estimation error is another type of uncertainty. It

comes from the fact that we are using sample data to estimate a specific probability.

For example, as P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆𝑖
) is estimated from the historical travel trajectories, we

actually only obtain the estimated value (i.e., P̂(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆𝑖
)). It is a random variable

and the corresponding variance Var[P̂(·)] reflects the estimation error. The estimation

error depends on sample sizes (i.e., amount of normal day data) and passenger travel

irregularity. The challenge of estimating Var[P̂(·)] is that this value is not available for

passengers without historical information. Future studies can explore approximation

techniques with reasonable distributional assumptions to calculate estimation errors.

2) Apply the model to different incident cases. According to Mo et al. [145], the

incident locations and the redundancy of surrounding public transit alternatives are

influential in passenger mode choice behavior. Future studies may analyze more case

studies and compare passengers’ behavioral responses under different scenarios. 3)

Analyze individual-level choices. In this study, we only output the aggregate level

mode choice behavior (i.e., 𝑁𝑆𝑖
). Future work may explicitly output P(𝑝 ∈ 𝑆𝑖), and

analyze its relationship with passengers’ characteristics (such as home location, fare

card type, travel frequency, etc.).

These future studies can help improve the proposed method, and make the under-

standing of passenger responses more accurate. For example, with better quantifica-

tion of estimation uncertainty, we can develop more robust or stochastic optimization

methods for shuttle service design, headway design, path recommendations, flow con-

trol, etc.

Though there are extensive data in the AFC and AVL systems, machine learning

methods do not fit into this study because of the lack of actual observed responses

behaviors (i.e., lack of labels). In the future, if some passenger’s actual response

behavior can be observed (e.g., from self-report data, probe GPS data, or cell phone

data), a supervised learning model may be trained to predict passengers’ responses to

incidents. The features may include passenger’s spatial and temporal travel histories,

incident information, and supply information. These features can be embedded with
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many advanced deep learning methods such as long short-term memory (LSTM)

networks, convolutional neural networks (CNN), graph neural networks (GNN), etc

4.6 Appendix: Model formulations (continued)

4.6.1 Historical trip information + direct incident-related 𝐵𝑆𝑖

(continued)

Inferring 𝑆4 and 𝑆12

𝑆4 and 𝑆12 are passengers who waited until the system recovered. Passengers in 𝑆4 left

and waited outside the blocked stations. Thus, they have at least one tap-in record

before 𝑇1, and another tap-in record at the blocked stations after 𝑇2. We assume that

passengers in 𝑆12 also waited outside the blocked stations (passengers usually take

the train up to the blocked stations then start to wait).

We define 𝐵𝑆4,12 = {𝑝 : ∃𝑘 ∈ {1, ..., 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1, 𝑡𝑝𝑘+1
≥ 𝑇2, 𝑚𝑝𝑘 =

𝑚𝑝𝑘+1
= rail, 𝑜𝑝𝑘+1

∈ 𝒲}, which means passengers with a rail tap-in trip before the

incident and another rail tap-in trip after the system recovery, with the second tap-in

station one of the blocked stations. As passengers who tap-in again at a blocked

station may do so not because of the incident but as part of a normal routine, similar

to Eq. 4.6,

E[𝑁𝑆4 +𝑁𝑆12 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆4,12
} · P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆4,12). (4.34)

1{𝑝∈𝐵𝑆4,12
} is a constant. P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆4,12) can be calculated the same way as Eq.

4.7 and 4.8 by replacing 𝐵𝑆1 with 𝐵𝑆4,12 . The variance of 𝑁𝑆4 +𝑁𝑆12 is

Var[𝑁𝑆4 +𝑁𝑆12 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆4,12
} · [P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆4,12)− P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆4,12)

2] (4.35)
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4.6.2 Historical trip information + indirect incident-related

𝐵𝑆𝑖
(continued)

Inferring 𝑆14 and 𝑆15

Passengers in 𝑆14 and 𝑆15 have not entered the rail system when the incident happens.

Therefore, they have no rail tap-in records before 𝑇1.

We first consider passengers in 𝑆14. Consider a 𝑝 ∈ 𝒫𝐻 with 𝑇1 < 𝑡𝑝1 < 𝑇2 and

𝑚𝑝1 = bus, which means the first trip for 𝑝 during the incident period is bus. Define

𝐵𝑆14 = {𝑝 : 𝑇1 < 𝑡𝑝1 < 𝑇2,𝑚𝑝1 = bus}. And define the event that 𝑝 changed from

rail to bus on the incident day as 𝐶𝐵𝑝. The probability of 𝐶𝐵𝑝 for 𝑝 ∈ 𝐵𝑆14 can be

calculated as

P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14) = 1− # normal days 𝑝’s first trip in [𝑇1, 𝑇2] is bus
# normal days 𝑝 has trips in [𝑇1, 𝑇2]

∀𝑝 ∈ 𝒫𝐻

(4.36)

Eq. 4.36 means the probability of 𝐶𝐵𝑝 equals 1 minus the frequency of using a bus

on normal days. A high frequency of using a bus on normal days means using a bus

is highly likely the typical behavior for 𝑝, instead of a change in the behavior. For

𝑝 /∈ 𝒫𝐻 , we can approximate the probability by

P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14) =

∑︀
𝑝′∈𝒫𝐻∩𝒫𝐹 P(𝐶𝐵𝑝′ | 𝑝 ∈ 𝐵𝑆14)

|𝒫𝐻 ∩𝐵𝑆14|
∀𝑝 /∈ 𝒫𝐻 (4.37)

However, passengers may change from rail to bus due to many reasons, not nec-

essarily because of the incident. Similar to Eq. 4.19, we have

E[𝑁𝑆14 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆14}] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆14
} · P(𝐶𝐵𝑝, 𝐴𝑝 | 𝑝 ∈ 𝐵𝑆14) (4.38)

= 𝑁𝐶𝐵 − �̃�𝐶𝐵

where 𝑁𝐶𝐵 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆14
} · P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14) is the expected number of pas-

sengers who change from rail to bus on the incident day. �̃�𝐶𝐵 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆14
} ·
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P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14)P((𝐴𝑝)
𝑐 | 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14) is the expected number of passengers who

change from rail to bus but not because of the incident. It can be approximated by

the number of passengers changing from rail to bus on normal days. Similar to Eq.

4.22,

E[𝑁𝑆14 ] = 𝑁𝐶𝐵 − �̃�𝐶𝐵 = 𝑁𝐶𝐵 −
∑︀𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝐵

𝑀
(4.39)

where �̃�
(𝑗)
𝐶𝐵 is the number of passengers changing from rail to bus on the 𝑗-th normal

day, calculated with the same method of calculating 𝑁𝐶𝐵 but using the 𝑗-th normal

day AFC data. Similar to to Eq. 4.23 and 4.24, we can calculate the variance of 𝑁𝑆14

as:

Var[𝑁𝑆14 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆14
} · [P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14)P(𝐴𝑝 | 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14)−

P(𝐶𝐵𝑝 | 𝑝 ∈ 𝐵𝑆14)
2P(𝐴𝑝 | 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14)

2] (4.40)

where P(𝐴𝑝 | 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14) = (𝑁𝐶𝐵 − �̃�𝐶𝐵)/𝑁𝐶𝐵 for all 𝑝 ∈ 𝐵𝑆14 (similar to Eq.

4.23).

For passengers in 𝑆15, we define 𝐵𝑆15 = {𝑝 : 𝑇1 < 𝑡𝑝1 < 𝑇2,𝑚𝑝1 = rail}, and denote

the event that 𝑝 changes tap-in station to 𝑜𝑝1 on the incident day as 𝐶𝑆𝑝. Similar to

Eq. 4.36, we have

P(𝐶𝑆𝑝 | 𝑝 ∈ 𝐵𝑆15) = 1− # normal days that 𝑝’s first rail tap-in station in [𝑇1, 𝑇2] is 𝑜𝑝1
# normal days that 𝑝 has rail trips in [𝑇1, 𝑇2]

∀𝑝 ∈ 𝒫𝐻

(4.41)

Analogue to the estimation of E[𝑁𝑆14 ], we have

E[𝑁𝑆15 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆15
} · P(𝐶𝑆𝑝, 𝐴𝑝 | 𝑝 ∈ 𝐵𝑆15) (4.42)

= 𝑁𝐶𝑆 − �̃�𝐶𝑆

where 𝑁𝐶𝑆 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆15
}·P(𝐶𝑆𝑝 | 𝑝 ∈ 𝐵𝑆15) is the expected number of passengers
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changing tap-in stations on the incident day. And �̃�𝐶𝑆 :=
∑︀𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝑆

𝑀
, where �̃�

(𝑗)
𝐶𝑆 is

the number of passengers changing tap-in stations on the 𝑗-th normal day, which is

calculated with the same method as calculating 𝑁𝐶𝑆 using the AFC data on the 𝑗-th

normal day. The variance of 𝑁𝑆15 can be calculated the same way as in Eq. 4.40 by

replacing 𝐵𝑆14 and 𝐶𝐵𝑝 by 𝐵𝑆15 and 𝐶𝑆𝑝, respectively.

Inferring 𝑆17 and 𝑆18

Passengers who decided to use other undetected modes or cancel trips after the inci-

dent (i.e., 𝑆17 and 𝑆18) have no rail tap-in records between 𝑇1 and 𝑇𝑒 on the incident

day. The inference is based on passengers who were supposed to have tap-in records

in this period according to their behavior on normal days. Define 𝐵𝑆17,18 = {𝑝 :

𝑝 has rail tap-in records within [𝑇1, 𝑇𝑒] on any of the 𝑀𝑝 normal days, but not on

the incident day}. These are potential passengers who might change to other un-

detected modes or cancel trips on the incident day. Due to the nature of the AFC

data, there is no direct way to differentiate these two groups. We assume that the

probability of a passenger 𝑝 using other undetected modes in this situation is 𝛽𝑝,

that is, P(1{𝑈𝑀𝑂𝑆𝑝} = 1) = 𝛼𝑝,𝑑, where 𝑈𝑀𝑂𝑆𝑝 is the event that passenger 𝑝 will

other undetected modes when he/she is outside the system. The value of 𝛽𝑝 can be

obtained from previous survey-based studies (similar to 𝛼𝑝). Note that if we focus

on the aggregate estimation of the passengers who do not use public transit (i.e.,

canceling trips + using other undetected modes), the value of 𝛽𝑝 is not needed.

Consider a passenger 𝑝 ∈ 𝐵𝑆17,18 . As in section 4.3.3, we assume that if 𝑝 has a

high probability of having trips in [𝑇1, 𝑇𝑒] on normal days, then the disappearance of

the trip on the incident day is highly likely an atypical behavior (i.e., canceling the

trip or switching to undetected modes). Define the event that 𝑝 canceled the trip

or switched to undetected modes on the incident day as 𝐶𝑇𝑆𝑀𝑝. According to the
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assumption above and Eq. 4.17:

P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18) =
# normal days 𝑝 having rail trips in [𝑇1, 𝑇𝑒]

𝑀𝑝

∀𝑝 ∈ 𝒫𝐻

(4.43)

However, as 𝑝 may cancel the trip or switch to other undetected modes for

other reasons, not necessarily due to the incident. We have 1{𝑝∈𝑆17} = 1{𝑝∈𝐵𝑆17,18
} ·

1{𝐶𝑇𝑆𝑀𝑝∩𝐴𝑝 | 𝑝∈𝐵𝑆17,18
} ·1{𝑈𝑀𝑂𝑆𝑝}. Since 1{𝑈𝑀𝑂𝑆𝑝} and 1{𝐶𝑇𝑆𝑀𝑝∩𝐴𝑝 | 𝑝∈𝐵𝑆17,18

} are inde-

pendent, similar to Eq. 4.19 - 4.21, we have

E[𝑁𝑆17 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆17}] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆17,18
} · 𝛽𝑝 · P(𝐶𝑇𝑆𝑀𝑝, 𝐴𝑝 | 𝑝 ∈ 𝐵𝑆17,18)

= 𝑁𝐶𝑇𝑆𝑀1 − �̃�𝐶𝑇𝑆𝑀1 (4.44)

where 𝑁𝐶𝑇𝑆𝑀1 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆17,18
} · 𝛽𝑝 · P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18) is the expected

number of passengers using other undetected modes on the incident day (not nec-

essarily due to the incident). �̃�𝐶𝑇𝑆𝑀1 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆17,18
} · 𝛽𝑝 · P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈

𝐵𝑆17,18) · P((𝐴𝑝)
𝑐 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18) is the expected number of passengers using

other undetected modes and the reason is not the incident day, which can be approx-

imated by the number of passengers using other undetected modes on normal days:

�̃�𝐶𝑇𝑆𝑀1 =
∑︀𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝑇𝑆𝑀1

𝑀
, where �̃�

(𝑗)
𝐶𝑇𝑆𝑀1 is the expected number of passengers using

other undetected modes on the 𝑗-th normal day, which is calculated with the same

method as calculating 𝑁𝐶𝑇𝑆𝑀1 but with the AFC data on the 𝑗-th normal day.

And the variance of 𝑁17 is

Var[𝑁𝑆17 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆17,18
} · [𝛽𝑝 · P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18) · P(𝐴𝑝 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18)−

𝛽2
𝑝 · P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18)

2 · P(𝐴𝑝 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18)
2]

(4.45)
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where

P(𝐴𝑝 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18) =
𝑁𝐶𝑇𝑆𝑀 − �̃�𝐶𝑇𝑆𝑀

𝑁𝐶𝑇𝑆𝑀

. ∀𝑝 ∈ 𝐵𝑆17,18 (4.46)

𝑁𝐶𝑇𝑆𝑀 , �̃�𝐶𝑇𝑆𝑀 are calculated the same way as 𝑁𝐶𝑇𝑆𝑀1, �̃�𝐶𝑇𝑆𝑀1 by replacing 𝛽𝑝 to

1.

Similarly, for passengers in 𝑆18, E[𝑁𝑆18 ] and Var[𝑁𝑆18 ] are calculated the same way

as E[𝑁𝑆17 ] and Var[𝑁𝑆17 ], respectively, by replacing 𝛽𝑝 to 1− 𝛽𝑝.

Inferring 𝑆19

Passengers in 𝑆19 are those who continued to use their original routes but delayed

their departure times. In this study, we define “delay departure time” as departing

2𝜎𝑝 later than 𝜇𝑝, where 𝜇𝑝 is the mean departure time of 𝑝’s first rail trip in the

analysis period on the normal days, and 𝜎𝑝 is the corresponding standard deviation.

𝜇𝑝 and 𝜎𝑝 can be calculated using the tap-in times of previous rail trips at station

𝑜𝑝1 on normal days. We define 𝐵𝑆19 = {𝑝 : 𝑡𝑝1 ≥ 𝑇2, 𝑚𝑝1 = rail, 𝑡𝑝1 > 𝜇𝑝 + 2𝜎𝑝},

which is the set of passengers who delayed their departure times and departed after

𝑇2 (i.e., after system recovery). However, as passengers may delay departure time

for different reasons, not necessarily because of the incidents, similar to Eq. 4.19, we

have

E[𝑁𝑆19 ] =
∑︁
𝑝∈𝒫

E[1{𝑝∈𝑆19}] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆19
} · P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆19) (4.47)

=
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆19
}[1− P((𝐴𝑝)

𝑐 | 𝑝 ∈ 𝐵𝑆19)]

= 𝑁𝐷𝐷 − �̃�𝐷𝐷

where 𝑁𝐷𝐷 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆19
} is the expected number of passengers who delayed

departure time on the incident day. And �̃�𝐷𝐷 :=
∑︀

𝑝∈𝒫 1{𝑝∈𝐵𝑆19
}P((𝐴𝑝)

𝑐 | 𝑝 ∈ 𝐵𝑆16)

is the expected number of passengers who delayed departure time but not because

of the incident, which can be approximated by the number of passengers delaying
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departure time on normal days. Therefore, similar to Eq. 4.22, we have

E[𝑁𝑆16 ] = 𝑁𝐷𝐷 − �̃�𝐷𝐷 = 𝑁𝐷𝐷 −
∑︀𝑀

𝑗=1 �̃�
(𝑗)
𝐷𝐷

𝑀
(4.48)

where �̃�
(𝑗)
𝐷𝐷 is the number of passengers delaying departure time on 𝑗-th normal day,

calculated with the same method of calculating 𝑁𝐷𝐷 but using the 𝑗-th normal day

AFC data. Similar to Eq. 4.23 and 4.24, we can calculate the variance of 𝑁𝑆19 as:

Var[𝑁𝑆19 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆19
}[P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆19)− P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆19)

2] (4.49)

where P(𝐴𝑝 | 𝑝 ∈ 𝐵𝑆16) = (𝑁𝐷𝐷 − �̃�𝐷𝐷)/𝑁𝐷𝐷 as per Eq. 4.23.

4.6.3 Subsequent trip information only (continued)

Inferring 𝑆16

Passengers in 𝑆16 are those who did not change tap-in stations, but chose to transfer

halfway to avoid the blocked stations. We assume that passengers who make decisions

after the incident are informed of the service interruption. Hence, if they decided to

still use rail between 𝑇1 and 𝑇2, the possible situations for them are 1) changing tap-in

station (𝑆15), 2) choosing alternative routes by transferring (𝑆16), and 3) not affected.

Let 𝐵𝑆16 = {𝑝 : 𝑇1 < 𝑡𝑝1 < 𝑇2, 𝑚𝑝1 = rail}, which means passengers with a rail trip

during the incident time. We notice that the third possibility can be excluded if we

find that a passenger’s original path is blocked. Therefore, for all passengers in 𝒫𝐹 ,

we first infer their destinations based on the next non-transfer trip after (𝑡𝑝1 , 𝑜𝑝1 ,𝑚𝑝1)

(see Section 4.3.2). Given an inferred destination 𝑑 ∈ 𝒟𝑝1 , denote the event that 𝑝’s

original path is blocked but a transfer option is available as 𝑅𝐵𝑇𝐴𝑝(𝑑). From the

above analysis, we know that all passengers in 𝐵𝑆16 and with 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} = 1 can only

be in 𝑆15 and 𝑆16. Define 𝑁𝐵𝑆16
∩𝑅𝐵𝑇𝐴 :=

∑︀
𝑝∈𝒫

∑︀
𝑑∈𝒟𝑝1

1{𝑝∈𝐵𝑆16
}·1{𝑅𝐵𝑇𝐴𝑝(𝑑)}·1{𝑑𝑝1=𝑑},

which is the number of passengers with a rail trip during the incident and the original
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route blocked. Therefore, the mean of 𝑁𝑆16 can be calculated as:

E[𝑁𝑆16 ] = E[𝑁𝐵𝑆16
∩𝑅𝐵𝑇𝐴 −𝑁𝑆15 ] =

∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝1

1{𝑝∈𝐵𝑆16
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · P(𝑑𝑝1 = 𝑑)− E[𝑁𝑆15 ]

(4.50)

where E[𝑁𝑆15 ] is estimated as in Section 4.6.2. To calculate Var[𝑁𝑆16 ], we notice that

the covariance between 𝑁𝐵𝑆16
∩𝑅𝐵𝑇𝐴 and 𝑁𝑆15 is zero:

Cov[𝑁15, 𝑁𝐵𝑆16
∩𝑅𝐵𝑇𝐴]

= Cov

⎡⎣∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆15
} · 1{𝐶𝑆𝑝,𝐴𝑝 | 𝑝∈𝐵𝑆15

},
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝1

1{𝑝∈𝐵𝑆16
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · 1{𝑑𝑝1=𝑑}

⎤⎦
= 0 (4.51)

This is based on the observation that Cov[1{𝐶𝑆𝑝,𝐴𝑝 | 𝑝∈𝐵𝑆15
},1{𝑑𝑝′1

=𝑑}] = 0 for all 𝑝, 𝑝′ ∈

𝒫 (even if 𝑝 = 𝑝′, this still holds because the derivation of destination relies on future

information while the derivation of atypical behavior relies on historical information).

Hence, the variance of 𝑁𝑆16 can be estimated as.

Var[𝑁𝑆16 ] =
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝1

1{𝑝∈𝐵𝑆16
} · 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} · [P(𝑑𝑝1 = 𝑑)− P(𝑑𝑝1 = 𝑑)2] + Var[𝑁𝑆15 ]

(4.52)

4.6.4 Other

Passengers in 𝑆6 and 𝑆13 are those who are not affected by the incident. They are

inferred based on the results of other groups, which do not belong to any formulation

cases and thus are described separately in this section.

Inferring 𝑆6 and 𝑆13

Passengers in 𝑆6 are those who were not affected by the incident even though they

were in the rail system while the incident happened. According to the diagram in

192



Figure 4-2, we can infer 𝑁6 as all passengers in the rail system subtracting other

subgroups of passengers given the mutually exclusive definition. Define 𝐵𝑆6 = {𝑝 :

∃𝑘 ∈ {1, ..., 𝐾𝑝} s.t. 𝑡𝑝𝑘 < 𝑇1, 𝑚𝑝𝑘 = rail}, which means all passengers who might be

in the rail system when the incident happened. Therefore, we have

E[𝑁𝑆6 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆6
} −

5∑︁
𝑖=1

E[𝑁𝑆𝑖
]−

12∑︁
𝑖=7

E[𝑁𝑆𝑖
] (4.53)

Note that E[𝑁𝑆3 +𝑁𝑆10 ], E[𝑁𝑆4 +𝑁𝑆12 ], and E[𝑁𝑆5 +𝑁𝑆11 ] are calculated as a whole

(see Sections 4.3.4, 4.3.3, and 4.6.1).

The calculation of variance needs to consider the possible correlation among 𝑁𝑆𝑖
.

First of all, 𝐵𝑆1 , 𝐵𝑆2 , 𝐵𝑆8 , 𝐵𝑆9 , and 𝐵𝑆4,12 do not intersect with other 𝐵𝑆𝑖
’s , which

implies 𝑁𝑆1 , 𝑁𝑆2 , 𝑁𝑆8 , 𝑁𝑆9 , and 𝑁𝑆4 + 𝑁𝑆12 are independent and they are also in-

dependent of other 𝑁𝑆𝑖
’s (because the behavior of different passengers is assumed to

be independent). As shown in Section 4.3.4, the inference of 𝑁𝑆5 + 𝑁𝑆11 uses the

historical trip while the inference of 𝑁𝑆3 +𝑁𝑆10 and 𝑁𝑆7 relies on the information of

subsequent trips (after the incident). Hence, 𝑁𝑆5 +𝑁𝑆11 is independent of 𝑁𝑆3 +𝑁𝑆10

and 𝑁𝑆7 . Then, the variance of 𝑁𝑆6 can be calculated as

Var[𝑁𝑆6 ] =
2∑︁

𝑖=1

Var[𝑁𝑆𝑖
] +

9∑︁
𝑖=8

Var[𝑁𝑆𝑖
] + Var[𝑁𝑆4 +𝑁𝑆12 ]

+ Var[𝑁𝑆5 +𝑁𝑆11 ] + Var[𝑁𝑆3 +𝑁𝑆10 +𝑁𝑆7 ] (4.54)

Note that the variance of 𝑁𝑆3 + 𝑁𝑆10 + 𝑁𝑆7 can be calculated as a whole according

to Section 4.3.4:

Var[𝑁𝑆3 +𝑁𝑆10 +𝑁𝑆7 ]

=
∑︁
𝑝∈𝒫

∑︁
𝑑∈𝒟𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10
} · [1{𝑅𝐵𝑇𝐴𝑝(𝑑)} + 1{𝑅𝐵𝑇𝑁𝑝(𝑑)}] · [P(𝑑𝑝𝐾 = 𝑑)− P(𝑑𝑝𝐾 = 𝑑)2]

+ Var[𝑁𝑆5 +𝑁𝑆11 ] (4.55)

𝑁𝑆13 can be inferred in a similar way as the total number of potentially affected
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passengers outside the system minus the number of passengers in other groups. It is

worth noting that the potentially affected passengers include those who do not have

tap-in records on the incident day (e.g., 𝐵𝑆17,18). Define 𝐵𝑆13 = {𝑝 : 𝑡𝑝1 ≥ 𝑇1}∪𝐵𝑆17,18

as the set of passengers outside the system who were potentially affected. Then,

E[𝑁𝑆13 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆13
} −

19∑︁
𝑖=14

E[𝑁𝑆𝑖
] (4.56)

The variance of 𝑁𝑆13 also needs to consider the correlations. Notice that 𝐵𝑆14 and

𝐵𝑆19 do not intersect with other 𝐵𝑆𝑖
’s. So, 𝑁𝑆14 and 𝑁𝑆19 are independent of other

𝑁𝑆𝑖
’s. According to 4.6.2, the variance of 𝑁𝑆17 +𝑁𝑆18 can be estimated as a whole:

Var[𝑁𝑆17 +𝑁𝑆18 ] =
∑︁
𝑝∈𝒫

1{𝑝∈𝐵𝑆17,18
} · [P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18) · P(𝐴𝑝 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18)−

P(𝐶𝑇𝑆𝑀𝑝 | 𝑝 ∈ 𝐵𝑆17,18)
2 · P(𝐴𝑝 | 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18)

2]

(4.57)

And from 4.6.3, 𝑁𝑆15 and 𝑁𝑆16 are independent, and independent of 𝑁𝑆17 +𝑁𝑆18 since

𝐵𝑆17,18 does not intersect with 𝐵𝑆15 or 𝐵𝑆16 . Therefore, The variance of 𝑁𝑆13 can be

estimated as:

Var[𝑁𝑆13 ] =
16∑︁

𝑖=14

Var[𝑁𝑆𝑖
] + Var[𝑁𝑆17 +𝑁𝑆18 ] + Var[𝑁𝑆19 ] (4.58)
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Chapter 5

Station-based path recommendations

during public transit disruptions

under demand uncertainty

5.1 Introduction

5.1.1 Background

Public transit (PT) systems play an important role in urban mobility. However, with

aging systems, continuous expansion, and near-capacity operations, service disrup-

tions often occur. These incidents may result in delays, cancellation of trips, and

economic losses [6].

This study considers significant service disruptions in public transit systems where

the service (or line/route) is interrupted for a relatively long period of time (e.g., 1

hour). During a disruption, affected passengers need to find an alternative path or

use other travel modes (such as transfer to another bus route). However, due to a

lack of knowledge of the system state (especially during incident time), the alternative

routes chosen by passengers may not be optimal or even cause more congestion [145].

For example, during a rail disruption, most of the passengers may choose bus routes

that are parallel to the interrupted rail line as an alternative. However, given the
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limited capacity of buses, the parallel bus line may be over-saturated and passengers

have to wait for a long time to board due to being denied boarding (or left behind).

5.1.2 Objectives and Challenges

One of the strategies to better guide passengers is to provide path recommendations so

that the passenger flows are re-distributed in a better way and the system travel times

are reduced. This can be seen as solving an optimal passenger flow distribution

(or assignment) problem over a public transit network. However, there are several

challenges to this problem.

• First, as the objective is to reduce the system travel time, an analytical formu-

lation to calculate passengers’ travel times is needed. However, a passenger’s

waiting times at the boarding and transfer stations are not only determined by

other waiting passengers, but also those who already boarded the same line as

they reduce the vehicle’s capacity [152]. This complicated interaction makes it

difficult to have an analytical formulation for passenger’s travel time when the

left behind is not negligible (which is usually the case during service disrup-

tions). More details on this challenge are elaborated in Section 5.2.3.

• Second, there are many uncertainties in the system, such as the number of

passengers using the PT system during incidents (i.e., demand uncertainty),

incident duration, and whether passengers would follow the recommendations

or not (i.e., behavior uncertainty). Previous studies have not considered uncer-

tainties in modeling an optimal passenger flow problem.

This study aims to propose a path recommendation model to reduce the crowd-

ing during public transit disruptions, also taking into account uncertainties due to

inaccurate demand estimates. Different from previous recommendation systems that

focus on maximizing individual preferences, this study targets a system objective by

minimizing the total travel time of all passengers (including those who are not in

the incident line/area). To address the aforementioned first challenge, we propose
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a simulation-based linearization to convert the total system travel time to a linear

function of path flows using a first-order approximation, which leads to a tractable

optimization problem. For the second challenge, this study focuses on the demand

uncertainty (i.e., how many passengers will use the PT system during a service disrup-

tion) and models it within the robust optimization (RO) framework. The proposed

approach is applied in a case study using data from the Chicago Transit Authority

(CTA) system during a real-world urban rail disruption.

The main contributions of this chapter are as follows:

• To tackle the non-analytical system travel time calculation, we propose a simulation-

based linearization to convert the total system travel time to a linear function

of path flows using first-order approximation. Importantly, we utilize the phys-

ical interaction between passengers and vehicles in a public transit system to

efficiently calculate the gradient (i.e., marginal change of travel time) without

running the simulation multiple times (as opposed to traditional black-box op-

timization).

• We use RO to model the demand uncertainty which protects the model against

inaccurate demand estimation. Specifically, we derive the closed-form robust

counterpart with respect to the intersection of one ellipsoidal and three polyhe-

dral uncertainty sets. These uncertainties capture the demand variations and

the potential demand reduction during an incident. We also provide a feasi-

ble way of combining historical and survey data to quantify the uncertainty

parameters.

The remainder of this chapter is organized as follows. The literature review is

presented in Section 5.2. In Section 5.3, we describe the problem and discuss the

solution methods. Section 5.4 discusses model extensions and generalizability. We

apply the proposed framework on the CTA system as a case study in Section 5.5.

The model results are analyzed in Section 5.6. Finally, we conclude the chapter and

summarize the main findings in Section 5.7.
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5.2 Literature review

5.2.1 Path recommendations during incidents

Most previous studies on path recommendations under incidents were conducted at a

single OD level. That is, the main objective is to find available routes or the shortest

path given an OD pair when the network is interrupted by incidents. For example,

Bruglieri et al. [153] designed a trip planner to find the fastest path in the public

transit network during service disruptions based on real-time mobility information.

Böhmová et al. [154] developed a routing algorithm in urban public transportation

to find reliable journeys that are robust against system delays. Roelofsen et al.

[155] provided a framework for generating and assessing alternative routes in case of

disruptions in urban public transport systems. To the best of the authors’ knowledge,

none of the previous studies have considered path recommendations at the system

level, that is, providing path recommendations for passengers of different OD pairs

and with different departure times so that the system travel time is reduced.

5.2.2 Passenger evacuation under emergencies

Providing path recommendations during disruptions is related to the topic of passen-

ger evacuation under emergencies. The objective of evacuation is usually to minimize

the total evacuation time. In general, these papers can be categorized into micro-level

and macro-level based on how passenger flows are modeled and the spatial scope of

the study area.

The micro-level studies usually use an agent-based simulation model to evaluate

different evacuation strategies within some infrastructure. For example, Wang et al.

[156] simulated the passenger evacuation under a fire emergency in Metro stations.

Chen et al. [157] developed four modeling approaches including a queuing model and

an agent-based simulation to calculate the evacuation time under different emergency

situations and evacuation plans. Hassannayebi et al. [158] used an agent-based and

discrete-event simulation model to assess the service level performance and crowded-
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ness in a metro station under various disruption scenarios (e.g., train failure in the

tunnel and fire at the station gallery). Zhou et al. [16] proposed a hybrid bi-level

model to optimize the number and initial locations of leaders who guide passenger’s

evacuation in urban rail transit stations during an evacuation.

The macro-level studies consider a larger study area (e.g., city-level) and aim to

evacuate passengers from the incident area through various transportation modes.

For example, Abdelgawad and Abdulhai [159] developed an evacuation model to

determine the routing and scheduling of subway and bus transit services used to

alleviate congestion pressure during the evacuation of busy urban areas. Wang et al.

[160] proposed an optimal bus bridging design method under operational disruptions

on a single metro line. Tan et al. [161] proposes an evacuation model with urban bus

networks as alternatives in the case of common metro service disruptions by jointly

designing the bus lines and frequencies.

The macro-level passenger evacuation is similar to the setup of this study, but

with the following major differences. First, in our study, the service disruption is not

as severe as an emergency situation. The service will recover after a period of time

and passengers are allowed to wait at a station. They do not necessarily need to

cancel trips or follow evacuation plans as required in evacuation studies. Second, in

this study, we assume that the service adjustment is known. The focus is on providing

information to the passengers to better utilize the existing resources/capacities of the

system.

5.2.3 Travel time calculation in public transit networks

Passengers’ travel time has two components: in-vehicle time and waiting time. In-

vehicle time is not affected by passenger flows once passengers are onboard, thus

is easy to model (e.g., modeled as a constant). However, the waiting time is more

complicated to calculate if the system is congested with left behind due to capacity

constraints.

Passengers’ travel time is usually modeled in the context of transit assignment,

using two major approaches: frequency-based (static) and schedule-based (dynamic).
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In the frequency-based transit assignment approach, the waiting time is either as-

sumed to be inversely proportional to the (effective) service frequency [162, 163, 164],

or modeled as a congestion function (e.g., BRP) of previously boarded flows and new

arrival flows with exogenously-calibrated parameters [152]. The former method does

not consider the left behind, and the latter only outputs a generalized waiting cost

(rather than the waiting time as the vehicle capacity is not explicitly modeled) and

requires a dedicated calibration process. Therefore, the frequency-based transit as-

signment model is not suitable for this study because congestion and left behind are

not negligible during disruptions.

In terms of the schedule-based models [165, 166, 167, 168], the waiting time can

only be obtained after a dynamic network loading (or simulation) process. For exam-

ple, Schmöcker et al. [168] used the fail-to-board probability to model the left behind.

This probability is updated after each network loading and can be used to calculate

the waiting time. However, in this way, the waiting time is still a constant within

each iteration. There is no direct way to formulate waiting time as a function of path

flows.

Since formulating travel time as a function of path flows remains a challenge, the

optimal passenger flow distribution in transit networks has no closed-form formula-

tion. This study proposes a simulation-based first-order approximation to solve the

original problem iteratively. With the proposed tractable linear programming model,

the uncertainties can also be incorporated.

5.2.4 Robust optimization (RO)

RO is a common approach to handle data uncertainty in optimization problems. RO

generally needs to first specify a scope some uncertain parameters. The scope is

referred to as the “uncertainty set”. The optimization problem is conducted over the

worst-case realizations within the specified uncertainty set. This method is suitable

for applications where there are uncertainty related to the model input parameters

and when uncertainties can lead to significant penalties or infeasibility in practice.

Since the solutions are optimal under the worst-case scenario, we treat the outputs
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of RO as a robust solution.

The solution method for RO problems involves generating a deterministic equiv-

alent formulation, called the robust counterpart. Computational tractability of the

robust counterpart has been a major practical difficulty [169]. A variety of uncertainty

sets have been identified for which the robust counterpart is reasonably tractable [170].

The studies on RO has grown substantially over the past decades. Seminal papers

include [171], [172] and [173]. Comprehensive surveys on the early literature can be

found in Ben-Tal et al. [169] and Bertsimas et al. [170]. The development of the RO

methodology has allowed researchers to tackle problems with data uncertainty in a

range of fields. Examples include renewable energy network design [174], supply chain

operations [175], health care logistics [176], and ride-hailing [177].

However, to the best of the authors’ knowledge, no existing papers have incor-

porated RO techniques into path recommendations during service disruptions. This

research gap is important to address given the potentially inaccurate estimates of

demand in public transit networks during an incident.

5.3 Methodology

5.3.1 Problem description

Consider a service disruption in an urban rail system starting at time 𝑇𝑠 and ending

at 𝑇𝑒. During the disruption, some stations in the incident line (or the whole line)

are blocked. Passengers in the blocked trains are usually offloaded to the nearest

platforms. To respond to the incident, some changes in the operations are made,

such as dispatching shuttle buses, rerouting existing services, short-turning in the in-

cident line, headway adjustment, etc. Assume that we have all information about the

operating changes. These changes define a new PT service network and alternative

path sets. Our objective is to design an origin-destination (OD) based recommenda-

tion system. That is, when the incident happens, passengers can use their phones,

websites, or electrical boards at stations to access the recommendation system. They
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input their origin station, destination station, and departure time to get a

recommended path. The recommendation aims to minimize the system travel time,

that is, the sum of all passengers’ travel times, including passengers at nearby lines or

bus routes without incidents (note that these passengers may experience additional

crowding due to transfer passengers from the incident line).

Let 𝒦 be the predetermined set of all OD pairs that may need path recommenda-

tion. 𝒦 is defined based on whether an OD are affected by the incident or not. Note

that as path recommendations start at 𝑇𝑠, the origin for passengers who are already

in the system (e.g., offloaded passengers from the blocked vehicles) is their current

location (as opposed to their initial origin such as the boarding station). We aim to

provide recommendations for passengers whose OD pair is in 𝒦 and departure time

in the range from 𝑇𝑠 to some time after 𝑇𝑒, since the congestion may last longer than

𝑇𝑒 and passengers departing after 𝑇𝑒 may also need guidance. The period of recom-

mendation starts at time point (ℎ0) and consists of time intervals (ℎ1, ..., ℎ𝐻) of equal

length 𝜏 (e.g., 10 minutes). Specifically, ℎ0 represent the time point at 𝑇𝑠. Recommen-

dations at 𝑇𝑠 focus on passengers who are already in the system (and their departure

times are 𝑇𝑠). And ℎ𝑡 (𝑡 ≥ 1) represents the time interval (𝑇𝑠 + (𝑡 − 1)𝜏, 𝑇𝑠 + 𝑡𝜏 ].

Recommendations at ℎ𝑡 (𝑡 ≥ 1) focus on passengers who were not in the system when

the incident happened and their departure times are in (𝑇𝑠 + (𝑡− 1)𝜏, 𝑇𝑠 + 𝑡𝜏 ]. Let

the set of all recommendation times be ℋ := {ℎ0, ℎ1, ..., ℎ𝐻}.

Given the operations during the incident, we obtain a feasible path set 𝑅𝑘 for each

OD pair 𝑘. Note that 𝑅𝑘 includes all feasible services that are provided by the PT

operator. A path 𝑟 ∈ 𝑅𝑘 may be waiting for the system to recover (i.e., using the

incident line), or transfer to nearby bus lines, using shuttle services, etc. We do not

consider non-PT modes, such as Uber or driving for the following reasons: 1) The

study aims to design a path recommendation system used by PT operators to provide

path alternative recommendations to all PT users. Considering non-PT modes needs

the supply information of all other travel modes and even consider non-PT users

(such as the impact of traffic congestion on drivers), which is beyond the scope of this

study. Future research may consider a multi-modal path recommendation system. 2)
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Passengers using non-PT modes can be simply treated as demand reduction for the

PT system. So their impact on the PT system is still captured.

Let 𝑑ℎ𝑘 be the number of passengers using the PT system with OD pair 𝑘 ∈ 𝒦 and

departure time ℎ ∈ ℋ. It can be treated as the normal demand minus the number

of passengers leaving the PT system. As we do not have full information about

future demand and number of passengers leaving the system, 𝑑ℎ𝑘 is an uncertainty

variable which will be discussed in Section 5.3.4. Let 𝑓ℎ𝑘𝑟 be the number of passengers

departing at time interval ℎ using OD pair 𝑘 and path 𝑟 ∈ 𝑅𝑘. By definition:

∑︁
𝑟∈𝑅𝑘

𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 ∀ℎ ∈ ℋ, 𝑘 ∈ 𝒦 (5.1)

Let 𝑝ℎ𝑘𝑟 be the corresponding path share of 𝑓ℎ𝑘𝑟 (i.e., 𝑝ℎ𝑘𝑟 = 𝑓ℎ𝑘𝑟/𝑑ℎ𝑘 and
∑︀

𝑟∈𝑅𝑘
𝑝ℎ𝑘𝑟 =

1). For convenience of description, we define ℱ := {(ℎ, 𝑘, 𝑟) : ∀ℎ ∈ ℋ,∀𝑘 ∈ 𝒦, 𝑟 ∈

𝑅𝑘} as the set of all path indices. Then the optimal flow problem can be formulated

as:

min
𝑓 ,𝑝

𝑍(𝑓) = Sum of all passengers’ travel time (5.2a)

s.t.
∑︁
𝑟∈𝑅𝑘

𝑝ℎ𝑘𝑟 = 1 ∀ ℎ ∈ ℋ, 𝑘 ∈ 𝒦, (5.2b)

𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 ∀ (ℎ, 𝑘, 𝑟) ∈ ℱ , (5.2c)

𝑓ℎ𝑘𝑟 ≥ 0 ∀ (ℎ, 𝑘, 𝑟) ∈ ℱ , (5.2d)

0 ≤ 𝑝ℎ𝑘𝑟 ≤ 1 ∀ (ℎ, 𝑘, 𝑟) ∈ ℱ (5.2e)

where 𝑓 := (𝑓ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ℱ and 𝑝 := (𝑝ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ℱ . 𝑍(𝑓) is the system travel time which

has no analytical expression. It can only be obtained after each network loading

or simulation process (see Section 5.2.3). Note that using both 𝑓 and 𝑝 in the

optimization problem is redundant, but it is useful for explaining the methodology.

If there is no uncertainty in the system, the optimal path shares (𝑝*ℎ𝑘𝑟) obtained

from the solution of Eq. 5.2 are the recommendation proportions. That is, for all

passengers with OD pair 𝑘 and departure time ℎ, the system will recommend them
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to use path 𝑟 with probability 𝑝*ℎ𝑘𝑟. However, Eq. 5.2 is a conceptual formulation, it

cannot be solved directly because 𝑍(𝑓) has no analytical expression. Moreover, given

the uncertainties in demand, the final recommended path shares may not be 𝑝*ℎ𝑘𝑟. In

the following section, we elaborate on how to solve the robust “optimal flow problem”

with demand uncertainties.

5.3.2 Event-based public transit simulator

Simulator design

Before introducing the solution procedure for Eq. 5.2, we first describe an event-based

public transit simulator used in this study [4]. It can be used to evaluate 𝑍(𝑓) and

facilitate simulation-based linearization.

Figure 5-1 summarizes the main structure of the simulator. The inputs for the

simulator are time-dependent OD demand (or smart card data), path shares, net-

work structure, and train movement data (or timetable). Three objects are defined:

trains, queues, and passengers. Trains are characterized by routes, train ID, current

locations, and capacities. Passengers are queued based on their arrival times. Three

different types of passengers are represented: left-behind passengers who were denied

boarding from previous trains, new tap-in passengers from outside the system, and

new transfer passengers from other lines. The left-behind passengers are usually at

the head of the queue.

An event-based modeling framework is used to load the passengers onto the net-

work. Two types of events are considered: train arrivals and train departures. The

events are sorted by time and processed sequentially until all events are successfully

completed during the analysis period. Train event lists (arrivals and departures) are

generated according to the actual train movement data or timetable. Each event con-

tains a train ID, occurrence time, and location (platform). Passengers are assigned

to a path based on the corresponding input path shares. Note that in this study, a

“path” is defined with specific boarding and transfer stations and lines. We assume

passengers following a path will only board vehicles belonging to the specific line,
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even though there are multiple lines that serve a trip segment. Hence, there is no

“common line” problem [152] in this study because “common lines” will be treated as

different paths.

Figure 5-1: Structure of the network loading model (adapted from Mo et al. [4])

For an arrival event, the train offloads passengers who reach their destination or

need to transfer at the station and updates its state (e.g. train load and in-vehicle

passengers). For passengers who reach their destinations, their tap-out times are

calculated by adding their egress time. For those who transfer at the station, their

arrival times at the next platform are calculated based on the transfer time. The

transfer passengers are added to the waiting queue in order of their arrival times at

the next platform.

For departure events, the queue on the platform is updated by the new tap-in

passengers, that is, passengers who arrive at the platform after the last train departed

are added into the queue based on their arrival times. Passengers board the train

according to a First-Come-First-Serve (FCFS) discipline until the train reaches its

capacity. Passengers who cannot board are left behind and wait in the queue for the

next train. The states of the train and the waiting queue are updated accordingly.

The simulator can record every passenger’s trajectory during the whole travel

process, including tap-in time, platform arrival time, boarding time, alighting time,

tap-out time, etc. This information can be used for the simulation-based linearization

of the objective function 𝑍(𝑓).
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Simulating service disruptions

Given a service disruption, the event list is modified to incorporate the incident’s

impact on the supply side. Specifically, all incidents’ impacts can be reflected by

changes in vehicles’ arrival and departure times. For example, the blockage of a rail

line can be represented with some vehicles in the line having long dwell times at

the corresponding stations during the incident period. The dispatching of shuttle

buses can be seen as adding a new set of events (vehicle arrivals and departures)

associated with the new bridging route. The headway adjustment of existing routes

can also be captured by the new vehicle arrival and departure times. In this way, the

event-based simulator can conveniently model service disruptions without changing

the framework.

From the passenger side, when an incident happens, all passengers in blocked

trains are offloaded to the nearest platform. Depending on the input path choices

(i.e., recommendation strategies) 𝑝, offloading passengers are re-assigned to a new

alternative path and join the queues at the corresponding boarding station. After

reassigning the offloading passengers, the simulator continues to run from the incident

time to the end of the simulation period (note that passengers who have not entered

the system when the incident occurs will have a new path choice depending on the

input 𝑝).

5.3.3 Simulation-based linearization of the objective function

In this section, we propose a simulation-based linearization for the non-analytical

𝑍(𝑓) based on a first-order approximation. 𝑍(𝑓) can be approximated as:

𝑍(𝑓) = 𝑍(𝑓) + (𝑓 − 𝑓)𝑇
𝜕𝑍(𝑓)

𝜕𝑓
|𝑓=𝑓 (5.3)

where 𝑍(𝑓) is the first-order approximation of 𝑍(𝑓). 𝑓 is a reference flow for the

first-order approximation. 𝑍(𝑓) is the system travel time estimated by simulation

with 𝑓 as input. 𝜕𝑍(𝑓)
𝜕𝑓

= (𝜕𝑍(𝑓)
𝜕𝑓ℎ𝑘𝑟

)ℎ,𝑘,𝑟∈ℱ is the gradient vector of 𝑍(𝑓). As 𝑓 and
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𝑍(𝑓) are pre-determined, the only unknown part is 𝜕𝑍(𝑓)
𝜕𝑓

|𝑓=𝑓 . Notice that 𝜕𝑍(𝑓)
𝜕𝑓ℎ𝑘𝑟

|𝑓=𝑓

represents the change of system travel time caused by one unit of flow change in 𝑓ℎ𝑘𝑟.

It can be approximated as:

𝜕𝑍(𝑓)

𝜕𝑓ℎ𝑘𝑟
|𝑓=𝑓 ≈ 𝑍(𝑓 + 𝑒ℎ𝑘𝑟)− 𝑍(𝑓)

1
(5.4)

where 𝑒ℎ𝑘𝑟 represents a vector with only the (ℎ, 𝑘, 𝑟)-th element being 1 and others

zero. Eq. 5.4 represents the numerical approximation of the gradient. Now we only

need to calculate 𝑍(𝑓 + 𝑒ℎ𝑘𝑟)−𝑍(𝑓). A naive method to do that is to run a simulation

with 𝑓 + 𝑒ℎ𝑘𝑟 as input. However, as running the simulation is time-consuming, this

method is not efficient. Note that since we already run a simulation with 𝑓 as input,

it is possible to directly calculate the marginal change due to the additional unit of

flow (i.e., calculate the additional travel time increase to the system if one additional

flow is added to 𝑓ℎ𝑘𝑟).

Consider an example journey of 𝑓ℎ𝑘𝑟 in Figure 5-2. Let 𝑀ℎ𝑘𝑟 be the set of pas-

sengers composing the flow of 𝑓ℎ𝑘𝑟 (i.e., the green passengers in Figure 5-2). These

passengers have origin station 𝑎1 and destination station 𝑎7, and the path includes a

transfer from station 𝑎4 to station 𝑎5. Let the average travel time of 𝑓ℎ𝑘𝑟 be 𝑇A
ℎ𝑘𝑟(𝑓).

Suppose that one more passenger is added to 𝑓ℎ𝑘𝑟.

Figure 5-2: Explanation for the impact of adding additional one unit flow to the
system
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First of all, the system travel time is increased by 𝑇A
ℎ𝑘𝑟(𝑓) due to the increase

in the flow amount. Note that considering the marginal calculation, we ignore the

impact of the added passenger on the increase in 𝑇A
ℎ𝑘𝑟(𝑓). Besides, all passengers in

the red-dashed square may experience higher travel times. Passengers at station 𝑎1

and 𝑎5 who queue behind the green passenger may have additional waiting time if

the train that 𝑀ℎ𝑘𝑟 used is full after departure (under the simulation results of 𝑓),

because the increase of the flow by one in 𝑓ℎ𝑘𝑟 will occupy one available capacity for

these waiting passengers, and one of them will have to board the next train (i.e.,

wait for one more headway). Mathematically, let 𝑉 𝑏
ℎ𝑘𝑟 be the set of vehicles that the

𝑀ℎ𝑘𝑟 passengers board at station 𝑏. Adding an additional passenger to 𝑀ℎ𝑘𝑟 means

one more passenger board one of the vehicles in 𝑉 𝑏
ℎ𝑘𝑟. Let 1{Full𝑏𝑣} be an indicator

of whether vehicle 𝑣 is full or not after its departure from station 𝑏. Then the total

increase in system travel time for passengers queuing behind 𝑀ℎ𝑘𝑟 is:

𝑇Q
ℎ𝑘𝑟(𝑓) =

∑︁
𝑏∈𝐵ℎ𝑘𝑟

∑︁
𝑣∈𝑉 𝑏

ℎ𝑘𝑟

1{Full𝑏𝑣} ·𝑊
𝑏
𝑣

|𝑉 𝑏
ℎ𝑘𝑟|

(5.5)

where 𝐵ℎ𝑘𝑟 is the set of all boarding stations for 𝑀ℎ𝑘𝑟 passengers (in this example,

𝑎1 and 𝑎5). 𝑊 𝑏
𝑣 is the headway of vehicle 𝑣 at station 𝑏. The sum over all vehicles is

because we do not specify the exact vehicle that the additional passenger will board,

and thus take the average over all vehicles. In this example, since there are two

boarding stations for 𝑀ℎ𝑘𝑟 (𝑎1, 𝑎5), 𝑇Q
ℎ𝑘𝑟(𝑓) is approximately two headways if the

vehicles are full.

For passengers waiting at stations where 𝑀ℎ𝑘𝑟 are already on-board (referred to

as on-board stations, e.g., station 𝑎2), adding one flow to 𝑓ℎ𝑘𝑟 reduces the available

capacity when the vehicle arrives at these on-board stations. The queuing passengers

at the on-board stations may not be able to board due to the reduction of capacity.

Specifically, if a vehicle is full when it departs from an onboard station under flow

pattern 𝑓 , adding one passenger to 𝑓ℎ𝑘𝑟 makes one passenger waiting at the on-board

station unable to board his/her original boarded vehicle. And the system travel time

is increased by one headway for each of these onboard stations. Mathematically, let
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𝑂𝑣
ℎ𝑘𝑟 be the set of all on-board stations for 𝑀ℎ𝑘𝑟 and vehicle 𝑣 ∈ 𝑉 𝑏

ℎ𝑘𝑟. For example,

for vehicles in Line 1, 𝑂𝑣
ℎ𝑘𝑟 will be 𝑎2, 𝑎3, and 𝑎4. Then the travel time increase for

passengers waiting at on-board stations is:

𝑇O
ℎ𝑘𝑟(𝑓) =

∑︁
𝑏∈𝐵ℎ𝑘𝑟

∑︁
𝑣∈𝑉 𝑏

ℎ𝑘𝑟

1

|𝑉 𝑏
ℎ𝑘𝑟|

∑︁
𝑎∈𝑂𝑣

ℎ𝑘𝑟

1{Full𝑎𝑣} ·𝑊
𝑎
𝑣 (5.6)

Therefore, in this way, depending on whether the vehicle is full or not under flow

pattern 𝑓 , the increase in system travel time due to adding one passenger to 𝑓ℎ𝑘𝑟

can be calculated without running the simulation again. These increases come from

three parts: 1) the average travel time of 𝑀ℎ𝑘𝑟 due to increasing in flow amount

(i.e., 𝑇A
ℎ𝑘𝑟(𝑓)), 2) the additional waiting time for passengers queuing behind 𝑀ℎ𝑘𝑟

(i.e., 𝑇Q
ℎ𝑘𝑟(𝑓)), and 3) the additional waiting time for passengers queuing at 𝑀ℎ𝑘𝑟’s

on-board stations (i.e., 𝑇O
ℎ𝑘𝑟(𝑓)). Specifically, we have

𝑍(𝑓 + 𝑒ℎ𝑘𝑟)− 𝑍(𝑓) = 𝑇A
ℎ𝑘𝑟(𝑓) + 𝑇Q

ℎ𝑘𝑟(𝑓) + 𝑇O
ℎ𝑘𝑟(𝑓) (5.7)

Consequently, 𝜕𝑍(𝑓)
𝜕𝑓

|𝑓=𝑓 can be obtained from Eq. 5.4. Define 𝛽(𝑓) := 𝜕𝑍(𝑓)
𝜕𝑓

|𝑓=𝑓 .

Then the objective function becomes:

𝑍(𝑓) = 𝑍(𝑓) + 𝛽(𝑓)𝑇 (𝑓 − 𝑓) (5.8)

where 𝛽(𝑓) = (𝛽ℎ𝑘𝑟)ℎ,𝑘,𝑟∈ℱ and 𝛽ℎ𝑘𝑟 = 𝜕𝑍(𝑓)
𝜕𝑓ℎ𝑘𝑟

|𝑓=𝑓 . Eq. 5.8 is a linear function of 𝑓 ,

which supports for addressing uncertainties in the optimization problem.

5.3.4 Demand uncertainty

The uncertainty of 𝑑ℎ𝑘 comes from two different parts. The first is the inherent

demand variations across different days, and the second is the uncertainty in how

many passengers leave the PT system during the incident. In this section, these two

uncertainties are considered as a whole by introducing an ellipsoidal uncertainty set

and three polyhedral uncertainty sets.
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From constraint 5.2c, we can substitute 𝑓ℎ𝑘𝑟 = 𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 to the objective function

and rewrite Eq. 5.8 as:

𝑍(𝑓) = 𝑍(𝑝) = 𝑍(𝑓) +
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟 · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) (5.9)

Note that 𝛽ℎ𝑘𝑟 is a function of 𝑓 , for simplicity we ignore 𝑓 in the derivation process.

To model the uncertainty of 𝑑ℎ𝑘, we introduce an auxiliary decision variable 𝑡 and

rewrite the optimal flow problem as:

min
𝑝, 𝑡

𝑡 (5.10a)

s.t. 𝑡 ≥ 𝑍(𝑓) +
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟 · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟), (5.10b)

Constraints (5.2b) and (5.2e) (5.10c)

Constraint 5.10b can be rewritten as

∑︁
ℎ,𝑘

∑︁
𝑟∈𝑅𝑘

𝛽ℎ𝑘𝑟 · 𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 ≤ 𝑡− 𝑍(𝑓) +
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟 (5.11)

Eq. 5.11 can be written in a matrix form as:

𝑎𝑇𝑝 ≤ 𝑏 (5.12)

where 𝑎 ∈ R|ℱ| with the entry 𝑎ℎ𝑘𝑟 = 𝛽ℎ𝑘𝑟𝑑ℎ𝑘, ∀ (ℎ, 𝑘, 𝑟) ∈ ℱ . And 𝑏 = 𝑡 − 𝑍(𝑓) +∑︀
(ℎ,𝑘,𝑟)∈ℱ 𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟. Define 𝑑 = (𝑑ℎ𝑘)ℎ∈ℋ,𝑘∈𝒦.

Proposition 13. If 𝑑 is normally distributed with 𝑑 ∼ 𝒩 (�̄�,Σ), then in a RO

problem where constraint 5.12 is guaranteed to be satisfied with probability of at least

1− 𝜀 (i.e., P[𝑎𝑇𝑝 ≤ 𝑏] ≥ 1− 𝜀), the robust constraint can be formulated as:

(𝐴�̄�+𝐴𝐷𝑧)𝑇𝑝 ≤ 𝑏, ∀𝑧 ∈ 𝒵E (5.13)

where 𝐴 ∈ R|ℱ|×𝐻𝐾 with entry 𝐴ℎ𝑘𝑟,ℎ′𝑘′ = 𝛽ℎ𝑘𝑟 if ℎ = ℎ′ and 𝑘 = 𝑘′, otherwise
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𝐴ℎ𝑘𝑟,ℎ′𝑘′ = 0. 𝐷 is the Cholesky decomposition of Σ (i.e., Σ = 𝐷𝐷𝑇 ). 𝑧 are the

perturbation variables (i.e., 𝑑 = �̄� +𝐷𝑧) and 𝒵E =
{︀
𝑧 ∈ R𝐻𝐾 : ‖𝑧‖2 ≤ 𝜌1−𝜀

}︀
(i.e.,

the ellipsoidal uncertainty set). 𝜌1−𝜀 is the (1 − 𝜀)-percentile of a standard normal

distribution.

Proof.

Step 1: We first prove that P[𝑎𝑇𝑝 ≤ 𝑏] ≥ 1 − 𝜀 is equivalent to (𝐴�̄�)𝑇𝑝 +

𝜌1−𝜀

⃦⃦
(𝐴𝐷)𝑇𝑝

⃦⃦
2
≤ 𝑏.

Since 𝑑 is normally distributed, we have 𝑎 = 𝐴𝑑 is normally distributed with

𝑎 ∼ 𝒩 (𝐴�̄�,𝐴Σ𝐴𝑇 ). Similarly, 𝑎𝑇𝑝 ∈ R is also normally distributed with

𝑎𝑇𝑝 ∼ 𝒩 ((𝐴�̄�)𝑇𝑝,𝑝𝑇𝐴Σ𝐴𝑇𝑝) (5.14)

If we want constraint 5.12 to hold with probability at least 1− 𝜀, it suffices to have:

(𝐴�̄�)𝑇𝑝+ 𝜌1−𝜀

√︁
𝑝𝑇𝐴Σ𝐴𝑇𝑝 ≤ 𝑏 (5.15)

Substituting Σ = 𝐷𝐷𝑇 into Eq. 5.15 completes the proof of Step 1.

Step 2: We need to show that the robust counterpart of Eq. 5.13 is (𝐴�̄�)𝑇𝑝 +

𝜌1−𝜀

⃦⃦
(𝐴𝐷)𝑇𝑝

⃦⃦
2
≤ 𝑏.

Eq. 5.13 is equivalent to:

(𝐴�̄�)𝑇𝑝+ max
𝑧∈𝒵E

(𝐴𝐷𝑧)𝑇𝑝 ≤ 𝑏. (5.16)

Let 𝛿(𝑧 | 𝒵E) be the indicator function on set 𝒵E:

𝛿(𝑧 | 𝒵E) =

⎧⎪⎨⎪⎩ 1, if 𝑧 ∈ 𝒵E

0, otherwise
(5.17)

Then the convex conjugate of 𝛿(𝑧 | 𝒵E) (also known as the support function)
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can be derived as [178]:

𝛿*(𝑦 | 𝒵E) = sup
𝑧∈R𝐻𝐾

{𝑦𝑇𝑧 − 𝛿(𝑧 | 𝒵E)} = sup
𝑧∈𝒵E

𝑦𝑇𝑧 = 𝜌1−𝜀 ‖𝑦‖2 (5.18)

Therefore, Eq. 5.16 can be rewritten with the convex conjugate:

(𝐴�̄�)𝑇𝑝+ 𝛿*((𝐴𝐷)𝑇𝑝 | 𝒵) = (𝐴�̄�)𝑇𝑝+ 𝜌1−𝜀

⃦⃦
(𝐴𝐷)𝑇𝑝

⃦⃦
2
≤ 𝑏 (5.19)

which finishes the proof of Step 2. Combining Steps 1 and 2 finishes the proof of the

whole proposition.

We observe that the ellipsoidal demand uncertainty performs like a regularization.

It prevents 𝑝 from being large in directions with considerable uncertainty in the

demand.

Remark 6. In the RO, the ellipsoidal uncertainty set can be used no matter what

distribution 𝑑 follows. If 𝑑 is normally distributed, the parameter 𝜌1−𝜀 can be in-

terpreted as the probability that constraint 5.12 holds. The use of the multivariate

normality assumption in Proposition 13 is for explaining the physical meaning of el-

lipsoidal uncertainty set and facilitating the choice of hyperparameters (i.e., 𝜌1−𝜀 and

𝐷). Moreover, in the case study, we partially validate the multivariate normality

assumption of 𝑑 using smart card data. The Mardia’s Skewness Test [179] shows that

𝑑 has no significant skewness.

Eq. 5.13 (i.e., the ellipsoidal uncertainty set) captures the correlation between

demands at different time intervals and OD pairs. However, it does not impose any

upper or lower bounds on 𝑑ℎ𝑘. In reality, the demand level for a specific OD pair and

time interval is usually bounded, which can be expressed as:

𝑑L
ℎ𝑘 ≤ 𝑑ℎ𝑘 ≤ 𝑑U

ℎ𝑘 (5.20)

where 𝑑L
ℎ𝑘 and 𝑑U

ℎ𝑘 are the corresponding lower and upper bounds for 𝑑ℎ𝑘, respectively.

Their values can be obtained from historical demand data. Eq. 5.20 can be rewritten

212



in a vector form as 𝑑L ≤ 𝑑 ≤ 𝑑U, where 𝑑U = (𝑑U
ℎ𝑘)ℎ∈ℋ,𝑘∈𝒦 and 𝑑L = (𝑑L

ℎ𝑘)ℎ∈ℋ,𝑘∈𝒦.

Since we have 𝑑 = �̄�+𝐷𝑧, a simple manipulation leads to

𝑑L − �̄� ≤ 𝐷𝑧 ≤ 𝑑U − �̄� (5.21)

We can rewrite it as a “polyhedral uncertainty set”: 𝒵P1 =
{︀
𝑧 ∈ R𝐻𝐾 : 𝑑L − �̄� ≤ 𝐷𝑧 ≤ 𝑑U − �̄�

}︀
.

Eq. 5.20 ensures the boundaries for each individual demand. Another similar

constraint for the demand uncertainty is that: within a given time interval, the total

demand across all OD pairs should also be bounded. This constraint can avoid some

extreme scenarios that Eq. 5.20 cannot capture (e.g., all 𝑑ℎ𝑘 are at the lower or upper

bounds). Mathematically:

𝑑L
ℎ ≤

∑︁
𝑘∈𝒦

𝑑ℎ𝑘 ≤ 𝑑U
ℎ (5.22)

where 𝑑L
ℎ and 𝑑U

ℎ are the lower and upper bounds for the total demand in time interval

ℎ, which can be obtained from the historical demand. Define 𝑆 ∈ R𝐻×𝐻𝐾 , where the

element 𝑆ℎ,ℎ′𝑘 = 1 if ℎ = ℎ′, otherwise 𝑆ℎ,ℎ′𝑘 = 0. Then Eq. 5.22 can be rewritten in

a matrix form:

𝑑L
ℋ − 𝑆�̄� ≤ 𝑆𝐷𝑧 ≤ 𝑑U

ℋ − 𝑆�̄� (5.23)

where 𝑑U
ℋ = (𝑑U

ℎ )ℎ∈ℋ and 𝑑L
ℋ = (𝑑L

ℎ)ℎ∈ℋ. And Eq. 5.23 can also be represented as a

polyhedral uncertainty set: 𝒵P2 =
{︀
𝑧 ∈ R𝐻𝐾 : 𝑑L

ℋ − 𝑆�̄� ≤ 𝑆𝐷𝑧 ≤ 𝑑U
ℋ − 𝑆�̄�

}︀
.

As the RO aims to optimize under the “worst case” scenario and our objective

function is the system travel time, intuitively, the worst-case scenario will be the

largest demand in the uncertainty set. This may make the worst-case demand un-

realistic since the extremely large demand seldom happens. What we expect in the

RO is that the model can capture some critical OD pairs where the high demand in

these OD pairs can make the system more congested (as opposed to high demand in

all OD pairs). In order to let the RO capture critical OD pairs, we add an additional
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constraint on the total demand:

∑︁
ℎ∈ℋ,𝑘∈𝒦

𝑑ℎ𝑘 ≤ Γ ·
∑︁

ℎ∈ℋ,𝑘∈𝒦

𝑑ℎ𝑘 (5.24)

where Γ > 0 is a predetermined constant. Γ = 1 means we assume the total demand

in the worst case scenario is the same as the nominal one, but the spatial and temporal

distributions are different. The worst case scenario will have more demand on critical

OD pairs but less demand on others. The value of Γ can be determined based on the

highest total demand observed over a time period.

Similarly, Eq. 5.24 can be written in a matrix form:

1𝑇 (�̄�+𝐷𝑧) ≤ Γ · 1𝑇 �̄� (5.25)

where 1 ∈ R𝐻𝐾 is a vector with all elements one. And we define another polyhedral

uncertainty set: 𝒵P3 =
{︀
𝑧 ∈ R𝐻𝐾 : 1𝑇 (�̄�+𝐷𝑧) ≤ Γ · 1𝑇 �̄�

}︀
.

Therefore, the final robust constraint for Eq. 5.12 is

(𝐴�̄�+𝐴𝐷𝑧)𝑇𝑝 ≤ 𝑏, ∀𝑧 ∈ 𝒵E ∩ 𝒵P ∩ 𝒵P2 ∩ 𝒵P3 (5.26)

To derive the robust counterpart of the constraint, we first introduce the following

lemma.

Lemma 2. For a constraint �̄�𝑇𝑥 + 𝛿*(𝑃 𝑇𝑥 | 𝒵) ≤ 𝑏, let 𝒵1, ...,𝒵𝑘 be closed convex

sets, such that
⋂︀

𝑖 𝑟𝑖(𝒵𝑖) ̸= ∅1, and let 𝒵 = ∩𝑘
𝑖=1𝒵𝑖. Then,

𝛿*(𝑦 | 𝒵) = min
𝑦1,...,𝑦𝑘

{
𝑘∑︁

𝑖=1

𝛿*(𝑦𝑖 | 𝒵𝑖) |
𝑘∑︁

𝑖=1

𝑦𝑖 = 𝑦},

and the constraint becomes⎧⎪⎨⎪⎩ �̄�𝑇𝑥+
∑︀𝑘

𝑖=1 𝛿
*(𝑦𝑖 | 𝒵𝑖) ≤ 𝑏∑︀𝑘

𝑖=1 𝑦𝑖 = 𝑃 𝑇𝑥

1𝑟𝑖(𝒵𝑖) indicates the relative interior of the set 𝒵𝑖.
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where 𝛿*(· | ·) is the support function (i.e., convex conjugate of the indicator function).

The proof of Lemma 2 can be found in Ben-Tal et al. [180]. From Proposition

13, we have 𝛿*(𝑦 | 𝒵E) = 𝜌1−𝜀 ‖𝑦‖2. For the polyhedral uncertainty set, consider a

general form 𝒵P = {𝑧 : 𝐻𝑧 ≤ 𝑐}. And the support function for 𝒵P is

𝛿*(𝑦 | 𝒵P) = max
𝑧

{𝑦𝑇𝑧 | 𝐻𝑧 ≤ 𝑐} = min
𝑢

{𝑐𝑇𝑢 | 𝐻𝑇𝑢 = 𝑦,𝑢 ≥ 0} (5.27)

where the second equality follows from linear programming duality. Eq. 5.27 can be

used to derive the support function for 𝒵P1, 𝒵P2, and 𝒵P3. For example, consider the

robust counterpart for Eq. 5.24, we have

𝛿*(𝑦6 | 𝒵P3) = min
𝑢3

{(Γ− 1) · (1𝑇 �̄�) · 𝑢3 | (1𝑇𝐷)𝑇𝑢3 = 𝑦6, 𝑢3 ≥ 0} (5.28)

where 𝑦6 ∈ R𝐻𝐾 and 𝑢3 ∈ R are decision variables in the RO model. Note that the

subscripts for 𝑦 and 𝑢 (i.e., 6 and 3) are used for the consistency in Eq. 5.29.

Based on Lemma 2, the robust counterpart for Eq. 5.26 is

(𝐴�̄�)𝑇𝑝+ 𝜌1−𝜀 ‖𝑦1‖2 + (𝑑U − �̄�)𝑇𝑢1 + (�̄�− 𝑑L)𝑇𝑢2 + (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1 + (𝑆�̄�− 𝑑L

ℋ)
𝑇𝑣2

+ (Γ− 1) · (1𝑇 �̄�) · 𝑢3 ≤ 𝑏 (5.29a)

𝐷𝑇𝑢1 = 𝑦2 (5.29b)

−𝐷𝑇𝑢2 = 𝑦3 (5.29c)

(𝑆𝐷)𝑇𝑣1 = 𝑦4 (5.29d)

− (𝑆𝐷)𝑇𝑣2 = 𝑦5 (5.29e)

(1𝑇𝐷)𝑇𝑢3 = 𝑦6 (5.29f)
6∑︁

𝑖=1

𝑦𝑖 = (𝐴𝐷)𝑇𝑝 (5.29g)

𝑢1,𝑢2,𝑣1,𝑣2, 𝑢3 ≥ 0 (5.29h)
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Hence, the RO problem can be formulated as

min
𝑝,𝑢,𝑣,𝑦,𝑡

𝑡 (5.30a)

s.t.
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟 · 𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 + 𝜌1−𝜀 ‖𝑦1‖2 + (𝑑U − �̄�)𝑇𝑢1 + (�̄�− 𝑑L)𝑇𝑢2 + (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1

+ (𝑆�̄�− 𝑑L
ℋ)

𝑇𝑣2 + (Γ− 1) · (1𝑇 �̄�) · 𝑢3 + 𝑍(𝑓)−
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟𝑓ℎ𝑘𝑟 ≤ 𝑡

(5.30b)

Constraints (5.29𝑏)− (5.29ℎ) (5.30c)

Constraints (5.2𝑏) and (5.2𝑒) (5.30d)

By eliminating 𝑡 and inserting constraint 5.30b in the objective function it becomes

𝑍(𝑝,𝑢,𝑣,𝑦)RC =
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟 · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖𝑦1‖2 + (𝑑U − �̄�)𝑇𝑢1 + (�̄�− 𝑑L)𝑇𝑢2

+ (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1 + (𝑆�̄�− 𝑑L

ℋ)
𝑇𝑣2 + (Γ− 1) · (1𝑇 �̄�) · 𝑢3 + 𝑍(𝑓)

(5.31)

which yields a second-order cone programming (SOCP).
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5.3.5 Solution procedure

After incorporating the demand uncertainty, the final robust counterpart (RC) of the

optimal flow problem can be formulated as:

[𝑅𝐶(𝑓)] min
𝑝,𝑢,𝑣,𝑦

𝑍(𝑝,𝑢,𝑣,𝑦)RC =
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟(𝑓) · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖𝑦1‖2 + (𝑑U − �̄�)𝑇𝑢1

+ (�̄�− 𝑑L)𝑇𝑢2 + (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1 + (𝑆�̄�− 𝑑L

ℋ)
𝑇𝑣2 + (Γ− 1) · (1𝑇 �̄�) · 𝑢3 + 𝑍(𝑓)

(5.32a)

s.t. Constraints (5.29𝑏)− (5.29ℎ) (5.32b)∑︁
𝑟∈𝑅𝑘

𝑝ℎ𝑘𝑟 = 1 ∀ℎ ∈ ℋ, 𝑘 ∈ 𝒦 (5.32c)

0 ≤ 𝑝ℎ𝑘𝑟 ≤ 1 ∀(ℎ, 𝑘, 𝑟) ∈ ℱ (5.32d)

This SOCP can be efficiently solved by inner interior point methods that are embed-

ded in many existing solvers.

However, due to the first-order approximation of 𝑍(𝑓), 𝛽ℎ𝑘𝑟(𝑓) needs to be up-

dated once a new flow pattern is obtained. Hence, after obtaining 𝑝* from the RC

problem, the simulation should be run again to update 𝛽ℎ𝑘𝑟(𝑓). Before that, the

corresponding worst-case demand (WD), which will be used as the new 𝑓 , is needed.

It can be obtained by solving the worst case 𝑧 ∈ 𝒵E ∩ 𝒵P1 ∩ 𝒵P2 ∩ 𝒵P3:

[𝑊𝐷(𝑝*)] max
𝑧

(𝐴𝐷𝑧)𝑇𝑝* (5.33a)

s.t. ‖𝑧‖2 ≤ 𝜌1−𝜀 (5.33b)

𝑑L − �̄� ≤ 𝐷𝑧 ≤ 𝑑U − �̄� (5.33c)

𝑑L
ℋ − 𝑆�̄� ≤ 𝑆𝐷𝑧 ≤ 𝑑U

ℋ − 𝑆�̄� (5.33d)

1𝑇 (�̄�+𝐷𝑧) ≤ Γ · 1𝑇 �̄� (5.33e)

If the solution for Eq. 5.33 is 𝑧*, the worse case demand is 𝑑* = �̄�+𝐷𝑧*. Next, we
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can update 𝛽(𝑓) and 𝑍(𝑓) as

𝑍(𝑓),𝛽(𝑓) = Sim-FOA(𝑑*,𝑝*) (5.34)

where 𝑓 in Eq. 5.34 indicates 𝑓ℎ𝑘𝑟 = 𝑑*ℎ𝑘 ·𝑝*ℎ𝑘𝑟. And Sim-FOA(·) is a pseudo function

of simulation plus first-order approximation as described in Section 5.3.3.

The RC, WD, and Sim-FOA(·) problems need to be solved iteratively. This

can be treated as a fixed-point problem. A conventional way to solve a fixed-point

problem is the method of successive average (MSA). In the typical system optimal

traffic assignment problem, the optimal flow pattern is reached when for every OD

pair, the marginal costs of all paths for this OD pair are the same. This implies that,

ideally, when the flow distribution is optimal, we should have 𝛽ℎ𝑘𝑟(𝑓) = 𝛽ℎ𝑘𝑟′(𝑓) for

all 𝑟, 𝑟′ ∈ 𝑅𝑘 ∖𝑅NoFlow
𝑘 , where 𝑅NoFlow

𝑘 = {𝑟 ∈ 𝑅𝑘 | 𝑓ℎ𝑘𝑟 = 0} is the path set with zero

flows. This implies that at the system optimal assignment, the marginal cost (travel

time) of every non-zero flow path is the same (i.e., one cannot decrease the system

travel time by switching passengers from one path to another).

However, in our study, this cannot be set as the convergence criterion because, in

the dynamic transit assignment context, the cost function is not continuous due to

left behind. Adding one more passenger to a path may lead to the system travel time

increased by one or more headways. The following example illustrates that 𝛽ℎ𝑘𝑟(𝑓)

can be arbitrarily large, which may cause the criterion of 𝛽ℎ𝑘𝑟(𝑓) = 𝛽ℎ𝑘𝑟′(𝑓) never

being satisfied.

Example 1. Consider a single direction bus line with 𝑁 stations (Figure 5-3) and

a fixed headway 𝑊 . Assume every bus has a capacity of 1. There is one passenger

waiting at each station except for the first station (i.e., there are 𝑁 − 1 waiting

passengers). Now assume that one more passenger is added to station 1. Since the

capacity of buses is 1, the newly added passenger will force all waiting passengers to be

left behind one more time. Hence, the total added system travel time is (𝑁 − 1)×𝑊 .

In this scenario, the 𝛽ℎ𝑘𝑟(𝑓) associated with the added passenger can be arbitrarily

large depending on the number of stations 𝑁 .
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Figure 5-3: Example for arbitrarily large 𝛽ℎ𝑘𝑟(𝑓)

Therefore, in this study, we define the convergence criteria based on the value of

system travel time (i.e., when the value of the system travel time is relatively stable

within a range). Specifically, it is assumed that the MSA algorithm has converged if⃒⃒⃒⃒
⃒⃒𝑍(𝑓)(𝑛) − 1

𝑁Cvg

𝑛−1∑︁
𝑛′=𝑛−𝑁Cvg

𝑍(𝑓)(𝑛
′)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜖 (5.35)

where 𝑍(𝑓)(𝑛) is the system travel time at the 𝑛-th iteration and 𝜖 is a predetermined

threshold. Eq. 5.35 means that when the current system travel time is close to

its average value of the last 𝑁Cvg iterations, the algorithm terminates. Taking the

average of the last 𝑁Cvg iterations can mitigate the impact of fluctuations caused by

the discontinuity of the system travel time.

The whole solution algorithm is described in Algorithm 4. Line 6 indicates the

MSA step. Lines 10 and 11 mean that we will use the path shares with the smallest

system travel time over the last 𝑁Cvg + 1 iterations.

Let 𝑝* be the optimal path shares by from Algorithm 4. To realize the optimal

path shares in the real world, the following system design can be used:

• Transit operators deploy the recommendation system to smartphone apps, web-

sites, and electrical screens at stations.

• Passengers, when using the system, input their origins, destinations, and de-

parture times.
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Algorithm 4 Solution procedure of the robust optimal flow problem

1: Initialize 𝑝(0) (e.g., uniform path shares), 𝑑(0) (e.g., nominal demand) and specify
𝑁Cvg, 𝜖.

2: Set iteration counter 𝑛 = 0.
3: do
4: 𝑍(𝑓)(𝑛),𝛽(𝑓)(𝑛) = Sim-FOA(𝑑(𝑛),𝑝(𝑛))
5: Solve the RC problem (Eq. 5.32) with 𝑍(𝑓)(𝑛) and 𝛽(𝑓)(𝑛) as inputs, and

return �̂�(𝑛+1)

6: 𝑝(𝑛+1) = 1
𝑛+1

�̂�(𝑛+1) + (1− 1
𝑛+1

)𝑝(𝑛)

7: Solve the WD problem (Eq. 5.33) with 𝑝(𝑛+1) as input and return 𝑑(𝑛+1)

8: 𝑛 = 𝑛+ 1

9: while 𝑛 ≤ 𝑁Cvg or
⃒⃒⃒
𝑍(𝑓)(𝑛) − 1

𝑁Cvg

∑︀𝑛−1
𝑛′=𝑛−𝑁Cvg 𝑍(𝑓)(𝑛

′)
⃒⃒⃒
> 𝜖

10: 𝑛* = argmin𝑛′=𝑛−𝑁Cvg,...,𝑛 𝑍(𝑓)
(𝑛′)

11: return 𝑝(𝑛*)

• For a passenger input OD pair 𝑘 and departure time ℎ, the system will return

a single recommended path 𝑟 to them with probability 𝑝*ℎ𝑘𝑟.

In this way, we expect the final path flows are close to the system optimal path flows

if passengers follow the recommendation.

5.4 Model extensions

5.4.1 Solving the model in a rolling horizon

The model discussed in the previous section is a one-shot solution for path recommen-

dation, which means the model will be run at the beginning of an incident (ℎ0) and

output the recommendations for the whole period of interest [ℎ0, ℎ𝐻 ]. In application,

the model would be implemented in a rolling horizon framework.

Specifically, at time interval ℎ̃, we first update the demand and supply informa-

tion, including new demand estimates, new demand uncertainty sets, new available

path sets, new service routes and frequencies, new incident duration estimates, etc.

Based on the formulation above (i.e., let ℎ0 = ℎ̃)), we solve the model to obtain recom-

mendations for time [ℎ̃, ℎ𝐻 ]. But we only implement the recommendation strategies

for the current time ℎ̃ (i.e., 𝑝*
ℎ̃𝑘𝑟

). In this way, the new information obtained with
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the evolution of the incident and system operations can be used to improve model

performance (this is known as adaptive RO).

5.4.2 Incident duration uncertainty

In this study, we assume operators have a reasonable estimate of incident duration.

However, it is possible that we can only obtain a distribution of incident duration.

In this section, we show that our formulation can be easily extended to capture the

incident duration uncertainty with stochastic optimization (SO) techniques2.

Let the set of all possible incident scenarios be Ω. For example, Ω may include

incidents with duration of 30, 40, or 50 minutes. For each scenario 𝜉 ∈ Ω, we denote

𝛽ℎ𝑘𝑟(𝑓 ; 𝜉) and 𝑍(𝑓 ; 𝜉) as the approximated gradient and current system travel time

under flow 𝑓 and incident scenario 𝜉. Hence, the objective function for the RO

problem becomes:

E[𝑍(𝑝,𝑢,𝑣,𝑦)RC] =
∑︁
𝜉∈Ω

P(𝜉)

⎡⎣𝑍(𝑓 ; 𝜉) + ∑︁
(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟(𝑓 ; 𝜉) · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟)

⎤⎦+ 𝜌1−𝜀 ‖𝑦1‖2

+ (𝑑U − �̄�)𝑇𝑢1 + (�̄�− 𝑑L)𝑇𝑢2 + (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1 + (𝑆�̄�− 𝑑L

ℋ)
𝑇𝑣2

+ (Γ− 1) · (1𝑇 �̄�) · 𝑢3 (5.36)

where P(𝜉) is the probability of scenario 𝜉 being realized. The expectation above

is taking over different incident scenarios. Define 𝑍(𝑓 ; Ω) :=
∑︀

𝜉∈Ω P(𝜉)𝑍(𝑓 ; 𝜉) and

𝛽ℎ𝑘𝑟(𝑓 ; Ω) :=
∑︀

𝜉∈Ω P(𝜉)𝛽ℎ𝑘𝑟(𝑓 ; 𝜉), substituting them into the objective function

E[𝑍(𝑝,𝑢,𝑣,𝑦)RC] =
∑︁

(ℎ,𝑘,𝑟)∈ℱ

𝛽ℎ𝑘𝑟(𝑓 ; Ω) · (𝑑ℎ𝑘 · 𝑝ℎ𝑘𝑟 − 𝑓ℎ𝑘𝑟) + 𝜌1−𝜀 ‖𝑦1‖2 + (𝑑U − �̄�)𝑇𝑢1

+(�̄�− 𝑑L)𝑇𝑢2 + (𝑑U
ℋ − 𝑆�̄�)𝑇𝑣1 + (𝑆�̄�− 𝑑L

ℋ)
𝑇𝑣2 + (Γ− 1) · (1𝑇 �̄�) · 𝑢3 + 𝑍(𝑓 ; Ω)

(5.37)

2The reason for using SO, instead of RO, to capture incident duration uncertainty is that the
worst-case scenario for the incident duration is always the largest one, which makes the problem
trivial and may not reflect reality.
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As the constraints in the RO problem are not related to incident scenarios (i.e., 𝛽ℎ𝑘𝑟(𝑓)

and 𝑍(𝑓) are not included in the constraint part), this implies that incorporating the

incident duration uncertainty with SO only requires a change in the objective function.

5.5 Case study design

In the case study, we consider an actual incident in the Blue line of the Chicago Transit

Authority (CTA) urban rail system (Figure 5-4). The incident starts at 8:14 AM and

ends at 9:13 AM on Feb 1st, 2019 due to infrastructure issues between Harlem and

Jefferson Park stations. The entire Blue Line was suspended. During the disruption,

the Loop (Chicago CBD area) is the destination for most passengers. Usually, there

are four paths leading to the Loop: 1) using Blue Line (i.e., waiting for the system

to recover), 2) using the parallel bus lines, 3) using the North-South (NS) bus lines

to transfer to the Green Line, and 4) using the West-East (WE) bus lines to transfer

to the Brown Line. Based on the service structure, we can construct the route sets

𝑅𝑘 for each OD pair 𝑘.

Figure 5-4: Case study diagram
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5.5.1 Parameter setting

𝒦 is the set as all OD pairs with origins at the Blue Line and destinations at the Loop.

The time interval is set to 𝜏 = 10 mins. The time period with recommendation is

set as ℎ𝐻 = 10, corresponding to 9:44 - 9:54 AM (i.e., 50 minutes after the end of

the incident). In this study, we assume that the incident duration is known or can be

reasonably estimated. The factor of total demand level, Γ, is set to 1.1, which is the

90% percentile of the total demand distribution.

5.5.2 Quantification of uncertainty sets

The demand uncertainty is determined by the nominal demand �̄�, covariance matrix

Σ (which can be used to get 𝐷), and upper and lower bounds for demand (i.e., 𝑑U,

𝑑L, 𝑑U
ℋ, 𝑑L

ℋ). These can be estimated from historical demand. However, as the de-

mand on the incident day is smaller than usual given that some passengers may leave

the system, we cannot directly use normal day smart card data as historical demand.

One possible solution is to use data from previous days with similar incidents. Never-

theless, this is usually unavailable due to the lack of enough similar incidents. Hence,

in this study, we first use survey results and historical smart card data to generate

“synthetic historical demand” samples, and then estimate the uncertainty set from

the samples.

There are two sources of demand uncertainty: 1) the inherent demand variations

across different days and 2) the uncertainty of how many passengers left the PT

system during the incident. The first part can be captured by historical smart card

data (without incidents). The second part is approximated by the survey results.

According to previous survey-based studies, the proportion of the passengers leaving

the PT system during incidents is around 10%∼30% [146, 106]. Then, the “synthetic

historical demand” is generated as follows:

• Collect smart card data from a recent workday and calculate the demand vector

without passengers leaving the system for each (ℎ, 𝑘) (the demand for ℎ = 0,

i.e., offloading passengers, can be obtained using the simulation model).
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• For each (ℎ, 𝑘), we randomly draw a proportion of leaving passengers from a

uniform distribution 𝒰(10%, 30%)3. The demand after removing the leaving

passengers is the incident period demand vector.

We collected a total of 16 weekdays from Jan 2019 (the previous month of the incident

day) and generated 16 sample demand vectors. The mean value is used as the nominal

demand �̄� and the co-variance matrix Σ is estimated from these samples. The upper

and lower bounds for demand (i.e., 𝑑U, 𝑑L, 𝑑U
ℋ, 𝑑L

ℋ) are set as the samples’ maximum

and minimum values, respectively.

The hyperparameter 𝜌1−𝜀 for the ellipsoidal uncertainty set are chosen from these

values: {0, 0.25, 0.52, 0.84, 1.28, 1.64, 2.33}, which corresponds to the {50, 60, 70,

80, 90, 95, 99} percentiles of the standard normal distribution. Note that 𝜌1−𝜀 = 0

represents the case of no uncertainty (i.e., nominal model).

5.5.3 Data description

The nominal and actual (incident day) demand comparison is shown in Figure 5-

5. The total nominal demand is 5,499, similar to the total actual demand (5,531),

implying that introducing a proportion of leaving passengers (i.e., 10% - 30%) can

capture the demand reduction on the incident day. We also observe that the aggregate

nominal demand for each time interval is similar to that of the incident day. The

major differences happen at the first two time intervals (ℎ = 0, 1). However, looking

at the demand for each (ℎ, 𝑘) (Figure 5-5b), the differences are more prominent. The

discrepancy between nominal and actual demands indicates the potential for the RO

approach to perform better.

3We use uniform distribution because we have no distributional information of the leaving pas-
senger proportions
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(a) Total demand for each time interval ℎ (b) Demand comparison for each

(ℎ, 𝑘)

Figure 5-5: Demand patterns

Table 5.1 shows the results of the Mardia test of multivariate normality [179] for

demand samples. The Mardia test is used to check whether the sample’s multivariate

skewness and kurtosis are consistent with a multivariate normal distribution. If both

are satisfied, we can assume the samples are multivariate normally distributed. We

observe that, in Table 5.1, the synthetic historical demands have consistent skewness

but inconsistent kurtosis with the multivariate normal distribution, suggesting that

they are not multivariate normally distributed. However, as skewness is a measure of

the asymmetry of the probability distribution of a random variable about its mean, the

Mardia Skewness testing shows that the demand distribution is symmetric. Hence,

it is still reasonable to use the ellipsoidal uncertainty set to describe a symmetric

distributed random variable. Moreover, as mentioned in Remark 6, the distribution

of a variable does not affect the definition of the uncertainty set (it only affects the

calculation of probability guarantees).

5.5.4 Benchmark models

The following approaches are used to obtain benchmark path shares.

Uniform path shares. The uniform path shares are defined as 𝑝ℎ𝑘𝑟 = 1
|𝑅𝑘|

∀ 𝑟 ∈

𝑅𝑘. This is a naive model corresponding to the intuition of “distributing passengers
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Table 5.1: Mardia test of multivariate normality

Test p-value Test p-value

Mardia Skewness 1.00 Mardia Kurtosis 0.00
Note: The null hypothesis is that the samples are multi-
variate normally distributed. A small p-value indicates
we are more likely to reject the null hypothesis.

to different paths” when no information is available.

Capacity-based path shares. The capacity-based path shares aim to assign

passengers to different paths according to the path capacity. Specifically, for a path 𝑟

in OD pair 𝑘 and time ℎ, we calculate the path capacity as the total available capacity

of all vehicles passing through the first boarding station of the path (denoted as 𝐶ℎ𝑘𝑟).

The capacity-based path shares are defined as

𝑝ℎ𝑘𝑟 =
𝐶ℎ𝑘𝑟∑︀

𝑟∈𝑅𝑘
𝐶ℎ𝑘𝑟

∀ 𝑟 ∈ 𝑅𝑘, ℎ ∈ ℋ, 𝑘 ∈ 𝒦, (5.38)

For example, for a path consisting of an NS bus route and the Green Line, 𝐶ℎ𝑘𝑟 is

calculated as the total available capacity of all buses at the boarding station of the

NS bus route during time interval ℎ. The available capacity can be obtained from

the simulation model using historical demand. The available capacity for the Blue

Line (i.e., incident line) depends on the revised schedules during the incident (i.e.,

the service suspension is considered). When no trains operate on the Blue Line, the

corresponding 𝐶ℎ𝑘𝑟 will be zero.

Status-quo path shares. The status-quo path shares are the inferred path

choices of passengers on the incident day. During the incident period, the demand on

the WE, NS, and parallel bus lines experience an increase. The difference from the

average demand on normal days can be seen as the number of passengers choosing

the corresponding path. Hence, by identifying the demand increase for all nearby bus

stops, we can get the number of passengers using the parallel bus, NS+Green, and

WE+Brown paths for each OD pair 𝑘 and time interval ℎ. However, the number of

waiting passengers in the Blue Line cannot be directly inferred because the CTA sys-
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tem does not record the tap-out information. Hence, we approximate the proportion

of waiting passengers based on survey results [96]. Rahimi et al. [96] used a survival

model to analyze the waiting time tolerance of CTA riders during a service disruption.

The model results provide the proportion of waiting passengers given different system

recovery times. Therefore, the status-quo path shares are inferred as follows:

• Step 1: Given the current time interval ℎ and the incident end time 𝑇𝑒, the

remaining time until the end of the incident is 𝑇𝑒 − ℎ. Therefore, if passengers

choose to wait, their waiting time will also be 𝑇𝑒 − ℎ. Based on the hazard

model in Rahimi et al. [96], we can obtain the proportion of waiting passengers

given the waiting time, denoted as 𝑝wait(𝑇𝑒 − ℎ).

• Step 2: For each OD pair 𝑘 and time interval ℎ, the number of passengers using

the parallel bus, NS+Green, and WE+Brown paths can be calculated based on

demand increase compared to the normal demand. Let the demand increase for

path 𝑟 of OD pair 𝑘 at time ℎ be 𝐷𝐼ℎ𝑘𝑟, where 𝑟 ∈ 𝑅𝑘 ∖ {𝑟wait}, 𝑟wait represents

the path of waiting for the Blue Line.

• Step 3: The status quo path shares are calculated as follows:

𝑝ℎ𝑘𝑟wait = 𝑝wait(𝑇𝑒 − ℎ) ∀ ℎ ∈ ℋ, 𝑘 ∈ 𝒦, (5.39)

𝑝ℎ𝑘𝑟 = (1− 𝑝ℎ𝑘𝑟wait) ·
𝐷𝐼ℎ𝑘𝑟∑︀

𝑟∈𝑅𝑘∖{𝑟wait}𝐷𝐼ℎ𝑘𝑟
∀ 𝑟 ∈ 𝑅𝑘 ∖ {𝑟wait}, ℎ ∈ ℋ, 𝑘 ∈ 𝒦

(5.40)

5.6 Results

In this section, we demonstrate the model’s performance in two steps. In the first step,

results of the optimization model without uncertainty (i.e., the nominal model with

𝜌1−𝜖 = 0) are compared with the three benchmark path shares. In the second step,

we compare the results from the robust model with the results from the nominal

model in order to assess the value of considering uncertainties in generating path

recommendations.
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5.6.1 Model convergence

Figure 5-6 shows the convergence of the nominal (𝜌1−𝜖 = 0) and robust (with 𝜌1−𝜖 =

0.84) models. The simulation-based linearization and MSA successfully decrease the

system travel time. The model converges within 35 iterations. Note that the optimal

cost for the robust model is higher than the nominal model. This is expected since

the robust model assumes the worst-case demand (by definition with higher system

travel time). The performance of the corresponding path recommendations will be

evaluated based on the actual demand (discussed in the next section).

Figure 5-6: Convergence of optimization models

5.6.2 Model evaluation

The optimization model only utilizes information about the nominal demand and the

associated uncertainty set. The actual demand is unknown when running the model

(otherwise there are no uncertainties). After obtaining the path shares (either from

optimization or the benchmark models), the recommendation strategies are evaluated

based on the actual incident day demand using the simulation model. We assume

passengers would follow the path recommendation. The simulation model can output

the travel times of every passenger in the system, and can be used to compare the

performance for the path shares obtained from the various approaches. Performance

is measured in terms of average travel time and average waiting time.
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5.6.3 Nominal vs. Benchmark models

Table 5.2 compares the results for different path shares, The result of no incident

scenario is also shown for comparison. The average travel times are calculated over all

passengers (a total of 27,007 passengers) and the passengers who originally planned

to use the Blue Line (i.e., passengers who are provided with recommendations, a

total of 5,531 passengers, a subset of the 27,007 passengers). Results show that the

optimization-based path shares outperform all benchmark models. For all passengers

in the system, the average travel time is reduced by 9.1% compared to the status quo.

And for the incident line passengers, the reduction is even higher (20.6%).

Recommendations based on the uniform path shares result in worse performance

than the status quo scenario. This implies that current passengers’ choices are not

random and show some rationality. The capacity-based path shares can also reduce

the system travel time significantly (by 6.9%). However, as the capacity-based path

recommendations do not capture the spatial and temporal changes in available capac-

ity due to passenger flow re-distribution, they are worse than the optimization-based

results.

Compared to the no incident scenario, we find that the influence of incidents is

significant. Path recommendations can only alleviate the impact of service disruption

but are far from eliminating. Even with the optimization-based path recommenda-

tions, we still have more than two times of travel time for incident-line passengers

compared to the no incident situation.

Table 5.2: Average travel time comparison

Scenarios All passengers (# 27,003) Incident-line passengers (# 5,531)

Avg travel time (min) % change1 Avg travel time (min) % change1

No incident 21.81 - 18.95 -
Uniform 31.02 +1.7% 54.64 +6.4%
Status quo 30.49 0% 51.34 0%
Capacity-based 28.36 -6.9% 43.23 -15.8%
Optimization (nominal) 27.71 -9.1% 40.75 -20.6%
1: changes compared to the status quo scenario

Figure 5-7 shows the average travel time and waiting time for different paths for
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all incident line passengers. We observe that the optimization-based path recom-

mendations have more consistent travel time across the four types of paths, implying

a better utilization of the system’s capacity. However, for other recommendation

strategies, passengers using parallel buses have significantly longer travel times than

those using other alternatives. Figure 5-7 also shows that the average waiting time

for the status quo scenario is around 30 minutes, which means most passengers chose

to use the parallel bus during the incident, causing severe congestion. However, with

the optimization-based path shares, the average waiting time for the parallel bus is

less than 5 minutes (around a headway).

(a) Average travel time for different paths (b) Average waiting time for different paths

Figure 5-7: Comparison of average travel time and waiting time of different paths for
incident line passengers

The objective of this study is to minimize the system travel time. However, under

the optimal path shares, some passengers’ travel time may be increased compared to

the status quo. Figure 5-8 shows the distribution of changes in individual travel time

(optimization-based minus the status quo) for all passengers whose path choice under

the recommendation scenario is different than their choice in the status quo scenario.

Most passengers experience lower travel times. However, some passengers become

worse off after following the path recommendations. This is a typical drawback of

system optimal (first-best) assignment [181]. Future studies may explore a Pareto-

improving (second-best) path recommendation that ensures no individual becomes
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worse-off. In reality, when implementing the recommendations, some paths that lead

to extremely worse travel time compared to the status quo can be dropped from the

solution.

Figure 5-8: Distribution of the change in individual travel time (not including pas-
sengers without changes as they will distort the distribution with too much density
concentrated at zero)

5.6.4 Robust models vs. Nominal model

Model comparison under actual demand

Figure 5-9 compares the results, in terms of travel time, of the RO approach with

different values of 𝜌1−𝜖 under the actual demand. For all values of the robust model

except for 𝜌1−𝜖 = 2.33, the RO approach shows better performance than the nom-

inal model. This implies that considering the demand uncertainty in determining

the recommendation can further improve the effectiveness of path recommendation

strategies. The best value is 𝜌1−𝜖 = 0.84, where the travel time for the incident line

passengers is reduced by 2.91% compared to the nominal model. Note that the per-

centage decreases are relatively small because some passengers’ travel times are not

changed. If we only look at incident-line passengers with travel time changes, the

average travel times are 47.6 min and 37.9 min for the nominal and RO (𝜌1−𝜖 = 0.84)

scenarios, respectively, where the travel time reductions are 20.4%.
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Figure 5-9: Performance of RO. The percentage changes are compared to the nominal
scenario

Note that using 𝜌1−𝜖 = 2.33 results in the largest uncertainty set compared to

other values. This reflects a very conservative scenario where the agency prefers to

plan against a very high realization of demand. In this case, the worst-case demand

patterns may deviate from the actual demand too much, thus performing worse than

the nominal model. Figure 5-10 illustrates the worst-case demand for different values

of 𝜌1−𝜖. The worst-case demands for the 𝜌1−𝜖 = 0.52, 0.84, 1.28 scenarios are closer

to the actual demand, while 𝜌1−𝜖 = 2.33 overestimates the demands, especially for

the earliest periods (ℎ = 0, 1) (which are the most critical periods). These results are

consistent with the travel time performance in Figure 5-9.

Model comparison under random demand

To further validate the model’s performance, we test the performance of the solution

obtained from the RO approach on the 16 demand samples generated in Section

5.5.2. These demand samples represent different possible realizations of the incident

day demand. Figure 5-11 shows the compassion of the random demand samples versus

the actual and nominal demands. Notice that the random demand samples include

both high and low demand scenarios, which can better validate the performance of

the RO approach under different demand patterns.
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Figure 5-10: Worst-case demand patterns

Figure 5-11: Random demand patterns for experiments

Table 5.3 compares the results of average travel time for different RO models. The

numbers in the table are the mean values of the 16 experiments. The performances

are similar to the results under the actual demand. The RO approach shows better

performance than the nominal model for all values of 𝜌1−𝜖 the robust model except

for 𝜌1−𝜖 = 2.33. The reasons may be that the RO approach focuses more on critical

OD pairs and time intervals where the path recommendations for them are considered

more important for system performance.
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Table 5.3: Average travel time comparison for RO models

Models All passengers Incident-line passengers

Avg travel time (min) % change1 Avg travel time (min) % change1

Nominal (𝜌1−𝜖 = 0) 27.79 - 41.08 -
𝜌1−𝜖 = 0.25 27.70 -0.32% 40.57 -1.23%
𝜌1−𝜖 = 0.52 27.65 -0.48% 40.24 -2.05%
𝜌1−𝜖 = 0.84 27.64 -0.54% 40.13 -2.31%
𝜌1−𝜖 = 1.28 27.68 -0.39% 40.41 -1.62%
𝜌1−𝜖 = 1.64 27.74 -0.17% 40.83 -0.60%
𝜌1−𝜖 = 2.33 27.86 +0.27% 40.47 +0.96%
1: changes compared to the nominal model

5.7 Conclusion and discussion

In this chapter, we propose a path recommendation model to mitigate the congestion

during public transit disruptions. Passengers with different ODs and departure times

are recommended alternative paths to use such that the total system travel time

is minimized. To tackle the non-analytical formulation of travel times due to left

behind, we propose a simulation-based first-order approximation to transform the

original problem into a linear programm and solve the new problem iteratively with

MSA. Uncertainties in demand are modeled using RO techniques to protect the path

recommendation strategies against inaccurate estimates. A real-world rail disruption

scenario in the CTA system is used as a case study. Results show that even without

considering uncertainty, the nominal model can reduce the system travel time by

9.1% (compared to the status quo), and outperforms the benchmark capacity-based

path recommendation. The average travel time of passengers in the incident line is

reduced more (-20.6% compared to the status quo). After incorporating the demand

uncertainty, the robust model further reduces the system travel time. The best robust

model with 𝜌1−𝜖 = 0.84 decreases the average travel time of incident-line passengers

by 2.91% compared to the nominal model.

The performance improvement by incorporating demand uncertainty is not very

significant. The reason may be that demand variations at the incident situation have

a limited impact on the optimal path shares. Notice that the demand during an

incident is already very high for the system (due to the reduced supply level). Hence,
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the path recommendation patterns under nominal and worst-case demand may be

similar. However, the methodology presented in this study provides a general way

to deal with PT demand uncertainty. It can be used for other operations control,

optimization, planning, or recommendation applications.

Though we discussed potential model extensions with rolling horizon and incident

duration uncertainty, we did not implement these extensions in the case study as

the focus has been on the methodology for solving the problem. Incorporating real-

time information as an adaptive RO would generally increase model performance

[170]. This presents an interesting future research direction. Other future research

directions include the following. 1) Current demand uncertainty sets need to be

quantified with a budget factor 𝜌1−𝜀. The choice of budget factor usually relies on

numerical testing [182, 177]. Future studies may also develop data-driven uncertainty

quantification methods to automate the hyperparameter tuning task. 2) As shown in

Figure 5-8, the system optimal path recommendation may result in worse-off travel

time for some passengers, causing equity and fairness issues. Future studies may

consider incorporating Pareto-improving constraints to ensure that all passengers

are better-off if following our recommendation. 3) In this study, we assume that

passengers follow the recommendation. Non-compliance, however, if present, may

lead to the actual path flows deviating from the optimal ones. Future research may

focus on approaches for path recommendations that capture behavior uncertainty. 4)

Finally, this study presents an OD-based (aggregated) path recommendation regime.

Passengers with the same OD and departure time are treated homogeneously. In

reality, different passengers may have different preferences on path choices. And

these preferences can affect their compliance with recommendations. Future studies

can develop an individualized path recommendation system considering heterogeneous

passenger preferences.
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Chapter 6

Individual-based path

recommendation under public transit

service disruptions considering

behavior uncertainty and equity

6.1 Introduction

6.1.1 Background and challenges

With aging systems and near-capacity operations, service disruptions often occur in

urban public transit (PT) systems. These incidents may result in passengers delays,

cancellation of trips, and economic losses [6].

During a significant disruption where the service is interrupted for a relatively long

period of time (e.g., 1 hour), affected passengers usually need to find an alternative

path or use other travel modes (such as transfer to another bus route). However,

due to a lack of knowledge of the system (especially during incidents), the routes

chosen by passengers may not be optimal or even cause more congestion [43]. For

example, during a rail disruption, most of the passengers may choose bus routes that

are parallel to the interrupted rail line as an alternative. However, given limited bus

237



capacity, parallel bus lines may become oversaturated and passengers have to wait

for a long time to board due to being denied boarding (or left behind).

One of the strategies to better guide passengers is to provide path recommenda-

tions so that passenger flows are re-distributed in a better way and the system travel

times are minimized. This can be seen as solving an optimal passenger flow distribu-

tion (or assignment) problem over a public transit network. However, different from

the typical flow redistribution problem, there are several unique characteristics and

challenges for the path recommendation problem under PT service disruptions.

• Passengers may have different preferences on different alternative paths. This

heterogeneity suggests that we cannot treat a group of passengers simply as

flows. Individualization is needed in the path recommendation design.

• Passengers may not follow the recommendation. When providing a specific path

recommendation to a passenger, their actual path choice is uncertain (though

the recommendation may change their preferences). This behavior uncertainty

brings challenges in the recommendation system design and has not been con-

sidered in the path recommendation literature. In the context of individualiza-

tion, the behavior uncertainty is also individual-specific, which requires a more

granular modeling approach.

• From the operator’s point of view, the objective of path recommendations is

to reduce system congestion by better utilizing available capacity. However,

under system optimal flow patterns, passengers with the same origin, destina-

tion (OD), and departure time may end up with very different travel times due

to being recommended different paths where some paths are shorter and some

are longer [183], resulting in equity issues. Therefore, we do not want the path

recommendations to result in passengers having large differences in travel times.

6.1.2 Organization and contributions

To tackle these challenges, this study proposes an individual-based path recommen-

dation model to reduce the system congestion during public transit disruptions, con-
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sidering behavior uncertainty and passenger travel time equity. We first formulate an

optimal flow problem as a linear program based on the model of Bertsimas et al. [184],

which solves the optimal path flows for each OD pair and time interval that mini-

mize the system travel time. Then, we add the recommendation decision variables,

𝑥𝑝,𝑟 (binary variable indicating whether path 𝑟 is recommended passenger 𝑝) and as-

sociated constraints to capture the behavior uncertainty. The behavior uncertainty

is modeled with a conditional path choice probability distribution for each passenger

given their received path recommendation. We introduce two new concepts: 𝜖-feasible

flows and Γ-concentrated flows, to connect the optimal flow problem with the condi-

tional path choice probabilities. The individual path recommendation problem with

behavior uncertainty is a mixed-integer program. We solve it efficiently with Benders

decomposition. Finally, we use a post-adjustment heuristic to address the equity re-

quirement. The proposed approach is implemented in the Chicago Transit Authority

(CTA) system with a real-world urban rail disruption as the case study.

The main contributions of this chapter are as follows:

• To the best of the authors’ knowledge, this is the first article dealing with in-

dividual path recommendations under public transit service disruptions consid-

ering behavior uncertainty and equity. Previous studies only considered uncer-

tainty in demand [45] or incident duration [161]. And for the objective function,

they either focus on minimizing travel time or maximizing individual preferences

[155]. Equity has not been considered in the literature.

• To model behavior uncertainty, this chapter proposes a framework with prior

path utility and posterior path choice distribution given recommendations. We

use two new concepts: 𝜖-feasibility and Γ-concentration, to control the mean

and variance of path flows due to behavior uncertainty and transform these two

requirements to linear constraints in the optimization model using Chebyshev’s

inequality.

• Benders decomposition (BD) is used to solve the mixed-integer individual path

recommendation problem efficiently. Under BD, the master problem becomes a
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small-scale integer program and the sub-problem reduces to a linear program.

• This chapter mathematically defines the equity requirement in the individual

path recommendations, and proposes a post-adjustment heuristic method to

solve it. We also propose an integrated mixed-integer programming formulation

with both behavior uncertainty and equity requirement, discuss the difficulty in

solving the corresponding problem, and highlight the importance of the post-

adjustment heuristic.

The remainder of the chapter is organized as follows. Literature review is dis-

cussed in Section 6.2. In Section 6.3, we describe the problem conceptually and

analytically. Section 6.4 develops the solution methods, including the optimal flow

problem formulation, modeling of the behavior uncertainty, Benders decomposition,

and the post-adjustment heuristic for equity. Section 6.5 discusses model extensions

and generalizability. In Section 6.6, we apply the proposed model on the CTA system

as a case study. The model results are analyzed in Section 6.7. Finally, we conclude

the chapter and summarize the main findings in Section 6.8.

6.2 Literature review

6.2.1 Individualized recommendations system

Individualized recommendations design is a popular topic in the field of computer sci-

ence and operations research, with many real-world implications such as Ads ranking

[185, 186], mobile news recommendations [187], travel recommendations [188], etc.

Most of these recommendation systems focus on individual preference maximization,

which, in return, can increase indicators of interest such as click-through rate (CTR)

and conversion rate. However, in the context of path recommendations under dis-

ruptions, though respecting passenger’s preferences is important, the ultimate goal is

to minimize the system travel time and mitigate the impact of disruptions, which is

different from typical recommendation design literature. Another difference is that,

the typical recommendation systems are usually designed with machine learning al-
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gorithms trained with the real-world user and system interaction data because they

have to learn users’ preferences based on their interaction histories. However, in this

study, the system travel time can be evaluated using a network loading model. This

implies that, instead of using machine learning models, we can use an optimization

formulation to determine the individualized path recommendations that minimizes

system travel time.

In summary, different from the typical individualized recommendation system

literature, this study focuses on system-level objectives instead of individual-level

preferences. It leverages an optimization model to design the recommendation, rather

than machine learning models.

6.2.2 Path recommendations during disruptions

Most previous studies on path recommendation under incidents are like designing a

“trip planner”. That is, the main objective is to find available routes or the shortest

path given an OD pair when the network is interrupted by incidents. For example,

Bruglieri et al. [153] designed a trip planner to find the fastest path in the public

transit network during service disruptions based on real-time mobility information.

Böhmová et al. [154] developed a routing algorithm in urban public transportation to

find reliable journeys that are robust for system delays. Roelofsen et al. [155] provided

a framework for generating and assessing alternative routes in case of disruptions in

urban public transport systems. To the best of the authors’ knowledge, none of

the previous studies have considered path recommendations aiming to minimize the

system-wide travel time, given equity constraints.

Providing path recommendations during disruptions is similar to the topic of pas-

senger evacuation under emergencies. The objective of evacuation is usually to min-

imize the total evacuation time. For example, Abdelgawad and Abdulhai [159] de-

veloped an evacuation model with routing and scheduling of subway and bus transit

to alleviate congestion during the evacuation of busy urban areas. Wang et al. [160]

proposed an optimal bus bridging design method under operational disruptions on

a single metro line. Tan et al. [161] propose an evacuation model with urban bus
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networks as alternatives in the case of common metro service disruptions by jointly

designing the bus lines and frequencies.

However, although these passenger evacuation papers focus on minimizing the

system travel time, there are several differences from this study. First, in our study,

the service disruption is not as severe as the emergency situation. We assume the

service will recover after a period of time and passengers are allowed to wait. They

do not necessarily need to cancel trips or follow the evacuation plan as assumed in

previous evacuation studies. Second, in this article, we do not adjust the operations

on the supply side. Instead, we focus on providing information to the passengers to

better utilize the existing resources/capacities of the system. Third, as mentioned

before, this study considers passenger heterogeneity and focuses on individual-level

path recommendations, while previous evacuation papers simply model passengers as

flows. Besides, we also assume that passengers may not follow the recommendation

(i.e., behavior uncertainty) and incorporate equity into consideration, which has not

been considered in any evacuation paper before.

6.2.3 Behavior uncertainty

Behavior uncertainty is a well-known challenge in transportation modeling [189].

Typically, passenger’s behavior is modeled using various econometrics approaches

[132, 190, 191] or machine learning models [192, 193]. These models output the

probability distribution for the passenger’s possible behavior. At the aggregate level,

there are numerous studies using the predicted demand for different transportation

applications taking demand uncertainty into consideration, such as ride-sharing [177],

transit route planning [194], and supply chain management [195].

However, at the individual level, the number of studies is limited. The main rea-

son is that, individual-level decision-making is usually discrete, it is challenging to

use typical robust optimization to address discrete uncertain variables [196]. In terms

of stochastic optimization, the number of possible scenarios increases exponentially

with the number of individuals in the system. Some studies use simulation to incor-

porate individual-level behavior uncertainty. For example, Horne et al. [197] use a
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discrete choice model to simulate how different hybrid energy-economy policies can

motivate users’ responses. However, to incorporate behavior uncertainty in an opti-

mization model (such as the individual path recommendation model in this study),

new modeling techniques are needed.

Another difference in this study compared to previous literature is that the be-

havior uncertainty (i.e., passenger’s response to the recommendation) makes the de-

cision variables (i.e., passenger flow) random variables. Typical robust optimization

or stochastic optimization usually assumes the parameters of constraints are random

variables, but not the decision variable.

6.2.4 Equity in travel times

Equity has been an important topic in the transportation field [198, 199, 200, 201] and

the design of recommendation systems [202, 203, 204]. The motivation for considering

equity in this study comes from the well-known trade-off between efficiency and equity

in the network flow problems. As known from the canonical static traffic assignment

literature, under system optimal solutions (best efficiency), passengers with the same

OD pair may have different travel times due to using different paths. Though the

total travel time of all passengers is minimized, those passengers who use longer paths

are worse-off in the system. On the contrary, under user equilibrium conditions (best

equity1), all passengers with the same OD pair have the same travel times2. User

equilibrium is assumed to represent real-world flow patterns without interventions

(i.e., the Nash equilibrium from the game theory perspective). When considering

controls to reduce the system travel time, equity issues arise. Two well-known tools

to increase efficiency and ensure equity is through congestion pricing [205, 206] and

tradable credits [207, 208]. The former focuses on charging drivers with advantages

in travel time (i.e., those who use shorter paths) and the latter compensates drivers

in longer paths.

1Here we refer to the simplest horizontal equity and we understand that there are more discussions
on the definition of equity

2More precisely, the travel time of all paths with passengers are the same in this status.
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This study also falls into the topic of using control strategies (i.e., path recommen-

dation) to reduce the system travel time (though in disruption scenarios). Therefore,

it is likely that the system optimal recommendations would suggest some passengers

use longer paths in order to increase efficiency. resulting in equity issues. None of

the previous studies in transit systems have considered equity in the individual path

recommendations. For the evacuation literature, some studies have pointed out that

there are equity issues in evacuation planning [209, 210, 211, 212, 213]. However,

these papers focus on the equity of opportunities in evacuation, aiming to help care-

less or vulnerable populations who cannot receive services during incidents. In this

study, the focus is on travel time equity in the context of using the information as a

control mechanism under transit disruptions.

6.3 Problem description

6.3.1 Conceptual description

Consider a service disruption in an urban rail system. During the disruption, some

stations in the incident line (or the whole line) are blocked. Passengers in the blocked

trains are usually offloaded to the nearest platforms. To respond to the incident,

some operating changes are made, such as dispatching shuttle buses, rerouting ex-

isting services, short-turning in the incident line, headway adjustment, etc. Assume

that all information about the operating changes is available. These changes define

a new PT service network and available path sets. Our objective is to develop an

individual-based path recommendation model that, when an incident happens, pro-

vides a recommended path to every passenger who uses their phones, websites, or

electronic boards at stations to enter their origin, destination, and departure time.

The recommendation considers the individual’s preferences and behavioral histories.

Hence, passengers with the same origin, destination, and departure time may get

different recommended paths. The overall system aims to minimize the total travel

time for all passengers, including passengers in nearby lines or bus routes without inci-
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dents (note that these passengers may experience additional crowding due to transfer

passengers from the incident line).

Figure 6-1 shows a simple example of the path recommendation problem. In this

example, Rail Line 1 has an incident and cannot provide service for a period of time.

Both of the two passengers at station A want to go to station C. Assuming that

they request path recommendations. The alternative paths include using the bus

route (blue dashed line), using the Rail Line 2 (green dashed line), or waiting for the

system to recover (i.e., still using Rail Line 1). Note that using either the bus route

or Rail Line 2 will take away capacity from passengers who originally use these two

services (i.e., the orange passengers in the figure). Hence, the model should consider

the total travel time of all four passengers in the system to design recommendation

strategies.

Figure 6-1: Example of the individual path recommendation problem

Moreover, as mentioned in the introduction, behavior uncertainty and equity need

to be considered. In this example, if we recommend a passenger to use a bus route,

he/she may not follow the recommendation and choose Rail Line 2 instead. Although

these two passengers share the same origin, destination, and departure time, they may

receive different recommended paths. For example, one of them is recommended to

use a bus route and another Rail Line 2. The model should ensure that the travel

times of these two paths are similar, otherwise, there will be equity issues.

6.3.2 Analytical description

Let us divide the analysis period into several time intervals with equal length 𝜏 (e.g.,

𝜏 = 5 min). Let 𝑡 be the integer time index. 𝑡 = 1 is the start of the incident
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and 𝑡 ≤ 0 indicates the time before the incident. Let 𝒫 be the set of passengers

that will receive path recommendations. We assume 𝒫 is known as we can obtain

passengers’ requests before running the model. Given the revised operation during

the incident, let ℛ𝑝 be the feasible path set for each passenger 𝑝 ∈ 𝒫 . Note that ℛ𝑝

includes all feasible services that are provided by the PT operator. A path 𝑟 ∈ ℛ𝑝

may be waiting for the system to recover (i.e., using the incident line), or transfer

to nearby bus lines, using shuttle services, etc. We do not consider non-PT modes

such as TNC or driving for the following reasons: 1) This study aims to design a

path recommendation system used by PT operators. The major audience should be

all PT users. Considering non-PT modes needs the supply information of all other

travel modes and even consider non-PT users (such as the impact of traffic congestion

on drivers), which is beyond the scope of this study. Future research may consider a

multi-modal path recommendation system. 2) Passengers using non-PT modes can

be simply treated as demand reduction for the PT system. So their impact on the

PT system can still be captured.

Given a passenger 𝑝 ∈ 𝒫 , we aim to determine 𝑥𝑝,𝑟 for each 𝑝, where 𝑥𝑝,𝑟 indicates

whether path 𝑟 ∈ ℛ𝑝 is recommended to passenger 𝑝 or not. Assume only one path

is recommended to each passenger, we have

∑︁
𝑟∈ℛ𝑝

𝑥𝑝,𝑟 = 1 ∀𝑝 ∈ 𝒫 (6.1)

Note that we can relax this assumption by designing the recommendation to a passen-

ger as a “composition” including multiple paths or travel times. This generalization

is discussed in Section 6.5.1.

𝒫 includes passengers with different origins, destinations, and departure times. If

an incident ends at 𝑡end, the recommendation should consider a time horizon after

𝑡end because there is remaining congestion in the system. Hence, we provide recom-

mendations until time 𝑇𝐷 > 𝑡end (e.g., 𝑇𝐷 can be one hour after 𝑡end). Therefore, the

departure times for passenger 𝑝 ∈ 𝒫 range from [1, 𝑇𝐷] (𝑇𝐷 and 𝑡end are both time

indices).
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The recommendation model will be solved at 𝑡 = 1 and will generate the recom-

mendation strategies 𝑥 = (𝑥𝑝,𝑟)𝑝∈𝒫,𝑟∈ℛ𝑝 for passengers who depart at time 𝑡 ∈ [1, 𝑇𝐷].

In reality, the model can be implemented in a rolling horizon manner. Specifically, at

each time interval 𝑡 ≥ 1, we first update the demand and supply information in the

system, including new demand estimates, new to-be-recommended passenger set 𝒫 ,

new available path sets ℛ𝑝, new service routes and frequencies, new incident duration

estimates, new onboard passenger estimates, etc. Based on this information, we solve

the model to obtain recommendations for passengers with departure time in [𝑡, 𝑇𝐷].

But we only implement the recommendation strategies for passengers who depart at

the current time 𝑡.

Therefore, in the following formulation, we only focus on solving the model at

𝑡 = 1, which is the start of the incident. The whole analysis period includes warm-

up and cool-down periods to better estimate the system states (e.g., vehicle loads,

passenger travel times, etc.). Therefore, the analysis period is defined as [𝑡min, 𝑇 ],

where 𝑡min < 1 (time before the incident) and 𝑇 > 𝑇𝐷. For example, 𝑡min and 𝑇

can be one hour before and after 𝑡 = 1 and 𝑇𝐷, respectively. And we define all

time intervals in the analysis period as 𝒯 = {𝑡min, 𝑡min + 1, ..., 𝑇}. The overall path

recommendation framework can be summarized in Figure 6-2.

Figure 6-2: Problem description and model framework
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6.4 Formulation

In this section, we elaborate on the detailed formulation of the individual path rec-

ommendation model. Section 6.4.1 develops an optimization model to solve the op-

timal flow distribution over a public transit network with disruptions. Section 6.4.2

describes how passenger’s behavior uncertainty (i.e., non-compliance to recommen-

dation) is modeled based on a random utility maximization framework. Section 6.4.3

provides the overall formulation of the individual path recommendation model by

combining the optimal flow model in Section 6.4.1 and the behavior uncertainty com-

ponent in Section 6.4.2. Section 6.4.4 shows how the individual path recommendation

model can be solved efficiently using Benders decomposition. Section 6.4.5 proposes

a post-adjustment method to obtain the final recommendation strategy with equity

(i.e., the travel times of passengers with the same origin, destination, and departure

time do not differ a lot).

The notations used in the chapter are summarized in Table 6.4 (Section 6.9.1).

6.4.1 Optimal flow during disruptions

In this section, we formulate a linear programming (LP) model to solve the optimal

flow distribution in a public transit system with service disruptions. Consider an OD

pair (𝑢, 𝑣) and departure time 𝑡. Let ℛ𝑢,𝑣 be the set of feasible paths for OD pair

(𝑢, 𝑣). Define 𝑞𝑢,𝑣,𝑟𝑡 (resp. 𝑓𝑢,𝑣,𝑟
𝑡 ) as the number of passengers in (resp. not in) 𝒫

with OD pair (𝑢, 𝑣) and departure time 𝑡, who use path 𝑟 ∈ ℛ𝑢,𝑣. Specifically, 𝑞𝑢,𝑣,𝑟𝑡

represents the passenger flows that receive recommendations while 𝑓𝑢,𝑣,𝑟
𝑡 those do not.

Hence, the total path flow in 𝑟 ∈ ℛ𝑢,𝑣 is 𝑞𝑢,𝑣,𝑟𝑡 + 𝑓𝑢,𝑣,𝑟
𝑡 . Let 𝑑𝑢,𝑣𝑡 be the total demand

of OD pair (𝑢, 𝑣) at time 𝑡, we have

𝑞𝑢,𝑣,𝑟𝑡 + 𝑓𝑢,𝑣,𝑟
𝑡 = 𝑑𝑢,𝑣𝑡 ∀(𝑢, 𝑣) ∈ 𝒲 , 𝑡 ∈ 𝒯 (6.2)

where 𝒲 is the set of all OD pairs. As we focus on path recommendations for 𝒫 ,

in this study, 𝑞𝑢,𝑣,𝑟𝑡 is the decision variable while 𝑓𝑢,𝑣,𝑟
𝑡 is a known constant (i.e., the
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estimated demand information). For mathematical convenience, we define ℱ as the

set of all triplets (𝑢, 𝑣, 𝑟) in the system. And the objective in this section is to find

the optimal flows 𝑞𝑢,𝑣,𝑟𝑡 (∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯 ) that minimize the total system travel

time.

The LP-based optimal flow model is adapted from Bertsimas et al. [184] with the

following differences: 1) Bertsimas et al. [184]’s model only considers waiting time in

the system while ignoring in-vehicle time. In this study, we extend their formulation to

include the in-vehicle times. 2) In Bertsimas et al. [184], the capacity constraints are

formulated for a vehicle without time indices, which neglects the fact that alighting

passengers can release capacity. In this study, we modify the capacity constraints

to a vehicle-time-based formulation, which considers the occupancy of only onboard

passengers in each time interval. 3) We adapt the model from normal scenarios to

incident scenarios by pre-processing the supply of incident lines and pre-defining the

system state before the incident. These two operations will be described later.

Consider a path 𝑟 for OD pair (𝑢, 𝑣). A path may include multiple legs, where

each leg is associated with the service in a rail or a bus line. For example, the path

in Figure 6-3 (indicated by green arrows) has two legs: the first one in the rail line

and the second in the bus line. Every leg has a boarding and an alighting station.

For example, Leg 1 (resp. 2) in this example has boarding station A (resp. C) and

alighting station B (resp. D). Let ℐ𝑢,𝑣,𝑟 = {1, ..., |ℐ𝑢,𝑣,𝑟|} be the set of legs for path

𝑟. We use a four-element tuple (𝑢, 𝑣, 𝑟, 𝑖) to represent a leg 𝑖 of path 𝑟 for OD pair

(𝑢, 𝑣), where 𝑖 ∈ ℐ𝑢,𝑣,𝑟.

Figure 6-3: Definition of paths and legs
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Let Δ𝑢,𝑣,𝑟,𝑖
𝑡 (resp. 𝛿𝑢,𝑣,𝑟,𝑖𝑡 ) be the travel time between the terminal and the board-

ing (resp. alighting) station of leg (𝑢, 𝑣, 𝑟, 𝑖) for a vehicle departing from the ter-

minal at time 𝑡. Hence, the vehicle’s arrival time at the boarding (resp. alighting)

station of leg (𝑢, 𝑣, 𝑟, 𝑖) is 𝑡+Δ𝑢,𝑣,𝑟,𝑖
𝑡 (resp. 𝑡+ 𝛿𝑢,𝑣,𝑟,𝑖𝑡 ). 𝛿𝑢,𝑣,𝑟,𝑖𝑡 −Δ𝑢,𝑣,𝑟,𝑖

𝑡 represents the

total in-vehicle time of leg (𝑢, 𝑣, 𝑟, 𝑖) for the vehicle. Define 𝑧𝑢,𝑣,𝑟,𝑖𝑡 (decision variable)

as the total number of on-board passengers in leg (𝑢, 𝑣, 𝑟, 𝑖) who board a vehicle that

had departed from the terminal at time 𝑡.

There are three types of constraints for the network flow description: 1) existing

flows constraints, 2) vehicle capacity constraints, and 3) flow conservation constraints.

Existing flows constraints: Although the path recommendations starts at time

𝑡 = 1, there are passengers that already boarded the vehicles. Ignoring these existing

flows may lead to overestimation of the system’s available capacity. To capture the

existing onboard flows at 𝑡 = 1, we define the set of onboard flow indices as

Ω1 = {(𝑢, 𝑣, 𝑟, 𝑖, 𝑡) : 𝑡+Δ𝑢,𝑣,𝑟,𝑖
𝑡 ≤ 1 ≤ 𝑡+ 𝛿𝑢,𝑣,𝑟,𝑖𝑡 } (6.3)

And the existing flow constraints can be expressed as

𝑧𝑢,𝑣,𝑟,𝑖𝑡 = 𝑧𝑢,𝑣,𝑟,𝑖𝑡 ∀(𝑢, 𝑣, 𝑟, 𝑖, 𝑡) ∈ Ω1 (6.4)

where 𝑧𝑢,𝑣,𝑟,𝑖𝑡 are constants that capture the existing onboard flows when the incident

happens. These flows can be directly obtained from a simulation model or real-time

passenger counting data.

Capacity constraints: Transit vehicles have limited capacity. Consider a vehicle

departing at time 𝑡 on line 𝑙 (referred to as vehicle (𝑙, 𝑡)). We denote its total number

of onboard passengers at time 𝑡′ as 𝑂𝑙,𝑡,𝑡′ . Specifically, 𝑂𝑙,𝑡,𝑡′ can be expressed as

𝑂𝑙,𝑡,𝑡′(𝑧) =
∑︁

{(𝑢,𝑣,𝑟,𝑖,𝑡)∈Onboard(𝑙,𝑡′)}

𝑧𝑢,𝑣,𝑟,𝑖𝑡 ∀𝑙 ∈ ℒ,∀𝑡 ∈ 𝒯 , 𝑡′ = 𝑡, 𝑡+ 1, ..., 𝑇𝑙,𝑡 (6.5)

where 𝑇𝑙,𝑡 is the time index that vehicle (𝑙, 𝑡) arrives at the last station of line 𝑙.
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Onboard(𝑙, 𝑡′) is the set of onboard flow indices for vehicle (𝑙, 𝑡), defined as

Onboard(𝑙, 𝑡′) = {(𝑢, 𝑣, 𝑟, 𝑖, 𝑡) : Leg (𝑢, 𝑣, 𝑟, 𝑖) on line 𝑙, and 𝑡+Δ𝑢,𝑣,𝑟,𝑖
𝑡 ≤ 𝑡′ ≤ 𝑡+ 𝛿𝑢,𝑣,𝑟,𝑖𝑡 }

(6.6)

Then the capacity constraint is:

𝑂𝑙,𝑡,𝑡′(𝑧) ≤ 𝐾𝑙,𝑡 ∀𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 , 𝑡′ = 𝑡, 𝑡+ 1, ..., 𝑇𝑙,𝑡 (6.7)

where 𝐾𝑙,𝑡 is the capacity of the vehicle (𝑙, 𝑡). ℒ is the set of all lines.

Flow conservation constraint: There are two different flow conservation con-

straints: 1) flow conservation at origin stations and 2) at transfer stations. To ensure

the origin flow conservation, the cumulative number of arrival passengers should be

larger than the cumulative number of boarding passengers at an origin at any time.

This indicates that not all arrival passengers can board due to potentially being left

behind because of capacity constraints.

The number of arriving passengers (i.e., demand) for (𝑢, 𝑣, 𝑟) at time 𝑡 is 𝑞𝑢,𝑣,𝑟𝑡 +

𝑓𝑢,𝑣,𝑟
𝑡 . And the number of boarding passengers at the origin station (i.e., 𝑢) at time

𝑡 is 𝑧𝑢,𝑣,𝑟,1𝑡′ (i.e., the first leg) with 𝑡′ + Δ𝑢,𝑣,𝑟,1
𝑡′ = 𝑡. 𝑡′ is the vehicle departure time

from the terminal and 𝑡′+Δ𝑢,𝑣,𝑟,1
𝑡′ is the time when the vehicle arrives at the boarding

station. Therefore, the origin flow conservation constraint can be written as:

∑︁
{𝑡′:𝑡min≤𝑡′+Δ𝑢,𝑣,𝑟,1

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,1𝑡′ ≤
𝑡∑︁

𝑡′=𝑡min

(𝑓𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) ∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯 (6.8)

Now consider the flow conservation at a transfer station. All arrival passengers at

a transfer station of a path are the onboard passengers from the last leg. Therefore, we

use a similar way to define the transfer flow conservation: the cumulative number of

onboard passengers from the last leg should be larger than the cumulative number of

boarding passengers at the transfer station. And the number of boarding passengers

at the transfer station is simply 𝑧𝑢,𝑣,𝑟,𝑖𝑡′ with 𝑖 ≥ 2. Hence, flow conservation constraints
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at a transfer station are:

∑︁
{𝑡′:𝑡min≤𝑡′+Δ𝑢,𝑣,𝑟,𝑖

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖𝑡′ ≤
∑︁

{𝑡′:𝑡min≤𝑡′+𝛿𝑢,𝑣,𝑟,𝑖−1

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖−1
𝑡′ ∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑖 ∈ ℐ(𝑢,𝑣,𝑟) ∖ {1}, 𝑡 ∈ 𝒯

(6.9)

Note that 𝑧𝑢,𝑣,𝑟,𝑖𝑡′ is defined as the onboard passengers for vehicles departing at time

𝑡′. Therefore, 𝑡′+𝛿𝑢,𝑣,𝑟,𝑖−1
𝑡′ is the alighting time for passengers at leg 𝑖−1 (which is also

the transfer demand arrival time at leg 𝑖 as we assume transfer walk time is within a

time interval 𝜏 and is negligible). 𝑡′ + Δ𝑢,𝑣,𝑟,𝑖
𝑡′ is the boarding time for passengers at

leg 𝑖.

The objective is to minimize the total travel time for all passengers in the system.

Total travel time can be decomposed into waiting time and in-vehicle time.

In-vehicle time: Total in-vehicle time is simply the onboard flow multiplied by

the travel time on each leg:

𝐼𝑉 𝑇 (𝑧) =
∑︁

(𝑢,𝑣,𝑟)∈ℱ

∑︁
𝑖∈ℐ𝑢,𝑣,𝑟

∑︁
𝑡∈𝒯

𝑧𝑢,𝑣,𝑟,𝑖𝑡 · 𝑇 IVT
𝑢,𝑣,𝑟,𝑖,𝑡 (6.10)

where 𝑇 IVT
𝑢,𝑣,𝑟,𝑖,𝑡 is the in-vehicle time of leg (𝑢, 𝑣, 𝑟, 𝑖) of the vehicle departing at time 𝑡.

Waiting time: There are two causes of waiting time: 1) waiting time because

of vehicle headways, and 2) waiting time resulting from being left behind. During a

specific time interval 𝑡, all left behind passengers would have a waiting time of 𝜏 . All

boarding passengers, assuming uniform arrival, have an average waiting time that is

half of the time interval (i.e., 𝜏
2
). Therefore, the total waiting time for passengers at

station 𝑠 and time 𝑡 can be formulated as

𝑊𝑇𝑠,𝑡 = 𝜏(𝐴𝐷𝑠,𝑡 +𝑋𝐷𝑠,𝑡 −𝐵𝐷𝑠,𝑡) +
𝜏

2
(𝐵𝐷𝑠,𝑡+1 −𝐵𝐷𝑠,𝑡) (6.11)

where 𝐴𝐷𝑠,𝑡 represents the cumulative arriving demand at station 𝑠 up to time

𝑡, 𝑋𝐷𝑠,𝑡 represents the cumulative transferring demand at station 𝑠 up to time

𝑡, and 𝐵𝐷𝑠,𝑡 represents the cumulative boarded demand at station 𝑠 up to time
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𝑡. Hence, (𝐵𝐷𝑠,𝑡+1 − 𝐵𝐷𝑠,𝑡) represents the total number of boarding passengers at

time 𝑡 and station 𝑠, and (𝐴𝐷𝑠,𝑡 +𝑋𝐷𝑠,𝑡 −𝐵𝐷𝑠,𝑡) represents the total number of left

behind passengers at station 𝑠 and time 𝑡. Finally, the total system waiting time is

𝑊𝑇 (𝑞, 𝑧) =
∑︁
𝑠∈𝒮

𝑇∑︁
𝑡=1

𝑊𝑇𝑠,𝑡 (6.12)

The cumulative arriving demand 𝐴𝐷𝑠,𝑡 is simply all arriving passengers with origin

𝑠 up to time 𝑡:

𝐴𝐷𝑠,𝑡 =
∑︁

{(𝑢,𝑣,𝑟):𝑢=𝑠}

𝑡∑︁
𝑡′=𝑡min

(𝑓𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) ∀𝑠 ∈ 𝒮, 𝑡 ∈ 𝒯 (6.13)

where 𝒮 is the set of all stations.

The cumulative transferring demand is all passengers alighting at station 𝑠 from

their previous leg 𝑖− 1 for their next leg 𝑖:

𝑋𝐷𝑠,𝑡 =
∑︁

{(𝑢,𝑣,𝑟,𝑖)∈Xth(𝑠)}

∑︁
{𝑡′:𝑡min≤𝑡′+𝛿𝑢,𝑣,𝑟,𝑖−1

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖−1
𝑡′ ∀𝑡 = 𝑡min, ..., 𝑇 (6.14)

where Xth(𝑠) is the set of legs that transfer at station 𝑠.

The cumulative boarded demand is all passengers that successfully board a vehicle

at station 𝑠 at time 𝑡. Define Bdat(𝑠) as the set of all legs with boarding station 𝑠,

we have

𝐵𝐷𝑠,𝑡 =
∑︁

{(𝑢,𝑣,𝑟,𝑖)∈Bdat(𝑠)}

∑︁
{𝑡′:𝑡min≤𝑡′+Δ𝑢,𝑣,𝑟,𝑖

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖𝑡′ ∀𝑡 = 𝑡min, ..., 𝑇 (6.15)

Taking everything into consideration, the total travel time in the system is 𝑊𝑇 (𝑥, 𝑧)+
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𝐼𝑉 𝑇 (𝑧). The optimal flow problem is:

(𝑂𝐹 ) min
𝑞,𝑧

𝑊𝑇 (𝑞, 𝑧) + 𝐼𝑉 𝑇 (𝑧) (6.16a)

s.t. 𝑂𝑙,𝑡,𝑡′(𝑧) ≤ 𝐾𝑙,𝑡 ∀𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 , 𝑡′ = 𝑡, 𝑡+ 1, ..., 𝑇𝑙,𝑡 (6.16b)∑︁
{𝑡′:𝑡min≤𝑡′+Δ𝑢,𝑣,𝑟,1

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,1𝑡′ ≤
𝑡∑︁

𝑡′=𝑡min

(𝑓𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) ∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯

(6.16c)∑︁
{𝑡′:𝑡min≤𝑡′+Δ𝑢,𝑣,𝑟,𝑖

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖𝑡′ ≤
∑︁

{𝑡′:𝑡min≤𝑡′+𝛿𝑢,𝑣,𝑟,𝑖−1

𝑡′ ≤𝑡}

𝑧𝑢,𝑣,𝑟,𝑖−1
𝑡′

∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑖 ∈ ℐ(𝑢,𝑣,𝑟) ∖ {1}, 𝑡 ∈ 𝒯 (6.16d)∑︁
𝑟∈ℛ𝑢,𝑣

𝑞𝑢,𝑣,𝑟𝑡 + 𝑓𝑢,𝑣,𝑟
𝑡 = 𝑑𝑢,𝑣𝑡 ∀(𝑢, 𝑣) ∈ 𝒲 , 𝑡 ∈ 𝒯 (6.16e)

𝑧𝑢,𝑣,𝑟,𝑖𝑡 = 𝑧𝑢,𝑣,𝑟,𝑖𝑡 ∀(𝑢, 𝑣, 𝑟, 𝑖, 𝑡) ∈ Ω1 (6.16f)

𝑧𝑢,𝑣,𝑟,𝑖𝑡 ≥ 0 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑖 ∈ ℐ𝑢,𝑣,𝑟 (6.16g)

𝑞𝑢,𝑣,𝑟𝑡 ≥ 0 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ , (6.16h)

As the objective function is minimizing the system travel time, this formulation will

automatically load passengers to a train as long as there is available capacity [184].

Path travel time calculation: It is worth noting that Eq. 6.16 does not explic-

itly output the travel time of different paths. The travel time of a path (𝑢, 𝑣, 𝑟) for

trips departs at time 𝑡 (denoted as 𝑇𝑇 𝑢,𝑣,𝑟
𝑡 ) has to be obtained from the network flow

patterns after solving Eq. 6.16. Specifically, consider the group of passengers using

path (𝑢, 𝑣, 𝑟) and departing at time 𝑡. Their arrival time at the destination (denoted

as 𝐴𝑇 𝑢,𝑣,𝑟
𝑡 ) can be calculated as

𝐴𝑇 𝑢,𝑣,𝑟
𝑡 = min

{︃
𝑡 ∈ 𝒯 𝑢,𝑣,𝑟

𝑡 :
𝑡∑︁

𝑡′=𝑡min

(𝑓𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) ≤

∑︁
𝑡min≤𝑡′+𝛿

𝑢,𝑣,𝑟,|ℐ𝑢,𝑣,𝑟 |
𝑡′ ≤𝑡

𝑧
𝑢,𝑣,𝑟,|ℐ𝑢,𝑣,𝑟|
𝑡′

}︃

∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ

(6.17)
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where 𝒯 𝑢,𝑣,𝑟
𝑡 is the set of possible arrival time indices, defined as 𝒯 𝑢,𝑣,𝑟

𝑡 = {𝑡′ : 𝑡 ≤ 𝑡′ ≤

𝑇}. Eq. 6.17 represents the travel time calculation with cumulative demand curves at

origins and destinations.
∑︀𝑡

𝑡′=𝑡min (𝑓
𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) is the cumulative demand up to time

𝑡 at the origin.
∑︀

𝑡min≤𝑡′+𝛿
𝑢,𝑣,𝑟,|ℐ𝑢,𝑣,𝑟 |
𝑡′ ≤𝑡

𝑧
𝑢,𝑣,𝑟,|ℐ𝑢,𝑣,𝑟|
𝑡′ is the cumulative passengers arriving

at the destination up to time 𝑡′. When the cumulative arrivals at the destination are

greater or equal to the cumulative demand at the origin (up to time 𝑡), all passengers

finish the trip. So taking the minimum over 𝑡′ gives the arrival time for passengers

departing at 𝑡. The path travel time is then simply:

𝑇𝑇 𝑢,𝑣,𝑟
𝑡 = 𝐴𝑇 𝑢,𝑣,𝑟

𝑡 − 𝑡 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ (6.18)

Figure 6-4 illustrates the travel time calculation.

Figure 6-4: Travel time calculation

Incident specification: Eq. 6.16 is a general formulation of the optimal flow

problem. Now we will introduce how the incident-specific information is incorporated

into this problem. We assume the incident causes a service disruption in a specific

line (if only several stations are interrupted, we can separate the line into multiple

lines so that the assumption always holds). The service disruption in a line can be

seen as stops of vehicles for a period of time. The vehicle stopping can be captured

by the parameters Δ𝑢,𝑣,𝑟,𝑖
𝑡 , 𝛿𝑢,𝑣,𝑟,𝑖𝑡 , and 𝐾𝑙,𝑡. Specifically, a long stop due to an incident

can be seen as an increase in travel time from the terminal to downstream stations

(i.e., increase in Δ𝑢,𝑣,𝑟,𝑖
𝑡 and 𝛿𝑢,𝑣,𝑟,𝑖𝑡 ). Moreover, since there is no vehicle dispatching
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during the incident, we set 𝐾𝑙,𝑡 = 0 for the corresponding time and line. In this way,

we can model the incident without changing the formulation.

6.4.2 Behavior uncertainty

Consider a passenger 𝑝 with a path set ℛ𝑝. Their inherent preference (utility) of

using path 𝑟 is denoted as 𝑉 𝑟
𝑝 . If path 𝑟′ was recommended, the impact of the

recommendation on the utility of path 𝑟 is denoted as 𝐼𝑟𝑝,𝑟′ . Hence, his/her overall

utility of using path 𝑟 can be represented as

𝑈 𝑟
𝑝 = 𝑉 𝑟

𝑝 +
∑︁
𝑟′∈ℛ𝑝

𝑥𝑝,𝑟′ · 𝐼𝑟𝑝,𝑟′ + 𝜉𝑟𝑝 ∀𝑟 ∈ ℛ𝑝, 𝑝 ∈ 𝒫 . (6.19)

where 𝜉𝑟𝑝 is the random error. 𝑥𝑝,𝑟′ = 1 if passenger 𝑝 is recommended path 𝑟′, other-

wise 𝑥𝑝,𝑟′ = 0. Let 𝜋𝑟
𝑝,𝑟′ be the conditional probability that passenger 𝑝 chooses path

𝑟 given that the recommended path is 𝑟′. Assuming a utility maximizing behavior,

we have

𝜋𝑟
𝑝,𝑟′ = P(𝑉 𝑟

𝑝 + 𝐼𝑟𝑝,𝑟′ + 𝜉𝑟𝑝 ≥ 𝑉 𝑟′′

𝑝 + 𝐼𝑟
′′

𝑝,𝑟′ + 𝜉𝑟
′′

𝑝 , ∀𝑟′′ ∈ ℛ𝑝) (6.20)

Different assumptions for the distribution of 𝜉𝑟𝑝 can lead to different expression. For

example, if 𝜉𝑟𝑝 are i.i.d. Gumbel distributed, the choice probability reduces to multi-

nomial logit model [190] and we have

𝜋𝑟
𝑝,𝑟′ =

exp(𝑉 𝑟
𝑝 + 𝐼𝑟𝑝,𝑟′)∑︀

𝑟′′∈ℛ𝑝
exp(𝑉 𝑟′′

𝑝 + 𝐼𝑟
′′

𝑝,𝑟′)
(6.21)

The value of 𝑉 𝑟
𝑝 and 𝐼𝑟𝑝,𝑟′ can be calibrated using data from individual-level survey

or smart card, which deserves separate research. When developing the individual

path recommendation model, we assume 𝜋𝑟
𝑝,𝑟′ is known. Figure 6-5 shows an example

for the conditional probability matrix. The specific values assume that paths with

recommendations are more likely to be chosen.
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Figure 6-5: Example of conditional path choice probability

The conditional probability 𝜋𝑟
𝑝,𝑟′ captures the individual’s inherent preference for

different paths as well as the response to the recommendation system. It varies across

individuals and reflects their behavioral uncertainties. This study focuses on design

path recommendation systems based on the value of 𝜋𝑟
𝑝,𝑟′ .

6.4.3 Individual path recommendation

Let 1𝑟
𝑝,𝑟′ be the indicator random variable representing whether passenger 𝑝 actually

chooses path 𝑟 or not given that he/she is recommended path 𝑟′. By definition, 1𝑟
𝑝,𝑟′

is a Bernoulli random variable with E[1𝑟
𝑝,𝑟′ ] = 𝜋𝑟

𝑝,𝑟′ and Var[1𝑟
𝑝,𝑟′ ] = 𝜋𝑟

𝑝,𝑟′ · (1− 𝜋𝑟
𝑝,𝑟′)

Therefore, the actual flow for path (𝑢, 𝑣, 𝑟) at time 𝑡 is

𝑄𝑢,𝑣,𝑟
𝑡 =

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 1𝑟
𝑝,𝑟′ (6.22)

𝑄𝑢,𝑣,𝑟
𝑡 is also a random variable. 𝒫𝑢,𝑣

𝑡 ⊆ 𝒫 is the set of passengers with OD pair (𝑢, 𝑣)

arriving at the system at time interval 𝑡 that receive path recommendations. ℛ𝑢,𝑣 is

the set of paths of OD pair (𝑢, 𝑣). The mean and variance of the actual flow is

𝜇𝑢,𝑣,𝑟
𝑡 (𝑥) := E [𝑄𝑢,𝑣,𝑟

𝑡 ] =
∑︁

𝑝∈𝒫𝑢,𝑣
𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ (6.23)

(𝜎𝑢,𝑣,𝑟
𝑡 (𝑥))2 := Var [𝑄𝑢,𝑣,𝑟

𝑡 ] =
∑︁

𝑝∈𝒫𝑢,𝑣

𝑡′

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ · (1− 𝜋𝑟

𝑝,𝑟′) (6.24)

Note that Eqs. 6.24 is based on the fact that 𝑥2
𝑝,𝑟′ = 𝑥𝑝,𝑟′ and Cov[1𝑟

𝑝,𝑟′ ,1
𝑟
𝑝,𝑟′′ ] = 0 if
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𝑟′ ̸= 𝑟′′.

In an optimization model, we cannot use a random variable (e.g., actual flow) as

the decision variable. Therefore, let us treat 𝑞 in Eq. 6.16 as a realization of the

random variable flow 𝑄. To make 𝑞 a reasonable realization, some constraints need

to be considered between the value of 𝑞 and the distribution of 𝑄. We define two

new concepts: “𝜖-feasibility” and “Γ-concentratration”.

Definition 1 (𝜖-feasible flows). A flow 𝑞𝑢,𝑣,𝑟𝑡 is 𝜖-feasible if and only if

|𝑞𝑢,𝑣,𝑟𝑡 − 𝜇𝑢,𝑣,𝑟
𝑡 (𝑥)| ≤ 𝜖𝑢,𝑣,𝑟𝑡 , ∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 = 𝑡min, ..., 𝑇 (6.25)

where 𝜖𝑢,𝑣,𝑟𝑡 is a small positive constant. This means that 𝑞 is close to the expectation

of the actual flow under recommendation strategy 𝑥.

Definition 2 (Γ-concentrated flows). A flow 𝑞𝑢,𝑣,𝑟𝑡 is Γ-concentrated if and only if

it is 𝜖-feasible and for any constant 𝑎 > 𝜖𝑢,𝑣,𝑟𝑡 , we have

P [|𝑄𝑢,𝑣,𝑟
𝑡 − 𝑞𝑢,𝑣,𝑟𝑡 | ≥ 𝑎] ≤

(︂
Γ𝑢,𝑣,𝑟
𝑡

𝑎− 𝜖𝑢,𝑣,𝑟𝑡

)︂2

∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 = 𝑡min, ..., 𝑇 (6.26)

where Γ𝑢,𝑣,𝑟
𝑡 is a small positive constant. This means that the probability that 𝑄𝑢,𝑣,𝑟

𝑡

and 𝑞𝑢,𝑣,𝑟𝑡 are very different (i.e., with difference greater than 𝑎) is bounded above,

suggesting that 𝑄𝑢,𝑣,𝑟
𝑡 is concentrated around 𝑞𝑢,𝑣,𝑟𝑡 .

Remark 7. The logic of using 𝑞 as the decision variable and defining the above two

concepts is as follows. The objective of this study is to find the best recommenda-

tion strategy 𝑥 that minimizes the system travel time. The system travel time is a

function of network flows. Given a recommendation strategy 𝑥, the actual flow 𝑄

is a random variable, which cannot be directly used in the optimization model (as

decision variable) to evaluate the system travel time. Hence, we assume that 𝑞 in

Eq. 6.16 is a realization of the actual flow (deterministic variable). We also add two

constraints to 𝑞 so that 𝑞 is close to the mean of the actual flow, and the distribution

of the actual flow is concentrated around 𝑞. Then, using 𝑞 to evaluate the system

travel time is similar to that of using the actual flows.
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Note that one may argue that we can directly use 𝜇𝑢,𝑣,𝑟
𝑡 (𝑥) as decision variables

to represent network flows and eliminate 𝑞. This idea is essentially equivalent to set-

ting 𝜖𝑢,𝑣,𝑟𝑡 = 0 and does not consider the concentration property (i.e., Γ𝑢,𝑣,𝑟
𝑡 = +∞),

which is a special case of our framework. Our framework has more advantages in con-

trolling the variance. Specifically, ignoring the Γ-concentration may make the model

recommendation strategies meaningless. Consider an extreme scenario that there is a

recommendation strategy 𝑥, under which the actual flow is uniformly distributed in

[0, 1]. Further assume that the system travel time is simply a linear function of the ac-

tual flow, say the factor is 1 (i.e., the system travel time is also uniformly distributed

in [0, 1]). Suppose that the recommendation strategy 𝑥 minimizes the expected sys-

tem travel time (now the system travel time is 1× 𝜇𝑢,𝑣,𝑟
𝑡 (𝑥) = 0.5). However, as the

actual flow can be any value between 0 and 1 with equal probability, we know that

the actual system travel time can also be any value between 0 and 1. Hence, the

recommendation strategy 𝑥, though minimizing the expected system travel time, is

meaningless because there are too many variations for the actual system travel time

under this recommendation. Γ-concentration is an important property to ensure that

the distribution of actual flows is not too dispersed3 so that the recommendation

strategy 𝑥 is solved based on a reliable estimate of the system travel time.

We will therefore incorporate 𝜖-feasibility and Γ-concentration as constraints into

the optimization formulation (Eq. 6.16). It turns out that both of them can be

modeled as linear constraints. 𝜖-feasibility (Eq. 6.25) can be easily transformed into

a linear constraint by eliminating the absolute value. To incorporate Γ-concentration

(Eq. 6.26), the following Proposition is used:

Proposition 14. The Γ-concentration inequality (Eq. 6.26) holds if the variance of

𝑄𝑢,𝑣,𝑟
𝑡 is bounded above by (Γ𝑢,𝑣,𝑟

𝑡 )2. Mathematically:

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡′

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ · (1− 𝜋𝑟

𝑝,𝑟′) ≤ (Γ𝑢,𝑣,𝑟
𝑡 )2 (6.27)

3In reality, as the actual flow is the summation of many Bernoulli random variables, the coefficient
of variation will shrink with the increase in passenger size. So in the case of a large number of
passengers, the Γ-concentration should be naturally satisfied
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Proof. From the triangular inequality, we have:

|𝑄𝑢,𝑣,𝑟
𝑡 − 𝑞𝑢,𝑣,𝑟𝑡 |⏟  ⏞  

LHS

≤ |𝑄𝑢,𝑣,𝑟
𝑡 − 𝜇𝑢,𝑣,𝑟

𝑡 (𝑥)|+ |𝜇𝑢,𝑣,𝑟
𝑡 (𝑥)− 𝑞𝑢,𝑣,𝑟𝑡 |

≤ |𝑄𝑢,𝑣,𝑟
𝑡 − 𝜇𝑢,𝑣,𝑟

𝑡 (𝑥)|+ 𝜖𝑢,𝑣,𝑟𝑡⏟  ⏞  
RHS

(6.28)

As LHS ≤ RHS, the probability measure satisfies (for all 𝑎 > 𝜖𝑢,𝑣,𝑟𝑡 ):

P[LHS ≥ 𝑎] ≤ P[RHS ≥ 𝑎] (6.29)

Notice that

P[RHS ≥ 𝑎] = P [|𝑄𝑢,𝑣,𝑟
𝑡 − 𝜇𝑢,𝑣,𝑟

𝑡 (𝑥)| ≥ 𝑎− 𝜖𝑢,𝑣,𝑟𝑡 ] ≤ (𝜎𝑢,𝑣,𝑟
𝑡 (𝑥))2

(𝑎− 𝜖𝑢,𝑣,𝑟𝑡 )2
(6.30)

Eq. 6.30 is based on Chebyshev’s inequality. Therefore,

P[LHS ≥ 𝑎] = P[|𝑄𝑢,𝑣,𝑟
𝑡 − 𝑞𝑢,𝑣,𝑟𝑡 | ≥ 𝑎] ≤ (𝜎𝑢,𝑣,𝑟

𝑡 (𝑥))2

(𝑎− 𝜖𝑢,𝑣,𝑟𝑡 )2
(6.31)

Comparing Eqs. 6.31 and 6.26, we know that to satisfy Eq. 6.26, we only need

𝜎𝑢,𝑣,𝑟
𝑡 (𝑥) ≤ Γ𝑢,𝑣,𝑟

𝑡 , which completes the proof.

For modeling convenience, we set 𝜖𝑢,𝑣,𝑟𝑡 = 𝜖 · 𝜇𝑢,𝑣,𝑟
𝑡 (𝑥) and Γ𝑢,𝑣,𝑟

𝑡 = Γ · 𝑑𝑢,𝑣𝑡 , where 𝜖

and Γ are hyper-parameters determining how close and concentrated the actual flow

should be. Then the final constraint becomes:

(1− 𝜖)
∑︁

𝑝∈𝒫𝑢,𝑣
𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ ≤ 𝑞𝑢,𝑣,𝑟𝑡 ≤ (1 + 𝜖)

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ (6.32)

and

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡′

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ · (1− 𝜋𝑟

𝑝,𝑟′) ≤ (Γ · 𝑑𝑢,𝑣𝑡 )2 (6.33)

Both constraints are linear and can be added into Eq. 6.16.
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Besides the total system travel time, many recommendation systems also aim to

respect passenger’s preferences. That is, if possible, a path with high inherent utility

𝑉 𝑟
𝑝 should be recommended. Hence the following term is added into the objective

function.

max
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

𝑥𝑝,𝑟 · 𝑉 𝑟
𝑝 ⇐⇒ min

∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

−𝑥𝑝,𝑟 · 𝑉 𝑟
𝑝 (6.34)

The final individual path recommendation (IPR) model can be formulated as:

(𝐼𝑃𝑅) min
𝑥,𝑞,𝑧

𝑊𝑇 (𝑞, 𝑧) + 𝐼𝑉 𝑇 (𝑧) + Ψ
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

−𝑥𝑝,𝑟 · 𝑉𝑝,𝑟 (6.35a)

s.t. Constraints (6.16𝑏)− (6.16ℎ) (6.35b)

(1− 𝜖)
∑︁

𝑝∈𝒫𝑢,𝑣
𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ ≤ 𝑞𝑢,𝑣,𝑟𝑡 ≤ (1 + 𝜖)

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′

∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ (6.35c)∑︁
𝑝∈𝒫𝑢,𝑣

𝑡′

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ · (1− 𝜋𝑟

𝑝,𝑟′) ≤ (Γ · 𝑑𝑢,𝑣𝑡 )2 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ

(6.35d)∑︁
𝑟∈𝑅𝑝

𝑥𝑝,𝑟 = 1 ∀𝑝 ∈ 𝒫 (6.35e)

𝑥𝑝,𝑟 ∈ {0, 1} ∀𝑝 ∈ 𝒫 , 𝑟 ∈ ℛ𝑝 (6.35f)

where Ψ is a hyper-parameter to adjust the scale and balance the trade-off between

system efficiency and passenger preferences.

6.4.4 Benders decomposition

Eq. 6.35 is a mixed-integer linear programming (MILP). The structure of Eq. 6.35

allows us to efficiently solve it by Benders decomposition (BD) [214]. The basic

idea of BD is to decompose the problem into a master problem and a subproblem

and solve these problems iteratively. The decision variables are divided into difficult

variables, which in our case are the binary variables 𝑥, and a set of easier variables, the
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continuous 𝑞 and 𝑧. At each iteration, the master problem determines one possible

leader decision 𝑥. This solution is used in the subproblem to generate optimality-cuts

or feasibility-cuts, which are added to the master problem.

Interestingly, in this study, the master problem decides the recommendation strate-

gies, which is a MILP of a smaller scale and can be solved efficiently using existing

solvers. The subproblem reduces to the optimal flow problem (Eq. 6.16) with one

more linear constraint (still linear programming). This format makes the BD an

appropriate algorithm for the original problem.

Subproblem

The subproblem is derived by fixing the decision variables 𝑥, and only considering

the components including 𝑞 and 𝑧.

[𝑆𝑃 (𝑥)] min
𝑞,𝑧

𝑊𝑇 (𝑞, 𝑧) + 𝐼𝑉 𝑇 (𝑧) (6.36a)

s.t. Constraints (6.16𝑏)− (6.16ℎ) (6.36b)

Constraint (6.35𝑐) (6.36c)

The objective of the dual problem of Eq. 6.36 is

𝐷(𝛼,𝛽,𝛾,𝜂,𝜅,𝜌;𝑥) =
∑︁
𝑙∈ℒ

∑︁
𝑡∈𝒯

𝑇𝑙,𝑡∑︁
𝑡′=𝑡

𝐾𝑙,𝑡𝛼𝑙,𝑡,𝑡′ +
∑︁

(𝑢,𝑣,𝑟)∈ℱ

∑︁
𝑡∈𝒯

𝑡∑︁
𝑡′=𝑡min

𝑓𝑢,𝑣,𝑟
𝑡′ 𝛽𝑢,𝑣,𝑟

𝑡

+
∑︁

(𝑢,𝑣,𝑟,𝑖,𝑡)∈Ω1

𝑧𝑢,𝑣,𝑟,𝑖𝑡 𝛾𝑢,𝑣,𝑟,𝑖
𝑡 +

∑︁
(𝑢,𝑣)∈𝒲

∑︁
𝑡∈𝒯

𝑑𝑢,𝑣𝑡 𝜂𝑢,𝑣𝑡

+
∑︁

(𝑢,𝑣,𝑟)∈ℱ

∑︁
𝑡∈𝒯

𝜅𝑢,𝑣,𝑟
𝑡 · (1− 𝜖)

∑︁
𝑝∈𝒫𝑢,𝑣

𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′

+
∑︁

(𝑢,𝑣,𝑟)∈ℱ

∑︁
𝑡∈𝒯

𝜌𝑢,𝑣,𝑟𝑡 · (1 + 𝜖)
∑︁

𝑝∈𝒫𝑢,𝑣
𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 𝜋𝑟
𝑝,𝑟′ (6.37)

where 𝛼,𝛽,𝛾,𝜂 are the dual variables associated with constraints 6.16b, 6.16c, 6.16f,

6.16e, respectively. 𝜅, 𝜌 are the dual variables associated with constraint 6.35c. Let

Θ := (𝛼,𝛽,𝛾,𝜂,𝜅, 𝜌). If the dual problem of Eq. 6.36 is feasible and bounded with
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a solution Θ*, the following optimality cut is added to the master problem:

𝑌 ≥ 𝐷(Θ*;𝑥) (6.38)

where 𝑌 is a decision variable in the master problem. If the dual problem of Eq. 6.36

is unbounded, and Θ* is an optimal extreme ray of the dual, the following feasibility

cut is added to the master problem:

𝐷(Θ*;𝑥) ≤ 0 (6.39)

Master problem

Let 𝒜O be the set of solutions Θ* of optimality cuts and 𝒜F be the set of solutions

Θ* of feasibility cuts. At each iteration of the BD, a cut based on the solution of the

subproblem is added to the respective set, and the corresponding master problem is

defined as follows:

[𝑀𝑃 (𝒜O,𝒜F)] min
𝑥,𝑌

Ψ
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

−𝑥𝑝,𝑟 · 𝑉𝑝,𝑟 + 𝑌 (6.40a)

s.t. 𝑌 ≥ 𝐷(Θ*;𝑥) ∀Θ* ∈ 𝒜O (6.40b)

𝐷(Θ*;𝑥) ≤ 0 ∀Θ* ∈ 𝒜F (6.40c)

Constraints (6.35𝑑)− (6.35𝑓) (6.40d)

Note that the master problem has a smaller scale compared to the original problem

(because there are no 𝑧 and 𝑞), which can be solved efficiently.

Convergence

Let (𝑥(𝑘), 𝑌 (𝑘)) and (𝑞(𝑘), 𝑧(𝑘)) be the solutions of the master problem and subproblem,

respectively, in the 𝑘-th iteration. Then, the upper (𝑈𝐵(𝑘)) and lower (𝐿𝐵(𝑘)) bounds
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at the 𝑘-th iteration are given by:

𝑈𝐵(𝑘) = Ψ
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

−𝑥(𝑘)
𝑝,𝑟 · 𝑉𝑝,𝑟 +𝑊𝑇 (𝑞(𝑘), 𝑧(𝑘)) + 𝐼𝑉 𝑇 (𝑧(𝑘)) (6.41)

𝐿𝐵(𝑘) = Ψ
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

−𝑥(𝑘)
𝑝,𝑟 · 𝑉𝑝,𝑟 + 𝑌 (𝑘) (6.42)

𝐿𝐵(𝑘) will keep increasing as 𝑘 increases because more cuts are added into the master

problem. 𝑈𝐵(𝑘) does not necessarily decrease at every iteration. The convergence

criterion is

Gap(𝑘) =
𝑈𝐵(𝑘) − 𝐿𝐵(𝑘)

𝐿𝐵(𝑘)
≤ Predetermined threshold (6.43)

6.4.5 Post-adjustment for equity

In this study, we define the equity requirement of a recommendation strategy as

passengers with the same OD (𝑢, 𝑣) and departure time 𝑡 should not have too much

difference in travel time if they follow the recommendations. Mathematically:

𝑤𝑝 :=
∑︁
𝑟∈ℛ𝑝

𝑇𝑇𝑝,𝑟 · 𝑥𝑝,𝑟 − min
𝑝′∈𝒫𝑢,𝑣

𝑡

{
∑︁
𝑟∈ℛ𝑝′

𝑇𝑇𝑝′,𝑟 · 𝑥𝑝′,𝑟} ≤ 𝐸 · 𝜏 ∀𝑝 ∈ 𝒫 (6.44)

where 𝑇𝑇𝑝,𝑟 is the travel time of path 𝑟 ∈ ℛ𝑝 for passenger 𝑝, which can be obtained

from Eq. 6.18.
∑︀

𝑟∈ℛ𝑝
𝑇𝑇𝑝,𝑟 · 𝑥𝑝,𝑟 is the travel time on the recommended path. 𝑤𝑝

represents the difference between passenger 𝑝’ travel time (if he/she follows the rec-

ommendation) and the minimum travel time of all passengers with the same (𝑢, 𝑣, 𝑡).

𝐸 · 𝜏 is a predetermined threshold for the travel time difference (where 𝐸 ∈ N).

As mentioned in Section 6.4.1, we cannot formulate path travel time in the optimal

flow model. Hence, Eq. 6.44 cannot be added into Eq. 6.35 as a constraint directly.

In this section, we propose a post-adjustment heuristic method to address the equity

constraint. The basic idea of the post-adjustment is to change the recommendations

of high-cost paths to low-cost ones after solving Eq. 6.35. Notice that if 𝐸 = 0

in Eq. 6.44, we obtain a user equilibrium recommendation pattern. This motivates
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us to direct the current system optimal recommendations toward user equilibrium

recommendations. The user equilibrium solution is usually obtained by the method

of successive averages (MSA):

(𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) = (1− 𝜆𝑘) · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) + 𝜆𝑘 · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) (6.45)

where (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) is the flow of all-or-nothing assignment to the shortest paths at itera-

tion 𝑘. (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) is the current flow at iteration 𝑘, and 𝜆𝑘 is the step size at iteration

𝑘. Eq. 6.45 means at each iteration, some of the flows are moved to the shortest path

so that we expect that ultimately all paths have similar travel time.

However, directly using MSA may violate the 𝜖-feasibility and Γ-concentration

because Eq. 6.45 does not guarantee that (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) satisfies these two constraints.

Therefore, we propose a new MILP formulation that works similar to the MSA-based

flow redistribution but guarantees 𝜖-feasibility and Γ-concentration at each iteration.

Note that the post-adjustment is initialized at (𝑞𝑢,𝑣,𝑟𝑡 )(0) = (𝑞𝑢,𝑣,𝑟𝑡 )*, where (𝑞𝑢,𝑣,𝑟𝑡 )*

is the optimal flow solution from Eq. 6.35. By definition, (𝑞𝑢,𝑣,𝑟𝑡 )(0) satisfies 𝜖-

feasibility and Γ-concentration. Now we need to develop a method that satisfies

(𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) is 𝜖-feasible and Γ-concentrated for all 𝑘 ≥ 1.

Let the 𝑤𝑝 at iteration 𝑘 be:

𝑤(𝑘)
𝑝 :=

∑︁
𝑟∈ℛ𝑝

𝑇𝑇 (𝑘)
𝑝,𝑟 · 𝑥(𝑘)

𝑝,𝑟 − min
𝑝′∈𝒫𝑢,𝑣

𝑡

{
∑︁
𝑟∈ℛ𝑝′

𝑇𝑇
(𝑘)
𝑝′,𝑟 · 𝑥

(𝑘)
𝑝′,𝑟} (6.46)

where 𝑤
(𝑘)
𝑝 represents the “degree of unfairness” for passenger 𝑝 at iteration 𝑘 because

the larger the value, the longer the travel time of his/her recommended path compared

to the shortest one. Let 𝑟
(𝑘)
𝑝,min = argmin𝑟∈ℛ𝑝

{𝑇𝑇𝑝,𝑟} be the shortest path ID for

passenger 𝑝 at iteration 𝑘. We formulate the post-adjustment MILP at iteration 𝑘

as:
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(𝑃𝐴(𝑥(𝑘), 𝑞(𝑘))) max
𝑥(𝑘+1),𝑞(𝑘+1)

∑︁
𝑝∈𝒫

𝑤(𝑘)
𝑝 ·

∑︁
𝑟∈ℛ𝑝

1{𝑟=𝑟
(𝑘)
𝑝,min}

· (𝑥𝑝,𝑟)
(𝑘+1) (6.47a)

s.t. (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) ≤ (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) ≤ (1− 𝜆𝑘) · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) + 𝜆𝑘 · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘)

∀(𝑢, 𝑣, 𝑟, 𝑡) ∈ 𝒰 (𝑘)
+ (6.47b)

(1− 𝜆𝑘) · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) + 𝜆𝑘 · (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) ≤ (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) ≤ (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘)

∀(𝑢, 𝑣, 𝑟, 𝑡) ∈ 𝒰 (𝑘)
− (6.47c)∑︁

𝑟∈ℛ𝑢,𝑣

(𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) = 𝑑𝑢,𝑣𝑡 ∀(𝑢, 𝑣, 𝑡) ∈ 𝒲 (6.47d)

(𝑞𝑢,𝑣,𝑟𝑡 )(𝑘+1) ≥ 0 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ (6.47e)

(𝑥𝑝,𝑟)
(𝑘+1) = 𝑥(𝑘)

𝑝,𝑟 ∀𝑝 ∈ 𝒫Eq
(𝑘) (6.47f)

Constraints (6.35𝑐)− (6.35𝑓) (replacing 𝑥, 𝑞 with 𝑥(𝑘+1), 𝑞(𝑘+1))

(6.47g)

Constraints 6.47b and 6.47c mean that, at each step, the new flows at iteration 𝑘+1

(i.e., 𝑞(𝑘+1)) are between 𝑞(𝑘) and the values obtained by MSA, where 𝒰 (𝑘)
+ (resp.

𝒰 (𝑘)
− ) is the set of (𝑢, 𝑣, 𝑟, 𝑡) indices that make (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) > 0 (resp. (𝑞𝑢,𝑣,𝑟𝑡 )(𝑘) = 0).

With constraints 6.47g, the solution 𝑞(𝑘+1) and 𝑥(𝑘+1) satisfy 𝜖-feasibility and Γ-

concentration.

The objective function is maximized (without constraints) if 𝑥
(𝑘+1)
𝑝,𝑟 = 1 for all

𝑟 = 𝑟
(𝑘)
𝑝,min, which means we should change as many of the recommendations as pos-

sible to the shortest path. However, 6.47𝑏 and 6.47𝑐 do not allow to change all

recommendations to the shortest path. The unfairness weight 𝑤
(𝑘)
𝑝 suggests that the

recommendations to the passengers with the largest degree of unfairness should be

changed first.

𝒫Eq
(𝑘) is the set of passengers whose recommendations already satisfy the equity

requirement (i.e., 𝒫Eq
(𝑘) = {𝑝 ∈ 𝒫 : 𝑤

(𝑘)
𝑝 ≤ 𝐸 · 𝜏}). Constraint 6.47f helps to fix

the recommendations that already satisfy the equity requirement, which reduces the

scale of the problem.
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Remark 8. The post-adjustment problem (Eq. 6.47) aims to find a new recommen-

dation strategy 𝑥(𝑘+1) and flow patterns 𝑞(𝑘+1) closer to the user equilibrium solutions

(i.e., with more equity). And the solutions are guaranteed to satisfy 𝜖-feasibility and

Γ-concentration. The post-adjustment problem is always feasible because (𝑥(𝑘), 𝑞(𝑘))

is a feasible solution (associated with no flow and recommendation changes). And it

can be solved efficiently using branch-and-cut algorithms supported by many off-the-

shelf solvers because the size of the problem is much smaller given that many integer

variables are fixed (due to constraint 6.47f). Moreover, we can use (𝑥(𝑘), 𝑞(𝑘)) as a

warm-start to further accelerate the solution.

Eq. 6.47 presents the formulation at iteration 𝑘. The complete algorithm for the

post-adjustment problem is shown in Algorithm 5. There are two stopping criteria:

1) (𝑥(𝑘), 𝑞(𝑘)) = (𝑥(𝑘−1), 𝑞(𝑘−1)) or 2) 𝒫Eq
(𝑘) = 𝒫 . The first one means that we

cannot find a new recommendation strategy and flow pattern that satisfies equity,

𝜖-feasibility, and Γ-concentration requirements. And the second criterion means that

all passenger’s recommendations satisfy the equity requirement.

Algorithm 5 Solution procedure of the post-adjustment approach for equity

1: Initialize (𝑥(0), 𝑞(0)) as the optimal solution of Eq. 6.35.
2: Set the iteration counter 𝑘 = 0.
3: do
4: Solve the post-adjustment problem (Eq. 6.47) with (𝑥(𝑘), 𝑞(𝑘)) as inputs, and

return (𝑥(𝑘+1), 𝑞(𝑘+1))
5: 𝑘 = 𝑘 + 1
6: while (𝑥(𝑘), 𝑞(𝑘)) ̸= (𝑥(𝑘−1), 𝑞(𝑘−1)) and 𝒫Eq

(𝑘) ̸= 𝒫
7: return (𝑥(𝑘), 𝑞(𝑘))

Remark 9. Post-adjustment is a heuristic method to find a recommendation strategy

that satisfies the equity requirements. Ideally, we also want the system travel time

to be minimized under the equity constraint. But the proposed heuristic method

cannot guarantee travel time optimality. With the updating by the post-adjustment

procedure, the flow patterns are closer to the user equilibrium, and the system travel

time will be increased. We may control the step size 𝜆𝑘 to make sure the new flows

are not too different from the system optimal one, so that the new travel time is not
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too bad. However, a too small value of 𝜆𝑘 may limit the flow updating range and lead

to a situation where not all passengers with 𝑤𝑝 ≤ 𝐸 · 𝜏 (i.e., Algorithm 5 stops with

the first criterion). Hence, the step size 𝜆𝑘 plays a trade-off role between satisfying

equity and controlling the increase in system travel time.

6.5 Model extension

In this section, we discuss several extensions of the model to accommodate more

realistic/general scenarios.

6.5.1 Generalization of recommendations

In this study, we assume the information given to passengers is a recommended path.

In reality, the recommendation system may provide a bundle of recommended paths

with information like estimated in-vehicle time, waiting time, travel cost, etc. The

proposed framework can be extended to handle different recommendation typolo-

gies. Figure 6-6 shows an example where the recommendation system will provide

a composition of path and travel time information, where each composition can in-

clude different paths, different estimated waiting/in-vehicle times, etc. Then, we can

change 𝑥𝑝,𝑟 to 𝑥𝑝,𝑐, where 𝑥𝑝,𝑐 indicates whether we will present composition 𝑐 to pas-

senger 𝑝. Similarly, each 𝑐 is associated with a conditional probability 𝜋𝑟
𝑝,𝑐 as shown

in Figure 6-6 (the probability for passenger 𝑝 to choose path 𝑟 given that he/she is

recommended composition 𝑐).

In this way, we only need to calibrate 𝜋𝑟
𝑝,𝑐 and predetermine the composition set

𝒞𝑝 for each passenger 𝑝. The overall framework proposed above can be easily adapted

to the new recommendation typology by replacing 𝑥𝑝,𝑟 and 𝜋𝑟
𝑝,𝑟′ with 𝑥𝑝,𝑐 and 𝜋𝑟

𝑝,𝑐,

respectively.
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Figure 6-6: Illustration of the generalized recommendation typology. 𝒞𝑝 is the prede-
termined recommendation composition sets for passenger 𝑝

6.5.2 Feedback and rolling-horizon

As mentioned in Section 6.3.2, the whole path recommendation problem should be

solved in a rolling-horizon manner. At each time interval 𝑡 ≥ 1, we update the

demand, supply, and system state information, and solve the proposed framework

above to get a recommendation strategy 𝑥. But we only implement the 𝑥𝑝,𝑟 for

𝑝 ∈ 𝒫𝑢,𝑣
𝑡 , ∀(𝑢, 𝑣) (i.e., passengers departing at current time 𝑡).

The rolling horizon requires updating the estimated demand and system state

information. The recommendation system can ask for passenger feedback to facilitate

the estimation. For example, after providing a recommendation, we can ask the

passenger to respond whether he/she will actually use it or not. This feedback can

be used to update the demand predictions.

6.5.3 Integrated formulation with behavior uncertainty and

equity

As mentioned in Section 6.4.5, the equity requirement (Eq. 6.44) cannot be incor-

porated into the recommendation model (Eq. 6.35) due to the fact that it is hard

to formulate path travel time directly. In this section, we show a possible MILP for-

mulation that incorporates the equity requirement. However, this formulation is far

more complicated than Eq. 6.35 and is hard to solve, representing a future research

activity.
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Let 𝑦𝑢,𝑣,𝑟,𝑡
𝑡

represent a binary variable indicating whether the arrival time of a

passenger departing at time 𝑡 using (𝑢, 𝑣, 𝑟) is 𝑡 or not. By definition,

∑︁
𝑡∈𝒯 𝑢,𝑣,𝑟

𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

= 1 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ (6.48)

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

∈ {0, 1} ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯 𝑢,𝑣,𝑟
𝑡 (6.49)

where 𝒯 𝑢,𝑣,𝑟
𝑡 is the set of possible arrival time indices (see Eq. 6.17). From the

relationship between arrival time and cumulative flows (Eq. 6.17), we have

𝑡∑︁
𝑡′=𝑡min

(𝑓𝑢,𝑣,𝑟
𝑡′ + 𝑞𝑢,𝑣,𝑟𝑡′ ) ≤

∑︁
𝑡min≤𝑡′+𝛿

𝑢,𝑣,𝑟,|ℒ𝑢,𝑣,𝑟 |
𝑡′ ≤𝑡

𝑧
𝑢,𝑣,𝑟,|ℒ𝑢,𝑣,𝑟|
𝑡′ + (1− 𝑦𝑢,𝑣,𝑟,𝑡

𝑡
)𝑀

∀𝑡 ∈ 𝒯 , (𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯 𝑢,𝑣,𝑟
𝑡 (6.50)

where 𝑀 is a big positive constant. When 𝑦𝑢,𝑣,𝑟,𝑡
𝑡

= 0, 𝑡 is not the arrival time, and

Eq. 6.50 is not binding. As the arrival time is the minimum 𝑡 that satisfies Eq. 6.50,

the following component should be added into the objective function

min
∑︁
𝑡∈𝒯

∑︁
(𝑢,𝑣,𝑟)∈ℱ

∑︁
𝑡∈𝒯 𝑢,𝑣,𝑟

𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

· 𝑡 (6.51)

Eqs 6.48 ∼ 6.51 provide a possible way to model path travel times by defining the

binary variable 𝑦. To incorporate the equity constraint, let the earliest arrival time

over all paths of OD pair (𝑢, 𝑣) and time 𝑡 be 𝐸𝐴𝑇 𝑢,𝑣
𝑡 :

𝐸𝐴𝑇 𝑢,𝑣
𝑡 = min

𝑟∈ℛ𝑢,𝑣
{
∑︁

𝑡∈𝒯 𝑢,𝑣,𝑟
𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

· 𝑡} ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣) ∈ 𝒲 (6.52)

As the objective is minimizing
∑︀

𝑡∈𝒯 𝑢,𝑣,𝑟
𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

, Eq. 6.52 can be transformed to a

linear constraint:

𝐸𝐴𝑇 𝑢,𝑣
𝑡 ≤

∑︁
𝑡∈𝒯 𝑢,𝑣,𝑟

𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

· 𝑡 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣) ∈ 𝒲 , 𝑟 ∈ ℛ𝑢,𝑣 (6.53)
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And the equity requirement can be formulated as

∑︁
𝑡∈𝒯 𝑢,𝑣,𝑟

𝑡

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

· 𝑡− 𝐸𝐴𝑇 𝑢,𝑣
𝑡 ≤ 𝐸 · 𝜏 + (1− 𝑥𝑝,𝑟) ·𝑀 ∀𝑡 ∈ 𝒯 , (𝑢, 𝑣) ∈ 𝒲 , 𝑝 ∈ 𝒫𝑢,𝑣

𝑡 , 𝑟 ∈ ℛ𝑢,𝑣

(6.54)

If 𝑥𝑝,𝑟 = 0 for all 𝑝 ∈ 𝒫𝑢,𝑣
𝑡 , path 𝑟 is not recommended and Eq. 6.54 becomes

ineffective.

Adding all these constraints and the objective component into Eq. 6.35 results

in the integrated formulation. However, it is extremely hard to solve due to a large

number of integer variables 𝑦 and the complicated constraint interactions. We show

this formulation to demonstrate the difficulty of incorporating equity requirements

and highlight the importance of the heuristic post-adjustment approach in Section

6.4.5.

6.6 Case study

6.6.1 Case study design

CTA Blue Line disruption

For the case study, we consider an actual incident in the Blue Line of the Chicago

Transit Authority (CTA) urban rail system (Figure 6-7). The incident starts at 8:14

AM and ends at 9:13 AM on Feb 1st, 2019 due to infrastructure issues between

Harlem and Jefferson Park stations (the red X in the figure) that led to a whole Blue

Line suspension. During the disruption (morning hours), the destination for most of

the passengers is the “Loop” in the CBD area in Chicago. There are four alternative

paths to the Loop: 1) using the Blue Line (i.e., waiting for the system to recover),

2) using the parallel bus lines, 3) using the North-South (NS) bus lines to transfer to

the Green Line, and 4) using the West-East (WE) bus lines to transfer to the Brown

Line. Based on the service structure, the route sets ℛ(𝑢,𝑣) for each OD pair (𝑢, 𝑣) can

be constructed.
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Figure 6-7: Case study network

In the case study, we divide the time into 𝜏 = 5 mins equal-length intervals,

and focus on solving the problem at 𝑡 = 1 (i.e., beginning of the incident). We

assume that the set of passengers to receive recommendations (𝒫) consists of all

passengers with their intended origins at the Blue Line and destinations in the Loop.

A simulation model [4] is used to get the system state up to time 𝑡 = 1 (i.e., the

incident time 8:14 AM) and generate 𝑧𝑢,𝑣,𝑟,𝑖𝑡 and Ω1. The recommendation strategy

covers passengers departing between 𝑡 = 1 and 𝑇𝐷 = 23, approximately one hour

after the end of the incident (9:13 AM). The analysis period is set as 𝑡min = −13 and

𝑇 = 34, approximately one hour before 𝑡 = 1 and after 𝑇𝐷, providing enough buffer

(warm-up and cool-down time) for passengers in 𝒫 to finish their trips. As demand

and incident duration predictions are out of the scope of this study, we simply use

the actual demand and incident duration for all experiments. Our other work [45]

proposes to use robust and stochastic optimization to address demand and incident

duration uncertainty, respectively.

Conditional probability matrix 𝜋

In this section, we describe how to generate the synthetic conditional probability

matrix 𝜋 used for the case study. During the incident, CTA does not provide specific

path recommendation information. For every individual, we assume that their actual
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path choices (referred to as the “status quo” choices) reflect their inherent preferences.

Section 6.9.2 presents the method of inferring passengers’ status quo choices during

the disruption using smart card data [215]. The basic idea is to track their tap-in

records when entering the Blue Line and nearby bus routes, and compare them with

their historical travel histories to get the transfer information.

Given the status quo choices, we assume that the “true” passenger 𝑝’s inherent

preference for path 𝑟 is given by

𝑉 𝑟
𝑝 =

⎧⎨⎩1 + 𝑣𝑟𝑝 if 𝑟 is 𝑝’s actual path choice

𝑣𝑟𝑝 otherwise,
∀ 𝑝 ∈ 𝒫 , 𝑟 ∈ ℛ𝑝 (6.55)

where 𝑣𝑟𝑝 is drawn uniformly from 𝒰 [0, 1]. Eq. 6.55 indicates every path has a random

utility 𝑣𝑟𝑝 normalized to 0 ∼ 1. And the chosen path has an additional utility value of

1. We assume that the impact of the recommendation of 𝑟′ on the utility of path 𝑟 is

𝐼𝑟𝑝,𝑟′ =

⎧⎨⎩Drawn from 𝒰 [0, 5] if 𝑟 = 𝑟′

0 otherwise,
∀ 𝑝 ∈ 𝒫 , 𝑟, 𝑟′ ∈ ℛ𝑝 (6.56)

Eq. 6.56 means that the utility of the path recommended (i.e., 𝑟 = 𝑟′) has an

additional positive impact drawn uniformly from 𝒰 [0, 5]. The utilities of paths not

being recommended (𝑟 ̸= 𝑟′) do not change. Given Eqs. 6.55 and 6.56, we can

generate the conditional probability 𝜋 using Eq. 6.21. It is worth mentioning that

the above assumptions for generating synthetic passenger prior preferences are based

on two reasonable principles: 1) Passenger’s actual chosen path has a higher inherent

utility. 2) Recommendations of a path can increase its probability of being chosen.

6.6.2 Parameter settings

The 𝜖-feasibility and Γ-concentration parameters are set as 𝜖 = 0.05 and Γ = 0.3,

indicating 5% and 30% variation constraints in mean and variance. The equity re-

quirement parameter is set as 𝐸 = 2, meaning that we allow at most 10 minutes

difference in travel time for passengers with the same OD and departure time. The
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convergence gap threshold for Benders decomposition is set as 1 × 10−8. The post-

adjustment updating step is set as 𝜆𝑘 =
1
4

based on numerical tests.

6.6.3 Benchmark models

There are two benchmark path choice scenarios we use for comparison purposes:

Status-quo path choices. This scenario provides the status quo situation which

does not include any recommendations. It represents the worst case. In this scenario,

no behavior uncertainty is considered because this is based on the actual path choices

realized by passengers.

Capacity-based path recommendations. The capacity-based path recom-

mendations aim to recommend passengers to different paths according to the available

capacity of paths. Specifically, for a path in OD pair (𝑢, 𝑣) and time 𝑡, its capacity is

the total available capacity of all vehicles passing through the first boarding station

of the path during the time period. For example, for a path consisting of an NS

bus route and the Green Line, the path capacity is the total available capacity of

all buses at the boarding station of the NS bus route during time interval 𝑡. The

available capacity can be obtained from a simulation model using historical demand

as the input or using historical passenger counting data. The available capacity for

the Blue line (the incident line) depends on modified operations during the incident

(i.e., the service suspension is considered). When no vehicles operate in the Blue line

during time interval 𝑡, the path capacity is zero.

6.6.4 System travel time evaluation

Given a recommendation strategy 𝑥, as mentioned above, the actual system travel

time is a random variable because of the passenger behavior uncertainty. To obtain

the mean and standard deviation of the system travel time, we generate multiple

passenger choice realizations based on 𝜋 and 𝑥. For each generated passenger choice
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(1̂𝑟
𝑝,𝑟′), the realized path flows are

𝑞𝑢,𝑣,𝑟𝑡 =
∑︁

𝑝∈𝒫𝑢,𝑣
𝑡

∑︁
𝑟′∈ℛ𝑢,𝑣

𝑥𝑝,𝑟′ · 1𝑟
𝑝,𝑟′ ∀(𝑢, 𝑣, 𝑟) ∈ ℱ , 𝑡 ∈ 𝒯 . (6.57)

The system travel time for the above passenger choice realization is calculated by solv-

ing the solving the optimal flow problem (Eq. 6.16) with the constraints 𝑞𝑢,𝑣,𝑟𝑡 = 𝑞𝑢,𝑣,𝑟𝑡

for all (𝑢, 𝑣, 𝑟) ∈ ℱ and 𝑡 ∈ 𝒯 . This process is repeated with multiple realizations,

providing the sample mean and standard deviation of the system travel time under

recommendation strategy 𝑥.

6.6.5 Experimental design

As this research considers various components (such as the optimal flow optimization,

passengers’ path preferences, behavior uncertainty, equity, etc.), it is useful to test

different components separately to identify the impact of each one. Hence, we design

the following test cases, each one with specific parameter settings to systematically

evaluate the impacts of each component.

Model performance compared to benchmark models. The most straight-

forward model validation is to evaluate the effect on reducing system travel time.

In this test case, we set Ψ = 0, meaning that we ignore the passengers’ preference

and focus only on minimizing system travel time. We also solve the individual path

recommendation model (Eq. 6.35) without the post-adjustment process. The impact

of the equity adjustments will be evaluated in another experiment introduced later.

The results of this test case are discussed in Section 6.7.2

The benefit of considering behavior uncertainty. In this test case, we

evaluate the importance of incorporating behavior uncertainty in the model. The

model without behavior uncertainty assumes that passengers take the recommended

path. The recommendation strategy is obtained by solving Eq. 6.35 with 𝜋𝑟
𝑝,𝑟′ = 1

if 𝑟 = 𝑟′. Similarly, we set Ψ = 0 and ignore the post-adjustment process. Note

that, when we evaluate the recommendation strategy, the behavior uncertainty is

still considered in generating the system travel time (see Section 6.6.4). The results
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of this test case are shown in Section 6.7.3

Impact of considering travel time equity. In this test case, the post-adjustment

method is used to obtain “equity”-constrained path recommendations. The results be-

fore and after the post-adjustment are compared. The results of this test case are

shown in Section 6.7.4.

Impact of considering passenger preference. In all the above tests, Ψ = 0

is used, focusing on the system travel time. In this test case, we evaluate the model

performance under different values of Ψ in order to assess the impact of considering

passenger preferences. The results of this test case are discussed in Section 6.7.5.

6.7 Results

6.7.1 Model convergence

Convergence of Benders decomposition and computational time

Figure 6-8 shows the convergence of the BD algorithm. As expected, the lower bound

of the model keeps increasing, while the upper bound, after dropping significantly in

early iterations, exhibits some fluctuations. The model converges after 28 iterations

with a relative gap of less than 1×10−8. The number of optimality cuts was 28 and

no feasibility cut was generated.

Figure 6-8: Convergence of the Benders decomposition
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Table 6.1 compares the computational time of the Benders decomposition and

off-the-shelf solvers. The BD algorithm was implemented using Julia 1.6 with the

Gurobi 9.1 solver [216] on a personal computer with the I9-9900K CPU. The total

computational time is 17.8 seconds (master problem 8.2 seconds + subproblem 9.6

seconds), which is more efficient than directly using the Mixed integer programming

(MIP) solvers, including Gurobi [216], CPLEX [217], GLPK (GNU Linear Program-

ming Kit) [218], and CBC (Coin-or branch and cut) [219].

Table 6.1: Computational time comparison

Solver CPU time (sec) Gap Solver CPU time (sec) Gap

BD 17.8 0.000% Gurobi 55.1 0.000%
CPLEX 65.7 0.000% CBC 425.4 0.000%
GLPK 562.6 0.000%

Convergence of post-adjustment algorithm

Figure 6-9 shows the convergence process of the post-adjustment algorithm. Specif-

ically, we show the number of non-equity passengers (i.e., |𝒫| − |𝒫Eq
(𝑘)|) and the

average value of 𝑤𝑝 (i.e.,
∑︀

𝑝∈𝒫 𝑤𝑝

|𝒫| ). Iteration 0 indicates the system optimal state

(i.e., the solution of Eq. 6.35). We observe that, after only three iterations, the post-

adjustment algorithm terminates and all passengers in 𝒫 have a travel time difference

relative to the shortest path (i.e., 𝑤𝑝) smaller than 10 minutes, satisfying the equity

requirement. The average 𝑤𝑝 keeps decreasing with the post-adjustment process,

meaning that more and more passengers have similar travel times.

6.7.2 Model performance compared to benchmark models

In this section, we compare the system travel time under the proposed individual

path recommendations (without post-adjustment) and two benchmark models. All

travel times (except for the status quo that is deterministic) are calculated based on

10 replications using the randomly sampled actual path choices based on the given

recommendation (see Section 6.6.4).
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Figure 6-9: Convergence of the post-adjustment procedure

Table 6.2 shows that the proposed model (IPR) significantly reduces the average

travel time in the system compared to the status quo. Specifically, there is a 6.6%

reduction in travel times of all passengers in the system. And for passengers in the in-

cident line (i.e., passengers who received the recommendation, 𝒫), the average travel

time reduction is 19.0%. Our model also outperforms the capacity-based benchmark

path recommendation strategy, which reduces the travel time of all passengers by

2.5% and incident line passengers by 15.9%. It is also worth noting that the stan-

dard deviation is small, meaning that variations due to behavior uncertainty are not

significant.

Table 6.2: Average travel time comparison for different models

Models Average travel time (all passengers) Average travel time (incident line passengers)

Mean (min) Std. (min) Mean (min) Std. (min)

Status quo 28.318 N.A. 40.255 N.A.
Capacity-based 27.609 (-2.5%) 0.033 33.848 (-15.9%) 0.165
IPR model 26.457 (-6.6%) 0.018 32.626 (-19.0%) 0.187
Numbers in parentheses represent percentage travel time reduction compared to the status quo

6.7.3 Benefits of considering behavior uncertainty

In this section, we aim to compare the model with and without considering the behav-

ior uncertainty. The model without behavior uncertainty assumes that all passengers

follow the recommended path when designing the recommendation (but they may not

in reality).
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Table 6.3 shows the comparison of average travel time for the two models. As ex-

pected, considering behavior uncertainty in the path recommendation design achieves

smaller travel time for all passengers and incident line passengers. Note that, though

the 0.93% reduction (around 15 seconds saving per passenger) is relatively small, con-

sidering the large number of passengers in the system, the total travel time savings

are still significant.

Table 6.3: Average travel time comparison with and without behavior uncertainty
(BU)

Models
Average travel time (all passengers) Average travel time (incident line passengers)

Mean (min) Std. (min) Mean (min) Std. (min)

IPR model (w.o. BU) 26.706 0.026 32.852 0.122

IPR model (w. BU) 26.457 (-0.93%) 0.018 32.626 (-0.69%) 0.187

Numbers in parentheses represent percentage travel time reduction compared to the IPR model w.o. BU

6.7.4 Impact of considering travel time equity

Figure 6-10 shows the comparison before and after the post-adjustment, which re-

flects the impact of considering passenger equity. Figure 6-10a shows that before

the post-adjustment, there are hundreds of passengers with more than 10 minutes

longer travel time than the shortest path travel time, showing equity issues. After

the post-adjustment, 𝑤𝑝 is less than 10 minutes for all passengers in 𝒫 . Furthermore,

the distribution of 𝑤𝑝 is shifted to smaller values. Note that |𝒫| is around 5,800, so

most passengers are recommended a path with the shortest travel time (i.e., 𝑤𝑝 = 0)4.

Figure 6-10b compares the system travel time before and after the post-adjustment

as a function of the number of iterations. Since the system optimal solution has the

smallest travel time, the post-adjustment, as expected, slightly increases the average

travel time of all passengers by 0.45% (from 26.457 to 26.576 minutes), suggesting

that a small sacrifice is enough to satisfy the equity requirement. Interestingly, the

average travel time of the incident line passengers decreased (from 32.626 to 32.475

minutes), which implies that the increase in travel time mainly happens to passengers

4𝑤𝑝 = 0 is not shown in the distribution because it is too large and will distort the figure
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in nearby lines who are indirectly affected by the incidents, rather than the incident-

line passengers.

(a) Distribution of 𝑤𝑝 before and after post-

adjustment

(b) Average travel time change during post-

adjustment

Figure 6-10: Comparison before and after the post-adjustment

6.7.5 Impact of respecting passenger’s prior preferences

In this section, we evaluate the impact of different values of Ψ in terms of respecting

passenger’s prior preferences. Besides the system travel time, we also evaluate the

total utility, defined as the sum of the prior utilities of the recommended path:

𝑇𝑈(𝑥) =
∑︁
𝑝∈𝒫

∑︁
𝑟∈ℛ𝑝

𝑥𝑝,𝑟 · 𝑉𝑝,𝑟. (6.58)

Note that the maximum value of 𝑇𝑈(𝑥) is achieved when every passenger is recom-

mended their preferred path (i.e., the path with the highest prior utility, 𝑉𝑝,𝑟). Denote

this maximum value as 𝑇𝑈max. The relative ratio of total utility, 𝑇𝑈(𝑥)
𝑇𝑈max , represents

the fraction of the total (prior) utility that the recommendation has achieved.

Another indicator is the number of passengers recommended their preferred path

(denoted as 𝑁𝑃 (𝑥)). Similarly, we also define the proportion of passengers recom-

mended their preferred path (i.e., 𝑁𝑃 (𝑥)
|𝒫| , where |𝒫| = 5, 827 in the case study).

Figure 6-11 shows the results for different value of Ψ. The x-axis is plotted in

log-scale. In Figure 6-11a, the average travel time for all passengers and incident-
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line passengers increases with the increase of Ψ, which is as expected because the

larger value of Ψ means that the recommendation generation focuses more on satis-

fying passenger’s inherent preferences rather than minimizing the system travel time.

Similarly, in Figure 6-11b, as expected, both 𝑇𝑈(𝑥) and 𝑁𝑃 (𝑥) increase with the

increase in Ψ. When Ψ = 105, the average travel time of the incident line passen-

gers increased by 21.3%, which is close to the status quo scenario. This is because

we generate passengers’ prior utilities based on the status quo choices. Figure 6-11b

shows that nearly all passengers in 𝒫 are recommended with their preferred path

when Ψ = 105.

Figure 6-11 illustrates the trade-off between respecting passenger’s preferences and

reducing system congestion. When the value of Ψ is relatively small (e.g., less than

103), increasing Ψ can effectively increase the total utility and number of passengers

recommended their preferred path. Meanwhile, the system travel time only slightly

increases. But when Ψ is large (e.g., greater than 104), increasing Ψ significantly

increases the system travel time, but the impact on increasing passenger’s utility is

limited. The reason may be that, in the system, there are some passengers whose pre-

ferred paths are not at the capacity bottlenecks. Hence, when Ψ is small, the optimal

solution recommends those passengers use their preferred paths without significantly

impacting the system travel time. When Ψ is large, passengers are recommended to

use their preferred paths even if these paths are highly congested, causing a significant

increase in the system travel time. The results imply that a reasonable value of Ψ

should be relatively small. With small Ψ, most of the passengers (e.g., more than

70%) are recommended to use their preferred paths without significantly reducing the

system efficiency.

6.8 Conclusion and discussion

This study proposes a mixed-integer programming (MIP) formulation to model the

individual-based path (IPR) recommendation problem during PT service disruptions

with the objective of minimizing total system travel time and respecting passengers’
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(a) Average travel time

(b) Total utility and number of passengers being recommended with pre-
ferred path

Figure 6-11: Impact of different values of Ψ on results. The percentage change in
Figure (a) is compared with the scenario of Ψ = 0. The percentage in parentheses in
Figure (b) represents the relative ratio of total utility and proportion of passengers
recommended their preferred path, respectively.

path choice preference. Passengers’ behavior uncertainty in path choices given recom-

mendations and their travel time equity are also considered in the formulation. We

first formulate the optimal flow distribution problem in PT systems as a linear pro-

gramming, which outputs the optimal path flows for each OD pair and time interval

that minimize the total system travel time. Then, we model the behavior uncer-

tainty based on passenger’s prior preferences and posterior path choice probability

distribution with two new concepts: 𝜖-feasible flows and Γ-concentrated flows, which

control the mean and variance of path flows in the optimization problem. We show
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that these two concepts can be transformed into linear constraints using Chebyshev’s

inequality. The individual path recommendation problem with behavior uncertainty

is solved using Benders decomposition (BD) efficiently. The master problem of BD

is a small-scale integer programming and the subproblem of BD reduces the optimal

flow problem that is a linear program. The BD is more efficient than many off-

the-shelf MIP solvers. Finally, we use a post-adjustment heuristic to address equity

requirements.

The proposed approach is demonstrated in a case study using data from a real-

world urban rail disruption in the CTA system. The results show that the proposed

IPR model significantly reduces the average travel times in the system compared to

the status quo. Specifically, there is a 6.6% reduction in travel times for all passen-

gers in the system. Passengers in the incident line (i.e., passengers who received the

recommendation), experience a 19.0% average travel time reduction. Our model also

outperforms the capacity-based benchmark path recommendation strategy. Com-

pared to the model that assumes all passengers would follow the recommendations,

considering behavior uncertainty in the path recommendation design can achieve

smaller system travel time. Post-adjustment effectively reduces the difference in pas-

sengers’ travel times and increases equity. After the post-adjustment, the travel time

difference to the shortest path is within 10 minutes for all passengers. The equity

requirement slightly increases the system travel time by 0.46%, showing the trade-off

between efficiency and equity. In terms of respecting passenger’s preferences, we show

that it is possible that most of the passengers (e.g., more than 70%) are recommended

their preferred paths while only increasing the system travel time by 0.51%.

Following the discussion in Section 6.5, future studies can be pursued in the fol-

lowing directions. First, as shown in Section 6.5.1, it is possible to extend the cur-

rent framework with more complex recommendation compositions. The challenges in

implementing the more general framework stem from the quantification of the poste-

rior path choice probabilities. Future studies may conduct corresponding surveys to

calibrate passengers’ responses to the recommendations. Second, the integrated for-

mulation with both behavior uncertainty and equity is hard to solve (Section 6.5.3).
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Though the post-adjustment heuristic works well, it is still a methodological challenge

to develop a direct solution algorithm for the integrated formulation. Finally, future

studies may consider different sources of uncertainty (including incident duration,

in-vehicle time, demand, etc.) for a more realistic modeling framework.

6.9 Appendix

6.9.1 Notation

Table 6.4: Notation summary

Notation Description

Model Parameters

(𝑢, 𝑣, 𝑟, 𝑖) The 𝑖-th leg of path 𝑟 for OD pair (𝑢, 𝑣)

𝑡 Integer time index, 𝑡 = 1 represents the start of the incident. Non-

positive time indices indicate time before the incident.

𝑇𝐷 Time index at which the recommendation system stops working

𝑡min Start time index of the whole analysis period (negative by definition)

𝑡end End time index of the incident

𝑇 End time index of the whole analysis period (greater than 𝑇𝐷)

𝒯 The set of time indices of analysis and 𝒯 = {𝑡min, 𝑡min + 1, ..., 𝑇}

𝜏 The time duration that each time index represents

𝒫 The set of passengers that will receive the path recommendation

ℛ𝑝 The set of feasible paths for passenger 𝑝 ∈ 𝒫

ℛ𝑢,𝑣 The set of feasible paths for OD pair (𝑢, 𝑣)

Δ𝑢,𝑣,𝑟,𝑖
𝑡 Travel time between the terminal station and the boarding station

of leg ((𝑢, 𝑣, 𝑟, 𝑖)) for vehicle departing at time 𝑡

𝛿𝑢,𝑣,𝑟,𝑖𝑡 Travel time between the terminal station and the alighting station

of leg ((𝑢, 𝑣, 𝑟, 𝑖)) for vehicle departing at time 𝑡
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𝑓𝑢,𝑣,𝑟
𝑡 Number of passengers with OD pair (𝑢, 𝑣) and departure time 𝑡 and

using path 𝑟 who are not provided path recommendations

𝑑𝑢,𝑣𝑡 Total number of passengers with OD pair (𝑢, 𝑣) and departure time

𝑡

Ω1 The set of onboard flow indices at time 𝑡 = 1

𝑧𝑢,𝑣,𝑟,𝑖𝑡 Number of onboard passengers in the vehicle departing at time 𝑡 in

leg (𝑢, 𝑣, 𝑟, 𝑖)

𝒫𝑢,𝑣
𝑡 The set of passengers with OD pair (𝑢, 𝑣) and departure time 𝑡 that

will receive the path recommendation (a subset of 𝒫)

ℱ The set of all (𝑢, 𝑣, 𝑟) indices

𝒮 The set of all stations (stops)

𝒲 The set of all OD pairs

ℒ The set of all transit lines (routes) in the system

ℐ𝑢,𝑣,𝑟 The set of legs for path 𝑟 of OD pair (𝑢, 𝑣)

Vehicle (𝑙, 𝑡) The vehicle departing at time 𝑡 on line 𝑙

𝑇𝑙,𝑡 The time that vehicle (𝑙, 𝑡) arrives the last station of line 𝑙

𝑂𝑙,𝑡,𝑡′ Total number of onboard passengers at time 𝑡′ for vehicle (𝑙, 𝑡)

𝐾𝑙,𝑡 The capacity of vehicles (𝑙, 𝑡)

𝑇 IVT
𝑢,𝑣,𝑟,𝑖,𝑡 In-vehicle time of leg (𝑢, 𝑣, 𝑟, 𝑖) of vehicle departing at time 𝑡

𝐴𝐷𝑠,𝑡 Cumulative arriving demand at station 𝑠 up to time 𝑡

𝑋𝐷𝑠,𝑡 Cumulative transferring demand at station 𝑠 up to time 𝑡

𝐵𝐷𝑠,𝑡 Cumulative boarded demand at station 𝑠 up to time 𝑡

𝑇𝑇 𝑢,𝑣,𝑟
𝑡 Travel time of a path (𝑢, 𝑣, 𝑟) at time 𝑡

𝒯 𝑢,𝑣,𝑟
𝑡 The set of possible arrival times for path (𝑢, 𝑣, 𝑟) at time 𝑡

𝐴𝑇 𝑢,𝑣,𝑟
𝑡 Arrival time at the destination for the group of passengers using

path (𝑢, 𝑣, 𝑟) and departing at time 𝑡

𝑉 𝑟
𝑝 Passenger 𝑝’s inherent preference (utility) of using path 𝑟

𝐼𝑟𝑝,𝑟′ The impact of the recommendation of path 𝑟′ for passenger 𝑝 on

his/her utility of path 𝑟
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𝜋𝑟
𝑝,𝑟′ Conditional probability for passenger 𝑝 to choose path 𝑟 given that

he/she is recommended with path 𝑟′

𝜇𝑢,𝑣,𝑟
𝑡 Expectation of 𝑄𝑢,𝑣,𝑟

𝑡

𝜎𝑢,𝑣,𝑟
𝑡 Standard deviation of 𝑄𝑢,𝑣,𝑟

𝑡

𝜖 Threshold parameter for 𝜖-feasibility

Γ Threshold parameter for Γ-concentration

Ψ The hyper-parameter to adjust the scale and balance the trade-off

between system efficiency and passenger preference

𝑤𝑝 Degree of unfairness for passenger 𝑝

𝐸 A Predetermined integer threshold for the travel time difference

𝜆𝑘 Step size for post-adjustment at iteration 𝑘

𝒫Eq
(𝑘) The set of passengers whose recommendations already satisfy the

equity requirement at iteration 𝑘

Random Variables

1
𝑟′
𝑝,𝑟 Binary variable indicating whether passenger 𝑝 has chosen route 𝑟

or not

𝑄𝑢,𝑣,𝑟
𝑡 Actual flow for path (𝑢, 𝑣, 𝑟) at time 𝑡

Decision Variables for Optimization Models

𝑥𝑝,𝑟 Binary variable indicating whether recommending passenger 𝑝 to use

route 𝑟 or not

𝑞𝑢,𝑣,𝑟𝑡 Number of passengers in 𝒫 with OD pair (𝑢, 𝑣) and departure time

𝑡 and using path 𝑟

𝑧𝑢,𝑣,𝑟,𝑖𝑡 Number of passengers boarding a vehicle that had started at time 𝑡

on leg (𝑢, 𝑣, 𝑟, 𝑖)

𝑦𝑢,𝑣,𝑟,𝑡
𝑡

Binary decision variable indicating whether the arrival time of pas-

senger departing at time 𝑡 using (𝑢, 𝑣, 𝑟) is 𝑡 or not

𝑌 Decision variable in the master problem of the BD, representing the

tentative objective function of the subproblem
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(𝛼,𝛽,𝛾,𝜂,𝜅, 𝜌) Dual variables in the subproblem of the BD

6.9.2 Inference of status quo choices

The status quo path choice inference method is based on our previous study [215],

which is also similar to the trip-train method used for destination inference in open

public transit systems (i.e., no tap-out).

[In the system when the incident happens]: Consider a passenger 𝑝 ∈ 𝒫

with an incident line tap-in record before the end of the incident, meaning that he/she

were in the transit system when the incident happens. We then track his/her next

tap-in record. If he/she next tap-in is a transfer at nearby bus or rail stations, we

can identify his/her chosen path based on the transfer station. We can also identify

the waiting passenger if he/she continues to use the incident line to his/her intended

destinations inferred by his/her next tap-in records.

[Out of the system when the incident happens]: For a passenger 𝑝 ∈ 𝒫 with

only a tap-in record in nearby bus or rail stations. He/she may be affected by the

incident to change the tap-in station, or just use the service as a normal commute. To

identify whether he/she was affected, we extract his/her travel histories on previous

days without incidents to get the normal commute trajectories. If his/her tap-in time

and location on the incident day has never appeared in the historical records before,

we treat him/her as a passenger affected by the incident and identify his/her chosen

path based on the tap-in station.

For passengers in 𝒫 without next tap-in records or travel histories, we randomly

assign him/her a status quo path based on the proportion of inferred passengers.
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Chapter 7

Conclusion

7.1 Summary of results

7.1.1 System performance evaluation under short-term ser-

vice suspensions using a bulk-service queue model

This chapter proposes a stochastic framework to model the resilience of public transit

systems under short random service suspensions. Two aspects regarding resilience

are evaluated: 1) system stability and 2) system performance changes (queue length

and waiting time) under random service suspensions. We adopt a bulk-service queue

model to formulate the queuing behavior at a station. A Markov chain model is

used to model passenger flow dynamics across stations. We model the random ser-

vice suspension as a two-state (failure and normal) Markov process, where vehicles

are assumed to stop in the failure state. Under certain assumptions, we prove that

headway can be represented as the difference between two compound Poisson expo-

nential variables. Assuming no vehicle overtaking, we approximate the headway as

a zero-inflated truncated normal distribution to obtain a closed-form moment gener-

ating function. Based on the headway distribution, the number of arrival passengers

within a headway is derived. It is then used to calculate the mean and variance of

queue length and waiting time at each station with analytical formulations. These

analytical formulations allow efficient calculation of system performance and quan-
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tify the impact of random service suspensions. We also derive stability conditions of

the system with a closed-form formula that implies the system is more likely to be

unstable with high incident rates and long incident duration. The proposed model is

implemented on a bus network with sensitivity analysis of different parameters (such

as incident rate, incident duration, planned headway, etc.). Results show that higher

incident rates and higher average incident duration will increase both the mean and

variance of queue length and waiting time. Crowding stations (i.e., stations with

high demand but low available capacity) are more vulnerable to random service sus-

pensions. The theoretical results are validated with a simulation model, showing

consistency between the two outcomes.

7.1.2 Empirical analysis for the impact of service disruptions

This chapter proposes a general incident analysis framework both from the supply and

demand sides using automatically-collected data (AFC and AVL) in public transit

systems. Specifically, from the supply side, we propose an incident-based network

redundancy index to analyze the network’s ability to provide alternative services

under a specific rail disruption. The impacts on service operations are analyzed

through the headway changes. From the demand side, we calculate the demand

changes at different rail lines, rail stations, bus routes, and bus stops to understand

the passenger flow redistribution under incidents. Individual behavior is analyzed

using a binary logit model based on inferred passengers’ mode choices and socio-

demographics inferred from AFC and sale transaction data. Two incidents in the

CTA public transit system are used as case studies. The two rail disruption cases

have different attributes, one at a location with high network redundancy and the

other with low network redundancy.

Results show that the service frequency of the incident line was largely reduced

during the incident time. Nearby lines with substitutional functions are also slightly

affected. Depending on the incident location, the network’s redundancies are different,

as well as the passengers’ behavior. In the low redundancy scenario, most of the

passengers chose to use nearby buses to move, either to their destinations or to the
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nearby rail lines. In the high redundancy scenario, most of the passengers transferred

directly to nearby rail lines. The results of the case study provide useful insights into

operations when dealing with incidents.

7.1.3 Inferring passenger behavioral responses under disrup-

tions

This chapter proposes a probabilistic framework to infer passengers’ response behavior

to an unplanned rail service disruption using smart card data in a tap-in-only public

transit system. We enumerate 19 possible behaviors that passengers may have based

on the stages of their trips when the incident happened. A probabilistic model is

proposed to estimate the mean and variance of the number of passengers in each of

the 19 groups using passengers’ historical and subsequent trip information. Based on

the information used and the context of the behavior, four cases of formulations are

used in the probabilistic model. Data from the CTA public transit system (bus and

urban rail) is used for the case study with a rail incident. The model is implemented

with both synthetic data (consistent with the CTA AFC data) and real-world data.

The proposed approach can estimate passengers’ behavior well and outperform

the rule-based benchmark model. Results with synthetic data show that the RMSE

and MAPE for the estimated expected number of passengers in each behavior group

are 143.9 and 20.5%, respectively. The RMSE and MAPE for the estimated standard

deviation are 4.4 and 69.8%, respectively. The estimation results with real-world

data are consistent with the incident’s context. An indirect model validation using

ridership change information and incident log data demonstrates the reasonableness

of the results. Results with real-world data find that most of the passengers (97.43%)

are not affected by the incident. This is reasonable because the incident only affected

a small area. The incident we analyzed has high service redundancy with the Red

line substituting the blocked Brown and Purple lines. Our model results show that in

the high redundancy case, most of the affected passengers (69.51%) choose to use rail

by changing routes. Based on the results, CTA operators can confirm that the Red

291



line is a good alternative and quantify the impact. To relieve the incident impact,

operators can increase service frequency in the Red line. The model indicates that

only 8.1% of passengers choose to leave the public transit system. This number can

help CTA conduct the service loss analysis due to the incident.

7.1.4 Station-based path recommendations under demand un-

certainty

In this chapter, we propose a station-based path recommendation model to mitigate

the congestion during public transit disruptions. Passengers with different ODs and

departure times are recommended alternative paths to use such that the total system

travel time is minimized. To tackle the non-analytical formulation of travel times due

to left behind, we propose a simulation-based first-order approximation to transform

the original problem into a linear program and solve the new problem iteratively

with the method of successive average (MSA). Uncertainties in demand are modeled

using RO techniques to protect the path recommendation strategies against inaccurate

estimates. A real-world rail disruption scenario in the CTA system is used as a case

study. Results show that even without considering uncertainty, the nominal model can

reduce the system travel time by 9.1% (compared to the status quo), and outperforms

the benchmark capacity-based path recommendation. The average travel time of

passengers in the incident line is reduced more (-20.6% compared to the status quo).

After incorporating the demand uncertainty, the robust model further reduces the

system travel time. The best robust model with 𝜌1−𝜖 = 0.84 decreases the average

travel time of incident-line passengers by 2.91% compared to the nominal model.

The performance improvement by incorporating demand uncertainty is not very

significant. The reason may be that demand variations in the incident situation have

a limited impact on the optimal path shares. Notice that the demand during an

incident is already very high for the system (due to the reduced supply level). Hence,

the path recommendation patterns under nominal and worst-case demand may be

similar. However, the methodology presented in this study provides a general way
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to deal with PT demand uncertainty. It can be used for other operations control,

optimization, planning, or recommendation applications.

7.1.5 Individual-based path recommendation considering be-

havior uncertainty and equity

This chapter proposes a mixed-integer programming (MIP) formulation to model the

individual-based path (IPR) recommendation problem during PT service disruptions

with the objective of minimizing total system travel time and respecting passengers’

path choice preferences. Passengers’ behavior uncertainty in path choices given rec-

ommendations and their travel time equity are also considered in the formulation.

We first formulate the optimal flow distribution problem in PT systems as linear pro-

gramming, which outputs the optimal path flows for each OD pair and time interval

that minimize the total system travel time. Then, we model the behavior uncer-

tainty based on passenger’s prior preferences and posterior path choice probability

distribution with two new concepts: 𝜖-feasible flows and Γ-concentrated flows, which

control the mean and variance of path flows in the optimization problem. We show

that these two concepts can be transformed into linear constraints using Chebyshev’s

inequality. The individual path recommendation problem with behavior uncertainty

is solved using Benders decomposition (BD) efficiently. The master problem of BD

is small-scale integer programming and the subproblem of BD reduces the optimal

flow problem that is a linear program. The BD is more efficient than many off-

the-shelf MIP solvers. Finally, we use a post-adjustment heuristic to address equity

requirements.

The proposed approach is demonstrated in a case study using data from a real-

world urban rail disruption in the CTA system. The results show that the proposed

IPR model significantly reduces the average travel times in the system compared to

the status quo. Specifically, there is a 6.6% reduction in travel times for all passen-

gers in the system. Passengers in the incident line (i.e., passengers who received the

recommendation), experience a 19.0% average travel time reduction. Our model also
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outperforms the capacity-based benchmark path recommendation strategy. Com-

pared to the model that assumes all passengers would follow the recommendations,

considering behavior uncertainty in the path recommendation design can achieve

smaller system travel time. Post-adjustment effectively reduces the difference in pas-

sengers’ travel times and increases equity. After the post-adjustment, the travel time

difference to the shortest path is within 10 minutes for all passengers. The equity

requirement slightly increases the system travel time by 0.46%, showing the trade-off

between efficiency and equity. In terms of respecting passengers’ preferences, we show

that it is possible that most of the passengers (e.g., more than 70%) are recommended

their preferred paths while only increasing the system travel time by 0.51%.

7.2 Summary of contributions

This thesis provides a framework about what and how we should do during the ser-

vice disruptions for public transportation systems. We summarize different tasks in

monitoring, control, and planning to build a resilient public transit system. All pre-

vious works regarding the resilience of public transit can be involved in the proposed

framework. The proposed framework can guide many interesting future studies as a

continuity of the five chapters included in the thesis.

7.2.1 New methodologies

From the methodology point of view, there are many new approaches proposed in

the thesis to solve various challenges. These methods can also be applied to other

research.

Closed-form headway distribution. In Chapter 2, we derive the headway

distribution for a public transit system under short random service suspensions. These

short-term incidents can be treated as disturbances in the system. Therefore, the

derivation is general to normal public transit systems with perturbations. Typical

headway modeling assumes a specific distribution for vehicles’ travel times. This

study provides a new framework by modeling disturbances of vehicle speed to derive
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the headway distribution. The headway distribution can be used to analyze a lot of

queuing characteristics at a station, providing an efficient way to evaluate the level

of services.

Though the derivation is based on public transit systems, we may also apply

the headway (service interval) analysis to other bulk-service systems such as airport,

logistics, and internet.

Interpolation-based roots-solving method. In Chapter 2, we propose an

interpolation-based roots-solving method. Root-solving is an important component

in queuing analysis. The proposed method can be used to solve other queuing systems

for the steady-state distributions.

Simulation-based first-order approximation for travel time calculation

in public transit system In Chapter 5, we mentioned that one of the key challenges

in the public transit network modeling is that the system travel time has no analyti-

cal formulation. The proposed simulation-based first-order approximation provides a

way to model the system travel time as a linear function, which allows for implement-

ing advanced optimization techniques (e.g., robust optimization) or incorporating

different model purposes (e.g., modeling of control strategies in the network).

Solving optimization problems with random decision variables. In Chap-

ter 6, the individual path recommendation model needs to solve for the path flow and

individual recommendation simultaneously. However, path flow becomes a random

variable given behavior uncertainty. Optimization problems with random decision

variables cannot be solved directly. Consider a general optimization problem where

the decision variables are random variables with density function 𝑓(· | 𝜃) (Eq. 7.1).

min
𝑥∼𝑓(·|𝜃)

𝑔(𝑥) (7.1a)

s.t. ℎ(𝑥) ≤ 𝑏 (7.1b)

The typical way to transform this problem into a deterministic problem is to take

the expectation of the objective function and constraints (or consider the probability

guarantee of the constraints with a pre-defined parameter 𝜂, such as 𝜂 = 0.95), as
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shown in Eq. 7.2. That is, instead of solving for random variable 𝑥, we treat the

distribution parameters 𝜃 as the decision variables, which is deterministic.

min
𝜃

E𝑥∼𝑓(·|𝜃)[𝑔(𝑥) | 𝜃] (7.2a)

s.t. E𝑥∼𝑓(·|𝜃)[ℎ(𝑥)] ≤ 𝑏 or P𝑥∼𝑓(·|𝜃)[ℎ(𝑥) ≤ 𝑏] ≥ 𝜂 (7.2b)

However, the formulations in Eq. 7.2 is in general hard to solve except for that we

have the closed-form expressions for E𝑥∼𝑓(·|𝜃)[·] and P𝑥∼𝑓(·|𝜃)[·].

In this study, we propose two concepts, 𝜖-feasibility and Γ-concentration, to model

random decision variables. Hence, instead of solving Eq. 7.2, we reformulate the

problem to:

min
�̂�,𝜃

𝑔(�̂�) (7.3a)

s.t. ℎ(�̂�) ≤ 𝑏 (7.3b)

|�̂�− E[𝑥]| ≤ 𝜖 (7.3c)

Var[𝑥] ≤ Γ (7.3d)

where �̂� in Eq. 7.3 is treated as a realization of 𝑥 (instead of a random variable).

𝜃 = (E[𝑥],Var[𝑥])

The formulation in Eq. 7.3 has relationship with Eq. 7.2. When 𝜖 = 0, we have

�̂� = E[𝑥]. The objective function in Eq. 7.3 becomes 𝑔(E[𝑥]) and the constraint

becomes ℎ(E[𝑥]) ≤ 𝑏. If 𝑔(·) and ℎ(·) are both convex functions (corresponding to

convex optimization), according to Jensen’s inequality, we have:

𝑔(E[𝑥]) ≤ E[𝑔(𝑥)] (7.4)

ℎ(E[𝑥]) ≤ E[ℎ(𝑥)] (7.5)

Then the optimal value of Eq. 7.3 is a lower bound of the optimal value of Eq. 7.2.

Note that, in this case, Eq. 7.3 is also called certainty-equivalent (or mean-field)

problem of a stochastic optimization problem.
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On the other hand, since we also bound the variance of 𝑥 in Eq. 7.3, we can also

derive from the variance bound to a similar formula as P𝑥∼𝑓(·|𝜃)[ℎ(𝑥) ≤ 𝑏] ≥ 𝜂 (based

on Chebyshev’s and Jensen’s inequalities), which shows another relationship between

Eq. 7.3 and 7.2.

7.2.2 Contributions of each chapter

The main contributions of the five chapters are summarized below.

System performance evaluation under short-term service suspensions

using a bulk-service queue model. This is the first study to explore analytically

the bulk-service queuing problem involving short random service suspensions applied

to PT systems. We model the service suspension in PT systems by analyzing vehicles’

speed profiles, which is a novel and practical way to consider “server breakdown” in

PT systems. 2) We prove that the headway under random service suspensions can be

represented as the difference between two compound Poisson exponential variables.

We assume there is no vehicle overtaking and approximate the headway distribution

as a zero-inflated truncated normal distribution to obtain a closed-form moment gen-

erating function. Based on this we derive the PGF and corresponding moments of the

number of arrival passengers within a headway (these are critical components for the

bulk-service queue model). This is a new analytical contribution to the bulk-service

queuing theory. 3) Based on Islam et al. [49]’s work, we introduce a Markov chain

model to capture the inter-station passenger flow dynamics, which extends the typical

bulk-service queuing analysis from the station level to the route level. 4) We propose

an interpolation-based roots-solving method to find all complex roots for this study’s

model specification. Roots-solving is an essential step to obtain the queue length and

waiting time for the bulk-service queuing model.

Empirical analysis for the impact of service disruptions. This chapter 1)

proposes an incident-based network redundancy index to reflect the system’s ability

to provide alternative services considering the integrated bus and rail systems. The

index leverages the proposed concept of path throughput to incorporate the impact

of the incident duration on the redundancy calculation. 2) We develop an incident
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analysis framework using AFC and AVL data and apply it to incidents with different

characteristics. Specifically, we analyze two types of incidents with high and low

redundancy separately from both demand and supply perspectives. 3) An individual

mode choice analysis method using AFC data is proposed. The approach includes a

travel mode inference model and a passenger demographics extraction model. To the

best of our knowledge, this is the first study that adopts AFC data for individual mode

choice analysis during incidents. 4) We conduct an empirical study to demonstrate

the proposed framework using AFC and AVL data from two real-world incidents in

the CTA system. The corresponding policy implications and operation suggestions

are also discussed.

Inferring passenger behavioral responses under disruptions. This chapter

1) provides a comprehensive framework of passengers’ behavior under service disrup-

tions. A total of 19 possible behavior groups for passengers at different stages of their

trips are considered, which enables a more detailed modeling framework. The behav-

ior identification is based on when and where passengers are making their decisions

during a disruption. The method is general and can be used for other transit systems.

2) We propose a probabilistic behavior inference model with a specific formulation for

each of the 19 behavior groups. The model enables the estimation of the mean and

variance of the number of passengers in each group to capture passengers’ behavior

uncertainty. To the best of the authors’ knowledge, this is the first article providing

the estimation for both mean and variance of post-incident behaviors using AFC data.

3) The proposed approach leverages both passengers’ historical travel trajectories and

their subsequent tap-in records after the incident to facilitate behavior inference. This

is contrary to previous studies where only the AFC data on the incident day is used.

Station-based path recommendations under demand uncertainty. The

robust path recommendations study has two major contributions. 1) First, to tackle

the non-analytical system travel time calculation, we propose a simulation-based lin-

earization to convert the total system travel time to a linear function of path flows

using first-order approximation. Importantly, we utilize the physical interaction be-

tween passengers and vehicles in a public transit system to efficiently calculate the
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gradient (i.e., marginal change of travel time) without running the simulation mul-

tiple times (as opposed to traditional black-box optimization). 2) Second, we use

robust optimization (RO) to model the demand uncertainty which protects the model

against inaccurate demand estimation. Specifically, we derive the closed-form robust

counterpart with respect to the intersection of one ellipsoidal and three polyhedral

uncertainty sets. These uncertainties capture the demand variations and the potential

demand reduction during an incident. We also provide a feasible way of combining

historical and survey data to quantify the uncertainty parameters.

Individual-based path recommendation considering behavior uncertainty

and equity. This chapter is 1) the first study dealing with individual path recom-

mendations under public transit service disruptions considering behavior uncertainty

and equity. Previous studies only considered uncertainty in demand [45] or incident

duration [161]. And for the objective function, they either focus on minimizing travel

time or maximizing individual preferences [155]. Equity has not been considered in

the literature. 2) To model behavior uncertainty, this chapter proposes a framework

with prior path utility and posterior path choice distribution given recommendations.

We use two new concepts: 𝜖-feasibility and Γ-concentration, to control the mean and

variance of path flows due to behavior uncertainty and transform these two require-

ments to linear constraints in the optimization model using Chebyshev’s inequality. 3)

Benders decomposition (BD) is used to solve the mixed-integer individual path recom-

mendation problem efficiently. Under BD, the master problem becomes a small-scale

integer program and the sub-problem reduces to a linear program. 4) This chapter

mathematically defines the equity requirement in the individual path recommenda-

tions, and proposes a post-adjustment heuristic method to solve it. We also propose

an integrated mixed-integer programming formulation with both behavior uncertainty

and equity requirement, discuss the difficulty in solving the corresponding problem,

and highlight the importance of the post-adjustment heuristic.
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7.3 Application discussion

7.3.1 Implementation of path recommendation

To implement the path recommendation models proposed in Chapters 5 and 6, we

need collaborations among different components in an agency. Figure 7-1 provides a

possible workflow diagram for the implementation of path recommendation models.

When an incident happens, the engineering team of a transit agency needs to first

inspect the conditions and provide the estimated duration of the incident. These

inspection results will be sent to the operation team to adjust the system’s supply,

including short-turn of trains, dispatching shuttle buses, etc. Note that supply-side

optimal control models can be used to facilitate the operation adjustment. Given the

supply and incident information, the proposed path recommendation models (both

station-based and individual-based) can output the recommendations for passengers,

which will be shown on the agency’s App, websites, and electronic boards at stations.

The software engineering team will support the design and maintenance of the App

or other displayed platforms.

Figure 7-1: Framework for path recommendation implementation
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Station-based path recommendation models

In the station-based path recommendation, our model can output the optimal path

proportions for each OD pair and departure time (see Chapter 5). However, to make

passengers’ actual path choices in line with the optimal proportions, the implemen-

tation strategies need to be designed carefully. As mentioned in Section 5.3.5, one

strategy is to randomly recommend to each passenger a specific path with the proba-

bility same as the optimal proportions. However, this may raise equity issues because

some passengers may be recommended paths with significantly longer travel times

than others at the same station.

An alternative implementation of station-based path recommendation is to list

multiple paths with estimated travel time information. An example mock screen is

shown in Figure 7-2. Since all passengers receive the same information, there are

no aforementioned equity issues. However, in this setting, we need to determine

which routes to show at a specific station and in which displaying formats. Different

displays may result in different passengers’ route choice probabilities. The objective

is to make the choice probabilities as close to the optimal proportions as possible.

However, this needs separate research to quantify passengers’ behavior responses to

different presented information and optimally decide the displayed information.

Figure 7-2: Mock electronic board at a station
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Individual-based path recommendation

For the individual-based path recommendation, we can implement the model in a

smart-phone based app. A mock screen for the recommendation system is shown in

Figure 7-3. In the app, passengers who need recommendations can input their origin,

destination, and departure times. And the system may recommend one or more paths

with travel time information. Note that to enable recommendations of multiple paths,

we need a model to quantify passengers’ posterior choice probabilities with respect to

different compositions of recommendation information (as discussed in Section 6.5).

Figure 7-3: Mock screen of the individual path recommendation app

Pros and cons for two recommendation schemes

Station-based path recommendation, in general, is easier to implement because opera-

tors neither need to develop a smartphone-based app nor collect individual-level pref-

erence information. The drawback is that it cannot capture individual heterogeneity

in responding to recommendations, and may lead to equity issues. The individual-

based path recommendation model enables customized information provision, which

may result in better performance and higher passenger satisfaction. However, the im-
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plementation is harder due to the challenges in collecting information at the individual

level.

7.3.2 Incident management

Combining both monitoring and controlling models proposed in the dissertation (as

well as other models discussed in Chapter 1), we can develop a holistic incident

management tool for transit agencies. Figure 7-4 shows a mock screen for the incident

management tool. On the screen, we can present real-time headway and its deviations

(compared to the schedules), as well as real-time demand and its comparison to normal

days. We can also visualize the impacts of the incident, showing the affected scopes

and passenger flow redistribution. The tool may also provide guidance in operation

adjustment and path recommendations.

However, to implement the automatic incident management platform, we need fast

data collection and more efficient solution algorithms to enable real-time decisions.

These are challenges that should be addressed in the future.

Figure 7-4: Mock screen of the incident management system (credited to Dingyi
Zhuang)
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7.4 Future studies

7.4.1 Overcome limitations in current studies

There are several limitations in the above studies that can be improved in future

studies. In Chapter 2, we assume that the incident durations for two consecutive ve-

hicles are independent to facilitate closed-form derivations. In reality, if the incidents

are caused by road congestion or infrastructure issues, it is possible that the incident

durations for two consecutive vehicles passing through the same route segment are

correlated. One possible way to capture these correlations is to model headway inter-

vals as two different sequences to capture the first-order correlation. One may refer

to Powell [48] for more details. Another improvement that can be done for Chapter

2 is to develop a better way to find the steady distribution of queue length. The

current algorithm needs to solve for complex roots. It may also suffer from precision

issues. Alternative methods include approximations of the queue length [220, 221],

matrix-analytic method [222], or more recently, root-free methods [223].

In Chapter 3, we propose a redundancy index. An extension to the proposed index

is to consider demand information. This can be done by replacing 𝐶𝑝 as available ca-

pacity in a path considering onboard passengers. In that chapter, we also conducted

the individual choice analysis. However, one of the drawbacks of individual analysis

is that only a limited number of samples can be obtained due to the strict defini-

tion of regular passengers. Future studies may consider modifying the definition of

regular passengers and enhancing the behavior inference model to get more samples.

Alternatively, they can conduct research for aggregate demand analysis under disrup-

tions (e.g., regression) by collecting many incident cases and the associated demand

changes.

In Chapter 4, due to the data limitation in the open transit systems (i.e., no

tap-out record), a lot of strong assumptions are imposed in the behavior response

inference model in order to differentiate some behavior groups. Future studies may

extend the current model to a closed transit system with tap-out information to allow

a more granular behavior inference.
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In Chapters 5 and 6, we consider demand and behavior uncertainty in the system.

However, the most critical uncertainty in transit disruptions is the incident duration

uncertainty. Due to the slow process of inspection, the control center may not fully

understand the incident’s characteristics (e.g., duration) before making operating

decisions. Hence, future studies may consider a general framework for modeling

incidents’ uncertainties, including duration, affecting areas, etc.

7.4.2 Other control strategies

As discussed in Chapter 1, there are other control strategies in addition to path

recommendations.

From the demand side, operators may control the inflow in front of the entering

gates at each station. The objective of gate control is to limit the number of entering

passengers, reduce downstream congestion, decrease risks at platforms, and force

passengers to use other transportation modes (such as buses or taxis) so as to increase

total system efficiency. Figure 7-5 shows the illustration of gate control. Considering

a rail line with service disruptions, we may select several stations as the controlled

stations. In each controlled station, we may design an algorithm to determine, for

every five minutes, how many passengers (or what proportion of the total queuing

passengers) should be allowed to enter the station. The waiting passengers may

leave the queue and take alternative buses, which has the potential for better system

capacity utilization.

Figure 7-5: Illustration of gate flow control
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Another demand-side control strategy may be passenger incentive design. In our

individual path recommendation model, we introduce an equity constraint to ensure

that passengers in the same situation (origin, destination, and departure time) have

similar travel times. Another way to ensure equity is to provide subsidies (such as

fare credits and digital tokens) to passengers with longer travel times. Hence, future

studies may consider incentive design with path recommendations.

From the supply side, we may design algorithms for route re-scheduling, rolling

stock adjustment, re-routing, shuttle bus dispatching, etc. Supply-based service ad-

justment has been extensively studied before, we thus do not discuss more details

here.

7.4.3 Extension to planning tasks

Future studies may also explore proactive planning in response to potential service

disruptions. Example tasks in planning include schedule (timetable) design, fleet

size design, vehicle type and size design, crew scheduling, and service design (e.g.,

network extension). Incidents may result in uncertainties in these planning tasks.

For example, timetable design may be affected due to uncertainties in vehicle travel

time (e.g., buses travel slowly due to road accidents), dwelling time (e.g., crime risk

causes trains to stop at a station for inspection), and the number of available vehicles

(e.g., absence of bus drivers). Future studies may consider schedule design with

respect to these uncertainties. Robust and stochastic optimization techniques can be

used to solve these planning problems. For other planning tasks, it is also possible to

consider incident-caused uncertainties and service degradation in the corresponding

design.

7.4.4 Resilience quantification

In the dissertation, we mostly talk about resilience in a qualitative way. One of the

future studies is to quantitatively define and evaluate resilience in a public transit

system. Resilience quantification is commonly illustrated as in Figure 7-6, where the
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function of the system (𝑄(𝑡)) is monitored over time. A shock initiates degradation

of system function, followed by a period of consolidation, and eventual recovery of

the nominal condition (𝑄0). We evaluate the function loss as the lost areas due to

system function degradation (the gray area in the figure). A higher resilience means

a smaller function loss given a shock (or incidents). It can be achieved by lowering

the magnitude of function degradation, or reducing the duration of the consolidation

and recovery periods.

Figure 7-6: Illustration of resilience quantification (adapted from Jenelius and Matts-
son [5])

Quantitative resilience analysis requires a measure of system function. Jenelius

and Mattsson [5] proposed a framework for transport system resilience analysis that

incorporates both supply and demand shocks. In their framework, system function

loss corresponds to a shortage of supply in relation to demand. This can occur due to

either a reduction in supply or an increase in demand. Figure 7-7 shows an example

of supply losses, where a disruption causes a sudden supply cut while the demand

remains relatively unchanged. The lack of resilience is represented by the total loss

of function until supply is restored to the baseline level. This framework enables us

to quantitatively evaluate the system’s resilience based on the function loss.
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Figure 7-7: Resilience quantification for transportation systems (adapted from
Jenelius and Mattsson [5])

7.4.5 Extension to multimodal system

Although this dissertation focuses on public transit systems, resilience can be ex-

tended to a multimodal transportation system as future research. To consider a

multimodal resilient system, we should first define the source of incidents and service

disruptions. In general, the multimodal system has more potential causes of incidents

because every mode segment’s function degradation will affect the integrated system.

For example, the service disruption of bikes may affect the first and last-mile trips in

the multimodal system. However, on another hand, a multimodal system may also

be more resilient compared to a single-mode system because it has more capacities

provided by various transportation modes.

After defining the potential incidents, we then can consider different tasks needed

to maintain the operation of the multimodal system, and how these tasks should be

modified under the conditions of incidents. For example, TNC companies need to

run matching, pricing, and rebalancing algorithms during normal operations. Future

studies may design more advanced algorithms for these tasks when there is significant

demand (e.g., Olympic games, concerts) and supply (driver strike) fluctuations.
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